

Lecture Notes in Artificial Intelligence 4667
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Joachim Hertzberg Michael Beetz
Roman Englert (Eds.)

KI 2007:
Advances in
Artificial Intelligence

30th Annual German Conference on AI, KI 2007
Osnabrück, Germany, September 10-13, 2007
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Joachim Hertzberg
University of Osnabrück
Institute of Computer Science
49069 Osnabrück, Germany
E-mail: hertzberg@informatik.uni-osnabrueck.de

Michael Beetz
Technische Universität München
Computer Science Department
Boltzmannstr. 3, 85748 Garching München, Germany
E-mail: beetzm@in.tum.de

Roman Englert
Deutsche Telekom Laboratories
Ernst-Reuter-Platz 7, 10587 Berlin, Germany
E-mail: roman.englert@telekom.de

Library of Congress Control Number: 2007934041

CR Subject Classification (1998): I.2, I.2.6, F.1.1, I.5.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-74564-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74564-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12115082 06/3180 5 4 3 2 1 0

Preface

The 30th Annual German Conference on Artificial Intelligence (KI-2007) took
place in the University of Osnabrück, September 10–13, 2007. In this volume,
you will find papers or abstracts of its six invited talks, 25 full papers, and
21 posters. The full papers were selected from 81 submissions, resulting in an
acceptance rate of 32%.

As usual at a KI conference, an entire day was reserved for targeted workshops
– ten of them this year – and two tutorials. They are not covered in this volume,
but the conference Web site www.ki2007.uos.de will keep providing information
and references to their contents. Some topic clusters are apparent in the overall
conference program, which reflect recent trends in AI research, convolved with
foci of work in Germany and Europe. Examples are learning and data mining,
robotics and perception, knowledge representation and reasoning, planning and
search – all of them including a healthy number of approaches dealing with
uncertainty, contradiction, and incompleteness of knowledge. All in all, KI-2007
provided a cross section of modern AI research and application work.

KI-2007 also constituted a “small anniversary,” being the 30th exemplar of
its kind. The invited talk by Wolfgang Bibel (accompanied by a paper in this
volume) picked up on that occasion by recalling what the field of automated
deduction was like 30 and more years ago – in general, and in Germany. He also
paid homage to Gerd Veenker, who organized the first KI conference (which had
a different name at the time) in 1975 and whose field of research was deduction.
We were very happy that Wolfgang Bibel accepted our invitation to give this
type of talk, as AI – developing swiftly as it does – is in permanent danger of
forgetting its earlier days and the lessons that can be learned from them.

Our thanks and gratitude, first and foremost, go to the colleagues who ac-
cepted our invitations or submitted workshop proposals and papers and posters
and all sorts of input: Imagine you organize a conference, and no one responds
– we thank all of them that this was definitely not the case! Next, we thank all
those who helped organize KI-2007 and who are listed on the next few pages.
Part of the organization was, of course, handling the submissions and the review-
ing. In that respect, the EasyChair conference system was of enormous help, and
we would like to thank its main developer Andrei Voronkov for not only develop-
ing it, but also providing it for free to the scientific community. And finally, we
thank the responsible and sponsoring institutions of this conference, also listed
in the following pages: Without their support, a KI conference might have been
possible, in principle, but it would have been much more stressful, much less
successful and much less enjoyable!

July 2007 Joachim Hertzberg
Michael Beetz

Roman Englert

Table of Contents

Invited Talks

The Role of AI in Shaping Smart Services and Smart Systems 1
Sahin Albayrak

Early History and Perspectives of Automated Deduction 2
Wolfgang Bibel

Cognitive Technical Systems—What Is the Role of Artificial
Intelligence? . 19

Michael Beetz, Martin Buss, and Dirk Wollherr

Artificial Intelligence Is Engineering Intelligence – Why Should We
Care About Natural Intelligence? . 43

Thomas Christaller

Applying Machine Learning Techniques for Detection of Malicious
Code in Network Traffic . 44

Yuval Elovici, Asaf Shabtai, Robert Moskovitch, Gil Tahan, and
Chanan Glezer

Location-Based Activity Recognition . 51
Dieter Fox

Papers

Pinpointing in the Description Logic EL+ . 52
Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn

Integrating Action Calculi and Description Logics . 68
Conrad Drescher and Michael Thielscher

Any-World Access to OWL from Prolog . 84
Tobias Matzner and Pascal Hitzler

Applying Logical Constraints to Ontology Matching 99
Christian Meilicke and Heiner Stuckenschmidt

Resolving Inconsistencies in Probabilistic Knowledge Bases 114
Marc Finthammer, Gabriele Kern-Isberner, and
Manuela Ritterskamp

Extending Markov Logic to Model Probability Distributions in
Relational Domains . 129

Dominik Jain, Bernhard Kirchlechner, and Michael Beetz

XII Table of Contents

A Multilingual Framework for Searching Definitions on Web Snippets . . . 144
Alejandro Figueroa and Günter Neumann

A SPARQL Semantics Based on Datalog . 160
Simon Schenk

Negation in Spatial Reasoning . 175
Stefan Schleipen, Marco Ragni, and Thomas Fangmeier

Relational Neural Gas . 190
Barbara Hammer and Alexander Hasenfuss

A General Framework for Encoding and Evolving Neural Networks 205
Yohannes Kassahun, Jan Hendrik Metzen, Jose de Gea,
Mark Edgington, and Frank Kirchner

Making a Robot Learn to Play Soccer Using Reward and
Punishment . 220

Heiko Müller, Martin Lauer, Roland Hafner, Sascha Lange,
Artur Merke, and Martin Riedmiller

Perception and Developmental Learning of Affordances in Autonomous
Robots . 235

Lucas Paletta, Gerald Fritz, Florian Kintzler, Jörg Irran, and
Georg Dorffner

A Computational Model of Bistable Perception-Attention Dynamics
with Long Range Correlations . 251

Norbert Fürstenau

On Constructing a Communicative Space in HRI . 264
Claudia Muhl, Yukie Nagai, and Gerhard Sagerer

Natural Language Descriptions of Human Behavior from Video
Sequences . 279

Carles Fernández Tena, Pau Baiget, Xavier Roca, and Jordi Gonzàlez

Detecting Humans in 2D Thermal Images by Generating 3D Models 293
Stefan Markov and Andreas Birk

Extent, Extremum, and Curvature: Qualitative Numeric Features for
Efficient Shape Retrieval . 308

B. Gottfried, A. Schuldt, and O. Herzog

Extraction of Partially Occluded Elliptical Objects by Modified
Randomized Hough Transform . 323

Kwangsoo Hahn, Youngjoon Han, and Hernsoo Hahn

Solving Decentralized Continuous Markov Decision Problems with
Structured Reward . 337

Emmanuel Benazera

Table of Contents XIII

Options in Readylog Reloaded – Generating Decision-Theoretic Plan
Libraries in Golog . 352

Lutz Böhnstedt, Alexander Ferrein, and Gerhard Lakemeyer

On the Construction and Evaluation of Flexible Plan-Refinement
Strategies . 367

Bernd Schattenberg, Julien Bidot, and Susanne Biundo

Learning How to Play Hex . 382
Kenneth Kahl, Stefan Edelkamp, and Lars Hildebrand

Stochastic Functional Annealing as Optimization Technique:
Application to the Traveling Salesman Problem with Recurrent
Networks . 397

Domingo López-Rodŕıguez, Enrique Mérida-Casermeiro,
Gloria Galán-Maŕın, and Juan M. Ortiz-de-Lazcano-Lobato

A Stochastic Local Search Approach to Vertex Cover 412
Silvia Richter, Malte Helmert, and Charles Gretton

Posters

A Connectionist Architecture for Learning to Play a Simulated Brio
Labyrinth Game . 427

Larbi Abdenebaoui, Elsa A. Kirchner, Yohannes Kassahun, and
Frank Kirchner

Divergence Versus Convergence of Intelligent Systems: Contrasting
Artificial Intelligence with Cognitive Psychology . 431

Stefan Artmann

Deep Inference for Automated Proof Tutoring? . 435
Christoph Benzmüller, Dominik Dietrich, Marvin Schiller, and
Serge Autexier

Exploiting Past Experience – Case-Based Decision Support for Soccer
Agents . 440

Ralf Berger and Gregor Lämmel

Externalizing the Multiple Sequence Alignment Problem with Affine
Gap Costs . 444

Stefan Edelkamp and Peter Kissmann

Text Generation in the SmartWeb Multimodal Dialogue System 448
Ralf Engel and Daniel Sonntag

XIV Table of Contents

A Method to Optimize the Parameter Selection in Short Term Load
Forecasting . 452

Humberto F. Ferro, Raul S. Wazlawick,
Cláudio M. de Oliveira, and Rogério C. Bastos

Visual Robot Localization and Mapping Based on Attentional
Landmarks . 456

Simone Frintrop

Bridging the Sense-Reasoning Gap Using DyKnow: A Knowledge
Processing Middleware Framework . 460

Fredrik Heintz, Piotr Rudol, and Patrick Doherty

Emotion Based Control Architecture for Robotics Applications 464
Jochen Hirth, Tim Braun, and Karsten Berns

Inductive Synthesis of Recursive Functional Programs 468
Martin Hofmann, Andreas Hirschberger, Emanuel Kitzelmannn, and
Ute Schmid

Training on the Job—Collecting Experience with Hierarchical Hybrid
Automata . 473

Alexandra Kirsch and Michael Beetz

Selecting Users for Sharing Augmented Personal Memories 477
Alexander Kröner, Nathalie Basselin, Michael Schneider, and
Junichiro Mori

Semantic Reflection – Knowledge Based Design of Intelligent Simulation
Environments . 481

Marc Erich Latoschik

Prolog-Based Real-Time Intelligent Control of the Hexor Mobile
Robot . 485

Piotr Matyasik, Grzegorz J. Nalepa, and Piotr Zi ↪ecik

Improving the Detection of Unknown Computer Worms Activity Using
Active Learning . 489

Robert Moskovitch, Nir Nissim, Dima Stopel, Clint Feher,
Roman Englert, and Yuval Elovici

The Behaviour-Based Control Architecture iB2C for Complex Robotic
Systems . 494

Martin Proetzsch, Tobias Luksch, and Karsten Berns

Concept for Controlled Self-optimization in Online Learning
Neuro-fuzzy Systems . 498

Nils Rosemann and Werner Brockmann

Table of Contents XV

LiSA: A Robot Assistant for Life Sciences . 502
Erik Schulenburg, Norbert Elkmann, Markus Fritzsche,
Angelika Girstl, Stefan Stiene, and Christian Teutsch

Semantic Graph Visualisation for Mobile Semantic Web Interfaces 506
Daniel Sonntag and Philipp Heim

A Qualitative Model for Visibility Relations . 510
Francesco Tarquini, Giorgio De Felice, Paolo Fogliaroni, and
Eliseo Clementini

Author Index . 515

The Role of AI in Shaping Smart Services and

Smart Systems

Sahin Albayrak

TU Berlin
sahin.albayrakdai-labor.de

Services and Systems must include a set of features to remain competent and fu-
ture conform: intelligent behaviour, personalisation, adaptivity, scalability, man-
ageability, ease of use and user friendliness, security, and self-healing capabilities.
As a consequence, new architectural models are needed, which provide the users
with access to a cognitive behaviour aspect of the system, and which may draw
inspiration from the brain sciences. On the other hand, we have to use knowl-
edge representation and semantic modeling, e.g., ontologies for representing our
environment or basic properties of services and systems. This would naturally
involve Agent Technology, AI, and Software Technology. So, approaches from
many different disciplines have to work in integration.

Integrated frameworks handling such different aspects are called “Service-
ware Frameworks”. They contain a scalable Service Architecture, which facili-
tates merging different selected features into a service, as well as a scalable so-
called Service Engine with a Serviceware Infrastructure. For creating Smart Ser-
vices and Smart Systems, we use engineering approaches that include innovative
service description languages and tools. In this presentation, a framework with
the properties and features just described will be presented. A sample applica-
tion developed with this framework will also be presented: the “Smart Energy
Assistant”.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Early History and Perspectives of
Automated Deduction

Wolfgang Bibel

Darmstadt University of Technology
Also affiliated with the University of British Columbia

Bibel@gmx.net

Abstract. With this talk we want to pay tribute to the late Professor
Gerd Veenker who deserves the historic credit of initiating the formation
of the German AI community. We present a summary of his scientific
contributions in the context of the early approaches to theorem prov-
ing and, against this background, we point out future perspectives of
Automated Deduction.

Formal logic is still often looked upon as a kind of esoteric doctrine.
Evert W. Beth 1958

The fundamental scientific progress lies in the area of logic and the cog-
nitive sciences.

Pierre Papon 2006

1 Introduction

Gerd Veenker is known in the German Artificial Intelligence (AI) community for
his initiative and organisation of the first national AI meeting in Bonn in 1975
and the second one in Dortmund in the same year. This year we celebrate the
thirtieth German AI conference and for this reason commemorate of him and of
his work. Had he not died so prematurely we could as well have celebrated his
seventieth birthday.

Veenker’s scientific contributions are in the field of Automated Deduction
(AD). In fact, he was the very first German scientist who contributed to this
fruitful and still promising field. In the mid-sixties of the last century with his
theoretical work and his working systems he was at the forefront of AD interna-
tionally. For instance, his system NEU of 1966 realized what only a decade later
was reinvented and called UR-resolution (for Unit Resulting). Unfortunately, he
was totally isolated in those days when Informatics did not yet exist in Ger-
many, let alone an “esoteric doctrine” like computational logic [Bet58, p.50]. So
his contributions have stayed totally unnoticed.

As a courageous pioneer he deserves to be commemorated. We therefore sum-
marize in Section 4 of this paper some of his early contributions. Because these
cannot be appreciated without some knowledge about the state of the art in

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 2–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Early History and Perspectives of Automated Deduction 3

AD at those days, we give in Section 2 an account of the first complete theo-
rem proving procedures in first-order logic by Prawitz and Gilmore, with a brief
mention of other early deductive systems by Dunham et al., Newell et al., and
Davis as well as of McCarthy’s seminal contribution of LISP.

Section 3 then describes the advances in AD made in the early sixties. These
include unification, Skolem functions, Herbrand universe, clause form, unit reso-
lution, and especially Robinson’s resolution. We also point out the circumstances
under which these achievements could be obtained and draw a lesson from these
observations. This is contrasted with Veenker’s situation and his work is anal-
ysed in comparison with those advances in the subsequent section as already
mentioned. Again we draw a lesson from this comparison for the discipline of
Informatics of our days in Germany (or in Europe for that matter).

The paper concludes with some perspectives for AD in the future. Although
AD is extremely successful already and offers even more potential, a substan-
tial advance of our systems’ performance would require a much better support
especially in terms of the quality of education and of the research environment.
This is because the formidable challenge of an integration of the many different
features in one single system as well as solving important remaining problems
will hardly be achievable in the current splintered manner. Even further, there
are deep remaining issues to be solved concerning the nature of the underlying
logic. Under these considerations we are led to the proposal of the foundation
of some European center of excellence for semantics, logic and computation in
order to come a step closer to Leibniz’ dream of a reasoning machine in the not
so distant future.

2 How Automated Deduction Started

In 1957 Aridus Wedberg taught a first year logic course at the University of
Stockholm. On one occasion he mentioned to the class the possibility of proving
mathematical theorems in first-order logic on a machine. This remark raised the
interest of one of the students in the class, namely Dag Prawitz, who decided to
realize this idea in practice [SW83, p.200].

First he developed a general procedure for the predicate calculus which we
illustrate with the valid formula ∀xPx → ∃y Py, shortly F . In order to prove F ,
we assume it were false and infer a contradiction. That is, we start by assigning
the truth value f to it and let the pair (F, f) be the first in a list of subformulas
along with truth values. Given the semantics of implication, for F assumed to
be false this means that ∀xPx must be true, or t, and ∃y Py must be false,
yielding the next two pairs in the list. Taking the first list item not considered
so far, this means that for any constant c in the universe under consideration Pc
must be true. In order to mechanize this step for the general case, assume that
all constants are enumerated as c1, c2, Since no constant of this enumeration
was used before in our example, we simply take its first one and, hence, add the
pair (Pc1, t) at the end of our list. The final item yet to be considered in the
list, (∃y Py, f), implies that for any constant it must be false. The procedure in

4 W. Bibel

general selects one already used before in this case, ie. here c1, leading to the
final list element (Pc1, f). Now the list contains two occurrences of the literal
Pc1 with opposite truth values, indicating the expected inconsistency so that
the proof now is complete in this case.

For those readers with some familiarity in AD it is clear that this procedure is
generating a so-called tableau for the given formula except that today the truth
values are coded by adding a negation sign in front of the subformula instead
of falsehood. In generating the tableau Prawitz’ procedure follows precise rules
for each of the possible cases, characterized by the outermost logical symbol
determining the form of the formula as well as by the associated truth value.
Since, for instance, false conjunctions could lead to alternative subcases such
a tableau in general consists of a tree with each of its branches being a list
like the one in our example, especially in terms of closing the branch by some
contradictory pair of literals. Also the selection of constants is a little more
complicated than illustrated by our simple example.

Prawitz coded this procedure in a programming language which he designed
himself for this special task and wrote a report in Swedish. His father, Håkan
Prawitz, hand-translated the program into machine code in 1957. The result was
worked over and tested by Neri Voghera, a software expert, for a number of ex-
amples in 1958. Thereby he used a computer named Facit EDB, built in Sweden.
It featured a core memory of 2048 40-bits machine words and a drum with a
capacity of 8192 words. In other words, the first experiments with a general the-
orem prover for first-order logic were performed in Stockholm in 1958. In 1959
the work was outlined in the discussion of the session on theorem proving at the
First International Conference on Information Processing (IFIP) in Paris, the
discussion being contained in the proceedings. In 1960 the full paper describing
the work appeared in the Journal of the ACM [PPV60].

This short description of the very first work in first-order AD needs to be
complemented by a number of comments. First, Prawitz’ procedure did not fall
from heaven but rooted in well-known work done in Mathematical Logic. Second,
there were several other efforts undertaken in that period of time. Third, progress
in the early years of AD depended a lot on the programming infrastructure
available at the respective location. Let us discuss each of these three important
issues in turn.

To begin with the first point, this is not the place to give an outline of the
history of logic. There are excellent sources for this purpose such as [KK84].
Also the article [Dav83] summarizes this history with an emphasis on AD and
the author’s work in it. We want to point out the following highlights in this
remarkable history.

Leibniz was the visionary for an instrument to increase the powers of reason-
ing [Dav83, pp.2ff,14]. Frege’s Begriffsschrift [Fre79], with explicit reference to
this vision, laid the grounds for all formal languages, logical or programming
ones, as well as for logical calculi. Around the 1920’s and early 30’s the work of
Skolem, Herbrand, Gödel, Gentzen, and Jaśkowski as well as the book by Hilbert
and Ackermann [HA28] clarified the most important logical concepts and issues

Early History and Perspectives of Automated Deduction 5

such as completeness, decidability, Skolem functions, Herbrand’s theorem, Her-
brand universe which for historical correctness should actually be named “Skolem
universe”, Gentzen calculi, cut elimination, and so forth.

In the mid 1950’s a proof procedure by W.V. Quine [vOQ55a] as well as four
new and simplified completeness proofs for first-order logic by E.W. Beth [Bet55],
K.J.J. Hintikka [Hin55], S. Kanger [Kan57], and K. Schütte [Sch56] were pub-
lished independently which had an immediate impact on the way early theorem
provers were designed. For instance, Prawitz followed closely Beth’s formalism
in developing his procedure discussed above. While Beth’s and Hintikka’s sys-
tems used proof by contradiction, Kanger and Schütte pursued an affirmative
approach. The difference is completely irrelevant from a logical or deductive
point of view. But Prawitz and others introduced the contradictory approach
which led later researchers to follow this habit.

Let us now come to the second point concerning other early AD efforts. Here
we may distinguish four different lines of research, namely first-order theorem
proving, propositional methods, heuristic approaches, and decision procedures,
which are discussed again in turn.

In 1958 Paul Gilmore, teaching at Penn State (Pennsylvania State University,
State College PA), a place made famous by the great logician (and amateur
ornithologist) Haskell B. Curry, read an advertisement in the New York Times
for a mathematician interested in assisting in a project for proving theorems
in Euclidean Geometry. He applied and eventually joined the Mathematics De-
partment of IBM Research at the Lamb Estate in Croton-on-Hudson NY in July
1958 where he worked with Herbert Gelernter (of whom more below). Gilmore
had a solid background in Mathematical Logic from a course in Mathemati-
cal Logic of S.W.P. Steen at Cambridge University, his studies in Amsterdam
with E.W. Beth and A. Heyting, and his earlier collaboration as a postdoc with
Abraham (“Abbie”) Robinson at the University of Toronto in Canada. Since he
had had no experience with or knowledge of electronic computers at the time,
Gilmore decided to learn by implementing in assembly language on an IBM 704
Beth’s method of semantic tableaux for first-order logic, although eventually the
implemented method was “closer to the work of Hintikka”.

The resulting program, described in [Gil60], took as input any negated first-
order formula in prenex form with its matrix in disjunctive normal form (called
standard form in the paper). In this relatively unimportant aspect it differed
from Prawitz’ procedure (applicable to arbitrary formulas) but otherwise used
the same crude search technique for appropriate substitutions. Gilmore thought
that his “work is the first working program for quantification theory”. He learned
of Prawitz’ working program only, when he met him at the Paris conference in
1959, and acknowledged the fact in a footnote in [Gil60].

Due to the focus of the present paper we will treat the other three mentioned
lines of AD research only in passing. Abbie Robinson had already pointed out
in an influential talk at the important five weeks Summer Institute for Symbolic
Logic at Cornell University in 19571 [Fef03] which was attended also by some

1 In [Dav83, p.16] the year was stated incorrectly as 1954.

6 W. Bibel

twenty people working in the computer industry including G.W. Collins, B.
Dunham, R. Fridshal, H. Gelernter, J.H. North, who presented talks there and
are mentioned elsewhere in the present paper, that through Herbrand’s theorem
first-order theorem proving could be reduced to the propositional level [Rob57].
So propositional theorem proving became interesting not only because of its
relevance for the logic of computer hardware but also in our more general context.
The first propositional method of a formal kind was used in [DFS60], again
programmed for an IBM 704 and also presented at the Paris conference. It
used rules such as case splitting and pure literal reduction to rewrite the given
expression until the truth value t or f was obtained.

In a sense this work may be seen as a reaction to earlier work by Newell, Shaw
and Simon [NSS56] who took a heuristic rather than systematic approach to
propositional theorem proving, relying on axioms, forward and backward impli-
cational chaining and modus ponens (cf. [Cor96] for an account of such heuristic
approaches). Their program was run on the JOHNNIAC computer from Rand
Corp. Russell. Similarly Herb Gelernter relied on a heuristic approach in his real-
ization of a rather successful geometry-theorem proving machine [Gel59] which
became operative in 1959. Geometry with its long axiomatic tradition since
Euclid’s Elements was a natural mathematical subject to start with. Through
Gilmore’s paper [Gil70] Gelernter’s geometry theorem prover came to influence
modern theorem proving by its use of models to test the consistency of an hy-
pothesis.

The final line of early AD research mentioned above consisted in the im-
plementation of known decision procedures. Martin Davis implemented such a
procedure for Presburger arithmetic already in 1954, using the JOHNNIAC of
the Princeton Institute for Advanced Study [Dav57]. In effect this then was the
very first operative system in AD, although a very restricted one in scope as in
achievement. George Collins from the IBM Labs implemented on an IBM 704
parts of Tarski’s decision procedure for elementary algebra in order to deal with
a variety of problems that could be expressed in that language, a work presented
at the same occasion as Davis’ [Fef03].

The third and final point in this review of the beginning years in AD refers
to the available infrastructure. It constrained the possible success much more
than anything else. Prawitz had the luck to find the support of his father and of
Voghera who did the extremely time-consuming job of programming and testing.
Similarly a well-equipped environment like IBM Research, eg. for Gilmore and
Gelernter, turned out to be very helpful.

It was John McCarthy who, on the basis of this experience, put the design
and implementation of LISP on the top of his priorities since the availability of
such a high-level language could reduce the amount of implementational work
dramatically. For instance in [McC59] McCarthy says: “[The Wang algorithm for
propositional logic] took about two hours to write the program and it ran on
the fourth try.” Unfortunately, even more than a decade later computing centers
such as those in Germany typically had no implementation of LISP yet available

Early History and Perspectives of Automated Deduction 7

so that, for a few exceptions, the waste of time in implementational efforts in AI
continued for many more years all over the world.

3 Important Historical Advances in AD

In the previous section we have described the very first attempts of automating
deduction in first-order logic. Needless to mention that the theorems, which could
be proved with those systems, were only rather trivial ones. This initiated half
a century of research into improvements of these first procedures. In this section
we want to describe some of the main early contributions in this vein.

An immediately obvious drawback of the first procedures was their treatment
of substituting constants in a stupid systematic manner. Prawitz was the first
in proposing a unificational method instead [Pra60] which used metavariables
and substituted constants by need rather than according to some fixed sequence.
The unification was computed by way of a system of resulting equations to
be solved under certain restrictions. These restrictions derived from the well-
known variable conditions in Gentzen-type systems. It is worth pointing out
that later unification algorithms used a rather similar way of computation. In
other words Prawitz deserves the credit for having introduced unification into
proof procedures.

None of the procedures mentioned so far allowed function symbols other than
constants as it was known from standard logic textbooks that these could be
replaced in a certain way by predicates. The first paper [DP60] introducing
Skolem functions, hence function symbols, and the Herbrand universe was by
Martin Davis, a former student of Alonzo Church, and by Hilary Putnam, a
mathematician-turned philosopher. It also proposed the clause form arrangement
of the initial data to be refuted, ie. proved by contradiction, which from there on
has become a widely used standard. Unfortunately, this standard along with the
weakness in Gilmore’s procedure beared the ineradicable myth that the use of
this standard has computational advantages over an analogue affirmative “clause”
form, ie. a representation of the formula in disjunctive normal form to be proved
rather than refuted, although the difference is of course totally irrelevant [Bib87].
A further contribution was unit resolution which the authors called rule for
the elimination of one-literal clauses.2 In its treatment of terms it remained
ignorant of Prawitz’ unificational ideas while in the propositional part it used
the independently discovered rules from [DFS60] already described above, all
without any implementation though.

In 1960 a postdoc, J. Alan Robinson, at the University of Pittsburgh sent
applications to several institutions including the Applied Mathematics Division
of the Argonne National Laboratory at Chicago IL and received an offer for
a summer research position from it. He eventually decided to rather accept a
tenure track teaching offer for logic and philosophy of science from Rice Univer-
sity, but go to Argonne for a summer research position with the task assignment
2 In [Cor96, Sect.3] the author erroneously attributes the introduction of unit resolu-

tion to [WCR64] as did others before him.

8 W. Bibel

by the Division’s director, William Miller, to implement on Argonne’s IBM 704
the method of the Davis-Putnam paper just mentioned. From a four years em-
ployment at duPont he already had a solid experience in assembly language pro-
gramming. So when he arrived at Argonne in May 1961 the programming was
already done, yet in lack of a computer untested. Getting it run, reprogrammed
in Fortran, and debugged took considerable efforts which were supported by
George Robinson, the head of the division’s Programming Development Section.
Alan wrote an Argonne Report [Rob61] which in a polished version appeared
eventually in 1963 in the Journal of the ACM [Rob63].

In the summer months of 1962 and 1963 Alan Robinson returned to Argonne
where George Robinson had already become so excited from the earlier exper-
iments that he started the transition to become a theorem proving researcher.
Miller assigned one of his mathematicians, Larry Wos, to join the team con-
sisting of the two Robinsons who first gave him a crash course in logic using
Quine’s Methods of Logic. During these two summer projects, Alan Robinson
rediscovered unification and the resolution rule (in 1962) and introduced these
two terms into the literature for the first time with the seminal paper [Rob65]
(although the publication was delayed by some rumored referee until January
1965).

As to unification we already pointed out that Prawitz’ first paper did contain
the basic idea behind unification (as did a work by N.A. Shanin – see [SW83,
p.30]) and Robinson was strongly influenced by it. He himself says: “I was ab-
solutely inspired by Prawitz”.3 However, already Herbrand’s paper [Her30] con-
tained a much more elegant version of it, which basically is the one Robinson
published in [Rob65], expressed in recursive definitional rather than algorithmic
terms though. Although Prawitz cited this Herbrand paper, he was not aware
of this part of its contents (nor was Robinson). As to the resolution rule it was
first discovered in [Bla37] already in 1937, coincidentally like Argonne also in
Chicago, then rediscovered in [vOQ55b] as consensus rule and proposed for use
in (propositional) theorem proving in [DN63], presented at Harvard University
already in February 1962.

The beauty of Robinson’s paper derives from his ability to rediscover these
two powerful techniques and merge them with the solid platform for theorem
proving which had been achieved by that time (including the purity and sub-
sumption principles). Further, he did so in a mathematically clean and perfect
way. This latter point is especially remarkable since Robinson by education was
a philosopher with a Master’s thesis on Theories of Meaning Implicit in the
British Empiricists Locke, Berkeley and Hume and a PhD thesis on Causality,
Probability and Testimony. He attributes the stimulation for his transformation
towards a mathematically-oriented scientist especially to his teacher Arthur Pap,

3 Personal communication (e-mail message of 7 March 2007). – Prawitz’ influence
can also be seen in the worked example of Davis paper [Dav63, Section 6] which of
course references Prawitz’ work. This paper does however give not yet any specific
hint to a unification-like method à la Robinson beyond Prawitz’ equational system
as suggested in [Dav83, p.18].

Early History and Perspectives of Automated Deduction 9

like Putnam a mathematician-turned philosopher. Pap also advised him for his
PhD studies to go to Princeton where Alonzo Church educated a whole genera-
tion of excellent logicians (including John McCarthy, Marvin Minsky, and Dana
Scott), although it was actually Hilary Putnam who acted as supervisor to his
dissertation.

Once resolution was available the group at Argonne under the direction of
Larry Wos and George Robinson set down to improve its performance by reduc-
ing the search space of generated resolvents. Most importantly they introduced
factoring, the unit preference, the set of support strategy and implemented res-
olution with these additional features on a Control Data 3600 [WCR64]. At this
point Argonne had become the undisputed world champion in theorem proving.
Later, in response to a suggestion by Alan Robinson, they started to concen-
trate on dealing with equality in a special way, introducing demodulation and
paramodulation. Generally, the publication of J.A. Robinson’s paper spawned a
flood of publications in theorem proving, ninety alone in the years 1967–1970, a
period which is well covered by the article [WH83].

This tremendous influence extends up to this day. For instance, the winner
of the recent CASC competitions in theorem proving was the resolution-based
system Vampire by Andrei Voronkov. This dominance is however not undisputed,
a topic which we further pursue in the final section of this paper.

So what is the lesson to be drawn for fertilizing the grounds for future discov-
eries in our or other fields? The obvious first conclusion is that a top education is
the most important prerequisite for excellence. Prawitz, Gilmore, Davis, Robin-
son, McCarthy and many others are proof to this rule as we described. Of similar
importance is the research environment comprising a wise leader like William
Miller at Argonne, the right combination of people like Prawitz (logician) and
Voghera (software engineer) or Robinson (logician), George Robinson (software
engineer) and Wos (Mathematician), and adequate facilities. Argonne had won
this competition because it featured both prerequisites in the best possible com-
bination. There was nothing like Argonne in Europe in those days. For instance
the Gesellschaft für Mathematik und Datenverarbeitung (GMD) was founded in
Bonn not before 1968.

4 Gerd Veenker (1936–1996)

Gerd Veenker was born 9.12.1936 in Lüneburg. His father was a tailor which
is worth noting because not only Gerd but also his brother Wolfgang later be-
came university professors. After his school education in Lüneburg until 1957 he
studied Mathematics and Physics in Hamburg, München and Tübingen.

Around 1960 he became interested in computers. He and his friend Frieder
Schwenkel developed a particular interest in non-numeric computation such as
game playing and theorem proving. They studied for instance the respective
parts in the proceedings of the first IFIP conference in Paris 1959 which has
already been mentioned several times in the preceding two sections.

10 W. Bibel

No guidance by any professor in Tübingen could be expected to further
this interest. Possibly not even an appropriate logic course was offered which
could have introduced him into the underlying subject. However, Karl Zeller
(28.12.1924–20.7.2006), a Mathematics professor with a speciality in limit the-
ory and with experiences from several visits at US universities, in 1960 got a
chair (Lehrstuhl Mathematik der Hochleistungsrechenanlagen, ie. mathematics
of high-performance computers) which was at the same time responsible for
the university’s computing center. It featured a Siemens 2002 also installed in
1960. Professor Zeller had a widely open mind and an unusually liberal atti-
tude towards his students in terms of their subjects of interest. So when Veenker
decided on his own to concentrate on theorem proving in his Diplomarbeit (Mas-
ter’s thesis) and dissertation he would let him go in this direction and formally
play the role of the supervising professor. He was supportive in that he allowed
his students to make suggestions for invited colloquium talks (eg. Hermes from
Freiburg) as well as for the topic and the literature of seminars officially run
under his name. Additionally helpful was the friendly cooperative atmosphere
among the members of the small group of students which as “Hiwis” (research
assistants) gathered around the computing center.

In 1963 Veenker completed his Diplomarbeit (master’s thesis) entitled Ein
Entscheidungsverfahren für den Aussagenkalkül der Formalen Logik und seine
Realisation in der Rechenmaschine (A decision procedure for the propositional
calculus of formal logic and its realisation on the computer). The list of its
references demonstrates that in the meantime he had read most of the theorem
proving literature available by 1962, in particular the papers discussed in the
preceding two sections of the present paper. He gives a concise description of
the related procedures of Hao Wang [Wan60b], Paul Gilmore [Gil60], Dunham
et al. [DFS60], and Davis and Putnam [DP60]. In effect his procedure follows
closely the one by Prawitz [PPV60], restricted to the ground level and allowing
for the five logical operators ¬,∨,∧,→,↔. It is programmed in the symbolic
low-level programming language PROSA. For the first-order level he gives an
outline of an envisaged but not yet implemented procedure.

For a master student this work is truly remarkable if one takes the lack of
guidance and logical education as well as the limited computational infrastruc-
ture and ressources into account. For instance, he used a number of tricks to fit
formulas with up to 50 logical operators into the machine’s core memory consist-
ing of 2048 machine words. In contrast to McCarthy’s two hours mentioned in
Section 2 it took Veenker probably hundreds of hours to get the program to the
point of success. He proudly states that for one example his program takes 84
seconds, for which Gilmore’s system could not find a proof after 21 minutes. The
technical reason for this advantage is Gilmore’s costly transformation to disjunc-
tive normal form which Prawitz had already avoided. The work was published
shortly after completion [Vee63].

He also published a paper on a program for chess endgames which allow mate
in two or three moves. But his focus remained on theorem proving. At the end
of 1966 he had a dissertation ready with which he passed the rigorosum at the

Early History and Perspectives of Automated Deduction 11

beginning of 1967. Again, although working in full isolation, he was fully upto-
date with his references to the papers influencing the field during that thime
which in those days in lack of anything like a world-wide web required enormous
efforts indeed. Apparently he learned of Robinson’s 1965 resolution paper after
much of his thesis and especially of his program was already completed. This can
for instance be seen from his way of treating unification (in his algorithm GLS
which is short for German >GLeichSetzung<) which follows the equational style
of Prawitz’ first paper but now extended to cover general terms since he used
Skolem functions. So he may well have – once again – reinvented unification
(called Verschmelzung) for general terms. Generally, he follows Davis’ repre-
sentational style [Dav63] and uses Davis’ term “linked” in form of the German
Verkettung.

On this basis he enumerates all paths through the matrix given by the set
of clauses. However, once the procedure has located a connection it eliminates
all paths through this connection in one step, focusing next on the two paths
obtained from the current one by replacing each of the connected literals by
another literal of the same clause. One of these two resulting paths is handled
next while the other one is put on a stack for later treatment. So in summary the
procedure is advanced in terms of the enumeration of the paths but in comparison
with the later connection procedures [Bib87] does not yet restrict the search for
a subsequent connection to those with literals in the previously connected clause
which in resolution is known as the linearity restriction. This is unfortunate
because he already mentions this possibility but only as a preference strategy;
apparently he had not seen that this preference can be done without restriction
of generality. He does use also the unit preference and the set of support strategy.

In addition to the complete and sound proof procedure just described, Veenker
gives an incomplete procedure, called NEU (for new), which today we know
as the unit-resulting (UR) strategy combined with unit resolution. The liter-
ature thus incorrectly attributes the discovery of this strategy to the authors
of [MOW76], where it was introduced under this name, while Veenker invented
it already ten years earlier. In lack of a better machine he programmed both
procedures still for the Siemens 2002 which in comparison with the CD 3600 at
Argonne was at least two orders of magnitude inferior. Taking this into account
his running times were well competitive with the state of the art in 1966, a re-
markable achievement in view of the lack of what we pointed out at the end of
the previous section as the prerequisite for excellence, namely a top education
in the subject and a stimulating research environment.

His PhD work was published in [Vee67] but totally ignored by the community.
One reason of course was the publication being in German. Another was his total
isolation as the only theorem proving specialist in the entire German-speaking
area, if not in all of Europe at that time with the sole exception of Prawitz
in Stockholm and of Bernard Meltzer at Edinburgh. In addition Veenker was a
rather modest and reserved person. When the present author met him in 1969,
discussing theorem proving issues, he apparently failed to point to his published
work, then as well as in all encounters in later years, which I therefore read

12 W. Bibel

carefully for the very first time not before the preparation of the present paper.
This meeting in 1969 gathered Informatics researchers with DFG-funded projects
at the Chiemsee and most likely was the very first event were Informatics-based
German AI researchers from different institutions got together for presentations
and discussions. According to my recollections he did not give a talk (nor did I).

Presumably he had just applied to the DFG for project funds to attack his
next goal in theorem proving which was a special treatment of equality in his
(incomplete) procedure NEU. This was achieved in the Diplomarbeit of Geerd-
Rüdiger Hoffmann and published 1971 in [HV71] in English. It uses a kind
of theory unification for equality. In the same year the author presented his
first theorem proving paper at the GI Jahreskonferenz in München which in
the discussion was heavily attacked by Mr. Hoffmann who pointed out that
my Gentzen-type approach had already been shown not to be workable and
thus waste of efforts. One might infer from this opinion of his student that also
Veenker at that time had given up hope to pursue the line initially taken by
him and rather opt for resolution as the winning technique. Perhaps it is for this
reason that he also gave no talk about his work at the Oberwolfach meeting on
automated theorem proving in 1976 which he attended.

Without having undergone the procedure of Habilitation Veenker received
an (associate) professorship for Informatics and Applied Mathematics at the
University of Bonn in 1972 where for 34 years he represented AI in his teaching.
He never was promoted to a full professorship. In this position he took the
initiative for the first official German AI meeting mentioned in the Introduction.
His PhD students are Rainer Fröning, Joachim Hertzberg, Eberhard Klein, Knut
Möller, Peter Schmidt, Volker Steinhage, and Erich Vorwerk, as far as I could find
out. Two of these (Hertzberg and Möller) are now professors. As a professor he
was popular with students because of his friendly and warm-hearty personality
and hence he supervised a great number of Diplomarbeiten (master’s theses).
Some of these laid the foundation of academic careers of prolific scientists like
Gerd Brewka, Dieter Fox, and also Sebastian Thrun whose autonomous vehicle
Stanley in 2005 spectacularly won the DARPA Grand Challenge. Unfortunately,
since 1976, Veenker suffered from very serious health problems which apparently
kept him from staying scientifically as productive as during the first decade of
his career. He died 23.6.1996 at the age of 59 shortly after the deaths of his wife
and of his brother in the same year.

Are there any lessons to be learnt from the history of a man who was the
first German scientist in the area of AD? In any case it raises a number of
questions. One such question was already asked in 1969 by the logician Richard
Büchi: “Why did the German logicians not engage in establishing the new field
of Informatics?” He posed this question, which is to be seen within the context
of Germany during Hilbert’s time being the world-leader in logic, at the occasion
of the inauguration of the Informatics buildings at the Technical University of
München (TUM) to the internationally known German logician Kurt Schütte, a
student of Hilbert. Büchi, then at Penn State, was invited to this occasion for a
presentation. Schütte could not provide any reasonable answer to his question.

Early History and Perspectives of Automated Deduction 13

Later, Friedrich L. Bauer, one of the founders of Informatics in Germany joined
Büchi and Schütte and, although he had not heard their prior discussion, shocked
the two (as well as me) by harshly stating from nowhere: “Logic by now has no
more than a peripheral significance for Informatics.”

In fact, Bauer’s statement provides an explanation for Veenker’s unfortunate
situation. Establishing a new field like Informatics against the extremely rigid
structures of the German academic world was not something to be achieved
by decent and modest persons like Schütte who was exclusively devoted to his
subject. It required clever and versatile power figures like Bauer who had all the
required tricks at their disposal, even though they may have lacked the necessary
education in the germane subjects. So Bauer was in fact right insofar as power
influence was concerned.

Also it must be said that the German logics community did remain seated
in its ivory tower. Besides organizing the International Logic Colloquium (held
in Hannover) one of their major concerns in the sixties was the revision of the
constitution of the German logic association (Deutsche Vereinigung für Math-
ematische Logik und Grundlagen der Wissenschaften, or DVMLG) which was
bitterly debated for years. Bernays (Basel) was already too old to play a leading
role, Specker (Zürich) as a Swiss kept himself at a distance, Büchi left to the
US, Schütte did not even dare to respond to Bauer’s statement, and so forth.
Academically they kept themselves in high regard as an elite which allegedly
had good reason to look down to the academically and logically uninteresting
computational problems of Informatics. Those who transformed from Logic to
Informatics, like the author, became sort of banned, in any case kept in low
regard. So people like Veenker, and to some extent also Prawitz who perhaps
for those reasons later retreated back into logic and philosophy, academically
found themselves sitting between the chairs, in stark contrast to the analog situ-
ation in the US where Computer Science was open-minded enough to appreciate
topics like theorem proving and respected logicians like Davis did not feel like
making their fingers dirty by pondering over the computational issues of proof
procedures.

Since these historic frictions are still virulent in various ways, the lesson then
is that attempts should be made to become consciously aware of, and overcome,
them. In particular this means that Informatics should acknowledge computa-
tional logic as one of their fundamental and promising subareas, reflected also
in the official characterizations of the field where it is rarely mentioned at all.

5 Perspectives for AD

The author has outlined his credo for the field of AD only recently in the arti-
cle [Bib06]. We will therefore not repeat these arguments here again except for
a few additions especially with respect to the issues discussed in the previous
sections.

Recall that at the end of Section 3 we reported of the success of resolution
in the mid-sixties of the last century. But it turned out that resolution was no

14 W. Bibel

panacea either in terms of efficiency of proof search. A lot of tricks have to be
added and sometimes it is not clear why they work at all. The deeper reason
for these problems lies in the fact that up to now the resolution rule has not
been thoroughly understood. The present author thought he had achieved such
a thorough understanding in his paper [BE97]. But Jörg Siekmann and Graham
Wrightson pointed out that the result contradicts an example from [Eis91] so that
there must still be some mistake in the obtained result which has not yet been
discovered and corrected by anyone. Imagine that forty, in fact nearly 70 years
after the discovery of resolution we are still struggling to understand it fully.

The situation is quite different for Gentzen-type theorem proving of the kind
which was initiated by Prawitz as discussed in Section 2. With all the work which
followed Andrews’ matings method [And81] and Bibel’s connection method
[Bib83] which eliminated the original disadvantages pointed out in the literature
discussed in Section 3 we know exactly what kind of improvements could still
be made for a better performance of the systems. The difficulty lies in the enor-
mous complexity of the task. In consequence many of the improvements which
were worked out theoretically are not yet incorporated in one single system. The
CASC-winning system SETHEO [LSBB92] featured many of them but by far
not all. One particularly important example is the cut rule which has never been
taken care of in any running system except for its very limited consideration in
SETHEO. The author has stated a conjecture in [Bib06] which would open a
way for its treatment. Another example concerns a refined treatment of variables
as already discussed in [Bib87] which has just been worked out in more details
in [AW07]. Like these two there are many more issues (heuristic guidance at
the meta-level in special theories, learning of strategies, integration of models,
etc.) let alone visions like Robinson’s “science of proofs-as-explanations” [Rob00],
which all are still waiting for being integrated into one single system along with
all features scattered in various existing systems. Altogether this amounts to a
formidable task.

One should even go a step further in broadening the perspective. Our field
today features a great variety of different logics and logical calculi. In [Bib06,
Sect.5] I already pointed out the importance of embedding the static logical
space, under discussion so far in this paper, into the course of time in an ap-
propriate way. We believe that transition logic [Bib04] achieves this aim in a
more natural and effective way by focussing on local transitions rather than on
a global transition from one world to another as in modal logics. But even within
the static logical space something might be going wrong which could be rooted
deeply in some historical decision made long ago. I mention the book [Brü96]
which tries a restart of Aristotle’s syllogisms in a modern and precise setting. It
is just a very first little step in comparison to what modern logics offer. But it
could be one of a more constructive nature, which, if followed by further ones,
might possibly lead to a logic with better computational features than those
which we know today. In fact it might be a good idea to start yet one step fur-
ther back and abstract with modern AI technologies the logic underlying natural
languages from large text corpora.

Early History and Perspectives of Automated Deduction 15

Achieving all these tremendously complex tasks according to the lesson from
the end of Section 3 would require an excellent education of brilliant minds
along with a research environment which I cannot spot anywhere in the world.
Therefore I put forth the suggestion to found sort of a Max-Planck Institute on
the European level with such a broad basic research mission. It would have to
combine research excellence in a variety of related fields including semantics of
natural language, logic and philosophy of logic, psychology of inferencing and
proofs, cognitive science, knowledge representation and reasoning, and above all
computation.

I want to conclude by pointing to the relevance of deduction in all kinds ap-
plications in virtually every area, independent of any of these future advances.
This is because of the fundamental importance of reasoning in all human ac-
tivities [Bib03]. Especially through the semantic web and through knowledge
systems the importance of deduction will surely grow tremendously [Bib07]. So
I completely share physicist Pierre Papon’s conviction as expressed in his state-
ment cited at the beginning of this paper [Pap06, p.10].

Acknowledgments. The text owes a lot to a number of people from whom
the author got first-hand information about those early days. This includes a
touching text about his personal developments by Alan Robinson and a delin-
eation of his encounter with theorem proving by Paul Gilmore as well as helpful
discussions with both. My picture about Gerd Veenker’s early career derives
from extensive material and support provided by Joachim Hertzberg, who was
one of the initiators for this paper, and from lively discussions or exchange of
letters with Margarete Zeller, Tübingen, Wilhelm Niethammer, Karlsruhe, Man-
fred Reimer, Dortmund, and Frieder and Trude Schwenkel, Hamburg/Winsen.
Further information was received from Thomas Christaller, Martin Davis, Hans
Langmaack and Sebastian Thrun. I am grateful to all of them. For any errors I
take of course full responsibility.

References

[And81] Andrews, P.B.: Theorem proving via general matings. Journal of the
ACM 28, 193–214 (1981)

[AW07] Antonsen, R., Waaler, A.: Liberalized variable splitting. J. Automated
Reasoning (2007)

[BE97] Bibel, W., Eder, E.: Decomposition of tautologies into regular formulas
and strong completeness of connection-graph resolution. Journal of the
ACM 44(2), 320–344 (1997)

[Bet55] Beth, E.W.: Semantic entailment and formal derivability. Mededlingen der
Koninklijke Nederlandse Akademie van Wetenschappen 18(13), 309–342
(1955)

[Bet58] Beth, E.W.: On machines which prove theorems. Simon Stevin Wis- en
Naturkundig Tijdschrift 32, 49–60, Reprinted in [SW83, 76–90] (1958)

[Bib83] Bibel, W.: Matings in matrices. Comm. ACM 26, 844–852 (1983)
[Bib87] Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg Verlag, Braun-

schweig (1987)

16 W. Bibel

[Bib03] Bibel, W.: Lehren vom Leben – Essays über Mensch und Gesellschaft. In:
Sozialwissenschaft, Deutscher Universitäts-Verlag, Wiesbaden (2003)

[Bib04] Bibel, W.: Transition logic revisited, 2004 (Submitted)
[Bib06] Bibel, W.: Research perspectives for logic and deduction. In: Stock, O.,

Schaerf, M. (eds.) Reasoning, Action and Interaction in AI Theories and
Systems. LNCS (LNAI), vol. 4155, pp. 25–43. Springer, Heidelberg (2006)

[Bib07] Bibel, W.: Wissenssysteme und Komplexitätsbewältigung. In: Leiber, T.
(ed.) Denken und Handeln in einer komplexen Welt – Festschrift zum 60.
Geburtstag von Professor Klaus Mainzer, Hirzel Verlag, Stuttgart (2007)

[Bla37] Blake, A.: Canonical Expressions in Boolean Algebra. PhD thesis, Univer-
sity of Chicago, Illinois (1937)

[Brü96] Brüning, W.: Grundlagen der Strengen Logik. Königshausen und Neu-
mann, Würzburg (1996)

[Cor96] Cordeschi, R.: The role of heuristics in automated theorem proving – J.A.
Robinson’s resolution principle. Mathware & Soft Computing 3, 281–293
(1996)

[Dav57] Davis, M.: A computer program for Presburger’s algorithm. In: Summaries
of talks presented at the Summer Institute for Symbolic Logic, Princeton
NJ, pp. 215–233, Institute for Defense Analysis (1957), Also contained in
[SW83, 41–48]

[Dav63] Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proc.
Symposium for Applied Mathematics XV, Providence, RI, pp. 15–30
(1963), Also contained in [SW83, 315–330]

[Dav83] Davis, M.: The Prehistory and Early History of Automated Deduction. In:
Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 1 – Classi-
cal Papers on Computational Logic 1957–1966, pp. 1–28. Springer, Berlin
(1983)

[DFS60] Dunham, B., Fridshal, R., Sward, G.L.: A non-heuristic program for prov-
ing elementary logical theorems. In: First International Conference on In-
formation Processing, Paris, pp. 282–285. Unesco House (1960), Also con-
tained in [SW83, 93–98]

[DN63] Dunham, B., North, J.H.: Theorem testing by computer. In: Proc. Sympos,
Brooklyn NY, pp. 173–177. Polytechnic Press (1963) Also contained in
[SW83, 271–275]

[DP60] Davis, M., Putnam, H.: A computing procedure for quantification theory.
Journal of ACM 7, 201–215 (1960), Also contained in [SW83, 125–139]

[Eis91] Eisinger, N.: Completeness, Confluence, and Related Properties of Clause
Graph Resolution. Pitman, London (1991)

[Fef03] Feferman, S.: Alfred tarski and a watershed meeting in logic:
Cornell, 1957. In: Hintikka, J., et al. (eds.) Philosophy and
Logic – In search of the Polish tradition. Synthese Library,
vol. 323, pp. 151–162. Kluwer Acad. Publ., Dordrecht (2003),
http://math.stanford.edu/~feferman/papers/cornell.pdf

[Fre79] Frege, G.: Begriffsschrift. Louis Nebert, Halle (1879)
[Gel59] Gelernter, H.: Realization of a geometry theorem-proving machine. In:

Proc. First Intern. Conf. on Information Processing (IFIP), Paris, pp. 273–
282. UNESCO House, (1959), Also contained in [SW83, 99–122]

[Gil60] Gilmore, P.C.: A proof method for quantification theory: Its justification
and realization. IBM J. Research Develop. 4, 28–35 (1960)

[Gil70] Gilmore, P.C.: An examination of the geometry theory machine. Artificial
Intelligence 1, 171–187 (1970)

http://math.stanford.edu/~feferman/papers/cornell.pdf

Early History and Perspectives of Automated Deduction 17

[Gol71] Goldfarb, W.D. (ed.): J. J. Herbrand — Logical writings. Reidel, Dordrecht
(1971)

[HA28] Hilbert, D., Ackermann, W.: Grundzüge der Theoretischen Logik.
Springer, Heidelberg (1928)

[Her30] Herbrand, J.J.: Recherches sur la théorie de la démonstration. In: Travaux
Soc. Sciences et Lettres Varsovie, Cl. 3 (Mathem., Phys.) (1930), Engl.
transl. in [Gol71]

[Hin55] Hintikka, K.J.J.: Form and content in quantification theory. Acta Philo-
sophica Fennica 8, 7–55 (1955)

[HV71] Hoffmann, G.-R., Veenker, G.: The unit-clause proof procedure with equal-
ity. Computing 7(1-2), 91–105 (1971)

[Kan57] Kanger, S.: Provability in Logic. PhD thesis, University of Stockholm
(1957)

[KK84] Kneale, W., Kneale, M.: The Development of Logic. Clarendon Press, Ox-
ford (1984)

[LSBB92] Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO — A high-
performance theorem prover for first-order logic. Journal of Automated
Reasoning 8(2), 183–212 (1992)

[McC59] McCarthy, J.: The Wang algorithm for the propositional calculus pro-
grammed in LISP. In: McCarthy, J. (ed.) Symbol Manipulating Language
Memo 14, Artificial Intelligence Project, MIT, Cambridge MA (1959),
Quoted in [Wan60a, p.232]

[MOW76] McCharen, J., Overbeek, R., Wos, L.: Problems and experiments for and
with automated theorem proving programs. IEEE Transactions on Com-
puters C-25, 773–782 (1976)

[NSS56] Newell, A., Shaw, J.C., Simon, H.A.: The logic theory machine. IRE Trans.
Information Theory IT-2, 61–79 (1956), Also contained in [SW83, 49-73]

[Pap06] Papon, P.: Die Wissenschaft, Zeichen der Zeit. FTE Info – Magazin über
europäische Forschung (An interview) 50, 9–11 (2006)

[PPV60] Prawitz, D., Prawitz, H., Voghera, N.: A mechanical proof procedure and
its realization in an electronic computer. J. ACM 7, 102–128 (1960)

[Pra60] Prawitz, D.: An improved proof procedure. Theoria 26, 102–139 (1960),
Also contained in[SW83, 159–199]

[Rob57] Robinson, A.: Proving theorems (as done by man, logician, or machine).
In: Summaries of Talks Presented at the Summer Institute for Symbolic
Logic, Communic. Res. Div., Princeton, New Jersey, Institute for Defense
Analysis (1957), Also contained in [SW83, 74–76]

[Rob61] Alan Robinson, J.: Gamma I: A general theorem proving program for
the IBM 704. Technical Report ANL-6447, Argonne National Laboratory,
Chicago IL (1961)

[Rob63] Alan Robinson, J.: Theorem proving on the computer. Journ. ACM 10(2),
163–174 (1963), Also contained in [SW83, 372–383]

[Rob65] Alan Robinson, J.: A machine-oriented logic based on the resolution prin-
ciple. Journal of ACM 12, 23–41 (1965), Also contained in [SW83, 397–415]

[Rob00] Robinson, J.A.: PROOF=GUARANTEE+EXPLANATION. In: Höll-
dobler, S. (ed.) Intellectics and Computational Logic – Papers in Honor
of Wolfgang Bibel. Applied Logic Series, vol. 19, pp. 277–294. Kluwer,
Dordrecht (2000)

[Sch56] Schütte, K.: Ein System des verknüpfenden Schließens. Archiv f. Mathe-
matische Logik und Grundlagen der Wissenschaften 2, 55–67 (1956)

18 W. Bibel

[SW83] Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning — Classical
Papers on Computational Logic 1957-1966, vol. 1. Springer, Berlin (1983)

[Vee63] Veenker, G.: Ein Entscheidungsverfahren für den Aussagenkalkül und seine
Realisation in einem Rechenautomaten. Grundl.stud. aus Kybernetik u.
Geisteswiss 4, 127–136 (1963)

[Vee67] Veenker, G.: Beweisalgorithmen für die Prädikatenlogik. Computing 2(3),
263–283 (1967)

[vOQ55a] van Orman Quine, W.: A proof procedure for quantification theory. J.
Symbolic Logic 20, 141–149 (1955)

[vOQ55b] van Orman Quine, W.: A way to simplify truth functions. American Math-
ematical Monthly 62, 627–631 (1955)

[Wan60a] Wang, H.: Proving theorems by pattern recognition, Part I.
Comm. ACM 3, 220–234 (1960), Also contained in [SW83, 229–243]

[Wan60b] Wang, H.: Toward mechanical mathematics. IBM Journ. Res. Develop. 4,
2–22, Also contained in [SW83, 244–264] (1960)

[WCR64] Wos, L., Carson, D., Robinson, G.A.: The unit preference strategy in theo-
rem proving. In: AFIPS Conf. Proc., Washington DC, vol. 26, pp. 615–621.
Spartan Books (1964)

[WH83] Wos, L., Henschen, L.: Automated theorem proving 1965–1970. In: Siek-
mann, J., Wrightson, G. (eds.) Automated Reasoning 2 – Classical Pa-
pers on Computational Logic 1967–1970, vol. 2, pp. 1–24. Springer, Berlin
(1983)

Cognitive Technical Systems —
What Is the Role of Artificial Intelligence?

Michael Beetz1, Martin Buss2, and Dirk Wollherr2

1 Institute of Automatic Control Engineering (LSR),
Faculty of Electrical Engineering and Information Technology

2 Intelligent Autonomous Systems,
Department of Informatics

Technische Universität München
D-80290 München, Germany

www.cotesys.org

Abstract. The newly established cluster of excellence COTESYS 1 investigates
the realization of cognitive capabilities such as perception, learning, reasoning,
planning, and execution for technical systems including humanoid robots, flexi-
ble manufacturing systems, and autonomous vehicles. In this paper we describe
cognitive technical systems using a sensor-equipped kitchen with a robotic assis-
tant as an example. We will particularly consider the role of Artificial Intelligence
in the research enterprise.

Key research foci of Artificial Intelligence research in COTESYS include (◦)
symbolic representations grounded in perception and action, (◦) first-order prob-
abilistic representations of actions, objects, and situations, (◦) reasoning about
objects and situations in the context of everyday manipulation tasks, and (◦) the
representation and revision of robot plans for everyday activity.

1 Introduction

The newly established cluster of excellence COTESYS [1] (Cognition for Technical Sys-
tems) investigates the realization of cognitive capabilities such as perception, learning,
reasoning, planning, and execution for technical systems including humanoid robots,
flexible manufacturing systems, and autonomous vehicles (off-road vehicle and blimb).
One of our ultimate goals is, as Brachman [2] puts it in the context of general cognitive
systems, to turn technical systems into “ones that can reason using substantial amounts
of appropriately represented knowledge, learn from its experience so that it performs
better tomorrow than it did today, explain itself and be told what to do, be aware of its
own capabilities and reflect on its own behavior, and respond robustly to surprise.” A
technical system that is cognitive in this sense will be more reliable, flexible, adaptive,
and robust. These kinds of systems ease interaction and cooperation with humans.

1 COTESYS is funded by the German Research Council DFG as a research cluster of excellence
within the “excellence initiative” from 2006-2011. COTESYS partner institutions are: Tech-
nische Universität München (TUM), Ludwig-Maximilians-Universität (LMU), Universität der
Bundeswehr (UBM), Deutsches Zentrum für Luft- und Raumfahrt (DLR), and Max-Planck-
Institute for Neurobiology (MPI), all in Munich.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 19–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

20 M. Beetz, M. Buss, and D. Wollherr

Thus, we consider Cognitive technical systems (CTS) to be information processing
systems equipped with artificial sensors and actuators, integrated and embedded into
physical systems, and acting in a physical world. CTSs differ from other technical sys-
tems as they perform cognitive control and have cognitive capabilities. Cognitive con-
trol orchestrates reflexive and habitual behavior in accord with longterm intentions.
Cognitive capabilities such as perception, reasoning, learning, and planning turn tech-
nical systems into systems that “know what they are doing” [2].

This paper sheds light on the role of Artificial Intelligence for the COTESYS cluster
and cognitive technical systems in general, on methods of Artificial Intelligence that we
believe to apply well to cognitive technical systems, and on the challenges that cognitive
technical systems present to Artificial Intelligence research.

2 Why Cognitive Technial Systems Are Not Merely AI-Based
Technical Systems

Looking at the notion of cognitive technical systems we have put forward in the intro-
duction one might be tempted to simply view them as a subfield of Artificial Intelli-
gence. This view, however, is neither valid nor useful. Let us explain why.

Fig. 1. Demonstrator Cognitive Factory: A flexible manufacturing system consisting of two CNC
machines, an assembly robot, a material handling robot, an automatic storage unit, a computer
controllable conveyor belt, and a quality measuring unit is further enhanced with sensor net-
works and high performance 3D laser sensors. Cognitive mechanisms enable the factory system
to learn situation-specific models of production steps, to estimate the state of manufacturing pro-
cesses, to dynamically reschedule individual production steps to react to perceived disturbances
and respond to dynamically changed objective functions. The system also provides human pro-
cess planners with much more informative models of production processes that are learned from
experience.

Cognitive Technical Systems 21

2.1 Realizing Cognitive Technical Systems

A main focus of the COTESYS cluster is the realization of a cognitive factory [3] (see
Figure 1), humanoid robots in sensor-equipped environments [4,5,6,7,8,9,10,11,12,13]
(see Figure 2), and autonomous vehicles (see Figure 3) as the main demonstration plat-
forms that are to exhibit cognitive capabilities. As successfully demonstrated in a num-
ber of other leading-edge research projects demonstration platforms and their accom-
panying demonstration scenarios can serve as the main driving forces for the research
in the cluster (cf. [14,15,16,17]).

The COTESYS demonstrators and scenarios are designed to challenge fundamental
as well as applied research in the areas of perception, knowledge and learning. rea-
soning and planning, interaction, and execution. Individual cognitive capabilities are to
be integrated into complete control systems and embedded within the demonstrators.
The demonstrator research ensures that the cluster is not producing isolated pieces of
software but rather software components that function as part of an integrated cogni-
tive system. The demonstrators thereby enforce researchers of different institutions and
disciplines to cooperate in order to achieve the planned demonstration scenarios. The
breadth of the demonstrators also reduce the risk of overfitting cognitive mechanisms
to overly specific contexts because the demonstrators challenge the research along dif-
ferent dimensions.

Fig. 2. Demonstrator platforms humanoid robots. The COTESYS cluster investigates ways to
equip the walking machine Johnnie (left, c©Prof. Ulbrich, TUM) and its currently developed suc-
cessor Lola and Justin (right, c©Prof. Hirzinger, DLR), a humanoid upper body system for two
handed manipulation, with cognitive capabilities. Intermediate research platforms are existing
mobile robots with manipulators such as the B21 robot depicted in the middle acting as a kitchen
assistant. Scenarios in which cognitive capabilities will be demonstrated include household work,
party service, and shopping.

The realization of complex demonstration scenarios on these technical systems re-
quires immense concerted efforts of researchers in the engineering and computational
sciences. On the engineering side the systems need to be designed, modeled, and ana-
lyzed carefully. On the computational side we need comprehensive communication and
computational infrastructure that combines the various hard- and software components
for perception, reasoning and learning, and acting. It goes without saying that doing one
without the other is doomed to fail.

22 M. Beetz, M. Buss, and D. Wollherr

The focus on demonstrators and integrated system research is also important as a
research paradigm. The cognitive capabilities of CTSs enable them to reason about the
use of their information processing mechanisms: they can check results, debug them,
and apply better suited mechanisms if default methods fail. Therefore, their information
processing mechanisms do not need to be hard coded completely. They should still be
correct and complete but through dynamic adaptation rather than static coding. This
is important because in all but the simplest cases completeness and correctness come
at the cost of those problems becoming unsolvable — computationally intractable at
best. For example, computing a scene description from a given camera image is an ill-
posed problem [18], checking the validity of statements in first-order logical theories is
undecidable, computing a plan for achieving a set of goals is intractable for all but the
most trivial action representations.

Fig. 3. Demonstrator platforms vehicles. The autonomous automobile MuCAR-3 (left, c©Prof.
Wünsche,) and the DLR blimb (right, c©Prof. Hirzinger, DLR) are planned to cooperate in spec-
ified rescue scenarios.

2.2 Motor Control in Natural Systems

A second aspect where the research area of technical cognitive systems goes beyond the
scope of most AI research is that much of the inspiration of how technical systems are
to be equipped with cognitive mechanisms is taken from the research in the cognitive
sciences, in particular those areas that study computational models of perception and
attention and motor control 2.

Industrial robots are faster, more accurate, and stronger than humans. Yet many ma-
nipulation tasks that are easily performed by humans as part of their everyday activities
are well beyond the capabilities of such robots. The main reason for this superiority is
that humans have a brain, an information and control mechanism tailored for flexible,
reliable, and adaptive motion control. As we are working towards autonomous service
robots operating and performing manipulation in the presence of humans and in human
living and working environments, the robots must exhibit similar levels of flexibility,
reliability, and adaptivity.

2 See http://www.foresight.gov.uk/previous projects/cognitive systems/index.html for a com-
prehensive discussion of this and related subjects.

Cognitive Technical Systems 23

Animals and humans deal easily with everyday situations – an ability technical sys-
tems currently lack. Unlike artificial systems, they develop and learn how to extract and
incorporate new information from the environment. Animals have survived in our com-
plex world by developing brains and adequate information processing strategies [19].
Brains cannot compete with computers on tasks requiring raw computational power.
However, they are extremely well-suited to deal with ill-structured problems that in-
volve a high degree of unpredictability, uncertainty, and fuzziness. They can easily
cope with an abundance of complex sensory stimuli that have to be transformed into
appropriate sequences of motor actions.

Because brains of humans and non-human primates have successfully developed
information processing mechanisms to overcome many of the limitations of technical
systems, COTESYS studies and analyzes cognition in natural systems and transfers the
respective insights into the design and implementation of cognitive control systems for
technical systems [20].

To this end, cognitive scientists study the neurobiological and neurocognitive foun-
dations of cognition in humans and animals and develop computational models of cog-
nitive capabilities that explain their empirical findings. These computational models
will then be studied by the COTESYS engineers and computer scientists with respect to
their applicability to artificial cognitive systems and empirically evaluated in the context
of the COTESYS demonstrators.

2.3 The CoTeSys Approach

Recognizing the situation that the successful realization of CTSs require AI methods as
well as solid grounding in physical systems and insights from the cognitive sciences,
COTESYS structures interdisciplinary research on cognition in three closely intertwined
research threads, which perform fundamental research and empirically study and im-
plement cognitive models in the context of the demonstration testbeds. The research
threads are:

1. Systemic Neuroscience, Cognitive Science, and Neurocognitive Psychology which
develop computational models of cognitive control, perception, and motor action
based on experimental studies at the behavioral and brain level.

2. Information processing technology, which studies and develops algorithms and
software systems for realizing cognitive capabilities. Particularly relevant are mod-
ern methods from Control and Information Theory, Artificial Intelligence including
learning, perception, and symbolic reasoning.

3. Engineering technologies, which investigate research problems in the areas of
mechatronics, sensing technology, sensor fusion, smart sensor networks, control
rules, controllability, stability, model/knowledge representation, and reasoning
needed to implement robust cognitive abilities in technical systems with guaran-
teed performance constraints.

In recent years, these disciplines studying cognitive systems have crossfertilized each
other in various ways. Researchers studying human sensorimotor control have found
convincing empirical evidence for the use of Bayes estimation and cost function en-
abled control mechanisms in natural movement control [19]. Bayesian networks and the

24 M. Beetz, M. Buss, and D. Wollherr

Fig. 4. COTESYS research strategy: Three research disciplines (cognitive and life sciences, in-
formation processing and mathematical sciences, and engineering sciences) work synergetically
together to explore cognition for technical systems. Research is structured into three groups of
research areas: cognitive foundations, cognitive mechanisms, and demonstration scenarios. Cog-
nitive mechanisms to be realized include perception, reasoning and learning, action selection and
planning, and joint human/robot action.

associated reasoning and learning mechanisms have inspired research in cognitive psy-
chology in particular the formation of causal theory with young children [21,22,23,24].
Functional MRI images of rat brains have shown neural activation patterns of place
cells similar to multimodal probability distributions in robot localization using Bayesian
filters [25].

The conclusions that COTESYS draws from these examples are that (1) successful
computational mechanisms in artificial cognitive systems tend to have counterparts
with similar functionality in natural cognitive systems; and (2) new consolidated find-
ings about the structure and functional organization of perception and motion control
in natural cognitive systems show us much better ways of organizing and specifying
computational tasks in artificial cognitive systems.

Cognition for technical systems is not the mere rational reconstruction of natural
cognitive systems. Natural cognitive systems are impressively well adapted to the com-
putational infrastructure and the perception and action capabilities of the systems they
control. Technical cognitive systems have computational means, perception and action
capabilities with very different characteristics. Learning and motor control for reach-
ing and grasping provide a good case in point. While motor control in natural systems
takes up to 100ms to receive motion feedback, high end industrial manipulators exe-
cute feedback loops at 1000Hz with a delay of 0.5ms. In contrast to robot arms, control
signals for muscles are noisy and muscles take substantial amounts of time to produce
the required force. On the other hand, antagonistic muscle groups support the achieve-
ment of equilibrium states. Thus, where in natural systems predictive models of motion
are required because of the large delay of feedback signals, robot arms can perform the
same kind of motions better by using fast feedback loops without resorting to prediction.

Cognitive Technical Systems 25

Because of these differences, we cannot expect that generally all information processing
mechanisms optimized for the perceptual apparatus, the brain, and the limbs of humans
or non-human primates will apply, without modification, to the control of CTSs.

3 Cognition in the Perception-Action Loop

COTESYS investigates the cognition in technical systems in terms of the cognition-based
perception-action closed loop. Figure 5(left) depicts the system architecture of a cogni-
tive system with multi-sensor perception, cognition (learning, knowledge, action plan-
ning), and action. COTESYS research is dedicated to real-time performance of this con-
trol loop. On the higher level, key components comprise environment models, learning
and knowledge management, all in real-time and tightly connected to physical action.

Actuators
Action

Human

Sensors

Perception

Learning &

reasoning

Knowledge &

models

Planning &

Cognitive Control

Cognitive system architecture

Environment /

Production Process

Learning/
Reasoning

Knowledge/
Models

Perception
Planning/
Action

Fig. 5. The cognitive system architecture: The perception-action closed loop (left) and the inter-
play of the cognitive capabilities (right)

The mapping of the technical system operation onto the perception-action cycle de-
picted in Figure 5(left) might suggest that we functionally decompose cognition into
modules where one module performs motor action, another one reasoning, and so on.
In order to achieve the needed synergies, the coupling of the different cognitive capabil-
ities must be much more intense and interconnected as depicted in Figure 5(right). For
example, the system can learn to plan and plan to learn. It can learn to plan more re-
liably and efficiently and also plan in order to acquire informative experiences to learn
from. Or, perception is integrated into action to perform tasks that require hand-eye co-
ordination. Further, perception often requires action to obtain information that cannot
be gathered passively.

COTESYS investigates the perception-action loop within a highly interdisciplinary
research endeavor starting with discipline-specific views of the loop components in
order to obtain a common understanding of key concepts, such as perception, (motor)
action, knowledge and models, learning, reasoning, and planning.

Perception is the acquisition of information about the environment and the body of an
actor. In cognitive science models, part of the information received by the receptors is

26 M. Beetz, M. Buss, and D. Wollherr

processed at higher levels in order to produce task-relevant information. This is done
by recognizing, classifying, and locating objects, observing relevant events, recogniz-
ing the essence of scenes and intentional activities, retrieving context information, and
recognizing and assessing situations [26,27]. In control theory, perception strongly cor-
relates with the concept of observation — the identification of system states that are
needed to generate the right control signals. Artificial intelligence, a subfield of com-
puter science, is primarily concerned with perception and action; perception is often
framed as a probabilistic estimation problem [28] and the estimated states are often
transformed into symbolic representations that enable the systems to communicate and
reason about what they perceive [29].

(Motor) Action is the process of generating behavior to change the world and to achieve
some objectives of the acting entity.3[31] To produce action, primate brains use a quasi-
hierarchy ranging from elementary motor elements at lower cortical levels to complex
“action” sequences and plans at higher levels. Natural cognitive systems use internal
forward models to predict the consequences of motor signals to account for delays in
the computation process and filtering out uninformative incoming sensory information
[19]. This cognitive science view can be contrasted to control theory, where behavior is
specified in terms of control rules. Control rules for feedback control are derived from
accurate mathematical dynamical system models. The design of control rules aims at
control systems that are controllable, stable, and robust and can thereby provably satisfy
given performance requirements [32]. Action theories in Artificial Intelligence typically
abstract from many dynamical aspects of actions and behavior in order to handle more
complex tasks [33]. Powerful computational models have been developed to rationally
select the best actions (based on decision theory criteria) [28], to learn skills and action
selection strategies from experience [34], and to perform action aware control [35].

Knowledge (Models) in cognitive science is conceived to consist of both declarative
and procedural knowledge.4 Declarative knowledge is recognizing and understanding
factual information known about objects, ideas, and events in the environment. It also
contains the inter-relationsships between objects, events, and entities in the environ-
ment. Procedural knowledge is information regarding how to execute a sequence of
operations. In cognitive science various models have been proposed as part of compu-
tational models of motor control and learning to explain behavior of human and pri-
mate behavior in empirical studies [19,37]. Most prominent are the forward and back-
ward models of actions for the prediction of the actions’ effects and sensory conse-
quences and for the optimization of skills [38]. Graphical models have been proposed
to explain the acquisition of causal knowledge with younger children [23]. In control
systems, various mathematical models, such as differential equations or automata that
capture the evolution of dynamical systems, are used [39]. Research in Artificial In-
telligence has produced powerful representations for joint probability distributions and

3 Brown and Rosenbaum characterize motor control as “the ability of biological and artificial
systems to plan, initiate, maintain, monitor, and correct movements to attain physically realiz-
able goals. A model is a system or process that permits predictions.” [30].

4 Again we refer to the research review performed by the Foresight project [36] for a compre-
hensive introduction into the area of representation in the brain.

Cognitive Technical Systems 27

symbolic knowledge representation mechanisms. It has developed the mechanisms to
endow CTSs with encyclopedic [40,41] and common sense knowledge [42].

Learning is the process of acquiring information, and, respectively, the reorganiza-
tion of information that results in new knowledge. The learned knowledge can relate
to skills, attitudes, and values and can be acquired through study, experience, or being
taught — the cognitive science view. Learning causes a change of behavior that is per-
sistent, measurable, and specified. It is a process that depends on experience and leads
to long-term changes in behavior. In control theory, adaptive control investigates con-
trol algorithms in which one or more of the parameters varies in real time, to allow the
controller to remain effective in varying process conditions. Another key learning mech-
anism is the identification of parameters in mathematical models. In Artificial Intelli-
gence, a large variety of information processing methods for learning have been devel-
oped. These mechanisms include classification learners, such as decision tree learners
or support vector machines, function approximators, such as artificial neural networks,
sequence learning algorithms, and reinforcement learners that determine optimal action
selection strategies for uncertain situations [43]. The learning algorithms are to be in-
tegrated into comprehensive systems that automatically collect the experience needed
for self-improvement, that perform lifelong learning, and can improve system behavior
even if very little experience is available.5

Reasoning is a cognitive process by which an individual or system may infer a conclu-
sion from an assortment of evidence, or from statements of principles. In the cognitive
sciences reasoning processes are typically studied in the context of complex problem
solving tasks, such as solving student problems, using protocol analysis methods (“think
aloud”). In the engineering sciences specific reasoning mechanisms for prediction tasks,
such as Bayesian filtering, are employed and studied [28]. Other reasoning tasks are
solved in the system design phase by the system engineers, where control rules are
proven to be stable. The resulting systems have no need for execution time reasoning
because of their guaranteed behavior envelope. Artificial intelligence has developed a
variety of reasoning mechanisms, including causal, temporal, spatial, and teleological
reasoning, which enables CTSs to solve dynamically changing, interfering, and more
complex tasks.

Planning is a process of generating (possibly partial) representations of future behav-
ior, prior to the use of such plans, to constrain or control current behavior. It comprises
reasoning about the future in order to generate, revise, or optimize the intended course
of action. In Artificial Intelligence, we view plans as control programs that can be exe-
cuted, be reasoned about, and be manipulated [44]. A key area where synergies between
the engineering and information processing disciplines are to be expected is the tight
coupling of symbolic action planning on the one side and manipulation with manipula-
tion and path planning on the other one [45,46,47]. Another area where breakthroughs

5 The view of learning being integral parts of cognitive systems and requiring additional cog-
nitive mechanisms is pushed by the DARPA IPTO office (http://www.darpa.mil/ipto/). Here
we find funded research programs for personalized assistants that learn, integrated learning,
transfer learning, and learning applied to ground robots.

28 M. Beetz, M. Buss, and D. Wollherr

are to be expected is the coupling of planning and learning. Here we expect plan-based
robot control systems that learn to plan complex manipulation tasks both more reliably
and efficiently and planning systems that help autonomous robots to acquire complex
manipulation plans by incorporating planning mechanisms into the learning appara-
tus. The synergies to be expected from these combinations will be precondiditions for
robotic assistants that can competently perform everyday manipulation tasks in the pres-
ence of people and in human living environments [48].

4 The Assistive Kitchen as a Cognitive Technical System

Let us now look at the Assistive Kitchen as an example of the kind of cognitive tech-
nical systems we have in mind [13]. The Assistive Kitchen (Figure 6) is a ubiquitous
computing, sensing, and actuation environment with a robotic assistant that aims at

– supporting and assisting people in their household chores through physical action;
– enhancing the cognitive capabilities of people by reminding them; and
– monitoring health and safety of the people.

To achieve these objectives, the Assistive Kitchen is to

– perceive, interpret, learn, and analyze models of household chore; and
– represent the acquired models such that the Assistive Kitchen can use them for

activity and safety monitoring, health assessment, and for adapting itself to the
needs and preferences of the people.

The Assistive Kitchen includes an autonomous robotic agent that is to learn and
perform complex household chores. The robot must perform housework together with
people or at least assist them in their activities. This requires safe operation in the pres-
ence of humans and behaving according to the preferences of the people they serve.

4.1 Infrastructure

We start with the hardware and software infrastructure of the kitchen, which consists of
a mobile robot and networked sensing and actuation devices that are physically embed-
ded into the environment.

Currently, an autonomous mobile robot with two arms with grippers acts as a robotic
assistant in the Assistive Kitchen (see Figure 6). The robot is a RWI B21 robot equipped
with a stereo CCD system and laser rangefinders as its primary sensors. One laser range
sensor is integrated into the robot base to allow for estimating the robot’s position within
the environment. Small laser range sensors are mounted onto the robot’s grippers to pro-
vide sensory feedback for reaching and grasping actions. The grippers are also equipped
with RFID tag readers that support object detection and identification. Cameras allow
for longer range object recognition and vision-based interaction with people.

The robot can manipulate objects and its environment using its two industrial strength
Amtec Powercube arms with simple grippers. While the arms and grippers are not very
dexterous they permit the execution of simple manipulation actions such as getting
plates and glasses out of the cupboard and putting them onto the table.

Cognitive Technical Systems 29

Fig. 6. The Assistive Kitchen containing a robot and a variety of sensors. The sensors provided
by the environment (left) in the form of a sensor network include laser range finders, RFID tag
readers, force and acceleration sensors, and CCD cameras. The mobile manipulation platform is
equipped with two robot arms with grippers, and various sensors, most notably a stereo camera
unit and small laser range sensors mounted on the robot grippers.

The sensor-equipped kitchen environment (see Figure 6) disposes of global environ-
ment sensors, sensor-equipped furniture, web-enabled appliances, “smart” objects, and
instrumentation for people acting in the environment [49]. In this section we will look
at these components in more detail.

We have mounted a set of static off-the-shelf cameras positioned to cover the kitchen
area with high resolution in critical working areas. With these cameras, actions of the
people and robots can be tracked from different locations to allow for more accurate po-
sitioning and pose estimation. In addition, laser range sensors are mounted at the walls
for covering large parts of the kitchen. They provide accurate and valuable position data
for the people present in the environment and their movements within the kitchen.

The furniture is also equipped with various sensors. For example, we have cupboards
with long-range RFID tag readers that enable the cupboards to “know” the identities
of the RFID tagged objects that are inside of them. They also have magnetic contact
sensors that sense whether the cupboard doors are open or closed. The table contains
several integrated capacitive sensors that report the presence of objects based on local
capacitance, while the RFID readers provide exact information on what object was
placed there.

Web-enabled kitchen appliances such as the refrigerator, the oven, the microwave,
and the faucet, allow for remote and wireless monitoring and control.

In addition, kitchen utensils, tools and small appliances are equipped with inte-
grated sensors. For example, we use a knife (see Figure 7) instrumented with a 6DOF
force/torque sensor that allows us to record the force trajectories over extended periods
of time. Because the shapes of the force trajectories are characteristic for the physical
properties of the objects, we can learn object specific force profiles and use them to
classify the objects being cut.

30 M. Beetz, M. Buss, and D. Wollherr

Fig. 7. Knife with embedded force sensors networked within the wireless sensor network. The
graphs show force profiles characteristic for cutting objects of particular classes such as bananas
or apples.

Another smart object is a sensor-instrumented coffee machine. The integrated sen-
sors provide information whether the filter unit is open and about whether a coffee filter
is installed, whether the machine is switched on or off, the amount of water in the water
container, etc.

Small ubiquitous devices offer the possibility to instrument people with additional
sensors. In our case, we have built a glove equipped with an RFID tag reader (see
Figure 8) that enables us to identify the objects that are manipulated by the person
wearing it. In addition, the person is equipped with tiny inertial measurement units that
provide us with detailed information about the person’s limb motions.

The sensors in the Assistive Kitchen are connected into distributed sensor networks
(see Figure 8), which are enhanced with cognitive capabilities. To this end the sensors
are wirelessly connected to small ubiquitous computing devices (like Gumstix) and
to personal computers that perform state estimation and data-mining tasks. This way,
activity data can be collected and abstracted into models in a distributed manner. Cogni-
tive capabilities of the network include the estimation of meaningful states from sensor
data, the continual acquisition, update, and use of activity models, and the estimation
of context conditions that allow for the simplification of recognition tasks. Because of
these capabilities cognitive sensor networks always have up-to-date models of objects,
situations, and activities, which enable the networks to provide a continual service for
answering queries about the environment and the activities that take place in it.

Cognitive sensor networks can estimate states and recognize events that are mean-
ingful in the application domain but must be obtained by combining, interpreting, and
abstracting the sensor data of different sensors over time. For example, mounting RFID
tags and acceleration sensors to kitchen utensils allows the environment to recognize
force-dynamic states such as an object being picked up, carried, or put down. The
recognition of force-dynamic states is essential for segmenting activities into mean-
ingful subactions. The networks can also learn about places that play particular roles in
the activities that are monitored. The system can learn where the people prepare food
or where food is stored, etc.

Cognitive Technical Systems 31

Fig. 8. Sensor networks in the Assistive Kitchen

4.2 Perception

There is a large number of perception tasks that need to be accomplished by the sensor
equipped kitchen and the robotic assistant. The sensor-equipped environment has to re-
cognize, classify, and estimate the parameters of everyday manipulation activities, such
as setting the table, cooking, and cleaning up. It has to determine the objects relevant
for tasks — even in cluttered scenes, classify them, determine their positions and ori-
entation, and grasp points to manipulate them. The robot has to perceive possibly using
the sensor network as an additional resource the semantically meaningful components
of the environment both very accurately and abstractly. Finally, a variety of perceptual
capabilities with respect to people are needed including the detection and recognition
of people, understanding human body language (mimics, gestures), etc.

In the remainder of the Section we focus on two perceptual tasks that are particular
interesting from the point of view of Artificial Intelligence: the perception of human
actions and activities and the perception of human living environments.

The Perception of Human Actions and Activities. The challenge here is that the sensor-
equipped kitchen has to recognize and interpret human activities over extended periods
of time, meaning days or even weeks [50]. While being switched on the system has
to recognize high-level activities such as setting the table, having a meal, cooking, and
cleaning up. Activities can be performed concurrently such as cleaning and cooking
and can be interrupted, for example when a visitor comes. Activities have to be decom-
posed into discrete actions such as putting a plate on the table in order to recognize how

32 M. Beetz, M. Buss, and D. Wollherr

Setting the
Table

Making
Tea

Making
Coffee

Having
Breakfast

Cleaning
up

v

6:15 AM 11:00 AM

state
automaton

time window

expecte
sensor
events

cups disappear
from cabinet
cups in hand
plates
disappear from
cabinet
plates in hand
cups appear on
table
plates appear
on table

cup in hand
cup appears in front f
coffee machine
coffee machine is
opened
coffee machine is filled
with water
coffee machine is
running
coffee machine stopped

cup disappears
from table
cup in hand
cup appears on
table
...

cups disappear from
table
cups in hand
cups appear in
dishwasher
plates disappear from
table
plates in hand
plates appear in
dishwasher
dishwasher is started

Fig. 9. RFID based recognition of everyday activities based on the disappearance of plates and
cups in the cabinet, on the table, and in the dishwasher

activities are performed. In particular, the perception system has to recognize that peo-
ple carry stacks of plates to set the table instead of carrying the plates one by one.
Finally, to enable effective imitation learning by the robotic assistant the perception
system has to determine the precise parameters of motion trajectories of manipulation
tasks.

For the reliable longterm observation of high-level everyday activities it is in our
view essential that we realize a perception system that generates streams of high-level
events that are strongly correlated with the activities to be recognized [51]. We believe
that use of vision algorithms that operate on image streams would be brittle and demand
very high computational resources, because the amount of sensor data interpreted is
immense and the pixel information is only weakly correlated with the activities to be
recognized [52].

Therefore, we build the high-level activity recognition system based on RFID tag
readers mounted in the environment and extend them such that they signal objects of
particular types appearing and disappearing in the sensing range of the respective RFID
tag readers. Based on these perceptual events we can characterize setting the breakfast
table as plates, cups, and other utensils disappearing from cabinets and drawers and
appearing on the breakfast table. Researchers from the Intel Lab in Seattle and the
University of Washington have pioneered this type of activity recognition by pointing
out the strong correlations between the activities of daily life and the objects used [53].

Cognitive Technical Systems 33

Another important perceptual task is the precise segmentation and decomposition
of activities into meaningful actions, such as picking up an object and putting it on
a table. Cognitive models suggest that this segmentation could be done by physically
interpreting activity data using the concepts of force-dynamic states and events. The
basic idea of force-dynamic models of actions is that in these models we can use the
state holding as the invariant that discriminates putting objects from many other actions
that might be similar with respect to features. Evidence that force-dynamic states are
appropriate to classify everyday manipulation actions can also be found in the human
language that is typically particularly rich with respect to force-dynamic variants of
action executions (e.g,, push, pull, draw, ...). In this model we can represent a pickup
event as follows:

pickup(hand,object,support)⇐⇒
supports(support,object)∧ contacts(support,object)
followed by
supports(hand,object)∧ attached(hand,object)

A big advantage of using force-dynamic states and events as our basic concepts for
action recognition is that using distributed sensor networks we can build relatively sim-
ple special purpose sensors that can detect force dynamic states reliably and with high
accuracy. To do this we mount RFID tags and acceleration sensors to every object rel-
evant for the activities. We also use a glove with an integrated RFID tag reader and
acceleration sensor. Using this sensor setting we can recognize the force-dynamic event
of picking up object o with the right hand h by looking at similar acceleration profiles
of h and o and the low-range RFID tag reader of h reporting the RFID of o.

Fig. 10. 3D vision-based full-body motion tracker. Particles representing full body poses are de-
picted in the left subfigure. A digital human model with the parameters of the most probable
particle is depicted on the right.

Finally, accurate motion and trajectory data are obtained by tracking a digital hu-
man model in multiple image streams recorded by the cameras installed in the sensor-
equipped kitchen (see Figure 10). This accurate motion tracking requires a concerted

34 M. Beetz, M. Buss, and D. Wollherr

effort from AI technology. Learning components acquire appearance models of the per-
son to be tracked and if possible of body parts. These appearance models are then
used by the visual segmentation algorithms and the sensing evidence is probabilisti-
cally combined using an efficient, high-dimensional particle filter for tracking full-body
motion.

The Perception of Kitchen Environments. The perception of living environments needed
for the assistive kitchen presents other key challenges. Here, the perception system has
to recognize the objects that the robotic assistant has to manipulate. At an abstract task-
oriented level a household robot could consider the environment to consist of containers
with front doors. Some of them have specific purposes such as the fridge or the dish-
washer. Other task-relevant objects are tables, such as the working plate, drawers, and
shelves.

Fig. 11. Point cloud based 3D object model of the kitchen environment of our demonstration
scenario. Objects of the classes cabinet (container with front door), tables, and drawers are shown
in different colors. A 3D object model inferred from laser scans is shown on the right.

We are developing a perceptual system for this task that users a precise laser range
scanner on a robot arm, CCD cameras, and the wireless sensor network as its sensing
resources. The key features of this perception system are that it very reliably removes
noise and outliers in point clouds generated by 3D laser scans [54]. The mechanisms are
also capable of appropriately filling holes in the object models that are typically caused
by occlusions. This accuracy is needed to segment the front of an integrated kitchen
into doors of the individual cabinets. Another key feature of this perceptual apparatus
is that it can use object states to correctly classify objects. For example, to classify that
an object is a cabinet the perceptual component must have seen the cabinet in an open
and a closed state.

4.3 Model Acquisition

COTESYS approaches the acquisition, management, and use of activity models using
the combination of first-order statements and probabilistic interpretation of statements
as the basic representational apparatus.

Thus, the sensor data acquired by the sensor network in the course of observing
kitchen activities are abstracted into learning task-specific experiences and stored into a
relational database. The relational database together with causal links between domain

Cognitive Technical Systems 35

Fig. 12. Acquisition and use of a Markov Logic-based model of kitchen activities. The sensor data
acquired by the activity recognition system are stored in a relational database system. The data
in the database together with the causal structure on domain relations imply a joint probability
distribution over relations in the activity domain. This distribution is represented using Markov
logic, which allows for inferring the conditional probability of first-order statements.

relations then imply a probability distribution over everyday activities, their parame-
terized execution, and characteristics. These models of activities are then acquired by
applying relational learning mechanisms to the given data and causal structure (see Fig-
ure 12) (cf. [55,56]).

Environment models are resources of the household robot that enable it to better
perform its jobs. As such they must enable the robot to better infer where things are that
it needs, how to manipulate objects (e.g., open doors), what kinds of objects are stored
in which cabinets, etc.

To this end, a cabinet identified by the perception module must be associated with
additional knowledge including what kinds of objects are stored in it, which sensor
of the sensor network reports the content of this cabinet, how is the content of the
cabinet organized. Another aspect of knowledge that the identified object models must
be associated with are the roles that objects play in activities. For example, the robot
might need to know the cup that Martin uses for breakfast, or the table where food is
prepared. This knowledge is represented using description logics based representations
in conjunction with datamining and learning mechanisms [57]. It is evident that models
that are effective resources for the robot’s activities must combine environment and
activity models.

4.4 Execution

One of the hardest challenges for execution is the question of how an autonomous robot
can perform everyday activities such as setting the table, preparing meals, cleaning
up as flexibly, reliably, and efficiently as it is required in doing household work over
extended periods of time. The performance of the robotic assistant critically depends
on the design and implementation of its activity plans.

36 M. Beetz, M. Buss, and D. Wollherr

A key issue of plan execution is the design of plan languages and plans that do
not abstract away too much important information as it is typically done in STRIPS-
like [58] and PDDL-like plan languages [59]. In order to achieve high performance
robot behavior plan execution mechanisms must address optimal parameterizations of
control routines and the reliable execution of tasks [60]. Consider an office delivery
robot navigating through its environment. If we look at the state of the art, in particular
when the robots use sonar sensors, then the robots are capable of navigating through the
hallway quickly, but have problems with traversing doorways. Consequently, looking
ahead and preparing for smooth and optimal doorway traversals has more impact on
performance than tour optimization. However, these improvements cannot be achieved
when considering door traversal as a blackbox independent of its parameterization and
situational context.

Making plans tolerant of sensor error, execution failures, and changing environments
requires them to specify how to respond to asynchronously arriving sensory data and
other events. They must also prescribe concurrent and synchronized actions. Many
control patterns other than those provided by common plan representations have been
proven to be necessary for flexible and reliable robot control. Plans cannot abstract away
from the fact that they generate concurrent, event-driven control processes without the
robot losing the capability to predict and forestall many kinds of plan execution failures.

Fig. 13. Simulated robot acting in the kitchen (left) and a typical execution failure that the robot
has to correct and to recover from (right)

4.5 Reasoning and Planning

Robotic agents can not be fully programmed for every application. Thus, in this demon-
stration scenario we realize robot control programs that specialize to their respective
robot platform, work space, and tasks (see Figure 14).

Specifically we realize a high-level control program for setting the table. The pro-
gram learns from experience where to stand when taking a glass out of the cupboard,
how to best grasp particular kitchen utensils, where to look for particular cutlery, etc.
This requires the control system to know the parameters of control routines and to have
models of how the parameters change the behavior [60]. Also, the robots are required
to perform their tasks over extended periods of time, which asks for very robust control.

Cognitive Technical Systems 37

Fig. 14. Self-adaptation of different robots in different kitchens

Let us consider the setting of a table as an illustrative example (see Figure 15) for the
automatic acquisition of new high-level skills. Upon receiving “set the table” the robot
retrieves instructions from webpages such as ehow.com. These instructions are typically
sequences of steps to be executed in order to carry out the activities successfully. The
challenges of this execution scenario are: (1) translate the abstract instructions into an
executable robot control program, (2) supplement missing information through obser-
vations of kitchen activities, (3) transform the action sequence into an activity structure
that can be carried out more reliably, efficiently, and flexibly. Instructions typically ab-
stract away from these aspects of activity specification.

Fig. 15. Learning to set the table

Let us now look at some of the hard challenges in this scenario. First, translating
abstract instructions into a working robot control program requires answers to the fol-
lowing research questions: (1) How can the plan libraries of autonomous household
robots be specified so generally, reliably, transparently, and modularily that a robot can
compose (almost) working plans from abstract instructions? [61] For newly composed
sequences of plan steps to work it helps if the individual plan steps are specified as

38 M. Beetz, M. Buss, and D. Wollherr

“universal plans”, that is they achieve – if necessary – all preconditions needed for
producing the desired effects. (2) Debugging newly created plans from instructions re-
quires the robot to predict what will happen if it executes the new plan, to identify the
flaws of the plan with respect to its desired behavior, and to revise the plan in order
to avoid the predicted flaws. (3) Optimizing tasks like table setting also requires the
technical cognitive system to observe people setting the table, to infer the structure of
the activity and reason about why people do not follow the abstract instructions like a
robot but perform the task the way they do. This way the robot would learn that people
stack plates when carrying them in order to minimize the distance they have to walk.
The robot would then transform its plan analogously and test whether this change of
activity structure would result in improved performance.

5 Conclusions

In this paper we have described cognitive technical systems as an application area of
Artificial Intelligence technology using the Assistive Kitchen as an example. In this
context we have identified various tasks where AI technology can advance the state-of-
the-art in cognitive technical systems technology substantially. However, this requires
that the respective AI methods scale towards high performance control of robotic sys-
tems in the context of sensor-equipped, embedded robot applications.

We have pointed out a number of research areas where we expect breakthrough re-
sults into this direction. Most notably these areas include:

– symbolic representations grounded in perception and action,
– first-order probabilistic representations of actions, objects, and situations,
– reasoning about objects and situations in the context of everyday manipulation tasks

in human living environments,
– the representation and revision of robot plans for everyday activity.

to name only a few.
It is also necessary that AI researchers closely study the research in neighboring re-

search disciplines. For example, research on manipulation and motion planning [46] has
already outperformed AI planning technology in a number of aspects. Also, research
in computational motor control [19] can tell us nowadays how prediction, model learn-
ing, and probabilistic inference work together to produce smooth and high-performance
robot behavior.

In this view, cognitive technical systems are an ideal application area to drive AI
research and prove its relevance to the realization of high-performance autonomous
robotic systems.

References

1. Buss, M., Beetz, M., Wollherr, D.: CoTeSys — cognition for technical systems. In: Proceed-
ings of the 4th COE Workshop on Human Adaptive Mechatronics (HAM) (2007)

2. Brachman, R.: Systems that know what they’re doing. IEEE Intelligent Systems, 67–71
(November/December 2002)

Cognitive Technical Systems 39

3. Zäh, M.F., Lau, C., Wiesbeck, M., Ostgathe, M., Vogl, W.: Towards the cognitive factory. In:
Proceedings of the 2nd International Conference on Changeable, Agile, Reconfigurable and
Virtual Production (CARV 2007) (2007)

4. Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., Albu-Schaffer, A.,
Brunner, B., Hirschmuller, H., Kielhofer, S., Konietschke, R., Suppa, M., Wimbock, T.,
Zacharias, F., Hirzinger, G.: A humanoid two-arm system for dexterous manipulation. In:
Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots, IEEE
Computer Society Press, Los Alamitos (2006)

5. Ott, C., Eiberger, O., Friedl, W., Bäuml, B., Hillenbrand, U., Borst, C., Albu-Schäffer, A.,
Brunner, B., Hirschmüller, H., Kielhöfer, S., Konietschke, R., Suppa, M., Wimböck, T.,
Zacharias, F., Hirzinger, G.: A humanoid two-arm system for dexterous manipulation. In:
IEEE-RAS International Conference on Humanoid Robots, pp. 276–283. IEEE Computer
Society Press, Los Alamitos (2006)

6. Zacharias, F., Borst, C., Hirzinger, G.: Bridging the gap between task planning and path plan-
ning. In: Proceedings of IROS’06, the IEEE International Conference on Intelligent Robots
and Systems, Beijing, China, pp. 4490–4495. IEEE Computer Society Press, Los Alamitos
(2006)

7. Ulbrich, H., Buschmann, T., Lohmeier, S.: Development of the humanoid robot LOLA. Jour-
nal of Applied Mechanics and Materials 5(6), 529–539 (2006)

8. Lohmeier, S., Buschmann, T., Ulbrich, H., Pfeiffer, F.: Modular joint design for a perfor-
mance enhanced humanoid robot. In: Proceedings of the 2006 IEEE Int. Conf. Rob. Aut
(ICRA), Orlando, USA, pp. 88–93. IEEE Computer Society Press, Los Alamitos (2006)

9. Gienger, M., Löffler, K., Pfeiffer, F.: Design and realization of jogging Johnnie. In: CISM
Courses and Lectures (2002)

10. Buss, M., Hardt, M., Kiener, J., Sobotka, M., Stelzer, M., von Stryk, O., Wollherr, D.: To-
wards an autonomous, humanoid, and dynamically walking robot: Modelling, optimal tra-
jectory planning, hardware architecture, and experiments. In: Proceedings of the IEEE/RAS
International Conference on Humanoid Robots, Karlsruhe, Germany (2003)

11. Wollherr, D., Buss, M., Hardt, M., von Stryk, O.: Research and development towards an au-
tonomous biped walking robot. In: Proceedings of the IEEE/ASME International Conference
on Advanced Intelligent Mechatronics AIM2003, Kobe, Japan, pp. 968–973 (2003)

12. Sobotka, M., Wollherr, D., Buss, M.: A jacobian method for online modification of precalcu-
lated gait trajectories. In: Proceedings of the 6th International Conference on Climbing and
Walking Robots, Catania, Italy, pp. 435–442 (2003)

13. Beetz, M., Bandouch, J., Kirsch, A., Maldonado, A., Müller, A., Rusu, R.B.: The assistive
kitchen — a demonstration scenario for cognitive technical systems. In: Proceedings of the
4th COE Workshop on Human Adaptive Mechatronics (HAM) (2007)

14. Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., Wik-
lund, J.: The WITAS unmanned aerial vehicle project. In: Proc. of the European Conference
on Artificial Intelligence (ECAI 2000) (2000)

15. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.: Remote Agent: To boldly go where no AI
system has gone before. Artificial Intelligence 103, 5–48 (1998)

16. Thrun, S., Beetz, M., Bennewitz, M., Cremers, A., Dellaert, F., Fox, D., Hähnel, D., Rosen-
berg, C., Roy, N., Schulte, J., Schulz, D.: Probabilistic algorithms and the interactive museum
tour-guide robot Minerva. International Journal of Robotics Research (2000)

40 M. Beetz, M. Buss, and D. Wollherr

17. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale,
J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Stro-
hband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., Van Niekerk,
J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A.,
Mahoney, P.: Winning the darpa grand challenge. Journal of Field Robotics, 2006 (accepted
for publication)

18. Bertero, M., Poggio, T., Torre, V.: Ill-posed problems in early vision. Proceedings of the
IEEE 76(8), 869–889 (1988)

19. Koerding, K.P., Wolpert, D.M.: Bayesian decision theory in sensorimotor control. Trends in
Cognitive Sciences 10 , 319–326 (2006)

20. Schaal, S., Schweighofer, N.: computational motor control in humans and robots. Current
Opinion in Neurobiology (6), 675–682 (2005)

21. Chater, N., Tenenbaum, J.B., Yuille, A.: Probabilistic models of cognition: Conceptual foun-
dations. Trends in Cognitive Sciences 10(7) (2006)

22. Chater, N., Tenenbaum, J.B., Yuille, A.: Probabilistic models of cognition: where next?
Trends in Cognitive Sciences 10(7) (2006)

23. Gopnik, A., Glymour, C., Sobel, D., Schulz, L.: A theory of causal learning in children:
causal maps and bayes nets. Psychological review (2004)

24. Gopnik, A., Glymour, C., Sobel, D., Schulz, L.: Causal learning mechanisms in very young
children: two- three-, and four-year-olds infer causal relations from patterns of variation and
covariation. Developmental Psychology 37 (2001)

25. Skaggs, W., McNaughton, B.: Spatial firing properties of hippocampal ca1 populations in an
environment containing two visually identical regions. Journal of Neuroscience 18 (1998)

26. Dickmanns, E.: Dynamic Vision for Perception and Control of Motion. Springer, Heidelberg
(2007)

27. A research roadmap of cognitive vision, Tech. Rep. v5, P Auer et al, ECVISION (2005),
http://www.ecvision.org

28. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
29. Beetz, M., Kirchlechner, B., Lames, M.: Computerized real-time analysis of football games.

IEEE Pervasive Computing 4(3), 33–39 (2005)
30. Brown, L.E., Rosenbaum, D.A.: Encyclopedia of Cognitive Science. In: Motor Control:

Models, Macmillan, London (2002)
31. Barnard, P., Dayan, P., Redgrave, P.: Foresight cognitive systems project research review:

Action. tech. rep
32. Buss, M.: Hybrid control of mechatronic systems. Systems, Control and Information 46(3),

129–137 (2002)
33. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, Cambridge (2001)
34. Sutton, R., Barto, A.: Reinforcement Learning: an Introduction. MIT Press, Cambridge

(1998)
35. Stulp, F., Beetz, M.: Optimized execution of action chains using learned performance mod-

els of abstract actions. In: Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI) (2005)

36. Morris, R., Hitch, G., Graham, K., Bussey, T.: Foresight cognitive systems project research
review: Learning and memory. tech. rep.

37. Peters, J., Mistry, M., Udwadia, F., Cory, R., Nakanishi, J., Schaal, S.: A unifying method-
ology for the control of robotic systems. In: Proceedings of the IEEE/RSJ Conference on
Intelligent Robots and Systems (IROS) (2005)

38. Kawato, M.: Feedback-error-learning neural network for supervised motor learning. In: Ad-
vanced Neural Computers, pp. 365–472. Elsevier Science Publishers, Amsterdam (1990)

http://www.ecvision.org

Cognitive Technical Systems 41

39. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn,
A.P., Rischel, H., Nerode, A. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 209–229. Springer,
Heidelberg (1993)

40. Lenat, D.B.: Cyc: a large-scale investment in knowledge infrastructure. Communications of
the ACM 38(11) (1995)

41. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American Maga-
zine (May 2001)

42. Davis, E.: Representations of Commonsense Knowledge. Kaufmann Publishers Inc., San
Francisco (1990)

43. Mitchell, T.M.: The Discipline of Machine Learning. Carnegie Mellon University, White
Paper (2006)

44. Beetz, M.: A roadmap for research in robot planning. tech. rep., PLANET: European Net-
work of Excellence in AI Planning (2004),
http://www9.cs.tum.edu/research/tcu/

45. Cambon, S., Gravot, F., Alami, R.: A robot task planner that merges symbolic and geometric
reasoning. In: 16th European Conference on Artificial Intelligence (ECAI’2004), pp. 895–
899 (2004)

46. Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid
robots (2003)

47. Kuffner, J., LaValle, S.: RRT-connect: An efficient approach to single-query path planning.
In: Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA’2000), San Francisco, CA,
April 2000, IEEE Computer Society Press, Los Alamitos (2000)

48. Kemp, C., Edsinger, A., Torres-Jara, E.: Challenges for robot manipulation in human envi-
ronments. IEEE Robotics & Automation Magazine 14, 20–29 (2007)

49. Rusu, R.B., Maldonado, A., Beetz, M., Gerkey, B.: Extending Player/Stage/Gazebo towards
cognitive robots acting in ubiquitous sensor-equipped environments. In: Accepted for the
IEEE International Conference on Robotics and Automation (ICRA) Workshop for Network
Robot System, Rome, Italy, April 14, 2007, IEEE Computer Society Press, Los Alamitos
(2007)

50. Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggre-
gating abstract object usage. In: Proceedings of the IEEE International Symposium on Wear-
able Computers, Osaka, Japan, October 2005, IEEE Computer Society Press, Los Alamitos
(2005)

51. Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D., Fox, D., Kautz, H., Hahnel, D.:
Inferring activities from interactions with objects. Pervasive Computing, IEEE (2004)

52. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder:real-time tracking of the human
body. Tech. Rep. 353, MIT Media Lab (1996)

53. Smith, J., Fishkin, K., Jiang, B., Mamishev, A., Philipose, M., Rea, A., Roy, S., Sundara-
Rajan, K.: Rfid-based techniques for human activity recognition. Communications of the
ACM (September 2005)

54. Rusu, R.B., Blodow, N., Marton, Z., Soos, A., Beetz, M.: Towards 3d object maps for au-
tonomous household robots. In: submitted to Proceedings of the IEEE/RSJ Conference on
Intelligent Robots and Systems (IROS) (2007)

55. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statistical Re-
lational Learning. In: Proceedings of the ICML 2004 Workshop on Statistical Relational
Learning and its Connections to Other Fields, pp. 49–54 (2004)

56. Domingos, P.: What’s Missing in AI: The Interface Layer. In: Cohen, P. (ed.) Artificial Intel-
ligence: The First Hundred Years, AAAI Press (2006)

http://www9.cs.tum.edu/research/tcu/

42 M. Beetz, M. Buss, and D. Wollherr

57. Hoyningen-Huene, N.v., Kirchlechner, B., Beetz, M.: GrAM: Reasoning with grounded
action models by combining knowledge representation and data mining. In: Towards
Affordance-based Robot Control. LNCS (LNAI), Springer, Heidelberg (to appear, 2007)

58. Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial
Intelligence 69(1-2), 165–204 (1994)

59. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

60. Beetz, M.: Plan representation for robotic agents. In: Proceedings of the Sixth International
Conference on AI Planning and Scheduling, Menlo Park, CA, pp. 223–232. AAAI Press
(2002)

61. Firby, R.J., Prokopowicz, P., Swain, M.: Plan representations for picking up trash. In: Pro-
ceedings of the Int. Joint Conf. on Artificial Intelligence (1995)

Artificial Intelligence Is Engineering Intelligence

– Why Should We Care About Natural
Intelligence?

Thomas Christaller

Fraunhofer IAIS, Sankt Augustin
thomas.christaller@iais.fraunhofer.de

Artificial Intelligence is about designing and constructing artefacts, normally not
about explaining human intelligence. So, why should we care about natural intel-
ligence when talking about AI? There are several important more or less recent
findings in brain science as well as ethology which require a deeper rethinking
on the AI side. Based on them, the hypothesis in this talk is: The rising com-
plexity of the behaviour system and of personalized social relationships was one
of the major reasons for developing intelligence – contrary to the huge resource
consumption that intelligence costs an individual. The most important result of
this development was the capability of forecasting the behaviour of conspecifics
for survival in a complex social environment. This capability was also useful for
other purposes, including forecasting behaviour of individuals of other species
and nature itself.

A second focus in the talk will be language and the hypothesized reasons or
causes for its evolution and its primary usages. This will lead to the concept of
imitation and its neural basis. Some plausible speculations will be given, why all
these findings fit into a relatively consistent picture of natural intelligence. The
conclusion will be some examples on how these findings can inspire AI research
and the construction of AI systems.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, p. 43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 44–50, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Applying Machine Learning Techniques for Detection of
Malicious Code in Network Traffic

Yuval Elovici, Asaf Shabtai, Robert Moskovitch, Gil Tahan, and Chanan Glezer

Deutsche Telekom Laboratories at Ben-Gurion University,
Be’er Sheva, 84105 Israel

{elovici,shabtaia,robertmo,gilta,chanan}@bgu.ac.il

Abstract. The Early Detection, Alert and Response (eDare) system is aimed at
purifying Web traffic propagating via the premises of Network Service
Providers (NSP) from malicious code. To achieve this goal, the system employs
powerful network traffic scanners capable of cleaning traffic from known
malicious code. The remaining traffic is monitored and Machine Learning (ML)
algorithms are invoked in an attempt to pinpoint unknown malicious code
exhibiting suspicious morphological patterns. Decision trees, Neural Networks
and Bayesian Networks are used for static code analysis in order to determine
whether a suspicious executable file actually inhabits malicious code. These
algorithms are being evaluated and preliminary results are encouraging.

Keywords: Malicious Code, Machine Learning, Network Service Provider
(NSP), Feature Selection.

1 Introduction

In a recent online safety survey conducted by America Online and the National Cyber
Security Alliance (NCSA), 81% of the respondents were found to be lacking recently-
updated anti-virus software, a properly-configured firewall, and/or spyware
protection. Nevertheless, 74% of the respondents use the Internet for “sensitive”
transactions from their home computers, including among others banking, stock
trading, and reviewing personal medical information [1-4]. One way to prevent users
from being infected by malicious code is to purify the network traffic by the Network
Service Provider (NSP). The Early Detection, Alert and Response (eDare) system was
designed to accomplish this task [5]. The proposed system employs powerful network
traffic scanners to remove known malicious code from network traffic. The remaining
suspicious traffic is monitored and ML techniques, such as classification algorithms,
are invoked for identifying unknown malicious code. Each ML technique is
implemented as a modular plug-in appended to the core system. Decision Trees,
Bayesian Networks and Artificial Neural Network plug-ins are all used in this study
for static code analysis in order to determine whether a file contains malicious code.

Detection of malicious employing content-based features operationalized by ML
learning algorithms is not a new concept. In [6], ML techniques were applied for
detection of unknown malicious code based on binary code content. They used three

 Applying Machine Learning Techniques for Detection of Malicious Code 45

different feature extraction methods: Program Header, Strings features and Byte
Sequences features, on which they applied four classifiers: Signature-based method
(anti-virus), Ripper – a rule based learner, Naïve Bayes and Multi Naïve Bayes. Their
study showed that all ML methods had better accuracy than the signature-based
algorithm. Other studies used various features extracted from the suspected binary
code, feature selection methods and ML techniques in order to detect unknown
malicious code [6-8].

The major advantages of eDare when compared to the aforementioned approaches
are: first, its flexibility in using plug-ins (without recompiling the system when adding
or updating plug-ins); and second, its ability to weigh and integrate the results of the
multiple plug-ins into one final detection decision with superior accuracy than each of
the individual plug-ins. In this paper we present a short review on eDare and its plug-
ins and will show some preliminary evaluation results that demonstrate the system
ability to detect unknown malicious code.

The rest of the paper is structures as follows: Section 2 describes the architecture of
the eDare system; section 3 presents the ML algorithms employed for detection of
unknown malicious code; section 4 illustrates the preliminary results emanating from
an empirical evaluation of eDare. Finally, section 6 concludes the paper with a
summary and an overview of future research avenues.

2 The eDare Framework

This research adopts a distributed, network-based approach, in which NSPs constantly
monitor traffic flowing via their infrastructure in an attempt to detect and remove
malicious code (hereafter: eThreats). eDare is designed to provide maximum
automation in the cycle of intercepting, analyzing, alerting and overcoming instances
of eThreats. The system aims to provide very low false positive by integrating
multiple sources of information and multiple eThreat detection techniques. Finally,
the system easily accommodates external plug-ins, expert consultation and risk
assessment.

The conceptual architecture of eDare is depicted in Figure 1. The group of eThreats
faced by eDare can be classified into the following two types:

• Known eThreats for which eDare has already generated a distinct signature and
are intercepted by the Known eThreat handling Module; and

• Unknown (New) eThreats which eDare is yet to encounter and classify, and for
which eDare needs to generate a distinct signature via the New eThreat
handling Module. In order to enable flexibility in employing various new
eThreat detection algorithms, modular plug-ins are used. All plug-ins have a
similar interface, that is, a suspicious file to be examined as input, and a threat
rank as output. Examples of plug-ins incorporated by eDare include: a statistical
plug-in, static analysis (morphological) plug-in, ML plug-in and a collaborative
plug-in. Finally, a Risk-weighing function collects all ranks from the relevant
plug-ins and calculates an integrated rank according to some weighing scheme.
In case the final rank of a file is above a devisable threshold, the file will be
transferred to the Signature builder Module which will construct a unique
signature.

46 Y. Elovici et al.

When encountering new eThreats or suspicious behaviors, the response time and
effectiveness of the system is substantially expedited by sharing observations and
warnings between users and the system via a Collaborative Module, which further
propagates relevant alerts across the protected network.

Fig. 1. Architecture of the eDare System

The role of the Data Stream Manager Module is to obtain a "clean" network data
stream from the Known eThreat Handler Module. It then extracts and assembles files
from the continuous network data stream and forwards them to the New eThreat
Detection Module. The overall configuration and operation of the system is controlled
by a human administrator via a console termed eDare Control Center.

3 Detecting Malicious Code Using ML Techniques

In this paper we present how eDare performed when using five plug-ins. The plug-ins
were based on three ML techniques (described in subsections 3.1-3.3) and on two
types of inputs (described in subsection 3.4).

3.1 Decision Trees

Decision tree learners [9] are a well-established family of ML algorithms. Classifiers
are represented as trees whose internal nodes are tests on individual features and

 Applying Machine Learning Techniques for Detection of Malicious Code 47

leaves are classification decisions. Typically, a greedy heuristic search method is used
to find a compact decision tree that correctly classifies the training data. The decision
tree is induced from the dataset by splitting the variables based on the expected
information gain. Modern implementations include pruning which avoids over-fitting.
In this study we evaluated J48, the Weka [10] version of the commonly used C4.5
algorithm [9]. An important characteristic of Decision Trees is the explicit form of
their knowledge which can be easily represented as a set of rules.

3.2 Bayesian Networks

Bayesian networks are a form of probabilistic graphical modeling [11]. Specifically, a
Bayesian network is a directed acyclic graph of nodes with variables and arcs
representing dependencies among the variables. Bayesian networks are based on
Bayes’ theorem, and they are known for their ability to represent conditional
probabilities which capture the internal relationships between the studied variables. A
Bayesian network can thus be considered a mechanism for automatically constructing
extensions of Bayes' theorem to more complex problems. We evaluated the Bayesian
Network standard version which comes with WEKA [10].

3.3 Artificial Neural Network

An Artificial Neural Network (ANN) [12] is an information processing paradigm
inspired by information processing mechanisms of biological nervous systems (i.e.,
the brain). The key element of this paradigm is the structure of the information
processing system modeled as a network comprising many highly interconnected
Processing Elements (PEs) (also termed Neurons). Neurons work together in order to
approximate a specific transformation function. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a learning
process during which the weights of the inputs in each neuron are updated. The
weights are updated by a training algorithm, such as back-propagation, according to
examples the network receives in order to reduce the value of an error function. The
power and usefulness of ANN have been demonstrated in numerous applications
including speech-synthesis, medicine, finance and many other pattern-recognition
problems., Neural models show more promise in achieving human-like performance
when dealing with unstructured application domains where traditional AI knowledge
representation techniques (i.e., rule/frame bases) are cumbersome. All ANN
manipulations in this study have been performed within the MATLAB(r) environment
using the Neural Network Toolbox [13].

3.4 Feature Selection

In order to determine whether a suspected file is malicious or not, using ML
techniques, we extracted two types of static features: n-grams and Win32 executables
Portable Executable header. We implemented a tool that extracts 5-grams from the
binary representation of a file. Out of all 5-grams that were extracted we chose the top
5,500 which are the most frequent in the file set. Next, for each 5-gram we calculated
its tf-idf score. The tf-idf score is mainly used as a text retrieval method. tfi is the term
frequency (i.e., n-gram) in the file i and idf is the log value of the number of files in

48 Y. Elovici et al.

whole repository, divided by the number of files that include that term. We used
Fisher’s Score [14] for feature selection in order to choose the top 300 5-grams out of
the 5,500 5-grams, to be used for the evaluation. Next, PE features were extracted
from Win32 executables using the PE Feature Extractor tool which parses an
EXE\DLL file according to PE Format rules. We statically extracted different PE
format features representing information contained within each Win32 PE binary
(EXE or DLL). Examples of the information extracted are: creation\modification
time, machine type, file size, linker version, section alignment, code size, imported
DLLs, exported functions, etc.

4 Preliminary Evaluation Results

eDare was deployed and tested in a network-security lab with distinct “clean” and
“infected” environments. We collected a repository of 7694 malicious files
representing a variety of eThreats and 22736 benign files. This collection was used to
train and test the effectiveness of each of eDare’s plug-ins and their effect on the
overall system’s performance. After conducting a rigorous research, we chose to use
the following plug-ins for classification of suspected files:

• ANN (5grams; top300; Fisher): Artificial Neural Network (ANN) classifier
trained on the top 300 5-grams, selected using Fisher score.

• BN (5grams; top300; Fisher): Bayesian Network (BN) classifier trained on the
top 300 5-grams, selected using Fisher score

• DT (5grams; top300; Fisher): Decision Tree classifier trained on the top 300 5-
grams, selected using Fisher score.

• BN (PE): Bayesian Network (BN) classifier trained on the PE (Portable
Executable) features.

• DT (PE): Decision Tree (DT) classifier trained on the PE (Portable Executable)
features.

A simple voting scheme [15] was applied as an ensemble algorithm in order to
generate a final recommendation from the classifications of the individual plug-ins.
In order to compare the various plug-ins we used the following common evaluation
measures: True Positive Rate (TPR), False Positive Rate (FPR) and Accuracy. TPR is
the proportion of malware files classified correctly; FPR is the proportion of benign
files misclassified; and Accuracy is the number of correctly classified instances
(either malware or benign), divided by the entire number of instances. We also used
Receiver Operating Characteristics (ROC) curves. A ROC curve is a graphical
representation of the trade-off between the true positive (TPR) and false positive rates
(FPR) for every possible cut-off.

Each plug-in was trained using 30% of the dataset and tested using the rest of the
dataset (70%). Table 1 describes the evaluation results when the detection threshold
was set to 0.5, where FPR stands for the false positive rate, TPR stands for the true
positive rate and the accuracy stands for the detection accuracy. It is easy to see in
Table 1 that, among individual plug-ins, DT (PE) had the highest accuracy with
lowest false positive. The results also show that simple voting improves the overall
accuracy, reduces the false positive rate and improves the true positive rate compared
to all of the individual plug-ins except the BN (PE).

 Applying Machine Learning Techniques for Detection of Malicious Code 49

The graph in Fig. 2 presents the ROCs of all individual plug-ins and their
combination using a standard weighing mechanism. The weighing mechanism
combines the individual plug-in decision into a final single decision based on the
simple voting algorithm. It is easy to see in Fig. 2 that the Risk Weighting line
provides the best true positive rate with a minimum false positive rate and thus should
be preferred over each individual ML technique. This observation is also captured
quantitatively by the Area Under Curve (AUC) measure which reaches its peak
(0.983) in the case of the weighted line.

Table 1. Evaluation results for detection threshold = 0.5

 FPR TPR Accuracy
ANN (5grams; top300; Fisher) 0.038 0.893 0.945
BN (5grams; top300; Fisher) 0.206 0.885 0.816
BN (PE) 0.058 0.933 0.94
DT (5grams; top300; Fisher) 0.039 0.87 0.938
DT (PE) 0.035 0.925 0.955
Risk Weighing(Voting) 0.032 0.928 0.958

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR

T
P

R

Risk Weighting (AUC=0.983)

ANN(5grams;top300;Fisher) (AUC=0.967)

BN(5grams;top300;Fisher) (AUC=0.841)

BN(PE) (AUC=0.967)

DT(PE) (AUC=0.966)

DT(5grams;top300;Fisher) (AUC=0.933)

Fig. 2. Detection Plug-ins ROC

5 Summary

In this paper we presented a new system aimed at protecting users from various
eThreats. eDare protects end-users by purifying NSPs’ traffic from known eThreats
without a mandatory requirement to install any software on end-users’ computers.
Sanitation of Web traffic from malicious code is performed by dedicated commercial

50 Y. Elovici et al.

cleaning devices capable of removing threats based on prespecified signatures that
eDare generates.

eDare can also detect unknown threats by employing, among others, ML
algorithms as plug-ins in a flexible, open manner. Once a new threat is detected,
eDare generates a signature and update the above cleaning devices deployed over
NSPs’ network.

Our empirical experimental findings suggest that a new eThreat risk-weighing
scheme, weighing several ML algorithms (i.e., ANN, BN, DT) in various
configurations (n-grams, PE) outperforms each of individual algorithms in terms of
prediction accuracy. This important finding suggests that eDare’s new eThreat
detection module should be designed in a flexible, plug-in mode accommodating a
heterogeneous collection of ML algorithms in order to facilitate better prediction
accuracy of new eThreats.

References

1. NCSA Study, http://www.staysafeonline.info/pdf/safety_study_2005.pdf
2. Symantec Internet Security Threat Report (January-June 2004), www.symantec.com
3. The Danger of Spyware, Symantec Security Response (June 2003), http://

www.symantec.com
4. Symantec 2006 Security Report, http://www.symantec.com/specprog/threatreport/

entwhitepaper_symantec_internet_security_threat_report_x_09_2006.en-us pdf
5. Tahan, G., Glezer, C., Elovici, Y.: eDare- Early Detection Alert and Response to

Electronic Threats, Working Paper, Deutsche Telekom Labs at Ben Gurion University
6. Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data Mining Methods for Detection of New

Malicious Executables. In: Proc. of the IEEE Symposium on Security and Privacy, pp.
178–184 (2001)

7. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram based Detection of New
Malicious Code. In: Proc. of the 28th Annual International Computer Software and
Applications Conference (COMPSAC’04) (2004)

8. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 470–478. ACM Press, New York, NY (2004)

9. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc.,
San Francisco (1993)

10. Weka software, http://www.cs.waikato.ac.nz/ml/weka/
11. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artificial

Intelligence 29(3), 241–288 (1986)
12. Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)
13. Demuth, H., Beale, M.: Neural Network toolbox for use with Matlab. The Mathworks Inc.,

Natick, MA (1998)
14. Golub, T., Slonim, D., Tamaya, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H.,

Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification
of cancer: Class discovery and class prediction by gene expression monitoring.
Science 286, 531–537 (1999)

15. Bauer, E., Kohavi, R.: An empirical comparison of voting classification Algorithms.
Bagging, Boosting, and Variants. Machine Learning 35, 1–38 (1999)

Location-Based Activity Recognition

Dieter Fox

University of Washington, Seattle, USA
fox@cs.washington.edu

Knowledge of a person’s location provides important context information for
many applications, ranging from services such as E911 to personal guidance sys-
tems that help cognitively-impaired individuals move safely through their com-
munity. Location information is also extremely helpful for estimating a person’s
high-level activities. In this talk we show how Bayesian filtering and conditional
random fields can be applied to estimate the location and activity of a person
using sensors such as GPS or WiFi. The techniques track a person on graph
structures that represent a street map or a skeleton of the free space in a build-
ing. We also show how to learn a user’s significant places and daily movements
through the community. Our models use multiple levels of abstraction so as
to bridge the gap between raw GPS measurements and high level information
such as a user’s mode of transportation, her current goal, and her significant
places (e.g. home or work place). Finally, we will discuss recent work on using a
multi-sensor board so as to better estimate a person’s activities.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, p. 51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Pinpointing in the Description Logic EL+

Franz Baader1, Rafael Peñaloza2,�, and Boontawee Suntisrivaraporn1,��

1 Theoretical Computer Science, TU Dresden, Germany
{baader,meng}@tcs.inf.tu-dresden.de

2 Intelligent Systems, University of Leipzig, Germany
penaloza@informatik.uni-leipzig.de

Abstract. Axiom pinpointing has been introduced in description logics
(DLs) to help the user understand the reasons why consequences hold
by computing minimal subsets of the knowledge base that have the con-
sequence in question. Until now, the pinpointing approach has only been
applied to the DL ALC and some of its extensions. This paper considers
axiom pinpointing in the less expressive DL EL+, for which subsump-
tion can be decided in polynomial time. More precisely, we consider an
extension of the pinpointing problem where the knowledge base is di-
vided into a static part, which is always present, and a refutable part, of
which subsets are taken. We describe an extension of the subsumption
algorithm for EL+ that can be used to compute all minimal subsets of
(the refutable part of) a given TBox that imply a certain subsumption
relationship. The worst-case complexity of this algorithm turns out to
be exponential. This is not surprising since we can show that a given
TBox may have exponentially many such minimal subsets. However, we
can also show that the problem is not even output polynomial, i.e., un-
less P=NP, there cannot be an algorithm computing all such minimal
sets that is polynomial in the size of its input and output. In addition,
we show that finding out whether there is such a minimal subset within
a given cardinality bound is an NP-complete problem. In contrast to
these negative results, we also show that one such minimal subset can
be computed in polynomial time. Finally, we provide some encouraging
experimental results regarding the performance of a practical algorithm
that computes one (small, but not necessarily minimal) subset that has
a given subsumption relation as consequence.

1 Introduction

Description logics (DLs) [2] are a successful family of logic-based knowledge rep-
resentation formalisms, which can be used to represent the conceptual knowledge
of an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and bio-medical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [15] as standard
� Funded by the German Research Foundation (DFG) under grant GRK 446.

�� Funded by the German Research Foundation (DFG) under grant BA 1122/11-1.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 52–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Pinpointing in the Description Logic EL+ 53

ontology language for the semantic web. For a developer or user of a DL-based
ontology, it is often quite hard to understand why a certain consequence holds,
and even harder to decide how to change the ontology in case the consequence is
unwanted. For example, in the current version of the medical ontology SNOMED
[24], the concept Amputation-of-Finger is unintendedly classified as a subconcept
of Amputation-of-Arm. Finding the axioms that are responsible for this among
the more than 350,000 terminological axioms of SNOMED without support by
an automated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [22]
describe an algorithm for computing all the minimal subsets of a given knowl-
edge base that have a given consequence. In the following, we call such a set
a minimal axiom set (MinA). It helps the user to comprehend why a certain
consequence holds. The knowledge bases considered in [22] are so-called unfold-
able ALC-terminologies, and the unwanted consequences are the unsatisfiability
of concepts. The algorithm is an extension of the known tableau-based satis-
fiability algorithm for ALC [23], where labels keep track of which axioms are
responsible for an assertion to be generated during the run of the algorithm.
The authors also coin the name “axiom pinpointing” for the task of computing
these minimal subsets.

The problem of computing MinAs of a DL knowledge base was actually con-
sidered earlier in the context of extending DLs by default rules. In [3], Baader and
Hollunder solve this problem by introducing a labeled extension of the tableau-
based consistency algorithm for ALC-ABoxes [14], which is very similar to the
one described later in [22]. The main difference is that the algorithm described
in [3] does not directly compute minimal subsets that have a consequence, but
rather a monotone Boolean formula whose variables correspond to the axioms
of the knowledge bases and whose minimal satisfying valuations correspond to
the MinAs. Another difference between [3] and [22] is that in the former paper
the ABox is divided into a static and a refutable part, where the elements of the
static part are assumed to be always present, and subsets are built only of the
refutable part of the ABox.

The approach of Schlobach and Cornet [22] was extended by Parsia et al. [20]
to more expressive DLs, and the one of Baader and Hollunder [3] was extended
by Meyer et al. [19] to the case of ALC-terminologies with general concept in-
clusions (GCIs), which are no longer unfoldable. Axiom pinpointing has also
been considered in other research areas, though usually not under this name.
For example, in the SAT community, people have considered the problem of
computing minimally unsatisfiable (and maximally satisfiable) subsets of a set
of propositional formulae. The approaches for computing these sets developed
there include special purpose algorithms that call a SAT solver as a black box
[18, 7], but also algorithms that extend a resolution-based SAT solver directly
[9, 26].

Whereas the previous work on pinpointing in DLs considered fairly expressive
DLs that contain at least ALC, this work is concerned with pinpointing in the
inexpressive DL EL+, which allows for conjunction, existential restrictions, and

54 F. Baader, R. Peñaloza, and B. Suntisrivaraporn

complex role inclusion axioms. There are several good reasons for considering
EL+. First, several bio-medical ontologies such as SNOMED [24], the Gene On-
tology [25], and large parts of Galen [21] can be expressed in EL+. In particular,
both SNOMED and Galen require role inclusion axioms. Second, reasoning in
EL+ and some of its extensions remains polynomial even in the presence of GCIs
[1], which are required by Galen. Third, EL+ is the DL currently handled by
our reasoner CEL [5, 4], which behaves quite well on very large ontologies such
as SNOMED.

Although the polynomial-time subsumption algorithm for EL+ described in
[1, 5] is not tableau-based, the ideas for extending tableau-based algorithms to
pinpointing algorithms employed in [3, 22] can also be applied to this algorithm.
However, we will see that the normalization phase employed by this algorithm
introduces an additional problem. We will also consider the complexity of pin-
pointing in EL+. In contrast to the case of ALC, where the subsumption problem
is already quite complex (PSpace-complete), subsumption in EL+ is polynomial,
which makes it easier to analyze in how far pinpointing is a source of additional
complexity. Not surprisingly, it turns out that there may be exponentially many
MinAs, which shows that an algorithm for computing all MinAs needs expo-
nential time in the size of the input TBox. Even worse, we can show that it is
not even possible to obtain an algorithm that is polynomial in the size of the
input and the output (unless P=NP). In addition, even testing whether there
is a MinA of cardinality ≤ n for a given natural number n is an NP-complete
problem. On the positive side, one MinA can always be computed in polynomial
time. Finally, we will provide some experimental results regarding the perfor-
mance of a practical algorithm that computes one (not necessarily minimal) set
that has a given consequence.

2 The Description Logic EL+

In DLs, concept descriptions are inductively defined with the help of a set of
constructors, starting with a set NC of concept names and a set NR of role
names. EL+ concept descriptions are formed using the three constructors shown
in the upper part of Table 1. An EL+ ontology or TBox is a finite set of general
concept inclusion (GCI) and role inclusion (RI) axioms, whose syntax is shown
in the lower part of Table 1. The sublanguage of EL+ that does not allow for
RIs is called EL. We will also use the name HL for the sublanguage of EL that
does not allow for existential restrictions. This name is motivated by the fact
that GCIs involving HL concepts are basically propositional Horn clauses.

The semantics of EL+ is defined in terms of interpretations I = (ΔI , ·I),
where the domain ΔI is a non-empty set of individuals, and the interpretation
function ·I maps each concept name A ∈ NC to a subset AI of ΔI and each role
name r ∈ NR to a binary relation rI on ΔI . The extension of ·I to arbitrary
concept descriptions is inductively defined, as shown in the semantics column of
Table 1. An interpretation I is a model of a TBox T if, for each inclusion axiom
in T , the conditions given in the semantics column of Table 1 are satisfied.

Pinpointing in the Description Logic EL+ 55

Table 1. Syntax and semantics of EL+

Name Syntax Semantics

top � ΔI

conjunction C � D CI ∩ DI

exists restriction ∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}

GCI C
 D CI ⊆ DI

RI r1 ◦ · · · ◦ rn
 s rI1 ◦ · · · ◦ rIn ⊆ sI

Since there is no constructor in EL+ that can cause logical inconsistencies,
satisfiability of concepts or consistency of the TBox are not interesting inference
problems. The main inference problem for EL+ is the subsumption problem:

Definition 1 (concept subsumption). Given two EL+ concept descriptions
C, D and an EL+ TBox T , C is subsumed by D w.r.t. T (written C �T D) if
CI ⊆ DI in every model I of T .

In the following, we will restrict the attention to subsumption between concept
names. This is justified by the fact that subsumption between concept descrip-
tions can be reduced to subsumption between concept names: we have C �T D
iff A �T ∪{A�C,D�B} B where A, B are new concept names not occurring in C, D
and T .

In order to describe our pinpointing algorithm for subsumption in EL+, we
must briefly recall the known polynomial-time subsumption algorithm for EL+

[1, 5].1 First, this algorithm transforms a given TBox into a normal form where
all GCIs have one of the following forms: A1�. . .�An � B, A � ∃r.B, ∃r.A � B,
and where all RIs are of the form r � s or r◦r′ � s, where r, r′, s ∈ NR, n ≥ 1, and
A, A1, . . . , An, B are elements of N�

C , i.e, concepts names or the top concept �.
This transformation can be achieved in linear time using simple transformation
rules, which basically break down complex GCIs into simpler ones (see [1] for
details).

Given a TBox T in normal form over the concept names NC and role names
NR, the subsumption algorithm for EL+ employs completion rules to extend
an initial set of assertions until no more assertions can be added. Assertions
are of the form (A, B) or (A, r, B) where A, B ∈ N�

C , and r ∈ NR. Intuitively,
the assertion (A, B) expresses that A �T B holds and (A, r, B) expresses that
A �T ∃r.B holds. The algorithm starts with a set of assertions A that contains
(A,�) and (A, A) for every concept name A, and then uses the rules shown in
Fig. 1 to extend A. Note that such a rule is only applied if it really extends A,
i.e., if the assertion added by the rule is not yet contained in A. The following
theorem, which is shown in [1], summarizes the important properties of this
algorithm.
1 A polynomial-time subsumption algorithm for EL with GCIs was first presented

in [8], and subsumption in HL with GCIs is basically the implication problem for
propositional Horn clauses, which is known to be solvable in linear time [10].

56 F. Baader, R. Peñaloza, and B. Suntisrivaraporn

If A1 � . . . � An � B ∈ T and {(X, A1), . . . , (X, An)} ⊆ A then add (X, B) to A.

If A � ∃r.B ∈ T and (X, A) ∈ A then add (X, r, B) to A.

If ∃r.A � B ∈ T and {(X, r, Y), (Y, A)} ⊆ A then add (X, B) to A.

If r � s ∈ T and (X, r, Y) ∈ A then add (X, s, Y) to A.

If r ◦ r′ � s ∈ T and {(X, r, Y), (Y, r′, Z)} ⊆ A then add (X, s, Z) to A.

Fig. 1. Completion rules for subsumption in EL+

Theorem 1. Given an EL+ ontology T in normal form, the subsumption al-
gorithm terminates in time polynomial in the size of T . After termination, the
resulting set of assertions A satisfies A �T B iff (A, B) ∈ A, for all concept
names A, B occurring in T .

3 A Pinpointing Algorithm for EL+

In many applications, it makes sense to distinguish two kinds of axioms in an
ontology: trusted ones whose correctness is no longer doubted, and refutable
ones for which the designer or user of the ontology is not yet sure whether they
are correct. For example, if an already well-established ontology is extended, one
might view the newly added GCIs as refutable, but trust the GCIs of the existing
ontology. From now on, we assume that TBoxes are of the form T = (Ts � Tr),
i.e., they are a disjoint union of a static TBox Ts (whose axioms are irrefutable)
and a refutable TBox Tr.

Definition 2 (MinA). Let T = (Ts � Tr) be an EL+ TBox and A, B concept
names occurring in it such that A �T B. Then, a minimal axiom set (MinA)
for T w.r.t. A � B is a subset S of Tr such that A �Ts∪S B, but A ��Ts∪S′ B
for all strict subsets S′ ⊂ S.

If Ts = ∅, then all axioms are assumed to be refutable. This is the case considered,
e.g., in [22]. As an example, consider the TBox T = (∅ � Tr) consisting of the
(refutable) GCIs

ax1: A � ∃r.A, ax2: A � Y, ax3: ∃r.Y � B, ax4: Y � B. (1)

We have A �T B, and it is easy to see that {ax2, ax4} and {ax1, ax2, ax3} are
the MinAs for T w.r.t A � B.

In the following, we show how the polynomial-time subsumption algorithm
presented in the previous section can be modified to a pinpointing algorithm.
However, instead of computing the MinAs directly, we follow the approach intro-
duced in [3] that computes a monotone Boolean formula from which the MinAs
can be derived. To define this formula, which we will call pinpointing formula
in the following, we assume that every refutable axiom t ∈ Tr is labeled with a
unique propositional variable, lab(t); axioms t ∈ Ts are labeled with lab(t) := t

Pinpointing in the Description Logic EL+ 57

(for truth). Let lab(T) be the set of all propositional variables labeling axioms
in Tr. A monotone Boolean formula over lab(T) is a Boolean formula using
(some of) the variables in lab(T) and only the binary connectives conjunction
and disjunction and the nullary connective t (for truth). As usual, we identify a
propositional valuation with the set of propositional variables made true by this
valuation. For a valuation V ⊆ lab(T), let TV := {t ∈ Tr | lab(t) ∈ V}.

Definition 3 (pinpointing formula). Given an EL+ TBox T = (Ts � Tr)
and concept names A, B occurring in it, the monotone Boolean formula φ over
lab(T) is a pinpointing formula for T w.r.t A � B if the following holds for
every valuation V ⊆ lab(T): A �Ts∪TV B iff V satisfies φ.

In our example, we can take lab(T) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that ax2 ∧ (ax4 ∨ (ax1 ∧ ax3)) is a pinpointing formula
for T w.r.t. A � B.

If we order valuations by set inclusion, then we obviously have the following
relation between MinAs and minimal satisfying valuations of the pinpointing
formula.

Proposition 1. Let φ be a pinpointing formula for T w.r.t A � B. Then

{TV | V is a minimal valuation satisfying φ}

is the set of all MinAs for T w.r.t A � B.

This shows that it is enough to design an algorithm for computing a pinpointing
formula to obtain all MinAs. For example, one possibility is to bring φ into
disjunctive normal form and then remove disjuncts implying other disjuncts.
Note that this may cause an exponential blowup, which means that, in some
cases, the pinpointing formula provides us with a compact representation of the
set of all MinAs. Also note that this blowup is not really in the size of the
pinpointing formula but rather in the number of variables. Thus, if the size of
the pinpointing formula is already exponential in the size of the TBox T (which
may well happen), computing all MinAs from it is still “only” exponential in
the size of T . More about the complexity of computing all MinAs from a given
pinpointing formula can be found in Section 4.

For the moment, let us assume that the TBox T = (Ts � Tr) is already in
normal form. Recall that the axioms in Tr have a unique propositional variable
as label, whereas the axioms in Ts have label t. In the pinpointing extension
of the subsumption algorithm for EL+, assertions a are labeled with monotone
Boolean formulae lab(a). The initial assertions (A,�) and (A, A) receive label
t. The definition of rule application is modified as follows. Assume that the pre-
conditions of a rule from Fig. 1 are satisfied for the set of assertions A w.r.t.
the TBox T . Let φ be the conjunction of the labels of the GCIs from T and
the assertions from A occurring in the precondition. If the assertion in the con-
sequence of the rule does not yet belong to A, then it is added with label φ. If
the assertion is already there with label ψ, then its label is changed to ψ ∨ φ if

58 F. Baader, R. Peñaloza, and B. Suntisrivaraporn

this formula is not equivalent to ψ; otherwise (i.e., if φ implies ψ) the rule is not
applied.

It is easy to see that this modified algorithm always terminates, though not
necessarily in polynomial time. In fact, there are polynomially many assertions
that can be added to A. If the label of an assertion is changed, then the new
label is a more general monotone Boolean formula, i.e., it has more models than
the original label. Since there are only exponentially many models, the label of a
given assertion can be changed only exponentially often. Accordingly, the size of
the label of an assertion can grow only exponentially. Equivalence of monotone
Boolean formulae is an NP-complete problem. However, given formulae over n
propositional variables whose size is exponential in n, equivalence can be tested
in time exponential in n. Thus, there are at most exponentially many rule appli-
cations, each of which takes at most exponential time. This yields an exponential
time bound for the execution of the pinpointing algorithm.

Regarding correctness of the pinpointing algorithm, it is easy to see that the
set of assertions A obtained after termination is identical to the one obtained
by the unmodified algorithm. In addition, we can show that, for all assertions
(A, B) ∈ A, the formula lab((A, B)) is a pinpointing formula for T w.r.t A � B.2

Theorem 2. Given an EL+ TBox T = (Ts�Tr) in normal form, the pinpointing
algorithm terminates in time exponential in the size of T . After termination, the
resulting set of assertions A satisfies the following two properties for all concept
names A, B occurring in T :

1. A �T B iff (A, B) ∈ A, and
2. lab((A, B)) is a pinpointing formula for T w.r.t A � B.

As an example, consider the TBox T consisting of the refutable GCIs given in
(1) and of no irrefutable axioms. The pinpointing algorithm proceeds as follows.
Since ax2 : A � Y ∈ T and (A, A) ∈ A with label t, the assertion (A, Y) is added
to A with label ax2 (actually with label ax2∧t, which is equivalent to ax2). Since
ax1 : A � ∃r.A ∈ T and (A, A) ∈ A with label t, (A, r, A) is added to A with
label ax1. Since ax4 : Y � B ∈ T and (A, Y) ∈ A with label ax2, (A, B) is added
to A with label ax2 ∧ ax4. Finally, since ax3 : ∃r.Y � B ∈ T , (A, Y) ∈ A with
label ax2, and (A, r, A) ∈ A with label ax1, the label of (A, B) ∈ A is modified
from ax2 ∧ ax4 to (ax2 ∧ ax4) ∨ (ax1 ∧ ax2 ∧ ax3). This final label of (A, B) is a
pinpointing formula for T w.r.t. A � B.

As described until now, our pinpointing algorithm for EL+ can only deal with
normalized TBoxes, i.e., the pinpointing formula φ it yields contains proposi-
tional variables corresponding to the normalized GCIs. We now show that the
algorithm for computing pinpointing formulae can easily be extended to one
dealing also with non-normalized TBoxes. First, note that the relationship be-
tween original axioms and normalized axioms is many to many: one axiom in
the original TBox can give rise to several axioms in the normalized one, and
one axiom in the normalized TBox can come from several axioms in the original
2 A proof of this fact in a more general setting can be found in [6].

Pinpointing in the Description Logic EL+ 59

TBox. For example, consider the GCIs A � B1 � B2, A � B2 � B3, which are
normalized to A � B1, A � B2, A � B3. Each original GCI gives rise to two
normalized ones, and the normalized GCI A � B2 has two sources, i.e., it is
present in the normalized TBox if the first or the second original GCI is present
in the input TBox.

Now, assume that T̂ is an unnormalized input TBox, and that T is the corre-
sponding normalized TBox where we view all axioms in T as being refutable. Let
φ be a pinpointing formula for T w.r.t. A � B, where A, B are concept names
occurring in T̂ (and thus also in T). We can now modify φ to a pinpointing
formula for the original TBox T̂ as follows. Assume that the refutable axioms in
T̂ are associated with unique propositional variables, and the irrefutable ones in
T̂ with t. Each normalized axiom in T has a finite number of original axioms as
sources. We modify φ by replacing the propositional variable for each normalized
axiom by the disjunction of the labels of its sources. Note, in particular, that
the propositional variable of a normalized axiom that has an irrefutable axiom
as source is replaced by a formula that is equivalent to t.

4 The Complexity of Computing All MinAs

In this section we will show several hardness results regarding the computation
of all MinAs. We can actually show all of them already for the sublanguage HL
of EL+. Of course, these results then also hold for EL and EL+.

If we want to compute all MinAs, then in the worst case an exponential
runtime cannot be avoided since there may be exponentially many MinAs for a
given TBox. The following example shows that this is already the case for HL
TBoxes.

Example 1. For all n ≥ 1, the size of the HL TBox

Tn := {Bi−1 � Pi �Qi, Pi � Bi, Qi � Bi | 1 ≤ i ≤ n}

is linear in n, and we have B0 �Tn Bn. Assume that all axioms in Tn are refutable.
Then, there are 2n MinAs for Tn w.r.t. B0 � Bn since, for each i, 1 ≤ i ≤ n, it
is enough to have Pi � Bi or Qi � Bi in the set.

In Section 5 we will show that a single MinA can be computed in polynomial
time. However, as soon as we want to know more about the properties of the set
of all MinAs, this cannot be achieved in polynomial time (unless P=NP). For
example, determining whether there is a MinA whose cardinality is bounded by
a given natural number n is NP-hard.

Theorem 3. Given an HL TBox T = (Ts �Tr), concept names A, B occurring
in T , and a natural number n, it is NP-complete to decide whether or not there
is a MinA for T w.r.t. A � B of cardinality ≤ n. This already holds in the case
where Ts = ∅.

60 F. Baader, R. Peñaloza, and B. Suntisrivaraporn

Proof. The problem is in NP since one can simply guess a subset S of Tr with
cardinality n, and then check in polynomial time whether A �Ts∪S B. Clearly,
such a set exists iff there is a MinA of cardinality ≤ n.

NP-hardness can be shown by a reduction of the NP-hard hitting set problem
[13]: given a collection S1, . . . Sk of sets and a natural number n, is there a set
S of cardinality ≤ n such that S ∩ Si �= ∅ for i = 1, . . . , k. Such a set S is
called a hitting set. In the reduction, we use a concept name P for every element
p ∈ S1∪ . . .∪Sn as well as the additional concept names A, B, Q1, . . . , Qk. Given
S1 = {p11, . . . , p1�1}, . . . , Sk = {pk1, . . . , pk�k}, we define the TBox T = (∅ � Tr)
with

Tr := {Pij � Qi | 1 ≤ i ≤ k, 1 ≤ j ≤ �i} ∪
{A � Pij | 1 ≤ i ≤ k, 1 ≤ j ≤ �i} ∪ {Q1 � . . . �Qk � B}.

It is easy to see that S1, . . . , Sk has a hitting set of cardinality ≤ n iff there is a
MinA for T w.r.t. A � B of cardinality ≤ n + k + 1. ��

Given the fact that a TBox may have exponentially many MinAs, it is clear that
it is not possible to enumerate all MinAs in time polynomial in the size of the
input. However, in complexity theory one also considers other kinds of complexity
measures for the complexity of enumeration problems [16]. One possibility is to
ask whether there is an algorithm that enumerates all MinAs in time polynomial
in the size of the input and the output, i.e., in the size of the TBox and the number
of MinAs. We will call such an algorithm output polynomial. One advantage of
an output polynomial algorithm is that it runs in polynomial time in case there
are only polynomially many outputs.

The pinpointing algorithm for EL+ described in Section 3 uses as a subpro-
cedure the enumeration of all minimal valuations satisfying a given monotone
Boolean formula. Unfortunately, already this problem is known not to have an
output polynomial solution (unless P=NP). A proof of this fact can be found in
the technical report [11]; since this result is not included in the corresponding
journal paper [12], we provide our own proof for the sake of completeness.

Theorem 4. There is no output polynomial algorithm for computing all mini-
mal satisfying valuations of monotone Boolean formulae, unless P=NP.

To prove this theorem, it is enough to show (see [17]) that the following decision
problem is NP-hard:

Lemma 1. Given a monotone Boolean formula φ and a set M of minimal val-
uations satisfying φ, deciding whether there exists a minimal valuation V /∈ M
satisfying φ is NP-hard in the size of φ and M.

Proof. The proof is by reduction of the NP-hard hypergraph 2-coloring problem
[13]: given a collection H = {E1, . . . , Em} of subsets of a set of vertices V , each
of them of size 3, is there a set C such that C ∩Ei �= ∅ and (V \C)∩Ei �= ∅ for
i = 1, . . . , m.3

3 In other words, both C and its complement must be hitting sets for E1, . . . , Em.

Pinpointing in the Description Logic EL+ 61

Let V = {v1, . . . , vn} and Ei = {vi1, vi2, vi3} for all i = 1, . . . , m. We represent
every vi ∈ V by a propositional variable pi, and construct the monotone Boolean
formula φ := ψ ∨

∨m
i=1 ψi, where

ψ =
m∧
i=1

pi1 ∨ pi2 ∨ pi3 and ψi = pi1 ∧ pi2 ∧ pi3

and the set M := {Vi := {pi1, pi2, pi3} | 1 ≤ i ≤ m and no strict subset of Vi
satisfies ψ}.

It is easy to see that the formula φ as well as the set M can be constructed
in time polynomial in the size of V and H . Moreover, every valuation Vi ∈ M
satisfies the formula ψi, and hence also φ. It is minimal since no strict subset
of Vi satisfies (i) any of the ψj (which require valuations of size at least 3 to be
satisfied) nor (ii) ψ since otherwise the condition in the definition of M would
be violated. This shows that φ and M indeed form an instance of the problem
considered in the lemma.

To complete the proof of NP-hardness of this problem, it remains to be shown
that there is a minimal valuation V �∈ M satisfying φ iff there is a set C ⊆ V
such that C ∩ Ei �= ∅ and (V \ C) ∩ Ei �= ∅ for all 1 ≤ i ≤ m.

For the if direction, let C be such a set, which we assume without loss of
generality to be minimal with respect to set inclusion. We define the valuation
VC := {pi | vi ∈ C} and claim that it is the minimal valuation we are looking
for. For every 1 ≤ i ≤ m, C ∩ Ei �= ∅ implies that there is a 1 ≤ j ≤ 3 such
that vij ∈ C, which means that pij ∈ VC . This shows that VC satisfies ψ and
thus also φ. In addition, since (V \ C) ∩ Ei �= ∅, there is a 1 ≤ k ≤ 3 such that
vik /∈ C. Thus, VC is different from all the valuations Vi ∈ M, and it does not
satisfy any of the formulae ψi.

To show that VC is minimal, assume that V ′ ⊂ VC . Since C is minimal, the
set C′ := {vi | pi ∈ V ′} ⊂ C is such that there is a 1 ≤ i ≤ m with C′ ∩ Ei = ∅.
This implies that V ′ does not satisfy pi1 ∨ pi2 ∨ pi3, and hence it does not satisfy
ψ. As a subset of VC , it also does not satisfy any of the formulae ψi, and thus it
does not satisfy φ. This shows that VC is a minimal valuation satisfying φ that
does not belong to M.

For the only-if direction, assume that there is a minimal valuation V �∈ M
satisfying φ. This valuation cannot satisfy any of the formulae ψi. Indeed, (i) for
Vi ∈ M this would imply that V is a superset of one of the valuations in M,
which contradicts either the minimality of V or the fact that it does not belong
to M; (ii) for Vi �∈ M there would be a smaller valuation satisfying ψ, which
contradicts the minimality of V .

Since V is a model of φ, it must thus satisfy ψ. Define the set CV := {vi |
pi ∈ V}. Since V satisfies ψ, for every 1 ≤ i ≤ m there is a 1 ≤ j ≤ 3 such that
pij ∈ V , and thus vij ∈ CV ∩ Ei. On the other hand, since V does not satisfy
any of the formulae ψi, for every 1 ≤ i ≤ m there must also be a 1 ≤ l ≤ 3 such
that pi,k /∈ V , which means that Ei �⊆ CV and hence (V \ C) ∩ Ei �= ∅. ��
Theorem 4 follows from this lemma since an output polynomial algorithm whose
runtime is bounded by the polynomial P (|φ|, |M|) (where φ is the input and M

62 F. Baader, R. Peñaloza, and B. Suntisrivaraporn

Algorithm 1. Compute one MinA for T = (∅ � {t1, . . . , tn}) w.r.t. A � B.
1: if A �
T B then
2: return no MinA
3: S := {t1, . . . , tn}
4: for 1 ≤ i ≤ n do
5: if A
S\{ti} B then
6: S := S \ {ti}
7: return S

the output) could be used to decide the problem introduced in the lemma in
polynomial time as follows: given φ and M, run the algorithm for time at most
P (|φ|, |M|) and check whether the generated valuations are exactly those in M.

Theorem 4 shows that an algorithm for computing all MinAs based on com-
puting the pinpointing formula and then producing its minimal satisfying val-
uations cannot be output polynomial. However, we can also use Theorem 4 to
show that there cannot be any algorithm for computing MinAs that is output
polynomial.

Theorem 5. There is no output polynomial algorithm that computes, for a given
HL TBox T = (Ts �Tr) and concept names A, B occurring in T , all MinAs for
T w.r.t. A � B, unless P=NP.

Proof. We show that the problem of computing minimal valuations of monotone
Boolean formulae can be reduced in polynomial time to the problem of comput-
ing MinAs of an HL TBox. Given a monotone Boolean formula φ, we introduce
one concept name Bψ for every subformula of ψ of φ, and one additional con-
cept name A. We define TBoxes Tψ for the subformulae ψ of φ by induction: if
ψ = p is a propositional variable, then Tψ := {A � Bp}; if ψ = ψ1 ∧ ψ2, then
Tψ := {Bψ1 �Bψ2 � Bψ}; if ψ = ψ1 ∨ ψ2, then Tψ := {Bψ1 � Bψ, Bψ2 � Bψ}.

Obviously, the size of Tφ is linear in the size of φ. In Tφ, we declare the GCIs
A � Bp with p a propositional variable to be refutable, and the other GCIs to
be irrefutable. With this division of Tφ into a static and a refutable part, it is
easy to see that there is a 1–1-correspondence between the minimal satisfying
valuations of φ and the MinAs for Tφ w.r.t. A � Bφ. In particular, given a MinA
S, the corresponding valuation VS consists of all p such that A � Bp ∈ S. Thus,
if we could compute all MinAs with an output polynomial algorithm, we could
do the same for all minimal satisfying valuations. ��

5 Computing One MinA

For the sake of simplicity, we restrict the attention in this section to the case
where all axioms in the TBox are assumed to be refutable. Note, however, the
results could easily be extended to the general case.

A single MinA can be computed in polynomial time by the simple Algorithm 1,
which goes through all axioms (in a given fixed order) and throws away those

Pinpointing in the Description Logic EL+ 63

that are not needed to obtain the desired subsumption relationship. Since the
algorithm performs n + 1 subsumption tests (where n is the cardinality of T),
and each such test takes only polynomial time, the overall complexity of this
algorithm is polynomial. It is easy to see that its output (in case A �T B) is
indeed a MinA for T w.r.t. A � B.

Theorem 6. Given an EL+ TBox T = (∅�Tr), Algorithm 1 terminates in time
polynomial in the size of T , and yields a MinA for T w.r.t. A � B if A �T B.

Although it requires only polynomial time, computing one MinA using Algo-
rithm 1 may still be impractical for very large TBoxes like SNOMED. In fact,
the algorithm has to make as many calls of the subsumption algorithm as there
are axioms in the TBox (in the case of SNOMED, more than 350,000). Here
we propose an improved algorithm that proceeds in two steps: (i) first compute
a small (though not necessarily minimal) subset of the TBox from which the
subsumption relationship follows; (ii) then minimize this set using Algorithm 1.
Of course, this approach makes sense only if the algorithm used in step (i) is effi-
cient and produces fairly small sets. It wouldn’t help to use the trivial algorithm
that always produces the whole TBox. In the following, we denote by nMinA
such a (not necessarily minimal) subset obtained by step (i).

An algorithm that realize step (i) and runs in polynomial time can easily be
obtained from the pinpointing algorithm sketched in Section 3 by strengthening
the preconditions of rule applicability. The only modification is the following:
if an assertion in the consequence of a rule already belongs to the current set
of assertions, then this rule is not applied, i.e., once an assertion is there with
some label, the label remains unchanged. Thus, every assertion (A, B) in the
final set has a conjunction of propositional variables as its label, which clearly
corresponds to a subset of the TBox from which the subsumption relationship
A � B follows. In general, this subset is not minimal, however. (Because of the
space constraints, we cannot give an example demonstrating this.)

As described until now, this modified algorithm works on normalized TBoxes.
To get an appropriate subset of the original axioms, one can use a greedy strategy
for producing a set of original axioms that covers a given set S of normalized
axioms in the following sense. For each original axiom t, let St be the set of
normalized axioms t gives rise to. The set T ′ of original axioms covers S if
S ⊆

⋃
t∈T ′ St. The use of a greedy strategy adds another possible source of

non-minimality. (We use a non-optimal greedy strategy to keep the algorithm
polynomial. In fact, even determining whether there is a cover set of size ≤ n is
another NP-complete problem [13].)

Our preliminary experimental results confirm that this algorithm is indeed
more practical than Algorithm 1. Based on the refined algorithm underlying
the CEL reasoner [5, 4], we have implemented the practical algorithm described
above for computing exactly one MinA for each subsumption relationship in
EL+. The experiments were run on a variant of the Galen Medical Knowledge

64 F. Baader, R. Peñaloza, and B. Suntisrivaraporn

Fig. 2. Statistical data on the sizes of all computed axiom sets

Base [21],4 which is a TBox consisting of more than 4,000 axioms. On the normal-
ized version of this TBox, CEL needs about 14 sec to compute all subsumption
relationships between concept names occurring in this TBox. Overall, over 27,000
subsumption relationships are computed. The overhead for computing for all of
these subsumption relationships (possibly non-minimal) subsets from which they
already follow was a bit more than 50%: the modified pinpointing algorithm de-
scribed above needed about 23 sec. Going from the nMinAs for the normalized
TBox to the corresponding nMinAs for the original Galen TBox with the greedy
strategy took 0.27 sec. Finally, the overall time required for minimizing these
sets using Algorithm 1 (with CEL [4] as the subsumption reasoner) was 9:45 min.
For these last two numbers one should take into account, however, that these
involved treating more than 27,000 such sets. For a single such set, the average
post-processing time was negligible (on average 21 milliseconds). Also note that
applying Algorithm 1 directly to the whole TBox for just one subsumption re-
lationship (between Renal-Artery and Artery-Which-Has-Laterality) took more
than 7 hours.

Thus, from the point of view of runtime, our practical algorithm behaves
quite well on Galen. The same can be said about the quality of its results.
Figure 2 displays the distribution graphs of the sizes of all computed nMinAs and
their corresponding MinAs. The average size of an axiom set computed by the
algorithm before using Algorithm 1 to minimize it was 5 (with maximum size 31),
which is quite small and thus means that this set can directly be given to the user
4 Since Galen uses expressivity not available in EL+, we have simplified it by removing

inverse role axioms and treating functional roles as ordinary ones.

Pinpointing in the Description Logic EL+ 65

as an explanation for the subsumption relationship. Also, the computed nMinAs
were almost minimal: on average, the possibly non-minimal sets computed by
the algorithm were only 2.59% larger than the minimal ones. When considering
the normalized TBox (i.e., without translating back to the original TBox), this
number was even better (0.1%). This means that in most cases it is probably not
necessary to further minimize the sets using Algorithm 1. If demanded by the
user for a specific subsumption relationship it can still be done without taking
much time.

6 Additional and Future Work on Pinpointing

The pinpointing extension of the subsumption algorithm for EL described in
Section 3 as well as the pinpointing algorithm for ALC described in [3] are in-
stances of a general approach for modifying “tableau-like” reasoning procedures
to pinpointing procedures [6].

Instead of computing minimal subsets that have a given consequence, one
sometimes also wants to compute maximal subsets that do not have a given
consequence. Given the pinpointing formula φ, these sets correspond to maximal
valuations that do not satisfy φ. The complexity results from Section 4 hold
accordingly for such maximal sets. However, we currently do not know how to
obtain a practical algorithm computing one such set (i.e., the results of Section 5
cannot be transferred to the case of maximal sets). Another open problem is the
question of whether Theorem 5 also holds in the special case where the static
TBox is empty.

Finally, space optimizations shall be studied to cater for large ontologies such
as SNOMED with up to ten million subsumptions, and thus nMinAs.

References

[1] Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), Edinburgh (UK), pp. 364–369. Morgan Kaufmann, Los Altos (2005)

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

[3] Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. of Automated Reasoning 14, 149–180 (1995)

[4] Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

[5] Baader, F., Lutz, C., Suntisrivaraporn, B.: Is tractable reasoning in extensions
of the description logic EL useful in practice. Journal of Logic, Language and
Information, Special Issue on Method for Modality on M4M (to appear, 2007)

[6] Baader, F., Penaloza, R.: Axiom pinpointing in general
tableaux. LTCS-Report LTCS-07-01, Germany, See (2006),
http://lat.inf.tu-dresden.de/research/reports.html

http://lat.inf.tu-dresden.de/research/reports.html

66 F. Baader, R. Peñaloza, and B. Suntisrivaraporn

[7] Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Practi-
cal Aspects of Declarative Languages. LNCS, vol. 3350, pp. 174–186. Springer,
Heidelberg (2005)

[8] Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302
(2004)

[9] Davydov, G., Davydova, I., Büning, H.K.: An efficient algorithm for the minimal
unsatisfiability problem for a subclass of CNF. Ann. of Mathematics and Artificial
Intelligence 23(3–4), 229–245 (1998)

[10] Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of
propositional horn formulae. Journal of Logic Programming 1(3), 267–284 (1984)

[11] Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. Technical Report CD-TR 91/16, Christian Doppler Labor für
Expertensysteme, TU-Wien (1991)

[12] Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

[13] Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (1979)

[14] Hollunder, B.: Hybrid inferences in KL-ONE-based knowledge representation sys-
tems. In: Proc. of the German Workshop on Artificial Intelligence, pp. 38–47.
Springer, Heidelberg (1990)

[15] Horrocks, I., Patel-Schneider, P.F., Van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

[16] Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. (1988)

[17] Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating all maximal models
of a Boolean expression. Inf. Process. Lett. (2000)

[18] Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformu-
las. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186.
Springer, Heidelberg (2005)

[19] Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proc. of the 21st Nat. Conf. on Artificial
Intelligence (AAAI 2006), AAAI Press/The MIT Press (2006)

[20] Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web
(WWW’05), pp. 633–640. ACM Press, New York (2005)

[21] Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In: Pro-
ceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium
(AAAI’97), Stanford, CA, AAAI Press (1997)

[22] Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp.
355–362. Morgan Kaufmann, Los Altos (2003)

[23] Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

Pinpointing in the Description Logic EL+ 67

[24] Spackman, K.A., Campbell, K.E., Cote, R.A.: SNOMED RT: A reference termi-
nology for health care. J. of the American Medical Informatics Association (Fall
Symposium Supplement), 640–644 (1997)

[25] The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biol-
ogy. Nature Genetics, 25, 25–29 (2000)

[26] Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In: Proc. of the
Conference on Design, Automation and Test in Europe (DATE’03), pp. 10880–
10885. IEEE Computer Society Press, Los Alamitos (2003)

Integrating Action Calculi and Description

Logics

Conrad Drescher and Michael Thielscher

Department of Computer Science,
Dresden University of Technology

Nöthnitzer Str. 46, 01187 Dresden, Germany

Abstract. General action languages, like e.g. the Situation Calculus,
use full classical logic to represent knowledge of actions and their effects
in dynamic domains. Description Logics, on the other hand, have been
developed to represent static knowledge with the help of decidable sub-
sets of first order logic. In this paper, we show how to use Description
Logic as the basis for a decidable yet still expressive action formalism. To
this end, we use ABoxes as decidable state descriptions in the basic Flu-
ent Calculus. As a second contribution, we thus obtain an independent
semantics – based on a general action formalism – for a recent method
for ABox-Update.

1 Introduction

General action languages like the Situation Calculus [1] or the Fluent Calculus [2]
are highly expressive formalisms for representing knowledge of actions and ef-
fects in dynamic domains. In this way, they provide the formal foundations for
programming languages and systems for the design of logically reasoning agents
who can execute high-level strategies and solve planning problems [3]. However,
the use of full classical logic as the basis for these calculi implies, in general, un-
decidability even of static questions such as whether the current state knowledge
entails that a specific action is executable. The existing solutions to this problem
often restrict the action calculi to being essentially propositional and/or employ-
ing the closed-world assumption. Description Logics, on the other hand, provide
expressive but decidable languages for the representation of static knowledge. In
particular, they are of far greater expressivity than propositional logic. Efficient
decision procedures have been developed and implemented for a variety of such
logics [4].

In this paper, we show how to integrate Description Logics into a general
action formalism. Our motivation is two-fold: On the one hand, the integra-
tion allows to restrict the expressiveness of general reasoning about actions to
expressive yet decidable fragments of first order logic. This also provides the for-
mal foundations for integrating decision procedures for Description Logics into
action programming languages and systems, which will allow agents to resort
to these algorithms whenever they have to verify conditions against their state

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 68–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrating Action Calculi and Description Logics 69

knowledge. On the other hand, the integration of Description Logics into an ac-
tion language provides a semantics for a recent definition of ABox-Update [5],
which is thus embedded into a general formalism for reasoning about actions
and change.

The specific contributions of this paper are the following:

1. We show how ABoxes can be used as expressive, decidable state descriptions
in the basic Fluent Calculus.

2. We provide semantics for ABox-Update by capturing them with Fluent Cal-
culus state update axioms.

3. We lay the theoretical foundations for a practical action programming lan-
guage built on top of Description Logic reasoners.

The rest of the paper is organized as follows: In Section 2, we recall the basics
of the Fluent Calculus and give a brief introduction to Description Logics. In
Section 3, we show how ABoxes can be used as state descriptions in the Fluent
Calculus, and we prove that state update axioms provide a correct character-
ization of ABox-Update. Furthermore, we show how to integrate simple TBox
reasoning and discuss some of the problems that arise in the general case. After
a discussion of related work, we conclude with a summary and outlook.

2 Preliminaries

In this section, we introduce the general action formalism Fluent Calculus; we
assume familiarity with the classical Situation Calculus. We then recall the very
essentials of Description Logics.

2.1 Fluent Calculus

The Fluent Calculus is a general action formalism: it enables the axiomatization
of dynamic domains, i.e. of initial knowledge about the world, action precon-
ditions and action effects. As running example of a dynamic domain we will
use the following simplistic online-store scenario; we will give a Fluent Calculus
axiomatization of this scenario at the end of this section.

Example 1. Initially, all that is known is that customer John has ordered the
item NiceBook. An order cancellation can be processed only if the order is known.
If the order already has been paid for, the customer is entitled to a refund.

We refer to the mutable properties of a dynamic domain as the fluents. In
the Situation Calculus fluents are modelled as first order atoms, extended by
an additional argument for a point in time, e.g. Ordered(John, NiceBook, S0).
The Fluent Calculus extends the Situation Calculus with an explicit notion
of a state associated with a situation, denoted State(S0). Intuitively, a state
may be identified with the set of all the fluents that hold at any one time. To
this end reification is employed: both fluents and states are modelled as terms;
cf. Holds(Ordered(John, NiceBook), State(S0)). This allows to apply first-order

70 C. Drescher and M. Thielscher

quantification to fluents and states, which in turn is helpful for devising a solu-
tion to the famous Frame Problem. In the following we give a compact, formal
introduction to the technical basics of Fluent Calculus and the axiom schemes
employed to encode dynamic domains.

Basics of Fluent Calculus. Fluent Calculus is based on many-sorted classical
logic with equality. The standard sorts are object, action, situation, fluent

and state, with fluent a sub-sort of state.1 A term of sort fluent is a fluent
– analogously we speak of states, situations, actions and objects. Situations are
sequences of actions rooted in an initial situation S0 – e.g. Do(Order(NiceBook),
S0). Just as in the classical Situation Calculus, they provide a branching time
structure for Fluent Calculus. At the heart of Fluent Calculus is an axiomatiza-
tion of states representing combinations of fluents.

Definition 1 (basic signature). The signature of Fluent Calculus contains:

– A countable infinity of function symbols into sort object and fluent – but
only a finite number thereof into sort action.2

– Two symbols for functions into sort situation:
• S0 : situation — the initial situation.
• Do : action × situation → situation — mapping a situation to its

successor, as the result of executing an action.
– Three symbols for functions into states:

• ∅ : state — the empty state.
• ◦ : state × state → state — for conjoining fluents into states and

states into bigger states.
• State : situation → state — denoting the state of a situation.

– A binary predicate symbol Poss : action × situation — relating action
preconditions to situations.

To gain an intuition for the role played by ◦, compare Situation Calculus’

Ordered(John, NiceBook, S0) ∧Ordered(Mary, EvenNicerBook, S0)

with Fluent Calculus’

(∃z)State(S0) = Ordered(John, NiceBook) ◦Ordered(Mary, EvenNicerBook) ◦ z.

Definition 2 (holds macro). A fluent f is said to hold in a state z if the
latter is composed of f and some other state z′ via ◦; a fluent holds in a situation
if it holds in the state of the situation:

Holds(f, z)
def
= (∃z′)z = f ◦ z′and

Holds(f, s)
def
= Holds(f,State(s)).

1 By convention, variables x,a,s,f and z are used for objects, actions, situations, fluents
and states, respectively.

2 Each with arguments of sort object only.

Integrating Action Calculi and Description Logics 71

The foundational axioms Σstate of the Fluent Calculus govern the behavior
of states.

Definition 3 (foundational axioms). 3

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) (Associativity)
z1 ◦ z2 = z2 ◦ z1 (Commutativity)
¬Holds(f, ∅) (Empty state)
Holds(f1, f2) ⊃ f1 = f2 (Irreducibility)
Holds(f, z1 ◦ z2) ⊃ (Holds(f, z1) ∨Holds(f, z2)) (Decomposition)
(∀f)(Holds(f, z1) ≡ Holds(f, z2)) ⊃ z1 = z2 (State equality)
(∀P)(∃z)(∀f)(Holds(f, z) ≡ P (f)) (State existence)

where P is a unary predicate variable of sort fluent.

The last axiom ensures the existence of a state for every combination of fluents.
For a detailed introduction to this and the other axioms the interested reader is
referred to [6].

Definition 4 (finite state). A finite state ϑ is a term f1 ◦ . . . ◦ fn such that
each fi (1 ≤ i ≤ n) is a fluent. If n = 0, then ϑ = ∅.

Definition 5 (fluent addition/subtraction). The following macros provide
an intuitive notation for describing relations between different states:

– z1 + f
def
= z1 ◦ f

– z1 − f = z2
def
= (z2 = z1 ∨ z2 ◦ f = z1) ∧ ¬Holds(f, z2)

These definitions are recursively extended to addition and subtraction of finite
states ϑ+ and ϑ−: these will consist of the positive and negative effects of actions.

We next introduce formulas capable of expressing which (fluent or non-fluent)
properties hold in a state and in a situation, respectively.

Definition 6 (state/situation formula). A state formula Δ(z) is a first or-
der formula with free state variable z and without any occurrences of states other
than in expressions of the form Holds(f, z), and without actions or situations.
Replacing every occurrence of z by State(s) in a state formula Δ(z), we obtain
a situation formula Δ(s).

Definition 7 (unique name axioms). Every Fluent Calculus instance in-
cludes a set Σuna of unique-name axioms that contains a formula of the form

fi(x) �= fj(y)

3 Variables not within the scope of any quantifier are to be read as universally quan-
tified throughout this paper unless otherwise stated.

72 C. Drescher and M. Thielscher

for each pair of distinct function symbols of sort fluent as well as for each pair
of distinct function symbols of sort action and a formula of the form

(fi(x) = fi(y) ⊃ x = y),

for each function symbol of sort fluent or action.

Domain Specifications. In order to specify a dynamic domain we need to
axiomatize knowledge about the initial state, action preconditions and the effects
resulting from action execution. Formally, a domain is specified as a set of axioms
Σ = Σstate ∪Σuna ∪Σinit ∪Σposs ∪Σsua, where :

– Σinit = {(∃z)State(S0) = z ∧Δ(z)}, with Δ(z) a state formula,
– Σposs is a set of precondition axioms, one for each action, and
– Σsua is a set of state update axioms, one for each action.

Definition 8 (precondition axiom). A precondition axiom for action A(x)
is a formula Poss(A(x), s) ≡ Δ(s), where Δ(s) is a situation formula with free
variables among x and s.

Definition 9 (state update axiom). A state update axiom is a formula of
the form

Poss(A(x), s) ⊃
(∃y1)(Δ1(s) ∧ State(Do(A(x), s)′ = State(s)− ϑ−

1 + ϑ+
1)

∨ ...∨
(∃yn)(Δn(s) ∧ State(Do(A(x), s)′ = State(s)− ϑ−

n + ϑ+
n).

The finite states ϑ−
i and ϑ+

i with free variables among x, yi are the negative and
positive effects of A(x) under condition Δ(s). Δ(s) itself is a situation formula
with free variables among x, yi and s.

Example 1. (continued) The online-store scenario from example 1 is axioma-
tized in Fluent Calculus as follows, illustrating each type of axiom:

(∃z)State(S0) = z ∧ Holds(Ordered(John,NiceBook), z),

Poss(CancelOrder(customer, item), s) ≡ Holds(Ordered(customer, item), s),

Poss(CancelOrder(customer, item), s) ⊃
(Holds(Paid(item), s) ∧ State(Do(CancelOrder(customer, item), s)) =

State(s)−Ordered(customer, item) + Refund(customer, item))
∨

(¬Holds(Paid(item), s) ∧ State(Do(CancelOrder(customer, item), s)) =
State(s)−Ordered(customer, item)).

Integrating Action Calculi and Description Logics 73

Name Syntax Semantics

negation ¬C DI \ CI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

existential restriction ∃R.C { x | ∃y(x, y) ∈ RI ∧ y ∈ CI}
universal restriction ∀R.C { x | ∀y(x, y) ∈ RI ⊃ y ∈ CI}

Fig. 1. Syntax and semantics of ALC

This axiomatization entails

¬Holds(Ordered(John,NiceBook),Do(CancelOrder(John,NiceBook), S0))
and

Holds(Paid(NiceBook),Do(CancelOrder(John,NiceBook), S0) ⊃
Holds(Refund(John,NiceBook),Do(CancelOrder(John,NiceBook), S0)).

2.2 Description Logics

In this section, we recall those facts about Description Logics (DLs) that are
essential to the ensuing discussion. A gentle introduction can be found in [4].
Description Logics are a family of Knowledge Representation formalisms; typi-
cally, they are decidable fragments of classical first order logic. In the following
we employ the term Description Logic solely for such fragments.

A particular DL is based on a set of concept names NC (unary predicates),
a set of role names NR (binary predicates), a set of individual names NI (con-
stants), and a number of constructors for inductively defining complex concepts
and roles.

The semantics of Description Logics is defined via interpretations I=(DI , ·I).
The domain DI is a non-empty set of individuals. The interpretation function ·I
maps each concept name C ∈ NC to a subset CI of DI , each role name R ∈ NR

to a binary relation RI on DI , and each individual name I ∈ NI to an individual
II ∈ DI . The semantics is extended inductively to complex concepts and roles.
Figure 1 introduces the syntax and semantics of the core DL ALC.

Definition 10 (ABox). An assertional box (ABox) is a finite, non-empty set
of concept assertions C(I) and role assertions R(I1, I2) and ¬R(I1, I2), where C
and R may be complex concepts and roles, respectively.

For example, {Outbound � Delivered(Package)} is an ABox expressing uncer-
tainty over the whereabouts of a particular package.

A number of highly-optimized tableau-based reasoners for effectively deciding
even very expressive DLs are available [7,8,9].

74 C. Drescher and M. Thielscher

3 Integration

We will now lay the theoretical foundations for an integration of Description Log-
ics into Fluent Calculus. We will first show how the latter can use DL ABoxes
as structured and decidable world descriptions. We then turn our attention to a
recently proposed method for ABox-Update: After recalling the essential defini-
tions we establish a Fluent Calculus semantics for these updates, thus relating
them to standard AI action calculi. Furthermore, these findings will enable us
to identify fragments of Fluent Calculus where questions of action applicability
and effects resulting from action execution can effectively be computed.

3.1 ABoxes and State Formulas

We now establish a connection between Description Logic ABoxes and Fluent
Calculus state formulas. This connection will be a consequence of a more general
result on the relation between first order sentences and state formulas.

Consider an arbitrary countable first order language L.4 We can then define
a Fluent Calculus instance that contains exactly one function symbol Fi of sort
fluent for every predicate symbol Pi ∈ L (except equality). Moreover, its terms
t of sort object are precisely the terms of L.

Definition 11. The mapping τz takes first order sentences in L to state formu-
las Δ(z):

τz(Pi(t)) = Holds(Fi(t), z)
τz(t1 = t2) = (t1 = t2)
τz(ϕ ∧ ψ) = τz(ϕ) ∧ τz(ψ)

τz(¬ϕ) = ¬τz(ϕ)
τz(∃xϕ) = ∃xτz(ϕ).

Theorem 1 (first order sentences and state formulas). A first order
sentence ϕ in a countable language L has a model iff {τz(ϕ)} ∪ Σstate has a
model.

Proof. (⇒)
First, observe that we can restrict our attention to certain models of ϕ, namely
the term models obtained via the standard Henkin construction [10]. The domain
D of these models consists of equivalence classes on all the terms of L. Let
M1 = (DM1 , ·M1) � ϕ be such a model. Let F be the set of all fluents built from
terms occurring in an equivalence class in DM1 .
Then M2 = (Dobject, Dfluent, Dstate, ·M2) � {τz(ϕ)} ∪Σstate where

– Dobject = DM1 ,
– Dfluent = {{f} | f ∈ F},
– Dstate = P(F), the power set of F,

4 In the following we assume without loss of generality that L contains equality.

Integrating Action Calculi and Description Logics 75

– tM2 = tM1 for objects t,
– F (t)M2 = {F (tM2} for each fluent F (t),
– ∅M2 = {},
– (z1 ◦ z2)M2 = (z1)M2 ∪ (z2)M2 , and
– zM2 = { Fi(tM2) | M1 � Pi(t)}.

Interpreting ∅ as empty-set, ◦ as set-union and states as sets of fluents is a
model of the foundational axioms Σstate of Fluent Calculus [6]. The proof is
completed by structural induction on ϕ.

(⇐) In this case simply letM3 = (Dobject, Dfluent, Dstate, ·M3) � {τz(ϕ)}∪Σstate.
Then M4 = (Dobject, ·M4) � φ where

– tM4 = tM3 for terms t of sort object and
– PM4

i = {(tM4) | M3 � Holds(Fi(t), z)}.

This proof, too, is completed by structural induction on ϕ. ��

This result justifies an intuitive identification of state formulas with the more
familiar first order sentences. Moreover, it enables us to transfer known decid-
ability or complexity results for fragments of first order logic to instances of the
Fluent Calculus, where state formulas are restricted accordingly. In particular
this applies to Description Logic ABoxes. Using ABoxes as state formulas, in an
actual implementation we can resort to DL reasoners in order to decide static
state knowledge, e.g. action preconditions. Researchers in DL have investigated
a great number of DLs of varying strength; from these we can choose a logic that
we deem appropriate for the task under consideration.

3.2 Updated ABoxes and State Update Axioms

In a recent paper, a method for updating Description Logic ABoxes has been
proposed. Next we will briefly recall essential definitions and results; for in-depth
coverage, the interested reader is referred to [5]. Subsequently, we will provide
a Fluent Calculus semantics for ABox-Update, and thus relate the latter to a
standard AI formalism.

ABox-Update. After introducing the syntactic objects describing an ABox-
Update, we restate the semantic considerations underlying the whole approach.

Definition 12 (conditional ABox update). A conditional update U is a fi-
nite, non-empty set of expressions ϕ/ψ, where the condition ϕ is an ABox as-
sertion and the postcondition ψ is a concept/role literal. Consistency of the con-
dition part ϕi for a number of expressions ϕi/ψi implies the consistency of their
postconditions ψi. The condition part may be omitted by writing �/ψ, where �
abbreviates a tautology.

The semantics of ABox-Update is defined using the possible models approach of
Winslett [11]; that is, for every interpretation I we define an updated interpreta-
tion I ′. E.g., if U = {ϕ1/C(I1), ϕ2/¬C(I2)} and I entails both ϕ1 and ϕ2, then

76 C. Drescher and M. Thielscher

I ′ should interpret C as I, but include the individual I1 into the interpretation
of C and exclude the individual I2 from it. These should be the only changes to
occur. The following definition captures this minimal change policy.

Definition 13 (conditional interpretation update). Let U be a conditional
update and I, I ′ interpretations such that DI = DI′

and I and I ′ agree on the
interpretation of individual names. Then I′ is the result of updating I with U ,
written I =⇒U I ′, if the following holds for all concept names C ∈ NC and role
names R ∈ NR:

CI′
=(CI ∪ { II | ϕ/C(I) ∈ U ∧ I � ϕ})

\ { II | ϕ/¬C(I) ∈ U ∧ I � ϕ}and

RI′
=(RI ∪ { (II1 , II2) | ϕ/R(I1, I2) ∈ U ∧ I � ϕ})

\ { (II1 , II2) | ϕ/¬R(I1, I2) ∈ U ∧ I � ϕ}.

Let M(A) denote the set of all models of an ABox A.

Definition 14 (updated ABox). For an ABox A and a conditional update
U the updated ABox A′ is defined model-theoretically such that:

M(A′) = { I ′ | I ∈ M(A) ∧ I =⇒U I ′}.

For applying a conditional update U to an ABox A resulting in ABox A′ we
also write A′ = A ∗ U . In spite of some negative results in [5] it has been
established for a whole range of DLs that these admit ABox-Update; i.e. for
arbitrary A and U the updated ABox A′ = A ∗ U always exists. For the DLs
ranging from ALCO@ to ALCQIO@– which are closely related to the familiar
SHOIN (D)underlying the Ontology Web Language (OWL) – algorithms for
computing updated ABoxes have been presented. For an updated ABox A′ =
A ∗ U there are polynomials p1, p2 and q such that

– |A′| ≤ 2p1(|A|) · 2p2(|U|) and
– A′ is computed in time q(|A′|).

For repeated updates the final ABox can be exponential only in the size of
the original ABox and the total size of all updates.

The authors of [5] also propose two mechanisms for obtaining smaller updated
ABoxes; in both cases the result of updating is exponential only in the size of the
update. One is based on introducing abbreviations for some complex concepts.
The other eliminates the asymmetry between concepts and roles typically found
in DLs: it introduces powerful operators on roles. Update algorithms for such
DLs are also given; the strongest DL under consideration is as expressive as the
two variable fragment of first order logic with counting quantifiers [12].

Fluent Calculus Semantics for ABox-Update. We will now establish a
Fluent Calculus semantics for any DL that is both embeddable into first order
logic and closed under the above definition of update. To do so, for a given DL,
ABoxes A, A′ and update U with A′ = A ∗ U , we will define a corresponding

Integrating Action Calculi and Description Logics 77

domain axiomatization Σ in a suitable Fluent Calculus instance. We will then
prove that for every model of Σ there are models I and I ′ of A and A′ satisfying
I =⇒U I ′ and vice versa.

First, we associate with U the name Update. The Fluent Calculus instance is
defined such that

– it contains exactly one action, namely Update, and
– there is a bijection between

• the objects and the individual names NI , and
• the function symbols of sort fluent and the union of the concept and

role names, NC ∪NR.

Next, since we consider only first order embeddable DLs, we can clearly define
a mapping τz from ABoxes to state formulas Δ(z), analogously to the mapping
from Definition 11; similarly, τs maps ABoxes to situation formulas. In the do-
main axiomatization Σ to be constructed, let

Σinit = {(∃z)State(S0) = z ∧ τz(A)}.

We now turn to the construction of a state update axiom corresponding to
the update U = {ϕ1/ψ1, . . . , ϕn/ψn}. Define the set E1 = {ϕi/ψi | ϕi/ψi ∈
U} ∪ {¬ϕi/nil | ϕi/ψi ∈ U} and let E2 be the set of all subsets of E1 that are
maximally consistent with regard to the condition part ϕi. Note that E2 will
be exponential in the size of U . For every member E3 of E2 we form an update
formula

γ(s)
def
= Δ(s) ∧ (∃z)State(Do(Update), s) = State(s)− ϑ− + ϑ+

where

– Δ(s) denotes the conjunction of all the situation formulas in the set {τs(ϕ) |
ϕ/ψ ∈ E3 ∨ ϕ/nil ∈ E3}, and

– ϑ+ (respectively, ϑ−) denotes the finite state consisting of the ground fluents
corresponding to the assertions ψ such that ϕ/ψ ∈ E3 (respectively, ϕ/¬ψ ∈
E3). 5

Then Σ contains the single state update axiom

Σsua = {Poss(Update, s) ⊃ Γ (s)},

where Γ (s) denotes the disjunction of all the γ(s) resulting from the above
construction. Observe that all the γ(s) are mutually exclusive.

Example 2. Consider the update
U={�/¬Ordered(John, NiceBook), Paid(NiceBook)/Refund(John, NiceBook)}.

5 If there is no such assertion we obtain the empty state ∅.

78 C. Drescher and M. Thielscher

The above construction yields – after a little simplification –

Poss(Update, s) ⊃
(Holds(Paid(NiceBook), s) ∧ State(Do(Update, s)) =

State(s)−Ordered(John, NiceBook) + Refund(John, NiceBook))
∨

(¬Holds(Paid(NiceBook), s) ∧ State(Do(Update, s)) =
State(s)−Ordered(John, NiceBook)).

Finally, we define the set of precondition axioms to be

Σposs = {Poss(Update, s) ≡ �},

completing the definition of Σ.
Before stating the main theorem, we recall a fundamental result about Fluent

Calculus [6] that will be essential to our discussion.

Theorem 2 (fluent calculus foundational theorem). Let ϑ+ and ϑ− be two
finite states. Then foundational axioms Σstate together with z′ = z − ϑ− + ϑ+

entail

Holds(f, z′) ≡ Holds(f, ϑ+)
∨
Holds(f, z) ∧ ¬Holds(f, ϑ−).

Theorem 3 (fluent calculus semantics for ABox-Update). For an ABox
A, an update U and the corresponding domain axiomatization Σ it holds that
A has a model I with I =⇒U I ′ if and only if Σ has a model. Moreover, in
a model of Σ, State(S0) and State(Do(Update, S0)) relate in the same way as
I and I′.

Proof. (⇒)
We will only give a sketch of the proof. As in the proof of Theorem 1 we can
restrict our attention to Henkin-style term interpretations: When constructing
τz(A) we simultaneously construct the first order representation of A, using the
same variable names. A term model of this is readily turned into a model of A.
We then interpret the objects by their equivalence classes, and fluents by fluent
terms built from these equivalence classes as in the proof of Theorem 1. We
extend this treatment to situations and actions: here we restrict the respective
universes to the set of ground situations and actions built using only terms of sort
object occurring in an equivalence class. Interpreting ◦ and ∅ as set union and
empty set as before, we fix the interpretation of State(S0) as the set of fluents
corresponding to atoms that are true in I. We observe that, once we have fixed
the interpretation of State(S0), the model of Σ is uniquely determined, due to
Theorem 2 and the fact that the conditions Δ(s) in the state update axiom are
mutually exclusive. Theorem 2 is also the key to proving that State(S0) and
State(Do(Update, S0)) are related in the same way as I and I ′.

Integrating Action Calculi and Description Logics 79

(⇐)
Let M2 = (Dobject, Dfluent, Dstate, Dsituation, Daction, ·M2) � Σ.
Set I3 = (Dobject, ·I3), I4 = (Dobject, ·I4) where

– P I3
i = {(tM2) | M2 � Holds(Fi(t), State(S0))},

– P I4
i = {(tM2) | M2 � Holds(Fi(t), State(Do(Update, S0)))} and

– ·I3 , ·I4 and ·M2 agree on sort object.

Then I3 � A and I3 =⇒U I4. ��

Figure 2 depicts the relationship just established.

M � Σ

=⇒U =⇒U

A A′ = A ∗ U

� �

I I′

State(S0)
M State(Do(Update, S0))

M

Fig. 2. Fluent Calculus semantics for ABox-Update

This result has two important consequences: On the one hand, by establish-
ing a Fluent Calculus semantics for ABox-Update, it relates the latter to an
established, general action formalism. On the other hand, it provides the for-
mal underpinnings of using the update algorithms of [5] for computing updated
states in a Fluent Calculus that uses ABoxes as state descriptions. Using an
accordingly restricted Fluent Calculus instead of plain ABox-Update the notion
of update resides within the language instead of being meta-logical.

3.3 TBoxes and Domain Constraints

The reader already familiar with Description Logics may wonder why we have
not yet mentioned TBoxes. By allowing the definition of concepts in terms of
other concepts, these contribute considerably to the expressive power of DLs.

Definition 15 (TBox/knowledge base). C ≡ D is a concept definition,
where C is a defined concept name and D is a complex concept. A TBox T is a
finite set of concept definitions. An interpretation I satisfies a concept definition
C ≡ D if CI = DI . I satisfies a TBox T , if it satisfies all concept definitions
in T . A Knowledge Base is a pair KB = (T ,A), with TBox T and ABox A.

80 C. Drescher and M. Thielscher

A TBox T is a terminology if every defined concept is defined only once. A
defined concept name C directly uses a concept name D if D occurs on the right
hand side of the concept definition. A terminology is acyclic if no concept name
is connected with itself via the transitive closure of directly uses. Reasoning in a
knowledge base KB = (T ,A), where T is an acyclic terminology, can always be
reduced to reasoning wrt. the empty TBox by unfolding the definitions [4].

For example, in our online-store scenario we can introduce the concept of a
good customer with the help of the TBox

{GoodCustomer ≡ PurchasedManyItems� PaidOnTime}.

In action formalisms the concept of a domain constraint allows to state general
knowledge and laws that have to be satisfied by every world state.

Definition 16 (domain constraint). In Fluent Calculus a domain constraint
is a formula of the form (∀s)Δ(s), where Δ(s) is a situation formula.

TBoxes are captured neatly by appropriate domain constraints. E.g. we map the
above TBox to

(∀s.∀x)Holds(GoodCustomer(x), s) ≡
Holds(PurchasedManyItems(x), s) ∧Holds(PaidOnTime(x), s).

It is trivial, but potentially useful, to admit acyclic TBoxes. We can faithfully
apply the update algorithms from [5] to an ABox serving as world state descrip-
tion after unfolding the TBox, resulting in a potentially exponential blowup.
However, in the ABoxes that serve as action preconditions in a domain ax-
iomatization, we can admit defined concepts without unfolding them into the
ABox. This is possible since the semantics of the undefined concepts uniquely
determines the semantics of the defined ones. The above result on the semantic
correspondence between ABox-Update and Fluent Calculus state update axioms
can be extended to take acyclic TBoxes into account.

If we admit general TBoxes, semantic problems arise. The semantics of the
undefined concepts no longer uniquely determines the semantics of the TBox. As
a consequence the one-to-one relation between original and updated interpreta-
tion – that is at the heart of ABox-Update – can not be maintained. This issue is
well known to researchers in action formalisms as the Ramification Problem [13].
Considerable effort went into singling out intended interpretations, usually by
appealing to some notion of causality [14,15,16]. This work should prove helpful
when extending the definition of interpretation update.

4 Summary

4.1 Related Work

Recently, a number of works have addressed the issue of finding a decidable
yet expressive logical framework for reasoning about actions and change. In the

Integrating Action Calculi and Description Logics 81

following we will relate our work to other DL-based approaches. Such approaches
have continued to attract considerable interest, not least since Description Logics
form the foundation of the Semantic Web, and a dynamic view of the web is
intuitively very appealing.

In [17] de Giacomo et al. show that DL-Lite is closed under update in the
above sense; they also present a polynomial algorithm for computing updated
ABoxes. The Description Logic DL-Lite is of reduced expressivity, but admits
tractable reasoning and updated ABoxes of polynomial size. They also address
updates in the presence of general TBoxes. If the models of the update and the
general TBox have an empty intersection their algorithm guarantees correctness;
otherwise it returns with an error. Our framework can also be instantiated with
DL-Lite ABoxes; returning an error is not an option for an autonomous agent.

Liu et al. [18] provide an in-depth discussion of the semantic problems that
arise when updating ABoxes in the presence of general TBoxes. They also ob-
serve that these problems are closely related to the ramification problem. As a
solution they propose to provide the domain axiomatizer with a syntactic means
to indicate which assertions may fluctuate freely during the update.

Baader et al. [19] is another work on DL-based reasoning about action and
change. They employ reasoning similar to regression and among many other re-
sults, they outline how their work can be regarded as an instance of the Situation
Calculus. Gu and Soutchanski [20] directly define a modified Situation Calcu-
lus, based on a DL with role operators that is equally expressive as C2. They
adapt regression from the general Situation Calculus to their setting extended
with acyclic TBoxes. They address the problem of using progression, i.e. up-
date, instead of regression in [21]. To this end, since fluents are not reified in
the Situation Calculus, they have to appeal to second order logic. An in-depth
comparison of their work will be subject of future work. The fact that Situation
Calculus and Fluent Calculus semantically agree has been shown in [22].

Employing existing DL reasoners we have to start reasoning from scratch after
each update. In [23] the problem of incremental maintenance of a solver state is
addressed under a very simple semantics for ABox-Update. It would be nice to
extend these ideas to updates under the possible models approach.

4.2 Conclusion

We have shown how to integrate Description Logics into a general action formal-
ism. We have thus restricted the latter to a decidable, yet expressive fragment
of classical first order logic. To do so, we have proved that ABoxes can serve as
a faithful substitute for state formulas in Fluent Calculus. Moreover, by proving
that Fluent Calculus state update axioms correctly capture ABox-Update, we
have related the latter to established research in reasoning about action and
change. Our work lays the theoretical foundations for an integration of DL rea-
soning and update algorithms into a practical agent programming language.
There are a number of interesting open issues for future work:

– Applying existing solutions to the ramification problem to handle ABox-
Update in the presence of general TBoxes.

82 C. Drescher and M. Thielscher

– Integrating inference algorithms for Description Logic problems into a gen-
eral action programming language, like e.g. FLUX [2].

References

1. McCarthy, J.: Situations, actions, and causal laws. Technical Report AIM-2, AI
Project, Stanford University (1963)

2. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5, 533–565 (2005)

3. Lespérance, Y., Levesque, H.J., Lin, F.D., Marcu, R.R., Scherl, R.B.: A logical
approach to high-level robot programming—A progress report. In: Papers from
the 1994 AAAI Fall Symposium, AAAI (1994)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

5. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In:
Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 46–56. AAAI Press (2006)

6. Thielscher, M.: Reasoning Robots: The Art and Science of Programming Robotic
Agents. Applied Logic Series, vol. 33. Kluwer Academic Publishers, Dordrecht
(2005)

7. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proceedings of the 2004
International Workshop on Description Logics (DL2004) (2004)

8. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

9. Haarslev, V., Möller, R.: Racer system description. In: Goré, R., Leitsch, A., Nip-
kow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Hei-
delberg (2001)

10. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, London
(1972)

11. Winslett, M.: Reasoning about action using a possible models approach. In: aaai88,
pp. 89–93 (1988)

12. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-
tifiers. Journal of Logic, Language, and Information 14, 369–395 (2005)

13. Ginsberg, M.L., Smith, D.E.: Reasoning about action II: the qualification problem.
Artificial Intelligence 35, 311 (1988)

14. Lin, F.: Embracing causality in specifying the indirect effects of actions. In: Mellish,
C.S. (ed.) Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), Montreal, Canada, pp. 1985–1991. Morgan Kaufmann, San Fran-
cisco (1995)

15. Thielscher, M.: Ramification and causality. Artificial Intelligence Journal 89, 317–
364 (1997)

16. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artificial Intelligence 153, 49–104 (2004)

17. Giacomo, G.D., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description
logic ontologies at the instance level. In: Proceedings of the Twenty-first National
Conference on Artificial Intelligence (AAAI 2006) (2006)

18. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Description logic actions with general
TBoxes: a pragmatic approach. In: Proceedings of the 2006 International Workshop
on Description Logics (DL2006) (2006)

Integrating Action Calculi and Description Logics 83

19. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proceedings of AAAI-05 (2005)

20. Gu, Y., Soutchanski, M.: A logic for decidable reasoning about services. In: Pro-
ceedings of the 4th International Workshop on AI for Service Composition (ECAI
2006) (2006)

21. Gu, Y., Soutchanski, M.: Decidable reasoning in a modified situation calculus. In:
Proceedings of International Joint Conference on AI (IJCAI 2007) (2007)

22. Schiffel, S., Thielscher, M.: Reconciling situation calculus and fluent calculus. In:
Proceedings of AAAI-06, Boston, MA, pp. 287–292. AAAI Press (2006)

23. Halaschek-Wiener, C., Parsia, B., Sirin, E., Kalyanpur, A.: Description logic rea-
soning for dynamic aboxes. In: Proceedings of the 2006 International Workshop on
Description Logics (DL2006) (2006)

Any-World Access to OWL from Prolog

Tobias Matzner and Pascal Hitzler

Institute AIFB, Universität Karlsruhe, Germany
{tobias.matzner, hitzler}@aifb.uni-karlsruhe.de

Abstract. The W3C standard OWL provides a decidable language for
representing ontologies. While its use is rapidly spreading, efforts are
being made by researchers worldwide to augment OWL with additional
expressive features or by interlacing it with other forms of knowledge
representation, in order to make it applicable for even further purposes.
In this paper, we integrate OWL with one of the most successful and
most widely used forms of knowledge representation, namely Prolog, and
present a hybrid approach which layers Prolog on top of OWL in such a
way that the open-world semantics of OWL becomes directly accessible
within the Prolog system.

1 Introduction

The Web Ontology Language OWL has been recommended by the W3C in 2004
for the representation of ontologies, and its usage is spreading rapidly ever since.
One of the design issues for OWL has been that it is decidable and based on
the open world assumption, and these two properties – which are both inherited
from description logics – have served it well in the last two years.

However, with these design decisions come also some drawbacks as they limit
expressiveness of OWL in ways which make working with it cumbersome at
times. Even more, due to decidability of the language some things cannot be
expressed at all in OWL. Efforts are therefore under way to extend OWL with
more expressive features, and there is a growing body of work with proposals
and studies how to do this best.

The corresponding research can roughly be classified into two different ap-
proaches. The first approach deals with extensions of OWL while adhering as
much as possible to the conceptual frame of mind spanned by description logic
research. The second approach is based on establishing hybrid systems which
combine OWL with other established knowledge representation formalisms in
such a way that either approach is encompassed in full, possibly using two differ-
ent reasoning engines, but allowing for information flow between the subsystems.
The work which we present in this paper is of the hybrid kind.

The particular integration which we report on, is based on the following ra-
tionales.

– OWL has not been designed to be a stand-alone programming language.
OWL ontologies should rather be viewed as declarative knowledge bases,

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 84–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Any-World Access to OWL from Prolog 85

which require programming in some other language for accessing the knowl-
edge and further processing it. It is a natural choice to use a logic-based
declarative programming language for this purpose.

– One of the most requested-for extensions of OWL is the ability to formulate
rules, in some established rules language.

– It becomes more and more apparent that closed-world features are required
alongside the open-world character of OWL.

Our hybrid system addresses the formulated needs by interlacing OWL with
one of the most prominent and historic approaches to logic-based knowledge
representation, namely with Prolog. Our system layers Prolog on top of OWL by
allowing the querying of OWL ontologies via a standard OWL reasoner. A tight
integration is achieved by interpreting the answers given by the OWL reasoner
in an open-world fashion, and by processing this answer within Prolog in the
same open-world fashion. This is achieved by means of the so-called any-world
semantics due to Loyer and Straccia [1].

Technically speaking, the integration is achieved via a hybrid semantics for
a language which incorporates calls to an OWL reasoner into standard logic
programming. This hybrid semantics is based on the any-world semantics. Algo-
rithmization and an implementation of the approach is provided by means of a
transformation of logic programs under the any-world semantics into standard
Prolog, in this case realised using SWI-Prolog.

Besides the aforementioned rationales for our approach, we thus arrive at a
system with the following additional features.

– Modularity: The user can develop its programs based on Prolog program-
ming and need not deal with the evaluation of OWL-based reasoning and
knowledge. It is possible to offer restricted or controlled access to third party
knowledge-bases without problems.

– Maturity: We incorporate the KAON2 reasoner and thus offer the perfor-
mance of a state-of-the-art DL-reasoner to the logic programming world.
The logic programming environment can be handled with little more than
basic Prolog knowledge.

– Conformity with standards: Available OWL knowledge bases can be used di-
rectly. As we do not need one big formal system comprising both approaches,
these can be used with no or only little maintenance to do.

– Bridge between ontology language paradigms: One of the most prominent
alternatives to OWL for ontology representation is F-Logic [2,3], which can
be used both as an ontology language and as a programming language. As
F-Logic in its basic form is basically Prolog extended with further syntactic
features, our approach can be used directly for realising a hybrid OWL/F-
Logic system.

The structure of the paper is as follows. In Section 2, we review the basic
facts we need about the any-world semantics and about OWL in order to make
this paper relatively self-contained. In Section 3, we prove a theorem which
gives the formal rationale for our algorithmisation. In Section 4 we discuss the

86 T. Matzner and P. Hitzler

implemented system which we provide. In Section 5 we give an extended example
which shows the possibilities of our approach. In Section 6 we discuss related
work, and we conclude in Section 7.

2 Preliminaries

2.1 The Any-World Semantics

We review the any-world semantics due to Loyer and Straccia [1] in some details
as it is crucial for understanding our work.

Bilattices. The any-world semantics is based on a truth-space which is a so-
called bilattice [4]. This is a potent mathematical structure which particularly
provides two partial orders, which permit to represent (logical) truth and the
knowledge contained in these truth-values separately.

Formally, a lattice 〈L,≤〉 is a non-empty set L with a partial order ≤, where
each subset of L containing two elements has a supremum and infimum regarding
≤ (also known as meet and join). It is a complete lattice iff every subset has
supremum and infimum regarding ≤. We write x < y for x ≤ y and x �= y where
x, y ∈ L.

A bilattice 〈B,≤t,≤k〉 is a non-empty set B with two partial orders, the truth-
order ≤t and the knowledge-order ≤k, both of which give B the structure of a
complete lattice. Due to completeness, the greatest and least element regarding
either of the orders always exists and is unique [4]. The greatest element regard-
ing ≤t is denoted true, the least element false. Regarding ≤k, the greatest
element is �, the least ⊥. Meet and join under ≤t which are denoted ∧ and ∨,
correspond to the well-known two-valued conjunction and disjunction regarding
the values true and false. Under ≤k meet and join are denoted ⊗ and ⊕, where
x⊗y extracts the maximum knowledge that is expressed both in x and y whereas
x⊕y unites the knowledge of x and y. Our approach is particularly based on the
smallest non-trivial bilattice known as FOUR [5] which is depicted in Figure 1.
Indeed, although bilattice-based semantics is generally formulated for arbitrary
bilattices, FOUR is currently the only such lattice of practical relevance, and
will entirely suffice for our purposes.

An operator • on a lattice is called monotone when x1 ≤ y1 and x2 ≤ y2

implies x1 • x2 ≤ y1 • y2. We suppose for all bilattices here considered that all
of the operators ∧,∨,⊗,⊕ are monotone w.r.t. both the knowledge- and the
truth-order; this is called the infinitary interlacing condition. We furthermore
assume that all bilattices are infinitary distributive i.e. that all distributive laws
connecting the aforementioned lattice operators hold. Finally, we assume that
all lattices have a negation, which is an operator denoted ¬ that inverses the
truth order, does not inflict the knowledge order and satisfies ¬¬x = x. These
assumptions are standard and generally known to be unproblematic in a logic
programming context.

Any-World Access to OWL from Prolog 87

�

�

⊥

�

false true

≤t

≤k

�
�

��

�
�

��

�
�

��

�
�

��

Fig. 1. The bilattice FOUR

Logic programs. We extend logic programs from the common case and include
not only connectives for disjunction, conjunction and negation but for all the op-
erators of a bilattice: ∧,∨,⊗,⊕ and ¬. So the knowledge order and its operators
are not only a tool of analysis and semantics as used for example in [6] but can
be used explicitly to determine how the program treats information from the
perspective of knowledge. A logic program is based on a set P of predicates, V
of variables, C of constants and F of functions. A term is either an element of V
or C or of the form f(t1, . . . , tn) where f ∈ F and all t1, . . . , tn are terms. The
ground terms forming the Herbrand universe are all the terms that can be built
from elements of C and F . An atom is of the form p(t1, . . . , tm) where p ∈ P
and all t1, . . . , tm are terms. The ground atoms forming the Herbrand base are
all the atoms that can be built from the Herbrand universe. A literal is of the
form A or ¬A where A is an atom. Furthermore we allow the elements of the
bilattice as literals. A formula is either any literal, or of the form ϕ1 • ϕ2 where
ϕ1 and ϕ2 are formulas and • is one of the four lattice operators ∧,∨,⊗,⊕, or
one of the expressions ∀ϕ respectively ∃ϕ where ϕ is a formula. A rule is of the
form p(x1, . . . , xm) ← ϕ(x1, . . . , xm) where p ∈ P , x1, . . . , xm ∈ V and ϕ is a
formula. We call p the head and ϕ the body of the rule. We suppose that the free
variables in ϕ are among {x1, . . . , xm} and are universally quantified. A logic
program P is a finite set of rules. Not allowing terms in the heads of rules is not
a restriction, e.g. the rules (taken from [1]):

p(s(x)) ← p(x)
p(0)← true

can be rewritten (using a predicate eq defining equality) as:

p(y)← ∃x(eq(y, s(x)) ∧ p(x))
p(x) ← eq(x, 0)

With ground(P) we denote all ground instances of members of P over the Her-
brand universe.

88 T. Matzner and P. Hitzler

Interpretations of logic programs. Let B be a bilattice. An interpretation
of a logic program on B is a mapping I from ground atoms to members of B. It is
extended to formulas as follows: I(b) = b where b ∈ B; I(ϕ1 •ϕ2) = I(ϕ1)•I(ϕ2)
where ϕ1, ϕ2 are formulas and • is one of the operators ∧,∨,⊗,⊕; I(¬ϕ) =
¬I(ϕ); I(∃xϕ(x)) =

∨
{I(ϕ(t))|t is a ground term} and finally I(∀xϕ(x)) =∧

{I(ϕ(t))|t is a ground term}. The partial orders of the bilattice are point-wise
extended to interpretations: I1 ≤t I2 iff I1(A) ≤t I2(A) for all ground atoms
A. The extension for ≤k is analogous. Given two interpretations I1, I2 we define
(I1 • I2)(ϕ) = I1(ϕ) • I2(ϕ) where • is a lattice operator and ϕ a formula. Thus
the space of all possible interpretations on a bilattice constitutes an infinitary
interlaced and distributive bilattice as well. An interpretation I is a model of a
logic program P iff I(A) = I(ϕ) for all rules A← ϕ in P .

Semantics. The semantics is defined via the fixed point of a monotone operator
similarly to the well known Kripke-Kleene [7,8] or well-founded [9] semantics. In
fact the any-world semantics used here is a generalization of the well-founded
semantics. The central idea of the any-world semantics is to overcome the lim-
itations of both the open and the closed world as default assumption. Instead
an arbitrary interpretation H called the hypothesis is used as default assump-
tion, i.e. the value H(A) is the default value for the atom A. From this point
of view, the open world assumption corresponds to the hypothesis H(A) = ⊥
for all atoms A, we call this hypothesis H⊥. The closed world assumption can
be modelled by H(A) = false for all atoms A, this hypothesis is denoted Hf.
Now the information of the program is combined with knowledge extracted from
the hypothesis used. To gather information from the program we use the well
known immediate consequence operator ΦP (I)(A) = I(ϕ) where A ← ϕ is a
rule in P . Now we want to augment the interpretation I with the information
from a hypothesis H . This is done similarly to the use of the unfounded set
in the well-founded semantics. From a knowledge point of view, the unfounded
set is the amount of information contributed to the semantics by the closed
world assumption. This concept now is generalized to arbitrary hypotheses H .
We usually cannot use all the information of H . Instead we want to extract
the maximum knowledge of H , expressed as an interpretation J , so that the
assumed knowledge J is entailed by the program w.r.t. the augmented interpre-
tation I ⊕ J , i.e. we want to make sure that J(A) ≤k ΦP (I ⊕ J)(A). This idea
is modelled using the so called safe interpretations. An interpretation J is safe
w.r.t. a logic program P , an interpretation I and a hypothesis H if J ≤k H and
J ≤k ΦP (I ⊕ J). The support provided by H to P and I is the greatest (on
the knowledge order) safe interpretation w.r.t. P , I and H . It is denoted sH

P (I).
Note that this particularily entails that the support is always smaller than the
hypothesis.

In order to simplify the treatment of logic programs using fixed-point seman-
tics, we introduce the transformed program P ∗. Given a logic program P and a
hypothesis H the program P ∗ contains the following rules:

Any-World Access to OWL from Prolog 89

– A ← ϕ1 ∨ · · · ∨ ϕn if A ← ϕ1, . . . , A ← ϕn are all rules in ground(P) with
the head A.

– A← H(A) if A is not the head of any rule in P .

The second part enforces that for any atom that is not assigned a truth-value by
a rule in the program, it is given its value according to the default assumption,
i.e. the hypothesis.

Now we define the operator Π̃H
P (I) = ΦP (I) ⊕ sH

P (I) which works on P ∗.
The fixed points of Π̃H

P are called the H-founded models of P . In [1] it is shown
that the support operator sH

P (I) is monotone in I and H w.r.t. the knowledge
order. Furthermore also ΦP is monotone w.r.t. the knowledge order [6]. By the
infinitary interlacing condition, motonicity of Π̃H

P is guaranteed. So by the well
known Knaster-Tarski theorem [10], there is always a (unique) least H-founded
model for any logic program, which can be obtained as the least upper bound
of the transfinite sequence (Π̃H

P ↑ α)α, where α ranges over ordinals, Π̃H
P ↑ 0 is

the least interpretation, Π̃H
P ↑ α + 1 = Π̃H

P (Π̃H
P ↑ α) for all α, and Π̃H

P ↑ α =
sup{Π̃H

P ↑ β : β < α} for limit ordinals α.
The key feature of the any-world semantics is the flexibility of the default

assumption. Particularly using a hypothesis that maps ground atoms to the
set {false,⊥} it is possible to mix closed- and open-world based information,
whereon our hybrid semantics relies. It also includes several well known seman-
tics. Using Hf, the H-founded model is the well-founded model [1]. Let HKK be
the interpretation that maps all atoms that are the head of a rule in a given pro-
gram P to ⊥, all the other atoms to false. Using this hypothesis, the H-founded
model of P is its Kripke-Kleene-model [1]. This reflects that the Kripke-Kleene
semantics uses only the immediate-consequence operator ΦP and consequently
the support part in Π̃H

P is reduced to ⊥ by the assignment of ⊥ to all rule
heads. (Recall that the support is always smaller than the hypothesis on the
knowledge order). However the Kripke-Kleene semantics is based on the closed
world assumption. This is manifested in the hypothesis mapping the other atoms
to false. The fact that the hypothesis affects only those atoms will be used later
for the hybrid semantics of our system.

2.2 Description Logics

The description logics part of our hybrid system uses the KAON2 OWL DL
reasoner [11].1 Our approach, however, is independent of the specific reasoner
used, and can indeed be used with any reasoning system based on the open world
assumption. OWL DL is based on the description logic SHOIN (D) [12], but for
the purpose of our exhibition we will not need to give many details about OWL
DL. It shall suffice to recall that OWL DL allows to specify axioms describing
the subsumption relation between complex concepts C and D, written C � D.
The (complex) concepts themselves are composed by means of primitive (or
atomic) concepts, logical and other connectives, individuals which correspond to
logical constants, and roles which describe relationships between individuals. It
1 See also http://kaon2.semanticweb.org

http://kaon2.semanticweb.org

90 T. Matzner and P. Hitzler

is also possible to specify that some individual a belongs to a class C, written
C(a), or to explicitly state that two individuals a and b are connected by a
role R, written R(a, b). The special concepts � and ⊥, respectively, are defined
as containing all individuals respectively no individual. OWL DL is given an
open-world semantics e.g. by mapping it into first-order logic with equality.

Given a set of OWL DL axioms, called an ontology, it is possible to derive
logical consequences from it by means of well-established algorithms. The most
basic inference tasks are

– checking whether an ontology is satisfiable (i.e. logically consistent),
– checking whether a concept C subsumes a concept D, i.e. whether C � D is

a logical consequence,
– checking whether a concept C is satisfiable, i.e. whether there is a model of

the knowledge base in which the extension of C is non-empty, and
– checking whether an individual a is contained in a concept C, i.e. whether

C(a) is a logical consequence.

3 A Program Transformation for Algorithmising the
Any-World Semantics

We provide an extension for Prolog which implements an any-world logic based
on FOUR and hypotheses that map into {false,⊥}. The implementation is
based on Theorem 1 below, which acts as a bridge between the any-world se-
mantics and Prolog.

Before we provide the theorem, let us define the specific type of hypotheses
which we need for our purposes. Recall that the hypothesis Hf corresponds to
the closed world assumption, while H⊥ can be interpreted as an open world
semantics. Consequently, the hypotheses of interest are a mix between these
two.

Definition 1. Given a logic program P we define the set of hypotheses KKS to
be the set of all interpretations that map an atom A to ⊥ when A is the head of
a rule in P , and to either ⊥ or false otherwise.

Note that HKK is in KKS for all programs P .

Theorem 1. Given a logic program P and a hypothesis HKKS ∈ KKS, there
exists a program transformation T HKKS such that the H-founded model of P
under HKKS is the same as the H-founded model of T HKKS(P) under HKK .

The proof is based on the possibility to add the default assumption chosen as
rules of the form A ← H(A) to the program, such that the resulting program
does not have any atoms that are not head of a rule. When evaluated under
HKK , accordingly the default assumption false is not used for any atom. The
assumption ⊥ for atoms that are heads of a rule, i.e. all atoms, is overridden by
the rule A ← false should it exist, as false ⊕ ⊥ = false. We first prove the
following:

Any-World Access to OWL from Prolog 91

Lemma 1. Let P be a logic program and HKKS a hypothesis from KKS. Then
sHKKS

P (I) = HKKS for any interpretation I.

Proof. For the following proof we write sHKKS

P (A) for sHKKS

P (I)(A) as the choice
of interpretation is without effect. For an atom A that is not the head of any rule
there are two possibilities: (1) If HKKS(A) = ⊥, then the fact that the support is
always smaller than the hypothesis on the knowledge-order requires sHKKS

P (A) =
⊥. (2) If HKKS(A) = false, then the rule A← false is in P ∗. As the support
is a safe interpretation we require sHKKS

P (A) ≤k ΦP (I ⊕ sHKKS

P)(A). This now
becomes sHKKS

P (A) ≤k I(false)⊕sHKKS

P (false) = false. As the support is the
largest safe interpretation on the knowledge-order we have sHKKS

P (A) = false.
Consider now an atom A that is head of a rule in P . Using again that the
support is a safe interpretation and thus smaller (in the knowledge order) than
the hypothesis, we have that sHKKS

P (A) = ⊥ = HKKS . ��

Now we are ready to prove the theorem:

Proof (of Theorem 1). We use the notation of the theorem. Furthermore we let
P ′ = T HKKS(P). We now show that the operators Π̃HKKS

P and Π̃HKK

P ′ have the
same result on every step of their iteration. As the operator Π̃ is defined on P ∗,
for the evaluation of Π̃HKKS

P P ∗ is constructed from P under the hypothesis
HKKS . In this process the same rules are added as when applying T HKKS to P
by definition of T . So P ′ and P ∗ constructed under the hypothesis HKKS are
identical. For the evaluation of Π̃HKK

P ′ the program P ′∗ is constructed under the
hypothesis HKK . Since in P ′ all atoms are head of rule, the hypothesis HKK

has no influence on P ′∗. So we have P ∗ = P ′∗, thus Π̃HKKS

P and Π̃HKK

P ′ work on
the same program.

Now consider an arbitrary iteration step α:

(Π̃HKK

P ′ ↑ α + 1)(A) = (Π̃HKK

P ′ ↑ α)(ϕ) ⊕ sHKK

P ′ (Π̃HKK

P ′ ↑ α)(A).

We have HKK(A) = ⊥ for all atoms A in P ′ as all atoms are the head of a rule
after the transformation. By Lemma 1 the support is equal to the hypothesis
(note that HKK is in KKS) and so the remaining formula is

(Π̃HKK

P ′ ↑ α + 1)(A) = (Π̃HKK

P ′ ↑ α)(ϕ). (1)

Consider now the operator

(Π̃HKKS

P ↑ α + 1)(A) = (Π̃HKKS

P ↑ α)(ϕ) ⊕ sHKKS

P (Π̃HKKS

P ↑ α)(A).

Again by Lemma 1 we have that HHKKS (A) = sHKKS

P (Π̃HKKS

P ↑ α)(A). For
atoms that are head of a rule in P we obtain

(Π̃HKKS

P ↑ α + 1)(A) = (Π̃HKKS

P ↑ α)(ϕ). (2)

As P and P ′ contain the same rules, the operators in (1) and (2) yield the
same results. For atoms that are not the head of a rule we know that either

92 T. Matzner and P. Hitzler

HKKS(A) = ⊥ or HKKS(A) = false. The following argument is analogous for
both cases, we consider the latter. If HKKS(A) = false, then there is a rule
A ← false in P ∗ and accordingly also in P ′. So we have (Π̃HKKS

P ↑ α)(ϕ) =
sHKKS

P (Π̃HKKS

P ↑ α)(A) = false as well as (Π̃HKK

P ′ ↑ α)(ϕ) = false. So both
operators give the same result. ��
So we have the possibility to deal with hypotheses mixing open- and closed-world
assumption while we only need to compute the Kripke-Kleene semantics.

4 Implementation

In order to arrive at its least fixed point, i.e. at the Kripke-Kleene semantics,
ΦP may need as many as Church-Kleene ω1 steps. Indeed the Kripke-Kleene
semantics is Π1

1 -complete [13] and thus not even semi-decidable. This means that
a sound and complete implementation of the Kripke-Kleene semantics cannot be
provided for theoretical reasons.

However, the Kripke-Kleene semantics was originally conceived as a declar-
ative semantics which captures the essence of the Prolog procedural semantics,
and indeed they are strongly related, as shown e.g. in [14]. For practical pur-
poses, it thus suffices to view Prolog as an approximate implementation of the
Kripke-Kleene semantics.

We therefore provide a library that permits using the logic FOUR with
all corresponding lattice operations ⊕,⊗,∧,∨ and ¬ in Prolog. The user can
write programs in a Prolog-like syntax, which is then compiled to SWI-Prolog2

such that each predicate is augmented with an additional parameter, which car-
ries the truth-value. A predicate p(t1, . . . , tn, TV) is then deducible in Prolog if
p(t1, . . . , tn) has the truth-value TV.

Within this framework, we offer special atoms, so called DL-atoms, that are
not evaluated according to the logic programming semantics but by querying the
DL-reasoner KAON2. They have the form dlq(pq) where q is a query and pq the
respective vector of parameters. The queries we offer are subsumes, unsatisfiable
and disjoint regarding concepts and has role regarding roles.

Usually queries to a DL-reasoner have two possible answers: the queried in-
formation is either demonstrable or not. However, if the answer is negative, then
two cases are possible: Either the negation of the query is demonstrable, or the
negation of the query is also not demonstrable. In the first case, the refutation
of the query is much stronger than in the second.

In order to give an example, consider the knowledge base specified by the
following axioms.

unicorn � appears in novels

horned animal � animal

When queried whether unicorn � horned animal holds, the reasoner responds
with No, which is entirely appropriate as the knowledge base does not allow to de-
2 http://www.swi-prolog.org

http://www.swi-prolog.org

Any-World Access to OWL from Prolog 93

rive any knowledge about the relationship between unicorn and horned animal,
i.e. the relationship unicorn � horned animal can neither be confirmed nor re-
futed.

Consider now the situation that the knowledge base contains the following
additional axioms, where the second describes the assertion that the concepts
unicorn and phantasy animal are extensionally disjoint.

unicorn � phantasy animal

animal � phantasy animal � ⊥

When now queried whether unicorn � horned animal holds, the reasoner again
responds with No, which is entirely appropriate as the knowledge base implies
that unicorn and horned animal are in fact extensionally disjoint. The situa-
tion compared to the first situation, however, is very different: The first knowl-
edge base did not specify anything about the relation between unicorn and
horned animal, while the second knowledge base strongly refutes the subsump-
tion relation.

Our framework provides the means to distinguish between these situations
by means of a different choice of truth values. In the first situation, the result-
ing truth value must be ⊥, while in the second it must be false. Technically,
we realise this in such a way that each query to KAON2 results in two calls
to the reasoner allowing to retrieve more detailed information. For the atom
dlsubsumes(C, D), the first query to the reasoner asks for C � D. Given a posi-
tive answer, we know that this is demonstrable, thus the DL-atom is evaluated
as true. When the answer is negative, there are, however, two cases possible:
C � D might be satisfiable, but not formally implied by the knowledge base.
In this case the DL-atom should have the value ⊥ i.e. unknown. On the other
hand it is possible that the information in the knowledge-base makes C � D
impossible. Then the DL-atom should be assigned false. This is done by the
second query, which asks whether KB ∪ {C � D} is satisfiable, where KB is
the knowledge-base. We summarize the query in the following table.

result of the query: result of the query: value of
C � D Is KB ∪ {C � D} satisfiable? dlsubsumes(C, D)

yes – true
no yes ⊥
no no false

Note that the queries are executed consecutively, i.e. the second query is only
performed if the first returned false.

A useful perspective on this is the following: C � D results in true if it holds
in all models of the knowledge base. It results in false if it holds in none of the
models of the knowledge base. And it results in ⊥ if it holds in some, but not
all, models of the knowledge base.

The question of the satisfiability of a concept is reducible to subsumption:
a concept C is satisfiable iff C � ⊥ does not hold, i.e. if there is some model
in which the extension of C is non-empty. This situation is best understood by

94 T. Matzner and P. Hitzler

considering unsatisfiabilitiy of a concept instead of satisfiability, as this allows
us to use exactly the argumentation used above: A concept is unsatisfiable if it
is extensionally empty in all models of the knowledge base. Similarly to the case
of subsumption, we arrive at the execution detailed in the following table.

result of the query: result of the query: value of
C � ⊥ Is KB ∪ {C � ⊥} satisfiable? dlunsatisfiable(C)

yes – true
no yes ⊥
no no false

Querying for extensional disjointness of concepts is treated similarly, by reducing
it to subsumption: two concepts C and D are disjoint iff C � ¬D.

The query whether C(a) holds can be resolved as in the following table. Note
that C(a) holds if it is true in all models.

result of the query: result of the query: value of
C(a) ¬C(a) dlmember(C, a)
yes – true
no yes false
no no ⊥

The query dlhas role(I1, R, I2) provides information whether two individuals
I1 and I2 are connected via a role R. When 〈I1, I2〉 ∈ R then the DL-atom is
true. To evaluate the other truth-values, we have to restrict ourselves to the
known individuals, as it is not possible in OWL to ask for negated roles [15].
When querying whether two individuals are connected via a role, it is a sensible
assumption that this might be possible, i.e. that 〈I1, X〉 ∈ R or 〈X, I2〉 ∈ R. So
we assign the value false to queries when there exists either an X �= I2 with
〈I1, X〉 ∈ R or an Y �= I2 with 〈Y, I2〉 ∈ R but 〈I1, I2〉 �∈ R. All other pairs of
individuals get the value ⊥.

To integrate these DL-atoms flawlessly with the semantics of our logic pro-
gramming environment which is based on fixed points, we need to guarantee
that the values of the DL-atoms are monotone w.r.t. the knowledge order. For
now, we assume that the knowledge-base is static, i.e. it cannot change during
the program evaluation. Then the evaluation of the DL-atoms always yields the
same result, and thus, trivially, is monotone.

The implemented system, called PrOWLog, is available for download from
http://logic.aifb.uni-karlsruhe.de/wiki/PrOWLog.

5 An Example

We exemplify our approach by extending an example given in [1], formalising a
judge’s decision process, as given by the following rules.

is suspect← has motive ∨ has witness

is cleared← ¬contradict alibi∧ has alibi

charge ← is suspect⊕ ¬is cleared

http://logic.aifb.uni-karlsruhe.de/wiki/PrOWLog

Any-World Access to OWL from Prolog 95

The judge collects information suggesting that a person is suspect as well as
information that indicates that the person is cleared. To support suspicion he
collects information about the existence of a motive or a witness (first line). To
enforce innocence the judge considers an alibi, but only if this is not contradicted
by the defendant’s testimony (second line). Finally he combines this information
(third line). Assume now that the only information the judge has about some
person is has witness ← false. Only relying on this, the suspect shouldn’t be
charged. Based on the closed-world assumption we get has motive = false and
thus is suspect = false. As has alibi = false, we obtain is cleared = false.
So when evaluating charge the information is contradictory and charge gets the
value �.

Using the open-world assumption, giving all atoms the default value ⊥, we
get is suspect = ⊥ because has motive = ⊥ and false ∨ ⊥ = ⊥. Since
we know nothing about has alibi and contradict alibi, the default assumption
is used again and we get is cleared = ⊥ and finally charge = ⊥. So nei-
ther of the two established assumptions work in a satisfactory way. Consider
now the mixed hypothesis Hm defined as follows: Hm(has witness) = false,
Hm(has motive) = false, Hm(has alibi) = ⊥, Hm(contradict alibi) = ⊥.
Then, like under the closed-world assumption, is suspect is false. The contra-
diction we encountered, however, does not exist any more as is cleared = ⊥
which reflects that the information is not sufficient to make a decision. Conse-
quently charge = false. This illustrates that the first line of the program is
devised according to the closed-world assumption. The second line however is
based on a different idea: For is cleared to become false, has alibi = false
is already sufficient. So the meaning of has alibi = false is that it has been
proven that nobody can provide an alibi for the defendant. Then we need also
the possibility to model the fact, that just no alibi is known, which corresponds
to has alibi = ⊥, and which should be the default case. So the second line is
conceived with an open-world setting in mind. H-founded models enable the use
of such programs despite the different approaches involved.

To complete the example, it could be assumed that the judge draws his knowl-
edge from an OWL DL knowledge base, by means of the following rules which
query a knowledge base about a person Ted who is under investigation.

has motive← dlmember(dl has motive, T ed)
has witness← dlmember(dl has witness, T ed)

has alibi← dlmember(dl has alibi, T ed)
contradict alibi← dlmember(dl contradict alibi, T ed)

By means of our hybrid semantics, the system will respond with the desired
answer.

6 Related Work

Our approach using DL-atoms to link rule-based and ontology-based reasoning
is inspired by the approach of Eiter et. al. presented in [16], where extended logic

96 T. Matzner and P. Hitzler

programs and the answer set semantics [17] are modified to incorporate DL-
atoms to query external reasoners. This approach permits the flow of informa-
tion in both directions from the DL-enhanced program to the reasoner and vice
versa. Extended logic programs make use of two negation operators, distinguish-
ing explicitly negation as failure and classical negation. The any-world-semantics
permits to manage this naturally, giving the negation operator of the lattice dif-
ferent meanings respective to the default assumption of the negated expression.
In [18] Eiter et. al. generalize their approach to so called HEX-Programs, where
the DL-atoms are replaced by atoms permitting to access a variety of differ-
ent external sources, not only DL-reasoners. To accomplish this, the rule syntax
and the answer set semantics are extended. The evaluation of these programs is
made possible by a splitting algorithm based on the dependency structure in the
program. Also based on DL-atoms, our approach was developed from another
perspective. Given the elegant yet expressive any-world semantics and the ease
of use of the hypotheses in KKS, we provide a logic programming environment
with access to description logics, while remaining close to Prolog programming.
We emphasize the use of the particular kind of information that can be drawn
from DL-reasoners as an open-world based system with an intuitive semantics.

Motik and Rosati present in [19] an approach for a system combining rules
and DL into one formalism. Based on MKNF [20] they join a decidable FOL
fragment with logic programming rules. The modality operators in their so called
hybrid MKNF knowledge bases allow to formulate rules to enforce closed world
reasoning while maintaining the open world assumption for the DL-part. Their
system also subsumes Rosati’s approach in [21]. There and more detailed in [22]
he discusses the relation of open and closed semantics in these hybrid systems.

7 Conclusions and Further Work

We have presented the hybrid reasoning system PrOWLog, which allows to com-
bine OWL DL with Prolog in such a way that the open-world semantics of OWL
DL can be captured within the Prolog system. To the best of our knowledge,
this is the first work which integrates a logic programming language and OWL
in such a way.

We perceive basically two lines of further research to follow up on our results.
On the one hand, studies remain to be done which show that the approach is
useful in practice. We believe that in particular an integration with F-Logic
reasoners is worth investigating, as F-Logic and OWL are two complementary
ontology paradigms, which are both used in practice. On the other hand, it
remains to be investigated whether the integration of Prolog and OWL can be
strengthened by weakening the layering, i.e. by allowing some flow of information
back to the OWL knowledge base, perhaps in a way similar to [18].

Acknowledgements. We gratefully acknowledge support by the German Ministry
for Education and Research under the SmartWeb project grant 01 IMD01 B, by
the European Commission under the NeOn project IST-2006-027595, and by

Any-World Access to OWL from Prolog 97

the Deutsche Forschungsgemeinschaft under the ReaSem project. We would also
like to thank the members of the OntoLoRe group at AIFB Karlsruhe, and in
particular Markus Krötzsch, for helpful discussions.

References

1. Loyer, Y., Straccia, U.: Any-world assumptions in logic programming. Theoretical
Computer Science 342, 351–381 (2005)

2. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42, 741–843 (1995)

3. Angele, J., Lausen, G.: Ontologies in F-logic. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, pp. 29–50. Springer, Heidelberg (2004)

4. Ginsberg, M.L.: Multivalued logics: A uniform approach to inference in artificial
intelligence. Computational Intelligence 4, 265–316 (1988)

5. Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern
Uses of Multiple-Valued Logic, pp. 5–37. Reidel, Dordrecht, Netherlands (1977)

6. Fitting, M.: The family of stable models. Journal of Logic Programming 17, 197–
225 (1993)

7. Fitting, M.: A kripke-kleene semantics for logic programs. Journal of Logic Pro-
gramming 2, 295–312 (1985)

8. Fitting, M.C.: Bilattices in logic programming. In: 20th International Symposium
on Multiple-Valued Logic, Charlotte, pp. 238–247. IEEE CS Press, Los Alamitos
(1990)

9. van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM 38, 620–650 (1991)

10. Tarski, A.: A lattice-theoretic fixpoint theorem and its applications. Pacific Journal
of Mathematics 5, 285–309 (1955)

11. Motik, B.: Reasoning in description logics using resolution and deductive databases.
PhD thesis, Universität Karlsruhe (2006)

12. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS,
vol. 1705, pp. 161–180. Springer, Heidelberg (1999)

13. Fitting, M.: Fixpoint semantics for logic programming – a survey. Theoretical Com-
puter Science 278, 25–51 (2002)

14. Kunen, K.: Negation in logic programming. Journal of Logic Programming 4, 289–
308 (1987)

15. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics
for description logic programs in the semantic web. In: Antoniou, G., Boley, H.
(eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

16. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. In: Dubois, D., Welty,
C.A., Williams, M.A. (eds.) KR2004: Principles of Knowledge Representation and
Reasoning, pp. 141–151. AAAI Press, Menlo Park, California (2004)

17. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–386 (1991)

18. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declar-
ative rules with external evaluations for semantic-web reasoning. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Hei-
delberg (2006)

98 T. Matzner and P. Hitzler

19. Motik, B., Rosati, R.: Closing semantic web ontologies. Technical report, University
of Manchester, UK (2006)

20. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings of
IJCAI-91, San Mateo, CA., pp. 381–386. Morgan Kaufmann, San Francisco (1991)

21. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International
Conference on Principles of Knowledge Representation and Reasoning, Lake Dis-
trict of the United Kingdom, June 2-5, 2006, pp. 68–78. AAAI Press (2006)

22. Rosati, R.: Semantic and computational advantages of the safe integration of on-
tologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703,
pp. 50–64. Springer, Heidelberg (2005)

Applying Logical Constraints to Ontology Matching

Christian Meilicke and Heiner Stuckenschmidt

Computer Science Institute
University of Mannheim

A5, 6 68159 Mannheim, Germany
{christian, heiner}@informatik.uni-mannheim.de

Abstract. Automatically discovering semantic relations between ontologies is
an important task with respect to overcoming semantic heterogeneity on the se-
mantic web. Ontology matching systems, however, often produce erroneous map-
pings. In this paper we propose a method for optimizing precision and recall of
existing matching systems. The principle of this method is based on the idea that
it is possible to infer logical constraints by comparing subsumption relations be-
tween concepts of the ontologies to be matched. In order to verify this principle
we implemented a system that uses our method as basis for optimizing map-
pings. We generated a set of synthetic ontologies and corresponding defective
mappings and studied the behavior of our method with respect to the properties
of the matching problem. The results show that our strategy actually improves the
quality of the generated mappings.

1 Motivation

Recently, a number of heuristic methods for matching concepts from different ontolo-
gies have been proposed. These methods rely mostly on computing similarities based
on linguistic and structural criteria. Evaluation studies have shown that existing meth-
ods often trade off precision and recall. The resulting mapping either contains a fair
amount of errors or only covers a small part of the ontologies involved [2,4]. Our goal
is to provide a component for matching systems that optimizes the results with respect
to both recall and precision of the generated mapping. The method that we suggest is
based on a reasoning approach that goes beyond existing structural methods and can be
classified as semantic-based technique due to Euzenat [3].

1.1 Problem Statement

In accordance to Euzenat [3] the problem of ontology matching can be defined in the
following way. For each ontology T there is a function Q(T) that defines matchable
elements of T . Given two ontologies T and T ′ the task of matching is to determine cor-
respondences between the matchable elements in the two ontologies. Correspondences
can be defined as 4-tuples 〈e, e′, r, c〉 where e ∈ Q(T), e′ ∈ Q′(T ′), r is a semantic
relation and c is a confidence value from a suitable structure 〈D,≤〉. In this work, we
only consider the simple case where e and e′ are concepts and r =′≡′ but there is some
evidence that our approach can also be extended to r ∈ {�,#,≡}.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 99–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

100 C. Meilicke and H. Stuckenschmidt

The problem we address in this paper is the following. Given a set of correspon-
dences M ′ between two ontologies T and T ′ generated as intermediary or final result
of a matching system and a set of correspondences M that contains all correct seman-
tic relations between elements from the two ontologies, to determine M ′ ∩M . In the
following we refer to a set of correspondences between two ontologies as a mapping.

1.2 Approach and Contributions

The approach taken in this work is to interpret the problem defined above on the one
hand as optimization problem with respect to the confidences of the correspondences
in M ′. On the other hand we assume that any acceptable solution to the problem has
to fulfill additional logical constraints imposed by the logical theories encoded in the
ontologies. In particular, semantic relations between ontologies should not cause any
inconsistencies. Therefore, we will develop a method that enables us to find a subset of
M ′ that is the optimal mapping among the consistent mappings in the powerset of M ′.
The concrete contributions of this work are:

– We propose a method for automatically optimizing automatically generated map-
pings based on a reasoning approach that is orthogonal to existing matching ap-
proaches.

– We give a detailed explanation of the developed algorithm and implemented it in a
tool for mapping optimization.

– We applied this tool on several synthetic data sets, to identify success factors for op-
timizing ontology mappings in terms of properties of the mapping and the matched
ontologies.

The paper is organized as follows. First, we discuss related work and explain why our
approach goes beyond existing structural methods used in ontology matching. In section
2 we introduce the main principle of our approach and define the mapping property of
consistency. In section 3 we describe the algorithms and components that our method is
based on and show how these components can be integrated into a system for optimiz-
ing mappings. The experiments we conducted are described in section 4. In particular,
we analyse the relation between certain properties of the matching problem and their
influence on the results of the suggested method. We close with a general discussion of
the approach and possible extensions in future work in section 5.

1.3 Related Work

A variety of methods for computing mappings have been proposed. A common feature
of these methods is that they are based on an initial mapping created by matching labels
that occur in the ontologies and successively improve this initial mapping by combining
and updating mappings based on certain heuristics [3]. The work described in this paper
is a new approach for combining and updating an initial mapping set.

So far two types of methods for improving an initial mapping have been proposed.
The first kind of approaches are so-called structural techniques. They are based on the
propagation of evidences for certain mapping hypotheses based on the structure of the

Applying Logical Constraints to Ontology Matching 101

ontologies. The GLUE system [1] uses relaxation labeling to update the probability
that a mapping is correct. The main idea is that the label (concept in the target ontol-
ogy) of a node (concept in the source ontology) is influenced by the features of the
nodes neighborhood in the subsumption graph. The OMEN tool [11] uses a Bayesian
network, where a node stands for a correspondence between classes or properties of the
ontologies and where an edge represents the influences between individual correspon-
dences. In order to generate conditional probability tables for the given network a set of
meta-rules is used.

The other kind of methods are so-called semantic methods that try to infer additional
correspondences or try to eliminate incorrect correspondences using logical reasoning.
The idea is to encode the semantics of concepts as well as the initial mapping in a log-
ical theory. Additional correspondences are inferred by proving implications between
formulas that represent concepts in the different ontologies. In [6] a semantic matching
approach is proposed that uses propositional logic for encoding the semantics of con-
cept labels and uses a SAT prover to derive mappings. In [8] the approach is extended to
the task of matching structured representations by coding them into description logics
and inferring subsumption relations across ontologies. A prequel of the approach de-
scribed in this paper has been suggested in [9] and [10] where we use conflict sets and
distributed reasoning to eliminate potentially incorrect correspondences. Notice that the
strategy suggested in [10] has only been applied in the context of mapping repairing.
The algorithm to solve this problem consists of a sequence of local decisions not tak-
ing into account the whole distribution of confidence values as well as the complex
interdependences between inconsistencies.

Both of these approaches have shortcomings. While structural approaches that rely
on numerical methods have problems in capturing hard semantic constraints, seman-
tic approaches that solely rely on logical reasoning are often too strict to capture all
valid mappings and suffer from problems in modelling the soft constraints implied by
confidence values. In our work we combine numerical and logical methods thereby
leveraging the problems of the individual approaches.

2 General Approach

In this section we revert to some examples based on the scenario that has been described
by Quine as radical translation [14]. Radical translation is concerned with the problem
of finding a correct translation manual for a fully unknown language L. Obviously,
this problem is closely related to the problem of finding a correct mapping between
ontologies. Therefore, it is useful to explain the intuition that forms the basis of our
strategy first in the context of radical translation. Later in this section, we will shift to
the problem of ontology matching and give a formal representation.

2.1 Translation

Suppose that a linguist wants to explore the unknown language L of some people that
have not been in contact to human civilization yet. The native people accept the re-
searcher and let him be part of their daily life. At the first stage of his project the linguist

102 C. Meilicke and H. Stuckenschmidt

simply observes the linguistic behavior of the natives and establishes some hypothesis
about the meaning of the words that are uttered by the natives. The following could be
a typical example for such a situation.

Example 1. The linguist and a native are standing in front of an oak tree. A rabbit is
sitting close to the tree. The native points at the direction of the tree and utters the
word ”Gavagai!”. The linguist considers two possible hypothesis about the meaning
of the word. Gavagai could on the one hand refer to oak or could on the other hand
refer to rabbit. He writes both hypothesis in his dictionary and marks them with a q as
questionable.

As time goes by, the linguist is able to utter simple sentences in L. He also finds out
which words and gestures mean approval and rejection. After a while he also manages
to ask questions of the form ”Are all x y?” translated to L. This enables him to apply a
more elaborative strategy.

Example 2. From time to time the linguist cleans up the entries in his dictionary. He
finds, amongst others, the following three entries.

gavagai = rabbitq (1)

gavagai = oakq (2)

snok = tree (3)

In order to find out if the first or the second entry has to be removed he asks the native
the question ”Are all gavagais snoks?”. The native looks quite confused and denies the
question. For that reason the linguist removes the second entry and keeps the first one.

The reasoning that is the base for the linguists decision follows this line. If gavagai
means oak and snok means tree then everything that is a gavagai also has to be a
snok, because the linguist knows that an oak is a special kind of a tree. He transfers this
subsumption relation to the concepts gavagai and snok. By asking the question ”Are
all gavagais snoks?” the linguist checks if this entailment is accepted by the native. The
native denies this question and therefore the linguist is justified in removing the second
or the third entry. Since he has marked the second entry as questionable he decides to
remove it instead of removing the third entry.

2.2 Formalization

The problem of radical translation is structurally closely related to the problem of auto-
mated generation of mappings between ontologies. An ontology can be understood as
a formal representation of (parts of) a language that can be used to talk about certain
parts of the world. Thus, every entry in the dictionary of the linguist can be interpreted
as a correspondence in an ontology mapping.

How can the strategy of the linguist be formalized in order to apply it to the problem
of matching ontologies? The linguist uses his dictionary to connect both views of the
world. By doing this he derives knowledge about the subsumption relations of the na-
tives concepts. The same can be done in the context of ontologies by defining the union
of two ontologies connected by a mapping in the following straight forward way.

Applying Logical Constraints to Ontology Matching 103

Definition 1 (Union of ontologies). Let T1 and T2 be ontologies (finite sets of axioms).
The union T1 ∪M T2 of T1 and T2 connected byM is defined as T1 ∪M T2 = T1 ∪T2 ∪
{t(x) | x ∈M} with t being a translation function that converts correspondences into
axioms in the following way:

t(〈1: C, 2 : D,≡, c〉) = 1: C ≡ 2 : D

Such a union ontology defines a taxonomy determined by the axioms of both ontologies
and the additional correspondence axioms. Consider again example 2. The linguist first
had the union ontology in mind that results from the mapping consisting of dictionary
entries 2 and 3. Therefore, the linguist inferred the axiom L : gavagai � L : snok. If
the native would accept this axiom his ontology would become inconsistent. Thus, the
native denies the question of the linguist. We call the corresponding notion mapping
consistency and introduce it formally as follows.

Definition 2 (Consistency of a Mapping). Given ontologies T1 and T2 and a mapping
M between T1 and T2.M is consistent iff there exists no concept i : C with i ∈ {1, 2}
such that Ti �|= i : C � ⊥ and T1 ∪M T2 |= i : C � ⊥. OtherwiseM is inconsistent.

As we have argued, an inconsistent mapping is a mapping that contains erroneous cor-
respondences. In the next section we will define the closely related notion of pairwise
mapping consistency and we will see how to apply it to the problem of mapping opti-
mization.

3 Algorithms

The problem stated in section 1.1 can now be addressed in the following way. On the
one hand we have to find a subset M∗ of M ′ that is an approximation of the correct
mapping M taking into account the confidence values of the correspondences in M ′.
Since we are only focussed on equivalence correspondences, we can restrict M∗ to be
a one-to-one mapping. A one-to-one mapping is a mapping that contains no pairs of
correspondences 〈c1, c2〉 with c1 �= c2 such that the source (target) concept of c1 is
also the source (target) concept of c2. On the other hand M∗ has to be a consistent
mapping. Thus, we need an efficient algorithm that finds a consistent mapping M∗ that
is also optimal with respect to the confidence values of M ′. We will now introduce
such an algorithm that is based on three components. The first two components provide
methods for optimization respectively checking consistency, while the third component
combines these methods to solve the problem.

3.1 Optimization

Finding an optimal solution to the one-to-one matching problem based on the confi-
dence values of the elements of M ′ depends on choosing an appropriate aggregation
function. We decided to maximize the sum of all confidence values. The optimization
problem can thus be stated in the following way:

104 C. Meilicke and H. Stuckenschmidt

Definition 3 (Optimal solution). Given a set of correspondences M ′, an optimal one-
to-one mapping Mopt ⊆ M ′ is a one-to-one mapping such that for every other one-to-
one mapping M ′′ ⊆ M ′ we have

∑
c∈Mopt

confidence(c) ≥
∑

c∈M ′′ confidence(c).

A standard algorithm to solve this problem is known as the hungarian method [7]. In
order to show how this method can be applied to our problem a few explanations have to
be given. The hungarian method expects a real-valued matrix as input and creates a one-
to-one assignment, such that the sum of the chosen entries is minimal. To use the hun-
garian method the input mapping M ′ has to be transformed into a corresponding matrix
H . Each concept of the source ontology corresponds to a row and each target concept
corresponds to a column. Since the hungarian method finds a minimal assignment an
entry in the matrix has to be interpreted as distance between two concepts, where the
distance between 1: C and 2 : D is defined as 1 − confidence(〈1: C, 2 : D,≡, c〉).
Without loss of generality we assume that the input confidence values are in the interval
[0, 1]. If there exists no such correspondence in M ′ the distance is set to ∞.

In most matching situations it will not be possible to match all or even the majority
of concepts. Matching candidates will thus not be available. Therefore, the input matrix
has to be extended by additional concepts that play the role of alternative matching can-
didates. We call these concepts phantom concepts. Thus, if n is the number of concepts
in T1 and m is the number of concepts in T2, we add m rows to the input matrix corre-
sponding to m phantom concepts 1: P1, . . . , 1: Pm as well as n columns corresponding
to n phantom concepts 2 : P1, . . . , 2 : Pn. The value of the entries in these rows respec-
tively columns is set to 1 + ε with ε > 0. Thus, for a given concept 1: C the algorithm
will first try to find a corresponding concept 2 : D. If this is not possible within the con-
text of global minimization one of the phantom concepts 2 : P1, . . . , 2 : Pn is chosen.
In such a case 1: C is interpreted as unmatchable.

Example 3. Assume mapping M consists of the following correspondences between
T1 and T2.

〈1: C, 2 : X, =, 0.94〉 (4)

〈1: C, 2 : Y, =, 0.29〉 (5)

〈1: D, 2 : X, =, 0.12〉 (6)

〈1: E, 2 : X, =, 0.31〉 (7)

The corresponding input matrix to the hungarian method looks like this:

j : X j : Y 2 : P1 2 : P2 2 : P3

1 : C 0.06 0.71 1 + ε 1 + ε 1 + ε
1 : D 0.88 ∞ 1 + ε 1 + ε 1 + ε
1 : E 0.69 ∞ 1 + ε 1 + ε 1 + ε
1 : P1 1 + ε 1 + ε 1 + ε 1 + ε 1 + ε
1 : P2 1 + ε 1 + ε 1 + ε 1 + ε 1 + ε

Suppose we set ε = 9. Applying the hungarian method will result in the one-to-one
mapping consisting of correspondences 5 and 7. Concept 1: D is mapped on a phan-
tom concept. The aggregated distance value for the chosen correspondences is 31.4. ε is

Applying Logical Constraints to Ontology Matching 105

an important parameter that affects the behaviour of the mapping extraction. Consider
again example 3 with ε set to 0.001. The hungarian method will now find another opti-
mal extraction consisting of only one correspondence, namely correspondence 4. This
mapping extraction has an aggregated cost of 4.1. The algorithm chooses this mapping,
since the cost of assinging an additional concept to a phantom concept is less than the
relatively high cost of choosing two correspondences with a high distance. We will later
see how to set the value of ε according to the properties of the matching problem to be
solved.

3.2 Reasoning

The second component of our system consists of an incomplete but efficient reasoning
method. This method can be used to detect mapping inconsistencies and subsets of
the mapping that cause these inconsistencies. As our approach extensively relies on
checking consistency in the mapped ontologies, using existing methods for reasoning
about ontologies is infeasible.

Therefore, we decided to use the following method that allows us to check mapping
consistency for each mapping of cardinality two. First, we use a reasoner to compute
the whole concept hierarchy of both T1 and T2. For each ontology Ti with i ∈ {1, 2}
we save the results in a subsumption matrix that contains the information if i : C is a
subclass of i : D for each pair of concepts 〈i : C, i : D〉. In the same way we prepare
a disjointness matrix that contains the information if two concepts are disjoint. Hav-
ing once computed these four matrices the reasoning method can be implemented by
comparing entries in matrices. Given a set of correspondences M = {〈1: C, 2 : D, =
, v1〉, 〈1: E, 2 : F, =, v2〉} we first check if 1: C is a subclass or superclass of 1: E.
If this is the case 2 : D and 2 : F cannot be disjoint because this would result in an
inconsistency in the union ontology T1 ∪M T2. We also apply the same procedure in
the other direction by entailing subsumption relations from T2 to T1 accompanied by
checking disjointness in T1. Notice that inconsistencies can also emerge, if a concept
j : D becomes a subclass of j : C even if j : C and j : D are not defined as disjoint in
Tj . This may happen if a subclass of j : D is defined as disjoint to j : C. Therefore, all
subclasses of a class that becomes subsumed have to be checked for disjointness, too.

In order to apply this strategy to a mapping M that consists of more than two cor-
respondences we check consistency of each dual-element subset of M . This results
in a correct but incomplete reasoning method for checking consistency of the whole
mapping M . We call a mapping M that is consistent for all pairs of correspondences
pairwise-consistent. The according property can be defined as follows.

Definition 4 (Pairwise-Consistency of a Mapping). Given ontologies T1 and T2 and
a mappingM between T1 and T2.M is pairwise-consistent iff there exists noM′ ⊆M
with |M′| = 2 such thatM′ is inconsistent. OtherwiseM is pairwise-inconsistent.

An advantage of this reasoning approach, in addition to its efficiency, is the fact that
we can restrict the reason for inconsistency to a pair of correspondences. Due to our
considerations in the previous sections, we thus know that one of the elements in the
pair cannot be accepted. Note that exactly the same kind of reasoning has been used by
the linguist in example 2.

106 C. Meilicke and H. Stuckenschmidt

Even though most of all inconsistencies can be detected by this strategy, there are
inconsistences consisting of more than two correspondences. Consider the following
example.

Example 4. Let T1 and T2 be ontologies describing the domain of conferences in a
slightly different way. Suppose that both ontologies contain the concepts Paper and
Poster. In T1 there is a super concept Submission that is defined as the union of
both concepts, while in T2 the equivalent concept is called Document. T1 contains
the additional concept ReviewedSumission which is defined to be a sub concept of
Submission. In T2 the concept SubmissionDeadline is defined to be disjoint with
Document. Now letM be a mapping between T1 and T2 that consists of the following
three correspondences.

〈1: Paper , 2 : Paper, =, 1.0〉 (8)

〈1: Poster , 2 : Poster, =, 1.0〉 (9)

〈1: ReviewedSubmission , 2 : SubmissionDeadline =, 0.52〉 (10)

By using 8 and 9 it can be inferred that 1: Submisson and 2 : Document are equiv-
alent concepts. Now we have the situation that in T1 ReviewedSubmission is a sub-
concept of Submission while in T2 SubmissionDeadline is disjoint with Document
which results in a conflict with correspondence 10. Thus, we have an example for a
mapping that is obviously inconsistent due to definition 2, but contains no inconsistent
pair of correspondences due to definition 4.

Notice that example 4 is quite complex. Combinations of correspondences that follow a
similar pattern will occur relatively infrequently in automatically generated mappings.
In experiments on real-world ontologies this consideration could be verified.

3.3 Search

The two components described in the sections above can be combined in a uniform cost
search. Thus, it is possible to find the best solution to the matching problem among
the set of all pairwise-consistent solutions. The algorithm starts with the optimal solu-
tion that results from applying the hungarian method to the original matching problem
as root node. Therefore, we convert the input mapping M to a distance matrix H as
described in section 3.1 and compute the optimal one-to-one mapping M ′. If M ′ is a
consistent mapping, we have found a solution to the problem in the first step. If M ′

is not pairwise-consistent, there exists at least one conflicting pair of correspondences
〈c1, c2〉 in M ′. We now know that a consistent solution must not contain both c1 and c2,
while it is possible that one of these correspondences is contained in the final solution
that we are searching for. Therefore, we have to consider two branches in our search
tree. In the first branch we have to search for a solution that must not contain c1, while
in the second branch we have to search for a solution that must not contain c2.

Now remember that the hungarian method will never chose a mapping that consists
of a correspondence with a distance value of ∞. We can make use of this property to

Applying Logical Constraints to Ontology Matching 107

create the branches in the search tree. Therefore, we have to set the cell corresponding
to c1 to ∞ in the first branch while setting the cell corresponding to c2 to ∞ in the
second branch. In the following we describe this procedure as locking a cell in H , which
corresponds to making the associated correspondence unavailable in this branch. In this
way we create new search states based on the results of the consistency checks applied
to every state that gets expanded. For each new search state we compute its aggregated
minimum value by applying the hungarian method and save the state and its associated
minimum in minimum-priority queue. Notice that a search state is fully described by a
set of locked cells and the associated minimum with respect to a particular input matrix
H . In each step of the search we expand the state with lowest minimum. Thus, our
algorithm finally results in a uniform cost search that uses the techniques described in
the sections above to create new search states and to decide which states to expand first.

The algorithm terminates if it expands a state that corresponds to a pairwise consis-
tent mapping. Due to the property of the uniform cost search, to first expand a set of
locks with lowest aggregated distance, any other set of locks with a lower aggregated
distance must have been expanded in an earlier step of the search, and thus has to be
a pairwise-inconsistent mapping. Therefore, the algorithm will always find an optimal
pairwise-consistent solution to the matching problem.

The runtime of the algorithm is exponential in worst case. The actual runtime de-
pends on the structure of the input matrix. The most influential parameters are the size of
the input mapping M , the size of the ontologies, the number of pairwise-inconsistencies
caused by M , the quality of the confidence ordering in M with respect to correct and
incorrect correspondences, and the number of matching alternatives in M .

4 Experiments

In the following we describe some of the experiments we conducted on synthetic data
sets. In these experiments we examine the relation between certain parameters of the
matching problem on the one hand and precision and recall of our algorithm on the
other hand. In particular, we will address the following questions:

– How does the fraction of correct correspondences in the mapping affect the re-
sults of our approach?

– In how far does the fraction of concepts to be covered via correspondences in-
fluence the results?

– How strong and under which circumstances does the quality of the confidences
affect the optimization process?

– Does the structure of the ontologies influence the results of our approach?

By using synthetic datasets we can vary these parameters with respect to the question
under discussion. Besides the properties of the matching problems we will also vary ε
and study interrelations between different ε-values and the characteristics of the match-
ing problem.

4.1 Experimental Settings

Data sets. We construct some synthetic ontologies Tb,d where b denotes the branch-
ing factor and d the depths of the subsumption hierarchy. Further, we define sibling

108 C. Meilicke and H. Stuckenschmidt

concepts to be disjoint. We consider one-to-one mappings Mb,d to the same ontology,
matching each concept to itself. In the experiments we randomly choose subsets of Mb,d

of varying size to represent correct correspondences between concepts. We refer to the
size of this subset as coverage in the following. In addition, we add a certain amount
of incorrect correspondences by linking randomly chosen concepts C �= D from Tb,d.
To simulate matching systems that differ in the quality of confidence estimations we
assign confidence values to correct and incorrect correspondences according to certain
patterns that will be explained below. Notice that a synthetic mapping M ′ constructed
in this way has to be understood as an intermediate result of a matching system. The
final result has to be extracted from M ′. This final step is often done using the hungar-
ian method [7] which produces an global optimum (see [3]). Therefore, we will always
compare the synthetic mapping after applying the hungarian method, to the mapping
after applying our algorithm.

Experiments. The first experiment is based on the synthetic ontology T3,3 and the
associated mapping M3,3. We generated M3,3 and decided to analyze subsets with a
coverage from 0.1 to 1.0 increasing the coverage stepwise by 0.05. For each of these
mappings we added n incorrect correspondences respectively n/3 incorrect correspon-
dences where n is the number of concepts in the particular mapping. Thus, we created
mappings with a precision of 0.5 respectively 0.75. For each mapping we distributed
confidence values randomly not distinguishing between correct and incorrect corre-
spondences. Notice that such a distribution is a challenge for every approach that tries
to improve the quality of an input mapping. It can be adopted that matching systems
will generate more reliable confidence estimations in most cases. Normally, the recall
of a mapping M ′ is defined as |M ′ ∩M |/|M |, where M is the reference mapping that
contains all correct correspondences between the ontologies to be matched. Since M
is not known to us we compare the number of correct correspondences in the synthetic
mapping to the number of correct correspondences left after applying the standard ex-
traction respectively our algorithm and interpret the fraction as recall.

In the second experiment we are concerned with the probability of a correct cor-
respondence having a greater confidence value than an incorrect correspondence. We
refer to this probability as the perfection of a mapping. Notice that this parameter is
different from the precision of a mapping. More precisely, the perfection of a mapping
is the probability that a randomly chosen correct correspondence has a higher confi-
dence than a randomly chosen incorrect correspondence. Again, we created M3,3 and
randomly chose subsets with a coverage of 0.2. In contrast to the first experiment we
added more incorrect correspondences resulting in a relatively low precision of 0.3. To
study different distributions of confidence values we increased perfection from 0.5 to
0.9 stepwise by 0.1. A mapping with low precision but relatively high perfection can
be regarded as the intermediary result of a matching system which is optimized for re-
call. In order to compare the effects of different ε-values we applied the algorithm with
ε = 0.001 and ε = 100. For each configuration we repeated the experiment 100 times
focussing on the resulting mean values.

The third experiment deals with the issue of different subsumption hierarchies.
Therefore, we decided to apply our algorithm on ontologies that differ in depth and
branching factor to obtain information about the influence on the optimization process.

Applying Logical Constraints to Ontology Matching 109

4.2 Experimental Results

The results of the first experiment are presented in figure 1. The left side shows the
results with respect to precision, the right side refers to recall. There are four curves
plotted in both parts of the figure. The data series resulting from an input mapping
with a precision of 0.75 are marked with a rectangle. The data series resulting from an
input mapping with a precision of 0.5 are marked with a circle. For both experiments
we compared the mapping after applying the hungarian method (dashed grey line) to
the mapping after applying our algorithm (black solid line). The results are based on
randomly creating 500 mappings for each setting computing the mean of precision and
recall with ε set to a high value, that forces our algorithm to find a consistent mapping
that has a maximum number of elements.

Fig. 1. Precision and recall with respect to coverage and precision of the input mapping

First, let us consider the results with respect to precision. For an input precision of 0.5
and a coverage from 0.05 to 0.6 we observe a difference of approximately 20% compar-
ing the straight forward one-to-one mapping extraction to the results based on applying
our algorithm. The differences become smaller with increasing coverage. Notice that in
most real world matching problems there will only be a relatively low coverage. Even if
two ontologies describe largely overlapping domains their concepts can be overlapping
without being equivalent. Equivalence correspondences will thus only cover a small
number of concepts. Therefore, the results for a high coverage are of minor interest.
For an input precision of 0.75 we can observe a similar pattern. The precision of the
one-to-one mapping extraction starts at 0.9 while applying logical constraints increases
this value to 0.97 even for a coverage of 0.05. For a coverage above 0.35 the average
precision of the optimized mapping is continuous greater than 0.99.

The results for recall are similar to the results for precision. As mentioned above we
defined recall in our setting with respect to the correct correspondences of the input
mapping. Thus, the first extraction as well as the final extraction decreases the actual
recall of the input mapping that we interpreted as the initial or intermediary result of a
matching system. But since any matching system that aims at generating a one-to-one
mapping has to find an extraction from an intermediary result - which could e.g. be a
whole similarity matrix - we are well-founded in comparing the extraction based on the
hungarian method to the application of our algorithm. For settings with a low coverage

110 C. Meilicke and H. Stuckenschmidt

we can increase recall by approximately 5% for both mappings with a precision of 0.5
and 0.75. These results look unusual at first sight. One might have expected a trade-
off between precision and recall. The reason for increasing both precision and recall is
based on the fact that our method does not filter out particular correspondences as long
as an alternative is available. More precisely, instead of selecting a subset of the first
extraction, the algorithm forces rearrangements upon the assignments available. These
rearrangements will with some probability result in choosing more correct correspon-
dences compared to the first or some of the previous mapping extractions computed in
the search procedure. This approach is opposed to the method suggested in [9] where
inconsistencies are used to filter out correspondences by removing the correspondence
with the lowest confidence in a conflict set.

We can therefore conclude that the proposed approach is capable of increasing pre-
cision as well as recall of an input mapping to a substantial extent for both low and
high input precision. Actually, our algorithm has stronger effects on input mappings
with a low precision. The explanation for this observation is simply based on the fact
that with increasing number of incorrect correspondences the probability of conflict-
ing pairs of correspondences increases, too. Nevertheless, this consideration can only
be extended to a certain degree. For an input mapping M with extremly low precision
there could also be a subset M∗ of M consisting mostly of incorrect correspondences
that are pairwise-consistent. If this subset is larger than the subset of correct corre-
spondences M ′ (extended by some incorrect and not conflicting correspondences) the
algorithm will choose M∗ instead of M ′. You should also notice that there is a sub-
stantial variance not depicted in the mean values of figure 1. By taking a look at the
negative outliers that cause this variance, the pattern just mentioned can be detected.
Since the probability of consistent sets of type M∗ decreases with increasing size of
M , the variance decreases also with increasing coverage.

Table 1. The influence of perfection on precision and recall for low and high ε

ε = 0.001 ε = 100
Perfection Precision Recall f-value Precision Recall f-value Δ f-value

0.5 0.370 0.551 0.443 0.399 0.634 0.490 -0.047
0.6 0.389 0.589 0.468 0.393 0.630 0.484 -0.016
0.7 0.431 0.659 0.521 0.417 0.671 0.514 0.007
0.8 0.458 0.705 0.555 0.434 0.702 0.536 0.019
0.9 0.478 0.739 0.581 0.446 0.724 0.552 0.029

In the second experiment we focussed on the relation between the value of ε and
the perfection of the input mapping. The results of this experiment are summarized in
table 1. Each row in the table shows the results for a particular input perfection. Besides
precision and recall we also added the f-value which is the weighted harmonic mean
of both. This value provides us with an overall estimation of the performance of our

Applying Logical Constraints to Ontology Matching 111

algorithm. In order to compare the results for ε = 0.001 and ε = 100 we listed
the differences of both approaches with respect to the resulting f-values in the last
column.

First, we see that there is a strong positive correlation between perfection of the input
mapping and precision respectively recall of the outcome. This result is not suprising.
Nevertheless, it shows that the algorithm makes use of the additional information en-
coded in the confidence values. It is more interesting that for ε = 0.001 this information
has much stronger positive effects. With respect to the f-value we gain an advancement
of 0.138 for ε = 0.001 if we compare both extremes in perfection, while the advance-
ment for ε = 100 is limited to 0.062. What is the reason for this difference? Assume
there are (amongst others) two overlapping pairs of conflicting correspondences 〈c1, c2〉
and 〈c1, c3〉 in the input mapping. There are two possibilities to solve this problem: Dis-
card c1 or discard c2 and c3. In the context of the algorithm we would put a lock on the
associated cells in the matrix. If we now choose a high ε value the algorithm is forced
to take the first option, not at all taking into account the confidence values involved.
The situation changes if we set ε = 0.001. Now the algorithm will make its decision
based on comparing confidence(c1) + 1.01 to confidence(c2) + confidence(c3).
A decision that is based on this comparison, obviously, makes sense only if the con-
fidence values under consideration are with some probability correct estimations. By
definition the perfection of a mapping is a parameter that is characteristic for this prob-
ability. For a high perfection decisions based on the consideration explained above will
expand the search tree in the correct direction with a high probability, while for a low
precision these considerations will be misleading. This explains the values presented in
the last column. For a low precision the conservative strategy - using a high ε value and
therefore keeping as much correspondences as possible - works better, while for a high
perfection the conservative strategy cannot exploit the additional information encoded
in the confidence values to its full extent.

In the third experiment we studied the behavior of the algorithm working with on-
tologies that differ in their hierarchical structure. Obviously, the applicability of our
algorithm relies on the existence of pairwise inconsistencies. With respect to the syn-
thetic ontologies we used in our experiments the number of subsumption statements
and disjointness statements is determined by the branching factor and the depth. Thus,
we varied these parameters to understand their impact on the results. In one of our test-
cases we compared mappings for T7,2 (relatively flat subsumption hierarchy with 56
concepts) and T2,5 (deep subsumption hierarchy with 62 concepts). We could achieve
stronger effects in optimizing mappings linking concepts of T2,5. Compared to T7,2 we
measured 8% more precision and 3% more recall. There are several reasons for this
difference. With respect to T7,2 pairwise inconsistencies will on the one hand only oc-
cur, if there are some correspondences in the input mapping that link concepts of the
first level. On the other hand incorrect correspondences linking sibling concepts that
are leaves will never cause pairwise-inconsistencies in a one-to-one mapping. If we
compare results for e.g. T4,3 to T2,5 the differences become noticeable smaller. We can
conclude that our approach works slightly better on matching ontologies with a deep
subsumption hierarchy.

112 C. Meilicke and H. Stuckenschmidt

5 Discussion and Conclusions

We presented an approach to optimize matching systems based on a combination of nu-
merical optimization and logical reasoning, thereby leveraging the problems of existing
approaches that are solely based on optimization or logical reasoning, respectively.

We introduced the basic principle of the approach based on the idea of radical transla-
tion and transferred it to the problem of matching ontologies. We defined the properties
of mapping consistency and pairwise mapping consistency as a basis for automating this
principle. We presented an algorithm for computing an optimal and pairwise-consistent
mapping that combines the hungarian method with a uniform cost search over the space
of pairwise consistent mappings. We ran several experiments on synthetic data sets and
showed that our method increases precision and recall of a mapping in comparison to
the result of applying standard optimization techniques without considering mapping
consistency. In particular, we showed that even for mappings with poor confidence es-
timations our approach works quite well.

There are two main lines of future work. The first is concerned with improving the
efficiency of our method to scale up to large real world ontologies. While the incomplete
reasoning method we use is rather efficient due to the pre-compilation of the subsump-
tion and the disjointness matrix, the complexity of the current approach is mainly influ-
enced by the optimization and the search procedure. The hungarian algorithm currently
used for the optimization has a complexity of O(n3). Sacrificing global optimality we
can improve this by replacing the hungarian method with the Gale-Shapley algorithm
[5] which runs in O(n2). We expect major improvements from using more sophisti-
cated search procedures instead of uniform cost search to deal with the combinatorial
explosion of space of consistent mappings. We will also investigate the use of efficient
but incomplete search methods such as greedy or stochastic local search.

The second major point for future work is the systematic application of the method to
real data sets. In this paper, our aim was to better understand the behavior of our method
in terms of the influence of different problem characteristics. For this purpose, artificial
data sets are better suited than real ones. Now that we gained an understanding of the
success factors, we are ready to tackle real matching problems. First experiments we
carried out on data sets from the ontology alignment evaluation initiative have shown
that the critical point here is the assumption we make about the presence of disjoint-
ness statements in the ontologies. It turned out that ontologies often do not contain such
statements even though the concepts are clearly disjoint. A possible solution is to sim-
ply add disjoint statements for all sibling concepts. In [12] it has been shown that this
radical approach works well in many cases. A more sophisticated approach is to try to
learn disjointness statements for underspecified ontologies based on suitable text cor-
pora and background knowledge. In [13] first results for this approach are reported that
suggest that learning is indeed feasible. We will investigate and contrast these different
approaches on real data in future work.

Acknowledgement

The work has been partially supported by the German Science Foundation (DFG) in the
Emmy Noether Programme under contract STU 266/3-1.

Applying Logical Constraints to Ontology Matching 113

References

1. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match on-
tologies on the semantic web. The International Journal on Very Large Data Bases 12, 303–
319 (2003)

2. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V., van Hage,
W.R., Yatskevich, M.: First results of the ontology alignment evaluation initiative 2006. In:
Benjamins, R., Euzenat, J., Noy, N., Shvaiko, P., Stuckenschmidt, H., Uschold, M. (eds.) Pro-
ceedings of the ISWC 2006 Workshop on Ontology Matching, Springer, Heidelberg (2006)

3. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (to appear, 2007)
4. Euzenat, J., Stuckenschmidt, H., Yatskevich, M.: Introduction to the ontology alignment eval-

uation 2005. In: Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, Banff,
Canada (2005)

5. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathe-
matical Monthly, 9–14 (1962)

6. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and implemen-
tation. Journal on Data Semantics (to appear, 2007)

7. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics,
83–97 (1955)

8. Sceffer, S., Bouquet, P., Serafini, L., Zanobini, S.: Matching hierarchical classifications
with attributes. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 4–18.
Springer, Heidelberg (2006)

9. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Improving automatically created mappings
using logical reasoning. In: ISWC-06 Workshop on Ontology Matching, Athens, GA, USA
(2006)

10. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: Proceed-
ings of the Twenty-Second Conference on Artificial Intelligence (AAAI-07), Vancouver,
Canada (2007)

11. Mitra, P., Noy, N.F., Jaiswal, A.R.: Omen: A probabilistic ontology mapping tool. In: ISWC-
04 Workshop on Meaning Coordination and Negotiation, Hiroshima, Japan (2004)

12. Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, Springer, Heidelberg (2005)

13. Völker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Proceedings of the
4th European Semantic Web Conference (ESWC’07), Springer, Heidelberg (2007)

14. Quine, W.V.: Word and Object. MIT Press, Cambridge (1960)

Resolving Inconsistencies in Probabilistic

Knowledge Bases

Marc Finthammer, Gabriele Kern-Isberner, and Manuela Ritterskamp

Department of Computer Science, University of Dortmund, Germany

Abstract. The focus of this paper is on the practical aspects of ef-
ficiently resolving inconsistencies when merging probabilistic rule sets.
We consider the problem of prioritized merging, when one core knowl-
edge base is to be used without modifications and to be extended by
information from other sources. This problem is addressed by our flexi-
ble system Heureka that aims at restoring consistency by finding those
parts of the additional rule bases which are compatible with the core
base and are considered most valuable by the user. We give an overview
on the methodological framework of the system and describe some de-
tails of its main techniques. In particular, Heureka offers a convenient
interface to inductive probabilistic reasoning on maximum entropy. An
example from the domain of auditing illustrates the problem and the
practical applicability of our framework.

1 Introduction

When building up a knowledge base for modeling a problem domain, inconsis-
tencies may easily arise during the process of merging information from different
sources. For instance, to get a broader view on the problem under consideration
and a deeper understanding of the domain, several experts might be asked for
their opinions. Although each of them expresses her knowledge consistently, their
different perspectives may yield an inconsistent knowledge base when simply
joining the corresponding pieces of information. Or, for similar reasons, statisti-
cal knowledge discovered by a data mining process might prove incompatible to
subjective knowledge extracted from textbooks or practical experiences.

This is all the more true for probabilistic knowledge representation. A proba-
bilistic knowledge base is inconsistent iff there is no probability distribution sat-
isfying it. Methods for eliminating inconsistencies in classical knowledge bases
(cf. e.g. [FFJ+00]) do not help much as the inconsistencies arise from the prob-
abilities, the interactions of which are hard to control. For instance, there is
no distribution satisfying R = {(B|A)[0.6], (B|¬A)[0.7], A[0.5], B[0.7]}, so R is
nearly useless, as no further knowledge can be derived. In the context of eco-
nomics, fusion operators for probability distributions have been developed (cf.
e.g. [GZ86, CW99]) which lack, however, the transparency of knowledge based
methods. An overview on AI approaches to information fusion for purposes such
as query answering, or decision making is given in [BH01]. In [KIR04], a method
to fuse probabilistic rule bases with reasonable formal properties is described.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 114–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Resolving Inconsistencies in Probabilistic Knowledge Bases 115

The focus of this paper is rather on the practical aspects of efficiently resolving
inconsistencies when merging probabilistic rule sets. To be more precise, we will
consider the problem of prioritized merging, when one core knowledge base is to
be extended by pieces of information from other sources. So, while it is ensured
that all rules of the core base will be used without modifications, the methods
to be presented in this paper aim at finding those parts of the additional rule
bases which are most valuable and compatible with the core base. This is in
contrast to the approach described in [KIR04], where all available knowledge is
used but possibly weakened. As our main concern is not on formal properties but
on flexibility, practical applicability and efficient computations, our optimization
criteria make use of heuristics which are, however, clearly related to theoretical
foundations. The practical relevance of such heuristics is obvious. Building up a
probabilistic knowledge base might be quite expensive, but any extension with
incompatible information will make it inconsistent and hence useless, even if the
added information is consistent and valuable of its own. We will present several
heuristics to solve this problem in an optimal way. All optimization criteria will
be made explicit and clear, in order to justify the heuristics and to help the user
find the most appropriate solution.

All heuristics have been implemented by making use of the probabilistic expert
system Spirit [RRK06], which is able to process incomplete, uncertain and
subjective knowledge on optimum entropy. Spirit features especially efficient
data structures and algorithms and provides a class library (the Spirit-API),
which makes the functionality and data structures available to other applications.
We make use of the Spirit-API in our system Heureka to realize the processing
of Spirit knowledge bases and to implement an efficient consistency check. A
running example will be given to illustrate the problem and to present Heureka.
Both the heuristics and the implementation go back to [Fin06].

The rest of this paper is organized as follows: In Sec. 2 we start with a mo-
tivating example in the context of auditing. In Sec. 3 we describe the structure
of our framework, which was designed to automatically eliminate inconsistencies
in a very user-orientated way. Section 4 covers the user’s options to specify his
objectives. In Sec. 5 we exemplarily present two of the most important heuristics
of our framework in detail. In Sec. 6 we revert to the auditing example to show
the framework’s usefulness in practice and conclude in Sec. 7 with perspectives
for further work.

2 A Motivating Example from the Domain of Auditing

While performing an audit, the auditor has to estimate the risk that the financial
statement of the company has been manipulated. It is common practice that the
auditor uses a checklist with appropriate risk indicators, so called red flags, to
estimate the fraud risk. For each red flag on the checklist, the auditor has to
determine whether it is present or absent in the company.

Albrecht and Romney [AR86] have explored the significance of commonly
accepted red flags. Their study gives detailed information about the correlation

116 M. Finthammer, G. Kern-Isberner, and M. Ritterskamp

between the presence of red flags and the presence of management fraud. For
each of the 31 analyzed red flags, the study shows how frequently the red flag
was observed in cases of manipulated and not manipulated financial statements,
respectively. Table 1 shows a short excerpt from that study.

Table 1. Some red flags from the study and their presence in fraud and no-fraud cases

Red Flag
In Case of

Fraud
In Case of
No Fraud

Key Executives with High Personal Debts or Financial Losses 44 % 5 %
Key Executives Who Continually Rationalize Failures 40 % 6 %
Poor Staffing of Accounting Department 44 % 11 %
Significant Related Party Transactions 50 % 23 %

2.1 Building a Knowledge Base

We used the statistical data the study provides for 31 red flags to build up a
probabilistic knowledge base. Every red flag corresponds to a binary variable in
the knowledge base. Moreover, the binary variable Fraud indicates the presence
respectively absence of fraud. For each red flag variable, we insert two probabilis-
tic rules into the knowledge base according to the schema which is obvious from
Table 1. For instance, Fraud � KE Debts [0.44] and ¬Fraud � KE Debts [0.05]
encode the information from the first line of Table 1.

In this way, we insert two rules for each of the red flags, so we end up with
62 rules that model the relation between red flags and fraud. In addition, the
fact Fraud [0.50] is added to the knowledge base to model the a priori probabil-
ity of fraud, i.e. the estimated probability of fraud without further knowledge.
To simplify matters, we have chosen an a priori probability of 50 % to make
the relative probability change easy to read. In principle, a more realistic fraud
probability, e.g. 1 %, or other probabilities reflecting subjective beliefs could be
applied instead. These 63 rules form the rule set RRF, which is used as a knowl-
edge base for Spirit. As a statistical investigation underlies it,RRF is consistent.
So Spirit can be applied to calculate the maximum entropy distribution over
the 32 variables, on the basis of which a red flag checklist can be evaluated by
instantiating the flags. In particular, the marginal probability of the variable
Fraud corresponding to the current fraud risk will be computed by Spirit.

2.2 Extending the Knowledge Base

A closer look at the 31 red flags reveals that some of these red flags have quite
a similar meaning or cover the same circumstances in a more general or more
specific way. However, these correlations have not been modeled in the KRF

knowledge base yet; just to the contrary, the modeling in KRF makes them con-
ditionally independent given Fraud. As a consequence, if these meaning-related
red flags are observed together, the fraud risk is often overestimated. To handle

Resolving Inconsistencies in Probabilistic Knowledge Bases 117

this problem, we have to append some additional rules to the knowledge base,
like the following ones:

KE Greed � KE Low Moral Character [0.60]
KE Living Beyond Means � KE Debts [0.85]

No Internal Auditing Staff � Inadequate Internal Controls [0.90]
Lack of Personnels Policies � No Rules of Personal Conduct [0.75]

These rules reflect common sense knowledge or subjective beliefs, respectively,
and are called interdependency rules here. We composed 20 interdependency
rules overall, which form the rule set RI. The extended knowledge base, contain-
ing the rules RRF ∪RI, is called KRFI.

Adding the 20 interdependency rules to the knowledge base aimed at refining
statistical information by expert knowledge, but leads to much more complex
connections between the variables. The increased complexity causes the KRFI

knowledge base to be inconsistent, i.e. there exists no distribution that fulfills
all 83 rules of KRFI. As a consequence of this inconsistency, it is not possible
to query the knowledge base, since there is no distribution to evaluate a query.
Therefore, inference is not feasible and the knowledge base is virtually useless,
as long as its rule set is inconsistent.

At this point, the user of the knowledge base has to perform a very difficult
and time consuming task: He has to modify the inconsistent rule set in some
way to resolve the contradictions among the rules, in order to obtain a modified
but consistent rule set. Since there are no hints, which rule has to be modified
in what way, the user has to solve quite a complex problem. Even if he succeeds
in constructing a consistent rule set, he cannot be sure if there might have been
a better way to eliminate the inconsistencies. This means that the user has no
clue if the constructed rule set is really the best alternative to the inconsistent
one or if another consistent rule set could have been constructed by less “severe”
modifications.

In principle, there are three ways to modify a probabilistic rule set in order
to resolve inconsistencies. One kind of modification is simply to remove certain
rules from the set to eliminate the contradictions caused by these rules. Removing
rules results in a loss of knowledge, but the knowledge is not altered in a wrong
way. Another kind of modification is to change the prescribed probabilities of
some rules. Because of the complex connections between probabilistic rules, even
a slight change might be enough to eliminate the inconsistencies. However, mod-
ifying the probabilities alters the knowledge expressed by these rules. Whether
this modification is still acceptable or it must be seen as a falsification of the
knowledge, depends on the degree of modification. A third kind of modification
is to change the logical structure of some rules. Changing the logical formula of
the premise or the conclusion of a rule involves generally a severe change in the
meaning of the rule. Thus, it is applicable only in exceptional cases and must
be done with care not to falsify the whole knowledge expressed by the rule set.
Hence, this kind of modification is particularly not practical for an automated
removal of inconsistencies.

118 M. Finthammer, G. Kern-Isberner, and M. Ritterskamp

3 Overall Concept of Heureka

Heureka is an implemented system that helps building up probabilistic knowl-
edge bases from possibly inconsistent sets of probabilistic rules. Both premises
and conclusions of these rules are propositional formulas, and each rule comes
along with a probability value which is interpreted as the corresponding condi-
tional probability. Heureka is tailor-made for inductive probabilistic reasoning
based on optimum entropy [KIR04], as it can be carried out by the aid of Spirit,
but it can also be used as a stand-alone system helping to restore consistency
in probabilistic knowledge bases in an automated but quite flexible and espe-
cially user-friendly way. To this aim, Heureka offers several algorithms that
make use of heuristics which are based on sophisticated techniques. Four central
cornerstones make up a frame for Heureka (cf. also Fig. 1):

Consideration as an optimization problem: Most importantly, the task of
extracting consistent rule sets out of inconsistent knowledge bases is considered
as an optimization problem. Every valid consistent rule set provided by a mod-
ification procedure represents a solution to this problem. The user can choose
the optimization criterion (see Sec. 4), which offers him great flexibility when
looking for solutions. Regarding the criterion, a total order on the set of solutions
is created.

Fig. 1. Components of the framework and their interaction to eliminate inconsistencies

Resolving Inconsistencies in Probabilistic Knowledge Bases 119

Modular structure of the system of heuristics: The user can use and
combine the designed heuristics in a multifaceted way. He is enabled to easily
extend them and adapt them to his desires and needs. This is all possible due
to the modular structure of the multilayer system of the heuristics. The highest
layer consists of the so-called consistency heuristics (see Sec. 5), which follow
diverse approaches to resolve inconsistencies. An important distinctive feature of
these heuristics is the way the inconsistent knowledge base is modified: Solutions
can be generated by deleting some rules or by changing the probabilities of
rules within preassigned intervals. The consistency heuristics make use of several
subheuristics, for example heuristics to solve subproblems (see Sec. 5.1) or to
choose subsets of rules (see Sec. 4), all of them can easily be replaced or extended.

Rule parameters: The combination of the heuristics is one option to customize
the way the inconsistencies are solved. In order to exert a more detailed influ-
ence on how the rules are addressed, the user may specify special parameters
of the rules. This will have an effect on the modus operandi of the heuristics
and enables the user to define the optimization problem in more detail. The
most fundamental of these parameters is the parameter rule application, as its
options define whether the rule will be taken into consideration for being part of
a solution at all. The possible values are “never”, “always”, and “by heuristic”.
The first option is mainly used for query rules in Spirit. The option “always”
enforces rules to be part of any solution; e.g., the rules of the core knowledge
base are always-rules. The last option leaves the decision to the heuristic. Fur-
thermore, priority values between 1 and 10 can be assigned to the rules which
can make rules more or less important both for the consistency heuristics and
the optimization criteria. Finally, the parameters lower delta and upper delta
are used for defining lower and upper bounds of a probability interval when rule
probabilities are to be modified.

Consistency check: The last key concept of our framework is the consistency
check, which is crucial for each consistency heuristic in terms of correctness
and calculation speed. From the heuristic’s point of view, the consistency check
module is a black box accomplishing this test. In turn, the consistency check
module does not consider the context under which the check is performed. Thus,
our module, which utilizes Spirit-API functions, can easily be substituted by
another algorithm if desirable.

We will explain the first three of these cornerstones in more detail in the
following sections.

4 Optimization Criteria and Ranking Heuristics

In order to meet the particular needs of the user in a most flexible and appro-
priate way, Heureka offers him various optimization criteria to be applied:

Number of Used Rules → max: A solution is considered the better, the more
rules it contains. This criterion is very useful if the user is interested in keeping
as many rules as possible.

120 M. Finthammer, G. Kern-Isberner, and M. Ritterskamp

Sum of Priorities → max: In this case, the custom priorities, which the user
assigned to the rules, are considered. The priorities of the rules in a solution are
added up. The higher the sum, the higher is the objective function value of the
solution.
Weight → max: This criterion gives the user even more flexibility: He can
define weighting factors for the weighted sum of the number of the rules and the
sum of the priorities. The higher the weighted sum, the better is the solution.
Entropy → min: For every solution, the entropy of the appertaining maximum
entropy distribution is computed. The lower the entropy, which means the lower
the indeterminacy, the better is the solution. This criterion is very valuable if
the user is interested in most informative solutions.

An important property of all these optimization criteria is their monotony:
They do not provide a higher objective function value if a rule is removed from
a given solution, or, in turn, adding a rule to a given solution does not decrease
the quality of the solution if consistency is maintained. The monotony is a basic
prerequisite for the procedural methods within the consistency heuristics, as it
assures an efficient calculation of the solutions by focusing on one rule at a time.

Therefore, an ordering on the rules is needed in various places of the con-
sistency heuristics. For this, so-called ranking heuristics are used, which select
the next rule to be considered. A sophisticated selection may highly increase
the performance of the consistency heuristics. Therefore, we made the ranking
heuristics exchangeable modules, in order to provide more flexibility and room
for improvements. For evaluation purposes, we also implemented ranking heuris-
tics which produce random orders.

5 Consistency Heuristics

We have developed several consistency heuristics, which generate solutions either
by removing some rules or by changing the prescribed probability of rules. Be-
sides the kind of modification they perform, the particular consistency heuristics
and their underlying strategies differ in terms of solution quality compared to
calculation speed. We will describe two of the developed consistency heuristics
in this section.

5.1 Consistency Heuristic “Rules Removal: Branch and Bound”

The “Rule Removal: Branch and Bound” consistency heuristic (B&B Heuris-
tic) generates solutions by removing certain rules from the original rule set R,
i.e. each solution is a consistent subset of R. This heuristic proceeds in accor-
dance with the branch-and-bound principle to calculate an optimal solution (in
compliance with the selected optimization criterion) as quickly as possible. This
means that – besides the calculation of good solutions – this heuristic focuses
on proving the optimality of the best solution so far at an early stage. By using
the branch-and-bound principle, it is often sufficient to calculate only a small
portion of the overall possible solutions in order to determine an optimal so-
lution. Furthermore, the minimum quality of the best solution so far (which is

Resolving Inconsistencies in Probabilistic Knowledge Bases 121

defined as the value of the best solution so far divided by the value of the best
upper bound solution so far) can be determined anytime. W.l.o.g. the following
explanations cover the case of using a maximizing optimization criterion.

According to the branch-and-bound principle, the B&B Heuristic partitions a
problem S (starting with the root problem, i.e. the inconsistent rule set R) into
two smaller, disjoint subproblems S′ and S′′. For each of these subproblems, a
lower bound and an upper bound are calculated. Our way of partitioning (cf. Fig.
2) is quite similar to the approach of the well-known branch-and-bound algorithm
for the knapsack problem: In each branch step, at first the preassigned ranking
heuristic is employed to select a branching rule. Next, one smaller subproblem is
created by forcing the branching rule, and another smaller subproblem is created
by prohibiting the branching rule. The forced rules RForc(S) of a subproblem
S must be contained in every solution of S (i.e. none of these rules can be
removed to build a solution). Its prohibited rules RProh(S), however, must not
be contained in any solution (i.e. they have to be removed). The rules of S that
are neither forced nor prohibited are called its free rules RFree(S).

Partition(S) {
// use the ranking heuristic to determine a branching rule for S

branchRule := RankingHeuristic.select(RFree (S));

// define a smaller subproblem by force

RForc(S
′) := RForc(S) ∪ {branchRule};

RProh(S
′) := RProh(S);

RFree(S
′) := RFree(S) \ {branchRule};

// define a smaller subproblem by prohibition

RForc(S
′′) := RForc(S);

RProh(S
′′) := RProh(S) ∪ {branchRule};

RFree(S
′′) := RFree(S) \ {branchRule};

// calculate an upper and a lower bound for both S′ and S′′

. . .

}

Fig. 2. Partitioning a subproblem S into two smaller subproblems S′ and S′′

Upper and Lower Bound Heuristics. The B&B Heuristic uses an upper
bound heuristic that provides only a very rough estimation of an upper bound
for a subproblem S. If RForc(S) is consistent, then the upper bound value is set
to the solution value that the rule set RUB(S) := RForc(S) ∪ RFree(S) would
have, if it was a solution (i.e. regardless of the consistency of RUB(S)). The
monotony of the optimization criterions ensures no solution of S can have a
higher value than the rule set RUB(S).

The real work of the B&B Heuristic (in terms of consistency checks) is done
when a lower bound heuristic is employed to calculate the lower bound of a sub-

122 M. Finthammer, G. Kern-Isberner, and M. Ritterskamp

problem S. We have developed different lower bound heuristics (LB heuristics)
that can alternatively be employed by the B&B Heuristic. They have all been
designed to facilitate the fast calculation of quite a good solution for a given sub-
problem. However, they differ in terms of calculation speed and solution quality.
We want to give a brief description of two of the LB heuristics:

Binary Search: This LB heuristic provides the fastest way to calculate a solu-
tion for a given subproblem S. Therefore, it is also utilized by other LB heuristics
to calculate an initial solution. The “Binary Search” LB heuristic (cf. Fig. 3) uses
the predefined ranking heuristic to generate a sorted rule vector V (RFree(S))
containing the free rules of S. The rules are in descending order, hence the rule
considered most important for a solution (according to the ranking heuristic) is
at the first position in this vector. Similar to a classical binary search strategy,
the LB heuristic successively divides the vector V (RFree(S)) in two halves. The
left half is checked each time for consistency with RForc(S). Once a “left sub-
set” of V (RFree(S)) consistent with RForc(S) is found, the ”Binary Search” LB
heuristic stops since a solution to S has been calculated.

LB BinarySearch(S) {
// sort descending to move most import rules to first vector positions

V (RFree(S)) := RankingHeuristic.sortDescending(RFree (S));

// check for inconsistency with forced rulers of S

while (V (RFree(S)) ∪ RForc(S) is inconsistent) {
// continue with only the left half of the vector

V (RFree(S)) := getLeftHalf(V (RFree(S)));

}
// return a consistent subset, i.e. a solution to S

return V (RFree(S)) ∪RForc(S);

}

Fig. 3. “Binary Search” LB heuristic to calculate a solution of a subproblem S

Binary Search Plus Measuring Contradiction Potential: This
LB heuristic uses the “Binary Search” LB heuristic to calculate an initial so-
lution RBS and then tries to improve RBS by re-adding some of the previously
removed rules. To decide which rules offer a good chance to be re-added to RBS

without causing inconsistency, we developed the following strategy: First, an
entropy-optimal distribution Q fulfilling RBS is computed. Next, for each previ-
ously removed rule the (absolute) difference between its prescribed probability
and its probability under Q is calculated. This probability difference is consid-
ered as a measure for the “contradiction potential” the rule has (relating to
the distribution Q). Finally, the rules the contradiction potential of which does
not exceed a predefined limit are successively checked for consistency with the

Resolving Inconsistencies in Probabilistic Knowledge Bases 123

best solution so far for the subproblem (starting with RBS) and, if applicable,
re-added to this solution to further improve it. A more greedy version of this
strategy has been implemented, too.

Utilization of a Cache and a Special Cache Strategy. Due to the branch-
and-bound approach and its way of constructing subproblems, quite a number
of consistency checks for already checked rule sets have to be handled during the
execution of the B&B Heuristic. In order to avoid unnecessary and time consum-
ing computations, a subset check is performed which is based on ideas similar
to those underlying the AprioriGen-Algorithm for data mining [AMS+96]: Sub-
sets of consistent sets are also consistent, and supersets of inconsistent sets are
inconsistent, too. We use an efficient data structure as a cache to look up the re-
sults of previously performed consistency checks and pursue the following Subset
Superset Cache Strategy: If the consistency of a rule set RChk has to be checked
and a consistent superset RCon ⊃ RChk (inconsistent subset RIncon ⊂ RChk)
is already in the cache, then RChk is consistent (inconsistent), too. Since the
cache has been implemented as a hash tree, it can be determined at no cost
(especially compared to a consistency check) if an appropriate superset (subset,
respectively) is already in the cache.

5.2 Consistency Heuristic “Probability Change: Intervals”

The consistency heuristic “Probability Change: Intervals” (Interval Heuristic)
follows the approach to eliminate inconsistencies in a rule setR by modifying the
prescribed probabilities of rules. The modified probability pMod(R) of each rule
R ∈ R has to be in a preassigned interval ILim(R) making use of the parameters
Lower and Upper Delta (see Sec. 3). Assigning these modified probabilities to
the rules in R leads to a consistent rule set RMod, which differs from R only in
the probabilities of its rules. Thus, the number of rules and their propositional
logical structure are identical in both rule sets.

In the following, we will give a brief description of the calculation method we
used to determine modified probabilities pMod(R) for rules of an inconsistent rule
setR. Each such pMod(R) has to respect a specified interval I(R) := [s(R), t(R)].
The basic concepts of our interval calculation, which forms a fundamental step of
the Interval Heuristic, go back to ideas presented by Rödder and Xu in [RX01].
An interval calculation proceeds as follows:

1. Each interval rule R : A � B[s(R), t(R)] is replacedby two (fixed-probability)
auxiliary rules, introducing an auxiliary variable WR for each rule R:

RMin : A ∧WR � B[s(R)] and RMax : A ∧ ¬WR � B[t(R)]

2. A consistency check for the set of auxiliary rules is performed and, if suc-
cessful, an entropy-optimal distribution P ∗ that fulfills this set is calculated.
If the consistency check fails, then even the application of intervals does not
lead to a consistent rule set und the interval calculation is terminated.

3. The modified probability pMod(R) for each rule R is calculated based on P ∗:

pMod(R) := P ∗(B|A) = s(R) · P ∗(WR|A) + t(R) · P ∗(¬WR|A)

124 M. Finthammer, G. Kern-Isberner, and M. Ritterskamp

4. Assigning these modified probabilities to the rules leads to the consistent
rule set RMod.

This kind of interval calculation allows us to handle interval rules, but still use
the same calculation techniques, especially the consistency check, as for fixed-
probability rules. Since our implementation of the consistency check is already
based on an entropy-optimal computation, we get the calculation of the entropy-
optimal distribution P ∗ (in step 2) at no cost.

It should be mentioned that our approach differs significantly from other tech-
niques applying the maximum entropy principle plainly to interval probabilities.
As maximum entropy chooses probabilities in a most cautious way, the weakest
probability within an interval is chosen, i.e. the one value that restores consis-
tency and is closest to 0.5. By handling interval information as it is done by
Heureka, the modified probability is realized as a mean value, using as much
of the available information as possible. In this way, techniques similar to those
presented in [KIR04] are applied locally.

The primary goal of the Interval Heuristic is to calculate a solution whose
modified probabilities differ as little as possible from the prescribed probabili-
ties. A single execution of an interval calculation based on the preassigned in-
terval ILim(R) := [pPre(R)−ΔLow(R) , pPre(R) + ΔHigh(R)] of each rule results
in a solution whose modified probabilities exploit the whole interval ILim(R)
in an unnecessary way most times. To avoid this effect, the Interval Heuristic
initially uses smaller intervals, whose size is only a fraction of the preassigned
intervals ILim(R). Then an interval calculation based on these smaller intervals
is performed. If it is successful, then it delivers modified probabilities that can
only have an accordingly small derivation. Else, the size of the intervals is incre-
mented successively and corresponding interval calculations are performed, until
a solution can been calculated. In a more detailed view, the Interval Heuristic
proceeds as follows:

During the execution of the Interval Heuristic, every interval calculation is
based on the effective interval I(R) of each rule R. The effective interval I(R) is
called “opened at v %” according to its size. The specific size of an effective in-
terval I(R) opened at v % is defined on basis of the preassigned interval ILim(R):

I(R) := [pPre(R)− v/100 ·ΔLow(R)) , pPre(R) + v/100 ·ΔHigh(R)]

When the Interval Heuristic starts, all effective intervals are initially opened
at 0 %, i.e. they merely specify a single probability instead of a probability range.
During the execution of the Interval Heuristic, the effective interval of each rule
is opened in s steps, i.e. after s steps, an effective interval I(R) is opened at
100 % and matches ILim(R). The Interval Heuristic performs several opening
steps. In every opening step, the ranking heuristic determines the rules whose
effective intervals are opened one more step (while the effective intervals of all
other rules keep their current opening). Then an interval calculation is performed
based on the effective intervals of all rules. If the interval calculation provides
a solution, the Interval Heuristic ends, since it has successfully calculated a
solution. Otherwise, it continues with the next opening step.

Resolving Inconsistencies in Probabilistic Knowledge Bases 125

6 Heureka – Walkthrough by Example

We have developed the program Heureka that implements all afore presented
concepts and heuristics. Heureka combines these elements with an easy to
use graphical user interface. Heureka was written in Java and utilizes func-
tions of the Spirit-API to perform calculations and other operations on Spirit

knowledge bases. Heureka can load knowledge bases in the Spirit file format
and eliminate existing inconsistencies in different ways. Solutions (i.e. consistent
knowledge bases) that have been calculated can again be saved in the Spirit file
format to be seamlessly used in the Spirit-Shell. In this way, full interoperability
is achieved.

Continuing the Auditing Example. We resume the auditing example from
the beginning (see Sec. 2.2) to present some of the main features of Heureka in
an exemplary way. Therefore, we open the (inconsistent) knowledge base KRFI

in Heureka and configure some of the rule parameters. The parameter “rule
application” is left at its default value “by heuristic” for all 20 interdependency
rules. However, this parameter is set to “always” for all 63 other rules that
arouse from the statistics of the study. This way, we ensure that only the 20
interdependency rules can be changed by any heuristics and that the 63 so-
called always-rules will be included in every solution without any modifications.
We use the lower and upper delta parameters to assign probability intervals
(that we considered appropriate) for all interdependency rules. In addition, we
(exemplarily) assigned the lowest priority 1 to some rules (instead of the default
priority 5).

Figure 4 illustrates the execution of the B&B Heuristic on the knowledge
base KRFI. Heureka generally shows all options of a consistency heuristic in
the left part of the window. Before a consistency heuristic is started, you use
these options to select the ranking heuristic, the optimization criterion, etc. that
will be employed by the consistency heuristic. The right part of the window
documents the execution of a consistency heuristic in detail, so that all steps
of the heuristic can easily be traced. Important items for a specific consistency
heuristic are displayed (and permanently updated) below that message area
(the global bounds, the minimum quality, etc. in case of the B&B Heuristic).
Furthermore, the current overall progress of the heuristic is shown.

Using the Consistency Heuristics. In this example, the B&B Heuristic takes
about 30 seconds to calculate1 two solutions that are optimal in respect to the se-
lected optimization criterion (“Number of Used Rules → max” in this example).
Each of these optimal solutions contains 13 of 20 interdependency rules (besides
the 63 mandatory always-rules). Accordingly, seven rules had to be removed in
each case to achieve a consistent knowledge base that contains all always-rules.

Due to the heuristic approach, the computation time could take considerably
longer. In the worst-case, an exponential number of rule sets have to be checked
1 All calculation times refer to a Windows XP computer system with an AMD Athlon

XP 3000+ CPU running Java 2 Runtime Environment 5.0.

126 M. Finthammer, G. Kern-Isberner, and M. Ritterskamp

Fig. 4. B&B Heuristic applied to the KRFI knowledge base

to compute an optimal solution. The overall calculation time of the B&B Heuris-
tic depends on the number of consistency checks that have to be performed and
the average calculation time for each of these consistency checks. The average
time for a consistency check in this example is about 0.1 seconds, whereas for
some these rule sets it takes up to 2 seconds to determine their inconsistency. In
our tests of the B&B Heuristic, the number of necessary consistency checks for
an optimal solution was always considerably below the worst-case number. For
some quite adverse rule sets in these tests, the B&B Heuristic had to calculate
about 0.4 % of the worst-case consistency checks, which still provided an optimal
solution within a few minutes.

Applying the Interval Heuristic to the knowledge base KRFI with regard to
the preassigned intervals needs only 30 seconds to calculate a best solution (by
opening intervals in s = 10 steps). The probabilities of the interdependency rules
were modified to achieve a consistent rule set, leaving the probabilities of the
always-rules unchanged (as required). Nine of the interdependency rules suffered
merely a slight change, so that their absolute deviation is below 0.01. Since the
Interval Heuristic generally does not remove rules, that solution consequently
contains all 83 rules of KRFI (except for the modified probabilities of some rules).

Compared to the B&B Heuristic, the worst-case calculation time of the In-
terval Heuristic can quite exactly be estimated, because it directly depends on
the maximal number of opening-steps that have to be performed. Since in every
opening-step an interval calculation is performed and every interval calculation
requires only one consistency check, the worst-case number of (time-consuming)
consistency checks can be predetermined and is relatively low compared to those

Resolving Inconsistencies in Probabilistic Knowledge Bases 127

of an average run of the B&B Heuristic. The Interval Heuristic provides appro-
priate options to configure the maximum number of opening steps to perform
(which influences indirectly the quality of the calculated solution in terms of
derivation), so the overall calculation time can be kept at an acceptable level
(e.g. less than one minute for rule sets with about 100 rules).

Presenting the Solutions. Heureka offers two different ways of present-
ing its computed solutions: One presentation displays statistical information for
each solution (e.g. the number of removed rules or the average derivation of the
modified probabilities). These values characterize a solution and hence make it
easy to compare different solutions. This enables the user to decide ultimately,
what solution is the best alternative to the inconsistent knowledge base (from his
point of view). The other presentation provides a very detailed rule-based com-
parison of solutions. This presentation shows every rule of the original knowledge
base and emphasizes each rule’s particular modification in each solution. Thus,
it becomes obvious what rules have been removed and what probabilities have
been modified respectively. In addition, rules that had the parameter “never”
or “always” assigned at computation time are marked accordingly, to denote
their special treatment by the consistency heuristic. The modified probabilities
are highlighted in different colors corresponding to the degree of modification.
Thereby the user can identify rules with a severe modification at a glance.

Resuming the Work in the Spirit-Shell. Every presented solution can di-
rectly be saved as a Spirit knowledge base, in order to be subsequently opened
and processed in the Spirit-Shell. In our example, the user can decide between
three consistent knowledge bases. Each of these knowledge bases enables him to
evaluate a red flag checklist in the Spirit-Shell. But unlike before, each knowl-
edge base is consistent and includes interdependency rules. Thus, for the first
time, the user can observe to what degree the interdependency rules affect the
knowledge processing. A practical review of both the solutions with 13 interde-
pendency rules and the solution with 20 (more or less modified) interdependency
rules pointed out that the knowledge modeling was significantly improved by
adding the interdependency rules (compared to the knowledge base RRF, which
is just based on statistical data). Since the interdependency rules model certain
correlations between the red flags now, the overestimation of the fraud risk could
considerably be lowered.

7 Conclusion and Further Work

The presented consistency heuristics and their integration in the developed
framework form a flexible system for sophisticated inconsistency elimination
in probabilistic knowledge bases. The program Heureka makes it possible to
utilize all developed heuristics and concepts in praxis. Thus, further useful in-
formation about dealing with inconsistencies can be obtained. The user can
choose between several optimization criteria to specify his objective for a most
appropriate solution. The flexibility of the underlying framework allows an easy

128 M. Finthammer, G. Kern-Isberner, and M. Ritterskamp

integration of new heuristic strategies and further ideas. The practical employ-
ment of Heureka has pointed out that especially the development of signifi-
cant rule-based inconsistency measures for probabilistic knowledge bases offers a
great potential for further improvements. If such inconsistency measures would
be available, they could simply be integrated in our existing system by adding a
corresponding ranking heuristic. A ranking heuristic based on a powerful incon-
sistency measure could immediately improve any existing consistency heuristic
by reliably identifying very problematic rules. Therefore, one future goal is to
develop sophisticated inconsistency measures for probabilistic knowledge bases.
These inconsistency measures shall allow us to draw conclusions about what
rules are especially responsible for an existing inconsistency.

References

[AMS+96] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast
Discovery of Association Rules, pp. 307–328 (1996)

[AR86] Albrecht, S.W., Romney, M.B.: Red-flagging management fraud: a vali-
dation. Advances in Accounting 3, 323–333 (1986)

[BH01] Bloch, I., Hunter, A., et al.: Fusion: General concepts and characteristics.
International Journal of Intelligent Systems 16, 1107–1134 (2001)

[CW99] Clemen, R.T., Winkler, R.L.: Combining probability distributions from
experts in risk analysis. Risk Analysis 19(2), 187–203 (1999)

[FFJ+00] Felfernig, A., Friedrich, G.E., Jannach, D., Stumptner, M.: Consistency-
based diagnosis of configuration knowledge bases. In: Proceedings of
ECAI (2000)

[Fin06] Finthammer, M.: Entwicklung und Implementierung von Heuristiken zur
Behandlung von Inkonsistenzen in probabilistischen Wissensbasen mit
Anwendungen im Bereich der Wirtschaftsprüfung. Master’s thesis, Uni-
versität Dortmund (2006)

[GZ86] Genest, C., Zidek, J.V.: Combining probability distributions: A critique
and an annotated bibliography. Statistical Science 1(1), 114–135 (1986)

[KIR04] Kern-Isberner, G., Rödder, W.: Belief revision and information fusion on
optimum entropy. International Journal of Intelligent Systems (2004)

[RRK06] Rödder, W., Reucher, E., Kulmann, F.: Features of the expert-system-
shell spirit. Logic Journal of the IGPL 14(3), 483–500 (2006)

[RX01] Rödder, W., Xu, L.: Behebung von Inkonsistenzen in der probabilistischen
Expertensystem-Shell Spirit. In: Operations Research Proceedings 2000,
pp. 260–265. Springer, Heidelberg (2001)

Extending Markov Logic to Model Probability
Distributions in Relational Domains

Dominik Jain, Bernhard Kirchlechner, and Michael Beetz

Intelligent Autonomous Systems Group
Department of Informatics

Technische Universität München

Abstract. Markov logic, as a highly expressive representation formal-
ism that essentially combines the semantics of probabilistic graphical
models with the full power of first-order logic, is one of the most in-
triguing representations in the field of probabilistic logical modelling.
However, as we will show, models in Markov logic often fail to general-
ize because the parameters they contain are highly domain-specific. We
take the perspective of generative stochastic processes in order to de-
scribe probability distributions in relational domains and illustrate the
problem in this context by means of simple examples.

We propose an extension of the language that involves the specifi-
cation of a priori independent attributes and that furthermore intro-
duces a dynamic parameter adjustment whenever a model in Markov
logic is instantiated for a certain domain (set of objects). Our extension
removes the corresponding restrictions on processes for which models
can be learned using standard methods and thus enables Markov logic
networks to be practically applied to a far greater class of generative
stochastic processes.

1 Introduction

In artificial intelligence (AI), a variety of applications can greatly benefit from
a unification of logical and probabilistic knowledge representations. The former
enable us to deal with complex, relational domains by offering an expressive
language, and the latter allow us to soundly handle uncertainty. In any suffi-
ciently complex AI application, both are of utmost importance and need to be
fully integrated. Yet for a long time, the development of both strands has been
largely separate. Especially in recent years, however, a number of alternative
approaches towards a unification have been proposed. Theoretical contributions
to the field that has now emerged as statistical relational learning date back
to at least Nilsson [1], Halpern [2] and Bacchus [3], while the more practically
oriented research has only recently gained momentum [4,5,6,7]. One of the most
promising approaches currently available is Markov logic [8,9], as it essentially
combines, unlike most other approaches, the full power of first-order logic with
probability. It is thus one of the most general, yet it is still supported by a
suite of tools that are geared towards practical applicability (the Alchemy sys-
tem [10]). Because of their exceptional expressivity and simplicity, Markov logic

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 129–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

130 D. Jain, B. Kirchlechner, and M. Beetz

networks have gained a lot of attention lately, including an invited talk by Pedro
Domingos at AAAI-06.

In principle, any language that unifies statistical and relational representations
and that is furthermore supported by a number of sufficiently efficient learning
and inference algorithms, so that it can truly be applied in practice, is not only
inherently appealing but can also serve as an interface layer between learning
and inference on the one side and higher-level AI applications on the other [11],
increasing the interoperability between implementations on both sides of the
layer if it is established as a standard. Markov logic is a prime candidate for a
representation language on which such an interface layer could be based.

1.1 Application Scenarios

There are countless applications for probabilistic relational representations and
the corresponding interface layer. Consider, for example, a system such as ASpo-
GAMo [12], which observes football games, recognizes and classifies the ball
actions that occur within them, determines the parameters of the actions‘, char-
acterizes the situations in which the actions are performed and analyzes the
effects of the actions. In the context of such an application, we could use the
data that is collected to build comprehensive models of the game process, which
could then be used to answer a wide range of queries automatically. For instance,
we might ask for the probability that a pass played by a certain type of player
succeeds in a given situation — or the probability that a ball passed by a side
midfielder is generally received by a striker if it is played with specific parameters
(speed, direction) in a given situation.

Fig. 1. Applying Markov logic

Figure 1 depicts a schematic application of Markov logic that could be capable
of answering such queries. It shows the typical process of learning a model from
relational data and reasoning about it. The source data could, for example, be
given in a relational database. Ideally, we would then only need to provide a set

Extending Markov Logic to Model Probability Distributions 131

of formulas that hold in the domain and learn the model’s parameters in order
to be able to query the model by instantiating it for a concrete set of objects
and calculating the conditional probabilities we are interested in.

There are several obvious characteristics of such applications and the rep-
resentations they need in order to perform their tasks. First, the models cre-
ated and used must represent uncertainty: football games are notoriously non-
deterministic, for results of actions are caused by the interplay of situations and
actions that are only incompletely characterized, and important information for
analysis, such as the intentions of players, cannot be inferred. Second, the ques-
tions we ask essentially make use of the power of natural language: They ask
about classes of players, infer information about the relation of actions’ effects
and the situations they are performed in, and the domains of events we query
are dynamically determined. Whatever the concrete application, a probabilistic
relational representation that is able to represent full-joint distributions over
any given domain of a certain type is desirable, for complex queries cannot be
answered otherwise.

1.2 Contributions

In this paper, we lay down a number of properties of probabilistic logical rep-
resentation languages that are essential for the modelling of some aspects of
probabilistic relational domains. In particular, the language must be capable of
describing general principles about multiple objects having similar properties,
which should then be applicable in several contexts, i.e. in several different do-
mains. Markov logic networks that are learned using standard methods in many
cases do not possess some of these properties and consequently fail to represent
the intended probability distribution when we move from one domain to another,
i.e. when we perform a domain shift.1 Because Markov logic seems to have been
used mainly in rather specialized applications, the problem we describe may have
been hitherto unnoticed. We illustrate the problem using particularly simple ex-
amples and subsequently propose an extension of the language that solves it. In
essence, our solution involves the formulation of hard constraints on probabilities
that are used to dynamically calculate some of the probabilistic parameters of
models in Markov logic that would otherwise remain fixed.

In the following section, we thus begin by stating the properties of representa-
tion languages we deem desirable. Next, in Sect. 3, we briefly introduce Markov
logic networks and define the problems that limit their applicability to relational
domains. Subsequently, in Sect. 4, we show why Markov logic networks are, un-
der certain conditions, unable to handle domain shifts and, in Sect. 5, we suggest
a corresponding extension of the language, which we explain in detail. Finally,
we summarize our results and provide an outlook on future research.
1 Note that the term domain is used at two different levels. At the higher level, we

mean the general scenario that a model deals with, i.e. a specification of the types
of objects, their attributes and the relations that are considered. At the lower level,
which is relevant in this particular case, we mean a concrete set of constants referring
to objects in the world (i.e. instances of the types declared at the higher level).

132 D. Jain, B. Kirchlechner, and M. Beetz

2 Demands on the Representation Language

We believe that, beyond the ability of handling uncertainty as well as a high
degree of complexity, a probabilistic logical language should fulfill a number of
additional requirements. In this paper, we take the perspective of probabilistic
knowledge representation in relational domains, i.e. we seek to model probability
distributions over relational data. A common way to view a probability distribu-
tion is to see it as the result of a generative stochastic process. Correspondingly,
the goal of probabilistic logical modelling is simply to obtain an accurate model
of the underlying process. In a relational setting, the process typically generates
objects with certain attributes as well as relations between objects according to
a set of rules. The representation language should allow us to concisely describe
these rules. In this context, the aforementioned criteria that the representation
language and its associated learning and inference mechanisms should ideally
fulfill are:

1. It should be possible for a domain expert to specify his/her knowledge in
a straightforward, declarative way. The addition of new, relevant knowledge
should lead to an improvement of the corresponding model (or at least leave
the model unchanged); and the failure to represent specific aspects of a do-
main should not render the model useless with respect to aspects untouched
by the omission.

2. It should be possible to unambiguously define a probability distribution over
arbitrary domains (of a certain type) by characterizing the corresponding
stochastic process. In particular, a model should be universally valid, speci-
fying arbitrarily general rules that may be independent of concrete objects.
The probability model should generalize to arbitrary domains and arbitrary
objects within them — much in the same way as universally quantified formu-
las in first-order logic that deal with objects of a certain type are applicable
to arbitrary objects of these particular types.

When working with Markov logic, issues related to the first point can be
observed — in the sense that additional, relevant formulas may negatively affect
certain queries in an unforeseeable fashion — but we found this to be a result of
a problem that is more closely related to the second point, for which we provide
a solution further on. In Chap. 3.2, we point out the cause of the problem, and
in Sect. 4, we analyze it in more detail, providing some examples. But first, we
lay the necessary groundwork by introducing Markov logic networks.

3 Markov Logic Networks

Markov logic networks (MLNs) are probabilistic logical models that combine the
semantics of probabilistic graphical models (namely Markov networks) with the
full power of first-order logic. An MLN can be seen as a set of constraints on
the set of possible worlds that is implicitly defined by a set of logical predicates
and a set of constants, as each logical atom that can be constructed using these

Extending Markov Logic to Model Probability Distributions 133

domain elements is viewed as a boolean variable. Specifically, the constraints are
formulas in first-order logic with attached numeric weights that quantify their
hardness.

Formally, a Markov logic network L is a set of pairs (Fi, wi), where Fi is a
formula in first-order logic and wi is a real number, the weight of formula Fi.
Together with a finite set of constants C, an MLN defines a Markov network
ML,C , the ground Markov network, as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
appearing in the formulas of the Markov logic network L.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is wi.

The ground Markov network’s set of variables X is the set of ground atoms
that is implicitly defined by the predicates in the MLN and the set of constants
C. The Markov logic network specifies a probability distribution over the set of
possible worlds X , i.e. the set of possible assignments of truth values to each of
the ground atoms in X , as follows,

P (X = x) =
1
Z
· exp

(∑
i

wi · ni(x)

)

=
exp (
∑

i wi · ni(x))∑
x′∈X exp (

∑
i wi · ni(x′))

(1)

where the inner sums are over indices of MLN formulas and ni(x) is the number
of true groundings of the i-th formula in possible world x.

3.1 Inference

Since (1) provides the full-joint distribution over the variables in X , it can be used
to compute arbitrary conditional probabilities: The probability that a formula
F1 holds given that formula F2 does can be computed as

P (F1 | F2, L, C) = P (F1 | F2, ML,C) =
P (F1 ∧ F2 | ML,C)

P (F2 | ML,C)

=

∑
x∈XF1∩XF2

P (X = x)∑
x∈XF2

P (X = x)

=

∑
x∈XF1∩XF2

exp (
∑

i wi · ni(x))∑
x∈XF2

exp (
∑

i wi · ni(x))
=:

WF1∧F2

WF2

(2)

where XFi is the set of possible worlds in which Fi holds, and WF1∧F2 and WF2

are the sums of exponentiated sums of weights for possible worlds where F1 ∧F2

holds and where F2 holds respectively (this is a notation that we continue to use
further on).

134 D. Jain, B. Kirchlechner, and M. Beetz

3.2 Problems

Since a Markov logic network is not (necessarily) specific to concrete domain
elements but is instead designed to be applicable to arbitrary domains over the
classes of objects that it models, MLNs should satisfy the generality requirement
made above. However, with the current set of concepts in place, it is in many
cases not possible to learn the characteristics of the respective generating pro-
cesses from data, because parameter learning in MLNs is an ill-posed problem,
and the solution that is obtained is usually specific to the concrete set of objects
that were used for learning. An MLN obtained via parameter learning cannot,
without restrictions, be applied to a domain with a different number of objects
than the one it was learned with.

The weights in an MLN are usually learned using MAP estimation or, in the
absence of a prior distribution over parameter settings, maximum likelihood —
i.e. they are chosen in such a way that the probability of a training database,
which specifies the truth values of ground atoms for one particular domain, is
maximized. Yet clearly, there can be more than one generative stochastic process
that could have produced any given training database, and obviously, a process
cannot be uniquely identified through a single sample taken from it (such as a
training database). Unfortunately, the MLN language itself is not sufficient in
order to make the necessary distinctions prior to parameter learning, for it lacks
the ability to specify unconditional independencies in terms of structure; in many
cases, the MLN language therefore does not allow us to adequately characterize
the concrete process we are dealing with when the weights are yet unknown.

When applying an MLN whose weights were learned using a particular train-
ing database is applied to a different domain, it is assumed that the parameters
that adequately describe the concrete distribution observed in the training data
also fully characterize the process that generated it. This assumption, however,
is rarely justified. And whenever the assumption is indeed not justified, the MLN
models the desired probability distribution only for a single instantiation, namely
the training database. It is thus no more useful than the corresponding ground
Markov network, and the general, relational character of the model is essentially
lost.

4 Analyzing the Problem

Let us consider a simple example to explain why this is the case. We first intro-
duce the domain we will use for our experiments before turning to the problem
of domain shifts in detail.

4.1 The Example Domain

In our example domain, we consider the simplest of scenarios where there are two
types of objects and a relation connecting them. Suppose the concrete types of
objects are people and drinks, and that there exists a relation that captures the
consumption of drinks. Both people and drinks are characterized by a single at-
tribute that classifies them: Each person has a rank (either Student or Professor),

Extending Markov Logic to Model Probability Distributions 135

and each drink has a type (either Tea or Coffee). In an MLN, both attributes can
be represented using appropriate predicates, e.g. rank(person, rankvalue) and
drinkType(drink, typevalue).2 Now suppose there is a difference in the drinking
habits of students and professors; professors might, for example, consume more
drinks than students do and students might not drink any coffee at all. In gen-
eral, we can describe arbitrary drinking habits in a Markov logic network simply
by including the following conjunctions3

w1 consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Tea)
w2 consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Coffee)
w3 ¬consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Tea)
w4 ¬consumed(p, d) ∧ rank(p, Student) ∧ drinkType(d, Coffee)
w5 consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Tea)
w6 consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Coffee)
w7 ¬consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Tea)
w8 ¬consumed(p, d) ∧ rank(p, Professor) ∧ drinkType(d, Coffee)

which exhaustively define the various cases for each possible consumption of a
drink by a person. The weight wi of each conjunction describes, when viewed
relative to the weights of the other conjunctions, how likely the respective case
really is.

4.2 Domain Shifts

The most important observation in this context is that if the only formulas the
MLN includes are the above conjunctions, then the marginal distributions of
people’s ranks and drink types are fully determined by the drinking habits. Peo-
ple are less likely to have a certain rank if people of that rank are less likely
to (not) consume drinks. Especially in the case of ranks, a perhaps more intu-
itive model would state that the marginal distribution of ranks (when we know
nothing about consumptions) is independent of potential consumptions and that
it is in fact rather the ranks that lead to a specific drinking behaviour. During
parameter learning, this is, however, a distinction that is not being made, since
we obtain any one of infinitely many weight vectors that accurately represent
the distribution present in the training data but which generalize to variable-size
domains in different ways.

For example, let us look at a single person, say P , and the drinks that P can
potentially have consumed. Let the set Xm contain the set of possible worlds for
a domain with only one person P and m drinks. The probability of P being a
student is, following (2), given by
2 Note that when modelling the attributes in this way, it is necessary to include con-

straints that define the attribute values as mutually exclusive and exhaustive. Hence-
forth, we silently assume that, for each attribute, the corresponding constraints are
included in each model.

3 We adopted the convention of using lower-case letters as variables and words be-
ginning with upper-case letters as constants. Any free variables in the formulas are
(implicitly) universally quantified.

136 D. Jain, B. Kirchlechner, and M. Beetz

pm = PXm(rank(P, Student))

=
f(m, w1, w2, w3, w4)

f(m, w1, w2, w3, w4) + f(m, w5, w6, w7, w8)
(3)

with

f(m, x1, x2, x3, x4) (4)

=
m∑

t=0

t∑
ct=0

m−t∑
cc=0

(
m

t

)(
t

ct

)(
m − t

cc

)
exp(x1ct + x2cc + x3(t − ct) + x4(m − t − cc))

where t is the number of teas, ct is the number of teas that are consumed and
cc is the number of coffees that are consumed. If there is an asymmetry in the
impact of the weights for students and professors, then pm is not independent
of m. For example, if w2 = −100 and all other weights are 0 (i.e. students
hardly ever drink coffee but all other consumption events are equally likely),
then p1 ≈ 4−1

8−1 ≈ 0.4286, p2 ≈ 16−7
32−7 ≈ 0.3600 and p3 ≈ 64−37

128−37 ≈ 0.2967. The
probability that any given person is a student thus decreases as the number of
drinks in the domain increases, which was to be expected, because the worlds
in which P is a student and consumes even one cup of coffee are (virtually)
impossible, and the fraction of such worlds increases with the number of drinks.
So depending on the number of drinks, the weight vector apparently determines
a different marginal for rank(p, Student). However, the generating process might
dictate a more intuitive view, where the marginal probability of a certain rank
is independent of the number of drinks; it might, for example, state that the
marginal probability of a person being a student is 1

3 .
Let us consider ways in which we might address the problem. A perhaps

straightforward formula to add to the MLN would be a unit clause such as
rank(p, Student), which can obviously be used to influence the probabilities of
worlds in which there are students and hence the marginal probability of the rank
Student. In fact, we could argue that a unit clause is the only candidate formula
for such a correction, because unit clauses are the only formulas that affect only
the marginal distribution we are interested in and nothing else. Unfortunately,
the impact of the unit clause’s weight does not depend on the number of drinks,
so a correction for arbitrary domains is not possible. This is evident from the
fact that the sum of exponentiated sums of weights for worlds where P is a
student would only be scaled by a factor of exp(w) if w was the weight of the
newly introduced formula rank(p, Student). Therefore, we cannot obtain a size-
invariant marginal distribution for P ’s rank when using an asymmetric configu-
ration of weights of the eight conjunctions, because the unit clause can only have
the desired effect for a fixed number of objects; and unfortunately, the weight
configurations obtained via standard parameter learning are not ensured to be
symmetric.4 The inclusion of the unit clause can, however, result in precisely
the correction that we want for a fixed number of drinks. Yet obviously, our
generality requirement is not met.
4 By symmetric, we here mean a symmetric impact of the weights, such that the

resulting distribution is a uniform distribution.

Extending Markov Logic to Model Probability Distributions 137

Whenever we learn the parameters of an MLN that contains at least one
proper relation connecting objects of different types, we will usually obtain very
accurate weights for the concrete set of objects found in the training database
(provided that our formulas are sufficiently expressive), yet the weights will not
generalize to other domains if we impose the requirement that certain marginals
remain invariant. In particular, if a relation exists, then the unit clause’s weight
on its own gives no indication of the probability of the corresponding attribute,
for its purpose is primarily to counterbalance the effects of the relation — and
these effects depend on the number of tuples that can be constructed.

To further illustrate this problem, let us compare a Markov logic network,
which we can instantiate on demand, to several Bayesian networks that we can
specifically create for each concrete domain (set of objects) according to a well-
defined schema (as we might describe it in, for example, a Bayesian logic program
[6]). As MLN formulas, we simply use the eight conjunctions describing consump-
tion behaviour listed above as well as unit clauses for rank and drinkType, plus
a rule that states that a drink cannot be consumed by more than one person.
To learn the MLN’s parameters, i.e. the formulas’ weights, we use a training
database containing one student (who drank one cup of tea) and two professors
(where the first drank one cup of tea and one cup of coffee and the other drank
just one cup of coffee). Let L be the resulting Markov logic network — obtained
via maximum likelihood parameter learning.

Let us now perform inferences in several ground Markov networks based on L.
We compare results obtained for several domains: By Dn,m we denote a domain
where the set of people contains n elements, {P1 = P, . . . , Pn}, and the set of
drinks contains m elements, {D1, . . . , Dm}.5 In particular, we will look at D1,1

and D1,3; Figure 2 shows the corresponding Bayesian networks, in which we
assume that the marginal distributions of both ranks and drink types are to
remain fixed.

Fig. 2. Bayesian Networks BD1,1 (left) and BD1,3 (right). The conditional probability
tables in BD1,3 are the same as in BD1,1 .

5 Note that we here assume a typed predicate logic, where the set of constants is not
a mere set but rather an ordered set of sets containing one set of objects for each
class.

138 D. Jain, B. Kirchlechner, and M. Beetz

Comparing the results in Table 1, we gather that the probabilities computed
using the Markov logic network are clearly dependent on the number of ob-
jects (as expected). Only for domain D3,4, which contains precisely the number
of objects found in the training database, does the MLN compute the desired
probabilities. There is, unfortunately, no formula that we could have added to
the MLN in order to encode the invariants of the generative stochastic process
that we imagine to have created the training database.

Table 1. Inference results: ground Markov networks and Bayesian networks compared

ML,D1,1 BD1,1 ML,D1,3 BD1,3 ML,D3,4
P (drinkT(D1, Tea)) 68.3% 50.0% 68.3% 50.0% 50.0%
P (rank(P, Stud)) 29.3% 33.3% 32.0% 33.3% 33.3%
P (rank(P, Stud) | cons(P, D1)) 30.1% 25.0% 32.7% 25.0% 25.0%
P (rank(P, Stud) | ¬cons(P, D1)) 29.0% 37.5% 31.6% 37.5% 37.5%
P (rank(P, Stud) | cons(P, D1) ∧ drinkT(D1, Tea)) 45.4% 50.0% 48.5% 50.0% 50.0%
P (drinkT(D1, Tea) | cons(P, D1) ∧ rank(P, Prof)) 51.8% 33.3% 51.8% 33.3% 33.3%
P (cons(P, D1) | drinkT(D1, Tea) ∧ rank(P, Prof)) 25.0% 25.0% 25.0% 25.0% 25.0%
P (rank(P, Stud) | cons(P, D1) ∧ cons(P, D2)) 33.5% 18.2% 18.2%

4.3 Domain-Specific Modifications

In fact, the set of formulas included above would in theory already be sufficient
to represent precisely the size-invariant probability distribution that we want,
since all the formulas are conjunctions as they would appear in an MLN trans-
lated from a model obtained via knowledge-based model construction (KBMC)
[8]. (Such an MLN contains a conjunction of literals for each entry of each con-
ditional probability table in the KBMC model — the conjunction capturing the
parent-child configuration that corresponds to the entry and the weight being
the logarithm of the probability value.) We still fail to find the set of weights that
will generalize in the intended way, because, as mentioned previously, parameter
learning is an ill-posed problem: There are infinitely many weight vectors that
represent the same probability distribution given a specific domain/set of ob-
jects, yet only a subset of these weight vectors generalizes in the intended way
to domains of variable size.

Notice that in an MLN derived from a KBMC model, the distributions over
attribute values for which unit clauses exist would be uniform distributions if
the unit clauses themselves were removed from the MLN; therefore, there is no
dependence on domain size. Starting with a weight vector obtained via conversion
from a KBMC model, we can, however, construct infinitely many weight vectors
such that the probability distribution remains unchanged for a concrete number
of objects but changes to varying degrees as we change the number of objects
with which the model is instantiated. The idea behind the construction is that if
the weight of any unit clause was to be modified, the weights of other formulas
within which the unit clause appears could be adjusted to compensate for the
modification of the unit clause in such a way that the probability distribution
remains unchanged for a specific number of objects. Yet clearly, any modification
of a unit clause’s weight prevents the remaining formulas from generating a

Extending Markov Logic to Model Probability Distributions 139

uniform distribution for an arbitrary number of objects. Hence size-dependence
results.

In an MLN L derived from a KBMC model, the set of formulas can be par-
titioned into classes of mutually exclusive and exhaustive formulas, as for each
set of conjunctions representing a certain conditional distribution, there is ex-
actly one true grounding among all the groundings of the conjunctions with
the same variable bindings. Let C be the set of classes minus the classes that
contain only unit clauses. Now if the weight of a unit clause Fj (an atom that
makes a statement about an attribute of an object of some type T) was to be
changed by adding an arbitrary Δw in a modified MLN L′, we could choose an
arbitrary non-empty subset S ⊆ {Ci ∈ C ∧ contains(Ci, Fj)} of the classes that
contain formulas that contain Fj and adjust certain formula weights to cancel
out the previous change. In particular, for a concrete domain D, we apply to
each (Fi, wi) ∈ Ck where Fi contains Fj and Ck ∈ S the following modification,

w′
i = wi −Δw · 1

nCi,D · 1
|DT |

· 1
|S| (5)

where nCi,D is the number of groundings of each of the conjunctions in class Ci

for domain D and DT is the set of domain elements of type T in D.
We can easily show that the probability of any possible world x defined over

the domain D remains unchanged by our modification,

PML′,D(x) =
1

Z′ · exp

(∑
i

w′
i · ni(x)

)

=
1

Z′ · exp

(∑
i

wi · ni(x) + Δw · nj(x)−

∑
Ci∈S

Δw · 1

nCi,D · 1
|DT |

· 1

|S| ·
nCi,D

|DT |
· nj(x)

⎞⎠
=

1

Z
· exp

(∑
i

wi · ni(x)

)
= PML,D (x) (6)

as for each object O of the nj(x) objects for which the unit clause Fj is true,
there are nCi,D

|DT | combinations for grounding all the variables appearing in each
of the formulas in Ci except the one variable we assume to be bound to O, and
for each combination, there is exactly one true grounding of a formula with a
modified weight.

Therefore, provided that we instantiate ground Markov networks only for
domain D, L′ thus yields exactly the same probability distribution as L. So
when learning parameters using a training database over domain D, L and L′

are both optimal solutions, since the way in which the model should generalize
to other domains is not considered.

140 D. Jain, B. Kirchlechner, and M. Beetz

5 Extending Markov Logic

The problem described above essentially arises only because the learning process
has no knowledge of fixed marginal distributions or unconditionally independent
attributes. While we can modify the learning process to learn weights that are
equivalent to the weights we would obtain via a translation from a KBMC model
(simply by precomputing the probability distributions of attributes that are sub-
ject to a fixed marginal distribution from the training database, using the loga-
rithms of the probabilities as the initial weights of the corresponding unit clauses
during learning and ensuring that the weights remain constant throughout the
optimization process), this approach requires the MLN to contain conjunctions
(or equivalent formulas) that are fully capable of describing an appropriate fac-
torization of the full-joint, which may be impractical.

We now propose an extension of the MLN language that allows us to ensure
fixed marginal distributions regardless of the set of formulas. It involves the spec-
ification of hard constraints on individual formula probabilities. In our example
on the consumption of drinks, we might, for example, specify a constraint such
as P (rank(p, Student)) = 0.3. When instantiating a ground Markov network,
the probability information can be used to dynamically modify the weight of
the corresponding unit clause F := rank(p, Student). If the probability that is
indicated by the model is originally q and the constraint requires it to be q′,
then with WF (see (2)) as the sum of exponentiated sums of weights for possible
worlds in which the formula holds (for an arbitrary binding of the variable p),
W¬F as the sum for the remaining worlds and q = WF

WF +W¬F
and q′ = WF ·λ

WF ·λ+W¬F
,

we obtain

λ =
q′

q
· 1− q

1− q′
(7)

i.e. we need to add log(λ) to the formula’s weight in order to obtain the desired
marginal probability.

If the underlying process dictates more than one such constraint on the
marginal distributions of certain attributes, we can proceed in a similar fash-
ion. However, specifying just a probability constraint for each corresponding
unit clause may not suffice, because the a priori independence of the attributes
may need to be modelled explicitly. For example, if the marginal distribution
over drink types, too, was to be fixed in all domains, adding a constraint such
as P (drinkType(d, Tea)) = 0.5 would not render ranks and drink types indepen-
dent. Therefore, if independence is to be modelled, we instead propose to add to
the MLN all conjunctions of value statements for all independent attributes6 in
order to indirectly represent the independence by including the corresponding
part of the full-joint. In our example, we would add the constraints

P (rank(p, Student) ∧ drinkType(d, Tea)) = q1 = qS · qT

P (rank(p, Student) ∧ drinkType(d, Coffee)) = q2 = qS · qC

P (rank(p, Professor) ∧ drinkType(d, Tea)) = q3 = qP · qT

P (rank(p, Professor) ∧ drinkType(d, Coffee)) = q4 = qP · qC

6 For conjunctions not already present, we initially assume a zero weight.

Extending Markov Logic to Model Probability Distributions 141

where
∑

i qi = 1.0 (in our above example, qS = 1
3 , qP = 2

3 , qT = qC = 0.5).7
Naturally, the actual inclusion of these constraints could be handled by the
learner, and the user would need to specify only which marginal distributions
are to remain fixed. All the necessary probabilities can then automatically be
computed from the training database.

In general, if m attributes are to have a fixed marginal distribution and the
domain of the j-th attribute contains dj elements, then there are n :=

∏m
j=1 dj

conjunctions for which probability constraints must be specified (we denote these
conjunctions by Ci with i ∈ {1, . . . , n}). Because these conjunctions are atomic
(sub-)events (for a particular binding of the variables), they partition the set of
possible worlds XD for a concrete domain D, for which the MLN is instantiated,
into n corresponding parts, i.e. XD =

⊎n
i=1(XD)Ci . Let the sum of exponentiated

sums of weights of possible worlds in the i-th partition be Wi := WCi ; the nor-
malizing constant in (1) is thus ZD =

∑n
i=1 Wi. If q is the vector of conjunction

probabilities, then we obtain the scaling factors λi with which the weights of
the n conjunctions need to be corrected by solving the following linear equation
system:

Wkλk∑n
i=1 Wiλi

= qk for k ∈ {1, . . . , n}

⇒ (Wk − qkWk)λk −
n∑

i=1,i�=k

qkWiλi = 0 for k ∈ {1, . . . , n} (8)

If the probabilities that are specified in vector q are not contradictory (which the
learning process can guarantee), then the solution to the above equation system
is unique and well-defined, and we obtain the desired marginals by adding log(λi)
to the weight of the i-th conjunction Ci.

Since the part of the joint probability distribution that consists exclusively of
marginals is fully determined by the above calculations, any existing MLN formu-
las that contain only atoms that are subject to constraints on marginals cannot
provide additional information as far as the probability distribution is concerned.
Therefore, they can be removed prior to the above calculations, and the for-
mulas we explicitly require (i.e. the conjunctions Ci), along with their weights
(log(λi)), can be added automatically when instantiating a ground Markov
network.

All in all, we can apparently model arbitrary marginal distributions and inde-
pendencies. Together with a set of conditional distributions, we can thus describe
a wide range of probability distributions in relational domains.

In general, we can show that probabilities conditioned on all marginals are
unaffected by the dynamic weight modifications described above. Let R be the
set of ground atoms for which the marginal distribution is explicitly modelled
in an extension to a Markov logic network L, and let L̄ be the Markov logic
network we obtain from L by applying the constraints for a concrete domain/

7 One of the four constraints is redundant and may be left out.

142 D. Jain, B. Kirchlechner, and M. Beetz

set of constants C, i.e. by adding the formulas FR=r with weights wr for r ∈ B
|R|.

We thus need to show that P (F1 | F2, R = r, ML̄,C) = P (F1 | F2, R = r, ML,C):

P (F1 | F2, R = r, ML̄,C) =
P (F1 ∧ F2 ∧R = r | ML̄,C)

P (F2 ∧R = r | ML̄,C)

=

∑
x∈XF1∩XF2∩XR=r

exp (
∑

i wi · ni(x) + wr)∑
x∈XF2∩XR=r

exp (
∑

i wi · ni(x) + wr)

=
WF1∧F2∧R=r · expwr

WF2∧R=r · exp wr
= P (F1 | F2, R = r, ML,C) (9)

Returning to our example from Chap. 4.2, we now apply dynamic modifi-
cations (8) to the MLN that was learned, enforcing a fixed marginal on rank
and drinkType by introducing the corresponding constraints but leaving the
MLN unchanged otherwise. Looking at Table 2, we observe that the genera-
tive stochastic process which we assumed can now clearly be described in the
intended way.

Table 2. Inference results: ground Markov networks (with dynamic modifications ap-
plied) and Bayesian networks compared

ML̄,D1,1
BD1,1 ML̄,D1,3

BD1,3

P (drinkT(D1, Tea)) 50.0% 50.0% 50.0% 50.0%
P (rank(P, Stud)) 33.3% 33.3% 33.3% 33.3%
P (rank(P, Stud) | cons(P, D1)) 25.0% 25.0% 25.0% 25.0%
P (rank(P, Stud) | ¬cons(P, D1)) 37.5% 37.5% 37.5% 37.5%
P (rank(P, Stud) | cons(P, D1) ∧ drinkT(D1, Tea)) 50.0% 50.0% 50.0% 50.0%
P (drinkT(D1, Tea) | cons(P, D1) ∧ rank(P, Prof)) 33.3% 33.3% 33.3% 33.3%
P (cons(P, D1) | drinkT(D1, Tea) ∧ rank(P, Prof)) 25.0% 25.0% 25.0% 25.0%
P (rank(P, Stud) | cons(P, D1) ∧ cons(P, D2)) 18.2% 18.2%

6 Conclusion

We have shown that Markov logic networks that are learned using standard pa-
rameter learning may require additional language constructs if they are to be
applicable to arbitrary domains — and not just the single domain that was used
for learning — whenever the attributes of related objects are a priori not to
be affected by the probability with which they are potentially related to other
objects, i.e. whenever there are constraints on marginal probabilities of attribute
values. This is in fact a quite common case, for the processes that we intuitively
imagine generate worlds sequentially, i.e. there is a certain order in which objects
and relations are created (which could be akin to a causal structure). If objects
and the attributes that belong to them are created simultaneously, then there is
usually some attribute whose values are subject to a fixed marginal. A typical
example of such a case is an attribute such as a person’s gender or rank in our
above example. Our extension to the MLN language solves this problem by in-
troducing hard constraints on formula probabilities that are used to dynamically
modify the weights of the respective formulas whenever a model is instantiated
for a concrete domain.

Extending Markov Logic to Model Probability Distributions 143

The concrete constraints that are necessary to handle domain shifts need not
be specified by a user but can instead be learned from a training database,
given that information on unconditional independencies is provided. If we learn
with more than one training database, then we can even attempt to deduce these
independencies and alleviate the user from specifying any additional information
at all.

Nevertheless, there are further problems that may still prevent MLNs from
being practically applicable if the goal is to model probability distributions in
relational domains. The use of exact parameter learning algorithms based on
log-likelihood is intractable, and we found the approximate learning methods
involving pseudo-likelihood to be too inexact to be acceptable — at least for some
domains. Solving the problems that remain in this regard will be the subject of
our future investigations.

Acknowledgements

We would like to thank Pedro Domingos for fruitful email discussions.

References

1. Nilsson, N.J.: Probabilistic Logic. Artif. Intell. 28, 71–87 (1986)
2. Halpern, J.Y.: An analysis of first-order logics of probability. In: Proceedings of

IJCAI-89, 11th International Joint Conference on Artificial Intelligence, Detroit,
US, pp. 1375–1381 (1989)

3. Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT
Press, Cambridge (1990)

4. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: IJCAI, pp. 1300–1309 (1999)

5. Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: BLOG:
Probabilistic Models with Unknown Objects. In: IJCAI, pp. 1352–1359 (2005)

6. Kersting, K., Raedt, L.D.: Bayesian Logic Programming: Theory and Tool. In:
Getoor, L., Taskar, B. (eds.) An Introduction to Statistical Relational Learning,
MIT Press, Cambridge (2005)

7. Neville, J., Jensen, D.: Dependency networks for relational data. In: ICDM 2004,
pp. 170–177. IEEE Computer Society, Los Alamitos (2004)

8. Richardson, M., Domingos, P.: Markov Logic Networks. Mach. Learn. 62(1-2), 107–
136 (2006)

9. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statistical
Relational Learning. In: Proceedings of the ICML 2004 Workshop on Statistical
Relational Learning and its Connections to Other Fields, pp. 49–54 (2004)

10. Kok, S., Singla, P., Richardson, M., Domingos, P.: The Alchemy system for statis-
tical relational AI (2004), http://alchemy.cs.washington.edu/

11. Domingos, P.: What’s Missing in AI: The Interface Layer. In: Cohen, P. (ed.)
Artificial Intelligence: The First Hundred Years, AAAI Press (2006)

12. Beetz, M., Gedikli, S., Bandouch, J., von Hoyningen-Huene, N., Kirchlechner, B.,
Perzylo, A.: Visually Tracking Football Games Based on TV Broadcasts. In: Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI) (2007)

http://alchemy.cs.washington.edu/

A Multilingual Framework for Searching

Definitions on Web Snippets

Alejandro Figueroa and Günter Neumann

Deutsches Forschungszentrum für Künstliche Intelligenz - DFKI,
Stuhlsatzenhausweg 3, D - 66123, Saarbrücken, Germany

{figueroa, neumann}@dfki.de

Abstract. This work1 presents Mdef-WQA, a system that searches for
answers to definition questions in several languages on web snippets. For
this purpose, Mdef-WQA biases the search engine in favour of some syntac-
tic structures that often convey definitions. Once descriptive sentences
are identified, Mdef-WQA clusters them by potential senses and presents
the most relevant phrases of each potential sense to the user. The ap-
proach was assessed with TREC and CLEF data. As a result, Mdef-WQA
was able to extract descriptive information for all definition questions in
the TREC 2001 and 2003 data-sets.

1 Introduction

In recent years, search engines have considerably improved their power of index-
ing in response to the constantly increasing number of documents on the Internet
and the growing need of users for smarter ways of searching and presenting the
information. Nowadays, one pressing need is to find definitions of concepts. High-
performance search engines, such as Google, provide hence a feature which helps
users to retrieve definitions from specialised online resources like WordNet and
Wikipedia. Google is additionally urged to supply an interface of Wikipedia in
other languages, in order to satisfy users all around the world.

Google relies upon the coverage and the high cachet of these specialised re-
sources, especially upon the fact that the first sentence they provide is extremely
likely to yield a definition. Unfortunately, this coverage tremendously varies over
languages. For instance Wikipedia contains more than 1700000 articles in English
whereas about 220000 in Spanish. Further, Google does not make allowances for
the redundancy on the responses (i. e. “George Bush” in English). Furthermore,
Google provides undesirable definitions for some well-known concepts, for exam-
ple “George Bush” in German. Moreover, Google does not present to the user
definitions grouped by their respective senses (i. e. “Tesla”).

During the last years, the problem of finding definitions for a specific concept
(the definiendum) has been addressed by Question Answering Systems (QASs)

1 The work presented here was partially supported by a research grant from the Ger-
man Federal Ministry of Education, Science, Research and Technology (BMBF) to
the DFKI project HyLaP (FKZ: 01 IW F02) and the EC-funded project QALL-ME.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 144–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Multilingual Framework for Searching Definitions 145

in the context of the Text REtrieval Conference (TREC) and the Cross Lan-
guage Evaluation Forum (CLEF). In TREC, QASs answer definition questions
in English, such as “What is a quasar?”, by extracting as much as possible non-
redundant descriptive information (‘nuggets’) about the definiendum from the
ACQUAINT corpus.

In order to discover definition utterances, definition QASs usually align sen-
tences with surface patterns in the target corpus at the word and/or the part-of
the speech level [5]. Hence, the probability of matching sentences increases as
long as the size of the target collection grows, and accordingly, the performance
substantially improves [6]. Along with surface patterns, definition QASs take
advantage of wrappers around online resources, WordNet glossaries and web
snippets [1]. In addition, QASs, like Google, have also shown that definition
web-sites are a fertile source of descriptive information in English, in particular,
providing answers to 42 out of 50 TREC–2003 questions [1]. However, web snip-
pets have not yet proven to be a valuable source of descriptive phrases so far [1].

Full documents have also been used for extracting definitions. For example,
in [10], 250-characters long windows that convey a definition are obtained from
the top 50 documents fetched by an IR engine. The windows were then ranked
by a Support Vector Machine, which was trained using previously tagged win-
dows according to the criteria of [6], and some automatically acquired phrasal
attributes. This system obtained one acceptable definition within the top-five
ranked windows for 116 out of 160 TREC–2000 questions and 116 out of 137
TREC–2001 questions.

However, TREC focuses its attention solely on English, whereas CLEF aims
essentially at European Languages. In the context of CLEF, surface patterns
have also shown to be useful for recognising descriptive sentences in other lan-
guages. For instance, the best system in CLEF–2005 answered 40 out of the 50
definition questions in the Spanish track by means of surface patterns [13,11].

QASs normally tackle redundancy by: (a) randomly removing one sentence
from every pair that shared more than 60% of their terms [5], or (b) filtering
out candidate sentences by ensuring that their cosine similarity to all previously
selected utterances is below a threshold. It is also worth to remark that definition
QASs have not yet made effort to deal with the disambiguation of the different
senses of the definiendum.

Our contribution

Unlike current definition QASs or search engines, we propose a QAS (named
Mdef-WQA) that extracts descriptive phrases directly from web snippets by rewrit-
ing the prompted query in such a way that the probability of aligning surface
patterns with web snippets increases (i. e. snippets from specialised definition
web-sites like Wikipedia). Since Mdef-WQA bases its search on the efficiency of
surface patterns and its coverage on the entire web, we show that the frame-
work of Mdef-WQA is applicable to several languages, in particular English and
Spanish. Moreover, we present a novel approach to cluster descriptive utter-
ances according to potential senses, which are used to provide a partition of the

146 A. Figueroa and G. Neumann

most relevant and diverse utterances to the user. Mdef-WQA was evaluated in
detail using the TREC and CLEF data-sets. The results show that Mdef-WQA is
promising for answering definition questions in several languages directly from
web snippets. In particular, Mdef-WQA found out descriptive information for all
definition questions in the TREC 2001 and 2003 data sets.

2 Mining the Web for Definitions

Like [10], Mdef-WQA receives the definiendum δ as input, assuming that it is
previously identified by an external query analysis module or entered by the
user. Analogously, Mdef-WQA receives the language ζ of the original query Q,
because it cannot be inferred directly from δ, especially for proper names (i. e.
“John Kennedy”). Mdef-WQA proceeds then as follows:

1. Mdef-WQA uses δ and ζ for rewriting Q according to a set Πζ of pre-defined
surface patterns for ζ. These generated queries are then submitted to the
search engine. This rewriting boosts the retrieval of descriptive utterances
by biasing the search engine in favor of sentences that match Πζ . Hence,
Mdef-WQA avoids the implementation of specialised wrappers and down-
loading full documents, contrary to the trend of current definition QASs.

2. Mdef-WQA aligns these patterns with sentences in fetched snippets. Due to its
complex internal structure [12], δ might match the definiendum δ′ only par-
tially within the retrieved descriptive utterances. Mdef-WQA recognises δ by
means of relaxed pattern matching based on the Jaccard Measure. The moti-
vation for using this relaxed matching strategy is that it provides Mdef-WQA
with a higher degree of language independence compared to current defini-
tion QAS. In particular, we avoid the specification of additional word ad-
dition/ordering rules [12] or the integration of more sophisticated linguistic
processing such as chunking [5].

3. Mdef-WQA groups sentences by potential senses, which are discovered by ob-
serving the partitions generated by the closest neighbours of δ in the
reliable semantic space supplied by Latent Semantic Analysis (LSA). LSA
supplies of language independent framework for drawing semantic inferences.

4. Mdef-WQA takesadvantageof avariationofMulti-DocumentMaximalMarginal
Relevance [4] for reducing redundancy and maximising diversity in selected ut-
terances. This guarantees a fast summarisation framework which only makes
use of a language–specific stop-list.

2.1 Obtaining Descriptive Sentences

In recent years, surface patterns for English have proven to be useful for dis-
tinguishing definition utterances in natural language texts [12,10,5,6,7]. These
surface patterns provide syntactic structures that are properly aligned with sen-
tences in order to detect descriptive utterances. The syntactic structures are,
more precisely, based largely upon punctuation and words that often convey

A Multilingual Framework for Searching Definitions 147

Table 1. Surface Patterns for English (Πen)

πen
1 : δ

′
[is|are|has been|have been|was|were] [a|the|an] η

′

e.g.,“Noam Chomsky is a writer and critic...”

πen
2 : [δ

′ |η′
], [a|an|the] [η

′ |δ′
] [,|.]

e.g.,“The new iPoD, an MP3-Player,... ”

πen
3 : δ

′
[become|became|becomes] η

′

e.g.,“In 1957, Althea Gibson became the...”

πen
4 : δ

′
[which|that|who] η

′

e.g.,“Joe Satriani who was inspired to play...”

πen
5 : δ

′
[was born] η

′

e.g.,“Alger Hiss was born in 1904 in USA...”

πen
6 : [δ

′ |η′
], or [η

′ |δ′
]

e.g.,“Sting, or Gordon Matthew Sumner,...”

πen
7 : [δ

′ |η′
][|,][|also|is|are] [called|named|nicknamed|known as] [η

′ |δ′
]

e.g.,“Eric Clapton, nicknamed ’Slowhand’...”

πen
8 : [δ

′ |η′
] ([η

′ |δ′
])

e.g.,“The United Nations (UN)..”

definitions. Simply put, these syntactic structures make available the way to
identify the definiendum δ

′
and its definition nugget η

′
within utterances.

Mdef-WQA takes advantage of these syntactic structures not only for distin-
guishing definitions, but also for biasing the search engine in favor of web snip-
pets that convey definitions. Table 1 shows surface patterns that we found to be
particularly useful for this purpose. From this manually specified set of patterns,
Mdef-WQA automatically generates the following set of ten different queries used
by the search engine. The first submission q1 corresponds to “δ”, and the next
four queries aims at πen

1 :

q2:“δ is a ” ∨ “δ was a ” ∨ “δ were a ” ∨ “δ are a ”
q3:“δ is an ” ∨ “δ was an ” ∨ “δ were an ” ∨ “δ are an ”
q4:“δ is the ” ∨ “δ was the ” ∨ “δ were the ” ∨ “δ are the ”
q5:“δ has been a ” ∨ “δ has been an ” ∨ “δ has been the ” ∨ “δ have been a ” ∨ “δ
have been an ” ∨ “δ have been the ”

πen
1 is split into four queries, because it retrieves many descriptive utterances.

The next query q6 attempts to discover snippets that match πen
2 or πen

6 :

q6:“δ, a ” ∨ “δ, an ” ∨ “δ, the ” ∨ “δ, or ”

The reason to merge these two patterns into one query is two-fold: (a) πen
6 has

a low occurrence within web snippets (see also [7]), and (b) πen
6 often yields a

synonym of δ (i. e. “myopia, or nearsightedness”). Alternative names of persons,
organisations or abbreviations are seldom expressed in this way, but are likely
to match the other clauses within q6. Consequently, the combination of both
patterns helps Mdef-WQA to reduce the number of search calls. The queries q7,
q8 and q9 aim at πen

7 , πen
3 and πen

4 respectively as follows:

148 A. Figueroa and G. Neumann

q7:(“δ” ∨ “δ also ” ∨ “δ is ” ∨ “δ are ”) ∧ (called ∨ nicknamed ∨ “known as”)
q8:“δ became ” ∨ “δ become ” ∨ “δ becomes ”
q9:“δ which ” ∨ “δ that ” ∨ “δ who ”

Finally, q10:“δ was born ” ∨ “(δ)” attempts to fetch snippets that match πen
5 and

πen
8 . Similarly to q6, Mdef-WQAmerges both patterns into one query on the ground

that πen
5 deals with δ regarding persons and πen

8 focuses basically on acronyms
[7]. Hence, Mdef-WQA avoids an unproductive retrieval without diminishing the
number of fetched descriptive sentences.

Surface patterns for English have been studied widely, especially in TREC,
whereas patterns for other languages have been systematically explored only in
the context of the CLEF campaigns. Until 2005, CLEF focused exclusively on
definition questions aiming at abbreviations and the position of persons [9,13].
These surface patterns are therefore specialised for recognising this specific sort
of descriptive information. Systems in TREC are encouraged in extracting as
much as possible useful descriptive information about δ [5]. Thus, these surface
patterns provide a wider coverage than patterns known for other languages.

For the particular case of surface patterns for Spanish, two additional issues
complicates the identification of descriptive information from the web. Firstly,
the patterns are based largely upon punctuation signs [11] and closed class words
[3], which are usually ignored by some search engines. Secondly, these punctua-
tion signs and closed class words tend to be separated by a large span of text,
which usually contains δ

′
and/or its respective definition η

′
. Therefore, supplying

syntactic structures seems to be unsuitable for rewriting the query. An illustra-
tive example is the pattern “El η

′
, δ

′
, se”, which matches sentences such as “El

presidente de España, Jose Luis Zapatero, se. . .”. The snippets obtained by the
respective query rewriting “El” ∧ “, δ, se” are unlikely to yield definitions, and
additionally, portions of the large span of text between δ and the closed class
word “El” can be replaced with an intentional break (often denoted by . . .) by
the search engine.

All things considered, Mdef-WQA seeks to explore whether the translation of
surface patterns from English to Spanish provide a wider coverage, and whether
they are more efficient for retrieving sentences that convey definitions from the
web. Table 2 shows the respective translations of the first five patterns πen

p to
Spanish. The translations of πen

6 and πen
7 as well as some translations of πen

3 were
not taken into account, because we found them to be unlikely to occur within
web snippets. πen

8 , which actually does not need any translation, was deliberately
omitted for two reasons: it is commonly used by systems in CLEF for resolving
abbreviations [11], and one of the motivations behind our research is measuring
the contribution of the translated patterns.

From table 2 it can also be observed that pattern πes
1 generates 60 cues (e.g.,

“es la”, “es lo”, “son una”), in contrast to its homologous πen
1 , which brings

about 18 cues. This substantial increase is due to the fact that Spanish is morpho-
logically richer than English causing a decisive impact on the form and number
of queries that Mdef-WQA must submit to the web. Mdef-WQA necessarily needs
to regulate the trade-off between recall and retrieval time. Thus, it is unfeasible

A Multilingual Framework for Searching Definitions 149

Table 2. Surface Patterns for Spanish (Πes)

πes
1 : δ

′
[es|son|fueron|fue|ha sido|han sido] [la|lo|el|un|una|uno|unos|unas|las|los] η

′

e.g.,“Jose Luis Zapatero es el relevo de Felipe Gonzalez para los socialistas.”

πes
2 : δ

′
[,|;] [un|una|uno|la|lo|el|los|las] η

′
[,|;|.]

e.g.,“Silvio Rodriguez, uno de los exponentes de la Nueva Trova cubana,... ”

πes
3 : δ

′
[ha llegado a ser|llego a ser|se transformo|se ha transformado] η

′

e.g.,“España se ha transformado en un pais democratico.”

πes
4 : δ

′
[,|] [el cual|la cual|los cuales|quien|que] η

′

e.g.,“Michelle Bachelet quien es la primera presidenta de la historia de Chile,...”

πes
5 : δ

′
[nacio|fue fundado|fue fundada] η

′

e.g.,“Jose Luis Rodriguez Zapatero nacio en Valladolid el 4 de Agosto de 1960.”

Table 3. Generated queries for Spanish

q1:“δ” q11:“δ es una” ∨ “δ fue lo” ∨ “δ ha sido un”
q2:“δ, fue un” ∨ “δ son lo” ∨ “δ, la” q12:“δ se transformo” ∨ “δ fue uno” ∨ “δ , las”
q3:“δ fue la” ∨ “δ es el” ∨ “δ son el” q13:“δ la cual” ∨ “δ, una” ∨ “δ ha sido una”
q4:“δ que” ∨ “δ son las” ∨ “δ, lo” q14:“δ es uno” ∨ “δ nacio” ∨ “δ el cual” ∨ “δ, los”
q5:“δ es un” ∨ “δ ha llegado a ser” ∨ “δ son la” ∨ “δ fueron las”
q6:“δ fue el” ∨ “δ son unas” ∨ “δ, uno” ∨ “δ ha sido la”
q7:“δ quien” ∨ “δ los cuales” ∨ “δ, un” ∨ “δ son una”
q8:“δ se ha transformado” ∨ “δ es lo” ∨ “δ fue fundado”
q9:“δ, el” ∨ “δ son unos” ∨ “δ fue una” ∨ “δ fue fundada”
q10:“δ es la” ∨ “δ llego a ser” ∨ “δ ha sido el” ∨ “δ son un”

to send each cue individually to the web or to follow a criteria similar to the one
used for designing the queries for English, because of the number of cues and
the fact that they do not present any usefull disjunction. Consequently, the next
three key aspects were considered for designing the queries (table 3): (a) cues
that are more likely to retrieve descriptive utterances are distributed in different
queries, and some unproductive combinations in πes

1 are discarded, (b) cues aim-
ing at different tenses and genders were also spread over different queries; this
way Mdef-WQA decreases the number of fruitless retrievals, and (c) the number of
clauses in a query is limited by the length of queries accepted by search engines.

Once all snippets are fetched Mdef-WQA removes all orthographic accents and
splits them into sentences by means of intentional breaks and a sentence split-
ter.2 Patterns are then applied to discriminate descriptive utterances within re-
trieved snippets. Since δ does not exactly match δ

′
, Mdef-WQA takes advantages

of the Jaccard Measure for distinguishing more reliable descriptive sentences.
The Jaccard Measure J of two terms wi, wj is the ratio between the number
of different uni-grams that they share, and the total number of different uni-
grams : J(wi, wj) = |wi∩wj |

|wi∪wj | . Consider for example the definiendum δ∗=“John

2 We are using the one provided by JavaRAP, cf. http://www.comp.nus.edu.sg/∼
qiul/NLPTools/JavaRAP.html.

150 A. Figueroa and G. Neumann

Kennedy”, which might also be expressed as δ
′∗
1 =“John Fitzgerald Kennedy” or

δ
′∗
2 =“Former US President Kennedy”. The values for J(δ∗, δ

′∗
1) and J(δ∗, δ

′∗
2) are

2
3 and 1

5 respectively. Mdef-WQA filters reliable descriptive utterances by means
of a pattern specific threshold, avoiding additional purpose-built hand-crafted
rules and ad-hoc linguistic processing. Of course, some sentences containing use-
ful nuggets will be discarded, but these discarded nuggets can also be found in
other retrieved phrases, e.g., “Former US President Kennedy” in “John Fitzger-
ald Kennedy was a former US President.”. In short, Mdef-WQA trusts implicitly
in the redundancy of the web for discovering several paraphrases.

2.2 Potential Senses Identification

There are many-to-many mappings between names and their concepts. On the
one hand, the same name or word can refer to several meanings or entities. On
the other hand, different names can indicate the same meaning or entity. To
illustrate this, consider the next set S of recognised descriptive utterances:

1. John Kennedy was the 35th President of the United States.
2. John F. Kennedy was the most anti-communist US President.
3. John Kennedy was a Congregational minister born in Scotland

In these sentences, “US President John Fitzgerald Kennedy” is referred to as
“John Kennedy” and “John F. Kennedy”, while “John Kennedy” indicates also
a Scottish Congregational minister. In the scope of this work, a sense is one
meaning of a word or one possible reference to a real-world entity.

Mdef-WQA disambiguates senses of δ by observing the correlation of its neigh-
bours in the reliable semantic space provided by LSA. This semantic space is
constructed from the term-sentence matrix M , which considers δ as a pseudo-
sentence which is weighted according to the traditional tf-idf. Mdef-WQA builds
the dictionary of terms W from normalised elements in S, which consists of up-
percasing, removal of html-tags, and the isolation of punctuation signs. Mdef-WQA
distinguishes then all possible different n-grams in S together with their frequen-
cies. The size of W is then reduced by removing n-grams, which are substrings
of another equally frequent term. This reduction allows the system to speed up
the computation of M as UDV

′
using the Singular Value Decomposition. Fur-

thermore, the absence of syntactical information of LSA is slightly reduced by
considering strong local syntactic dependencies.

Mdef-WQA makes use of D̂, the greatest three eigenvalues of D, and the
corresponding three vectors Û and V̂ for constructing the semantic space as
R = ÛD̂2Û

′
. Mdef-WQA prefers the dot product above the traditional cosine as

a measure of the semantic relatedness R(wi, wj) = ûiD̂2ûj

′
(ûi, ûj ∈ Û) of two

terms wi, wj ∈ W . The major reasons are (a) it was observed experimentally
that, because of the size of web snippets (texts shorter than 200 words), the co-
sine draws an unclear distinction of the semantic neighbourhood of δ, bringing
about spurious inferences [15], and (b) the length of vectors was found to draw a
clearer distinction of the semantic neighbourhood of δ as this biases R in favour
of contextual terms, which LSA knows better [2].

A Multilingual Framework for Searching Definitions 151

In this semantic space, the neighbourhood of a particular word wi provides
its context [2,8]. Consequently, it determines its right meaning by pruning, for
instance, inappropriate senses [8]. Similarly, δ is also a term defined by its neigh-
bourhood in this semantic space. For this reason, Mdef-WQA selects a set W̄ ⊆ W
of the forty highest closely related terms to δ, that is, terms that are likely
to define its meaning. However, as a result of the relaxed pattern matching,
Mdef-WQA must also account for all n-grams δ+ ∈ W in δ, because some inter-
nal n-grams could be more likely to occur within descriptive utterances (i.e.,
names or surnames are more frequent than their respective full names). In our
working sentences and illustrative variations of δ, “Kennedy” has a higher fre-
quency than “John Kennedy”. Mdef-WQA considers therefore the forty highest
pairs {wi, Rmax(δ, wi)}, where Rmax(δ, wi) = maxδ+∈W R(δ+, wi). Mdef-WQA
normalises terms in W̄ according to:

R̂(δ, wi) =
Rmax(δ, wi)∑

∀wj∈W̄ Rmax(δ, wj)

Since words that indicate the same sense co-occur, Mdef-WQA identifies poten-
tial senses by finding a set W̄λ ⊆ W̄ of words, for which their vectors form an
orthonormal basis. In order to discriminate these orthonormal terms, Mdef-WQA
builds a term-sentence matrix Φ, where a cell Φis = 1, if the term wi ∈ W̄ oc-
curs in the descriptive phrase Ss ∈ S, zero otherwise. The degree of correlation
amongst words in W̄ across S is then given by Φ̂ = ΦΦ

′
. For example, for the

words in W̄ : w1= “Scotland”, w2= “President” and w3= “35th”, the computed
values for Φ and Φ̂ are:

Φ =

⎛⎜⎜⎝
S1 S2 S3

w1 0 0 1
w2 1 1 0
w3 1 0 0

⎞⎟⎟⎠ Φ̂ =

⎛⎜⎜⎝
w1 w2 w3

w1 1 0 0
w2 0 2 1
w3 0 1 1

⎞⎟⎟⎠
Hence, the number of non-selected words wj ∈ W̄ −Wλ that co-occur with a
term wi ∈ W̄ across S is given by:

γ(wi) =
∑

∀wj∈W̄−W̄ λ:Φ̂ij>0

1

In our working example, γ(w1) = 1 and γ(w2) = γ(w3) = 2, because “President”
and “35th” co-occur in S1, and “Scotland” does not co-occur with any other
element of W̄ . Then, Mdef-WQA adds the wi to W̄λ that:

max
wi∈W̄

γ(wi) (1)

subject to:

Φ̂ij = 0, ∀wj ∈ W̄λ (2)

γ(wi) > 0 (3)

152 A. Figueroa and G. Neumann

In words, a term wi signals a new sense, if it does not co-occur at the sentence
level with any other already selected term wj ∈ W̄λ, and it has the highest num-
ber of co-occurring non-selected terms wj ∈ W̄ . Incidentally, Mdef-WQA breaks
ties by randomly selecting a term. In our illustrative example, if w3 is randomly
selected, then γ(wi) is equal to one for the three words in the next cycle. w1

is then selected, because w3 was already selected and w2 co-occurs with w3

(Φ̂23 > 0), and accordingly, W̄λ is {“Scotland”, “35th”}. Words are added to
W̄λ until no other term wi fulfils conditions (2) and (3). Next, sentences are di-
vided into clusters Cλ according to terms in W̄λ. Sentences that do not contain
any term in W̄λ are collected in a special cluster C0. For our working example,
the clusters are: C0= {S2}, C1= {S3} and C2= {S1}.

Finally, Mdef-WQA attempts to reassign each sentence Ss in C0 by searching
for the strongest correlation between its named entities (NEs) and the NEs of a
cluster Cλ:

max
Cλ

∑
∀e∈Ss

freqCλ
(e) > 0, λ �= 0

where freqCλ
(e) is the frequency of NEs e in the cluster Cλ. The assumption

here is that the same NEs tend to occur in the same sense. To illustrate this, S2

is assigned to C2.

2.3 Redundancy Removal

For each cluster Cλ, Mdef-WQA determines incrementally a set Θλ of its sentences
Sλ to maximise their comparative relevant novelty:

max
Ss∈Sλ−Θλ

coverage(Ss) + content(Ss)

subject to:
coverage(Ss) ≥ ψ∗ > 0 (4)

Wtype(Ss) = 0 (5)

The comparative relevant novelty of a sentence Ss is given by the relative
coverage and content of its nuggets respecting Θλ. Let N(Ss) be the set of
normalised nuggets associated with Ss and WN then the set of terms of all
normalised nuggets. WN(Ss) is the set of words in N(Ss). Coverage is then
defined as follows:

coverage(Ss) =
∑

∀wi∈WN(Ss)−WΘλ

Pi

where Pi is defined as the probability of finding a word wi ∈ WN , and is ar-
bitrarily set to zero for all stop words. WΘλ

is the set of words occurring in
preceding selected sentences Θλ.

Coverage aims at measuring how likely are novel terms (not seen in Θλ) within
N(Ss) to belong to a description. Thus, diverse sentences are preferred over

A Multilingual Framework for Searching Definitions 153

sentences with many redundant words, which are consequently filtered according
to an experimental threshold ψ∗. On the other hand, content discriminates the
degree, in which N(Ss) conveys definition aspects of δ based upon highly close
semantic terms and entities, and is given by:

content(Ss) =
∑

∀wi∈W̄

ΦisR̂(δ, wi) +
∑

∀e∈N(Ss)−Eλ

Pλ
e

The first sum measures the semantic bonding of terms in the respective nuggets,
and the second sum the relevance of novel entities (Eλ is the set of entities in
Θλ). Each novel entity e is weighed according to its probability Pλ

e of being in
the normalised nuggets of Cλ. Incidentally, Wtype(Ss) is the amount of undesir-
able symbols in Ss such as pronouns, unclosed brackets or parenthesis, URLs.
Consequently, condition 5 bans sentences containing such symbols from Θλ. In
sum, Mdef-WQA ranks sentences according to the order they are inserted into Θλ.
This means that higher ranked sentences are more diverse, less redundant, and
are likely to contain entities along with terms that describe aspects of δ.

Note further that C0 is processed last in order to initialise Θλ with all sen-
tences selected from previous clusters, so that only sentences with novel pieces
of information remain in C0.

3 Experiments and Results

Mdef-WQA was assessed by means of standard question sets.3 The following data
sets were considered for English: (1) TREC 2001, (2) TREC 2003, (3) CLEF
2004, (4) CLEF 2005, and (5) CLEF 2006. For Spanish only (4) and (5) were
taken into account. All surface patterns thresholds were set to 0.25, apart from
thresholds for patterns πen

1 , πen
5 , πes

1 and πes
4 , which were set to 0.33, 0.5, 0.33

and 0.4 respectively. These values were determined after experimentally testing
different thresholds from 0.2 to 0.7, and thus manually counting the correspond-
ing number of non-descriptive or spurious selected sentences. The threshold that
controls redundancy ψ∗ was set to 0.01 for both languages.

Three baselines were designed, one for English (Baseline EN-I) and two
for Spanish (Baseline ES-I and Baseline ES-II). Like Mdef-WQA, Baseline
EN-I retrieves 300 hundred snippets by submitting “δ” to the web. The retrieved
snippets are split into sentences by means of JavaRAP, interpreting intentional
breaks as end of sentences. Baseline EN-I also accounts solely for a stricter
matching of δ by setting all pattern Πen thresholds to one. A random sentence
from a pair that shares more than 60% of their terms is discarded, cf. [5], as
well as sentences that are a substring of another sentence. Baseline ES-I and
Baseline ES-II do the same processing as Baseline EN-I, but they retrieve
420 snippets. These two baselines also differ from Baseline EN-I in the number
of terms that two sentences must share to be considered as redundant. They
3 Along this section, ± stands for standard deviation, and CLEF data-sets consider

all English translations from all languages.

154 A. Figueroa and G. Neumann

Table 4. Length of output sentences

with white spaces without white spaces

Baseline ES-I 98.11 ± 44.90 81.06 ± 37.69
Baseline ES-II 104.98 ± 36.43 85.88 ± 29.87
Mdef-WQA ES 135.78 ± 45.21 113.70 ± 37.97

Baseline EN-I 118.168 ± 50.20 97.81 ± 41.80
Mdef-WQA EN 125.70 ± 44.21 109.74 ± 42.15

account for a threshold of 90% instead of 60%, because the coverage of web space
for Spanish is smaller than English and some relevant nuggets are missed along
with the redundant content. The difference between the Spanish baselines is that
Baseline ES-I aims at Πes whereas Baseline ES-I at the patterns in [11].

In general, Mdef-WQA outputs short sentences, in particular, output sentences
for English are comparative longer than the 100 characters (without considering
white spaces) nuggets of [5] and smaller than the 250 characters (considering
white spaces) fixed windows of [10]. Given the lengths of the outputs of Baseline
EN/ES-I and Mdef-WQA EN/ES (see table 4), it can be concluded that the increase
indicates that Mdef-WQA outputs more complete sentences, lessening the
effects of intentional breaks on web snippets. Due to the acceptable length of
descriptive sentences and the fact that many nuggets seems odd without their
context [5], Mdef-WQA outputs sentences instead of only nuggets.

The degree of redundancy of a sentence Ss was roughly approximated at the
word level by looking for a sentence Ss′ in the same response that shares the
maximum number of terms with Ss:

redundancy(Ss) = max
S

s
′ �=Ss

ns(Ss ∩ S
′

s)
ns(Ss)

where ns(Ss) is the number of words in Ss excluding stop-words. As a re-
sult, Baseline ES-II generates an output, at least, two times redundant as
Mdef-WQA, which supplies longer sentences (see table 5). By and large, Mdef-WQA
outputs comparative longer and less redundant sentences.

The coverage of surface patterns for English has been studied widely [5,6,7],
by the same token table 6 shows the number of descriptive sentences in the
final output that match each pattern in Πes. Each cell represents the number

Table 5. Redundancy overview

(1) (2) (3) (4) (5)

Baseline ES-I 0.32 ± 0.16 0.38 ± 0.25
Baseline ES-II 0.54 ± 0.24 0.64 ± 0.39
Mdef-WQA ES 0.25 ± 0.17 0.25 ± 0.16

Baseline EN-I 0.58 ± 0.26 0.61 ± 0.26 0.57 ± 0.25 0.62 ± 0.25 0.53 ± 0.23
Mdef-WQA EN 0.47 ± 0.18 0.50 ± 0.20 0.45 ± 0.18 0.45 ± 0.17 0.45 ± 0.19

A Multilingual Framework for Searching Definitions 155

Table 6. Coverage of patterns

πes
1 πes

2 πes
3 πes

4 πes
5

Baseline ES-I 78/37 17/10 00/00 13/10 05/03
Mdef-WQA 470/254 168/95 03/01 59/58 54/36

Table 7. Results overview. (TQ = Total number of questions in the question-set).

Corpus Baseline EN-I Mdef-WQA
TQ AQ NS Accuracy AQ NS Accuracy AS (%)

(1) 133 81 7.35 ± 6.89 0.87 ± 0.2 133 18.98 ± 5.17 0.94 ± 0.07 16 ± 20
(2) 50 38 7.7 ± 7.0 0.74 ± 0.2 50 14.14 ± 5.3 0.78 ± 0.16 5 ± 9
(3) 86 67 5.47 ± 4.24 0.83 ± 0.19 78 13.91 ± 6.25 0.85 ± 0.14 5 ± 9
(4) 185 160 11.08 ± 13.28 0.84 ± 0.2 173 13.86 ± 7.24 0.89 ± 0.15 4 ± 11
(5) 152 102 5.43 ± 5.85 0.85 ± 0.22 136 13.13 ± 6.56 0.86 ± 0.16 8 ± 14

of matches for the CLEF 2005/2006 corpus respectively. πes
1 provides the wider

coverage, while πes
3 the most limited. Given the marked increase in the number

of recognised descriptive utterances in the final output, it can be concluded that
our query rewriting strategy strongly biases the search engines not only in favour
of redundant descriptive sentences, but also in favour of diverse utterances.
On the one hand, redundant sentences are undesirable in the final output, on
the other hand, they are useful for distinguishing more relevant and reliable
descriptive utterances.

We considered an entirely different evaluation for each language for the fol-
lowing reasons: (a) the way the performance of definition QASs is measured
differs between TREC and CLEF, and (b) CLEF gold standards for definition
questions supply only one nugget regarding abbreviations or position of persons,
whereas TREC 2003 provides a set of relevant nuggets.

To start with the discussion of the obtained results, table 7 shows the coverage
of Baseline EN-I and Mdef-WQA. AQ stands for the number of questions, for
which its response contained at least one nugget (manually checked). Mdef-WQA
discovered nuggets for all questions in (2), contrary to [1], who found nuggets for
solely 42 questions by using external dictionaries and web snippets. In addition,
Mdef-WQA discovered nuggets within snippets for the 133 questions in (1), in
contrast to [10], who found a top five ranked snippet that conveys a definition
solely for 116 questions within top 50 downloaded full documents.

Overall, Mdef-WQA covered 94% of the questions, whereas Baseline EN-I
74%. This difference is mainly due to the query rewriting step and the more
flexible matching of δ. For all questions, in which Mdef-WQA and Baseline EN-I
discovered at least one nugget, the accuracy and the average number of sentences
(NS), containing also at least one nugget, was computed. Mdef-WQA doubles the
number of sentences and achieves a slightly better accuracy. In table 7, AS corre-
sponds to the percentage of sentences within NS, for which the relaxed matching
shifted δ to another concept. Some shifts caused interesting descriptive phrases.
A good example is: “neuropathy” was shifted to “peripheral neuropathy” and

156 A. Figueroa and G. Neumann

Table 8. TREC 2003 results

Recall Precision Av. len.

Baseline 0.35 ± 0.34 0.30 ± 0.26 583
Mdef-WQA 0.61 ± 0.33 0.18 ± 0.13 1878

Table 9. TREC 2003 F(β) scores

β 1 2 3 4 5

Mdef-WQA 0.26 0.37 0.45 0.50 0.53
Baseline EN-I 0.26 0.30 0.32 0.32 0.34

“auditory neuropathy”, conversely, some shifts caused loosely related sentences:
“G7” to “Powershot G7”.

In order to compare our methods with a gold standard for English, we used
the assessors’ list provided through the TREC 2003 data. Following the approach
of TREC, table 8 displays our current achievement. Given the higher recall 0.61
± 0.33 obtained by Mdef-WQA, it can be concluded that the additional sentences
that it selects contain more nuggets seen as vital on the assessor’s list. A key
point for the interpretation of the precision is the completeness of the assessor’s
list. It is known that systems in TREC are able find valid nuggets, which are
judged as not relevant in the list (cf. [5] for details). This is even more likely
for web-based system like Mdef-WQA, because they will discover many additional
nuggets charged as relevant by a user, but will not hit the list. This kind of
“it-is-not-on-my-list-evaluation” actually brings about a decrease, because they
enlarge the response without increasing precision. In Mdef-WQA, this is a critical
aspect, because it increases almost twofold the amount of selected descriptive
sentences per question (see table 7), and hence, the length of the response.

Given the F(β) score achieved for each response by Mdef-WQA (see table 9)
[14], it can be concluded: (a) it is “competitive” with the best systems in TREC
2003, which achieved between 0.5 and 0.56 for β=5, and (b) additional sen-
tences provided novel nuggets. It is also worth to remark that Baseline EN-I
obtained a slightly better F(β=5) for the following δs: “Akbar the Great”, “Al-
bert Ghiorso” and “Niels Bohr”. This simply means that these responses were
closer to the the assessors’ expectations.

For Spanish, Mdef-WQA answered 32 and 22 out of the CLEF 2005 and 2006
questions respectively (see table 10). However, the runs submitted by the best
two systems in CLEF 2005 answered 40 out of the 50 definition questions [13,11].
Nevertheless, the third best system only answered 26 questions. Additionally,

Table 10. Gold standards

Baseline ES-I Baseline ES-II Mdef-WQA
(4) 11 33 32
(5) 9 12 22

A Multilingual Framework for Searching Definitions 157

Table 11. Results overview. (TQ = Total number of questions in the question-set).

Corpus Baseline ES-I Baseline ES-II
TQAQ NS Accuracy AQ NS Accuracy

(4) 50 26 2.59 ± 2.45 0.85 ± 0.23 39 10.13 ± 10.66 0.67 ± 0.31
(5) 42 10 3.00 ± 3.13 0.61 ± 0.31 15 3.4 ± 3.31 0.65 ± 0.26

Corpus Mdef-WQA
TQ AQ NS Accuracy

(4) 50 47 8.6 ± 4.85 0.63 ± 0.19
(5) 42 30 7.27 ± 6.76 0.67 ± 0.25

the best system in CLEF 2006 answered 35 out of the 42 definition questions,
whereby Mdef-WQA found answers for 22 out of the 35 questions answered by this
best system. Unfortunately, CLEF 2006 gold standard provides only one nugget
for only these 35 questions.

Since the coverage of the gold standards focuses solely on abbreviations and
positions of persons, and answers for seven CLEF 2006 questions are missed,
we assigned three out of five different assessors to each data-set. Each assessor
judged whether or not each output sentence yielded descriptive information. A
sentence was considered as descriptive if and only if at least two out of the three
assessors agreed (results in table 11). In both data-sets, Mdef-WQA outperformed
both baselines, in particular, it discovered descriptive phrases for 47 out of the
50 CLEF 2005 questions. Additionally, Mdef-WQA returned more descriptive ut-
terances (NS) with a lower level of redundancy. However, the accuracy of the
output sentences decreased compared to our English results. We interpret this
as a consequence of the lower amount of web redundancy for Spanish, which
effects the quality of identifying the most relevant and reliable phrases. Finally,
table 10 shows that the performance of Mdef-WQA can be improved by aligning
patterns in [11] without necessarily considering them in the rewriting process.

All in all, the substantial difference in the performance between Baseline
EN/ES-I and Mdef-WQA stresses the improvement caused by the query rewriting,
and proves that extracting answers to definition questions straightforwardly from
web snippets is promising.

Concerning the performance of the sense disambiguation process, Mdef-WQA
was able to distinguish different potential senses for some δs, e.g., for “atom”,
the particle–sense and the format–sense. On the other hand, some senses were
split into two separate senses, e.g., “Akbar the Great”, where “emperor” and
“empire” indicated different senses. This misinterpretation is due to the inde-
pendent co-occurrence of “emperor” and “empire” with δ, and the fact that they
are unlikely to share words. In order to improve this, some external sources of
knowledge are necessary. This is not a trivial problem, because some δs can be
extremely ambiguous like “Jim Clark”, which refers to more than ten differ-
ent real-world entities. Mdef-WQA recognised the pilot and the Netscape founder
(Fig. 1). Independently of that, we found that entities and the correlation of

158 A. Figueroa and G. Neumann

Fig. 1. Φ̂ij > 1 for δ =“Jim Clark”

highly closed terms in the semantic space provided by LSA can be important
building blocks for a more sophisticated strategy for the disambiguation of δ.

4 Conclusions and Future Work

This work presents Mdef-WQA, a system that extracts answers for definition ques-
tions from web snippets. Our ongoing research focuses on adapting our system
to deal with German. This adaptation brings about two challenges: (a) discrim-
inate descriptive phrases in present tense from sentences in perfect tense with
“sein”, and (b) cope with the orthographical variations caused by umlauts and
compounds.

Mdef-WQA pioneers attempts by definitional QAS to disambiguate descriptive
utterances. One finding is that web snippets do not provide the necessary in-
formation for a complete disambiguation. To overcome this problem, external
resources such as full documents, WordNet and/or additional queries might be
explored as a source for fetching extra information from the web.

An additional challenge is recognising of relevant morpho-syntactical varia-
tions of descriptive sentences, which would help to decrease the redundancy of
the output. Anyway, this redundancy can still be useful for discovering answers
to definition questions in the context of the TREC/CLEF Question Answering
tracks, projecting these redundant utterances to the corresponding corpus.

References

1. Cui, T.S.C.H., Kan, M.Y., Xiao, J.: A comparative study on sentence retrieval for
definitional question answering. In: SIGIR Workshop on Information Retrieval for
Question Answering (IR4QA), July 29, 2004, Sheffield, UK (2004)

2. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing By Latent Semantic Analysis. Journal of the American Society For Information
Science 41, 391–407 (1990)

3. Denicia-Carral, C., Montes-y-Gómez, M., Villaseñor-Pineda, L., Garćıa Hernández,
R.: A Text Mining Approach for Definition Question Answering. In: Salakoski, T.,
Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139,
pp. 76–86. Springer, Heidelberg (2006)

A Multilingual Framework for Searching Definitions 159

4. Goldstein, J., Mittal, V., Carbonell, J., Kantrowitz, M.: Multi-document summa-
rization by sentence extraction. In: NAACL-ANLP 2000 Workshop on Automatic
summarization, pp. 40–48 (2000)

5. Hildebrandt, W., Katz, B., Lin, J.: Answering Definition Questions Using Multiple
Knowledge Sources. In: HLT-NAACL 2004, pp. 49–56 (2004)

6. Joho, H., Sanderson, M.: Large Scale Testing of a Descriptive Phrase Finder. In:
1st Human Language Technology Conference, San Diego, CA, pp. 219–221 (2001)

7. Joho, H., Sanderson, M.: Retrieving Descriptive Phrases from Large Amounts of
Free Text. In: 9th ACM conference on Information and Knowledge Management,
McLean, VA, pp. 180–186. ACM Press, New York (2000)

8. Kintsch, W.: Predication. Cognitive Science 25, 173–202 (1998)
9. Magnini, B., Giampiccolo, D., Forner, P., Ayache, C., Osenova, P., Peas, A., Ji-

jkoun, V., Sacaleanu, B., Rocha, P., Sutcliffe, R.: Overview of the CLEF 2006
Multilingual Question Answering Track. In: Working Notes for the CLEF 2006
Workshop, 20-22 September, 2006, Alicante, Spain (2006)

10. Miliaraki, S., Androutsopoulos, I.: Learning to Identify Single-Snippet Answers to
Definition Questions. In: COLING 2004, pp. 1360–1366 (2004)

11. Montes-y-Gómez, M., Villaseñor-Pineda, L., Pérez-Coutiño, M., Gómez-Soriano,
J.M., Sanchis-Arnal, E., Rosso, P.: INAOE-UPV Joint Participation in CLEF 2005:
Experiments in Monolingual Question Answering. In: Peters, C., Gey, F.C., Gon-
zalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampic-
colo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 21–23. Springer, Heidelberg (2006)

12. Soubbotin, M.M.: Patterns of Potential Answer Expressions as Clues to the Right
Answers. In: Proceedings of the TREC-10 Conference, NIST (2001), Gaithersburg,
Maryland (2001)

13. Vallin, A., Giampiccolo, D., Aunimo, L., Ayache, C., Osenova, P., Peñas, A., Rijke,
M., Sacaleanu, B., Santos, D., Sutcliffe, R.: Overview of the CLEF 2005 Multilin-
gual Question Answering Track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H.,
Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF
2005. LNCS, vol. 4022, pp. 21–23. Springer, Heidelberg (2006)

14. Voorhees, E.M.: Evaluating Answers to Definition Questions. In: HLT-NAACL
2003, 109–111 (2003)

15. Wiemer-Hastings, P., Zipitria, I.: Rules for Syntax, Vectors for Semantics. In: Pro-
ceedings of the 23rd Annual Conference of the Cognitive Science Society (2001)

A SPARQL Semantics Based on Datalog

Simon Schenk

Institute for Computer Science,
University of Koblenz,

sschenk@uni-koblenz.de

Abstract. SPARQL is the upcoming W3C standard query language for RDF data
in the semantic web. In this paper we propose a formal semantics for SPARQL
based on datalog. A mapping of SPARQL to datalog allows to easily reuse ex-
isting results from logics for analysis and extensions of SPARQL. Using this se-
mantics we analyse the complexity of query answering in SPAQRL and propose
two useful extensions to SPARQL, namely binding of variables to results of filter
expressions and views on RDF graphs as datasets for queries. We show that these
extensions to not add to the overall complexity of SPARQL.

1 Introduction

The Resource Description Framework (RDF) is a language for representing semantic
information in the World Wide Web [9], based on a graph model. Concepts and in-
stances are nodes of this graph and their relations are represented as the edges.

SPARQL is the upcoming W3C standard query language for RDF data on the se-
mantic web. SPARQL is based on graph pattern matching. A SPARQL query matches
a graph pattern against a dataset consisting of one or more input graphs. The resulting
variable bindings are either returned in tabular form (”select queries”) or embedded into
a template description in order to generate new RDF data (”construct queries”).

In this paper we propose a formal semantics for SPARQL based on a mapping to
datalog. We prove interesting results about SPARQL using the existing body of knowl-
edge about datalog. Based on the provided mapping we propose two useful extensions
to SPARQL and show that they do not add top the complexity of SPARQL query an-
swering.

Unlike for example the SQL query language for relational databases, SPARQL cur-
rently does not allow to bind variables to values of functions applied on other bindings.
The first extension deals with binding of variables to the results of SPARQL filter ex-
pressions. As an example we will use a graph containing information about the price of
a product in Euros and the conversion rate from Euro to Dollar. Using the extension, it
will be possible to directly ask for the Dollar price, which is not possible in the current
SPARQL working draft [12].

 This research was supported by the European Commission under contract FP6-027026,
Knowledge Space of semantic inference for automatic annotation and retrieval of multime-
dia content - K-Space. The expressed content is the view of the authors but not necessarily the
view of the K-Space project.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 160–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A SPARQL Semantics Based on Datalog 161

The second extension aims at using the result of SPARQL construct queries as part of
the dataset of another query, a feature desirable for the formulation of complex queries
in a concise way. We will show how to use a virtual graph containing computed dollar
prices as dataset for a second query. This second query will search for products of a
certain maximum dollar price without first having to compute it.

2 Foundations

We start by giving some foundations we will build our formalisation on. SPARQL is
a query language for the RDF data model plus an extension called named graphs.
Therefore we will introduce RDF and named graphs before giving a short overview
of SPARQL. In some aspects, where the SPARQL specification working draft slightly
differs from the RDF specification, we will follow the SPARQL specification.

2.1 RDF

RDF is a graph based knowledge representation language. The nodes in a graph are
IRIRefs1, blank nodes2 or literals. Arcs between the nodes represent their relationships.
The arcs are labeled with IRIRefs, representing the property that holds between the two
nodes.

Definition 1. RDF statement, RDF graph.
Let I be the set of IRIRefs, L the set of RDF Literals and B the set of Blank Nodes as
defined in [12]. I, L and B are pairwise disjoint. Let R = I ∪ L∪B. A statement is a
triple in R× I×R. If S = (s, p,o) is a statement, s is called the subject, p the predicate
and o the object of S.

An RDF graph is a set of statements. For every two graphs G1 and G2 the sets of
blank nodes in statements in G1 and in G2 are disjoint.

[9] defines a model theoretic semantics for RDF graphs based on inference rules. They
include, for example, transitivity of class membership. We refer the reader to [9] for a
detailed description of RDF, which includes a definition of RDF and the RDF Schema
language RDFS. We do not discuss RDF semantics in this paper. [14] proposes a map-
ping of RDFS to logic programming, which could be combined with our approach. Note
that in contrast to [9], but analogous to the SPARQL specification working draft defined
in [12] we allow literals as subjects of statements.

2.2 Named Graphs

While the RDF recommendation does not allow referring to RDF graphs, named graphs
introduced in [3] offer means to group a set of statements together into a graph and to
refer to this graph using an IRIRef. SPARQL uses named graphs to declare the dataset
a query is evaluated on.

1 The most common type of IRIRefs are URLs, e.g. http://isweb.uni-koblenz.de
2 A kind of existentially quantified variables.

162 S. Schenk

Definition 2. Named graph.
A named graph is a pair (n,G) of an IRIRef n and an RDF graph G.

Please note that n is only used to refer to G and can not neccessarily be dereferenced
to G. One purpose of naming G is the use of n to describe G, for example when
tracking provenance information. The following example shows a named graph named
http://ex.org/g1 in N3 syntax [2], which contains four statements. One of these
statements is used to describe the graph itself.

Example 1.

http://ex.org/g1 {
http://ex.org/g1 http://ex.org/usedAs "example"^^xsd:string.
http://ex.org/aproduct rdf:type http://ex.org/product.
http://ex.org/aproduct http://ex.org/euroPrice "8.15"^^xsd:float.
http://ex.org/euro http://ex.org/dollarExchRate "1.3319"^^xsd:float.}

3 Introduction to SPARQL

A SPARQL query [12] consists of three parts, namely a dataset, a graph pattern and a
projection or construct pattern.

The dataset defines the scope of query evaluation: A list of named graphs to be used
can be defined. These are matched, whenever a part of the graph pattern is scoped to
named graphs. Additionally, a default graph is defined, which is used iff no scoping to
named graphs is done. The default graph can be the union of multiple named graphs. For
example if the dataset and graph patterns shown in example 2 are used, pattern 1 would
be matched against the union of http://ex.org/g1 and http://ex.org/g2. Pat-
tern 2 would be matched against http://ex.org/g3 and http://ex.org/g4, bind-
ing ?g to the name of the named graph containing the matched statement. Pattern 3
would be matched against http://ex.org/g3 only and pattern 4 would match noth-
ing, because http://ex.org/g1 is not one of the named graphs declared in the dataset
using FROM NAMED. Note that variable names are written with a leading questionmark
in SPARQL.

Example 2.

dataset
FROM <http://ex.org/g1> FROM <http://ex.org/g2>
FROM NAMED <http://ex.org/g3> FROM NAMED <http://ex.org/g4>

graph pattern 1: {?s ?p ?o.}
graph pattern 2: GRAPH ?g {?s ?p ?o}}
graph pattern 3: GRAPH <http://ex.org/g3> {?s ?p ?o}
graph pattern 4: GRAPH <http://ex.org/g1> {?s ?p ?o}

The graph pattern of a query is matched against the data in the dataset. Complex graph
patterns are composed of simpler ones using conjunction, a kind of disjunctions, a kind
of left outer joins and filter expressions, which further constrain variable bindings. We
will describe particularities of these connectives later in this chapter.

A SPARQL Semantics Based on Datalog 163

In the case of a select query, the variable bindings produced by matching the graph
pattern are projected to a tabular representation. For example the select projection
?g ?p <http://ex.org/some/iri> would return a table containing three
columns with the bindings of ?g, ?p and a constant value. In the result of a select
query, null bindings for a subset of the variables used are allowed.

In the case of construct queries, the variable bindings are used to construct new RDF
statements. The construct pattern in this case again is a kind of graph pattern. However,
it is not matched against existing data but instanciated with the computed variable bind-
ings. All valid RDF statements created during this instantiation are returned as result of
the query. In this context, ’valid’ means subjects and objects of all statements are in R,
predicates in I and all variables are bound.

For a detailed specification of SPARQL the reader is referred to [12].

4 SPARQL Syntax

In this paper we will use a syntactical subset of SPARQL, which however semantically
can express all valid SPARQL SELECT and CONSTRUCT queries. We first introduce
the syntax used here, which is very close to that of [12]. Then we define a normalisation
of graph pattern scoping, which will allow to define our semantics more concisely.

Definition 3. SPARQL query
A SPARQL construct query is a triple (C,D,P) of a construct pattern C, a dataset D and
a graph pattern P. A SPARQL select query is a triple (S,D,P) of a select projection S, a
dataset D and a graph pattern P.

The dataset definition specifies which graphs are evaluated by the query. A default graph
is specified, which is the union of the graphs enumerated using FROM. The set of named
graph used for query evaluation is listed using FROM NAMED.

Definition 4. Dataset.
Let n be an IRIRef which is a name of a named graph. Then FROM n is a dataset and
FROM NAMED n is a dataset. If D and D′ are datasets, then D + D′ is a dataset.

Definition 5. Construct pattern.
Let V be a set of variable names and R and I defined as above. If s ∈ R∪V , p ∈ I∪V
and o ∈ R∪V, then {s, p, o.} is a construct statement pattern. A construct pattern
is a list of construct statement patterns. A construct pattern is written as the keyword
CONSTRUCT followed by a conjunction of construct statement patterns in curly brackets.

Example 3. CONSTRUCT {{?s ?p ?o.}.{?x ?y ?z.}} is a CONSTRUCT pattern.

Definition 6. Select projection.
Let V and R be defined as above. A select projection is a tuple of elements from R∪V.
A select projection is written as the keyword SELECT followed by a list of elements from
R∪V

Example 4. SELECT ?product ?price is a SELECT projection.

164 S. Schenk

Definition 7. Graph pattern.
Let V , R and I be defined as above. If s ∈ R∪V, p ∈ I ∪V and o ∈ R ∪V, then
{s, p, o.} is a graph pattern, called statement pattern. If P1 and P2 are graph pat-
terns, {P1 . P2}, {P1 OPTIONAL P2} and {P1 UNION P2} are graph patterns. If P is
a graph pattern and F is a filter expression as defined below, {P FILTER F} is a graph
pattern. If P is a graph pattern and n ∈ I∪V then {GRAPH n P} is a graph pattern.

’.’ stands for conjunction of graph patterns. UNION and OPTIONAL are similar to
disjunction and left outer join in the relational calculus respectively. They are special,
however, in that they may leave variables unbound (UNION in both graph patterns used
as parameters, OPTIONAL only on the optional side)), resulting in null bindings.

Filter expressions are recursively defined as follows:

Definition 8. Filter expression.
Let f be an IRIRef or one of the builtin operators listed in [12], section 11.
Let v1, ..., v j ∈ I ∪ R ∪ V and j > 0. Then f(v1, ..., v j) is a filter expression.
If F1, F2 are filter expressions, (F1 && F2), (F1 || F2) and (!F1) are filter expressions. In
SPARQL queries filter expressions are prepended the keyword FILTER.

A select query, asking for all products with a euroPrice of less than 9 could look as
follows:

Example 5.

SELECT ?product ?price
FROM <http://ex.org/g1>
WHERE {{{?product rdf:type <http://ex.org/product>.} .

{?product <http://ex.org/euroPrice> ?price}}
FILTER (?price < "9.0"^^xsd:float)}

4.1 Normalisation of GRAPH Patterns

We apply some prepocessing to transform a generic graph pattern into a more suitable
form for our translation. The GRAPH expression in SPARQL ”overrides” the current
default graph for evaluating a pattern. Hence, in the following example:
{GRAPH g1 {{P1 . {GRAPH g2 P2 }} . P3}}, P1 and P3 are evaluated against g1 and
P2 is evaluated against g2. We can resolve this nesting into a flat structure as follows by
simple rewriting of the query string using string pattern substitution. First, we explic-
ity scope every unscoped statement pattern with the default graph. Rule N1 removes
unneccessary GRAPH expressions. Rules N2 to N5 distribute scoping over graph pat-
terns down to the level of statements patterns for each of the operators ’.’, UNION,
OPTIONAL and FILTER.

Definition 9. Normalisation of graph scoping.
Let P be the graph pattern of a SPARQL query. Let d ∈ I be a newly introduced name
for the default graph of the query. Let g1, g2 be names of named graphs. Let P1, P2, P3

be graph patterns. Let F be a filter expression. Apply the following rules left to right.
Apply N0) only once. Afterwards, apply N1) to N5) as long as possible:

A SPARQL Semantics Based on Datalog 165

substitute by
N0) P {GRAPH d P}
N1) {GRAPH g1 {GRAPH g2P1}} {GRAPH g2P1}
N2) {GRAPH g1 {P1 . P2}} {{GRAPH g1 P1} . {GRAPH g1 P1}}
N3) {GRAPH g1 {P1 UNION P2}} {{GRAPH g1P1} UNION {GRAPH g1P1}}
N4) {GRAPH g1 {P1 OPTIONAL P2}} {{GRAPH g1P1} OPTIONAL {GRAPH g1P1}}
N5) {GRAPH g1 {P1 FILTER F}} {GRAPH g1P1} FILTER F

5 Semantics

In this section we define a mapping of SPARQL to datalog. The semantics of a SPARQL
query is then defined using a query to corresponding datalog program. Our mapping
function is called m and defined in the following. We will use functional and relational
syntax interchangeably where userful, i.e. for f (x) = y we will write (x,y) ∈ f and
analogous for the inverse: f−1(y) = x and (y,x) ∈ f−1.

We use the following syntax for datalog:

– A datalog program is a set of normal clauses.
– A normal clause has the form H ← B. H is called the head and B the body of the

clause. H is an atom and B is a conjunction of literals.
– ”,” in the body of a clause stands for conjunction. ”¬ and ”∨” are used for negation

and disjunction.

Please note, that the following mapping rules do not directly generate a datalog pro-
gram, but are translated to datalog using Lloyd-Topor transformation [7] afterwards.
For details on datalog, we refer the reader for example to [4]. We will make use of
skolem functions for the translation defined in the following. These skolem functions
are used for the translation from SPARQL to datalog programs, not withing the pro-
grams themselves. Hence, they do not increase the complexity of evaluation of the re-
sulting programs, which are function free. Additionally it can easily be shown, that the
skolem functions used can be implemented with linear complexity, so they also do not
add to the complexity of query translation.

Let CI , CB, CL be disjoint sets of constants of a datalog program DP. Let CV be a set
of variables of DP. We define the following bijective mappings:

mR : I →CI ⊂ m,
mB : B →CB ⊂ m,
mL : L →CL ⊂ m, such that mL(xsd:true) =true,mL(xsd:false) = false
mV : V →CV ⊂ m, m(null) = null
First we map the dataset of the query. Rule 02) maps all statements in a named graph

to facts. We use the predicate t/4 to hold the true statements in the dataset and the
query results. If t(g,s, p,o) holds, then graph g contains a statement (s, p,o). Rule 01)
composes the default graph from these facts. We define a mapping for the graph pattern
connectives (rules 03) to 06)) taking care of null bindings.

Let deref be a function mapping from the name of a named graph (a IRIRef) to
the actual graph. Let g be a name of a named graph. We assign the (new) name d to
the default graph of the dataset of the query. Let varsInt be a function mapping from

166 S. Schenk

a SPARQL expression E to the set of variables it introduces, i.e. that are not used in
statement patterns outside E .

X m(X)
01) (FROM g) t(d,x,y,z) ← t(m(g),x,y,z)
02) (FROM NAMED g) {t(m(g),m(s),m(p),m(o)) ← | (s, p,o) ∈deref (g)}
03) (GRAPH g (s, p, o)) t(m(g), m(s), m(p), m(o))
04) (P1 . P2) m(P1) , m(P2)
05) (P1 OPTIONAL P2) m(P1) , m(P2) ∨

(¬P2, isNull(m(v1)), ..., isNull(m(vn)))
where {v1, ...,vn}= varsInt(P2)

06) (P1 UNION P2) (m(P1), isNull(m(v1)), ..., isNull(m(vn))) ∨
(m(P2), isNull(m(w1)), ..., isNull(m(wm)))

where {v1, ...,vn}= varsInt(P2) and
{w1, ...,wm}= varsInt(P1)

In SPARQL, filter expressions are composed of filter functions, mapping a list of
parameters to a literal, and three valued logical connectives &&, || and ! for conjunction,
disjunction and negation, which work on truth values in {true, false, error}. Parameters
of filter functions again can be filter functions. The return value of a filter function
can be any literal or error. Hence, when evaluating logical connectives, the literal is
mapped to its effective boolean value. The effective boolean value is defined analogous
to programming languages like C: If a literal is of boolean type, its boolean value is
obvious. If it is of numeric type it is false if the value is 0 and true otherwise. If it is
of a string type or untyped, it is true if the value is of length larger than zero and false
otherwise.

We evaluate filter expressions using predicates defined for every filter function which
is listed in [12], chapter 11 (there called filter operators). The results of evaluating a filter
function or effective boolean value F are always bound to a skolem variable var(F),
which is the last parameter of the predicate. This variable is used in surrounding filter
expressions to access the results of the nested filter expression. As filter expressions can
be used as parameters of other filter expressions, mapping rules 07) and 08) handle the
cases that a parameter of a filter function is in V ∪R or that it is a filter expression. To
avoid modeling all of the filter functions of SPARQL, we assume for now that these
predicates are external ones. Note, that of cause this is not neccessary.

We provide a theory for computing the effective boolean value and for the three
valued boolean connectives of SPARQL using the predicates and, or and not. Here, we
only give a mapping from SPARQL filter expressions to datalog. The theory for the
predicates and, or, not, ebv, isTrue and bound can be found in the appendix.

Let O be a filter operator, v1...vi ∈ R∪V and F , F ′ be filter expressions.

X m(X)
07) (P FILTER F) m(P), m(F), ebv(var(F), var(p FILTER F)),

isTrue(var(p FILTER F))
08) O(..., F, ...) m(F), m(O)(..., var(F), ...)
09) O(v1, ..., vi)) m(O)(m(v1), ..., m(vi), var(O))

A SPARQL Semantics Based on Datalog 167

X m(X)
10) F && F’ m(F), m(F’), ebv(var(F), var(ebv(F))),

ebv(var(F’), var(ebv(F’))),
and(var(ebv(F)), var(ebv(F’)), var(F&&F’))

11) !F m(F), ebv(var(F), var(!F)), not(var(!F))
12) F ‖ F’ m(F), m(F’), ebv(var(F), var(ebv(F))),

ebv(var(F’), var(ebv(F’))),
or(var(ebv(F)), var(ebv(F’)), var(F ‖ F’))

The filter function bound is a special case, which is used here also outside of filter
expressions. It checks, whether a variable has been bound by graph pattern matching,
i.e. whether it’s value is different from null. It is the only filter operator accepting un-
bound variables as operands without resulting in error. Thus, the bound filter is used in
combination with optional graph patterns to model negation as failure in SPARQL and
to return a query result if a graph pattern could not be matched. We also use bound in
rule 13) to guarantee valid statements as results of a construct query. The bound filter is
the only part of the theory, where negation is used:

isNull(null) ←
bound(x, true) ← ¬ isNull(x)

Now we have everything neccessary for translating a whole SPARQL query. A con-
struct query is mapped to a set of program clauses in rule 13); one for every statement
pattern in the construct pattern. The last 4 subgoals in 13) are to ensure, that valid RDF
statements are produced. In the case of a SPARQL select query, we need a projection
instead of a triple generation as the last step. Note that in the case of a select query, null
bindings in the result are allowed. Select queries are translated using rules 14) and 15).
The result of translating a query always is a set of clauses.

Let C be a construct pattern, r a new name introduced for the resulting graph of a
construct query and S be a select pattern.

X m(X)
13) (C, D, P) m(D) ∪ { c(m(r), m(s), m(p), m(o)) ← m(P),

bound(s), bound(p), isIRI(p), bound(o) | (s,p,o) ∈ C}
14) (S, D, P) m(D) ∪{m(S) ← m(P)}
15) S s(m(v1), ..., m(vn)) where (v1, ...,vn) = S

To the program DP resulting from mapping a query, we apply Lloyd-Topor trans-
formation [7], in order to eliminate disjunction in the body of clauses in DP. Using
the mapping developed in this section, we can now define the semantics of a SPARQL
query based on the corresponding datalog program.

Definition 10. Semantics of SPARQL queries.
Let m−1 be the inverse of the mapping mC∪mB∪mL.

If Q is a construct query, the result of Q is the set of statements
(m−1(s), m−1(p), m−1(o)) obtained from the bindings computed for the goal
← c(r,s, p,o) from m(Q).

If Q is a select query, the result of Q is the set of tuples
(m−1(v1), ..., m−1(vn)) obtained from the bindings computed for the goal
← s(v1, ..., vn) from m(Q), where (v1, ..., vn) = S and S is the select projection of Q.

168 S. Schenk

Using the mapping defined in this section, example 5 translates to the following
program, assuming a literal mapping of IRIRefs and constants.

Example 6.

1: t(d, S, P, O) <- t(g1, s, p, o) % rule 1)
2: t(g1, g1, usedAs, "example") <- % rule 2)
3: t(g1, aproduct, rdfType, product) <-
4: t(g1, aproduct, euroPrice, 8.15) <-
5: t(g1, euro, dollarExchRate, 1.3319) <-
6: s(PRODUCT, PRICE) <- % rules 14) and 15)

t(d, PRODUCT, rdfType, product), % rules 3) 4)
t(d, PRODUCT, euroPrice, PRICE),
lt(PRICE, 9, F), isTrue(F) %rules 7) and 8)

6 Properties of the Logic Based SPARQL Semantics

First we investigate the size of the logic program resulting from translating a dataset
and a query.

6.1 Complexity of the Translation

While the translation introduced above is exponential in the length of the query, we will
show that we can optimise it to be linear.

Lemma 1. Complexity of construct query translation.
The length of the logic program resulting from the translation of a SPARQL construct
query (C,D,P) is O(|T |+ |D|+ |C||2l||P|), where T is the size of our background theory
shown in appendix A, |D| is the number of statements in the graphs in the dataset
plus the number of graphs used for generating the default graph, |C| is the number
of statement patterns in the construct pattern, l is the maximum level of nestings of
OPTIONAL and UNION patterns, and |P| is the length of the graph pattern.

Proof. The mapping of the dataset adds exactly one fact for every statement in the
graph declared using FROM or FROM NAMED and a clause for every graph used for
generating the default graph. Every query is translated into |C| clauses. These are split
using Lloyd Topor transformation: For every logical OR in the body of a clause, Lloyd
Topor transformation results in two new clauses. As logical ORs are only introduced by
mappings of UNION and OPTIONAL patterns, this step generates at most |2l| clauses.
Statement patterns and filter expressions map to a number of literals of the logic pro-
gram which is equal to the number of statement patterns in the graph pattern or the
length of the filter expression respectively. Unbound OPTIONAL patterns are replaced
by a list of isNull atoms for the unbound variables, if any. This list has at most three
times the length the OPTIONAL graph pattern. Thus the overall length of the resulting
clauses is bound by 3|P|.

A SPARQL Semantics Based on Datalog 169

Lemma 2. Complexity of select query translation.
The length of the logic program resulting from the translation of a SPARQL select query
(S,D,P) is O(|T |+ |D|+ |2l||P|), where T is the size of our background theory shown in
appendix A, |G| is the number of statements in the graphs in the dataset plus the number
of graphs used for generating the default graph, l is the maximum level of nestings of
OPTIONAL and UNION patterns, and |P| is the length of the graph pattern.

The proof is analogous to that for construct queries, with the only difference being that
we translate the query to a single clause. With some simple optimisation, we can do
better:

Lemma 3. Complexity of optimised construct query translation.
The translation of a SPARQL construct query (C,D,P) to datalog can be optimised to
have complexity in O(|T |+ |G|+ |C|+ |P|).

Proof. First we introduce a new predicate s′ with an arity of the number of variables
used in C. We translate |P| as usual, but generate a single clause with the head
s’(v1, ..., vi) where v1, ..., vi are the variables used in C in alphabetical order. Then
we translate the construct pattern into clauses using s′ as body of the clauses for bind-
ing the variables using their known order in s′. This reduces the complexity from
O(|T |+ |D|+ |C||2l||P|) to O(|T |+ |D|+ |C|+ |2l||P|).

Additionally, for every two clauses resulting from Lloyd-Topor transformation of a
UNION or OPTIONAL pattern we can remove one clause:

If a bound filter is applied to a variable introduced in a nested OPTIONAL of UNION
pattern, we can add an atom bound(x) for every optional variable x to the body of the
clause binding the optional variables. Now one of the two clauses under consideration
is trivially false, as it contains isNull(x) and bound(x) (if bound is used positively) or
bound(x) and ¬bound(x) (if bound is negated in the graph pattern).

If no bound filter is used, we only need to consider the clause which does bind the
optional variables. The alternative clause is irrelevant, because (1) we can never derive
a return value of “true” from a filter on an unbound variable and (2) if no filter is applied
to an optional variable, the OPTIONAL pattern can not not influence the result. As a
result, the complexity is reduced to O(|T |+ |D|+ |C|+ |P|).

We can not do such an optimisation for select queries, as in this case null bindings are
allowed in the query result. However, there are variations of Lloyd-Topor transforma-
tion, which avoid the exponential blowup of the program (cf. [6]). The reader may note
that for construct queries we have also reduced the complexity of the evaluation - not
only of Lloyd-Topor transformation, as we completely remove one branch for every
disjunction.

6.2 Complexity of Query Evaluation

Now we investigate the overall complexity of SPARQL query evaluation. We assume
that all filter expressions can be evaluated in polynomial time, an assumption which is
true for all build in SPARQL filter functions defined in [12]. Our results correspond to
results by Perez et al. [10] based on an algebraic semantics.

170 S. Schenk

Theorem 1. Complexity of SPARQL evaluation.
The combined complexity of SPARQL query evaluation is LOGSPACE.

Proof. (sketch) Our SPARQL syntax is defined by combining simpler graph patterns
into more complex ones, such that a tree-structure of graph pattern inclusions repre-
sents a query. This structure is preserved by the mapping function m as can easily be
deduced from the mapping rules defined in section 5. While for construct queries t/4
is defined recursively in our above formalisation, it is easy to see that we can slightly
modify the mapping to be hierarchical by introducing a new predicate for the query
resultHence, the resulting datalog program can be translated into a hierarchical one
without influencing the result of SPARQL query evaluation. It contains negation in the
theory for the bound filter. Thus the resulting program is in non-recursive datalog with
negation. The complexity of non-recursive datalog with negation is LOGSPACE (cf.
[4]).

Construct queries require all variables used in the construct pattern to be bound. Hence,
if UNION or OPTIONAL are used, every translation of a graph pattern ends with an
application of the bound filter which negatively depends on isNull. Construct queries
without UNION or OPTIONAL on the other hand do not need negation. (Note that if
UNION and OPTIONAL are not used, we can remove the bound filter, because in this
case all variables are bound.) Select queries on the other hand allow null bindings in
the result, so unless the bound filter is explicitly used, we do not need negation here.
In those cases where the bound filter, is not used, we have polynomial complexity of
SPARQL evaluation for hierarchical datalog without negation.

7 Extensions

Based on the semantics defined above, we propose two useful extensions to SPARQL.

7.1 Binding Variables to Filter Functions

As a first extension we propose to allow the binding of variables to values computed
using filter expressions in SPARQL queries, if the filter expression does not return an
error. For example given a graph describing Euro prices and conversion rates we could
then compute dollar prices as proposed in the introductory example.

To express this variable binding, we slightly extend the definition of graph patterns:

Definition 11. Graph patterns with functional bindings.
Let V , R and I be defined as above.

If s ∈ R∪V, p ∈ I∪V and o ∈ R∪V, then (s, p,o) is a graph pattern.
If P1 and P2 are graph patterns, (P1 . P2), (P1 OPTIONAL P2) and

(P1 UNION P2) are graph patterns. If P is a graph pattern and F is a filter expres-
sion, (P FILTER F) is a graph pattern. If P is a graph pattern, v ∈V and F is a filter
expression, (P LET v F) is a graph pattern. If P is a graph pattern and n∈U∪V then
(GRAPH n P) is a graph pattern.

A SPARQL Semantics Based on Datalog 171

We also need to slightly extend the normalisation rules. In order to define the seman-
tics of the new LET expression, we add a new mapping rule to bind v to the result of
F :

N6) (GRAPH g1 (P1 LET v F)) ((GRAPH g1 P1) LET v F)

X m(X)
15) (P LET v F) m(P), m(F), ¬ isError(var(F)), eq(m(v), var(F))

The resulting program does not contain any constructs not already considered in the
complexity discussion in the prior section. Using our introductory example, we can now
ask for the dollarPrice of all products with a euroPrice of less than 9:

Example 7.

SELECT ?product ?dollarPrice
FROM <http://ex.org/g1>
WHERE {{{{{?product rdf:type <http://ex.org/product>.} .

{?product <http://ex.org/euroPrice> ?euroPrice.}} .
{<http://ex.org/euro> <http://ex.org/dollarExchRate> ?rate}}.
FILTER (?price < "9.0"^^xsd:float)} .
LET ?dollarPrice (?euroPrice * ?rate)}

7.2 Views in Datasets

The second extension allows to use views as parts of a dataset. We extend the dataset
definition, such that in addition to existing named graphs also the results of SPARQL
construct queries can comprise parts of the dataset. We name such views using newly
introduced IRIRefs local to the query. Syntactically this change means that we also al-
low to write SPARQL CONSTRUCT queries at all places in the dataset, where IRIRefs
of named graphs are allowed. Hence, we need to extend the definition of datasets.

Definition 12. Datasets with views.
Let n be a IRIRef which is a name of a named graph. Then FROM n is a dataset and
FROM NAMED n is a dataset.
Let Q be a SPARQL CONSTRUCT query and b a new IRIRef. Then FROM Q is a dataset
and FROM NAMED b Q is a dataset.
If D and D′ are datasets, then D + D′ is a dataset.

Additionally we need to add two mapping rules to translate the extension into datalog.
Let resultGraph be a skolem function from SPARQL construct queries to IRIRefs. We
use resultGraph(Q) as name for a temporal named graph containing the result of the
evaluation of Q. This named graph is then used in the dataset analogous to usual named
graphs. Rule 11) needs to be extended to use this skolem function instead of a fixed
graph. Analogously, we now need to name the default graph using a skolem function
we call defaultGraph. Let P be the query the Dataset belongs to.

172 S. Schenk

X m(X)
01) FROM g t(defaultGraph(P), x, y, z) ← t(m(g), x, y, z)
13) (C, D, P) m(D) ∪ {

t(m(resultGraph(C,D,P)), m(s), m(p), m(o))←
m(P), bound(s), bound(p),
isIRI(p), bound(o) | (s,p,o) ∈C}

15) FROM <Q> m(Q) ∪{t(defaultGraph(P), x, y, z) ←
t(resultGraph(Q), x, y, z)}

16) FROM NAMED b <Q> m(Q) ∪{ t(m(b), s, p, o) ←
t(resultGraph(Q), s, p, o)}

With only this slight extension, it is possible to extend the dataset of a SPARQL
query with views. The resulting query language is of the same complexity, because P
only uses the results of the computation of the views in its dataset. Hence, we could
evaluate the views first and then evaluate P itself, both with the known complexity of
SPARQL.

We can now formulate an easy to understand query, doing the dollar conversion first
in a view and then directly using the dollarPrice:

Example 8.

SELECT ?product, ?dollarPrice

FROM <http://ex.org/g1>

FROM <CONSTRUCT {?product <http://ex.org/dollarPrice> ?dollarPrice.}

FROM <http://ex.org/g1>

WHERE {{{?product <http://ex.org/euroPrice> ?euroPrice.} .

{<http://ex.org/euro> <http://ex.org/dollarExchRate> ?rate}}.

LET ?dollarPrice (?euroPrice * ?rate)}>

WHERE {{{?product rdf:type <http://ex.org/product>.}.

{?product http://ex.org/dollarPrice ?dollarPrice}.}

FILTER (?dollarPrice < "9.0"^^xsd:float)}

8 Related Work

Semantics of RDF, OWL and SPARQL de Bruijn et al. provide a mapping of RDF and
OWL-Lite to first order predicate logic and prove this mapping equal to normative RDF
[5]. Based on this mapping they can formulate goals corresponding to simple SPARQL
graph pattern matching in first order logic. Volz, Motik et al. [8] describe how to map
the web ontology language OWL [1] to datalog. A combination with the work presented
here could easily add SPARQL support to these approaches.

Algebraic SPARQL Semantics. Perez et al. provide a formal semantics of a core frag-
ment SPARQL in [10]. Their semantics does not include queries to multiple graphs and
the evaluation of arbitrary filter expressions. In contrast our logic based mapping, the
mapping in [10] is based on an algebraic evaluation of queries. Depending on the ap-
plication context, our formalisation allows to build on a larger set of existing work. For
example in [13] we need a SPARQL semantics supporting non-monotonic negation,
which can not be easily modeled using an algebraic semantics.

A SPARQL Semantics Based on Datalog 173

Alternative Logic Based SPARQL Semantics. Polleres proposes an alternative mapping
of SPARQL queries to logic programs [11]. In addition to our semantics, different pos-
sible semantics of joins for SPARQL are discussed. While the formalisation is similar
to ours, arbitrary filter expressions are not supported. [11] has been published at the
same time as [13] which contains the initial definition of our semantics.

Networked Graphs. In [13] we propose to extend named graphs, such that the content
of a graph can be listed extensionally and defined intensionally through SPARQL based
views to other graphs. A graph at least partially defined using this view mechanism is
called a networked RDF graph. Networked RDF graphs allow to easily import, reuse
and transform existing RDF data. As in a distributed, uncontrollable and dynamic set-
ting like the semantic web, circular dependencies among networked RDF graphs can
not be avoided, we use the logic mapping described here, but evaluated under the well
founded semantics, to define the semantics of sets of mutually dependent networked
graphs.

9 Conclusion

We have proposed a semantics for the RDF query language SPARQL based on datalog,
and two useful extensions of SPARQL, namely the use of views in SPARQL datasets
and the binding of variables to results of SPARQL filter functions. We use the semantics
proposed here in [13] to define networked RDF graphs. Networked RDF graphs are
an extension of named graphs such that a named graph can include views on other
graphs. As on a web scale recursive dependencies of views can hardly be avoided, a
logic based SPARQL semantics evaluated under a suitable semantics allows to deal
with non-monotonic negation. Future work will include further useful extensions to
SPARQL, for example aggregates, and distributed evaluation of SPARQL queries.

Acknowledgements

The author would like to thank Steffen Staab for his valuable advice and his contribution
to the technical report, which this paper is based on, and the anonymous reviewers for
their valuable feedback.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: Owl web ontology language reference (2004),
http://www.w3.org/TR/owl-ref/

2. Berners-Lee, T.: Notation 3 (2006), http://www.w3.org/DesignIssues/Notation3
3. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In:

WWW05, pp. 613–622. ACM Press, New York (2005)
4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic

programming. ACM Computing. Surveys. 33(3), 374–425 (2001)

http://www.w3.org/TR/owl-ref/
http://www.w3.org/DesignIssues/Notation3

174 S. Schenk

5. de Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of normative RDF. In: OWL:
Experiences and Directions Workshop, Galway, Ireland, November 2005. CEUR Workshop
Proceedings (2005), http://www.debruijn.net/publications/owl-05.pdf

6. Decker, S.: Semantic Web Methods for Knowledge Management. Phd thesis, University of
Karlsruhe (February 2002)

7. Lloyd, J.W., Topor, R.W.: Making Prolog more expressive. Journal of Logic Program-
ming 1(3), 225–240 (1984)

8. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Universität Karlsruhe (TH) (2006)

9. Hayes, P.: Rdf semantics, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I.,

Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

11. Polleres, A.: From SPARQL to rules (and back). Technical report (December 2006),
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf

12. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2007),
http://www.w3.org/TR/rdf-sparql-query/

13. Schenk, S., Staab, S.: Networked RDF Graphs. Technical report (December 2006)
http://uni-koblenz.de/∼sschenk/publications/2006/ngtr.pdf

14. van Gelder, A., Ross, K., Schlipf, J.S.: The Well-Founded Semantics for General Logic Pro-
grams. Journal of the ACM 38(3), 620–650 (1991)

A Theory for Handling Filter Expressions

The theory for three valued evaluation of
conjunction:
and(x, y, error) ← isError(x), isTrue(y)
and(x, y, error) ← isTrue(x), isError(y)
and(x, y, error) ← isError(x), isError(y)
and(x, y, true) ← isTrue(x), isTrue(y)
and(x, , false) ← isFalse(x)
and(, y, false) ← isFalse(y)

The theory for three valued evaluation of
disjunction:
or(x, y, error) ← isFalse(x), isError(y)
or(x, y, error) ← isError(x), isFalse(y)
or(x, y, error) ← isError(x), isError(y)
or(x, , true) ← isTrue(x)
or(, y, true) ← isTrue(y)
or(x, y, false) ← isFalse(x), isFalse(y)

The theory for three valued evaluation of
negation:
not(x, error) ← isError(x)
not(x, true) ← isFalse(x)
not(x, false) ← isTrue(x)

Handling equality for the extension with LET
eq(x, x) ←

The theory for determining the effective boolean value:
isTrue(true) ←
isFalse(false) ←
isError(error) ←
isEmptyString(m(””)) ←
isEmptyString(m(””∧∧xsd:String)) ←
isNaN(m(NaN)) ←
isNonEmptyString/1 (external Predicate)

ebv(x, error) ← isError(x)
ebv(x, true) ← isTrue(x)
ebv(x, true) ← x > 0
ebv(x, true) ← isNonEmptyString(x)
ebv(x, false) ← isFalse(x)
ebv(x, false) ← isEmptyString(x)
ebv(x, false) ← isNaN(x)

http://www.debruijn.net/publications/owl-05.pdf
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf

Negation in Spatial Reasoning

A Computational Approach

Stefan Schleipen, Marco Ragni, and Thomas Fangmeier

Department of Computer Science,
Georges-Koehler-Allee, D-79110, Germany

{ragni,schleipe}@informatik.uni-freiburg.de,
{thomas.fangmeier}@uniklinik-freiburg.de

Abstract. In recent years a lot of research has been done in order to
determine factors of complexity in spatial relational reasoning, like the
number of models, the wording of conclusion or the influence of rela-
tional complexity. But research so far focused on affirmative statements
only, i. e. negated expressions have not yet been investigated. In spatial
reasoning and in human machine interaction, however, negation plays
a fundamental role. Central questions are: How are negated statements
represented? What happens in multiple-model cases? Which effects have
different reference frames? We conducted three experiments to show that
humans (i) negate a relation by using the opposite relation, (ii) construct
preferred mental models and use an economic principle, and (iii) have
more difficulties in reasoning with negated relations. The goal is to ex-
tend our cognitive and computational model – the SRM.

Keywords: Spatial Reasoning, Knowledge Representation and Reason-
ing, Cognitive modeling.

1 Introduction

There is a vast body of evidence supporting the mental model theory of spatial
reasoning. The key idea of this theory is that reasoners translate spatial rela-
tions into a mental model and use this representation to solve spatial inference
problems. To provide an example [7]:

The spoon is to the left of the knife.
The plate is to the right of the spoon.
The fork is in front of the spoon.
The cup is in front of the knife.

This describes the following two possible models:

spoon plate knife spoon knife plate
fork cup fork cup

Assume a child helps his mother to set the table. The child takes the knife
and puts it to the left of the plate. But the mother says to the child ‘The knife

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 175–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

176 S. Schleipen, M. Ragni, and T. Fangmeier

does not belong to the left of the plate’. Where will the child place the knife?
Logically, there are three possibilities: the knife can be placed to the right of,
in front of, or behind the plate (not considering that the knife could be placed
above or under the plate).

Now, the question arises how such problems are processed? Is there a pre-
ferred interpretation? The mental model theory (MMT), introduced by [4], sug-
gests that people draw conclusions by constructing and inspecting a spatial array
that represents the state of affairs described in the premises. It is a three stage
process consisting of a comprehension, description, and validation phase. In the
comprehension phase, reasoners construct a mental model that reflects the infor-
mation from the premises. If new information is encountered during the reading
of the premises it is immediately used in the construction of the model. During
the description phase, this model is inspected to find new information that is
not explicitly given in the premises. Finally, in the validation phase alternative
models are searched that refute this putative conclusion. However, some ques-
tions remain open with respect to how people deal with multi-model problems.
For example, which model is constructed first, and does this model construction
adhere to certain principles? Why do reasoners neglect some models?

In contrast, the preferred mental model theory (PMMT) has been developed
to explain that humans in generally tend to construct a preferred mental model
(PMM). The PMM is the starting point for deriving at a putative conclusion.
In the model variation phase the participants tend to make local and continuous
transformations starting from the PMM to search counter-examples [11].

How do humans process a premise like ‘A is not to the left of C’? Do we remain
in one dimension (by using the opposite relation only)? Which kind of insertion
principle is then used? Kaup and colleagues focused on the negation in sentences
and contradictory predicates [5]. They conducted a verification experiment in
which participants had to verify sentences (e. g. the door is not open) and pictures
of situations described in the sentence (e. g. closed door, open door). Reaction
times were shorter if the sentence and the picture corresponded. Since there are
only two states possible (the door is open or the door is closed) there is only one
opposite state left. However, multiple model cases have not been investigated [6].

Hasson and Glucksberg [3] examined the difference in understanding affirma-
tive and negated assertions in natural language. The participants had to make
lexical decisions according to terms either to the affirmative or negative mean-
ing. The results suggest that the affirmative assertion continued to facilitate
affirmative-related terms, but the negated assertion did not. In the literature no
work regarding negation in multiple model cases has been reported.

In artificial intelligence negation is sometimes interpreted as negation as fail-
ure [12]. It states that a negative literal, not p, can be proven true just in case the
proof of p fails. Another investigation from different formal perspectives has been
made by Gabbay and Wansing [1]. The object of our interest is, however, how
humans interpret such negations and if they have maybe something in common
with formal concepts.

Negation in Spatial Reasoning 177

In this paper, we analyze spatial problems with negated relations. The next
section contains a formal analysis of negated spatial problems. Then, a represen-
tation of empirical data supporting our theory and an algorithmic approach will
follow. Finally, we discuss the results presented in the paper and give a short
overview of some questions that are left open.

2 Theoretical and Mathematical Approach

Theoretical Approach. First we discuss some representational issues about
how negation can be interpreted and later a formal description on negation in
different system environments is introduced.

Representation of Negation. There are merely three possibilities how negated
relations could be represented in the human mind: The first possibility: A negated
relation can be replaced by the opposite relation, i. e. ‘A is not to the left of B’
is replaced by ‘A is to the right of B’. If so, information is lost, but the initially
generated model, however, is correct. In the variation phase it is likely that not all
consistent models are generated, since variation in a different dimension, which
is possible through negation, would not occur.

The second possibility is that the premise with the negated relation will not be
altered and the to be inserted object will be placed in the excluded position and
then annotated. This representation would generate an incorrect initial model.
However, in the variation phase all consistent models can be generated. This
strategy, however, would be more time consuming than creating a consistent
model in the first place. Additionally, more operations in the validation and
variation phase are necessary, since every time a new model is generated the
model at hand has to be checked for correctness.

In a third possibility the premise at hand is interpreted by another consistent
relation and the to be inserted object is additionally annotated with the negated
relation. So a correct model is generated in the construction phase, but through
annotation all alternative models (even in different dimensions) can be generated.
The annotation prevents the loss of information as in the first possibility.

Connected with the question of representation in multiple model cases is the
question, if preferred models are initially constructed and if they adhere to a
common principle.

Insertion Principles. What do we know so far about construction principles
in reasoning with non-negated descriptions? Assume two premises of the form:
(1) ‘A is to the left of B’ and (2) ‘A is to the left of C’ are given. Humans tend to
process such premises sequentially, i. e. first a model A B is generated and then
object C is inserted into the model. There are two possibilities where C can be
inserted: in-between A and B (first fit principle, ff-principle) and to the right of B
(first free fit principle, fff-principle). So the ff-principle places the object directly
next to the related object and, if necessary, other objects are displaced. The fff-
principle implies that an object will be placed on the first free possible location

178 S. Schleipen, M. Ragni, and T. Fangmeier

(according to the relation). Several empirical investigations have confirmed the
latter principal is used by humans to generate the initial model (PMM) [8,9].

Mathematical Approach. How can negated relations mathematically be rep-
resented? First of all, an analysis of different interpretations of the base relations
(‘over, under, left, right’) is necessary. This interpretation of a base relation like
‘A is over B’ can then be extended to an interpretation of a negated expression
like ‘A is not over B’.

Four systems can be discerned (Fig. 1). The first and the second approach are
coordinate based, the third and fourth system are angle based.

right right rightleft left left

over over over

under under under

rightoverleftover

rightunderleftunder

right / overleft / over

right / underleft / under

I) II) IV)

rightleft

over

under

III)

Fig. 1. Four possible systems I) discrete system, II) dense system, III) angle system,
IV) system by Gapp [2]

First System. The first system is a discrete approach (Fig. 1, system I). In
this case, the relations only permit locations for the related objects that are
defined as follows:

β |= over(x,y) ⇔ β(x′) = β(y′) and β(x′′) > β(y′′)
β |= under(x,y)⇔ β(x′) = β(y′) and β(x′′) < β(y′′)
β |= left(x,y) ⇔ β(x′) < β(y′) and β(x′′) = β(y′′)
β |= right(x,y) ⇔ β(x′) > β(y′) and β(x′′) = β(y′′)

x is a tuple (x′, x′′) with x′ as the x-coordinate and x′′ as the y-coordinate. β is
called the truth assignment.

β |= � ⇔ (over(x, y) |= �)⊕ (under(x, y) |= �)
⊕(left(x, y) |= �)⊕ (right(x, y) |= �)

The exclusive ‘or’ ⊕ indicates that only one condition can be true, and, there-
fore, all cases where none or more than one case is true the relation is false. We
have to use the exclusive ‘or’ since the object can only be placed once in the
model. ⊕ is defined as: x ⊕ y ⇔ (x ∧ ¬y) ∨ (¬x ∧ y). The system only allows
variation along the axes of the Euclidean space. The areas between the axes are
not defined and therefore not a possible location. The negation of a relation only
allows an interpretation along these axes. According to the truth assignment,
the negation of one relation can only result in one of the remaining relations.
The negated relation is defined by the disjunction of all relations (r ∈ R) except
the one that is negated, thus ¬r := (r|r ∈ R\{r}).

Negation in Spatial Reasoning 179

The negation can be defined over the truth assignment as follows.

β |= ¬over(x, y) ⇔ ¬over(x, y) ∧ �
⇔ ¬over(x, y) ∧ ((over(x, y) ⊕ under(x, y)
⊕ left(x, y)⊕ right(x, y))

⇔ under(x,y) ⊕ left(x,y) ⊕ right(x,y)

Since ¬over(x, y) and over(x, y) cannot be true at the same time, over(x, y)
must be excluded. Exemplary below the negated relations for over(x,y) and
right(x,y).

β |= ¬ over(x,y) ⇔ (β(x′) = β(y′) ∧ β(x′′) < β(y′′))
⊕(β(x′) < β(y′) ∧ β(x′′) = β(y′′))
⊕(β(x′) > β(y′) ∧ β(x′′) = β(y′′))

β |= ¬ right(x,y)⇔ (β(x′) = β(y′) ∧ β(x′′) > β(y′′))
⊕(β(x′) = β(y′) ∧ β(x′′) < β(y′′))
⊕(β(x′) < β(y′) ∧ β(x′′) = β(y′′))

Second System. The second possible system (Fig. 1, system II) shows a dense
approach. This system extends the discrete interpretation and allows objects to
be placed in the areas between the axes of the Euclidean space. Thus

β |= over(x,y) ⇔ (β(x′) ≤ β(y′) ∨ β(x′) > β(y′)) ∧ β(x′′) > β(y′′)
β |= under(x,y) ⇔ (β(x′) ≤ β(y′) ∨ β(x′) > β(y′)) ∧ β(x′′) < β(y′′)
β |= left(x,y) ⇔ β(x′) < β(y′) ∧ (β(x′′) ≤ β(y′′) ∨ β(x′′) > β(y′′))
β |= right(x,y) ⇔ β(x′) > β(y′) ∧ (β(x′′) ≤ β(y′′) ∨ β(x′′) > β(y′′))

Here, the areas between the axes are not explicitly defined for a certain rela-
tion, rather is the definition of the area affected by the relation in the premise.
If the premise ‘A is to the left of B’ is given, both areas left of the y-axis are
interpreted as left (see Fig. 1, model II). The definition of the area only applies
to the premise we actually look at.

As in the discrete model, the negation only excludes the position given by
the negated relation. The definition of the negated relations is similar to the
negated relations of the discrete model, only the areas between the axes have
to be included. According to the truth assignment, the negated relations are
defined as follows.

β |= ¬ over(x,y) ⇔ (β(x′) ≤ β(y′)⊕ β(x′) > β(y′)) ∧ β(x′′) < β(y′′)
β |= ¬ right(x,y)⇔ β(x′) < β(y′) ∧ (β(x′′) ≤ β(y′′)⊕ β(x′′) > β(y′′))

Third System. The third possible system (Fig. 1, system III) is angle based.
In this system the interpretation of the relations is given by areas that are
spanned between two angles. This system was inspired by the work of Gapp
(Fig.1 system IV) [2]. In his work he generated a grid around an object with
four different angles (0◦, 22.5◦, 45◦, 67.5◦) and relative distances (130, 240, 350,
460 pixels). He tested humans on how they accept or reject certain positions of
objects on the grid given a specific relation. Since we have only four distinct

180 S. Schleipen, M. Ragni, and T. Fangmeier

relations and we want to classify the complete space to get a dense model, we
do not define subspaces such as leftover, leftunder, rightover and rightunder.
A reasonable allocation of the space would be four distinct areas of 90◦ each.
According to this, our relations are defined as follows.

φ is the angle between the positive x-axis and the straight between the located
object and the related object.

over(x, y) ⇔ φ ∈ [45◦, 135◦]
under(x, y)⇔ φ ∈ [225◦, 315◦]
left(x, y) ⇔ φ ∈ [135◦, 225◦]
right(x, y) ⇔ φ ∈ [315◦, 45◦]

The negation of a relation allows a position of the located object in an area
excluding the area defined by the relation itself. The resulting definitions of the
negated relations are shown below.

¬over(x, y) ⇔ φ ∈ [135◦, 45◦]
¬right(x, y) ⇔ φ ∈ [45◦, 315◦]

We expect one of these systems to be an approach to the human interpreta-
tion. Furthermore, we are convinced that humans will work with PMMs when
generating mental models with negated relations. Since the located object can
only be positioned in one of the possible locations, we expect that this position
will be the converse of the negated relation. So the PMM will be the model
which contains a premise with the converse relation instead of the negated. If
so, we can use our mathematical system to formalize this PMM.

3 Empirical Data

We present three experiments on how humans generate and inspect mental mod-
els out of given premises when the relation of a premise is negated. First, we
questioned which relations between two objects were accepted if a relation was
negated or not? Second, we are interested in the generation process: (i) How are
objects inserted into a model if the relation to another object was negated? (ii)
Do participants use certain relations if a model contains a negated relation in a
given premise which leads to a preferred mental model during the construction
process? (iii) Are the preferred mental models with negated problems differ-
ent from indeterminate positive problems? Third, we examined the constructed
model that participants had in mind: (i) Which influences have different con-
struction directions if a model was built from left to right or from right to left and
shapes? (ii) Are there differences between indeterminate and negated problems
during the inspection phase?

We assume that the participants interpret the negation of the relation as the
logical negation in the same dimension. According to this hypothesis, we expect
for the premise ‘A is not to the left of B’ that the participants construct a model
in which ‘A is to the right of B’. Another assumption was that models with
negated relations are harder to obtain than models without negation. A further

Negation in Spatial Reasoning 181

assumption was that the complexity of the model that participants held in mind
are higher if a relation was negated in comparison to an indeterminate one.

3.1 First Experiment - Acceptance

In this experiment the participants had to accept or reject a given statement
about relations between two objects.

Participants, Materials, Procedure and Design. Thirty six students of
the University of Freiburg participated in this experiment (with/without grid:
n = 20/16, M = 24.3/24, SD = 2.4/2.8). The participants were presented with
pictures of two related objects and a statement. Fig. 2 shows examples with (I)
and without (II) an underlying grid. The letter A had a fixed position in the
center while the letter B was randomly swapped over the other 48 free cells in
the grid. Every possible constellation of A and B was presented with a statement
(‘B is not over A’, ‘B is not right of A’). We also asked for ‘B is over A’ and
‘B is right of A’ in order to compare the data with positive cases. The last two
statements were tested on 16 of the 48 possible cases (see Fig. 3 II). Reaction
time and accuracy were recorded for each statement.

Fig. 2. With underlying grid(section I)), without underlying grid (section II)). Under-
neath the statement with negated relation of the two objects.

Results. The participants made a clear decision for affirmative (right/over)
and negated (not right/not over) statements. Fig. 3 indicates that the distinc-
tion whether or not B is over/not over A is clear. In both cases (with or without
underlying grid) the results are similar for all four statements (over/not over and
right/not right). Reaction time for the negation problems with or without under-
lying grid for ‘not over’ is significantly longer than for ‘not right’ (with/without
grid: t = 7.076/5.589, df = 19/15, p ≤ 0.01), as well as positive problems
for ’over’ in comparison to ’right’ (with/without grid: t = 3.326/4.062, df =
19/15, p ≤ 0.01). In most cases the reaction time is significantly shorter (see
Fig. 3) if the statement and the actual state of the relation of A and B is
true (with/without grid: ’not over’ t = 0.288/4.124, df = 19/15, p = n.s./p ≤

182 S. Schleipen, M. Ragni, and T. Fangmeier

0.01; ’not right’ t = 1.717/3.186, df = 19/15, p = n.s./p ≤ 0.05; ’over’ t =
2.810/3.550, df = 19/15, p ≤ 0.05/p ≤ 0.01; ’right’ t = 4.157/2.422, df =
19/15, p ≤ 0.001/p ≤ 0.05).

Fig. 3. Left:I) Statement ‘not over’. Left square: over-all decisions in percent (bigger
numbers) for NO. Right square: reaction time for YES answers (correct answers marked
gray). The smaller numbers contain the reaction times for the correct decisions. II)
Shows the positive statement ‘over’ (all other information is similar to I). Right: I)
Statement ‘not over’. Left square: over-all reaction time for NO. Right square: reaction
time for YES answers (only correct answers without underlying grid). The numbers
in parenthesis contain the reaction time with underlying grid. II) Shows the positive
statement ’over’ (all other information is similar to I).

3.2 Second Experiment - Simple Generating Experiment

In this experiment we investigated how people construct a model if premises
contain negated relation between two objects. Additionally, we analyzed if par-
ticipants construct a preferred mental model (PMM).

Participants, Materials, Procedure and Design. Twenty three students of
the University of Freiburg took part in this experiment (age: M = 25.8, SD =
4.5). It was designed as pen and paper experiment consisting of sixteen prob-
lems (Table 1) in which the participant had to construct a mental model out of
four given premises. This model should then be drawn on a sheet of paper. The
models were varied in the dimension (one- and two-dimensional), determination
(determinate and indeterminate) and negation (affirmative and negated). Every
model was presented twice but had different term names (total of 16). All of
the 16 problems were constructed in the same way. Four premises arranged five
different objects with the relations left, right, over or under. For negation the re-
lation of the third premise was always negated. Note that models with negation
were always indeterminate due to the undetermined position of the object. In

Negation in Spatial Reasoning 183

order to guarantee that a model was only constructed in working memory, each
problem contained three pages thereby delaying the information on premises.
The first two premises were given on the first page, premises three and four
on page two and page three was blank. The participants were asked to draw
only one model even if multiple models could be constructed. Additionally, the
participants were instructed not to use any kind of aid (no sketch, etc).

Table 1. Table contains four premises for the positive I) and negative II) problems for
one-dimensional (a, b) and two-dimensional (c, d) problems as well as for determinate
(a, c) and indeterminate (b, d) problems

Problem PMM/alternative models

(a) A is to the left of B. (1) A B C D E
B is to the left of C.
I) C is to the left of D.
II) C is not to the right of D.
D is to the left of E.

(b) A is to the left of B. (1) A B C D E
B is to the left of C. (2) A B D E C
I) D is to the right of B. (3) A B D C E
II) D is not to the left of B.
D is to the left of E.

(c) A is over B. (1) A E
B is to the left of C. B C D
I) C is to the left of D.
II) C is not to the right of D.
D is under E.

(d) A is over B. (1) A E
B is to the left of C. B C D
I) D is to the right of C. (1) A E
II) D is not to the left of C. B D C
D is under E.

Results. The correct answers indicate, that answers to one-dimensional
problems are significantly more often correct than two-dimensional problems
(Wilcoxon-Test: Z = 3.109, p = 0.002). Furthermore, there is a significant differ-
ence between affirmative and negative problems (Wilcoxon-Test: Z = 2.618, p =
0.009). However, there is no significant difference between determinate and in-
determinate problems.

An additional question was how participants understand negated problems.
Because if one direction is negated, then all other possible directions are allowed.
There was a stable preference for the opposite direction in negated problems.
Table 3 shows that except for indeterminate two-dimensional problems the use of
the opposite direction was significantly more frequent. A further question was the
preference for a model. For both dimensions we found a significant difference from
null for the PMM. But we did not find significant differences when we analyzed
only the indeterminate problems for affirmative versus negated problems.

184 S. Schleipen, M. Ragni, and T. Fangmeier

Table 2. Table shows the correct responses (in percent) for one- and two-dimensional,
affirmative and negative, as well as determinate and indeterminate problems

1-dim 2-dim
Aff. Neg. Aff. Neg.

Det. 87 78 76 52

Indet. 85 78 67 57

Table 3. Table shows the preference for the opposite direction in percent for one-
and two-dimensional, as well as determinate and indeterminate negated problems. The
numbers divided with colons denote the number of correct answers for the opposite
direction in comparison to all correct answers. The last row indicates the proportion of
preferred models (fff) in comparison to the other principle (ff). Note that models for
determinate negated problems in this task do not provide the discrimination between
preferred and alternative models. ∗ p ≤ 0.05, ∗ ∗ p ≤ 0.01, ∗ ∗ ∗ p ≤ 0.001.

1-dim. 2-dim.

Det. opposite 81%∗∗∗ 83%∗∗

opposite: all 29:36 20:24

Indet. opposite 75%∗ 65%
opposite: all 27:36 17:26
fff / ff 24∗∗∗ / 2 14∗∗∗ / 3

3.3 Third Experiment - Complexity of Proof

In the third experiment we were interested in the complexity of proof on PMMs.
The participants had to generate a model and then to validate if a given state-
ment holds or not.

Participants, Materials, Procedure and Design. Sixteen students of the
University of Freiburg from the age of 21 to 30 (M = 24.3, SD = 2.4) par-
ticipated in this experiment. Two participants were excluded due to the low
accuracy rate (< 50%) in determinate problems. We conducted a computer ex-
periment in order to measure reaction time and accuracy as well as reading time
for given premises. The experiment contained 20 problems, ten one-dimensional
and ten two-dimensional (see Tab. 4).

All four premises were presented simultaneously on the computer screen. After
pressing a key the premises disappeared and a statement was presented. One
object of the statement was taken from the third premise and the other object
from another premise. This guaranteed that the participant had to prove the
model with the negated relation and had to infer an implicit relation between two
objects. The relation in the statement was always missing so that the participant
had to fill in the correct answer or in case of indetermination a relation that
seemed the most possible. There were four possible relations for an answer: left,
right, over and under.

Negation in Spatial Reasoning 185

Table 4. Table shows the subject matter of the problems. The italics indicates the
three different types of the model negated (3a), indeterminate (3b) and determinate
(3c). Half of the problems had the relation ’under’ I) in the fourth premise, the other
’over’ II).

Problem PMM/alternative models

(a) A is over B. (I) A E
B is to the left of C. B C D
3a D is not to the left of B.
3b D is to the right of B. (II) A
3c C is to the left of D. B C D
D is under E. (I) / D is over E. (II) E

(b) A is over B. (I) E A
B is to the right of C. D C B
3a D is not to the right of B.
3b D is to the left of B. (II) E
3c C is to the right of D. D C B
D is under E. (I) / D is over E. (II) A

We found no differences in the premise reading times between determinate,
indeterminate, and negated problems. The different shapes and dimension were
not different either.

Results. Again we found a strong preference for PMM (indeterminate/negated:
alternative models = 24%; PMM = 76%; Binomial-Test p ≤ 0.001). The accu-
racy of the answers decreased significantly from determinate to indeterminate
to negated problems (Page-L Test N = 14, k = 3, L = 178, p ≤ 0.05).

4 Algorithmic Approach

In the following we outline an example how negated premises are interpreted
and resolved. The algorithm parses the premises into an interpreter and then
constructs and validates the resolving model.

Different types of premises are to be discerned: Premises of type 1 are deter-
mined premises, i. e. the object can be placed directly next to the related object.
This is only possible if no other object already occupies this position. Premises
of type 2 are called indetermined, i. e. in contrast to premises of type 1, there is
already an object on the insertion position. Therefore an insertion principle (like

premises

Control-
process

A is to the left of B.

C is to the right of B.

D is not to the left of B.

A B C D

Fig. 4. The SRM processing a negated expression

186 S. Schleipen, M. Ragni, and T. Fangmeier

ff- or fff-principles) has to be applied. Type 3 premises are those premises that
contain negated relations. The premise is interpreted by the opposite relation,
(e. g. ¬ right ⇒ left). In this case the located object is annotated in order to
recognize the excluded position. This is necessary for the later validation phase.

In case of premises of type 2 and type 3, only one model is generated. Al-
though in case of indetermination, there can be several consistent models. In
both cases, the preferred mental model (PMM) is constructed. During the con-
struction phase, indetermined objects are annotated so that in the variation
phase alternative models can be validated without reading the premises again.

In the variation phase the annotated objects will be shifted step by step
towards an anchor object (related object) until it is reached. In every shift the
model at hand is checked on correctness. Models which contains negated relations
are more complex in the variation phase. If we have more than one dimension,
it is not enough to just shift the located object towards the anchor.

The processing of the SRM is depicted in Fig. 4. The interpretation of the
premises and the model generation is done by a control process using the premise
input and a two dimensional array.

The algorithm we use here is a revised version of the algorithm used by [10]
for the SRM. The changes apply mostly in the variation phase. In the creation
and validation phase only a new type of annotation is introduced. The following
pseudo code contains the extensions for handling negated relations. The complete
algorithm without negation is described in [10]. In the construction phase (Fig. 5)
we included the case of a negated relation. The algorithm checks which object is
new to the model. If both objects are new in the model, a new layer is created
and both objects are placed in this layer. When the premise contains objects that
are in different layers, the layers will be merged. In the case that both objects
are already in the model and in the same layer, a model revision step will be
inserted. In every case the located object will be annotated with the negated
premise. In case that only one object of the premise is already in the model, the
missing object is included according to the relation and will be annotated. The
annotation depends on which object is missing. If the related object is missing
the annotation is the original premise. In the other case the annotation is the
negated inverse relation (¬left→ ¬right).

The validation phase is similar to the algorithm of [10], except that we in-
cluded a function to check if the negated premise is fulfilled in the constructed
model. If so, the model is invalid.

In the variation phase the conclusion should be checked if it is consistent in
all models. If it is not consistent, a counter-example will be generated by small
local transformations [10]. The key difference is that in the variation phase an
object can be shifted not only in one direction but in all possible directions which
are not prohibited by the annotation. Therefore, the algorithm shifts the object
towards the anchor object even, if necessary, on another level but keeping the
direction (e. g. if ‘C is not left of D’ we can shift C in the area over or under D).

Negation in Spatial Reasoning 187

def processNegatedPremise():
if negPremise():
{ while readnext() do
{ if case1 then #one object allready in layer
{ fmove focus to contained obj

while not placed do
{ if fread() then

if contained(RO)
{ fmove(inverse(REL)
else

fmove(REL) }
else

fwrite missing obj
annotate missing obj
placed = true } }

if case2 then #both objects new and not in layer
{ l = newLayer()

fwrite(RO):
fmove(inverse(REL))
fwrite(LO)
annotate LO }

if case3 then #both object are in different layers
{ merge(layer(LO), layer(RO))

annotate LO }
if case4 then #both in model and same layer
{ newModel=valConcl(LO,inverse(REL),RO)

if newModel then
writeMOdel()

annotate LO } }
}

Fig. 5. An algorithm for processing negated premises in the construction phase, RO =
related object, LO = located object, REL = relation

5 General Discussion and Outlook

Without negated relations relational reasoning seems to be inherently incom-
plete. But how do humans reason with negated relations? Our formal analysis
revealed that there are at least three possible interpretations. Some previous
research has covered the linguistic processing and comprehension. Kaup and col-
leagues showed that the processing of matching sentence and picture are easier
if the sentence and the picture correspond [5]. Hasson and Glucksberg examined
the question if negated information entails affirmation [3]. They were able to
show that negated metaphors are most likely represented as affirmation. This
goes along with the results of our empirical investigations and the third possible
representation of negation. In addition, in spatial reasoning multiple model cases
are possible. Therefore, the negation of a spatial relation is not necessarily the
opposite relation. Though the information about other possible models has to be
stored. In this case it seems reasonable to adapt an approach of Vandierendonck,
Dierckx, and De Vooght [13] for positive indeterminate model cases, to represent
the alternatives by annotations at the object that is related with negation in the
initial premises.

Our formal investigation is confirmed by our own empirical data. Our first
experiment shows that there is a significant difference in the interpretation of
‘right/over’ versus ‘not right/not over’ and there is no empirical difference with

188 S. Schleipen, M. Ragni, and T. Fangmeier

or without using a grid based environment. This contrasts the results by Gapp
[2], who was more interested in the acceptability of spatial relations, where we
wanted to know what exact model (i. e. which unique interpretation) participants
construct if they are forced to. There are definitively preferred mental models in
reasoning with negated assertions, and in indetermined cases, the participants
constructed the preferred models by using the fff-principle [8]. The existence of
an economic principle has been confirmed and it is persistent for one- and two-
dimensional problems. This indicates that the fff-principle is an economic prin-
ciple of representation for negated relation as well as for indetermined cases. A
comparison of indeterminate model cases of non-negative premises with negated
premises shows that the accuracy of the answers decreased from indeterminate
positive premises to negated premises (Experiment 3).

Finally, the results are implemented into the SRM. Due to the analysis and
integration of the role of negation the SRM is enhanced to a more cognitive-
adequate computational model. Additionally the new insights gained in Experi-
ment 1 are a help in extending the discrete to a dense structure and representing
negation adequately. This results in a more precise computational simulation of
the human reasoning process. The SRM constructs the same preferred mental
models that were empirically confirmed in Experiment 2. Furthermore, the SRM
can explain the result (Experiment 3) by the use of a complexity measure that
reasoning with negation is more difficult than reasoning with positive indeter-
minate cases.

Future work will cover aspects of the understanding of negated expressions in
a non-European country, how reasoners find and neglect counter-examples and
extending the results to three-dimensional reference frames. It would be also of
interest to investigate tasks with several negated premises and connections to
belief revision.

Acknowledgments. This work was partially supported by the Deutsche For-
schungsgemeinschaft (DFG) as part of the Transregional Collaborative Research
Center SFB/TR 8 Spatial Cognition. We like to thank Bernhard Nebel and
Markus Knauff for various helps. We also owe thanks to three anonymous re-
viewers for their helpful comments.

References

1. Gabbay, D., Wansing, H.: What is Negation? Oxford University Press (1999)
2. Gapp, K.P.: Angle, distance, shape and their relationship to projective relations. In:

Moore, J.D., Lehman, J.F. (eds.) Proceedings of the Seventeenth Annual Confer-
ence of the Cognitive Science Society, pp. 112–117. Lawrence Erlbaum Associates
Inc. (1995)

3. Hasson, U., Glucksberg, S.: Does understanding negation entail affirmation? an
examination of negated metaphors. Journal of Pragmatics (forthcoming)

4. Johnson-Laird, P.N., Byrne, R.M.J.: Deduction. Erlbaum, Hillsdale, NJ (1991)
5. Kaup, B., Luedtke, J., Zwaan, R.A.: Processing negated scentences with contradic-

tory predicates: Is a door that is open mentally closed? Journal of Pragmatics 38,
1033–1050 (2006)

Negation in Spatial Reasoning 189

6. Knauff, M.: Deduktion und logisches Denken. In: Funke, J. (ed.) Denken und Prob-
lemlösen. Enzyklopädie der Psychologie, vol. 8, Hogrefe, Göttingen (2006)

7. Mani, K., Johnson-Laird, P.N.: The mental representation of spatial descriptions.
Memory & Cognition 10(2), 181–187 (1982)

8. Ragni, M., Fangmeier, T., Webber, L., Knauff, M.: Complexity in spatial reasoning.
In: Proceedings of the 28th Annual Cognitive Science Conference, Mahwah, NJ,
Lawrence Erlbaum Associates, Mahwah (2006)

9. Ragni, M., Knauff, M., Nebel, B.: A computational model for spatial reasoning
with mental models, pp. 1064–1070. Erlbaum, Mahwah, NJ (2005)

10. Ragni, M., Steffenhagen, F.: An implementation of the srm-model.
Technical report 011-09/2006, SFB/TR 8 Spatial Cognition (2006),
http://www.sfbtr8.uni-bremen.de

11. Rauh, R., Hagen, C., Knauff, M., Kuss, T., Schlieder, C., Strube, G.: Preferred
and alternative mental models in spatial reasoning. Spatial Cognition and Compu-
tation 5, 239–269 (2005)

12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2003)

13. Vandierendonck, A., Dierckx, V., Vooght, G.D.: Mental model construction in lin-
ear reasoning: Evidence for the construction of initial annotated models. The Quar-
terly Journal of Experimental Psychology 57A, 1369–1391 (2004)

http://www.sfbtr8.uni-bremen.de

Relational Neural Gas

Barbara Hammer and Alexander Hasenfuss

Clausthal University of Technology, Institute of Computer Science,
Clausthal-Zellerfeld, Germany

Abstract. We introduce relational variants of neural gas, a very efficient
and powerful neural clustering algorithm, which allow a clustering and
mining of data given in terms of a pairwise similarity or dissimilarity
matrix. It is assumed that this matrix stems from Euclidean distance or
dot product, respectively, however, the underlying embedding of points is
unknown. One can equivalently formulate batch optimization in terms of
the given similarities or dissimilarities, thus providing a way to transfer
batch optimization to relational data. For this procedure, convergence is
guaranteed and extensions such as the integration of label information
can readily be transferred to this framework.

1 Introduction

Topographic maps such as the self-organizing map (SOM) constitute a valuable
tool for robust data inspection and data visualization which has been applied in
diverse areas such as telecommunication, robotics, bioinformatics, business, etc.
[18]. Alternative methods such as neural gas (NG) [22] provide an efficient clus-
tering of data without fixing a prior lattice. This way, subsequent visualization
such as multidimensional scaling [21] can readily be applied, whereby no prior
restriction of a fixed lattice structure as for SOM is necessary and the risk of to-
pographic errors is minimized. For NG, an optimum (nonregular) data topology
is induced such that browsing in a neighborhood becomes directly possible [23].

In the last years, a variety of extensions of these methods has been proposed
to deal with more general data structures. This accounts for the fact that more
general metrics have to be used for complex data such as microarray data or
DNA sequences. Further it might be the case that data are not embedded in a
vector space at all, rather, pairwise similarities or dissimilarities are available.

Several extensions of classical SOM and NG to more general data have been
proposed: a statistical interpretation of SOM as considered in [5,14,30,31] allows
to change the generative model to alternative general data models. The resulting
approaches are very flexible but also computationally quite demanding, such that
proper initialization and metaheuristics (e.g. deterministic annealing) become
necessary when optimizing statistical models. For specific data structures such
as time series or recursive structures, recursive models have been proposed as
reviewed e.g. in the article [10]. However, these models are restricted to recursive
data structures with Euclidean constituents. Online variants of SOM and NG
have been extended to general kernels e.g. in the approaches presented in [27,34]
such that the processing of nonlinearly preprocessed data becomes available.
However, these versions have been derived for (slow) online adaptation only.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 190–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Relational Neural Gas 191

The approach [20] provides a fairly general method for large scale applica-
tion of SOM to nonvectorial data: it is assumed that pairwise similarities of
data points are available. Then the batch optimization scheme of SOM can be
generalized by means of the generalized median to a visualization tool for gen-
eral similarity data. Thereby, prototype locations are restricted to data points.
This method has been extended to NG in [3] together with a general proof of
the convergence of median versions of clustering. Further developments concern
the efficiency of the computation [2] and the integration of prior information if
available to achieve meaningful visualization and clustering [6,7,32].

Median clustering has the benefit that it builds directly on the derivation of
SOM and NG from a cost function. Thus, the resulting algorithms share the sim-
plicity of batch NG and SOM, its mathematical background and convergence,
as well as the flexibility to model additional information by means of an exten-
sion of the cost function. However, for median versions, prototype locations are
restricted to the set of given training data which constitutes a severe restriction
in particular for small data sets. Therefore, extensions which allow a smooth
adaptation of prototypes have been proposed e.g. in [8]. In this approach, a
weighting scheme is introduced for the points which represents virtual prototype
in the space spanned by the training data. This model has the drawback that it
is not an extension of the standard Euclidean version.

Here, we use an alternative way to extend NG to relational data given by
pairwise Euclidean similarities or dissimilarities, respectively, which is similar to
the relational dual of fuzzy clustering as derived in [12,13]. For a given distance
matrix or Gram matrix which stems from a (possibly high-dimensional and un-
known) Euclidean space, it is possible to derive the relational dual of topographic
map formation which expresses the relevant quantities in terms of the given ma-
trix and which leads to a learning scheme similar to standard batch optimization.
This scheme provides identical results as the standard Euclidean version if an
embedding of the given data points is known. In particular, it possesses the same
convergence properties as the standard variants, thereby restricting the compu-
tation to known quantities which do not rely on an explicit embedding. Since
these relational variants rely on the same cost function, extensions to additional
label information or magnification control [6,7,9] become readily available. Fur-
ther, convergence of the algorithm is guaranteed for every symmetric nonsingular
matrix which need not be Euclidean or stem from a metric.

In this contribution, we first introduce batch learning algorithms for neural gas
based on a cost function. Then we derive the respective relational dual resulting
in a dual cost function and batch optimization schemes for the case of a given
distance matrix of data or a given Gram matrix, respectively. We demonstrate
the possibility to extend this model to supervised information, and we show the
performance in a variety of experiments.

2 Neural Gas

Neural clustering and topographic maps constitute effective methods for data
preprocessing and visualization. Classical variants deal with vectorial data x ∈
R

n which are distributed according to an underlying distribution P in the Eu-
clidean plane. The goal of neural clustering algorithms is to distribute prototypes

192 B. Hammer and A. Hasenfuss

wi ∈ R
n, i = 1, . . . , k among the data such that they represent the data as accu-

rately as possible. A new data point x is assigned to the winner wI(x) which is
the prototype with smallest distance ‖wI(x) −x‖2. This clusters the data space
into the receptive fields of the prototypes.

Different popular variants of neural clustering have been proposed to learn
prototype locations from given training data [18]. Assume the number of proto-
types is fixed to k. Simple k-means directly optimizes the quantization error

Ek−means(w) =
1
2

k∑
i=1

∫
δi,I(x) · ‖x−wi‖2 P (dx)

where δi,I(x) with Kronecker δ-function indicates the winner neuron for x. Given
a finite set of training data x1, . . . , xm, a batch training algorithm can be directly
derived from the cost function, subsequently optimizing the winner assignments,
treated as hidden variables of the cost function, and the prototype locations:

init wi

repeat
compute optimum assignments I(xj) which minimize ‖xj −wI(xj)‖2
compute new prototype locations wi =

∑
j δi,I(xj) · xj/

∑
j δi,I(xj)

K-means constitutes one of the most popular clustering algorithms for vecto-
rial data and can be used as a preprocessing step for data mining and data
visualization. However, it is quite sensitive to initialization.

Unlike k-means, neural gas (NG) [22] incorporates the neighborhood of a
neuron for adaptation. The cost function is given by

ENG(w) =
1

2C(λ)

k∑
i=1

∫
hλ(ki(x)) · ‖x−wi‖2 P (dx)

where
ki(x) = |{wj | ‖x−wj‖2 < ‖x−wi‖2}|

is the rank of the prototypes sorted according to the distances, hλ(t)=exp(−t/λ)
scales the neighborhood cooperation with neighborhood range λ > 0, and C(λ)
is the constant

∑k
i=1 hλ(ki(x)). The neighborhood cooperation smoothes the

data adaptation such that, on the one hand, sensitivity to initialization can be
prevented, on the other hand, a data optimum topological ordering of prototypes
is induced by linking the respective two best matching units for a given data point
[23]. Classical NG is optimized in an online mode. For a fixed training set, an
alternative fast batch optimization scheme is offered by the following algorithm,
which in turn computes ranks, which are treated as hidden variables of the cost
function, and optimum prototype locations [3]:

init wi

repeat
compute ranks ki(xj) = |{wk | ‖xj −wk‖2 < ‖xj −wi‖2}|
compute new prototype locations wi =

∑
j hλ(ki(xj)) · xj/

∑
j hλ(ki(xj))

Relational Neural Gas 193

Like k-means, NG can be used as a preprocessing step for data mining and
visualization, followed e.g. by subsequent projection methods such as Sammon’s
mapping or multidimensional scaling.

It has been shown in e.g. [3] that batch optimization schemes of these cluster-
ing algorithms converge in a finite number of steps towards a (local) optimum of
the cost function, provided the data points are not located at borders of receptive
fields of the final prototype locations. In the latter case, convergence can still be
guaranteed but the final solution can lie at the border of basins of attraction.

3 Relational Data

Relational data xi are not explicitely embedded in a Euclidean vector space,
rather, pairwise similarities or dissimilarities are available. Batch optimization
can be transferred to such situations using the so-called generalized median
[3,20]. Assume, distance information d(xi, xj) is available for every pair of data
points x1, . . . , xm. Median clustering reduces prototype locations to data loca-
tions, i.e. adaptation of prototypes is not continuous but takes place within the
space {x1, . . . , xm} given by the data. We write wi to indicate that the proto-
types need no longer be vectorial. For this restriction, the same cost functions as
beforehand can be defined whereby the Euclidean distance ‖xj −wi‖2 is substi-
tuted by d(xj , wi) = d(xj , xli) whereby wi = xli . Median clustering substitutes
the assignment of wi as (weighted) center of gravity of data points by an ex-
tensive search, setting wi to the data points which optimize the respective cost
function for fixed assignments. This procedure has been tested e.g. in [3,6]. It has
the drawback that prototypes have only few degrees of freedom if the training
set is small. Thus, median clustering usually gives inferior results compared to
the classical Euclidean versions when applied in a Euclidean setting.

Here we introduce relational clustering for data characterized by similarities
or dissimilarities, using a direct transfer of the standard Euclidean training al-
gorithm to more general settings allowing smooth updates of the solutions. The
essential observation consists in a transformation of the cost functions as defined
above to their so-called relational dual. We distinguish two settings, similarity
data where dot products of training data are available, and dissimilarity data
where pairwise distances are available.

3.1 Metric Data

Assume training data x1, . . . , xm are given in terms of pairwise distances dij =
d(xi, xj)2. We assume that it originates from a Euclidean distance measure,
that means, we are always able to find (possibly high dimensional) Euclidean
points xi such that dij = ‖xi−xj‖2. Note that this notation includes a possibly
nonlinear mapping (feature map) xi *→ xi corresponding to the embedding in
a Euclidean space. However, this embedding is not known, such that we cannot
directly optimize the above cost functions in the embedding space. The key
observation is based on the fact that k-means and batch NG optimum prototype
locations wj can be expressed as linear combination of data points. Therefore,
the unknown values ‖xj − wi‖2 can be expressed in terms of known values dij .

194 B. Hammer and A. Hasenfuss

More precisely, assume there exist points xj such that dij = ‖xi − xj‖2.
Assume the prototypes can be expressed in terms of data points wi =

∑
j αijx

j

where
∑

j αij = 1. Then

‖wi − xj‖2 = (D · αi)j − 1/2 · αt
i ·D · αi

where D = (dij)ij is the distance matrix and αi = (αij)j are the coefficients.
This fact can be shown as follows: for wi =

∑
j αijx

j , one can compute

‖xj −wi‖2 = ‖xj‖2 − 2
∑

l

αil(xj)txl +
∑
l,l′

αilαil′ (xl)txl′ .

This is the same as

(D · αi)j − 1/2 · αt
i ·D · αi

=
∑

l ‖xj − xl‖2 · αil − 1/2 ·
∑

ll′ αil‖xl − xl′‖2αil′

=
∑

l ‖xj‖2αil − 2 ·
∑

l αil(xj)txl +
∑

l αil‖(xl)‖2
−
∑

ll′ αil′αil′‖xl‖2 +
∑

ll′ αilαil′ (xl)txl′

because of
∑

j αij = 1. Because of this fact, we can substitute all terms ‖xj −
wi‖2 in batch optimization schemes. The parameters αi yield

1. αij = δi,I(xj)/
∑

j δi,I(xj) for k-means,
2. αij = hλ(ki(xj))/

∑
j hλ(ki(xj)) for NG

This allows to reformulate the batch optimization in terms of relational data.
We obtain

init αij with
∑

j αij = 1
repeat

compute the distance ‖xj −wi‖2 as (D · αi)j − 1/2 · αt
i ·D · αi

compute optimum assignments based on this distance matrix
α̃ij = δi,I(xj) (for k-means) resp.
α̃ij = hλ(ki(xj)) (for NG)

compute αij = α̃ij/
∑

j α̃ij as normalization of these values.

Hence, prototype locations are computed only indirectly by means of the coef-
ficients αij . Initialization can be done e.g. setting initial prototype locations to
random data points, which is realized by a random selection of k rows from the
given distance matrix. Note that prototypes are represented only indirectly by
means of the coefficients αij . For every prototype, m coefficients are stored, m
denoting the number of training points. Hence the space complexity of relational
clustering is linear w.r.t. the number of training data and the time complexity
of one training epoch is quadratic w.r.t. the number of training points.

Given a new data point x which can isometrically be embedded in Euclidean
space as x, and pairwise distances dj = d(x, xj)2 corresponding to the distance
from xj , the winner can be determined by using the equality

‖x−wi‖2 = (D(x)t · αi)− 1/2 · αt
i ·D · αi

where D(x) denotes the vector of distances D(x) = (dj)j = (d(x, xj)2)j .

Relational Neural Gas 195

The quantization error can be expressed in terms of the given values dij by
substituting ‖xj −wi‖2 by (D · αi)j − 1/2 · αt

i ·D · αi. Interestingly, using the
formula for optimum assignments of batch optimization, one can also derive rela-
tional dual cost functions for the algorithms. For k-means, we use the shorthand
notation δij = δi,I(xj). It holds wi =

∑
j δij ·xj/

∑
j δij , hence the cost function

becomes
1/2 ·

∑
ij δij‖wi − xj‖2

= 1/2 ·
∑

ij δij‖
∑

l δilx
l/
∑

l δil‖2

=
∑

i 1/(2
∑

l δil) ·
(∑

ll′ δilδil′‖xl‖2 −
∑

ll′ δilδil′(xl)txl′
)

.

Thus, the relational dual of k-means is∑
i

1
4 ·
∑

l δiI(xl)

·
∑
ll′

δiI(xl)δiI(xl′)dll′ .

This measures the pairwise distance of data points assigned to the same cluster.
For NG, we use the abbreviation kij = hλ(ki(xj)). Because of wi =

∑
j kij ·

xj/
∑

j kij , we find

1/2 ·
∑

ij kij‖xj −wi‖2
= 1/2 ·

∑
ij kij‖xj −

∑
l kil · xl/

∑
l kil‖2

=
∑

i 1/(2 ·
∑

l kil) ·
(∑

ll′ kilkil′‖xl‖2 −
∑

ll′ kilkil′ (xl)txl′
)

.

Thus, the relational dual of NG is∑
i

1
4
∑

l hλ(ki(xl))
·
∑
ll′

hλ(ki(xl))hλ(ki(xl′))dll′ .

Obviously, this extends the relational dual of k-means towards neighborhood
cooperation.

Note that this relational learning gives exactly the same results as standard
batch optimization provided the given relations stem from an Euclidean met-
ric. See e.g. [29] for a characterization of this property. Hence, convergence is
guaranteed in this case since it holds for the standard batch versions. If the
given distance matrix does not stem from an Euclidean metric, this equality
does no longer hold and the terms (D · αi)j − 1/2 · αt

i ·D · αi can become nega-
tive. In this case, one can correct the distance matrix by the γ-spread transform
Dγ = D + γ(1− I) for sufficiently large γ where 1 equals 1 for each entry and I
is the identity [12]. For sufficiently large γ, this correction yields a setting where
an interpretation of clustering by means of Euclidean prototypes in a possibly
high-dimensional Euclidean space exists.

Alternatively, one can apply the formulas for relational clustering directly to
any given matrix D, whereby an interpretation by means of explicit prototypes is
no longer possible. Interestingly, one can show that this algorithm converges for
every symmetric and nonsingular D in a finite number of steps. We exemplarily
present the proof for NG: consider the cost function

E(kij , αij) =
∑
ij

hλ(kij)

(∑
l

djlαil −
1
2
·
∑
ll′

dll′αilαil′

)

196 B. Hammer and A. Hasenfuss

where αij ∈ R and kij constitutes a permutation of 0, . . . , k− 1, k denoting the
number of prototypes. In relational NG, this cost function is iteratively optimized
with respect to αij for fixed kij and kij for fixed αij . The latter is obvious. The
first can be seen as follows: the derivative of E(kij , αij) with respect to αnm

yields∑
j

hλ(knj)djm −
∑

j

hλ(knj)
∑

l

dlmαnl =
∑

j

djm

(
hλ(knj)−

∑
l

hλ(knl)αnj

)
For nonsingular D, this is 0 for all n and m iff αnj = hλ(knj)/

∑
l hλ(knl), hence

relational NG optimizes αnj in the iterative procedure. Assume αij(kij) are op-
timum values αij for fixed kij . Assume kij are given. Assume k′

ij are computed
in the next iteration of relational NG. Then E(kij , αij(kij)) ≥ E(k′

ij , αij(kij)
because k′

ij is chosen optimum with respect to αij(kij)), and E(k′
ij , αij(kij)) ≥

E(k′
ij , αij(k′

ij)) since αij(k′
ij) is chosen optimum with respect to k′

ij . Hence the
cost function decreases in consecutive steps. Since only a finite number of dif-
ferent assignments kij exists, the algorithm converges (thereby we assume that
potential ties for the choice of the ranks kij are broken deterministically).

Hence relational NG and variants converge for every nonsingular and sym-
metric matrix D, whereby the cost function E(kij , αij) is minimized. Note that
for optimum values αij = hλ(kij)/

∑
l hλ(kil) the cost function yields

E(kij , αij) =
1
2

∑
i

1∑
l′′ hλ(kil′′)

∑
ll′

hλ(kil)hλ(kil′)dll′ ,

i.e. we arrive at the relational dual of NG also when using this procedure for
general (symmetric and nonsingular) D.

3.2 Dot Products

A dual possibility is to characterize data x1, . . . , xm by means of pairwise similar-
ities, i.e. dot products. We denote the similarity of xi and xj by k(xi, xj) = kij .
We assume that these values fulfill the properties of a dot product, i.e. the ma-
trix K with entries kij is positive definite. In this case, a representation xi of the
data can be found in a possibly high dimensional Euclidean vector space such
that kij = (xi)txj .

As beforehand, we can represent distances in terms of these values if wi =∑
l αilx

l with
∑

l αil = 1 yields optimum prototypes:

‖xj −wi‖2 = kjj − 2
∑

l

αilkjl +
∑
ll′

αilαil′kll′ .

This allows to compute batch optimization in the same way as beforehand:
init αij with

∑
j αij = 1

repeat
compute the distance ‖xj −wi‖2 as kjj − 2

∑
l αilkjl +

∑
ll′ αilαil′kll′

compute optimum assignments based on this distance matrix
α̃ij = δi,I(xj) (for k-means) resp.
α̃ij = hλ(ki(xj)) (for NG)

compute αij = α̃ij/
∑

j α̃ij as normalization of these values.

Relational Neural Gas 197

One can use the same identity for ‖x−wi‖2 to obtain a possibility to com-
pute the winner given a point x and to compute the respective cost function.
Convergence of this algorithm is guaranteed since it is identical to the batch
versions for the Euclidean data embedding xi if K is positive definite.

If K is not positive definite negative values can occur for ‖xj −wi‖2. Then
the kernel matrix can be corrected by Kγ = K + γ · 1 with large enough γ.

4 Supervision

The possibility to include further information, if available, is very important
to get meaningful results for unsupervised learning. This can help to prevent
the ‘garbage in - garbage out’ problem of unsupervised learning, as discussed
e.g. in [16,17]. Here we assume that additional label information is available
which should be accounted for by clustering or visualization. Thereby, labels are
embedded in R

d and can be fuzzy. We assume that the label attached to xj is
denoted by yj . We equip a prototype wi with a label Y i ∈ R

d which is adapted
during learning. For the Euclidean case, the basic idea consists in a substitution
of the standard Euclidean distance ‖xj −wi‖2 by a mixture

(1− β) · ‖xj −wi‖2 + β · ‖yj − Y i‖2

which takes the similarity of label assignments into account and where β ∈ [0, 1]
controls the influence of the label values. This procedure has been proposed in
[6,7,32] for Euclidean and median clustering and online neural gas, respectively.
One can use the same principles to extend relational clustering.

For discrete Euclidean settings x1, . . . , xm cost functions and related batch
optimization is as follows (neglecting constant factors):

Ek−means(w, Y) =
∑
ij

δi,I(xj) ·
(
(1 − β) · ‖xj −wi‖2 + β · ‖yj − Y i‖2

)
where δi,I(xj) indicates the winner for xj which is the neuron wI(xj) with small-
est (1 − β) · ‖xj − wI(xj)‖2 + β · ‖yj − Y I(xj)‖2. Besides this slight change
in the winner notation, the batch update is extended by the adaptation step
Y i =

∑
j δi,I(xj)y

j/
∑

j δi,I(xj) for the prototype labels.
Similarly, the cost function of NG becomes

ENG(w, Y) =
∑
ij

hλ(ki(xj)) ·
(
(1− β) · ‖xj −wi‖2 + β · ‖yj − Y i‖2

)
where ki(xj) denotes the rank of neuron i measured according to the distances
(1− β) · ‖xj −wi‖2 + β · ‖yj − Y i‖2. Again, this change in the computation of
the rank is accompanied by the adaptation Y i =

∑
j hλ(xj)yj/

∑
j hλ(xj) for

the prototype labels for batch optimization
For these generalized cost functions, relational learning becomes possible by

substituting the distances ‖xj −wi‖2 using the identity wi =
∑

αijx
j for opti-

mum assignments which still holds for these extensions. The same computation
as beforehand yields to the algorithm for clustering dissimilarity data character-
ized by pairwise distances dij :

198 B. Hammer and A. Hasenfuss

init αij with
∑

j αij = 1
repeat

compute the distances as (1− β) · ((D · αi)j−1/2 · αt
iDαi) + β · ‖Y i − yj‖2

compute optimum assignments α̃ij based on this distance as before
compute αij = α̃ij/

∑
j α̃ij

compute prototype labels Y i =
∑

j αijy
j

An extension to similarity data given by dot products xi · xj proceeds in the
same way using the distance computation based on dot products as derived
beforehand. As beforehand, this version converges in a finite number of steps.

5 Experiments

In the experiments, we focus on the clustering and classification ability of the al-
gorithms rather than the visualization, since these aspects can easily be evaluated
by the classification error for given data labels. We demonstrate the performance
of the neural gas and k-means algorithms in different scenarios covering a vari-
ety of characteristic situations. All algorithms have been implemented based on
the SOM Toolbox for Matlab [26]. Note that, for all median versions, prototypes
situated at identical points of the data space do not separate in subsequent runs.
Therefore constellations with exactly identical prototypes should be avoided. For
the Euclidean and relational versions this problem is negligible, presumed pro-
totypes are initialized at different positions. However, for median versions it is
likely that prototypes move to an identical locations due to the limited number
of different positions in data space, in particular for small data sets. To cope with
this fact in median versions, we add a small amount of noise to the distances in
each epoch in order to separate identical prototypes. The initial neighborhood
rate for neural gas is λ = n/2, n being the number of neurons, and it is multi-
plicatively decreased during training. In all runs, relational clustering has been
applied directly without any correction of the given matrix.

Wisconsin Breast Cancer Database

The Wisconsin Diagnostic Breast Cancer database (WDBC) is a standard bench-
mark set from clinical proteomics [33]. It consists of 569 data points described by
30 real-valued input features: digitized images of a fine needle aspirate of breast
mass are described by characteristics such as form and texture of the cell nuclei
present in the image. Data are labeled by two classes, benign and malignant.

For training we used 40 neurons and 150 epochs per run. The dataset was
z-transformed beforehand. The results were gained from repeated 2-fold cross-
validations averaged over 100 runs. The mixing parameter of the supervised
methods was set to 0.5 for the simulations reported in Table 1. Moreover, the
data set is contained in the Euclidean space therefore we are able to compare the
relational versions introduced in this article to the standard Euclidean methods.
These results are shown in Table 1. The effect of a variation of the mixing
parameter is demonstrated in Fig. 1. The results are competitive to supervised
learning with the state-of-the-art-method GRLVQ as obtained in [28].

Relational Neural Gas 199

Table 1. Classification accuracy on the WDBC database for posterior labeling. The
mean accuracy over 100 repeats of 2-fold cross-validation is reported.

k-Means Supervised Median Relational Supervised
k-Means k-Means k-Means Relational

k-Means

Accuracy
Mean 93.6 93.0 93.0 93.4 93.5
StdDev 0.8 1.1 1.0 1.2 1.1

Batch Supervised Median Relational Supervised
NG Batch Batch Batch Relational

NG NG NG Batch NG

Accuracy
Mean 94.1 94.7 93.1 94.0 94.4
StdDev 1.0 0.8 1.0 0.9 1.0

As one can see, the results of Euclidean and relational clustering are identical,
as expected by the theoretical background of relational clustering. Relational
clustering and supervision allow to improve the more restricted and unsupervised
median versions by more than 1% classification accuracy.

Cat Cortex

The Cat Cortex Data Set originates from anatomic studies of cats’ brains. A
matrix of connection strengths between 65 cortical areas of cats was compiled
from literature [4]. There are four classes corresponding to four different regions
of the cortex. For our experiments a preprocessed version of the data set from
Haasdonk et al. [11] was used. The matrix is symmetric but the triangle inequal-
ity does not hold. Nevertheless, relational NG converges as shown beforehand
because of a symmetric nonsingular distance matrix.

The algorithms were tested in 10-fold cross-validation using 12 neurons (three
per class) and 150 epochs per run. The results presented reveal the mean ac-
curacy over 250 repeated 10-fold cross-validations per method. The mixing pa-
rameter of the supervised methods was set to 0.5 for the simulations reported
in Table 2. Results for different mixing parameters are shown in Figure 2.

Table 2. Classification accuracy on the Cat Cortex Data Set for posterior labeling.
The mean accuracy over 250 repeats of 10-fold cross-validation is reported.

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy
Mean 72.8 71.6 89.0 88.7 77.9 89.2 91.3
StdDev 3.9 4.0 3.3 3.0 3.5 3.0 2.8

200 B. Hammer and A. Hasenfuss

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.93

0.935

0.94

0.945

0.95

0.955

0.96

Mixing Parameter

M
ea

n
A

cc
ur

ac
y

on
 T

es
t S

et
s

Supervised Relational KMeans
Supervised Median Batch NG
Supervised Relational Batch NG

Fig. 1. Results of the supervised methods for the WDBC data set with different mixing
parameters applied

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.7

0.75

0.8

0.85

0.9

0.95

Mixing Parameter

M
ea

n
A

cc
ur

ac
y

on
 T

es
t S

et
s

Supervised Relational KMeans
Supervised Median Batch NG
Supervised Relational Batch NG

Fig. 2. Results of the supervised methods for the Cat Cortex Data Set with different
mixing parameters applied

A direct comparison of our results to the findings of Graepel et al. [4] or
Haasdonk et al. [11] is not possible. Haasdonk et al. gained an accumulated
error over all classes of at least 10% in leave-one-out experiments with SVMs.
Graepel et al. obtained virtually the same results with the Optimal Hyperplane

Relational Neural Gas 201

Table 3. Classification accuracy on the Protein Data Set for posterior labeling. The
mean accuracy over 100 repeats of 10-fold cross-validation is reported.

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy
Mean 76.1 76.3 88.0 89.9 89.4 88.2 90.0
StdDev 1.3 1.8 1.8 1.3 1.4 1.7 1.0

(OHC) algorithm. In our experiments, the improvement of restricted median
clustering by relational extensions by more than 10% classification accuracy can
clearly be observed. Note that relational clustering works quite well in this case
although an interpretation by means of prototypes is not directly possible.

Proteins

The evolutionary distance of 226 globin proteins is determined by alignment
as described in [24]. These samples originate from different protein families:
hemoglobin-α, hemoglobin-β, myoglobin, etc. Here, we distinguish five classes
as proposed in [11]: HA, HB, MY, GG/GP, and others.

For training we used 45 neurons and 150 epochs per run. The results were
gained from repeated 10-fold cross-validations averaged over 100 runs. The mix-
ing parameter of the supervised methods was set to 0.5 for the simulations
reported in Table 3.

Unlike the results reported in [11] for SVM which uses one-versus-rest en-
coding, the classification in our setting is given by only one clustering model.
Depending on the choice of the kernel, [11] reports errors which approximately
add up to 4% for the leave-one-out error. This result, however, is not comparable
to our results due to the different error measure. A 1-nearest neighbor classifier
yields an accuracy 91.6 for our setting (k-nearest neighbor for larger k is worse;
[11] which is comparable to our results.

Chromosomes

The Copenhagen chromosomes database is a benchmark from cytogenetics [19].
A set of 4200 human nuclear chromosomes from 22 classes (the X resp. Y sex
chromosome is not considered) are represented by the grey levels of their im-
ages and transferred to strings representing the profile of the chromosome by
the thickness of their silhouettes. Thus, this data set consists of strings of differ-
ent length, and standard k-means clustering cannot be used. Median versions,
however, are directly applicable. The edit distance is a typical distance measure
for two strings of different length, as described in [15,25]. In our application,
distances of two strings are computed using the standard edit distance whereby
substitution costs are given by the signed difference of the entries and inser-
tion/deletion costs are given by 4.5 [25].

202 B. Hammer and A. Hasenfuss

Table 4. Classification accuracy on the Copenhagen Chromosome Database for pos-
terior labeling. The mean accuracy over 10 runs of 2-fold cross-validation is reported.

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy
Mean 82.3 82.8 90.6 91.3 89.4 90.1 91.4
StdDev 2.2 1.7 0.6 0.2 0.6 0.6 0.6

The algorithms were tested in 2-fold cross-validation using 100 neurons and
100 epochs per run (cf. [3]). The results presented are the mean accuracy over 10
times 2-fold cross-validation per method. The mixing parameter of the supervised
methods was set to 0.9.

As can be seen, supervised relational neural gas achieves an accuracy of 0.914
for α = 0.9. This improves by 8% compared to median variants.

6 Discussion

We have introduced relational neural clustering which extends the classical Eu-
clidean versions to settings where pairwise distances or dot products of the data
are given but no explicit embedding into a Euclidean space is known. By means
of the relational dual, batch optimization can be formulated in terms of these
quantities only. This extends previous median clustering variants to a continu-
ous prototype update which is particularly useful for only sparsely sampled data.
The derived relational algorithms have a formal background only for Euclidean
distances or metrics; however, as demonstrated in an example for the cat cortex
data, the algorithms might also prove useful in more general scenarios, and con-
vergence is guaranteed for fairly general settings. In all experiments presented
in this contribution, relational clustering significantly improves the classification
accuracy obtained by semi-supervised clustering compared to median clustering
using the same underlying cost function. Depending on the data set at hand,
results which are competitive to state-of-the-art classification (using dedicated
supervised training) could be approximated in our settings, demonstrating the
efficiency and robustness of relational clustering. However, being based on the
quantization error and related quantities, relational clustering is mainly intended
for data inspection whereby additional information can be integrated to achieve
meaningful clusters. The general framework as introduced in this article opens
the way towards the transfer of further principles of SOM and NG to the setting
of relational data: as an example, the magnification factor of topographic map
formation for relational data transfers from the Euclidean space, and possibilities
to control this factor as demonstrated for batch clustering e.g. in the approach
[9] can readily be used.

One very important subject of future work concerns the complexity of com-
putation and sparseness of prototype representation. For the approach as in-
troduced above, the complexity scales quadratic with the number of training

Relational Neural Gas 203

examples and the size of prototype representations is linear with respect to
the number of examples. The representation contains a large number of very
small coefficients, which correspond to data points for which the distance from
the prototype is large. Therefore it can be expected that a restriction of the
representation to the close neighborhood is sufficient for accurate results.

References

1. Anderson, J.W.: Hyperbolic Geometry, 2nd edn. Springer, Heidelberg (2005)
2. Conan-Guez, B., Rossi, F., El Golli, A.: A fast algorithm for the self-organizing

map on dissimilarity data. In: Workshop on Self-Organizing Maps, pp. 561–568
(2005)

3. Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural
gas. Neural Networks 19, 762–771 (2006)

4. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on
pairwise proximity data. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) NIPS,
vol. 11, pp. 438–444. MIT Press, Cambridge (1999)

5. Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data.
Neural Computation 11, 139–155 (1999)

6. Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median neural
gas. In: Dagli, C., Buczak, A., Enke, D., Embrechts, A., Ersoy, O. (eds.) Intelli-
gent Engineering Systems Through Artificial Neural Networks. Smart Engineering
System Design, vol. 16, pp. 623–633. ASME Press (2006)

7. Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised batch neural
gas. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087,
pp. 33–45. Springer, Heidelberg (2006)

8. Hasenfuss, A., Hammer, B., Schleif, F.-M., Villmann, T.: Neural gas clustering for
dissimilarity data with continuous prototypes. In: WANN’07 (accepted, 2007)

9. Hammer, B., Hasenfuss, A., Villmann, T.: Magnification control for batch neural
gas. Neurocomputing 70, 1225–1234 (2007)

10. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing
network models. Neural Networks 17(8-9), 1061–1086 (2004)

11. Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Ras-
mussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recogni-
tion. LNCS, vol. 3175, Springer, Heidelberg (2004)

12. Hathaway, R.J., Bezdek, J.C.: Nerf c-means: Non-euclidean relational fuzzy clus-
tering. Pattern Recognition 27(3), 429–437 (1994)

13. Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means
algorithms. Pattern Recognition 22, 205–212 (1989)

14. Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE
Transactions on Neural Networks 12, 1299–1305 (2001)

15. Juan, A., Vidal, E.: On the use of normalized edit distances and an efficient k-NN
search technique (k-AESA) for fast and accurate string classification. In: ICPR
2000, vol. 2, pp. 680–683 (2000)

16. Kaski, S., Nikkilä, J., Savia, E., Roos, C.: Discriminative clustering of yeast stress
response. In: Seiffert, U., Jain, L., Schweizer, P. (eds.) Bioinformatics using Com-
putational Intelligence Paradigms, pp. 75–92. Springer, Heidelberg (2005)

17. Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., Castren, E.: Trustworthiness
and metrics in visualizing similarity of gene expression. BMC Bioinformatics 4, 48
(2003)

18. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

204 B. Hammer and A. Hasenfuss

19. Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized
trypsin G-banded human metaphase chromosomes. Clinical Genetics 18, 355–370
(1980)

20. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvecto-
rial data. Neural Networks 15, 945–952 (2002)

21. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29, 1–27 (1964)

22. Martinetz, T., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quan-
tization and its application to time-series prediction. IEEE Transactions on Neural
Networks 4, 558–569 (1993)

23. Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7,
507–522 (1994)

24. Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment.
Protein Engineering 9, 127–132 (1996)

25. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern
classification. Pattern Recognition 39(10), 1852–1863 (2006)

26. Neural Networks Research Centre, Helsinki University of Technology, SOM Tool-
box, http://www.cis.hut.fi/projects/somtoolbox/

27. Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms with application to clus-
ter analysis. ICPR 2004 4, 617–620 (2004)

28. Schleif, F.-M., Hammer, B., Villmann, T.: Margin based Active Learning for LVQ
Networks. Neurocomputing 70(7-9), 1215–1224 (2007)

29. Schölkopf, B.: The kernel trick for distances, Microsoft TR 2000-51 (2000)
30. Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix

data. Neural Networks 17, 1211–1230 (2004)
31. Tino, P., Kaban, A., Sun, Y.: A generative probabilistic approach to visualizing

sets of symbolic sequences. In: Kohavi, R., Gehrke, J., DuMouchel, W., Ghosh,
J. (eds.) Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD-2004, pp. 701–706. ACM Press,
New York (2004)

32. Villmann, T., Hammer, B., Schleif, F., Geweniger, T., Herrmann, W.: Fuzzy clas-
sification by fuzzy labeled neural gas. Neural Networks 19, 772–779 (2006)

33. Wolberg, W.H., Street, W.N., Heisey, D.M., Mangasarian, O.L.: Computer-derived
nuclear features distinguish malignant from benign breast cytology. Human Pathol-
ogy 26, 792–796 (1995)

34. Yin, H.: On the equivalence between kernel self-organising maps and self-organising
mixture density network. Neural Networks 19(6), 780–784 (2006)

http://www.cis.hut.fi/projects/somtoolbox/

A General Framework for Encoding and

Evolving Neural Networks

Yohannes Kassahun1, Jan Hendrik Metzen1, Jose de Gea1, Mark Edgington1,
and Frank Kirchner1,2

1 Robotics Group, University of Bremen
Robert-Hooke-Str. 5, D-28359, Bremen, Germany

2 German Research Center for Artificial Intelligence (DFKI)
Robert-Hooke-Str. 5, D-28359, Bremen, Germany

Abstract. In this paper we present a novel general framework for en-
coding and evolving networks called Common Genetic Encoding (CGE)
that can be applied to both direct and indirect encoding methods. The
encoding has important properties that makes it suitable for evolving
neural networks: (1) It is complete in that it is able to represent all types
of valid phenotype networks. (2) It is closed, i. e. every valid genotype
represents a valid phenotype. Similarly, the encoding is closed under ge-
netic operators such as structural mutation and crossover that act upon
the genotype. Moreover, the encoding’s genotype can be seen as a com-
position of several subgenomes, which makes it to inherently support the
evolution of modular networks in both direct and indirect encoding cases.
To demonstrate our encoding, we present an experiment where direct en-
coding is used to learn the dynamic model of a two-link arm robot. We
also provide an illustration of how the indirect-encoding features of CGE
can be used in the area of artificial embryogeny.

1 Introduction

A meaningful combination of the principles of neural networks and evolutionary
computation is useful for designing agents that learn and adapt to their envi-
ronment through interaction. One step towards achieving such a combination
involves the design of a flexible genetic encoding that is suitable for evolving
networks using both direct and indirect encoding methods. To our knowledge,
CGE is the first genetic encoding that tries to consider both direct and indirect
encoding of networks under the same theoretical framework. In addition to sup-
porting both types of genetic encodings, CGE has some important properties
that makes it suitable for encoding and evolving neural networks.

The paper is organized as follows: First, a detailed review of work in the area of
Evolution of Artificial Neural Networks (EANNs) is given. Next, a description
of CGE is provided. We then present an experiment in learning the dynamic
model of a two-link arm robot, and illustrate how CGE can be used for artificial
embryogeny. After this, a comparison of CGE to other genetic encodings is made.
Finally, some conclusions and a future outlook is provided.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 205–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 Y. Kassahun et al.

2 Review of Work in Evolution of Artificial Neural
Networks

The field of EANNs can be divided into two major areas of research: the evolu-
tion of connection weights, and the evolution of both structure and connection
weights. In the first area, the structure of neural networks is fixed before the evo-
lution begins. In the second area, both the structure and the connection weights
are determined automatically during the evolutionary process. Since the evolu-
tion of connection weights is not interesting in the context of this paper, we will
give only a review to relevant work in the second area. For a detailed review of
the work in the evolution of neural networks see Yao [19].

Angeline et al. developed a system called GNARL (GeNeralized Acquisition
of Recurrent Links) which uses only structural mutation of the topology, and
parametric mutations of the weights as genetic search operators [1]. The main
problem with this method is that genomes may end up in many extraneous dis-
connected structures that have no contribution to the solution. The Neuroevo-
lution of Augmenting Topologies (NEAT) [17] evolves both the structure and
weights of neural networks. It starts with networks of minimal structures and
increases their complexity along the evolution path. The algorithm keeps track
of the historical origin of every gene that is introduced through structural mu-
tation. This history is used by a specially designed crossover operator to match
genomes which encode different network topologies. Unlike GNARL, NEAT does
not use self-adaptation of mutation step-sizes. Instead, each connection weight
is perturbed with a fixed probability by adding a floating point number chosen
from a uniform distribution of positive and negative values.

Kitano’s grammar based encoding of neural networks uses Lindenmayer sys-
tems (L-systems) [12] to describe the morphogenesis of linear and branching
structures in plants [10]. Sendhoff et al. extended Kitano’s grammar encoding
with a recursive encoding of modular neural networks [16]. Their system pro-
vides a means of initializing the network weights, whereas in Kitano’s grammar
based encoding, there is no direct way of representing the connection weights
of neural networks in the genome. Gruau’s Cellular Encoding (CE) method is a
language for local graph transformations that controls the division of cells which
grow into an artificial neural network [5]. The genetic representations in CE are
compact because genes can be reused several times during the development of
the network and this saves space in the genome since not every connection and
node needs to be explicitly specified in the genome. Defining a crossover operator
for CE is still difficult, and it is not easy to analyze how crossover affects the
subfunctions in CE encoding since they are not explicitly represented. Vaario et
al. have developed a biologically inspired neural growth based on diffusion field
modeling combined with genetic factors for controlling the growth of the network
[18]. One weak point of this method is that it cannot generate networks with
recurrent connections or networks with connections between neurons on different
branches of the resulting tree structure. Nolfi and Parisi have modelled biologi-
cal development at the chemical level using a reaction-diffusion model [14]. This
method utilizes growth to create connectivity without explicitly describing each

A General Framework for Encoding and Evolving Neural Networks 207

connection in the phenotype. The complexity of a structure that the genome
can represent is limited since every neuron is directly specified in the genome.
Other work in indirect encoding have borrowed ideas from systems biology, and
simulated Genetic Regulatory Networks (GRNs), in which genes produce signals
that either activate or inhibit other genes in the genome. Typical works using
GRNs include those of Dellaert and Beer [4], Jakobi [7], Bongard and Pfeifer [3],
and Bentley and Kumar [2].

3 Common Genetic Encoding (CGE)

A genotype in CGE is a sequence of genes that can take one of three different
forms: a vertex gene, an input gene, or a jumper gene. A vertex gene encodes
a vertex of a network, an input gene encodes an input to the network, and a
jumper gene encodes a connection between two vertices. A particular jumper
gene can either be a forward or a recurrent jumper gene. A forward jumper
gene represents a connection starting from a vertex gene with higher depth1

and ending at a vertex with lower or same depth. A recurrent jumper gene
represents a connection between two vertices with arbitrary depths. Depending
on whether the encoding is interpreted directly or indirectly, the vertex genes
can store different information such as weights wi ∈ R (e.g. when the encoded
network is interpreted directly as a neural network) or operator type (e.g. when
the encoded network is indirectly mapped to a phenotype network).

A genotype g = [x1, ..., xN] ∈ G is defined as a sequence of genes xi ∈ X , where
G is the set of all valid genotypes, and X = V ∪I ∪JF ∪JR. V is a set of vertex
genes, I is a set of input genes, and JF and JR are sets of forward and recurrent
jumper genes, respectively. For a gene x and a genotype g = [x1, . . . , xN] we say
x ∈ g iff ∃ 0 < i ≤ N : x = xi. To each vertex gene there is an associated
unique identity number id ∈ N0 and to each input gene there is an associated
label, where input genes with the same label refer to the same input. The set of
identity numbers and the set of labels are disjoint. Each vertex gene xi stores a
value din(xi), which can be interpreted as the number of expected inputs (i. e.,
the number of arguments of xi). A forward or a recurrent jumper gene stores
the identity number of its source vertex gene. Two genes xi ∈ g1 and xj ∈ g2

are considered to be equal if the following condition is satisfied:

xi = xj ⇔

(xi ∈ V ∧ xj ∈ V ∧ xi.id = xj .id)
∨ (xi ∈ I ∧ xj ∈ I ∧ xi.label = xj .label)
∨ (xi ∈ JF ∧ xj ∈ JF ∧ xi.source id = xj .source id)
∨ (xi ∈ JR ∧ xj ∈ JR ∧ xi.source id = xj .source id)

(1)

There are different functions defined on the genes of a genotype that can be
used for determining properties of the genotypes during the evolutionary run.
The first function v : X −→ Z defined as

v(xi) =

{
1− din(xi), if xi ∈ V
1, if xi /∈ V

(2)

1 For a formal definition of a gene’s depth, see Equation 6.

208 Y. Kassahun et al.

can be interpreted as the number of implicitly produced outputs (which is always
1) minus the number of expected inputs by the gene xi. This function allows us
to define the sum

sK =
K−1∑
i=1

v(xi), (3)

where K ∈ {1, . . . , N + 1}. Note that this definition implies s1 = 0. Based on
this, we define the set of output vertex genes as

Vo = {xj ∈ g |xj ∈ V ∧ (si < sj ∀ i : 0 < i < j)} (4)

and the set of non-output vertex genes as Vno = V − Vo.
We consider a subsequence gl,m = [xl, xl+1, . . . , xl+m−1] of g to be a

subgenome of a genotype g if xl ∈ V and sl,m =
l+m−1∑
i=l

v(xi) = 1. Subgenomes are

an important concept in CGE, because they make it possible to treat developed
phenotype structures as a composition of phenotype substructures that corre-
spond to the subgenomes, and because of this, they allow the genetic encoding
to inherently support the evolution of modular neural networks.

We can define a hierarchy-relationship between the genes in a genotype by
the function parent : X −→ V ∪ ∅

parent(xj) =

{
∅, if (si < sj ∀ i : 0 < i < j)
xi, if si ≥ sj and sk < sj ∀ k : 0 < i < k < j

. (5)

From equations (4) and (5), it follows that for an output vertex gene xj ,
parent(xj) = ∅. The output of a gene xj acts implicitly as an input for
parent(xj). The depth of a vertex gene is defined as the minimal topological
distance (i.e. minimal number of connections to be traversed) from an output
vertex of the network to the vertex itself, where the path contains only implicit
connections. This is defined mathematically by the function depth : V −→ N

depth(xj) =

{
0 if parent(xj) = ∅
depth(parent(xj)) + 1, otherwise

. (6)

Table 1 shows an example of a genotype encoding the neural network shown in
Figure 1 along with the resulting values of the above-defined functions.

We consider two genotypes g1 and g2 to be equivalent if and only if there
is a one-to-one correspondence between them, i. e. ∀xi ∈ g1 ∃xj ∈ g2 : xi =
xj ∧ parent(xi) = parent(xj), and ∀xj ∈ g2 ∃xi ∈ g1 : xi = xj ∧ parent(xi) =
parent(xj). The equivalence criterion between two genotypes can be used to
lessen the competing convention problem [15] that is encountered during the
evolution of neural networks. A newly generated genotype is tested against all
existing genotypes before it is added to the population. If there is an already
existing equivalent genotype, the newly generated genotype will not be added to
the population.

A General Framework for Encoding and Evolving Neural Networks 209

Fig. 1. An example of a valid phenotype with two output vertices (0 and 4), and three
input vertices (x, y and z)

The following five criteria must be fullfilled for a genotype g = [x1, ..., xN] to
be considered a valid genotype, i. e. g ∈ G:

1. Each vertex gene xi ∈ V must have at least one input: din(xi) > 0.
2. There can be no closed loops of forward jumper connection genes in g.
3. There is no forward jumper gene whose source vertex depth is less than the

depth of its target vertex.
4. For a gene xk ∈ g, sk < sN+1, ∀ k ∈ {1, ..., N}.
5. For every xk ∈ g: parent(xk) = ∅ ⇒ xk ∈ V .

A vertex gene xi with din(xi) = 0 has no input and would always yield the
same result. Because of this, such a vertex is not allowed (criterion 1). The
second and third criteria together guarantee that the evaluation of a phenotype
in the direct encoding case or the development process of a phenotype in the
indirect encoding case can be completed in a finite amount of time (i. e. there are
no infinite loops). The last two criteria together ensure that the sum of outputs
produced by all genes in g minus the sum of all expected inputs is equal to
the number of outputs of the corresponding phenotype network. We denote the
set of phenotypes represented by CGE genotypes with PCGE. The development
function D : G −→ PCGE formalizes a process that creates for every valid
genotype g = [x1, ..., xN] ∈ G a corresponding phenotype p ∈ PCGE .

We have designed three kinds of genetic operators for the use in CGE: para-
metric mutation, structural mutation and structural crossover. The genetic op-
erators to be used in CGE are designed so that the resulting genotypes they
produce fulfill the 5 criteria stated above. A parametric mutation PA : G −→ G
changes only the values of the parameters included in the genes (e.g. the weights
wi). The order of the genes in g and PA(g) remains the same. An example of
a structural mutation operator ST : G −→ G that fulfills the above criteria is
defined as follows: when ST operates on a genotype, it either inserts a recurrent
jumper gene, or a subgenome after a vertex gene xi, and the number of inputs
din(xi) will be increased by one. The source vertex of a recurrent jumper can
be chosen arbitrarily. The subgenome consists of a vertex gene xk followed by

210 Y. Kassahun et al.

Table 1. The phenotype in Figure 1 is encoded by the genotype shown in this table.
For each gene xi of the genotype, the gene’s defined properties and the values of various
functions which operate on the gene are summarized. In the allele row, V denotes a
vertex gene, I an input gene, JF a forward jumper gene, and JR a recurrent jumper
gene. The source row shows the id of the source vertex of a jumper gene and the parent
row shows the id of the parent gene.

gene x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

allele V V V I I I V JF I I JR V JF V I I

id 0 1 3 - - - 2 - - - - 4 - 5 - -

source - - - - - - - 3 - - 0 - 2 - - -

label - - - x y y - - x y - - - - y z

weight 0.6 0.8 0.9 0.1 0.4 0.5 0.2 0.3 0.7 0.8 0.2 0.9 0.2 1.3 2.0 -1.0

din 2 2 2 - - - 4 - - - - 2 - 2 - -

v -1 -1 -1 1 1 1 -3 1 1 1 1 -1 1 -1 1 1

s 0 -1 -2 -3 -2 -1 0 -3 -2 -1 0 1 0 1 0 1

parent ∅ 0 1 3 3 1 0 2 2 2 2 ∅ 4 4 5 5

depth 0 1 2 - - - 1 - - - - 0 - 1 - -

an arbitrary number M > 0 of inputs or forward jumper genes. The number of
inputs din to xk is set to M and its depth is set to depth(xi) + 1. The depth
of the source vertex of a forward jumper gene connected to xk is not allowed to
have a depth less than the depth of xk. A good example of a crossover opera-
tor CR : G × G −→ G that can be used with CGE is the operator introduced
by Stanley [17]. This operator aligns two genomes encoding different network
topologies, and creates a new structure that combines the overlapping parts of
the two parents as well as their differing parts. The id’s that are stored in vertex
and jumper genes, and the labels that are stored in input genes, are used to align
genomes.

4 Properties of the Encoding

In this section, we list some of the properties of the genetic encoding that makes
it suitable for evolving neural networks. Formal proofs of these properties are
given in [9]. The first property given by Proposition 1 reinforces the fourth and
the fifth criterion listed in Section 3.

Proposition 1. For a valid genotype g ∈ G, the number of expected inputs by all
vertex genes

∑
xi∈g∧xi∈V

din(xi) is equal to |(Vno ∪I ∪JF ∪JR)|, i. e. the number

of non-output vertex genes.

The second property given by Proposition 2 relates the sum sN+1 =
∑N
i=1 v(xi)

to the number of output vertex genes in a valid genotype.

Proposition 2. For g = [x1, ..., xN] ∈ G with N genes, sN+1 is equal to the
number of output vertex genes |Vo| in g.

A General Framework for Encoding and Evolving Neural Networks 211

This property can be used as a checksum while performing an implicit evaluation
of a direct encoded phenotype, or during the development process of an indirect
encoded phenotype.

The following three important properties of the genetic encoding make it
suitable for evolving neural networks.

Proposition 3. (Completeness of G with respect to D) Every valid phe-
notype p ∈ PCGE can be represented by a genotype, i. e. D is surjective:
∀ p ∈ PCGE ∃ g ∈ G : D(g) = p.

This proposition conveys that for every valid phenotype, there is a valid genotype
that represents this phenotype (with respect to the development function D).

Proposition 4. (Closure of D) The development function maps every valid
genotype to a valid phenotype: ∀ g ∈ G : D(g) ∈ PCGE.

The closure of D guarantees the generation of genotypes whose evaluation strat-
egy (in the case of direct encoding) or development process (in the case of indirect
encoding) terminates in a finite amount of time.

Proposition 5. (Closure of G under genetic operators) The set of geno-
types G is closed under the mutation operators PA and ST : PA(g) ∈ G and
ST (g) ∈ G ∀ g ∈ G. Furthermore, it is closed under the crossover operator CR:
CR(g1, g2) ∈ G ∀ g1,g2 ∈ G.

Proposition 5 emphasizes that the genetic operators are designed so that their
output genotypes satisfy the validity criteria listed in Section 3.

5 CGE for Direct Encoding Case

In the direct encoding case, the phenotypes which can be represented by the
valid genotypes are defined as follows: each valid phenotype p ∈ PCGE is a
directed graph structure p = (V, E) consisting of a set of vertices V and a set
of directed edges E. The set of edges E is partitioned into two subsets: the set
of forward connections EF , and the set of recurrent connections ER. For each
p = (V, EF ∪ ER) ∈ PCGE, the subgraph pF = (V, EF) is always a directed
acyclic graph (DAG). The set ER can be an arbitrary subset of V × V .

The development function D : G −→ PCGE creates for every valid genotype
g = [x1, ..., xN] ∈ G a corresponding phenotype p ∈ PCGE. In the direct encoding
case, for each xi ∈ V , p contains exactly one vertex x̂i, which has the same
identity number as xi, and for each recurrent jumper gene xi, there is an edge
e ∈ ER from a vertex whose id is equal to that of xi’s source vertex id to the
vertex in p whose id is equal to that of parent(xi). In the same way, for each
xi ∈ JF there is a corresponding forward connection in EF . For each xi ∈ I,
EF contains a forward connection from the vertex having xi’s label as id2 to the
2 There may be several labels possessing the same value for different input vertices,

but for each unique label, there exists only one vertex in p whose id corresponds to
that label.

212 Y. Kassahun et al.

vertex with the same id as parent(xi). Additionally, there are connections in EF
that are not explicitly represented in g. Each non-output vertex gene xi ∈ Vno
has an implicit forward connection with its parent vertex parent(xi).

The evaluation function evaluates the developed phenotype p ∈ PCGE. D(g)
can be interpreted as an artificial neural network in the following way: all input
vertices of D(g) are considered as inputs of the network and all other vertices as
neuron nodes. The vertices corresponding to an output vertex gene in g are the
output neurons of the network. Each forward and recurrent connection causes the
output of its source neuron to be treated as an input of its target neuron. Each
artificial neuron stores its last output oi(t−1). Let x̂i be a neuron with incoming
forward connections from the inputs x̂1, ..., x̂k and the neurons x̂k+1, ..., x̂l, and
the incoming recurrent connections from neurons x̂l+1, ..., x̂m. For an arbitrarily
chosen transfer function ϕ, the current output oi(t) of the neuron x̂i is computed
using

oi(t) = ϕ(
k∑
j=1

wjIj(t) +
l∑

j=k+1

wjoj(t) +
m∑

j=l+1

wjoj(t− 1)), (7)

where the values of Ij(t) represent the inputs of the neural network. If the
network has p inputs and q output neurons, we can define E as a function which
takes the phenotype D(g) and p real input values, and produces q real output
values, i.e. E : PCGE ×R

p −→ R
q. A nice feature of CGE in the direct encoding

case is that it allows an implicit evaluation of the encoded phenotype without the
need to decode this phenotype from the genotype via D [8]. For this purpose, we
consider the ordering of the genes in the CGE encoding to be inverted (i. e. from
right to left) and evaluate it according to the Reverse Polish Notation (RPN)
scheme, where the operands (input genes and jumper genes) come before the
operators (vertex genes).

5.1 Exploitation and Exploration of Structures

The evolution of neural networks starts with the generation of the initial
genomes. The complexity of the initial genomes is determined by the domain
expert and is specified by the maximum depth that can be assumed by the
genomes. It then exploits the structures that are already in the system. By
exploitation, we mean optimization of the weights of the structures. This is ac-
complished by an evolutionary process that occurs at smaller time-scale. The
evolutionary process at smaller time-scale uses parametric mutation as a search
operator. An example of the exploitation process is shown in Figure 2. Explo-
ration of structures is done through structural mutation and crossover operator.
The structural selection operator that occurs at larger time-scale selects the first
half of the structures (species) to form the next generation. Since sub-networks
that are introduced are not removed, there is a gradual increase in the num-
ber of structures and their complexity along the evolution path. This allows the
meta-level evolutionary process to search for a solution starting from a neural
network with minimum structural complexity specified by the domain expert.
The search stops when a neural network with the necessary optimal structure

A General Framework for Encoding and Evolving Neural Networks 213

t

w(N0)

w(Ix)

w(Iy)

t+1

Trajectory in
weight space

Fig. 2. The weight trajectory of a genome while it is being exploited. The quantities
t and t + 1 are time units with respect to the larger time-scale. The weights of the
existing structures are optimized between two consecutive time units with respect to
the larger time-scale. The point clouds at t and t + 1 show populations of individuals
from the same structure.

that solves a given task is obtained. The details of the exploitation and explo-
ration of structures can be found in [8].

5.2 Learning the Dynamic Model of a Robot Manipulator

The purpose of this experiment is to demonstrate the flexibility of a CGE en-
coding in solving a learning task. We will illustrate how the modular property
of the encoding can be exploited in solving a given task in a divide and conquer
strategy manner. Given an initial state of a mechanical structure (i.e. displace-
ments q(0) and velocities q̇(0) of the joints) and the time history of torques τ(t)
acting at joints, the direct dynamic model allows one to predict the resulting
motion q(t) in joint space. With this information and the direct kinematic model,
a prediction of the trajectory x(t) in Cartesian coordinates can be performed.
For our experiment, the two-link planar arm shown in Figure 3 was used. The
dynamic equation of the two-link arm [11] is used to simulate the robot. The
learning system can observe the initial state s(0) = [q(0), q̇(0)] and q(t) for t
between 0 and 1 sec. For a given initial state s(0), the learning system sends the
robot arm the torque pair (τ1, τ2) for the time between 0 and 1 sec, and records
the resulting motion parameters q1(t) and q2(t). For a given torque pair (τ1, τ2),
the resulting motion parameters are approximated by polynomials of degree 4
given by q1(t) =

∑4
k=0 akt

k and q2(t) =
∑4

k=0 bkt
k. The polynomial approxima-

tion allows the velocities to be directly calculated, where the velocities are given
by q̇1(t) =

∑4
k=1 k ∗ akt

k−1 and q̇2(t) =
∑4

k=1 k ∗ bkt
k−1. The genotype that

represents the solution g = [g1, g2] is made up of two subgenomes g1 and g2 each
representing the motion parameters. To get an idea of how the genotype look
like, we will explain the the subgenome g1 in detail corresponding to the first

214 Y. Kassahun et al.

Fig. 3. A two-link planar arm robot used for our experiment

motion parameter q1(t). The polynomial approximation of q1(t) can be written
as

q1(t) =
4∑

k=0

akt
k = a0 + t(a1 + t(a2 + t(a3 + a4t))), (8)

where each of the coefficients ai is represented by a neural network
Mi(τ1, τ2, q(0), q̇(0)) whose output can be computed by equation (7). If we intro-
duce two additional vertex genes V ∗ and V +, which take the product and the
sum of their arguments respectively, we can represent the polynomial approx-
imation in CGE genotype easily. Table 2 shows the first subgenome g1, where
Mi is a subgenome dedicated to coefficient ai. Note that a subgenome Mi is
assigned v(xi) = 1 since the sum sl,m for a subgenome is always one. A depth is
also assigned to the subgenome Mi since by definition subgenomes start with a
vertex gene.

Table 2. A genotype representing the first subgenome g1

gene x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

allele V + M0 V ∗ I V + M1 V ∗ I V + M2 V ∗ I V + M3 V ∗ I M4

id 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - -

source - - - - - - - - - - - - - - - - -

label - - - t - - - t - - - t - - - t -

weight - - - - - - - - - - - - - - - - -

din 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - -

v -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1

s 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0

parent ∅ 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

depth 0 1 1 - 2 3 3 - 4 5 5 - 6 7 7 - 8

The learning process evolves each subgenome Mi independently using the
meta-level evolutionary process discussed in Section 5.1. For the exploitation of
structures the CMAES [6] algorithm developed by Hansen and Ostermeier is
used. The parameters of the evolutionary process are set as follows: (1) Torque

A General Framework for Encoding and Evolving Neural Networks 215

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (s)

A
ng

le
 1

 (
ra

d)

Actual value
Predicted Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (s)

A
ng

le
 1

 (
ra

d)

Actual value
Predicted Value

(a) (b)

Fig. 4. Actual and predicted values for q1(t). (a) q1(t) for τ1 = 0.05, τ2 = 0.05, q1(0) =
0, and q̇1(0) = 0. (b) q1(t) for τ1 = 0.05, τ2 = 0, q1(0) = 0, and q̇1(0) = 0.

values are kept between -0.05 and 0.05 Nm. (2) Robot parameters are set to
m1 = 0.05 Kg, m2 = 0.05 Kg, l1 = 0.25 m and l2 = 0.25m. (3) Crossover
operator is turned off. (4) Structural mutation is turned on with probability 0.3
(5) Minimal initial structure for each subgenome Mi is set to have one output
vertex gene connected to inputs τ1, τ2, q(0) and q̇(0). After learning the dynamic
model of the robot, we tested it on unseen data. The performance of the learned
model in predicting the motion parameters q1(t) and q2(t) is satisfactory. Figure
4 shows sample comparisons between actual and predicted values for q1(t).

6 CGE for Artificial Embryogeny

The term embryogeny refers to the growth process which defines how a genotype
maps onto a phenotype. Bentley and Kumar [2] identified three different types of
embryogenies that have been used in evolutionary systems: external, explicit and
implicit. External means that the developmental process (i. e. the embryogeny)
itself is not subjected to evolution but is hand-designed and defined globally and
externally to the genotypes. In explicit (evolved) embryogeny the developmental
process itself is explicitly specified in the genotypes, and thus it is affected by
the evolutionary process. Usually, the embryogeny is represented in the genotype
as a tree-like structure following the paradigm of genetic programming. The
third kind of embryogeny is implicit embryogeny, which comprises neither an
external nor an explicit internal specification of the growth process. Instead, the
embryogeny ”emerges” implicitly from the interaction and activation patterns
of the different genes. This kind of embryogeny has the strongest resemblance to
the process of natural evolution. A popular example of an implicit embryogeny
is the Genetic Regulatory Network (GRN) [3,4]. In this section, we illustrate
how CGE can be used to encode an explicit embryogeny.

In explicit embryogeny schemes, a genotype contains a program that describes
the developmental process. Most of these programs are represented as tree-like

216 Y. Kassahun et al.

structures, where each node of the tree contains an elementary instruction (like
adding/removing an entity to the phenotype, conditional statements, iteration, a
subroutine call, etc.) and (optionally) parameters for these instructions. During
the development process, a tree is traversed (usually either in a breadth-first
or depth-first manner) and the instruction contained in the current tree node is
executed. Thus, while performing the tree traversal, the phenotype is grown step-
by-step. Alternatively, the instructions can be contained in the edges of the tree
and be carried out when the corresponding edge is traversed. This alternative is
equivalent to the case in which instructions are contained in the nodes. For the
following example, therefore, we consider only the case in which the instructions
are contained in the nodes.

For an encoding to be used for an explicit embryogeny scheme, it should pos-
sess the following features: (1) The encoding should be able to encode a tree
structure. (2) A gene which encodes a node should contain an instruction as well
as a set of parameters for this instruction. (3) The genetic operators must pro-
duce only offspring-genotypes which encode tree structures. Since the structures
which can be encoded by a CGE-genotype are a superset of the set of all tree
structures, one can fulfill the three conditions stated above by slight simplifica-
tions (modifications) of a CGE genotype. The first simplification is to do away
with the need for input and jumper genes. In the original definition of CGE, each
gene contains a weight. If CGE shall be used for explicit embryogeny, one must
replace that weight by an arbitrary number of other parameters, which need not
to be restricted to the domain of real numbers. The structural mutation opera-
tor must be changed in the following manner: instead of introducing recurrent
jumper genes, forward jumper genes or input genes, it simply adds a new vertex
gene in the genotype and increases the number of inputs of the vertex gene pre-
ceding the newly added gene. The parametric mutation operator itself remains
largely unchanged - only the fields on which it operates are different: instead of
modifying weights, it modifies now all parameters included in a gene, choosing
the values from the domain which is associated with this kind of parameter. The
crossover remains unchanged since it produces offspring which remains in the
domain of tree structures.

Kassahun et al. [9] have shown a way of encapsulating the edge encoding of
Luke and Spector [13] into a CGE genotype. Thus, the basic ability of CGE
to perform explicit (evolved) embryogeny has already been presented. However,
since the edge encoding is an encoding scheme for neural networks, the phenotype
remains in the domain of neural networks. In the following, we present a simple
way of evolving phenotypes from other domains. For illustration purpose we use
binary images I = {0, 1}128×128 as phenotypes. Each vertex gene of a genotype
to be used contains one of the instructions {LEFT, RIGHT, UP, DOWN} and
a binary parameter f ∈ {0, 1}. The growth process is as follows: Initially, all
pixels of I are equal to 0 (i. e. white) and a virtual cursor points to the pixel
with coordinates x = 0, y = 0. Then, a depth first traversal is performed and the
instructions are executed as follows: If the instruction is LEFT , set x = x − 1
MOD 128 and I[x][y] = f . If the instruction is RIGHT , set x = x+1 MOD 128

A General Framework for Encoding and Evolving Neural Networks 217

Fig. 5. The figure shows a genotype and the corresponding phenotype showing the
letters ”KI”. The genotype is shown as a tree-like structure, which can be easily rep-
resented as a string of genes if the tree is traversed in a depth-first manner. The value
of f is shown in parentheses. The phenotype is a binary image, where the pixel with a
coordinate x = 0, y = 0 is in the upper left corner of the image.

and I[x][y] = f . If the instruction is UP , set y = y−1 MOD 128 and I[x][y] = f .
If the instruction is DOWN , set x = y + 1 MOD 128 and I[x][y] = f . When
traversing the instruction in the other direction (on the way back), the original
cursor is restored: For example when traversing a LEFT instruction on the
way back, we set x = x + 1 MOD 128. Figure 5 shows a genotype and the
corresponding phenotype KI.

7 Comparison of CGE to Other Genetic Encodings

In this section, a comparison among some genetic encodings developed so far and
CGE with respect to the completeness, closure, modularity properties and some
additional features is given. Table 3 shows comparison among some representa-
tive genetic encodings developed so far. For the direct encoding case, the ”eval-

Table 3. Comparison among some representative genetic encodings and CGE. G,
N, CE, and E stand for GNARL, NEAT, Cellular Encoding, and Edge Encoding,
respectively.

Property G N CE E CGE

Completeness
√ √ √ √ √

Closure × √ √ √ √

Modularity × × √ √ √

Support both direct and indirect encoding × × × × √

Evaluation without decoding (direct encoding case) × × × × √

218 Y. Kassahun et al.

uation without decoding” feature of CGE eliminates a step in the phenotype-
development process that would otherwise require a significant amount of time,
especially for large and complex phenotype networks.

8 Conclusion and Outlook

A flexible genetic encoding that is both complete and closed, and which is suit-
able for both direct and indirect genetic encoding of networks has been presented.
Since the encoding’s genotypes can be seen as having several subgenomes, it in-
herently supports the evolution of modular networks in both direct and indirect
encoding cases. Additionally, in the direct encoding case, the genotype has the
added benefit of being able to evaluate a phenotype without the need to first
decode it from the genotype.

In the future, we will investigate the design of indirect encoding operators
which can achieve compact representations and significantly reduce the search
space. We also believe that there is much work to be done in designing genetic
operators. In particular, there is a need for genetic operators whose offspring
remain in the locus of similarity to their parents in both structural and para-
metric spaces. More efficient evolution of complex structures would be facilitated
by such operators.

References

1. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Transactions on Neural Networks 5, 54–65
(1994)

2. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies
for an evolutionary design problem. In: Banzhaf, W., Daida, J., Eiben, A.E., Gar-
zon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference, Orlando, Florida, USA, 13-17 July,
1999, vol. 1, pp. 35–43. Morgan Kaufmann, San Francisco (1999)

3. Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and
phenotypic complexity in artificial ontogeny. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2001, pp. 829–836 (2001)

4. Dellaert, F., Beer, R.D.: A developmental model for the evolution of complete
autonomous agents. In: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, pp. 393–401 (1996)

5. Gruau, F.: Neural Network Synthesis Using Cellular Encoding and the Ge-
netic Algorithm. PhD thesis, Ecole Normale Superieure de Lyon, Laboratoire de
l’Informatique du Parallelisme, France (January 1994)

6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

7. Jakobi, N.: Harnessing morphogenesis. In: Proceedings of Information Processing
in Cells and Tissues, pp. 29–41 (1995)

8. Kassahun, Y.: Towards a Unified Approach to Learning and Adaptation. PhD
thesis, Technical Report 0602, Institute of Computer Science and Applied Mathe-
matics, Christian-Albrechts University, Kiel, Germany (February 2006)

A General Framework for Encoding and Evolving Neural Networks 219

9. Kassahun, Y., Edgington, M., Metzen, J.H., Sommer, G., Kirchner, F.: A com-
mon genetic encoding for both direct and indirect encodings of networks. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO-2007
(accepted, July 2007)

10. Kitano, H.: Designing neural networks using genetic algoithms with graph gener-
ation system. Complex Systems 4, 461–476 (1990)

11. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory
and Practice. Marcel Dekker, Inc., New York, Basel (2004)

12. Lindenmayer, A.: Mathematical models for cellular interactions in development,
parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)

13. Luke, S., Spector, L.: Evolving graphs and networks with edge encoding: Prelimi-
nary report. In: Late-breaking papers of Genetic Programming 1996, Stanford, CA
(1996)

14. Nolfi, S., Parisi, D.: Growing neural networks. Technical Report PCIA-91-15, In-
stitute of Psychology, Rome (1991)

15. Schaffer, J., Whitley, L.D., Eshelmann, L.J.: Combination of genetic algorithms and
neural networks: A survey of the state of the art. In: Proceedings of COGANN92
International Workshop on the Combination of Genetic Algorithm and Neural
Networks, pp. 1–37. IEEE Computer Society Press, Los Alamitos (1992)

16. Sendhoff, B., Kreutz, M.: Variable encoding of modular neural networks for time
series prediction. In: Congress on Evolutionary Computation (CEC’99), pp. 259–
266 (1999)

17. Stanley, K.O.: Efficient Evolution of Neural Networks through Complexification.
PhD thesis, Artificial Intelligence Laboratory. The University of Texas at Austin,
Austin, USA (August 2004)

18. Vaario, J., Onitsuka, A., Shimohara, K.: Formation of neural structures. In: Pro-
ceedings of the Fourth European Conference on Articial Life, ECAL97, pp. 214–223
(1997)

19. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–
1447 (1999)

Making a Robot Learn to Play Soccer Using

Reward and Punishment

Heiko Müller2, Martin Lauer1, Roland Hafner1, Sascha Lange1, Artur Merke2,
and Martin Riedmiller1

1 Neuroinformatics Group, Institute of Computer Science and Institute of Cognitive
Science, University of Osnabrück, 49069 Osnabrück, Germany

2 Lehrstuhl Informatik 1, University of Dortmund, 44221 Dortmund, Germany

{Martin.Lauer,Roland.Hafner,Sascha.Lange,Martin.Riedmiller}@uos.de,
{heiko.mueller,artur.merke}@udo.edu

Abstract. In this paper, we show how reinforcement learning can be
applied to real robots to achieve optimal robot behavior. As example,
we enable an autonomous soccer robot to learn intercepting a rolling
ball. Main focus is on how to adapt the Q-learning algorithm to the
needs of learning strategies for real robots and how to transfer strategies
learned in simulation onto real robots.

1 Introduction

Although various machine learning techniques have been used successfully in
robotics, the idea of reinforcement learning [16] has not been applied very often
on real robots so far. This is surprising since the basic idea of learning how
to control autonomous robots just by rewarding them for good behavior and
punishing them for bad behavior is very promising for solving complex tasks for
which no optimal solution yet exists.

In simulation environments, reinforcement learning techniques have already
been applied successfully (e.g. [6]), but the step from simulation to real world
application has posed many problems. While in simulation, all state variables of a
control task are perfectly known, on real robots these values have to be estimated
using noisy and unreliable sensory input. Hence, state estimation shows a much
larger error.

Secondly, state spaces are typically very large. While the theory of reinforce-
ment learning is based on the assumption of finite state spaces, in practice we
are often faced with infinite vector-valued state spaces with ten or more dimen-
sions. Hence, approximations [2] have to be used in order to learn efficiently
and to represent the control strategy. These techniques might even disturb the
convergence of the learning algorithms [12].

Furthermore, high dimensional state spaces require millions of training exam-
ples to be able to learn an optimal policy. These millions of examples typically
cannot be generated with a real robot since the robot would breakdown. Again,
simulators and model assumptions must be used to overcome this problem.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 220–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Making a Robot Learn to Play Soccer Using Reward and Punishment 221

Finally, real applications typically violate the Markov property which is the
basis for all learning algorithms. Due to latencies in sensory processing and ac-
tuator execution, we are faced with time gaps of more than 100ms, in many
applications even much more [3]. In contrast, control cycles of many software
frameworks are typically below 50ms, so that an action is not executed com-
pletely when the next action must be selected.

Asada et al. have learned successfully different tasks on real robots using re-
inforcement learning [1,17,19]. In particular, they evaluated the automatic con-
struction of higher-order state descriptions in order to solve the delay problem
[19]. But due to several simplifications in their problem formulations, the result-
ing strategies have not been competitive and often are far from optimal control.

Speaking more generally, all the problems mentioned above have prevented
reinforcement learning approaches so far from being competitive on real au-
tonomous robots. Within this paper, we present a reinforcement learning ap-
proach to an autonomous soccer playing robot. The learning task is to intercept
a rolling ball. This task has been discussed for a simulated robot before [6] and
has now been transferred to the special needs of real robots. The intercept policy
finally learned was integrated into the soccer robot strategy of the RoboCup [9]
middle size league team Brainstormers Tribots, which became world champion
in 2006.

In section 2, we first introduce the basic concepts of reinforcement learning
which are relevant for this work and then show how reinforcement learning can
be used to learn strategies for real robots in section 3. There, we discuss how
to overcome the problems that have prevented the application of reinforcement
learning on real robots until now. Section 4 shows the experimental results of
learning the intercept scenario in simulation and on the real robots. The paper
closes with a summary of the main results in section 5.

2 Reinforcement Learning

2.1 Markov Decision Process

Reinforcement learning is based on the idea of an autonomous agent interacting
with an unknown environment. The agent observes the environment and de-
cides to chose one out of several possible actions for interacting with the world.
Depending on the agent’s choice, the environment will change its state. Further-
more, the agent gets a reward for each state-transition. This reward can also be
negative, i.e. the agent is punished instead of rewarded. The agent’s goal is to
achieve as much accumulated reward as possible over time.

This basic idea of reinforcement learning is modeled as a Markov decision
process (MDP) [16]. It consists of a finite set of states S of the environment, a
finite set of actions A that the agent can choose, a probabilistic state-transition
kernel P = (pa

s,s′) where pa
s,s′ describes the probability of a transition from state

s to s′ if the agent chooses action a, and a reward function r : S × A → R

that defines the reward provided to the agent, depending on the current state
and action. An important property of MDPs is that the transition probabilities

222 H. Müller et al.

are independent of past states and actions. This property simplifies theoretical
analysis of reinforcement learning.

The behavior of an agent is described in terms of a policy π : S → A. π(s) is
the action chosen by the agent in state s. Applying policy π in state s, the agent
will get an immediate reward of r(s, π(s)) and the environment will randomly
change to another state s′ with probability p

π(s)
s,s′ . If we continue applying policy

π, we will observe a sequence of states and rewards. The goal of reinforcement
learning is to find a policy that maximizes the expected sum of rewards over
time:

maximize
π

E
[∞∑

t=0

γtrt|s0 = s, π
]

(1)

where rt denotes the reward that is achieved in the t-th step and γ ∈ [0, 1) is a
discount factor that is introduced to guarantee convergence of the infinite sum
in (1). It is typically chosen close to 11.

Using the Markov property of the MDP, we can unroll the sum in (1) and get
a fixed point equation which is known as Bellman equation:

E
[∞∑

t=0

γtrt|s0 = s, π
]

= r(s, π(s)) + γ
∑
s′∈S

(
p

π(s)
s,s′ E

[∞∑
t=0

γtrt|s0 = s′, π
])

(2)

It has been shown [?] that for each MDP there exist policies π∗ that maximize
E
[∑∞

t=0 γtrt|s0 = s
]

for all states s0 ∈ S at the same time. These policies are
called optimal policies. Hence, the goal of reinforcement learning is to find an
optimal policy.

2.2 Value Iteration

One way to calculate an optimal policy is first to determine the optimal expected
reward and derive an optimal policy afterwards. The optimal expected reward is
described in the form of a value function V ∗ : S → R. V ∗(s) = E

[∑∞
t=0 γtrt|s0 =

s, π∗] denotes the accumulated expected reward if we apply an optimal policy
π∗ starting in state s.

Rewriting the Bellman equation (2) and taking into account that the optimal
policy always chooses the action having the maximal expected reward, we get a
fixed point equation for V ∗:

V ∗(s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

(
pa

s,s′V ∗(s′)
))

(3)

The right hand side of (3) can be interpreted as an operator that maps value
functions onto value functions. It turns out that this operator is a contraction
mapping in the space of value functions [4]. Thus, applying Banach’s fixed point
theorem, we can approximate the optimal value function V ∗ starting with an

1 Variants of this optimization goal exist, see [4].

Making a Robot Learn to Play Soccer Using Reward and Punishment 223

arbitrary initial value function V0 and perpetually applying the operator defined
by the right hand side of (3).

Furthermore, having once calculated V ∗, we can derive an optimal policy π∗

from V ∗ using a greedy evaluation scheme for the value function:

π∗ : s *→ argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

(
pa

s,s′V ∗(s′)
))

(4)

The idea of using an iterative process to calculate the optimal value function
and afterwards greedily deriving an optimal policy is implemented by a reinforce-
ment learning algorithm called value iteration [4]. The value function is stored
in the form of a table. In order to perform the update steps of value iteration,
the transition probabilities pa

s,s,′ and the reward function r(s, a) must be known.

2.3 Q-Learning

The main disadvantage of the value iteration approach is the fact that the state
transition probabilities and the reward function must be known in advance.
In real world applications of reinforcement learning, e.g. in autonomous robot
control, these values are typically not known so that value iteration cannot be
applied. To overcome this problem, a learning algorithm named Q-learning has
been developed that is not based on this knowledge but that is able to implic-
itly estimate these values while interacting with the environment and observing
transitions.

The main idea is to introduce value functions Q∗ that depend on both the
current state and the action that potentially might be chosen by the agent.
Q∗(s, a) models the expected reward of an agent that starts in state s, chooses
action a first and acts optimally later on, i.e.:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

(
pa

s,s′V ∗(s′)
)

(5)

Using this definition, we can rewrite the Bellman equation (3) as:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

(
pa

s,s′ max
a′∈A

Q∗(s′, a′)
)

(6)

which yields a fixed point equation for Q∗ instead of V ∗. The optimal policy can
be derived directly from the Q∗-function using greedy evaluation:

π∗ : s *→ arg max
a∈A

Q∗(s, a) (7)

If we knew the transition probabilities and the reward function, we could apply
a dynamic programming-like algorithm similar to value iteration to approximate
Q∗. In contrast, the Q-learning algorithm [20] does not assume these values to be
known in advance. Instead, by observing state transitions of the environment, the
algorithm collects quadruples of predecessor state, action, reward and successor

224 H. Müller et al.

state and it approximates the Q∗ function using a stochastic approximation
scheme. The Q-function is updated incrementally every time a state transition
is observed.

After having observed a transition from state s to state s′ using action a and
obtaining reward r, the Q-function is updated using the following rule:

Q(s, a)← α(r + γ max
a′∈A

Q(s′, a′)) + (1 − α)Q(s, a) (8)

where α > 0 is a learning rate decreasing over time. Q-learning is guaranteed to
converge towards the optimal Q∗-function as long as all combinations of states
and actions are observed repeatedly and the decrease of the learning rate fulfills
certain conditions [4].

The advantage of Q-learning in comparison to value iteration is the fact that
the optimal policy can be learned only by interacting with the environment. No
knowledge of the true transition probabilities or the reward function is necessary.
Hence, it can also be applied to real-world tasks with unknown system dynamics.
Similar to value iteration, the Q-function is typically stored in a table-based
representation which can become very large if S and A are large.

3 Learning on a Real Robot

3.1 Robot Learning Task

The task discussed in this paper is the problem of an autonomous mobile soccer
robot intercepting rolling ball, see Fig. 1. Intercepting means that the robot is
moving to a certain point where it can interrupt the current ball movement and
can get control of the ball. In order to do this, the robot must touch the ball
with its front side and the difference in robot and ball velocities must be small,
i.e. less than 0.6m

s . In this study, we are only interested in situations like the
one depicted in Figure 1 in which the ball moves towards the robot. Situations,
in which the ball rolls away from the robot are of no interest.

intended
robot
movement

ball

ball movement

robot

Fig. 1. Intercepting a rolling ball. The robot must move to a point on the line that is
given by the ball movement and must turn to face the ball. To intercept the ball, the
difference in velocity between the robot and the ball must also be small.

Making a Robot Learn to Play Soccer Using Reward and Punishment 225

The robot is assumed to be able to recognize its environment with a camera so
that it can determine the ball’s position and the ball velocity. The interpretation
of the camera images and the estimation of the ball velocity are assumed to
be done by existing sensor processing [11] and are not subject of this work.
Furthermore, we assume that the robot is able to move in any direction without
turning in advance.

For our experiments, we used an already existing soccer robot of the RoboCup
middle size league team Brainstormers Tribots [7]. The robot is 80cm large, 40cm
wide (see Fig. 2) and has a holonomic drive with three degrees of freedom, so
that it can move in all directions and turn simultaneously. Its maximal velocity
is 2.5m

s . The robot is driven by three electric motors that are individually con-
trolled by PID-controllers. To recognize the ball, the robot is equipped with a
catadioptric camera that allows a 360◦ view of its surroundings. With the help
of this camera system, it can recognize objects up to a distance of 6m, e.g. a ball
rolling on the ground.

Fig. 2. A robot of the Brainstormers Tribots team that was used for our experiments

3.2 Modeling the Learning Task

In order to apply reinforcement learning algorithms to the intercept problem,
we must describe the task in terms of an MDP. The state space of the intercept
problem consists of the following variables:

– position of the robot (2-dimensional)
– orientation of the robot (1-dimensional)
– linear velocity of the robot (2-dimensional)
– angular velocity of the robot (1-dimensional)
– ball position (2-dimensional)
– linear velocity of the ball (2-dimensional)

226 H. Müller et al.

In summary, the state space is described by 10 variables. Since the pose of the
robot with respect to some global coordinate system is irrelevant for the intercept
task, we can omit the robot pose variables and represent the ball position relative
to the robot position. Hence, we are left with seven state variables. Since even
this number of variables is still too large for reinforcement learning algorithms,
we further simplified the problem using a standard orientation controller that
always turns the robot such that it faces the ball. Therefore, this orientation
controller becomes part of the environment. By aligning the coordinate system
with the direction of the ball movement, we can omit the state variables that
describe the direction of the ball movement and the angular velocity of the robot
so that we are left with a five-dimensional state space. However, the state space
remains infinite.

Due to the holonomic drive of the robot, the complete action space contains
accelerations between 0 and a maximal value in any direction. However, rein-
forcement learning approaches only allow finite and – typically – very small sets
of actions. Therefore, we use a discretization of the complete action space, i.e.
the robot is allowed to accelerate to one of eight directions organized in 45◦

angles, see Fig. 3. The amount of acceleration used is maximal with respect to
the acceleration capabilities of the robot. After selecting one of the eight actions,
the setpoints of the motor controllers are updated appropriately to achieve the
desired acceleration. As mentioned above, the orientation of the robot is con-
trolled by a standard controller so that we do not need to learn actions in order
to turn the robot.

Fig. 3. The eight directions of acceleration

To achieve an MDP we need to model the temporal processing of the robot
control task carefully, since we have to guarantee that the Markov property
is met. Due to delays in the motor controllers, inertia, and delays in camera
image processing, an action is not executed immediately but with a certain
delay, and its consequences can only be observed after a certain amount of time.
Measurements have shown that the execution of an action needs approximately
240ms, which is much longer than the control cycle of our software framework
which amounts to 40ms.

If we had decided on a new action every 40ms, the subsequent actions would
not have been executed completely and the Markov property would have been
violated. This problem has also been described in [3,5]. While there, a state

Making a Robot Learn to Play Soccer Using Reward and Punishment 227

prediction has been used based on physical motion models of the robot and the
ball [10,11] to close the time gap between selection and execution of an action,
here, we extended the time between two subsequent actions from 40ms to 240ms.
Hence, when a subsequent action is selected, the consequences of the prior action
have already become part of the state variable. By doing so, we again meet the
Markov property.

The reward function for the learning task was designed to achieve a robot
behavior that is optimal in an intuitive sense, i.e. the robot should get possession
of the ball as quickly as possible. Therefore, the reward function yields a reward
of −0.2 for every step to punish the robot for wasting time and a reward of +500
if the robot gets control of the ball, i.e. it touches the ball at its front side and
the difference between the velocity of the robot and that of the ball is no larger
than 0.6m

s . The discount factor is set to γ = 0.92 throughout all experiments.

3.3 Value Function Approximation

The state space of the intercept problem has been defined as a five-dimensional
space. Hence, there are infinitely many states, and a table-based representation
of value functions or policies is no longer possible. Moreover, observing transi-
tions from each possible state is also not possible. Thus, we need to generalize
over subsets of states to obtain policies for all states and use approximators to
represent the value functions [2].

Although it has been shown that the convergence properties of reinforcement
learning algorithms might be lost in some cases [12] and that only for very special
situations can convergence be guaranteed [18], this approach has been investi-
gated in many studies on reinforcement learning. In particular, linear function
approximators with nonlinear features have been applied and have shown good
performance.

Hence, we used two kinds of linear function approximators within this study,
grid maps and lattice maps. Grid maps implement a piecewise constant function

x2

x1

y

x2

x1

y

Fig. 4. Example of a grid map (left) and a lattice map (right) over a two-dimensional
feature space

228 H. Müller et al.

on the basis of some regular tessellation of the input space (see Fig. 4 left). The
resulting function is a step-function. The height of each step is determined by
the average value of all training examples located within the respective cell of
the input space. To achieve an appropriate degree of precision, the number of
cells must be very large and training examples must be located in each cell.
Using grid maps is equivalent to a discretization of the input space.

Lattice maps are based on a tessellation of the input space into simplices
using Kuhn triangulation [13]. The resulting function is defined individually for
each vertex of the simplices and is interpolated between the vertices. By doing
so, the resulting function is continuous and piecewise linear (see Fig. 4 right).
Compared to grid maps, the number of simplices used for lattice maps might
be much smaller than the number of cells in grid maps of the same precision.
Hence, the memory requirements are smaller, the generalization performance
is better and the number of training examples necessary is smaller. However, it
has been shown that lattice maps may become instable using temporal difference
updates and have a higher risk of not converging when compared to grid maps
[12]. Fotunately, it has been possible to derive constraints under which the lattice
maps remain stable and eventually converge [?]. To train the lattice maps, we
used the Kaczmarz update rule [?] which turns out to be more stable than a
gradient descent update.

3.4 Training the Robot

Since reinforcement learning is based on learning from experience, we needed to
collect data from experiments with our robots. Unfortunately, all reinforcement
learning algorithms need millions of examples to perform adequately. Collecting
these examples on real robots is not possible since the robots would break.
Therefore, we built a simulator tool that implements a simple physical model of
the soccer scenario. It allowed us to generate a huge amount of training samples.
However, since the simulation is only a crude image of the real soccer scenario,
it is necessary to evaluate the results on real robots, as well.

Several experiments have been done on learning how to intercept a rolling ball.
First, the policies were learned in simulation and afterwards evaluated in a simu-
lation and on the real robot. Experiments were made using Q-learning combined
with grid maps and lattice maps for approximation of the value function.

4 Experimental Results

4.1 Grid Map

In the first experiment, we analyze whether it is even possible to learn the inter-
cept problem with Q-learning. We have chosen the grid map in this experiment
to get rid of problems of non-convergence of function approximators. Unfortu-
nately, it turns out that with a five-dimensional feature space the size of the
grid map chosen must be very large in order to achieve an approximation with
sufficient precision. Therefore, we restricted the experiments to a very limited

Making a Robot Learn to Play Soccer Using Reward and Punishment 229

training steps (in millions)
10 15 20 25 305

50%

30%

20%

10%

60%

70%

40%

su
cc

es
sf

ul
 te

st
 c

as
es

training steps (in millions)
10 15 20 25 305

av
er

ag
e

tim
e

un
til

 s
uc

ce
ss

1.0s

0.9s

0.8s

Fig. 5. Left: success rate for Q-learning with grid map on test cases dependent on the
number of training steps. Right: average time needed to get control of the ball in the
successful test cases.

working area: the ball had to be located within a wedge of 1.5m radius and
60◦ angle in front of the robot. The robot velocity was restricted to 1m

s , the
ball velocity to 0.5m

s . However, the resulting grid partitioned the state space
into 225, 000 cells. Considering each of the eight possible actions, the Q-function
was represented by 1.8 million cells in total. For each cell, we had to train one
parameter of the function approximator.

The training was done in the simulator described in section 3.4. If the ball left
the working area, a trajectory was finished and a new starting point for the ball
within the working area was randomly chosen. The robot followed an ε-greedy
exploration strategy by selecting with a probability of 0.8 the action that seemed
to be optimal concerning the Q-function learned yet and with probability ε = 0.2
a random action (exploration rate). The learning rate α decreased over time from
0.4 to 0.01.

Periodically, the performance of the learned policy was evaluated on a test set
of 50, 000 starting points uniformly distributed in the working area. The robot
had a maximal time of 3 seconds to get control of the ball.

Figure 5 shows the percentage of successfully solved test cases dependent on
the number of training steps. After 15 million training steps, Q-learning reached
its best performance with a success rate of 55%. From other experiments, we
know that for at least 70% of all test cases it is possible to intercept the ball.
However, since the test cases are generated randomly, there are cases in which no
robot control strategy can be successful, i.e. a success rate of 100% is not possible.
The right hand plot in Fig. 5 shows the time needed to get control of the ball in
all successful test cases. By continuous optimization of the learned strategy the
robot is able to decrease the necessary time from 1.05s to 0.95s on average.

4.2 Lattice Map

Although the experiments with the grid map showed the general possibility
of learning the intercept problem using reinforcement learning techniques, the
results are not convincing. Neither the measured performance nor the limited

230 H. Müller et al.

su
cc

es
sf

ul
 te

st
 c

as
es

10%

20%

30%

40%

50%

60%

70%

training steps (in millions)
5 10 252015

training steps (in millions)
5 10 252015

av
er

ag
e

tim
e

un
til

 s
uc

ce
ss 2.6s

2.4s

2.2s

2.0s

Fig. 6. Left: success rate for Q-learning with lattice map on test cases dependent on
the number of training steps. Right: average time needed to get control of the ball in
the successful test cases.

working area of this approach is suitable for the application of the learned strat-
egy on a real robot. Therefore, we repeated the experiments with a lattice map
function approximator instead of a grid map. Due to the better approximation
performance of lattice maps, we could extend the working area to a wedge in
front of the robot with radius 5m and an angle of 90◦. The maximal robot
velocity was increased to 2.5m

s , the maximal ball velocity to 3.5m
s .2

The lattice map had 161, 568 grid points per action, with a total of 1.3 million
parameters for all actions, which is smaller than in the grid map case although
the working area is larger by a factor of 87.5. To avoid non-convergence of the
lattice map during training, we did not consider whole trajectories but only
single transitions from one state to another where only grid points were used as
starting state. Using a simulator, this could be achieved easily. 3

Figure 6 shows the results of the lattice map approach. The success rate is
smaller than in the grid map case and achieves at most 36% after 13 million
training steps. However, this can be explained by the fact that a larger working
area was used with ball velocities up to 3.5m

s that are very hard to intercept for
any strategy. To illustrate that the performance of the learned strategy is good,
we introduced a second criterion to measure whether a strategy is able to touch
the ball. Figure 7 shows the learning results using this ball contact criterion.
The policy learned achieves a 70% success rate. In contrast, a simple strategy
that always drives the robot into the direction of the ball with maximal velocity
only achieves a success rate of 63%.

4.3 Learning for the Real Robot

The experiments described in section 4.1 and 4.2 have been made in a simula-
tion environment without considering any delay in sensors and actuators which
2 Please note, although the ball initially may roll faster than the robot can move its

velocity constantly decreases, thus possibly allowing a soft interception.
3 When exploiting the learned strategy, e.g. on the real robot, no such constraint has

to be fulfilled.

Making a Robot Learn to Play Soccer Using Reward and Punishment 231

10%

20%

30%

40%

50%

60%

70%

training steps (in millions)
5 10 252015

su
cc

es
sf

ul
 b

al
l c

on
ta

ct

Fig. 7. Success rate in test cases with respect to the ball contact criterion. The solid
line shows the success rate for the robot behavior learned using Q-learning and a lattice
map, the dashed line shows the success rate of a simple robot that always drives the
robot into the direction of the ball with maximal velocity.

typically can be found on real robots (cf. section 3.2). To obtain results that are
closer to reality and that can be transferred to a real robot, we repeated the ex-
periments with the lattice map incorporating an artificial delay in the simulator.

Compared to the experiments without delay, the success rates of intercepting
decreased from 36% to 18%, the success rate of ball contacts decreased from 70%
to 66%, while the average time needed to intercept the ball remained almost the
same. The tremendous influence of delays also is illustrated by the fact that the
success rate in ball contacts of the simple reference strategy that always drives
the robot into the direction of the ball decreased from 63% to 31%. A lot of these
failures were caused by the robot bumping too hard into the ball, thus violating
the “soft interception” constraint and causing the ball to bounce away.

Using the simulator with delays enabled us to learn in simulation a strategy
that can be transferred to the real robot. In order to do this, we integrated
the learned strategy into the software framework of our real robots. Information
about the environment such as robot pose, robot velocity, ball position, and ball
velocity are estimated and provided within a central world model by the existing
software framework. The control of the motors is implemented there as well.

In contrast to simulation, the information available on the real robot is much
noisier and less reliable. Figure 8 shows position estimates of the robot and the
ball in simulation and on real robots for comparable situations. Certainly, the high
noise level disturbs the intercepting strategy and increases the task complexity.

To test the performance of the intercept strategy learned, we performed 30
experiments in our laboratory where the ball was rolling down a ramp to achieve
a certain velocity. Three different ball velocities (0m

s , 1m
s and 2m

s) and three
different geometric configurations of initial robot and ball position were used. In
10 out of 30 experiments the robot succeeded in intercepting the ball according to
the “soft interception” condition, constraining the difference of ball velocity and
robot velocity in the moment of the contact. In most of the other experiments
it moved towards the right direction but bounced the ball away.

232 H. Müller et al.

x [m]

1.4

1.2

1.0

0.8

0.4

0.6

0.2

−6 −5 −4 −3 −2 −1 0

y[
m

]

x [m]

1.4

1.2

1.0

0.8

0.4

0.6

0.2

−6 −5 −4 −3 −2 −1 0

y[
m

]

Fig. 8. Comparison of the estimated robot (crosses) and ball (circles) positions in
simulation (right) and on the real robot (left) for two comparable situations. The noise
level is much higher on real robots than in simulation.

To gain experience from the performance of the learned behavior in more
complex and more realistic situations, we integrated it into the competition code
of our RoboCup middle size league team the Brainstormers Tribots. The strategy
of the robots is realized in a behavior-based architecture fusing principles of
BDI-like architectures with ideas from the subsumption architecture. The whole
strategy of the robots is realized by a number of several smaller submodules,
named behaviors, and a multi-level hierachical arbitration mechanism. Within
a level of the hierarchy the arbitrator uses a priority ordering of the available
behaviors and logical constraints connected to each of the behaviors to decide
which behavior should become active in a particular situation.

The intercept behavior learned has been integrated into a larger submodule
realizing all approaches to the ball. Whereas the learned behavior is activated
only in situations where the ball roles with a certain velocity and angle towards
the robot, several other handcoded strategies solve the easier situations where
the ball moves away from the robot or lays still on the ground.

We used the embedded learned strategy throughout the world championships
2006 in Bremen. On average, during a game of 30 minutes duration, the intercept
behavior was used approximately 30 times per robot. The embedding handcoded
behaviors were able to quickly get control of the slowly moving ball in many of
the cases the inteception strategy failed and bounced the ball away. Although
statistics on the success rate of a single behavior in a complex real game is
misleading, the entire robot behavior and especially the ability to approach the
ball faster and more reliable than any other team was the most important factor
in winning the RoboCup World Championship 2006 in the middle size league.

5 Discussion

So far, reinforcement learning has been applied so far primarily in simulated
environments, while its application to real autonomous robots has been limited

Making a Robot Learn to Play Soccer Using Reward and Punishment 233

by a set of factors in which a simulated world differs from a real application,
e.g. sensor and actuator delays which are in conflict with the Markov property,
limited possibilities for training on the real robot due to hardware constraints,
large state spaces and noisy state estimation procedures.

By means of the ball intercepting problem, we have exemplified how these
problems can be tackled and how strategies for real robots can be learned suc-
cessfully. In order to do so, we have generated a modeling of the problem that
is consistent with the theoretical needs of reinforcement learning but also covers
the real world demands of autonomous robots. Using lattice maps as function
approximators to represent the Q-function and combining them with the Q-
learning algorithm and a simulator to generate training examples, successful
policies could be learned.

In experiments using the simulator, we showed the principle applicability of
reinforcement learning to the intercept problem and improved the modeling using
lattice maps and an extended working area of the learned intercept routine.
Finally, by transferring the intercept strategy learned to the real robot and
integrating it into a larger software framework, we were able to test the behavior
learned on a real robot and compare the results to the simulated test results.
Moreover, we integrated the learned intercept strategy into the tournament code
of our soccer robots and became world champion.

Acknowledgments

This work was supported by the German Research Foundation DFG SPP 1125.

References

1. Asada, M., Noda, S., Tawaratsumida, S., Hosoda, K.: Vision-based reinforce-
ment learning for purposive behavior acquisition. In: Proc. of IEEE Int. Conf.
on Robotics and Automation, pp. 146–153. IEEE Computer Society Press, Los
Alamitos (1995)

2. Baird, L.C.: Residual algorithms: Reinforcement learning with function approxi-
mation. In: Proceedings of the 12th International Conference on Machine Learning,
pp. 30–37 (1995)

3. Behnke, S., Egorova, A., Gloye, A., Rojas, R., Simon, M.: Predicting away robot
control latency. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.)
RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 712–719. Springer, Heidelberg (2004)

4. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific
(1996)

5. Gabel, T., Hafner, R., Lange, S., Lauer, M., Riedmiller, M.: Bridging the gap:
Learning in the robocup simulation and midsize league. In: Proc. 7th Portuguese
Conference on Automatic Control (Controlo 2006) (2006)

6. Gabel, T., Riedmiller, M.: Learning a partial behavior for a competitive robotic
soccer agent. Künstliche Intelligenz 20(2), 18–23 (2006)

7. Hafner, R., Lange, S., Lauer, M., Riedmiller, M.: Brainstormers Tribots team
description. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.)
RoboCup-2006. LNCS(LNAI), vol. 4434, Springer, Heidelberg (2006)

234 H. Müller et al.

8. Howard, R.A.: Dynamic programming and Markov processes. MIT Press, Cam-
bridge (1960)

9. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:
RoboCup: A challenge problem for AI. AI Magazine 18(1), 73–85 (1997)

10. Lauer, M.: Ego-motion estimation and collision detection for omnidirectional
robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup
2006: Robot Soccer World Cup X. LNCS(LNAI), vol. 4434, Springer, Heidelberg
(2006)

11. Lauer, M., Lange, S., Riedmiller, M.: Motion estimation of moving objects for
autonomous mobile robots. Künstliche Intelligenz 20(1), 11–17 (2006)

12. Merke, A., Schoknecht, R.: A necessary condition of convergence for reinforcement
learning with function approximation. In: Proceedings of the 19th International
Conference on Machine Learning, pp. 411–418 (2002)

13. Munos, R., Moore, A.: Variable resolution discretization for high-accuracy solu-
tions of optimal control problems. In: International Joint Conferenece on Artificial
Intelligence, pp. 1348–1355 (1999)

14. Pareigis, S.: Adaptive choice of grid and time in reinforcement learning. Advances
inNeural Information Processing Systems 10, 1036–1042 (1997)

15. Schoknecht, R., Merke, A.: Convergent combinations of reinforcement learning with
linear function approximation. Advances in Neural Information Processing Systems
15 (2003)

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

17. Suzuki, S., Kato, T., Asada, M., Hosoda, K.: Behavior learning for a mobile robot
with omnidirectional vision enhanced by an active zoom mechanism. In: Proc. of
Intelligent Autonomous System 5(IAS-5), pp. 242–249 (1998)

18. Tsitsiklis, J.N., Van Roy, B.: Analysis of temporal-diffference learning with function
approximation. In: Advances in Neural Information Processing Systems 1996, pp.
1075–1081 (1996)

19. Uchibe, E., Asada, M., Hosoda, K.: Behavior learning for a mobile robot with om-
nidirectional vision enhanced by an active zoom mechanism. In: Birk, A., Demiris,
J. (eds.) Learning Robots. LNCS (LNAI), vol. 1545, Springer, Heidelberg (1998)

20. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 235–250, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Perception and Developmental Learning of Affordances
in Autonomous Robots

Lucas Paletta1, Gerald Fritz1, Florian Kintzler2, Jörg Irran2, and Georg Dorffner2

1 Joanneum Research Forschungsgesellschaft mbH,
Institute of Digital Image Processing, Computational Perception Group,

Wastiangasse 6, Graz, Austria
2 Österreichisches Forschungsinstitut für Artificial Intelligence (OFAI),

Neural Computation and Robotics, Freyung 6, Vienna, Austria

Abstract. Recently, the aspect of visual perception has been explored in the
context of Gibson’s concept of affordances [1] in various ways. We focus in
this work on the importance of developmental learning and the perceptual
cueing for an agent’s anticipation of opportunities for interaction, in extension
to functional views on visual feature representations. The concept for the
incremental learning of abstract from basic affordances is presented in relation
to learning of complex affordance features. In addition, the work proposes that
the originally defined representational concept for the perception of affordances
- in terms of using either motion or 3D cues - should be generalized towards
using arbitrary visual feature representations. We demonstrate the learning of
causal relations between visual cues and associated anticipated interactions by
reinforcement learning of predictive perceptual states. We pursue a recently
presented framework for cueing and recognition of affordance-based visual
entities that obviously plays an important role in robot control architectures, in
analogy to human perception. We experimentally verify the concept within a
real world robot scenario by learning predictive visual cues using reinforcement
signals, proving that features were selected for their relevance in predicting
opportunities for interaction.

1 Introduction

The concept of affordances has been coined by J.J. Gibson in his seminal work on the
ecological approach to visual perception [1]. In the context of ecological perception,
visual perception would enable agents to experience in a direct way the opportunities
for action. However, Gibson remained unclear about both how this concept could be
used in a technical system and which representation to use. Neisser [2] replied to
Gibson’s concept of direct perception with the notion of a perception-action cycle that
shows the reciprocal relationship of the knowledge (i.e., a schema) about the
environment directing exploration of the environment (i.e., action), which samples the
information available for pick up in the environment, which then modifies the
knowledge, and so on. This cycle describes how knowledge, perception, action, and
the environment all effectively interact in order to achieve goals.

236 L. Paletta et al.

Our work on affordance-like perception is in the context of technical, i.e., robotic
systems, based on a notion of affordances that ‘fulfill the purpose of efficient
prediction of interaction opportunities’. We extend Gibson’s ecological approach
under acknowledgment of Neisser’s understanding that purposive visual feature
representation on various hierarchies of abstraction are mandatory to appropriately
respond to environmental stimuli. We take advantage of a refined concept of
affordance perception by representing (i) an interaction component (affordance
recognition: recognizing relevant events in interaction via perceptual entities) and (ii)
a predictive aspect (affordance cueing: predicting interaction via perceptual entities).
This conceptual step enables firstly to investigate the functional components of
perception that make up affordance-based prediction, and secondly to lay a basis to
identify the causal relation between predictive features and predicted event via
machine learning technology.

The particular contribution of this work is to propose a novel framework for the
developmental learning of affordances, and to frame the outline of basic affordances
in terms of reinforcement learning. In this context, the work is in line with the concept
to enable purposive - in particular, affordance based - perception which is
consequently structured into cueing, behavior, and outcome related components.
Learning is mandatory to enable agents to autonomously develop their characteristic
embodied perception through interaction with the environment. Reinforcements guide
the development through exploration without external supervision, and a theory for
estimating delayed reward is the appropriate framework to extract early cues.

The outline of this paper is as follows. Section 2 describes the relevance of
structured affordance-like representations in robot perception and argues for the
importance to learn the features of perceptual entities. Section 3 describes the
framework for developmental learning of affordances. Section 4 presents the concept
of reinforcement learning of basic affordances, and how predictive features are
extracted within Markov Decision Processes. Section 5 illustrates the experimental
results that strongly support the proposed hypothesis on the relevance of generalized
features that can be learned using reinforcement for successful affordance-like cueing
in robot control systems. Section 6 concludes with an outlook on future work.

2 Computational Models on Affordances

Affordance-like perception aims at supporting control schemata for perception-action
processing in the context of rapid and simplified access to agent-environment
interactions. In this Section we argue for the relevance of learning in cue selection,
and present a framework on the outline of components that enables to identify
relevant visual features.

2.1 Related Work

Previous research on affordance-like perception focused on heuristic definitions of
simple feature-function relations to facilitate sensor-motor associations in robotic
agents. The MIT humanoid robot Cog was involved in object poking and proding
experiments that investigate the emergence of affordance categories to choose actions

 Perception and Developmental Learning of Affordances in Autonomous Robots 237

with the aim to make objects roll in a specific way [7]. The research of Stoytchev [8]
analyzed affordances on an object level, investigating new concepts of object-hood in
a sense of how perceptions of objects are connected with visual events that arise from
action consequences related to the object itself. However, these experiments involve
computer vision still on a low level, and do not consider complex sensor-motor
representation of an agent interaction in less constrained, even natural environments.
In the biologically motivated cognitive framework of Cos-Aguilera et al. [15], object
based affordances are set in the context of motivation driven behavior selection. In
contrast to our work, they do not learn visual feature extraction in a purposive manner
(Section 2.2) but rather match sensory input with stored object features in a classical
sense and then associate object identities with appropriate interaction patterns.

Affordance based visual object representations are per se function based
representations. In contrast to classical object representations, functional object
representations (Stark and Bowyer [9], Rivlin et al. [10]) use a set of primitives
(relative orientation, stability, proximity, etc.) that define specific functional
properties, essentially containing face and vertex information. These primitives are
subsumed to define surfaces from the functional properties, such as 'is sit-able' or
'provides stable support'. However, so far function based representations were
basically defined by the engineer, while - in contrast - it is particularly important in
affordance based recognition to learn the structure and the features themselves from
experience (Section 4).

2.2 Affordance Based Perception and Learning of Affordances

Fig. 1 depicts the concept of feature based affordance perception as outlined in detail
in [17,22]. We first identify the component of affordance recognition, i.e., the
recognition of the affordance related visual event that causally anticipates a relevant
interaction, e.g., the capability of lifting (lift-ability) an object using an appropriate
robotic actuator. The recognition of this event should be performed in identifying a
process of evaluating spatio-temporal information that leads to an outcome entity.
This outcome entity should be unique in perceptual feature/state space, i.e., it should
be characterized by the observation of specific feature attributes that are abstracted
from the stream of sensory-motor information.

The second functional component of affordance cueing encompasses the key idea
on affordance based perception, i.e., anticipating the opportunity for interaction from
causally relevant features, i.e., the predictive features, that can be extracted from the
incoming sensory processing stream. In particular, this component is embedded in the
perception-action cycle of the robotic agent. The agent is receiving sensory
information in order to build upon arbitrary levels of feature abstractions, for the
purpose of recognition of perceptual entities. In contrast to classical feature and object
recognition, this kind of recognition is purposive in the sense of selecting exactly
those features that efficiently support the evaluation of identifying an affordance, i.e.,
the perceptual entities that possess the capability to predict an event of affordance
recognition in the feature time series that is immediately following the cueing stage of
affordance based perception. The outcome of affordance cueing is in general a
probability distribution PA on all possible affordances (Section 4.1), providing
evidence for a most confident affordance cue by delivering a hypothesis

238 L. Paletta et al.

Fig. 1. Concept of affordance perception, depicting the key components of affordance cueing
and recognition embedded within an agent’s perception-action cycle (most left). While
affordance cueing (left) provides a prediction on future opportunities of interaction on the basis
of related predictive features, affordance recognition (right) identifies the convergence of a
sensory-motor behavior towards the identified outcome of the overall interaction pattern.

that favors the future occurrence of a particular affordance recognition event. This cue
is functional in the sense of associating to the related feature representation a specific
utility with respect to the capabilities of the agent and the opportunities provided by
the environment, thus representing predictive features within the affordance based
perception system. An overall consistent formal theory on affordances, describing
agents with the capability to perceive functionalities for interaction, has been
proposed by Doherty et al [24].

In contrast to previous work on functional feature and object representations
[9,10], we stress the fact that functional representations must necessarily contain
purposive features, i.e., represent perceptual entities that refer to interaction patterns
and thus must be selected from an existing pool of generic feature representations.
Feature selection (and, in a more general sense, feature extraction) must be performed
in a machine learning process and therefore avoid heuristic engineering which is
always rooted in a human kind understanding of the underlying process, a
methodology which is necessarily both, firstly, error prone due to failing insight into
statistical dependencies and, secondly, highly impractical for autonomous mobile
systems. Recent work on the learning of affordance features has focused on
methodologies to estimate direct mappings between cues and actions from experience
[17,23]; in the presented work we motivate from a developmental point of view
(Section 3) and outline a mathematical framework to extract affordance cues from
arbitrary action sequences, i.e., from delayed rewards.

3 Developmental Learning of Affordances

An agent embedded in its habitat is able to perceive the environment with its sensors
and is able to move and manipulate this environment with its actuators. A structure
enabling the robot to act on its perceptions by using its actuators, is called control

 Perception and Developmental Learning of Affordances in Autonomous Robots 239

architecture. In case that the architecture causes actions, depending on the perceived
state of the environment, a closed loop control emerges. The design of this control is
essential for enabling the robot to use affordances, the proposed approach uses
principles from the reactive control approach as well as from the subsumption based
approach.

ABACUS. We present ABACUS (Affordance Based Adaptive Control Using Self-
Experience; Fig. 2 [22]), a multi layered conceptual framework, which enables the
robot to use the concepts of affordances by taking it through several learning stages.
In a first phase, Phase 0, the robot is starting with pure reactive behavior, proceeding
to Phase 1 which deals with learning affordances through basic interaction (basic
affordances), and Phase 2 on the learning of affordances through action sequences
(complex affordances), furthermore, to the Final Phase where the robot is able to use
the affordances it gained so far for planning of goal driven behavior.

The fundamental functioning of the developmental learning is as follows. In Phase
0, a control layer, implementing reactive behavior, is added to the structures named
sensor layer, filter layer, and actuator layer, and thus a basic reactive control is built.
The reactive control of Phase 0 is then refined in Phase 1, where an adaptive structure
learns to perceive and use basic affordances that are directly related to single action
possibilities of the agent (e.g. gripping an object) and are thus mostly related to the
object as a whole. The control developed in phase 1 is refined by Phase 2. Phase 2 is
designed to learn to perceive and use more complex affordances that are related to
sequences of actions (e.g. stacking, which consists of several interactions with 2
objects like gripping, lifting, driving and releasing) and are mostly related to object
parts (e.g. a flat surface). The enhancement and refinement of each Phase n through a
succeeding Phase n+1 form a subsumption like affordance based control. The final
scenario is realized by incrementally extending the Phase structures to gain an
incrementally more complex affordance based architecture.

Phase 0. The sensor layer consists of physical sensors and software modules that are
interfaces between software and hardware to enable the agent to receive raw data
about the state of the robots environment, and the state of the robot itself. The filter
layer is designed to reduce computing complexity and fault sensitivity within the
control layer. Instead of using the original time series from the cameras, the laser-
scanner or the positions of the robotic arm, the control layer can use more complex
data extracted from the sensoric input space, e.g. by filters for detecting simple
geometric forms like ellipsoides or rectangles, or complex SIFT filters (Section 5).
Other examples for modules within the filter layer are simple bandpass-filters, motion
detectors or more complex novelty-detectors. The filter modules can also be cascaded,
so that a hierarchy of filters is formed. Hence careful design of these filters is
imperative for achieving the desired reduction of computing complexity without
losing essential information. Within the filter modules attention mechanisms can be
used to reduce the amount of data transferred to the next layer. By cascading the
filters, attention mechanisms can also be applied to sets of filters, e.g. to focus
attention to one sensor modality or one special filter.

240 L. Paletta et al.

(a) (b)

Fig. 2. (a) Sketch of the basic control structure underlying ABACUS (Affordance Based
Adaptive Control Using Self-Experience). (b) ABACUS is a multi layered conceptual
framework, which enables the robot to use the concepts of affordances by taking it through
several learning stages. Phase 2 of ABACUS is designed to learn to perceive and use complex
affordances by using the information received from the filter layer and the phase 1 affordance
recognizer. Complex affordances are related to sequences of actions (e.g. stacking, which
consists of several interactions with 2 objects like gripping, lifting, driving and releasing) and
are mostly related to object parts (e.g. a flat surface enables the robot to stack something on it).

Phase 1. Phase 1 is a structure that is designed to learn to perceive and use basic
affordances that are directly related to single action possibilities of the agent (e.g.
gripping an object) and are thus mostly related to the object as a whole. These
affordances will also be called category 1 affordances. Phases 1 utilizes the described
sensor layer, filter layer, and actuator layer and refines the perception and control of
phase 0. Phase 1 consists of an affordance recognizer and an affordance based control
module (see Fig. 6). The Phase 1 affordance recognizer learns to recognize basic
affordances on the basis of the output of the filter layer and sensor layer. The module
learns what the outcome of an action is and learns what the cues to detect affordances
without interacting with its environment are. For a detailed description of an
algorithm that can be used to realize the adaptive Phase 1 affordance recognizer see
section 4. The information, extracted by the affordance recognizer is used within the
Phase 1 affordance based control to trigger Phase 1 actions, or trigger or inhibit the
basic actions that are implemented within the modules of the Phase 0 control layer.

Phase 2. Phase 2 is a structure that is designed to learn to perceive and use complex
affordances that are related to sequences of actions (e.g. stacking, which consists of
several interactions with two objects like gripping, lifting, driving and releasing) and
are mostly related to object parts (e.g. a flat surface enables the robot to stack
something on it). These complex affordances are also called category 2 affordances.
Phase 2 extends the affordance recognition capabilities of Phase 1 and refines the

 Perception and Developmental Learning of Affordances in Autonomous Robots 241

affordance based control of Phase 1 and Phase 0. Like Phase 1, Phase 2 is subdivided
in an affordance recognizer and an affordance based control module. By using data
from the filter layer and the Phase 1 affordance perception output as an abstract and
highly complex sensor, the Phase 2 affordance recognizer is enabled to learn complex
affordances that require basic affordances to be present. The main focus of phase 2
lies on action sequences, e.g. behaviors lifting, stacking, or turning objects etc. that
can be composed out of simple basic behaviors or motion primitives. Like in the case
of basic actions, the outcome of sequenced actions is categorized and perceptual cues
are searched that indicate the presence of affordances. For a detailed description of a
possible learning algorithm to realize the Phase 2 affordance recognizer modules see
Section 4. The information extracted by the affordance recognizer is used within the
Phase 2 affordance based control to revise Phase 0 control and Phase 1 control by
triggering and inhibiting actions and action sequences as well as triggering Phase 2
actions.

(a) (b)

Fig. 3. Example for the revision of Phase 0 based control by Phase 1 based control. (a) shows
the general structure of a Phase 1 instantiation. The basic actions within control phase 0 are
activated by environmental triggers, e.g., of the grasping reflex. The reflex like action of the
agent changes the state of the agent and its environment; this change leads to a change within
the sensor data measured by the agent. The new state of the environment/state of the robot
could trigger another action, e.g. the state of javing an object in the gripper could cause a lifting
reflex. Once the Phase 1 affordance recognizer has learned to discriminate liftable from non-
liftable environmental entities, the Phase 1 based control can inhibit the lifting reflex (b), and in
a later stage even inhibit all actions leading to the inhibited action.

4 Reinforcement Learning of Basic Affordances

4.1 Affordance Based Cueing

Early awareness of opportunities for interaction is highly relevant for autonomous
robotic systems. Visual features are one out of multiple modalities from sensory

242 L. Paletta et al.

processing that operate perception via optical rays and therefore support early
awareness about the environment of a robot agent from rather remote locations.
Although the necessity of affordance perception from 3D information recovery, such
as optical flow, has been stressed in previous work, we do not restrict ourselves to any
specific cue modality and intend to generalize towards the use of arbitrary features
(2D, 3D) that can be derived from visual information with the only constraint that
they enable reliable prediction of the opportunity for interaction processes from an
early point in time.

Scenario. The scenario for the experiments consists of a mobile robotic system
(Kurt2 from Fraunhofer IAIS, Germany [17]), equipped with a camera stereo pair and
a magnetizing effector, and some can-like objects with various top surfaces, colors
and shapes. The purpose of the magnetizing effector is to prove the nature of the
individual objects by lowering its rope-end effector down to the top surface of the
object, trying to magnetize the object (only can bodies are magnetizable) and then to
lift the object. Test objects with well magnetizable geometry (with slab like top
surfaces, in contrast to those with spherical top surface) are subject to a lifting
interaction, while the others are not able to be lifted from the ground. This interaction
process is visualized for several test objects and sampled in a sequence of image
frames which are referenced with multimodal sensor information, e.g., size of
magnetizing and motor current of the robot.

Visual Features. From the viewpoint of a technical system using computer vision for
digital image interpretation, we selected local descriptors, such as the Scale Invariant
Feature Transform [13], to support well the generation of visual feature abstractions.
We first segment the color based image information and then associate classified
histograms of descriptor responses - sampled within the regions - to the region feature
vector. The histograms integrate responses from SIFT descriptors that were trained to
discriminate either rectangular or circular surface shapes [17].

Affordance Hypotheses. The outcome of the affordance cueing system is in general
expected to be – given a perceptual entity in the form of a multimodal feature vector -
a probability distribution over affordance hypotheses,

),|(tiiA FAPP =

with affordance hypothesis Ai, and feature vector Ft at time t. It is then appropriate to
select an affordance hypothesis Amax=arg maxi(P(Ai)), with Maximum A Posteriori
(MAP) confidence support for further processing.

Cue-Feature Value Matrix. Fig. 4 shows a sample cue-feature value matrix in the
context of the experiments - depicting attribute values of 2D features (color G=green,
R=red, M=magenta, etc.), or SIFT category (R=rectangular, C=circular, etc.) and
interaction results (left column, bottom) in dependence on various types of visual
regions (top row) - that visualizes dependencies between feature attributes of the
region information and a potential association to results of the affordance recognition
process. We can easily see that the SIFT category information (rectangular=R and
circular=C region characterization) together with a geometric feature (top=T region,
i.e., representing a region that is located on top of another region) provides the

 Perception and Developmental Learning of Affordances in Autonomous Robots 243

discriminative feature that would allow to predict the future outcome (e.g., lift-able or
non lift-able) of the affordance recognizer. The latter therefore represents the
identification of the affordance and thereby the nature of the interaction process (and
its outcome entity) itself.

Fig. 4. Cue-feature value matrix depicting attribute values of 2D features (color G/green, R/red,
M/magenta, etc., or SIFT category R/rectangular, C/circular, etc.)) and interaction results (left
column, bottom) in dependence on various types of visual regions (top row). From this we
conclude a suitable feature value configuration (i.e., SIFT categories to discriminate lift-
able/non lift-able predictions) to support the hypothesis on lift-able object information.

4.2 Reinforcement Learning

In the following, we describe an implementation of developing control Phase 1
(Section 3) of affordance learning, by encapsulating Phase 0 in terms of a reactive
behavior that is modeled within the reinforcement learning of the overall affordance
liftability.

Markov decision processes [18] have already been introduced in a perception-
action context of visual recognition, e.g., in [19], selecting foci of attention for
optimal integration of visual information in sequential object recognition, or in
sequential object recognition [20]. In this paper, the MDP will provide the general
framework to outline a multi-step behavioral task under the viewpoint of state based
prediction, i.e., cueing, of future outcomes of that task. Fig. 5b shows a schematic
outline of closed-loop learning of the behavioral task within the robot scenario,
together with the extraction of early cues (feature recognition) from a selection of
relevant attributes.

Markov Decision Processes. An MDP is defined by a tuple (S;A;δ;ℜ) with state
recognition set S, action set A, probabilistic transition function δ, and reward function
ℜ: S×A → Π(S) describes a probability distribution over subsequent states, given
action a∈A executable in state s∈S. In each transition, the agent receives reward
according to ℜ:S×A→R, ℜt∈R. In our experimental scenario, the agent must act to
maximize the utility Q(s,a), i.e., the expected discounted reward

244 L. Paletta et al.

⎥
⎦

⎤
⎢
⎣

⎡=≡ ∑
∞

=
+++

0

),(),(),(
n

ntntnt
n asREaSUasQ γ

where γ∈ [0,1] is a constant controlling contributions of delayed reward. We
formalize a sequence of action selections a1, a2, …, an as an MDP and are searching

(a)

(b)

Fig. 5. Markov Decision Process (MDP): (a) Perceptual states that anticipate the outcome
(effect) status are traced back via perception-action trajectories. (b) Closed-loop processing in
affordance-based feature recognition. On the basis of attentive image segmentation (curiosity
drive, in 2D or 3D), feature entities are recognized, then build up a perceptual state which feeds
into the decision maker. Perceptual states may anticipate different trajectories in state space;
highly rewarded states represent cues for anticipating targeted outcome states (events).

for optimal solutions with respect to finding action selections so as to maximizing
future reward with respect to the affordance task. With each action, an estimate on the
cumulative reward gives feedback about the direction towards the goal of the task.
With each action, the reward is received per action by Ω=:),(asR , with Ω=1 if

the goal event is reached (object lifted into goal image zone), and Ω=0 if not (Fig. 8).
Since the probabilistic transition function Π(.) cannot be known beforehand, the

 Perception and Developmental Learning of Affordances in Autonomous Robots 245

probabilistic model of the task is estimated via reinforcement learning, e.g., by Q-
learning [20] which guarantees convergence to an optimal policy applying sufficient
updates of the Q-function Q(s; a), mapping recognition states s and actions a to utility
values. The Q-function update rule is

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++−≡)','(max),(1),(

'
asQRasQasQ

a
γαα

where α is the learning rate, γ controls the impact of an action on future policy
returns. The decision process is determined by the sequence of actions. The agent
selects then the action with largest Q(s,a), i.e.,

)',(maxarg
'

asQa T
a

T =

so as to maximize the cumulative expected reward Q(s,a).

Actions and States. In the selected scenario, actions are defined by discrete steps of
gripper motion (up, down) and magnetization (on, off). Each perceptual state is
defined by a discrete feature configuration

})1,0{},{},{},1,0{},,{},{(∈∈∈∈∈∈= mrhrheDDdCcS jgjrrectcirci
,

with region color class c, region shape d, configuration type e, region elevation level
hr, gripper elevation level hg, and magnet state m.

The affordance based, purposive selection of features is here represented by
relevance weighting of perceptual states in terms of associated expected rewards.
Each extracted image region is attributed by a perceptual state. Perceptual states that
anticipate a complete trajectory of perception-action transition leading to the
affordance outcome event with high certainty will be associated to high rewards and
consequently constitute cue like states. Affordance based perceptual states are
intrinsically related to the reward function, an associated estimator on affordance
hypotheses PAi (see above), and the affordance classifier that discriminates
corresponding Q-values into affordance cues and irrelevant states.

5 Proof of Concept

The experiments were performed in a real world robot environment with the purpose
of providing a proof of concept on the successful learning of predictive 2D features,
i.e., affordance based cues, and on characterizing affordance recognition processes.

Scenario. Robot operations are discriminated into two phases (a) a cueing phase
where the robot is moving to the object, and (b) a recognition phase, where the robot
tries to lift an object (Fig. 1). In both phases, parts of the objects are described by their
regions. Any region has different features like color, center of mass, top/bottom
location and the shape description (rectangular, circular) already described above, the
features are extracted from the robot camera imagery. Additional information, such
as, effector position, are provided by the robot. Regions are the entities used in the
experiments, no explicit object model is generated for the can-like objects.

246 L. Paletta et al.

(a) (b) (c) (d)

(e)

Fig. 6. Affordance based cueing of region determined perceptual states from learned predictive
cumulative rewards. (a) Color segmentation, (b) color region bounding boxes, (c) classified
SIFTs, (d) histogram on rectangular (R) and circular (C) descriptors. (e) Analyzed top and
bottom regions are correspondingly classified as cues for lift-ability or non-lift-ability,
visualized in terms of green and red bars with bar sizes correlating to positive or negative
reward, respectively (monitoring boxes, top), anticipating a lift-able event.

Affordance Recognition and Cueing. The recognition of an affordance is crucial for
verifying a hypothesis about an affordance A associated with an entity feature F.
These entities are specifically extracted out of the images as follows. Firstly, a
watershed algorithm is used to segment regions of similar color together. After
merging of smaller parts, every entity is represented by the average color value, the
position in the image and the relation to adjacent regions (top/bottom). This
information is also used for tracking entities over time. To verify whether or not an
entity becomes ‘lift-able’, the magnetizable effector of the robot is lowered until the
top region of the object under investigation is reached, the magnet is switched on and
the effector is lifted up. If the entity is lift-able, a common motion between effector
and region can be recognized, and both can and gripper regions are undergoing a
vertical transition (direction up) in the field of view. Additionally the magnet has to

 Perception and Developmental Learning of Affordances in Autonomous Robots 247

(a) (b)

Fig. 7. (a) Reinforcement learning curve depicting increase of predicted cumulative reward
associated to a predictive perceptual state over time, verifying its statistically correct
anticipation of successive ‘lift’ events. (b) Step-wise classification of regions of interest under
predictive cueing (green=cue, red=no cue). In the first phase, the gripper moves down to grip
the object. The downward peak is at the turning point where the gripper lifts up the object.

be switched on and the effector has to be placed in the center of the top region. These
rules build up the affordance recognizer looking for lift-able entities in the recognition
phase of the experiment.

Reinforcement Learning of Predictive Features. Affordance cueing and
recognition may require different kinds of feature extraction. For cueing, some
structural description of the top region is required to separate the unequal shape of the
top regions. In order to get structural information about an entity a histogram over
prototypical SIFT descriptors is used to discriminate between circular and rectangular
regions.

Structural Classification. All local SIFT descriptors extracted in the region of the
entities are clustered using unsupervised clustering (k-means, k=100). For each
specific entity, we generate a histogram over cluster prototypes, using a nearest
neighbor (NN) approach to get the cluster label for each SIFT descriptor in that
region. In a supervised learning step, every histogram is labeled whether it is or not
associated with a rectangular or circular entity. A C4.5 decision tree [14] of size 27 is
then able to distinguish between these two classes. The error rate on a test set with
353 samples is ≈ 1.4%.

Q-learning, decisive states, and affordance based cueing. Images about the objects
that were tested for the affordance ‘lift-able’ in the recognition phase collect positive
rewards that trace back to early perceptual states due to the Q-learning update rule. As
mentioned earlier, there exists no object model yet, therefore only entities exist for the
system, and the learning of cueing states is with respect to the region extraction
determining the perceptual states. In our experiment 30 frames are used from the
beginning of the affordance recognition back, that means a recall of ~2.5 seconds
from the past (12 fps are captured by the robot during the experiment). The entity

248 L. Paletta et al.

representation for the cueing phase contains the following features: (a) average color
value of the region in the image, (b) top/bottom information, (c) the result of the
structure classification, (d) the size of the segmented region. Fig. 7a depicts the
learning curve resulting from the reinforcement learning phase, with respect to the
predicted cumulative reward associated to an early perceptual state that thereby is
verified to represent a ‘cueing’ state. Fig. 6e depicts results for predicted cumulative
rewards regarding observed regions (top, bottom) reflecting different evaluation of
perceptual states towards ‘cueing’ (green bar) and ‘non-cueing’ (red bar) states. Fig.
6b shows the dynamic view on step-wise classification of regions under predictive
cueing, e.g., predictive features (green) were detected all through the sequence of 45
successive frames.

Extraction of Cue Features. The experimental result that proves that the
reinforcement learner identified the actually relevant features was finally received
from a statistical analysis of perceptual states. A C4.5 decision tree [14] was learned
to estimate the decisive attributes that enable classification of perceptual states into
affordance cues (Q(s,a)>0) and irrelevant states (Q(s,a)≤ 0). Features found were
CR<0.5 (‘rectangular’) and TD<0.5 (‘top region’) which exactly defines the decisive
features as outlined in the affordance cue matrix depicted in Fig. 4 (‘SIFT category’
and ‘TB’).

6 Conclusions

This work presented the framework of reinforcement learning for perceptual cueing to
opportunities for interaction of robotic agents. The framework for cueing and
recognition of affordance-like visual entities is verified with a concrete
implementation using state-of-the-art visual descriptors on a real world robot scenario
and proved that features are successfully selected that are relevant for prediction
towards affordance-like control in interaction. The real world robot environment was
chosen to enable a proof of concept in terms of learning to select exactly those
features that are relevant for the prediction of the interaction outcome.

Future work will focus on extending the feature based representations towards
object driven affordance-based interaction, grounding the work on the visual
descriptor information presented here, and demonstrating the generality of the
concept. In this line of research, we think that the presented reinforcement learning
provides the appropriate methodology to motivate the learning of functional object
recognition, grounding thereby the object notion in a concept of predictive feature
abstractions.

Acknowledgments

This work is funded by the European Commission’s projects MACS (FP6-004381)
and by the FWF Austrian National Research Network ‘Cognitive Vision’ under sub-
project S9104-N04.

 Perception and Developmental Learning of Affordances in Autonomous Robots 249

References

[1] Gibson, J.J.: The Ecological Approach to Visual Perception, Boston, Houghton Mifflin
(1979)

[2] Neisser, U.: Cognition and Reality. In: Principles and Implications of Cognitive
Psychology, Freeman & Co., San Francisco (1976)

[3] Gibson, E.J.: Exploratory behavior in the development of perceiving, acting and the
acquiring of knowledge. Annual Review of Psychology 39, 1–41 (1988)

[4] Faillenot, I., Toni, I., Decety, J., Grégoire, M.-C., Jeannerod, M.: Visual pathways for
object-oriented action and object recognition: functional anatomy with PET. Cerebral
Cortex 7, 77–85 (1997)

[5] Fagg, A.H., Arbib, M.A.: Modeling parietal-premotor interaction inprimate control of
grasping. Neural Networks 11(7-8), 1277–1303 (1998)

[6] Wheeler, S.D., Fagg, H.A., Grupen, R.A.: Learning Prospective Pick and Place Behavior.
In: Proc. 2nd International Conference on Development and Learning, June 2002, pp.
197–202. IEEE Computer Society, Cambridge, MA (2002)

[7] Paul, F., Metta, G., Natale, L., Rao, S., Sandini, G.: Learning About Objects Through
Action - Initial Steps Towards Artificial Cognition. In: Proc. IEEE International
Conference on Robotics and Automation, ICRA 2003, Taipei, Taiwan, May 12-17 (2003)

[8] Stoytchev, A.: Behavior-Grounded Representation of Tool Affordances. In: Proc. IEEE
International Conference on Robotics and Automation (ICRA), April 18-22, 2005,
Barcelona, Spain (2005)

[9] Stark, L., Bowyer, K.W.: Function-based recognition for multiple object categories.
Image Understanding 59(10), 1–21

[10] Rivlin, E., Dickinson, S.J., Rosenfeld, A.: Recognition by functional parts. Computer
Vision and Image Understanding 62, 64–176 (1995)

[11] Bogoni, L., Bajcsy, R.: Interactive Recognition and Representation of Functionality.
Computer Vision and Image Understanding 62(2), 194–214 (1995)

[12] Edwards, M.G., Humphreys, G.W., Castiello, U.: Motor facilitation following action
observation: a behavioural study in prehensile action. Brain Cognition 53, 495–502
(2003)

[13] Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision 60(2), 91–110 (2004)

[14] Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA
(1993)

[15] Cos-Aguilera, I., Cañamero, L., Hayes, G.M., Gillies, A.: Ecological integration of
affordances and drives for behaviour selection. In: Bryson, J., et al. (eds.) Proc.
Workshop on Modeling Natural Action Selection, pp. 225–228. AISB Press (2005)

[16] Cos-Aguilera, I., Cañamero, L., Hayes, G.M.: Using a SOFM to learn Object
Affordances. In: Cos-Aguilera, I. (ed.) Proc. Workshop of Physical Agents, WAF’04,
March 2004, Girona, Catalonia, Spain (2004)

[17] Fritz, G., Paletta, L., Kumar, M., Dorffner, G., Breithaupt, R., Rome, E.: Visual Learning
of Affordance based Cues. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T.,
Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI),
vol. 4095, pp. 25–29. Springer, Heidelberg (2006)

[18] Puterman, M.: Markov decision processes: Discrete stochastic dynamic programming.
John Wiley & Sons, New York (1994)

250 L. Paletta et al.

[19] Paletta, L., Fritz, G., Seifert, C.: Q-Learning of Sequential Attention for Visual Object
Recognition from Informative Local Descriptors. In: Proc. 22nd International Conference
on Machine Learning, ICML 2005, Bonn, Germany, August 7-11, 2005, pp. 649–656
(2005)

[20] Draper, B.A.: Modeling Object Recognition as a Markov Decision Process. In: Proc. 13th
International Conference on Pattern Recognition 4, 95

[21] Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)
[22] Irran, J., Kintzler, F., Pölz, P.: Grounding Affordances. In: Trappl, R. (ed.) Cybernetics

and Systems. Austrian Society for Cybernetic Studies, Vienna (2006)
[23] Ugur, E., Dogar, M.R., Cakmak, M., Sahin, E.: The learning and use of traversability

affordance using range images on a mobile robot. In: Proc. Internat. Conference on
Robotics and Automation, ICRA 2007, pp. 1721–1726 (2007)

[24] Doherty, P., Merz, T., Rudol, P., Wzorek, M.: Tentative proposal for a formal theory of
affordances. Technical Report MACS/4/2.1, Linköpings Universitet, IDA Group,
Linköping, Sweden (August 2005)

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 251–263, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Computational Model of Bistable Perception-
Attention Dynamics with Long Range Correlations

Norbert Fürstenau

German Aerospace Center, Institute of Flight Guidance, Lilienthalplatz 7
D-38108 Braunschweig, Germany

norbert.fuerstenau@dlr.de

Simulation results of bistable perception due to ambiguous visual stimuli are
presented which are obtained with a nonlinear dynamics model using percep-
tion–attention–memory coupling. Percept reversals are induced by attention fa-
tigue and noise, with an attention bias which balances the relative percept dura-
tion. The dynamics of the attention parameter exhibits qualitative agreement
with the eye blink rate variation [4]. Coupling of an attention bias to the percep-
tion state introduces memory effects leading to significant long range correla-
tions of perceptual duration times as quantified by the Hurst parameter (H >
0.5). This prediction is in agreement with recent experimental results [1]. De-
viations of the reversal time statistics from the Γ-distribution increase with de-
creasing memory time constant and attention noise. Mean perceptual duration
times of 2 – 5 s are predicted in agreement with experimental results [7] if a
feedback delay of ca. 40 ms is assumed which is typical for cortical reentrant
loops.

Keywords: cognitive bistability, modelling, nonlinear dynamics, perception, at-
tention, Hurst parameter.

1 Introduction

In the present work new simulation results of an extended version of a nonlinear dy-
namics model of cognitive multistability [3] are presented. They specifically predict
long range correlations of the perceptual duration times which have recently been
found experimentally by Gao et al. [1] via determination of the self similarity (Hurst)
parameter H (> 0.5) [2] of the reversal time series.

Bistable perception is the spontaneous involuntary switching of conscious aware-
ness between the different percepts of an ambiguous stimulus. It is excited with dif-
ferent methods and stimuli such as binocular rivalry [5], perspective reversal, e.g.
with the famous Necker cube [6][7], and ambiguous motion displays as induced by
moving groups of crossed lines (plaids) [8]. Bistability provides a unique approach to
fundamental questions of perception and consciousness because it allows for the di-
rect measurement of the switching of subjective perception under constant external
stimulus (e.g. [9][10][11][12] [13]).

252 N. Fürstenau

The basic model couples the dynamics of a macroscopic (behavioral) perception
state order parameter with an adaptive attention (feedback gain) control parameter
with additive noise [3]. Memory and learning effects are introduced by allowing for
the adaptation of the originally constant attention bias parameter which balances the
subjective preference of one of the two percepts. Determination of the Hurst parame-
ter of perception reversal time series with two different methods [1][14] yields sig-
nificant long range correlations when coupling the bias parameter to the perception
state for simulating short term memory.

Concerning theoretical modeling there are ongoing discussions on the predominance
of a stochastic [15][16][38] versus deterministic [3] [17][18][39] background of multi-
stability, on the importance of neural or attentional fatigue or adaptation [6][18] versus
memory effects [1], and on the dominance of bottom-up [32] versus top-down
[3][10][11] processing. The combined deterministic-stochastic approach of the present
model is comparable to the synergetic model of Ditzinger & Haken [18]. The latter is
based on two separate coupled nonlinear dynamics (polynomial) equations for the per-
ception state order parameters. According to the experimentally supported satiation
(neuronal fatigue) hypothesis [6], spontaneous transitions between different attractor
states of the perception order parameters are induced by a slow time variation of asso-
ciated attention (control) parameters due to perception–attention coupling. Recently
published experimental results of Nakatani et. al. [24] support the perception–attention
coupling approach.On a microscopic neural basis the attention fatigue corresponds to
the well known spike rate adaptation in short term memory networks used for model-
ing the deterministic limit cycle oscillation of perception reversals and rivalry [39]. By
including an additive attention noise term the present model like [18] explains the ex-
perimental finding that deterministic as well as stochastic dynamics determines the
measured reversal time statistics for different multistability phenomena [37].

Following ideas proposed by von der Malsburg [40] the perception state P is as-
sumed to arise from superimposed coherent fields of synchronously firing neuronal
assemblies as excited by the ambiguous stimulus. In agreement with the widely ac-
cepted view of reentrant synchronous interactions between distant neuronal groups
within the thalamo-cortical system leading to conscious perception (e.g.
[10][20][21][24]), phase feedback of the superimposed coherent fields determines the
multistable perception dynamics. Like [18] the model utilizes perception-attention
coupling, however within a delayed reentrant loop and attention identified with adap-
tive feedback gain [3][27]. In contrast to [18] an adaptive attention bias balances the
preference between percepts via learning and memory. In this kind of minimum reen-
trant model P is represented by the dynamic phase difference between the superim-
posed fields with a recursive cosinuidal mapping function. The approach is also moti-
vated by the mean field phase oscillator theory of coupled neuronal columns in the
visual cortex [22]. It describes the synchronization of neuronal oscillations as the
physiological basis of dynamic temporal binding which in turn is thought to be cruical
for the selection of perceptualy or behavioraly relevant information [10][11][12].
Within the present model the difference of the perceptual duration time statistics be-
tween binocular rivalry and perception reversal with regard to the stochastic and de-
terministic character [37] can be explained via different memory time constants of the
dynamic attention bias which determines the self similarity (Hurst) parameter.

 A Computational Model of Bistable Perception-Attention Dynamics 253

In section 2 I describe the theoretical approach. Results of computer experiments
with simulated perception time series and a statistical analysis of the reversal time se-
ries are presented in section 3, followed by a conclusion in section 4.

2 Theory

2.1 The Recursive Interference Model

As a kind of minimum architecture allowing for the emergence of discontinuous state
transitions, a reentrant perception-attention dynamics with attention fatigue [6][18]
and delayed phase feedback interference is employed [3][27]. Here I will motivate
this architecture by a closer look at the thalamo-cortical reentrant loops as proposed
within the dynamical core hypothesis of consciousness [13][21] and within the dis-
cussion of bottom-up and top-down aspects of visual attention [25]. Figure 1 depicts
within a block diagram important modules of the attentionally modulated visual per-
ception system. The diagram is based on simplified brain circuit schematics (e.g. [26])
including the attentional top-down modulation of the dorsal ("where") and ventral
("what") streams of information[25].

Fig. 1. Schematic of visual information flow within the thalamo-cortical system, with indica-
tion of bottom-up streams and attentional top-down modulation (black arrows) of ventral
(what) and dorsal ("where") pathways within the association cortex (based on [25][26]). Per-
ception state order parameter v, attention control parameter G, and attention bias or preference
parameter vb are placed at neurobiologically relevant positions. For details see text.

It is assumed that under bistable switching between conscious percepts, after feed-
forward preprocessing of the stimulus up to the Primary Visual Cortex V1, the main
processing takes place within recurrent perception-attention loops of the association
cortex (e.g. [9][20][21][25]). For the stationary stimuli under consideration here the
loop via the Superior Colliculi for control of eye movements, i.e. overt attention is
neglected. On the other hand, recent experimental results indicate that binocular ri-
valry involves a more automatic, stimulus-driven form of competition than ambiguous
figure reversal and is less easily biased by selective attention [41]. Without

254 N. Fürstenau

considering early feedforward processing, in the present approach this effect may be
modeled by the dynamic bias parameter vb which determines relative percept duration
times [3] and long range correlations via the vb-memory time constant τM (see below).
The model architecture is suggested to basically represent the ventral ("what") V4–
InferoTemporal–PraeFrontal–V4 loop as target structure. Consequently it favors a
top-down view assuming the usage of prior knowledge according to [42], and for
simplicity neglects possible early spatial attention modulation of perception reversals
as indicated by recent neurophysiological measurements [32]. Experimental evidence
on perception–attention coupling with ambiguous stimuli was presented by Nakatani
& van Leeuven [29] using EEG recording of frontal theta and occipital alpha bands
and eye blink rate measurement [4]. According to Hillyard et.al. [28] stimulus-evoked
neuronal activity can be modified by an attentional induced additive bias or by a true
gain modulation (present model parameters vb(t) and g(t)). Increase of gain g(t) is cor-
related with increased blood flow through the respective cortical areas. Consequently
in the present model the feedback gain serves as adaptive control parameter (g ∼ at-
tention parameter G) which induces the rapid transitions between the alternative sta-
tionary perception states P1 and P2 through attention fatigue [6], like in [18]. An
overdamped feedback system (time constant τ) is assumed leading to a first order dy-
namical equation. Formally this is achieved analogous to multistable optical systems
[30]. The resulting phase oscillator equation (1) is similar to the phase attractive circle
map of Kelso et.al. [23]. The phase variable may be compared with the phase shift be-
tween the coupled self-oscillating neuronal columns of the mean field theory [22].
Here phase locking between different groups of neurons is described by means of the
circle (sin-) map. The complete dynamics of the present model is described by three
coupled equations for the perception state order parameter (phase difference v(t) be-
tween two superimposed neural mean fields), for the attention control parameter G(t)
(∼ feedback gain g(t)) modulating v(t) after delay T), and for the attention bias or
preference vb(t) representing a memory function via coupling to the low pass filtered
perception state v(t). The perception-attention-memory (PAM) equations are given by

An ambiguous stimulus with strength I and difference of meaning μ (interference

contrast 0 ≤ μ ≤ 1) of the two possible percepts P1, P2 excites two corresponding hy-
pothetical mean fields a(Φ1), b(Φ2) with phase difference ΔΦ = π vt and μ =
2a0b0/(a0

2+b0
2) with amplitudes a0, b0. The nonlinear rhs. of equ. (1) describes the

conventional interference between two superimposed coherent fields J = |a+b|2 [30]. A
recurrent process is established by feedback of the output after amplification (feed-
back gain g) with delay T into ΔΦ via a hypothetical phase modulation mechanism
ΔΦ = K J. As a quantitative estimate for T the stimulus–visual cortex response delay
(≈ 40 ms) was suggested [3][27] which also represents typical recurrent delay times

()()[]BtTtTt vvπμcos1Gvvτ ++=+ ++ . (1)

() () tGtofftbt L/τG-G/γvvG ++−= . (2)

() () MbtLbbb /τvvM/τvvv
ttet

−+−= . (3)

 A Computational Model of Bistable Perception-Attention Dynamics 255

within the association cortex [20]. In what follows I assume the phase bias vB = 0 mod
2. In agreement with Itti & Koch [25] the attention parameter G(t) ∼ κ I g(t) is the
product of feedback gain g(t) and input (stimulus) strength I (=1 in what follows). The
attention dynamics is determined by the attention bias vb (determining the relative
preference of P1 and P2), satiation speed 1/γ, recovery time constant τG, and Goff = at-
tention (gain) parameter for stimulus off, defined by μ = μoff < 0.18 (see below). Fol-
lowing [18], the random noise due to physically required dissipative processes is
added to the attention equation G(t) as a stochastic Langevin force L(t) with band lim-
ited white noise power Jω. The attention bias or preference dynamics dvb/dt is mod-
elled as the sum of a learning function M(vt,vb,vbe)(vbe – vb)/τL, and of a memory
component (<vt>– vb)/τM which couples vb to the perception state (<> = low pass fil-
ter). Learning is active only if one of the two percepts dominates whereas the other is
initially weakly associated (initial preference vb0 ≠ vbe and |<vt>-vbe| > |<vt>-vbt|), and
a fluctuation induced jump into the weak perception state occurs, switching M from 0
to 1 for the duration of the weak state. The diagram of the model in Fig. 2 represents
the highest level of an implementation with the dynamical systems tool Matlab-
Simulink.

Attention Circuit: Attention Satiation G(t)

Perception Circuit: Recursive Mean Field Interference v(t)

Feedback
Gain G(t)

v(t+T)

Preference Circuit: Learning & Memory vb(t)

Bias

vbe

vb0

1
sxo

vb-Integrator

v(t)_in

v0
v(t)

v-Integrator

I

mu

mu_off

Stimulus

G(t) R(t)

Recovery

v(t)

G(t)

vb(t)

Output

Noise

vbe
v(t)
vb(t)
mu

dvb

Memory

mu_in

v(t)_in
v(t)

Interference InitialValue

G0

mu

G(t)_in

G(t)

G-Integrator

v(t)

vb(t)
S(t)

Fatigue

DOC

Text

v(t+T)_inv(t)

Delay T

Fig. 2. Simulink implementation of phase oscillator equations (1) – (3). Subroutines (blocks) of
the reentrant loops (from top to bottom): perception circuit v(t), attention circuit G(t) with Fa-
tigue and Recovery component, and Preference circuit vb(t) with two separate components for
Learning and Memory. Stimulus of strengt I and difference of meaning mu (=μ) are fed as con-
trol parameters into perception circuit with nonlinear (cosinuidal) interference term and inte-
grator loop with time constant τ. Attention circuit G(t) with satiation (fatigue) (vb – v(t))/γ and
recovery term (Goff – G(t))/τG controls as gain factor the perception dynamics. The Preference
(Memory) circuit is coupled to the perception state and modulates Attention as a dynamic bias
vb(t).

256 N. Fürstenau

() ()n1n1nn GG/GGlim6692.4 −−== +−∞→∞ nδ

2.2 Stationary Solutions

Quasiperiodic switching between two attractor states v*1(P1) and v*2(P2) emerges af-
ter a node bifurcation of the stationary v*(G, μ) graph at μn ≈ 0.18. It evolves from a
monotoneous function for μ < μn into a hysteresis (S-) shaped ambiguous one with in-
creasing μ [3][27][30]. Figure 3 depicts the first order stationary solutions (dv/dt = 0,
vt + T = vt = v*).

0

1

2

3

v*

0 0.2 0.4 0.6 0.8m

0
2

4 6

G

0 0.2 0.4

Fig. 3. Stationary solution v* of perception state equation (1) as dependent on attention control
parameter (feedback gain) G and difference of meaning (interference contrast) μ of percepts P1,
P2. Node bifurcation at μ ≈ 0.18 defines transition into ambiguous solution (μ < μn , stimulus
off → μ > μn , stimulus on) with positive slope regions v*(G) representing stationary perception
states P1(lower level v* ≈ 1), P2 (higher level v* ≈ 2.5... 3)

At the critical value, μn ≈ 0.18, the slope of the stationary system state dv*/dG be-
comes infinite with (Gn , vn) ≈ (1.5, 1.5). For μ < μn both percepts are fused into a sin-
gle meaning corresponding to an unambiguous stimulus. For μ > μn the stationary so-
lution v*(G) becomes multivalued, corresponding to switching on of the ambiguous
stimulus. For maximum contrast μ = 1 the horizontal slope (dG / dv)-1 = 0 yields

12ivi −=∞ , i = 1,2,3,… as stationary perception levels in the limit G → ∞. The node

bifurcation and hysteresis agrees with the qualitative deterministic catastrophe theo-
retical model of cognitive bistability as proposed by Poston & Stewart [17].

Higher order stationary solutions (v(t+2iT) = v(t) = v*, i=0, 1,2,3...)) yield period
doubling pitchfork bifurcations on both positive slope regions of the hysteresis curve,
with the G-values of the bifurcation points converging at the chaotic boundary
according to the Feigenbaum constant
[3][27]. This proves that within certain parameter ranges (μ, τ) the P1-, P2-limit cycle
oscillations include chaotic contributions which was confirmed by evaluation of the
Lyapunov coefficient [27]. The linear stability analysis of (1) yields Eigenfrequencies
β = 2πf via ()βTtanβτ −= which may be approximated by f ≈ f0 i / (1 – τ/T), i = 1, 2, …

 A Computational Model of Bistable Perception-Attention Dynamics 257

for τ << T, with f0 = 1 / 2T = 12.5 Hz for T = 40 ms [33]. For i < 10 (sufficient damp-
ing!) this spectrum lies well within the range of typical EEG frequency bands.

3 Computer Experiments

3.1 Simulated Perception–Attention Dynamics

In this section I present numerical evaluations of the coupled PAM differential–delay
equations (1)(2)(3) as obtained with the Matlab–Simulink code of Fig. 2 using the
Runge-Kutta solver "ode23tb" for stiff problems, i.e. fast changing dynamics. Figure 4
shows time series v(t) and G(t) (time units = simulation intervall TS) and phase space
trajectories v(G) for T = 2TS = 40 ms, μ = 0.6, τ = 0.5, γ = 60, τG = 500, constant atten-
tion bias vbe = 1.5, noise power Jω = 0.001 with sample time tc = 0.1, τM = 1000, with
stimulus–off interval (μoff = 0.1, Goff = 1.5) at the beginning of the time series.

The v(t) dynamics in Fig.4a) exhibits the spontaneous transitions between station-
ary perception states P1 (near v* ≈ 1) and P2 (near v* ≈ 2.5) with the expected super-
imposed fast limit cycle and chaotic oscillations (fi = i 9.4 Hz, i = 1, 2, 3, ...) due to
the delay T = 2 TS. The transition time between P1 and P2 is of the order of 8 - 10 TS
≈ 150 - 200 ms (see Fig. 4d)), in reasonable agreement with the time interval between
stimulus onset and conscious perception [20].

The attention parameter G(t) (adaptive feedback gain) in Fig.4b) exhibits the slow
fatigue dynamics, leading to the quasiperiodic P1→P2 transitions at the G-extrema.
The relative P1/P2-duration is modulated by the adaptive attention bias vb(t) (thick
line, starting at vb0 = 1.5), inducing a memory and learning effect due to coupling to
the averaged perception state <v(t)>.

The phase space plot v vs. G in Fig. 4c exhibits separate regions of the stimulus–
off (μ = 0.1) and stimulus–on (μ = 0.6) states with the latter trajectory class exhibiting
the jumps between the P1/P2 levels of v* near the turning points of the stationary hys-
teresis curve v*(G). Limit cycle oscillations and deterministic chaos within P1, P2
originate from the finite delay T with the amplitudes corresponding to the pitchfork
bifurcation pattern [3][27] and depending on damping time constant τ. The reversal
time period is determined by the slow G(t) dynamics, with fatigue and recovery time
constants γ, τG. The adjusted absolute value of the attention parameter |Gt – <G>| in
Figure 4d) exhibits qualitative agreement with the dynamics of the eye blink rate as
reported by Ito et.al. [4]. It slows down under concentration on a task, i.e. attention.
<G> = 0.5 (3 - μ)/(1 - μ2) = 1.875 for μ = 0.6 is the center between the turning points
of the S-shaped stationary hysteresis curve [3][27]. In agreement with the linear sta-
bility analysis [33] a 10 Hz limit cycle oscillation is observed on the P1-state whereas
after the jump to the P2 state chaotic oscillations are excited as predicted in [3][27].
The prediction of chaotic oscillations of the perception state variable is consistent
with recent research in the analysis and modelling of EEG time series (e.g.
[34][35][36]) which emphasizes the relevance of the chaotic and fractal character of
brain dynamics.

258 N. Fürstenau

0 500 1000 1500 2000 2500
0

1

2

3

4

5

TIME / 20 ms

P
E

R
C

E
P

T
IO

N
 S

T
A

T
E

 v

1 1.5 2 2.5 3
0

1

2

3

4

5

ATTENTION PARAMETER G

P
E

R
C

E
P

T
IO

N
 S

T
A

T
E

 v

0 500 1000 1500 2000 2500
1

1.5

2

2.5

3

TIME / 20 ms

A
T

T
E

N
T

IO
N

 G
, P

R
E

F
E

R
E

N
C

E
 v

b

860 880 900 920 940 960
0

0.5

1

TIME / 20 ms

A
T

T
E

N
T

IO
N

 |G
 −

 <
G

>
|

0

2

4

P
E

R
C

E
P

T
IO

N
 S

T
A

T
E

 v

 off STIMULUS on

a) STIMULUS off

c)

 off STIMULUS on

b)
d)

Fig. 4. Numerical evaluation of PAM equations (1)(2)(3). See text for simulation parameters. a)
perception state v(t); Stimulus off (μ = 0.1) during t = 0 ... 500 TS b) attention parameter G(t)
and dynamic attention bias or preference state vb (thick line). c) Phase space trajectories v vs. G
exhibiting separate region for μ = 0.1 (= stimulus off, marked by ellipse) and μ = 0.6. d) 2 s
time window with single switch v(P1->P2) (right ordinate) and superimposed adjusted absolute
attention parameter |G - <G>| (left ordinate).

3.2 Reversal Time Statistics

The numerical simulations produced time series of perceptual switching events which
are analyzed with respect to the relative frequency of perceptual duration times
Δ(P1), Δ(P2) and to long range correlations. The duration time statistics has been
shown in numerous experimental investigations (e.g. [7][19][29][31]) and different
theoretical modelling approaches ([3][18][23]) to correspond to a Γ-distribution with
shape parameter α and scaling parameter λ as a reasonable approximation. Mean and
variance are given by Δm = α/λ and σ2 = α / λ2 respectively. As an example the left
graph in Fig. 5 depicts the relative frequencies of the perceptual duration times of 100
simulation runs with N = 5000 time steps TS each (parameters as in Fig. 4, however
with larger noise: Jω = 0.004 and τM = 3000).

The 100 time series differ by noise generator (random number) seed value and per-
ception state initial value v0 = v(t=0), G(t=0) = G(v0*). Plotted is the distribution of
the (typically 2000 – 3000) perceptual durations Δ(P2) of percept 2. In the above ex-
ample mean and standard deviation are respectively Δm(P1) = 246TS= 4.9 s, σ =
177TS = 3.5 s and Δm(P2)= 121TS= 2.4 s, σ = 44TS=1.3 s (left graph of Fig.5). The

 A Computational Model of Bistable Perception-Attention Dynamics 259

ratios σ/Δm = 1/√α ≈ 0.71 and 0.53 are within the range of most experimental findings
reported in the literature (e.g. [7][19][29]).

0 200 400 600
0

0.002

0.004

0.006

0.008

0.01

Duration Δ/T
S

re
l.

F
re

qu
en

cy

Γ−Distribution
λ = 0.0294
α = 3.56

11.5

12

12.5

13

1 2 3 4 5 6 7 8
log2m

10.5

gol
2

11

rav
X

m H 0.8514

Fig. 5. Left: Relative frequencies of perceptual duration time Δ(P2), in units TS = T/2, with 100
runs of 5000 TS each. Simulation parameters μ = 0.6, vbe = 1.5, T = 2TS, τ = 0.5, γ = 60, τG =
500, Jω = 0.004 with sample time tc = 0.1, attention bias (preference) time constants τM = 3000,
τL = 100000. Maximum Likelihood fit with Γ-distribution (solid line). Right: plot of
log(variance) vs. log(no. of samples (m)) of the same simulation runs. Linear fit (95% conf. in-
tervals) for estimating H via the slope.

The coupling of the preference parameter (attention bias) vb to the perception state
leads to long term correlations via memory effects which are quantified by the Hurst
parameter H. The right graph of Fig. 5 depicts the variance–time plot
(log(variance(Δ(m))) vs. log(sample size m)) with var(Δ(m)) = s2 m2(H-1) as used by
Gao et.al. [1]. The H parameter is determined from the slope by fitting a straight re-
gression line to the sample (m) range m < 20 (representing the data with sufficient sta-
tistics). The fit includes 95% confidence intervals of parameter estimates.

A significant long range correlation is observed due to the (short term) memory ef-
fect with time constant τM = 3000 TS = 60 s. As an alternative for estimating H the
method of Kettani & Gubner [14] is employed which applies to 2nd order self similar
or fractional ARIMA Gaussian processes. It estimates H via the lag-1 autocorrelation-
function ρn(1) and also provides an upper boundary of the 95% confidence interval:

()()[] n/51ˆlog15.0ĤĤ n2nn ±ρ+=δ± (4)

Table 1 lists results of the Hurst parameter evaluation of the Δ(P2) time series and
Γ-distribution fits to the relative frequencies of Δ(P2) for memory and learning time
constants τM, τL between 1000 TS and 100000 TS (computer simulations with 100 suc-
ceeding runs of 5000 TS simulation length each). For τM,L > 50000 the shape parame-
ters α, mean percept durations Δm, and standard deviations σ converge to those of the
previously reported simulations without memory and learning [3][27], i.e. with con-
stant vb. Large τL,M reduces the memory and learning effects and represents quasi
static preference ratio. Correspondingly the last row of the table exhibits vanishing
long range correlations (H = 0.5).

260 N. Fürstenau

Table 1. Parameters for P2 of simulated perceptual duration time series as obtained with
vb0=vbe and different memory / learning time constants τM, τL for μ=0.6, γ=60, τG=500, T=2,
τ=0.5, Jω=0.004: Hurst parameter, shape parameter, P2-duration mean Δm (in seconds), and
relative standard deviation of Γ–distribution fit to relative frequencies. δα, δH, are 95% confi-
dence intervals

τM τL ΗKG (± δΗ) Ηvar (± δΗ) α(±δα) Δm / s σ / Δm
1000 2000 0.61(0.06) 0.72(0.01) 3.5(0.2) 2.7 0.53
1000 100000 0.75(0.08) 0.86(0.01) 2.2(0.2) 2.7 0.67
2000 100000 0.71(0.07) 3.1(0.2) 2.5 0.57
3000 100000 0.68(0.07) 0.85(0.01) 3.6(0.3) 2.4 0.53
10000 100000 0.58(0.07) 4.3(0.3) 2.4 0.48
50000 100000 0.51(0.06) 4.4(0.3) 2.6 0.48

Increasing deviations from the Γ-distribution are observed with decreasing time

constants τM, τL. This corresponds to increasing long range correlations due to grow-
ing influence of deterministic as compared to stochastic (attention noise) contribu-
tions. Significant long range correlations (H > 0.5) are observed due to the attention
bias dynamics (memory and learning effect) if the time constant of the attention bias
τM < 50000 TS = 100 s. In addition the learning component of dvb/dt influences the
dynamics in the initial phase if |vbe – vb(t=0)| > 0 (M switches from 0 to 1), but only if
τL < 2000. If vbe=vb0 the bias vb corresponds to its preset equilibrium value vbe and
learning stops whereas the dynamic memory variation continues.

The self similarity (Hurst) parameter HKG (0.6 - 0.75 for tM ≤ 3000) as obtained
with the Kettani-Gubner method [14] is systematically smaller as compared to Hvar
(0.7 – 0.85) obtained with the variance - time method used by Gao et.al. [1] for the
evaluation of their bistability experiments. This may be due to the fact that equation
(4) for HKG was derived for exactly second order self similar processes which may not
be true for our case. Nevertheless, because an evaluation of autocorrelation functions
of simulated perceptual duration time series revealed no significant time dependence,
stationarity appears to be fulfilled and the general agreement of the simulations with
the experimental results in [1] (Hvar = 0.6 – 0.84, for different subjects) supports the
fractal character of the simulated reversal time series. This finding again fits into the
proposed picture of underlying nonlinear brain dynamics as derived from analysis and
theoretical modeling of EEG time series (e.g. [34][35][36]).

An interesting aspect of the simulation results in Table 1 concerns the comparison
with experimentally observed differences between binocular rivalry and ambiguous
figure reversal [37][41]. Whereas binocular rivalry appears to involve a more auto-
matic, stimulus driven form of competition [41] and exhibits no chaotic contribution
in the reversal time statistics [37][43], alternation rates of ambiguous figure reversal
on the other hand show strong response to selective attention, i.e. can be voluntarily
controlled by observers [41]. Moreover, when determining the correlation dimension
D2 from experimental reversal time series a significant deterministic contribution was
observed which was not the case for rivalry [37]. In terms of the present model bin-
ocular rivalry corresponds to large attention bias time constants τM, τL (last row of
Table 1) with vanishing long range correlations (H ≈ 0.5). The influence of memory
and learning vanishes under these conditions and the perceptual switching between
the different stimuli is reduced to the fatigue and noise induced alternation.

 A Computational Model of Bistable Perception-Attention Dynamics 261

4 Conclusion and Outlook

The reversal time statistics of alternating perception states is derived by computer
simulations using a recursive nonlinear dynamics model with a minimum architecture
based on perception-attention-memory (PAM) coupling. The model is mapped to a
simplified reentrant circuit within the association cortex including attentional feed-
back modulation of the ventral stream [25]. The dynamics of a phase oscillator per-
ception circuit is modulated by reentrant adaptive gain with delay T ≈ 40 ms for mod-
elling attention fatigue, and includes additive attention noise. The attention (=
feedback gain) in turn is biased by an adaptive preference parameter coupled to the
(filtered) perception state for simulating memory effects. Perceptual reversal time sta-
tistics are fitted by Γ-distributions with mean and variance obtained in the experimen-
tally observed range of some seconds [6][7][29][31]. Reversal time series exhibit long
range correlations characterized by a Hurst (2nd order self similarity) parameter H >
0.5 in agreement with experimental results of Gao et.al. [1]. Within the present model
these long range correlations are explicitely related to the dynamics of memory and
learning. The experimentally observed differences between binocular rivalry and am-
biguous figure reversal [37][41] can be attributed to different attention bias (memory)
time constants. The simulated attention–perception dynamics based on the ventral
loop of Fig.1 agrees with the experimental results of Nakatani & van Leeuwen [4] and
supports the assumption that attentional effort which is expressed by eye blinking and
saccade frequencies controls switching rates [29]. The present model furthermore
supports the early proposal of Poston & Stewart [17] and of Wilson [39] of a determi-
nistic catastrophe topology as the formal basis of the perception reversal dynamics.
Further numerical simulations will consider continuously changing stimulus parame-
ters (stimulus strength I, difference of meaning μ) for comparison with corresponding
experimental conditions. An extension of the present model aims at multistable per-
ceptual switching between three and more stationary states. This can be achieved by a
vector field approach, describing each percept by a separate set of PAM–equations.

Acknowledgement

I am indebted to Monika Mittendorf for help with the computer experiments, to H.
Nakatani of Riken Brain Science Institute for information on recent experimental re-
sults, and to J.B. Gao and K.D. White of Univ. of Florida for providing a preprint of
their work.

References

1. Gao, J.B., Merk, I., Tung, W.W., Billok, V., White, K.D., Harris, J.G., Roychowdhury,
V.P.: Inertia and memory in visual perception. Cogn. Process 7, 105–112 (2006)

2. Mandelbrot, B.B.: The fractal Geometry of Nature. German translation: Birkhäuser, pp.
265–270 (1991)

262 N. Fürstenau

3. Fürstenau, N.: Modelling and Simulation of spontaneous perception switching with am-

biguous visual stimuli in augmented vision systems. In: André, E., Dybkjær, L., Minker,
W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS (LNAI), vol. 4021, pp. 20–31.
Springer, Heidelberg (2006)

4. Ito, J., Nikolaev, A.R., Luman, M., Aukes, M.F., Nakatani, C., van Leeuwen, C.: Percep-
tual switching, eye movements, and the bus paradox. Perception 32, 681–698 (2003)

5. Blake, R., Logothetis, N.K.: Visual competition. Nature Reviews / Neuroscience 3, 1–11
(2002)

6. Orbach, J., Ehrlich, D., Heath, H.A: Reversibility of the Necker Cube: An examination of
the concept of satiation of orientation. Perceptual and Motor Skills 17, 439–458 (1963)

7. Borsellino, A., de Marco, A., Allazetta, A., Rinesi, S., Bartolini, B.: Reversal time distribu-
tion in the perception of visual ambiguous stimuli. Kybernetik 10, 139–144 (1972)

8. Hupe, J.-M., Rubin, N.: The dynamics of bistable alternation in ambiguous motion dis-
plays: a fresh look at plaids. Vision Research 43, 531–548 (2003)

9. Koch, C.: The Quest for Consciousness – A Neurobiological Approach, German Transla-
tion, Elsevier, München (2004)

10. Engel, A.K., Fries, P., Singer, W.: Dynamic Predictions: Oscillations and Synchrony in
Top-Down Processing. Nature Reviews Neuroscience 2, 704–718 (2001)

11. Engel, A.K., Fries, P., König, P., Brecht, M., Singer, W.: Temporal binding, binocular ri-
valry, and consciousness. Consciousness and Cognition 8, 128–151 (1999)

12. Srinavasan, R., Russel, D.S., Edelman, G.M., Tononi, G.: Increased synchronization of
magnetic responses during conscious perception. J. Neuroscience 19, 5435–5448 (1999)

13. Edelman, G.: Wider than the Sky. Penguin Books, pp. 87–96 (2004)
14. Kettani, H., Gubner, J.A.: A Novel Approach to the Estimation of the Long-Range De-

pendence Parameter. IEEE Trans. Circuits and Systems-II: Express Briefs 53, 463–467
(2006)

15. De Marco, A., Penengo, P., Trabucco, A., Borsellino, A., Carlini, F., Riani, M., Tuccio,
M.T.: Stochastic Models and Fluctuations in Reversal Time of Ambiguous Figures. Per-
ception 6, 645–656 (1977)

16. Merk, I.L.K., Schnakenberg, J.: A stochastic model of multistable perception. Biol. Cy-
bern. 86, 111–116 (2002)

17. Poston, T., Stewart, I.: Nonlinear Modeling of Multistable Perception. Behavioral Sci-
ence 23, 318–334 (1978)

18. Ditzinger, T., Haken, H.: A Synergetic Model of Multistability in Perception. In: Kruse, P.,
Stadler, M. (eds.) Ambiguity in Mind and Nature, pp. 255–273. Springer, Berlin (1995)

19. Levelt, W.J.M.: Note on the distribution of dominance times in binocular rivalry. Br. J.
Psychol. 58, 143–145 (1967)

20. Lamme, V.A.F.: Why visual attention and awareness are different. Trends in cognitive Sci-
ences 7, 12–18 (2003)

21. Tononi, G., Edelman, G.M.: Consciousness and Complexity. Science 282, 1846–1851
(1998)

22. Schuster, H.G., Wagner, P.A.: A Model for Neural Oscillations in the Visual Cortex: 1.
Mean field theory and the derivation of the phase equations. Biol. Cybern. 64, 77–82
(1990)

23. Kelso, J.A.S., Case, P., Holroyd, T., Horvath, E., Raczaszek, J., Tuller, B., Ding, M.:
Multistability and metastability in perceptual and brain dynamics. In: Kruse, P., Stadler,
M. (eds.) Ambiguity in Mind and Nature, pp. 255–273. Springer, Berlin (1995)

 A Computational Model of Bistable Perception-Attention Dynamics 263

24. Nakatani, H., van Leeuwen, C.: Transient synchrony of distant brain areas and perceptual
switching in ambiguous figures. Biol. Cybern. 94, 445–457 (2006)

25. Itti, L., Koch, C.: Computational Modelling of Visual Attention. Nature Reviews Neuro-
science 2, 194–203 (2001)

26. Robinson, D. (ed.): Neurobiology. Springer, Berlin (1998)
27. Fürstenau, N.: A chaotic attractor model of cognitive multistability. In: Proceedings IEEE

2004 Int. Conf. on Systems, Man and Cybernetics, IEEE cat. no. 04CH37583C, pp. 853–
859 (2004)

28. Hillyard, S.A., Vogel, E.K., Luck, S.J.: Sensory gain control (amplification) as a mecha-
nism of selective attention: electrophysiological and neuroimaging evidence. In: Hum-
phreys, G.W., Duncan, J., Treisman, A. (eds.) Attention, Space, and Action, pp. 31–53.
Oxford University Press (1999)

29. Nakatani, H., van Leeuwen, C.: Individual Differences in Perceptual Switching rates: the
role of occipital alpha and frontal theta band activity. Biol. Cybern. 93, 343–354 (2005)

30. Watts, C., Fürstenau, N.: Multistable fiber-optic Michelson Interferometer exhibiting 95
stable states. IEEE J. Quantum Electron 25, 1–5 (1989)

31. Zhou, Y.H., Gao, J.B., White, K.D., Merk, I., Yao, K.: Perceptual dominance time distri-
butions in multistable visual perception. Biol. Cybern. 90, 256–263 (2004)

32. Pitts, M.A., Nerger, J.L., Davis, T.J.R.: Electrophysiological correlates of perceptual re-
versals for three different types of multistable images. J. of Vision 7, 1–14 (2007)

33. Fürstenau, N.: Nonlinear dynamics model of cognitive multistability and binocular rivalry.
In: Proceedings IEEE 2003 Int. Conf. on Systems, Man and Cybernetics, IEEE cat. no.
03CH37483C, pp. 1081-1088 (2003)

34. Lutzenberger, W., Preissl, H., Pulvermüller, F.: Fractal dimension of electroencephalo-
graphic time series and underlying brain processes. Biol. Cybern. 73, 477–482 (1995)

35. Dafilis, M.P., Liley, D.T.J., Cadusch, P.J.: Robust chaos in a model of the electroencepha-
logram: Implications for brain dynamics. Chaos 11, 474–478 (2001)

36. Burke, D.P., de Paor, A.M.: A stochastic limit cycle oscillator model of the EEG. Biol.
Cybern. 91, 221–230 (2004)

37. Richards, W., Wilson, H.R., Sommer, M.A.: Chaos in percepts. Biol. Cybern. 70, 345–349
(1994)

38. Deco, G., Marti, D.: Deterministic Analysis of Stochastic Bifurcations in Multi-Stable
Neurodynamical Systems. Biol. Cybern. 96, 487–496 (2007)

39. Wilson, H.R.: Spikes, Decisions, and Actions. Oxford University Press (1999)
40. von der Malsburg, C.: The Coherence Definition of Consciousness. In: Ho, M., Miyashita,

Y., Rolls, E.T. (eds.) Cognition, Computation, and Consciousnesss, pp. 193–204. Oxford
University Press (1997)

41. Meng, M., Tong, F.: Can attention selectively bias bistable perception? Differences be-
tween binocular rivalry and ambiguous figures. J. of Vision 4, 539–551 (2004)

42. Hamker, F.H.: A dynamic model of how feature cues guide spatial attention. Vision re-
search 44, 501–521 (2004)

43. Lehky, S.R.: Binocular rivalry is not chaotic. Proc. R. Soc. Lond. B 259, 71–76 (1995)

On Constructing a Communicative Space in HRI

Claudia Muhl, Yukie Nagai, and Gerhard Sagerer

Applied Computer Science, Faculty of Technology, Bielefeld University,
33594 Bielefeld, Germany

{cmuhl,yukie,sagerer}@techfak.uni-bielefeld.de

Abstract. Interaction means to share a communicative space with oth-
ers. Social interactions are reciprocally-oriented activities among cur-
rently present partners. An artificial system can be such a partner for
humans. In this study, we investigate the effect of disturbance in human-
robot interaction. Disturbance in communication is an attention shift
of a partner caused by an external factor. In human-human interaction,
people would cope with the problem to continue to communicate because
they presuppose that the partner might get irritated and thereby shift
his/her interactive orientation. Our hypothesis is that people reproduce
a social attitude of reattracting the partner’s attention by varying their
communication channels even toward a robot. We conducted an experi-
ment of hybrid interaction between a human and a robot simulation and
analyzed it from a sociological and an engineering perspective. Our qual-
itative analysis revealed that people established a communicative space
with our robot and accepted it as a proactive agent.

Keywords: Human-Machine Interaction, Social Robotics, Disturbance
in Communication.

1 Introduction

Humans are social beings. The interaction partners use alternating demonstra-
tions and utterances, which corporately construct a communicative space. Such
immaterial space is social. People together establish a binary structured situa-
tion which is constructed through their communicative activities in each human-
human interaction (HHI) [1]. However we can wonder whether the interaction
with artificial partners is also social. Can double sided activity be performed?
What can help to clarify human-robot interaction (HRI) and make it easier?

Social activities can be expanded to inanimate and be build up among hu-
mans and artifacts. We can evaluate proactive social activities of a robot system
by means of its social embeddedness. Dautenhahn et al. [2] have been measuring
the degrees of embodiment, situatedness, and social embeddedness in differ-
ent biological and artificial systems. They give requirements for the design of
interaction-aware machines, which have a high social impact.

Many researchers have been attempting to find factors which are influencing
the human impression of robots [3]. For example, Goetz et al. [4] suggested

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 264–278, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Constructing a Communicative Space in HRI 265

that matching a task and the robot’s behavior to it would improve human-
robot cooperation. They designed two types of robots, a playful and a serious
one, and compared the people’s acceptance of the robots working either on an
entertaining or a serious task. People accepted better and interacted longer with
the robot which acted in an appropriate manner to the task. Minato et al. [5]
defined the familiarity of a robot with respect to its appearance and behavior.
They extended the uncanny valley proposed by Mori [6] and described how the
above two factors synergistically affect the people’s impression of a robot. Their
experiments using their android, in which the human response of breaking eye
contact was measured, showed that people dealt with the android as a human-
like agent. These studies had a major impact on the design of communication
robots, however, they focused only on the factors directly relevant to HRI.

Various activities in interactions and elements of communication have been
studied. We here also explore factors which could encourage HRI. We propose
to concentrate on a foremost counter-intuitive aspect: disturbance in an interac-
tion. In HRI this phenomenon is usually disliked and is regarded as a problem.
However the disturbance in interaction can be a positive factor. Focusing on
HHI, we notice accompanying effects in disrupted communications. If two peo-
ple are talking while a television or radio is turned on, different effects can be
observed: People continue to communicate with the partner and even intensify
their activities toward the other whose attention has been shifted to the addi-
tional visual and/or acoustic input. They can deal with the upcoming problems
because they presuppose an irritation. People know the strategies to regain the
interactive orientation.

We designed a robot simulation embedded with a mechanism of primal visual
attention. Although the robot shows only primitive reactions, it can motivate the
human partners to hold on the interaction. This enables us to explore the variety
of human reactions and to point out the observed social activity, which is highly
oriented toward the artificial partner. We suggest that people who are accepting
the robot as a situated intentional partner might dislike a distracted robot’s
attention, try to regain it, and make it re-engage in the interaction actively.

Here we investigate from a sociological perspective how disturbance in HRI
affects the behavior of human partners. We wish to add an analytical perspective
from the field of sociology to the continously emerging interdisciplinary discourse
in the field of robotics (e.g., [7,8]), We believe that a qualitative approach helps
to reveal effects induced by disturbance, to discover how people act and react
toward a robot, and thereby to contribute to the development of social robots.

In Section 2, we depict sociological communication theory of interaction be-
tween humans and the phenomenon of disturbance in communication. Our robot
simulation as a communication partner is explained in Section 3. In Sections 4
and 5, we introduce an experiment of HRI using the robot simulation and show
the results of the qualitative analysis of people’s reactions. The results are dis-
cussed from both a sociological and an engineering point of view in Section 6.
Finally, the conclusion and further research issues are given in Section 7.

266 C. Muhl, Y. Nagai, and G. Sagerer

2 Sociological Aspects of Communication

2.1 Involvement in Social Interaction

Every contact which takes place between humans, who are addressing others,
is social. Sociological systems theory denominates communications among part-
ners in attendance as interacting systems [9]. One criteria for communication is
the reciprocal percipience, whereas the presence or media mediated utterances
of both partners is a prerequisite to be acquired [10]. The reciprocity of aware-
ness of the coparticipants means that both are sharing contextual perceptions
which enable them to construct a common sense and to build a situated com-
mon ground. These operations open an intersubjective space of social actions
and expressions. Participating in an interaction system means to be engaged in
the reciprocal course of action with interactive practices and to shape it with
reciprocal addressed behavior [11].

Sequences of contributions of speech and actions like mimic, gesture, and
body movements are aligned with the partner in each interaction [12, 13]. All
elements of the dialog are organized as reciprocal turns which are successively
arranged in a turn-taking set. Each participant of an interaction is oriented
toward the partner by considering his/her individual situated involvement. This
phenomenon includes a sensitivity to the coparticipant and his/her situatedness.
Sacks et al. [14] named the context-aware possibility of referencing to partners’
actions and utterances in HHI recipient design. Garfinkel [15] takes constructivist
arguments into account when he describes interactions as situated in a specific
context, which is constructed by each interaction partner employing his/her own
category systems, commonsense knowledge, and practical reasoning to the actual
experience. Though the interaction partners achieve mutual understanding. As
a consequence of this individual construction of the specific social situation,
humans are able to act within their circumstances and to interprete others.
However communications consist of mutual constructions of the situation. Von
Glasersfeld [16, 17] takes into account that our reality is built upon experiences
and the utilization of feasible strategies. Every individual is constructing such
a space within his/her mind by using the perceived world and relating it to
former and actual experiences. This argument of constructivist theory and the
findings about social interaction characteristics inspire the idea of a constructed
communicative space.

2.2 Dealing with Disturbances

Communications are fragile and their alternating follow-up is often disrupted
by surrounding factors. What happens in case of addressing someone who has
lost concentration and is occupied with processing information derived from a
third person’s perspective? This shift of the attention will be recognized by
the partner and cause some reaction. Spontaneously appearing reasons might
effectuate severe irritations that can lead to discontinuity in the dialog processing
and the interaction might be terminated. By lifelong practice humans learn to

On Constructing a Communicative Space in HRI 267

deal with such disturbances. They can defy the problem, and thus an originally
negative cause leads to positive effects.

In HHI the problem of focusing the attention in a communication has been
investigated intensively. Social interactions can be studied in everyday life, and
such analysis revealed that humans moreover often implement disturbances in
communications themselves. Goodwin and colleagues [10, 12] analyzed multi-
ple face-to-face interactions of humans in different contexts. They discovered
that the ideal turn-taking in talk-in-interactions is often disturbed by the co-
participants themselves [10]. Such strategic elements are used in order to evalu-
ate whether the partner’s co-orientation is still focused on the ongoing interac-
tion [12].

Those techniques are applied to organize the exchange of speech and gaze,
and, if inconvenience is discovered, repairing mechanisms are initiated [18]. For
example, the speaker often stops him-/herself and restarts the sentence with
identical words. Such explicitly evoked breaks in the verbal flow ensure about
the interaction partner’s concentration on the mutual topic. As a positive effect,
those disturbances affirm the interaction and the dialog can be continued.

3 A Communication Robot with Primal Visual Attention

In order to study the effect of disturbance in HRI, we developed a robot sim-
ulation of which attention can be naturally distracted by a visual disturbance.

3.1 Robot Simulation

Fig. 1 (c) shows a robot simulation used in our experiment, which was originally
developed by Ogino et al. [19]. The robot has only the face with an infant-like
appearance, thus being considered adequate to examine the nature of HRI.

In our experiment, the robot interacted with a human partner by changing
its gaze direction as well as facial expression in response to visual input. The
gaze direction was controlled so that communication partners could perceive
that the robot was looking at a likely interesting location in the environment.
The explanation of the attention mechanism is given in the next section. Facial
expression was also used to facilitate the interaction. The robot, for example,
showed pleased expression by rising the eyebrows and opening the mouth when
it could stably look at a static target.

3.2 Mechanism of Primal Visual Attention

As the mechanism for the robot’s vision, we adopted the model of saliency-based
visual attention proposed by Itti et al. [20,21]. The model based on the neuronal
mechanism of primates enables the robot to imitate the primary attention of
primates, who can rapidly detect and gaze at salient locations in their views.
A salient location is here defined as a spot which locally stands out from the
surroundings with respect to its primitive visual features: color, intensity, ori-
entation, flicker, and motion [21]. For example, a human face can be detected

268 C. Muhl, Y. Nagai, and G. Sagerer

(a) Input image. (b) Saliency map. (c) Robot’s face
simulation.

Fig. 1. A scene without disturbance. The robot is gazing at the red cup held by the
human partner because of its outstanding color and motion.

(a) Input image. (b) Saliency map. (c) Robot’s face
simulation.

Fig. 2. A scene with disturbance, a black and white circle. The robot is looking at the
disturbance because of its highly contrasted intensity and motion, although the human
partner tries to attract its attention by showing the yellow cup and shaking her left
hand.

as salient because of its intrinsic features, i.e., the skin color and the compound
form, as well as of the motion even though no face model is applied to. The
saliency model therefore enables the robot to detect likely important locations
in the interaction without any top-down knowledge about the situation or the
communication partners. The effectiveness of the model has been demonstrated
in the studies of social robot learning and social robot interaction (e.g., [22,23]).

Fig. 1 (a) shows an example of the visual input captured in the experiment.
The human partner was picking up and showing a red cup to the robot in a
blue background. Fig. 1 (b) gives the corresponding saliency map, in which the
degree of saliency is represented by the brightness of the pixels. The map was
generated by calculating the difference between each pixel and the surrounding
ones, which highlighted the prominent pixels in the image. Refer to [20,21] for
more detailed mechanism. In our HRI experiment, the robot gazed at the most
salient location in each image frame. In the scene shown in Fig. 1 (a), the red
cup held in the right hand of the human partner had been attended to for a
while because of its outstanding color and motion. The current position of the
attended location and its trajectory are denoted by a red circle with green lines.

On Constructing a Communicative Space in HRI 269

The robot shown in Fig. 1 (c) was captured when it was gazing at the red cup.
The robot’s eyes were controlled so that human partners could perceive that it
was responding to their action and was looking at an interesting location for it.
Note that, in our experiment, human partners could only see the simulation of
the robot’s face, but not the input image or the saliency map.

3.3 Disturbance in Robot’s Vision

To distract the visual attention of the robot during the interaction, we created
a salient object superimposed in the input image. Fig. 2 shows a scene captured
while a disturbing object was put at the upper-right corner of the image. The
object was designed as a white circle with a smaller black circle, which vibrated
randomly. Because of the highly contrasted intensity and the motion, it attracted
mostly, but not certainly, the robot’s attention. In Fig. 2, the robot gazed at the
disturbing object although the human partner tried to attract its attention by
showing the yellow cup and shaking her left hand. Note that the disturbing
object was presented only in the robot’s vision, not in the real environment, and
therefore human partners could not discover anything at the location where the
robot was looking. The initial position of the disturbance had been fixed at the
upper-left or upper-right corner of the image.

4 Method for HRI Experiment

We conducted a HRI experiment using our robot simulation. By controlling
the disturbance in the robot’s vision, we investigated its effect on the following
behavior of human partners.

4.1 Participants

Twenty-two university students (sixteen males and six females) participated in
the experiment as communication partners. Sixteen of them major in computer
science and thus are familiar with robotic systems, while the others studying
sociology or linguistics are not. All of them saw our robot for the first time in
this experiment.

4.2 Setting

Fig. 3 (a) illustrates the experimental setup, and (b) shows a sample scene of the
experiment. A human partner was seated at a table facing the robot simulation
displayed on a computer monitor. The window for the simulation was enlarged
to fill the screen so that the partners could get the impression of the embodied
robot with a monitor head. A FireWire camera for the robot’s vision was placed
on the monitor. No other sensors or actuators, e.g., microphone or speaker, were
used, meaning the robot could respond only visually but not by other modalities.
Another camera beside the monitor videotaped the interaction between the robot
reflected on a mirror and a partner, which was used for the later analysis.

270 C. Muhl, Y. Nagai, and G. Sagerer

human

monitor
showing

robot’s face

camera for
robot’s vision

camera

mirror

(a) Top-view of the experimental environment.

(b) A scene of the videotaped HRI, in which the
robot is reflected on the mirror.

Fig. 3. Experimental setup for HRI

4.3 Procedure

The human partners were asked to teach some tasks, e.g., stacking cups, serving
tee, and sweeping on the table, to the robot by using prepared objects. They were
allowed to choose the objects and to decide what to and how to teach with them.
Nothing about the usage of their gesture or speech was instructed. That is, they
could use all their communication channels if they wanted although they were
told of the robot’s capability, i.e., it could perceive and respond only visually,
beforehand. The mechanism of the robot’s visual attention was not explained to
them.

The interaction with the robot went on for five to more than thirty minutes
depending on the partner. Over the interaction, the disturbing object was pre-
sented in the robot’s vision three to thirty times at a maximum. The timing to
insert and to remove the disturbance was decided by an experimenter responding

On Constructing a Communicative Space in HRI 271

to the partner’s reaction. In other words, the partner’s efforts to reattract the
robot’s attention did not directly but indirectly effected it although they could
not realize that the experimenter was controlling the disturbance.

4.4 Sociological Analysis

Qualitative sociological methodology helps to identify concrete human behavior
and social interaction in a contextual setting [24]. It seeks to describe the under-
lying social patterns which occur as concrete phenomena in the real world. The
resource for this method is data taken from everyday phenomena like dialogs.
Here communication patterns can be studied and framed. In this experiment we
make use of ethnomethodological conversation analysis to investigate the video
data of the HRI.

Conversation analysis is a qualitative method to evaluate the speech and ac-
tion processes of individuals in a continuous interaction situation [10]. This close
grained analytical technique starts with describing prominent elements from the
empirical data. With the categorization of action patterns, the interaction struc-
ture can be revealed.

The goal of the sociological reasoning in our HRI experiment is to evaluate the
interactive potential of irritation. The disturbance of the robot becomes part of
the interaction system, meaning it causes irritation in the human partners that
leads to a change in their behavior.

5 Results of People’s Responses to Robot’s Disturbance

The human partners were showing different strategies concerning eye-contact in
the interaction. Some of them mostly concentrated on their own actions and
thus inspected the robot’s gaze immediately after having fulfilled a task. Others
checked the robot’s attention during the activity. When they recognized extraor-
dinary changes in the robot’s gaze behavior, all of them got irritated and swerved
their task. By ascertaining a differentiated set of actions in case of disturbance,
we searched for specific features in the human behavior. Here we focused on
aspects that occurred during the interactions affected by the disturbance.

5.1 Categorization of People’s Frequent Responses

Analyzing the individual performances, we found a set of main strategies over
all human participants in the experiment. People were directed toward the robot
and attended to evaluate the cause of its behavior. Summing these observations,
we propose a map shown in Fig. 4, which is locating categories of the people’s
responses caused by the robot’s disturbance. We have five categories scaled on
two axes: the physical and psychological distance to the robot and the implied
change in the subjects’ activity, strong enough to recover the relationship in the
ongoing HRI.

272 C. Muhl, Y. Nagai, and G. Sagerer

Make noise

physical/psychological distance to robot

ch
an

ge
 in

 a
ct

iv
ity

/r
el

at
io

ns
hi

p

4) Get into
 robot’s attention

2) Attract robot’s
attention to myself

3) Attract robot’s
attention to object

5) Reflect for
myself

1) Build triadic
interaction

Reduce
activity

Test
hypothesis

Point to object

Show object

Follow the line
of robot’s gaze

Start to talk

Amplify movement

Call robot

Talk louder

Approach to robot

Move into the line
of robot’s gaze

Fig. 4. People’s responses to the robot’s disturbance. Five categories are created on
a two-dimensional map with reference to the physical/psychological distance to the
robot and the change in the activity/relationship.

(1) Building triadic interaction: While interacting with the robot, some
participants followed the line of the robot’s gaze and tried to achieve joint at-
tention when the robot had been disturbed (see Fig. 5 (a)). At the same time,
they often commented verbally on the expected direction of the robot’s gaze,
although there would not be anything to discover. This reaction shows situated
involvement. That is, a human partner follows the robot’s action and attributes
a participant’s role to it. This phenomenon marks the evolvement of a triadic
interaction, which includes the surrounding context.

(2) Attracting the robot’s attention to oneself: The next category rep-
resents a huge variety in the reactive intensity. The human partners began ex-
aggerating their already performed actions. They enlarged their gestures and
movement (see Fig. 5 (b)). Others called the robot, just started to talk to the
robot or made noise, even though they already had tested the robot would not
react to acoustic signals (see Fig. 5 (c)). They seemed to try to attract the robot’s
attention to themselves.

(3) Attracting the robot’s attention to an object: The third category
assembles strategies that could possibly attire the robot’s attention back to the
object, i.e., getting closer to the robot while demonstrating the object (see Fig. 5
(d)). The object had been shaken or closely presented to the robot. Some people
also pointed to the object to re-attract the robot’s gaze.

(4) Getting into the robot’s attention: Reaching closer to the robot builds
the fourth category of action. Here we sum movements like a physical approach

On Constructing a Communicative Space in HRI 273

(a) Following the line of the robot’s gaze.

(b) Amplifying movement. (c) Making noise.

(d) Approaching to the robot and showing an object.

(e) Moving into the line of the
robot’s gaze.

(f) Reducing his activity and
testing his hypothesis.

Fig. 5. Sample scenes of the people’s responses caused by the disturbance

of the partners to the robot. Some of them even spatially moved into the line of
the robot’s gaze (see Fig. 5 (e)). As a consequence, they became more present
to the robot and decreased the psychological distance to it.

(5) Reflecting to oneself: The fifth category assembles the biggest and small-
est change in the human activity compared to their former way of action toward

274 C. Muhl, Y. Nagai, and G. Sagerer

the robot. Some of them tested their hypothesis on the robot’s functions by in-
creasing and others by reducing the intensity of their activity (see Fig. 5 (f)).
This included the sequential variation of their former applied action patterns
toward the robot.

In this experiment, humans performed social actions toward the robot. Depend-
ing on the complexity of the interaction and its direction, we consider three
groups of observed behavior: a triadic interaction (category 1), a dyadic one
(categories 2 to 4), and other (category 5), in which people did not direct inter-
active utterances but rather went along with inner reflections.

5.2 Diversity of People’s Responses

As expected, people interacting with the robot, which was attracted by an emerg-
ing disturbance, showed an immediate change in their behavior when they re-
alized the interaction had been affected. Some reactions like little smiles and
very brief frowns came up slightly and were presumably unconscious. Therefore
only the most common reactions of the human partners have been listed and
classified.

We observed the tendency to repair the situated disorder. Our findings prove
that human action is likely to be varied in case the expected results are not
relieved. The concrete reactions demonstrate a renewed conceptualization of the
situation and the modification of the human hypothesis on the robot’s functions,
which reminds of recipient design in HHI, which also allows to flexibly change
the expectations. All of these strategies tend to refresh and repair the irritated
flow of communication. After the appearance of a disturbance, the completion of
the primordial task often has been abandoned. In these cases the communicative
process was reestablished and the interaction was mostly even intensified.

6 Discussions

6.1 Constructing Communicative Spaces in Interactions

Each interaction in this HRI experiment opened a new communicative space.
Both the robot and the human partner contributed to it. In oder to evaluate
the impact of situatedness and social dynamics, individual differences should be
taken into account. The usage of action, speech, and interpretation as well as
their relevance to the interactions became evident. The human partners used so-
cial repairing mechanisms known in sociological conversation analysis. One effect
of the disturbance is the encouragement of gestures and utterances. The robot’s
distraction motivated the partners to reveal strategies to regain its attention
and to recover a turn-taking process. This phenomenon can also be observed
in participants in HHI. People use the turn-taking to exchange the information
efficiently and also apply repair mechanisms to vanquish distractions.

We could also find differences in the proactive engagement of the humans.
Their interaction strategies seem to vary corresponding to their familiarity with

On Constructing a Communicative Space in HRI 275

robot systems. As people applied recipient design, they introduce background
knowledge and projections derived from the expectations to the actual interac-
tion. If the participants take their background knowledge into account, we need
to find which specific knowledge they bring in. In our experiment, for example,
people studying computer science showed a systematic behavior to test what
could have caused the mistake in the interaction. Our evaluation demands fur-
ther investigations concerning the variety of the interactive behavior influenced
by the background knowledge of humans.

Although we did not develop an embodied robot, our robot simulation has
been treated as an interaction partner, which is sharing the same spatial situa-
tion. This observation corresponds to the discussion given by Kidd and Breazeal
[25]. They compared interactions with either a physically present robot or its
presentation on a screen, and could not find a significant difference in the par-
ticipants’ responses. However they presented a real robot, not simulation, in
both cases. These findings allow us to summarize that although embodiment is
important, it is not the only factor which influences the success of an HRI.

6.2 Potential of Robot’s Primal Visual Attention in HRI

In developing our communication robot, we introduced the primal attention
mechanism based on saliency for the robot’s vision. A more common approach
to the design of social robots is to apply specific capabilities to detect human
features, e.g., a face, a body, and skin color, to their vision systems. Such mech-
anisms usually function well under well-defined conditions, however, they often
face problems in unexpected situations and even in presupposed ones. A reason
is that applying top-down knowledge develops the frame problem. In contrast,
our robot was not embedded with any task-specific or situation-specific capa-
bilities but instead used a fully bottom-up model to interact with humans. The
qualitative analysis of the videotaped input image shown in Fig. 1 (a) revealed
that the robot had been looking at likely important locations in the interactions.
The robot, for example, gazed at an object when a human partner was handling
it, and sometimes shifted its attention to the partner’s face, which looked as if
the robot tried to check the ongoing interaction. We will further analyze how
valuable locations can be attended to by the model.

The attention behavior of the robot also gave the impression of a proactive
and infant-like agent to the partners. When the robot was distracted by a vi-
sual disturbance, some human partners tried to follow the line of its gaze in
order to achieve joint attention (see Fig. 5 (a)). Joint attention [26] is a ba-
sis of triadic interaction, which expands the communicative space between the
robot and a human partner to the third party. Compared to the former studies
(e.g., [27, 28, 29]), in which a robot was able to only follow the human gaze,
our robot could take the initiative of joint attention. It indicates that our robot
was allowed to proactively explore the communicative space, which is considered
as an important capability for a social robot. Another valuable finding is that
the human partners modified their task-demonstrating actions when they real-
ized the robot’s distracted attention. They, for example, exaggerated actions by

276 C. Muhl, Y. Nagai, and G. Sagerer

(a) iCat, a desktop robot de-
veloped by Philips Research.

(b) BARTHOC, an anthro-
pomorphic robot.

Fig. 6. Examples of embodied communication robots

making the movement larger and closely showing objects, which are also ob-
served in parental actions toward infants [30]. The phenomena are moreover
suggested to help robots as well as infants to learn the actions [31, 23]. Nagai
and Rohlfing [23] have showed that the same attention mechanism as used for
our robot can take advantage of parental infant-directed action in robot’s action
learning. We intend to further investigate how the robot’s attention behavior
influences the action demonstration of human partners.

7 Conclusion and Future Issues

In designing communicative robots, we can profit from knowledge of HHI. There-
fore the focus of this experiment has been a common issue in human communica-
tion, i.e., the disturbance. We confronted human partners with a communication
robot which was not always attentive but diverted, and collected their reactions
to it. The results can be a outlined positive: even if the robot was equipped only
with a simple attention mechanism, it enabled the partners to treat it as a social
partner. They used additional communication channels and increased their ut-
terances to restore the dialog. The effects caused by disturbance reinforced some
human partners to help the robot to presume the meaning and the intention of
their actions.

For investigating the impact of embodiment, we propose a direct compari-
son with other robots. Fig. 6 presents two examples: the pet-like iCat and the
anthropomorphic BARTHOC. Both robot systems could be equipped with the
same attention mechanism and comparative studies could be driven. We suppose
a direct comparison would reveal multiple effects.

Acknowledgments. This work has partly been funded by a fellowship of the
Sozialwerk Bielefelder Freimaurer e.V.

On Constructing a Communicative Space in HRI 277

References

1. Pörksen, B.: Die Gewissheit der Ungewissheit. Gespräche zum Konstruktivismus.
In: jedem Augenblick kann ich entscheiden, wer ich bin. Heinz von Foerster über
den Beobachter, das dilaogische Leben und eine konstruktivistische Philosophie des
Unterscheidens, Carl-Auer-Systeme Verlag (2001)

2. Dautenhahn, K., Ogden, B., Quick, T.: From embodied to socially embedded agents
- implications for interaction-aware robots, December 2001 (2002)

3. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots.
Robotics and Autonomous Systems 42, 143–166 (2003)

4. Goetz, J., Kiesler, S., Powers, A.: Matching robot appearance and behavior to tasks
to improve human-robot cooperation. In: Proceedings of the 12th IEEE Interna-
tional Workshop on Robot and Human Interactive Communication, pp. 55–60.
IEEE Computer Society Press, Los Alamitos (2003)

5. Minato, T., Shimada, M., Itakura, S., Lee, K., Ishiguro, H.: Evaluating the human
likeness of an android by comparing gaze behaviors elicited by the android and a
person. Advanced Robotics 20(10), 1147–1163 (2006)

6. Mori, M.: Bukimi no tani (the uncanny valley). Energy 7(4), 33–35 (1970)

7. Asada, M., MacDorman, K.F., Ishiguro, H., Kuniyoshi, Y.: Cognitive developmen-
tal robotics as a new paradigm for the design of humanoid robots. Robotics and
Autonomous Systems 37, 185–193 (2001)

8. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a sur-
vey. Connection Science 15(4), 151–190 (2003)

9. Luhmann, N.: Social Systems. Stanford University Press, Stanford, CA (1995)

10. Goodwin, C., Heritage, J.: Conversation analysis. Annual Reviw of Anthropol-
ogy 19, 283–307 (1990)

11. Schütz, A.: Collected Papers, The problem of the social reality. vol. 1, Nijhoff, The
Hague (1962)

12. Goodwin, C., Goodwin, M.H.: Conurrent operations on talk: Notes on the interac-
tive organization of assessments. In: IPRA Papers in Pragmatics, vol. 1, pp. 1–54
(1987)

13. Goodwin, C.: Discourse of the Body, pp. 19–42. Palgrave/Macmillan, New York
(2003)

14. Sacks, H., Schegloff, E.A., Jefferson, G.: A simplest systematics for the organization
of turn-taking for conversation. Language 50, 696–735 (1974)

15. Garfinkel, H.: Studies in Ethnomethodology. Prentice-Hall, Englewood Cliffs (1967)

16. Glasersfeld, E.v.: Wege des Wissens. Konstruktivistische Erkundungen durch unser
Denken. In: Fiktion und Realität aus der Perspektive des radikalen Konstruktivis-
mus, pp. 45–61. Carl-Auer-Systeme Verlag (1997)

17. von Glasersfeld, E.: Radikaler Konstruktivismus. Ideen, Ergebnisse, Probleme.
Suhrkamp, Frankfurt a. M (1995)

18. Goodwin, C.: Notes on story structure and the organization of participation. Cam-
bridge: Cambridge University Press (1984)

19. Ogino, M., Watanabe, A., Asada, M.: Mapping from facial expression to inter-
nal state based on intuitive parenting. In: Proceedings of the Sixth International
Workshop on Epigenetic Robotics, pp. 182–183 (2006)

20. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for
rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 20(11), 1254–1259 (1998)

278 C. Muhl, Y. Nagai, and G. Sagerer

21. Itti, L., Dhavale, N., Pighin, F.: Realistic avatar eye and head animation using a
neurobiological model of visual attention. In: Proceedings of the SPIE 48th Annual
International Symposium on Optical Science and Technology, pp. 64–78 (2003)

22. Kemp, C.C., Edsinger, A.: What can i control?: The development of visual cate-
gories for a robot’s body and the world that it influences. In: Proceedings of the
5th International Conference on Development and Learning (2006)

23. Nagai, Y., Rohlfing, K.J.: Can motionese tell infants and robots ”what to imitate”?
In: Proceedings of the 4th International Symposium on Imitation in Animals and
Artifacts, pp. 299–306 (2007)

24. Bergmann, J.R.: Handbuch Qualitative Sozialforschung. In: Studies of
Work/Ethnomethodologie, München, Psychologie Verlags Union, pp. 269–272
(1991)

25. Kidd, C.D., Breazeal, C.: Effect of a robot on user perceptions. In: Proceedings
of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,
September 28 - October 2, 2004, IEEE/RSJ (2004)

26. Moore, C., Dunham, P.J. (eds.): Joint Attention: Its Origins and Role in Develop-
ment. Lawrence Erlbaum Associates, Mahwah (1995)

27. Scassellati, B.: Theory of mind for a humanoid robot. Autonomous Robots 12,
13–24 (2002)

28. Nagai, Y., Hosoda, K., Morita, A., Asada, M.: A constructive model for the devel-
opment of joint attention. Connection Science 15(4), 211–229 (2003)

29. Nagai, Y., Asada, M., Hosoda, K.: Learning for joint attention helped by functional
development. Advanced Robotics 20(10), 1165–1181 (2006)

30. Brand, R.J., Baldwin, D.A., Ashburn, L.A.: Evidence for ’motionese’: modifications
in mothers’ infant-directed action. Developmental Science 5(1), 72–83 (2002)

31. Rohlfing, K.J., Fritsch, J., Wrede, B., Jungmann, T.: How can multimodal cues
from child-directed interaction reduce learning complexity in robot? Advanced
Robotics 20(10), 1183–1199 (2006)

Natural Language Descriptions of Human

Behavior from Video Sequences

Carles Fernández Tena1, Pau Baiget1, Xavier Roca1, and Jordi Gonzàlez2

1 Computer Vision Centre, Edifici O. Campus UAB, 08193, Bellaterra, Spain
2 Institut de Robòtica i Informàtica Ind. UPC, 08028, Barcelona, Spain

{perno,pbaiget,xroca,poal}@cvc.uab.es

Abstract. This contribution addresses the generation of textual de-
scriptions in several natural languages for evaluation of human behavior
in video sequences. The problem is tackled by converting geometrical in-
formation extracted from videos of the scenario into predicates in fuzzy
logic formalism, which facilitates the internal representations of the con-
ceptual data and allows the temporal analysis of situations in a deter-
ministic fashion, by means of Situation Graph Trees (SGTs). The results
of the analysis are stored in structures proposed by the Discourse Rep-
resentation Theory (DRT), which facilitate a subsequent generation of
natural language text. This set of tools has been proved to be perfectly
suitable for the specified purpose.

1 Introduction

The introduction of Natural Language (NL) interfaces into vision systems is
becoming popular, especially for surveillance systems. In these surveillance sys-
tems, human behavior is represented by scenarios, i.e. predefined sequences of
events. The scenario is evaluated and automatically translated into text by an-
alyzing the contents of the images over time, and deciding on the most suitable
predefined event that applies in each case. Such a process is referred to as Human
Sequence Evaluation (HSE) in [3]. HSE takes advantage of cognitive capabilities
for the semantic understanding of human behaviors observed in image sequences.

This automatic analysis and description of temporal events was already tack-
led by Marburger et al. [7], who proposed a NL dialogue in German to retrieve
information about traffic scenes. More recent methods for describing human ac-
tivities from video images have been reported by Kojima et al. [6], and automatic
visual surveillance systems for traffic applications have been studied by Nagel [8]
and Buxton and Gong [2], among others. These approaches present one or more
specific issues such as textual generation in a single language, surveillance for
vehicular traffic applications only, restrictions for uncertain data, or very rigid
environments, for example.

We aim to build a system which addresses the aforementioned drawbacks by
following the proposals of HSE, in order to generate NL descriptions of human
behavior appearing in controlled scenarios, for several selectable languages. Such

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 279–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

280 C. Fernández Tena et al.

NS

CS

VS

Conceptual representation and basic reasoning

Situation analysis

Natural Language text generation

Geometric detection and tracking

Descriptions in Natural Language

Linguistic-oriented logic predicates

FMTHL facts

Quantitative descriptions

(trajectories)

(Post-)Morphology *

Text Generation Rules *

DRS Rules *

Lexicons *

Situation Graph Tree

Precomputed facts

Terminology

Language models

Fig. 1. General schema of the stages and interfaces related to the current text genera-
tion system. The left acronyms represent different sub-systems, the boxes describe the
main processes that produce changes in data representations, and the right components
specify some of the external tools required by the processes. An asterisk remarks that
a resource is language-dependent.

a system builds upon three disciplines, namely computer vision, knowledge repre-
sentation, and computational linguistics. Thus, the overall architecture consists
of three subsystems, see Fig. 1; a Vision Subsystem (VS), which provides the
geometric information extracted from a video sequence by means of detection
and tracking processes, a Conceptual Subsystem (CS), which infers the behavior
of agents from the conceptual primitives based on the geometric information ex-
tracted by the VS, and a Natural Language Subsystem (NS), which in principle
comprises the NL text generation, but also becomes a good stage for providing
a complete interface of communication with a final user [8]. Due to space limi-
tations, the extraction of visual information is not treated here. Details can be
found, for example, in [10]. We proceed on the basis that structural information
consisting of geometrical values are available over time.

The obtention of knowledge derived from visual acquisition implies a nec-
essary process of abstraction. In order to understand the quantitative results
from vision, it becomes fundamental to reduce the information to a small num-
ber of basic statements, capable of detecting and relating facts by means of
qualitative derivations from what has been ‘seen’. The conversion of observed
geometrical values over time into predicates in a fuzzy logic formalism allows
to reach an intermediate state, the conceptual representation layer, which fa-
cilitates schematic representations of the scenarios [1] and, in addition, enables
characterizations of uncertain and time-dependent data extracted from image
sequences. Next, a classification can be performed by integrating these resulting
facts into preconceived patterns of situations. Such an inference system produces
not only an interpretation for the behavior of an agent, but also reasons for its
possible reactions and predictions for its future actions [4].

Natural Language Descriptions of Human Behavior from Video Sequences 281

(a) (b)

Fig. 2. Original pedestrian crosswalk scene (a) and groundplane schematic map of the
main regions considered in this scene (b). Pedestrian trajectories have been included
in the scheme. Black circles represent a stop on the waiting line.

Discourse Representation Theory seems to be of particular interest for the con-
version from conceptual to linguistic knowledge, since it discusses algorithms for
the translation of coherent NL textual descriptions into computer-internal repre-
sentations by means of logical predicates [5]. The reverse step is also possible, so
that the results of the conceptual analysis are stored into semantic containers,
the so-called Discourse Representation Structures (DRS), which facilitate the
construction of syntactical structures containing some given semantic informa-
tion. A final surface realization stage over these preliminary sentences embeds
the morphological and orthographical features needed for obtaining final NL
textual descriptions.

Next chapter describes the chosen scenario, and explains how the evaluation
of human behaviors is achieved from spatiotemporal data and prior knowledge
about the scene. Section 3 details the mechanisms which convert high-level pred-
icates obtained from situational analysis into NL textual descriptions. Some ex-
perimental results for Catalan, English, and Spanish are shown in Section 4.
Finally, Section 5 concludes the paper and suggests future lines of work.

2 Evaluation of Human Behaviors in Video Sequences

The chosen scenario for evaluation of basic human behaviors has been a cross-
walk, see Fig. 2. On it, a certain number of pedestrians, each one with a different
behavior, start from one of the sidewalks and cross the road to get to the other
side. At first, the presence of traffic vehicles has been omitted.

2.1 The Conceptualization Step

The structural knowledge acquired by the VS needs to be abstracted and con-
verted into logic knowledge in order to facilitate further manipulations and
reasonings. To do so, trajectories and other types of estimated spatiotemporal

282 C. Fernández Tena et al.

Spatiotemporal analysis Contextual/Behavioral analysis

Temporally-valid
predicates

Always-valid facts
(prior knowledge)

Linguistic-oriented
high-level predicates

Graph traversal
(Conversion to FMTHL)Conceptual

database

(FMTHL)
Scene

Model

Agent

Trajectories

Conceptual
inferences

Situation

Graph Tree

(To
the NS)

(From
the VS)

Fig. 3. Quantitative data (e.g. trajectories from the agents) is evaluated upon the pre-
defined facts from the scene model, and thus converted into qualitative FMTHL knowl-
edge. On the other hand, the behavioral model encoded into a SGT is traversed and
converted into FMTHL conditions, too. Finally, the entire set of asserted spatiotempo-
ral qualitative results is logically classified by the traversed SGT, and linguistic-oriented
predicates are generated as a result.

information are associated to basic concepts identifying recognizable simple ac-
tions, which can be described by using elementary verb-phrases (e.g., ‘approach-
ing to location’, ‘turning’, ‘has speed’). These conceptual predicates are not yet
proper linguistic expressions, but system-internal representations resulting from
classification and abstraction processes.

Fuzzy Metric Temporal ‘Horn’ Logic (FMTHL) has been conceived as a suit-
able mechanism for dealing with uncertain, time-dependent information [11].
This formalism allows to represent knowledge explicitly and hierarchically, not
coded into conditional probabilities, and enables to manage data requiring both
temporal and fuzzy properties [4]. In our case, observed trajectories from the
agents are analyzed within a predefined scene model, see Fig. 3. As a result,
geometrical, quantitative values are acquired, such as postures, velocity, or po-
sitions for the agents. After an abstraction process is carried out, the reasoning
system is conferred a capability for representing uncertain qualitative descrip-
tions inferred from the quantitative data. The logic productions evolve over time
as the received data does, so this conceptual knowledge is also time-delimited,
and thus the development of events can be comprehended and even anticipated.

The qualitative knowledge extracted from quantitative results is encoded us-
ing these fuzzy membership functions, so that the generated predicates are re-
lated to conceptual ‘facts’ for each time-step. For example, a collection of po-
sitions over time allows to derive fuzzy predicates such as ‘has speed(zero)’,
‘has speed(small)’, or ‘has speed(very high)’, depending on the displacements of
the agent detected between consecutive points of time.

2.2 Agent Trajectories

Trajectory files are ordered collections of observed values over time for a certain
agent, which are obtained as a result of the tracking processes for the agents [10].
From the evolution of the states of the agent, a certain behavior, i.e. a sequence

Natural Language Descriptions of Human Behavior from Video Sequences 283

of situated actions, will be assumed. Four agent trajectories have been obtained,
which consist of a set of FMTHL logical predicates of type has status. These
predicates comprise the required knowledge for the human behavior analysis in
the following scheme or status vector for the agent at time t:

t ! has status(Agent, X0, Y0, Theta, Vel).

As can be seen, the has status predicates for the interpretation of human ac-
tions contain five fields so far, all of them being identifiers to entities and objects
detected during the tracking process, or otherwise concrete geometrical values
for spatiotemporal variables. The Agent field gives information about the name
given to the agent. The rest of the fields give quantitative values to the geo-
metrical variables needed: 2-D spatial position in the ground plane (X0, Y0),
angle of direction (Theta), and instant velocity (Vel). The Vel field provides the
necessary information for determining the action being performed by the agent
(i.e. standing, walking, running).

2.3 Scene Modeling

The scenario in which pedestrians perform their actions has been included as an
additional source of knowledge for the reasoning stage. The geometrical modeling
of the location has been done first in a ground plane bidimensional approach, so
a set of spatial descriptors are declared to distinguish the relevant topographic or
interesting elements in the scene, see Fig. 2 (b). This source provides the spatial
distribution taken into account for the given situation.

A second source of knowledge contains other logical statements that will con-
fer semantic significance on the initial geometrical descriptors of the scene. The
different regions can be enclosed into different categories (sideway, road, cross-
walk) and can also be given different attributes (walking zone, waiting line, exit).
This step is necessary for identifying significative regions, so the movements and
interactions of the agents can be contextualized by means of valid identifiers.
These geometrical considerations have been encoded using FMTHL predicates.

2.4 Situation Graph Tree

Situation Graph Trees (SGTs) are hierarchical structures used to model the
knowledge required from human behavior analysis in a specific discourse do-
main [3]. A SGT has been designed for the crosswalk scene, see Fig. 4. The
conceptual knowledge about a given actor for a given time step is contained in
a so-called situation scheme, which constitutes the basic components of a SGT.
The knowledge included in these components is organized in two fields: state
predicates and action predicates.

– First, a set of logic conditions describes the requirements that need to be
accomplished to instantiate that situation. The assertion of these state pred-
icates is performed by evaluating the semantic predicates inferred from the
agent status vectors obtained at the visual stage.

284 C. Fernández Tena et al.

F
ig

.
4
.

S
it
u
a
ti
o
n

g
ra

p
h

tr
ee

d
es

cr
ib

in
g

th
e

b
eh

av
io

rs
o
f
p
ed

es
tr

ia
n
s

o
n

a
cr

o
ss

w
a
lk

.
S
it
u
a
ti
o
n

g
ra

p
h
s

a
re

d
ep

ic
te

d
a
s

ro
u
n
d
ed

re
ct

a
n
g
le

s,
si
tu

a
ti
o
n

sc
h
em

es
a
re

sh
ow

n
a
s

n
o
rm

a
l
re

ct
a
n
g
le

s.
B

o
ld

a
rr

ow
s

re
p
re

se
n
t

p
a
rt

ic
u
la

ri
za

ti
o
n

ed
g
es

,
th

in
a
rr

ow
s

st
a
n
d

fo
r

p
re

d
ic

ti
o
n

ed
g
es

,
a
n
d

3 4
–
ci

rc
le

a
rr

ow
s

in
d
ic

a
te

se
lf
-p

re
d
ic

ti
o
n
s.

S
m

a
ll

re
ct

a
n
g
le

s
to

th
e

le
ft

o
r

to
th

e
ri
g
h
t

o
f

th
e

n
a
m

e
o
f

si
tu

a
ti
o
n

sc
h
em

es
m

a
rk

th
a
t

sc
h
em

e
a
s

a
st

a
rt

-
o
r

en
d
-s

it
u
a
ti
o
n
,
re

sp
ec

ti
v
el

y
[1

].
A

S
G

T
n
ee

d
s

to
fo

cu
s

o
n

be
h
a
vi

o
rs

o
f

th
e

a
g
en

ts
,
w

h
il
e

av
o
id

in
g

d
ep

en
d
a
n
ce

to
a

p
a
rt

ic
u
la

r
sc

en
a
ri
o
.
T

h
e

m
o
re

th
is

a
p
p
ro

a
ch

is
a
ch

ie
v
ed

,
th

e
m

o
re

fl
ex

ib
le

a
n
d

sc
en

e-
in

d
ep

en
d
en

t
th

e
S
G

T
w

il
l
b
e.

Natural Language Descriptions of Human Behavior from Video Sequences 285

– After the conditions have been asserted, certain domain-specific action pred-
icates are generated and forwarded for defined purposes. Only generation of
NL text will be considered here, so linguistic-oriented logic predicates will
be generated (note commands in Fig. 4).

A single SGT incorporates the complete knowledge about the behavior of
agents in a discourse [1]. Every possible action to be detected has to be de-
scribed in the SGT. Consequently, it is necessary to have accuracy to precisely
identify the desired actions, but it is also important that it does not become
excessively complex in order to avoid a high computational cost. On the other
hand, the SGTs are transformed into logic programs of a FMTHL for automatic
exploitation of these behavior schemes, as shown in Fig. 3.

Depending on the behavioral state, a new high-level predicate will be sent
to the NS Subsystem, by means of a note method. The new predicates offer
language-oriented structures, since their attribute scheme comprises fields re-
lated to ontological categories such as Agent, Patient, Object or Event. These
predicates are the inputs for the NS Subsystem, which will be discussed next.

3 Linguistic Implementation

It is in the NS where the logical predicates are used to provide the represen-
tational formalism, making use of the practical applications of the Discourse
Representation Theory. Inside the NS layer, there are several stages to cover:

1. Lexicalization
2. Discourse Representation
3. Surface Realization

Besides, the set of lemmata been used has to be extracted from a restricted
corpus of the specific language. This corpus can be elaborated based upon the
results of several psychophysical experiments on motion description, collected
over a significative amount of native speakers of the target language. In our
case, ten different people have independently contributed to the corpus with
their own descriptions of the sample videos. Three different languages have been
implemented for this scenario: Catalan, English, and Spanish.

3.1 Generation of textual descriptions

The overall process of generation of NL descriptions is based on the architec-
ture proposed by Reiter & Dale [9], which includes three modules; a document
planner, a microplanner, and a surface realizer (see Fig. 5). The VS provides
the information to be communicated to the user; this task is considered to be
part of the Document Planner. The CS decides how this information needs to
be structured and gives coherency to the results. This module provides general
reasoning about the domain and determines the content to be included in the
sentences to be generated, which are tasks related to the Document Planner,
too. Further tasks, such as microplanning and surface realization, are included
into the NS. An example for the entire process of generation is shown in Fig. 6.

286 C. Fernández Tena et al.

Fig. 5. Schema of Reiter/Dale Reference Architecture (R/D-RA) [9], including the
tasks related to each module that are necessary for a Natural Language Generator

Lexicalization. It is necessary to convert the abstract predicates from the
CS into linguistic entities for communication, such as agents, patients, objects,
or events, for instance. The classification of linguistically-perceived reality into
thematic roles (e.g. agent, patient, location) is commonly used in contemporary
linguistic-related applications as a possibility for the representation of semantics,
and justifies the use of computational linguistics for describing content extracted
by vision processes. The lexicalization step can be seen as a mapping process,
in which the semantic concepts identifying different entities and events from the
domain are attached to linguistic terms referring those formal realities. This way,
this step works as a real dictionary, providing the required lemmata that will be
a basis for describing the results using natural language.

Representation of the Discourse. Nevertheless, bridging the semantic gap
between conceptual and linguistic knowledge cannot be achieved only with a
lexicalization step. Discourse Representation Structures (DRSs) are the actual
mechanism that facilitates to overcome the intrinsic vagueness of NL terms, by
embedding semantics inferred at the conceptual level into the proper syntactical
forms. Lemmata are just units that will be used by these structures to establish
the interrelations which will convey the proper meaning to the sentences.

DRSs are semantic containers which relate referenced conceptual information
to linguistic constructions [5]. A DRS always consists of a so-called universe of
referents and a set of conditions, which can express characteristics of these refer-
ents, relations between them, or even more complex conditions including other
DRSs in their definition. These structures contain linguistic data from units that
may be larger than single sentences, since one of the ubiquitous characteristics
of the DRSs is their semantic cohesiveness for an entire discourse.

Natural Language Descriptions of Human Behavior from Video Sequences 287

"He is waiting with another pedestrian."

waiting_with(ag2,ag3)

pedestrian(ag2)

pedestrian(ag3)

waiting(ag2)

 with (ag3)

pedestrian(ag2)

pedestrian(ag3)

pedestrian(ag2), has_speed(ag2,zero),

pedestrian(ag3), has_speed(ag3,zero),

ag2 <> ag3, on_waiting_line(ag2) Logical relations in FMTHL

Lexicalization rules

"pedestrian wait with pedestrian"

Orthography and formatting

"he wait with another pedestrian"

Syntax

Morphology

"he is waiting with another pedestrian"

(Syntactical form)

(Surface text)

(Word forms)

(Logical predicates)

(DRSs,

 Lemmata)

(Sentence with REs)REG

Text Generation

Rules (TGRs)

+ DRSs

Event:
Attribute:
Agent:
Object:

Fig. 6. Example for the generation of the sentence ‘‘He is waiting with another pedes-
trian” from logical predicates. The center column contains the tasks being performed,
and the right column indicates the output obtained after each task.

Discourse
Referents

Set of
Conditions

Discourse representation and contextualization:

x1 y1 e1 t1 n

agent_1 (x1)

vending_machine (y1)

e1 t1
t1 n

e1 : kick (x1, y1)

Context (1st predicate)

DRS1

x2 x3 e2 t2

agent_2 (x2)

x3 = x1

e2 t2
t2 n
e1 e2

e2 : stare_at (x2, x3)

Preliminary DRS (2nd predicate)

DRS2

5 : 150 ! kick (agent_1, vending_machine)

171 : 213 ! stare (agent_2, agent_1)

...

Conceptual facts: (Linguistic-oriented predicates)

Linguistic Results:

"agent_1 kicked the vending machine. Next, agent_2 stared at him".

Fig. 7. A pattern DRS allows to convert a stream of FMTHL into a string of textual
symbols. Here, two predicates are validated. The first one instantiates a DRS, which
serves as context for the following asserted facts. Once the new predicate is validated,
it instantiates another DRS which merges with that context, thus providing a new
context for subsequent facts. The temporal order of the events is stated by relating
them to time variables (e1 ⊆ t1), placing these variables in the past (t1 ≺ n), and
marking precedence (e1 ≺ e2).

288 C. Fernández Tena et al.

When a contextual basis is explicitly provided, the maintenance of the mean-
ing for a discourse, including its cross-references, relations and cohesion can be
granted. Then, linguistic mechanisms such as anaphoric pronominalization for
referring expressions can be successfully implemented, e.g. ‘The pedestrian is
running’ → ‘He is running’. In our case, since situational analysis is per-
formed individually for every detected agent, we base on previously mentioned
information about the focused agent to decide whether to use pronouns or full
descriptions. An example which shows how the semantic representation and con-
textualization is undertaken by a DRS is illustrated in Fig. 7.

DRSs facilitate the subsequent tasks for sentence generation. The syntacti-
cal features of a sentence are provided by the so-called Text Generation Rules
(TGRs), which establish the position for the elements of the discourse within
a sentence for a particular language. Due to the specific goals considered for
this system, several assumptions have been taken: we use simple sentences for
effective communication

Surface Realization. The Surface Realization stage is accomplished in two
steps. A first morphological process applies over each single word and partially
disambiguates the individual abstraction of that word, by means of morpholog-
ical attributions such as gender or number. These attributions can be propa-
gated upon the semantic relations previously established by DRSs among the
lemmata of a single piece of discourse. After that, a set of post-morphological
rules has been conceived to enable interactions among predefined configurations
of words, thus affecting the final surface form of the text. This additional step is
indispensable for many languages, in which certain phenomena force the surface
form to change, e.g. contractions (‘a’+‘el’→‘al’ in Spanish), or order variation
(‘es’+‘va’+‘en’→‘se’n va’ in Catalan).

4 Experimental Results

We address the problem in-depth for a particular domain, instead of finding
a generically-applicable solution. For this reason, an ad-hoc solution has been
chosen for the identification of a predefined set of behaviors in the described sce-
nario. In such a framework, situations are specialized as long as spatiotemporal
information can be classified by the given models. If a non-modeled situation
occurs, the SGT cannot specialize a concrete interpretation, and instead of this
it generates a more general description, e.g. pedestrians being detected in cer-
tain regions, or agents grouping or splitting. A group of native speakers provided
linguistic interpretations for the set of behaviors, for each individual language
considered.

Thus, the coverage of the generated descriptions is tightly related to the extent
of situations modeled by the SGT. A vertical growing of this classifier, i.e. an
increment of the particularization edges, increases the granularity of the descrip-
tions, thus disambiguating or specializing the discourse. On the other hand, by
enhancing the human motion models for the scene and the prediction edges, we

Natural Language Descriptions of Human Behavior from Video Sequences 289

Pedestrian 3 (Catalan)

203 : Lo vianant surt per la part
inferior dreta.

252 : Va per la vorera inferior.
401 : S’espera per creuar.
436 : S’està esperant amb un

altre vianant.
506 : Creua pel pas zebra.
616 : Va per la vorera superior.
749 : Se’n va per la part superior dreta.

Pedestrian 3 (English)

203 : The pedestrian shows up from
the lower right side.

252 : He walks on the lower sidewalk.
401 : He waits to cross.
436 : He is waiting with

another pedestrian.
506 : He enters the crosswalk.
616 : He walks on the upper sidewalk.
749 : He leaves by the upper right side.

Pedestrian 4 (Spanish)

523 : El peatón aparece por la
parte inferior izquierda.

572 : Camina por la acera inferior.
596 : Cruza sin cuidado por la

calzada.
681 : Camina por la acera superior.
711 : Se va por la parte superior

izquierda.

Pedestrian 4 (English)

523 : The pedestrian shows up from the
lower left side.

572 : He walks on the lower sidewalk.
596 : He crosses the road carelessly.
681 : He walks on the upper sidewalk.
711 : He leaves by the upper

left side.

Fig. 8. Some of the descriptions in NL which have been generated for the crosswalk
scene. The results match perfectly with the purposed set of natural language sentences
suggested by a group of native speakers of the given languages.

290 C. Fernández Tena et al.

increase the number of possible situations and their temporal structure respec-
tively. Finally, the quality of the textual corpora provided by native speakers,
which link linguistic patterns to the conceived situations, determines the good-
ness of the discourse representation. A set of deterministic linguistic rules were
designed so that results matched perfectly with the selection of the descriptions
provided by native users.

Some results for the situation analysis of the crosswalk scene are shown in
Fig. 8. Textual descriptions in Catalan, English, and Spanish have been selected
for Agents 3 and 4, respectively. These descriptions include agents appearing
or leaving the scene, interactions between pedestrians and locations within the
scenario (crosswalk, sidewalks), and interpretations for some detected behaviors,
such as waiting with other agents to cross, or crossing in a dangerous way (i.e. di-
rectly by the road and not caring for vehicular traffic). Only static cameras were
used in this first step, so no expressions concerning the action of the cameras are
generated. Next improvements should focus on the semantic content provided
by the behavioral and inference subsystems, i.e. which situations must be con-
sidered for a certain domain and scenario, and in which way the reasonings for
these situations have to be done. Further approaches will lead to more complex
requirements regarding linguistic capabilities, which have been restricted so far.

5 Conclusions

A system that evaluates video sequences involving human agents by generating
NL descriptions in multiple languages has been successfully developed in a first
stage. A brief overview of the tasks performed may help to understand how
the generated text contributes to the goal of human behavior evaluation. After
the conceptualization of the spatiotemporal information is achieved, and basic
inferences are done, SGTs are in charge of integrating the deduced semantic
knowledge. Also, contextual and behavioral models are applied here, since SGTs
can be seen as actual classifiers of content for situations in a definite domain. The
generation of NL is built upon the high-level semantic predicates generated by a
SGT. In some way, the generated descriptions are interpretations of this semantic
knowledge accomplished by native speakers of a certain language. The group of
native speakers choose the linguistic expressions they find more appropriate,
in order to incorporate the situations from a SGT into a suitable discourse.
Hence, the situations appearing in a video sequence from a given domain can be
interpreted and described in multiple natural languages.

The current NS allows for a flexible and fast incorporation of languages into
a facility for multilingual generation of textual descriptions in NL. The natural
language formalism makes possible to generate fluid rich sentences to the user,
allowing for detailed and refined expressions that are not possible by using other
mechanisms. The interconnection of all the stages involved in the system has
been proved as convenient for the whole process of evaluation, although several
gaps still have to be solved. Further steps should include the extension of cur-
rent behavioral models, the detection of groups and more complex interactions

Natural Language Descriptions of Human Behavior from Video Sequences 291

among agents and/or vehicles, and the use of uncertainty for not only predict-
ing behaviors, but also to enhance possible hypothesis of interpretation for the
detected events within the scene.

Lastly, results from NL texts can be interpreted as semantic tags to pro-
vide content segmentation of the video sequences over time. We are currently
studying the connection of a user interaction stage accepting input NL-based
queries to a large database of video sequences, generic or specific. This will be
the starting point for search engines capable of retrieving video sequences show-
ing specific motion or factual contents. In addition to this, the segmentation
of video sequences into time-intervals showing cohesive information can be ap-
plied for extracting a collection of few semantic shots from these sequences. This
way, a compression of the relevant information – user-definable and freely config-
urable by declaring attentional factors – can be done by summarizing the entire
videos with a list of behavior concepts. Thus, we aim to improve motion descrip-
tion patterns for video standards such as MPEG-7, thus allowing for high-level
annotations related to the motion within the scene.

Acknowledgements

This work has been supported by EC grant IST-027110 for the HERMES project
and by the Spanish MEC under projects TIC-2003-08865 and DPI-2004-5414.
Jordi Gonzàlez also acknowledges the support of a Juan de la Cierva Postdoctoral
fellowship from the Spanish MEC.

References

1. Arens, M., Nagel, H.H.: Representation of Behavioral Knowledge for Planning and
Plan–Recognition in a Cognitive Vision System. In: Jarke, M., Koehler, J., Lake-
meyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 268–282. Springer, Heidel-
berg (2002)

2. Buxton, H., Gong, S.: Visual surveillance in a dynamic and uncertain world. AI-
magazine 78(1), 431–459 (1995)

3. Gonzàlez, J.: Human Sequence Evaluation: The Key-Frame Approach. PhD thesis,
Universitat Autònoma de Barcelona, Barcelona, Spain (2004)

4. Haag, M., Theilmann, W., Schäfer, K., Nagel, H.H.: Integration of Image Sequence
Evaluation and Fuzzy Metric Temporal Logic Programming, pp. 301–312. Springer,
London, UK (1997)

5. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Publishers, Dor-
drecht, Boston, London (1993)

6. Kojima, A., Tamura, T., Fukunaga, K.: Natural language description of human
activities from video images based on concept hierarchy of actions. International
Journal of Computer Vision 50(2), 171–184 (2002)

7. Marburger, H., Neumann, B., Novak, H.J.: Natural Language Dialogue about Mov-
ing Objects in an Automatically Analyzed Traffic Scene. In: Proc. IJCAI-81, Van-
couver (1981)

8. Nagel, H.H.: Steps toward a Cognitive Vision System. AI-Magazine 25(2), 31–50
(2004)

292 C. Fernández Tena et al.

9. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, Cambridge/UK (2000)

10. Rowe, D., Rius, I., Gonzalez, J., Villanueva, J.J.: Improving Tracking by Handling
Occlusions. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS,
pp. 384–393. Springer, Heidelberg (2005)

11. Schäfer, K., Brzoska, C.: F-Limette Fuzzy Logic Programming Integrating Metric
Temporal Extensions. Journal of Symbolic Computation 22(5-6), 725–727 (1996)

Detecting Humans in 2D Thermal Images

by Generating 3D Models

Stefan Markov and Andreas Birk

School of Engineering and Science
Jacobs University Bremen�

Campus Ring 1, D-28759 Bremen, Germany
a.birk@iu-bremen.de

Abstract. There are two significant challenges to standard approaches
to detect humans through computer vision. First, scenarios when the
poses and postures of the humans are completely unpredictable. Second,
situations when there are many occlusions, i.e., only parts of the body
are visible. Here a novel approach to perception is presented where a
complete 3D scene model is learned on the fly to represent a 2D snap-
shot. In doing so, an evolutionary algorithm generates pieces of 3D code
that are rendered and the resulting images are compared to the current
camera picture via an image similarity function. Based on the feedback
of this fitness function, a crude but very fast online evolution generates
an approximate 3D model of the environment where non-human objects
are represented by boxes. The key point is that 3D models of humans
are available as code sniplets to the EA, which can use them to represent
human shapes or portions of them if they are in the image. Results from
experiments with real world data from a search and rescue application
using a thermal camera are presented.

1 Introduction

Machine detection of humans is an integral part of many AI applications rang-
ing from traffic surveillance [PWB+05, PJHK99] over home security [CGPV05]
to robots serving as guides in museums [TBB+99]. While having such a wide
application range and hence a large amount of contributions, it is at the same
time a very complex task due to the high variability of human beings. People
do not only look quite differently among different individuals, but also the same
person can have very different appearances based on pose, clothing, environment
conditions, and so on [MPP01, Spa].

Current human detection algorithms can be coarsely classified by three main
categories. First, model-based methods where a general model is matched to
different parts of an image trying to find a fit [Yui91]. Second, image-invariance
systems, which base the matching on a set of image pattern relationships that
uniquely determine the object [Sin94]. And finally example-based algorithms

� International University Bremen until spring 2007.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 293–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

294 S. Markov and A. Birk

that learn the detection by being trained on a set of positive and negative ex-
amples [MPP01, OPOP97, PP00, YC97]. In addition, these techniques most
commonly employ preprocessing steps for figure ground separation. Common
examples are differential imaging in order to detect the silhouettes of human
beings from motion, or color analysis in order to determine different parts of the
human body [AT04, KM00, Spa, WADP97, MPP01, Hog83].

Due to the high complexity of the problem the above algorithms impose re-
strictions on the environment in which they will be detecting humans or on
the to-be-detected humans themselves. Example of such constraints are: greater
dynamics of people relative to the background [Spa, WADP97], only one per-
son may be in the view of the camera [PP00], restrictions on the lightning dy-
namics [WADP97], limitations to the people’s poses and the circumvention of
occlusions [PP00]. One special constraint, which spans a whole sub-field of its
own, is to concentrate on the human face for detection and recognition purposes
[ZCPR03, YKA02, YSMW98, VAJOWC94]

These assumptions limit the applicability of the algorithms, e.g., in application
domains like search and rescue robotics, where people that have to be detected
can exhibit a number of these restrictions. The approach presented here tries
to overcome some of the constraints and thus to extend the application area
of human detecting systems. It is based on so-called reproductive perception
that is able to recognize large scenes of known objects quickly even with partial
occlusion between the objects [Bir96]. The main idea is to use a set of programs,
which generate data that reproduces the vast amounts of sensor data. In doing
so, the goal is to find a small programs as dense representations of large amounts
of input data [BJP94, PS95].

Here, the programs as representations are based on a scene description lan-
guage using OpenGL. Code from the 3D scene language can be rendered to
generate pseudo sensor data, i.e., 2D images like the ones coming from the ther-
mal camera used in the application presented here. The goal is to generate 3D
code that generates pseudo sensor data corresponding to the current input data
from a camera.

2 Background

Our interest in the problem is motivated by work on intelligent behaviors up to
full autonomy on robots for search and rescue missions. Existing fieldable systems
in this domain are optimized for core locomotion [SC04, Mur04, Dav02] and
they provide sensor streams via plain tele-operation [Sny01, Abo98]. But adding
intelligent functions can significantly improve the usability of the devices [BC06,
MCM01], e.g., to ease the large cognitive load on human operators [SYDY04], or
even for fully autonomous behavior to overcome drop outs in the communication
systems or to allow a single operator to handle a whole team of robots.

The latest type of robots from Jacobs University are the so-called Rug-
bots, short for ”rugged robot” [BPSC06]. The robots are capable of fully au-
tonomous operation as demonstrated at the RoboCup 2006 world championship

Detecting Humans in 2D Thermal Images by Generating 3D Models 295

[BMDP06]. The RoboCup rescue league [KT01] features a very challenging en-
vironment (Fig. 1) including several standardized test elements that can be used
to assess the quality of the robots [JWM03, JMW+03].

Laser
Range
Finder
(LRF)

Inclined
LRF

Thermo
Camera

Swiss
Ranger

Stereo
Camera

Pan-Tilt-
Zoom

Camera

Webcam

Fig. 1. On the left, the autonomous version of a Rugbot with some important onboard
sensors pointed out, especially the thermal camera. On the right, a photo from the 2006
RoboCup world championship where the team from Jacobs University demonstrated a
combined usage of a tele-operated with a fully autonomous robot.

The automatic detection of human victims in search and rescue applications
is not only of interest for fully autonomous systems. It can also be a very helpful
feature to ease the task for a human tele-operator. Common systems rely on
visual inspection of video streams by a human operator [Dav02], a tedious and
error-prone task [SYDY04]. Attempts to automatically detect humans under the
challenging circumstances of rescue missions include chemical sensors [TGP02],
template mathcing using stereo vision [BINS05], and a variety of thermal sensors
[HBG+06, AHF+05, Bur98].

Temperature sensing is an interesting option for search and rescue missions.
Especially, thermal cameras already provide simple processing options. This is
very useful for segmentation in particular. The on-camera processing can for ex-
ample be used to highlight candidate data ranges through suited color palettes.
Thermal imaging can therefore also be beneficial for systems where a human
operator inspects the data. But the temperature ranges that have to be classi-
fied as ”interesting” are relatively large; uncovered skin is much warmer than
clothed body parts, environmental effects play a role, and so on. Pure tempera-
ture as indicator for the presence of humans leads to hence many false positives
(figure 2). It is therefore important to take shape into account to get a reliable,
automatic detection.

The device used in the work presented in the following sections is a Flir A20
thermal camera. It has an uncooled, high resolution Focal Plane Array (FPA).
Its 160x120 imager elements provide temperature information in a range of -40oC
to 120oC. Humans emit about 36oC only at exposed body parts. Parts covers
by clothes, dust, and so on appear colder. Hence a range of 28oC to 38oC is
segmented to be potentially human. Anything else is considered as background

296 S. Markov and A. Birk

Fig. 2. Thermal imaging can ease the detection of humans, but it does not provide a
perfect solution without taking object shape into account

temperature. A thresholded bitmap with two colors is produced: the background
temperature illustrated by black and temperatures in the human range indicated
by blue.

3 The 3D Scene Representation

A core part of the approach presented here is the set of programs, which generate
images that describe the perceived environment. The main idea is to model
the environment as a collection of 3D humans and boxes distributed in space
that are projected to a 2D image using OpenGL. The boxes serve as simple
objects to generate occlusions (if they are ”cold”) and false positives (if they are
”hot”). Arbitrarily complex non-human shapes can be composed from combining
boxes. The parameters of the OpenGL camera model are roughly based on the
parameters of the real camera on the Jacobs RugBot. An exact calibration is
not necessary as no metric information is extracted from the scenes.

A human is created as a composition of its basic body parts – head, torso,
arms, legs. The developed human model has 14 rotational joints through which it
can mimic almost any pose of a real human. In addition it has six more degrees
of freedom (DOF) for the position and orientation of the torso in space. The
dimensions of the body parts are fixed, since one can represent a taller human
with a smaller one which is closer to the camera and vice versa. Figure 3 displays
the output of a sample program for the case of drawing a whole human and for

Fig. 3. The 2D rendering of a 3D model of a human and an arm drawn in wireframe
mode

Detecting Humans in 2D Thermal Images by Generating 3D Models 297

Fig. 4. The output of a sample 3D drawing program. The human is drawn in wireframe
mode for illustration purposes. When matching renderings to the thermo-images a
uniform color texture is used for humans. Note that most of the time, they boxes
have a dark color like the background, i.e., they are at room temperature. These dark
boxes are mainly used to represent occlusions. ”Hot” boxes can be used to create false
positives.

only an arm. Boxes as the only other components of the 3D scenes are simply
defined by their dimensions and positions in space.

Based on the OpenGL routines for drawing humans and boxes a complete
drawing program is created as a set of calls to these functions. Each call can be
defined as an instruction. An instruction places the corresponding model on a
3D scene and after all calls are executed the projection of the drawn scene is
taken and returned as the output of the program, as shown in figure 4.

4 Image Distance Function

The next step is to be able to compare how well the OpenGL-generated images
reproduce an input image from the infrared camera. To achieve this some initial
image processing on the input image is done first. The main goal of the pre-
processing is to eliminate noise and segment the input image by converting the
24-bit bitmap to a thresholded bitmap with two colors: the room temperature
illustrated by black and temperatures in the human range indicated by blue.
Humans emit about 36oC only at exposed body parts. Parts covers by clothes,
dust, and so can appear colder. Hence a range of 28oC to 38oC is segmented to
be potentially human. Anything else is considered as room temperature. Figure 5
shows the result from applying this segmentation to an input image.

To generate the models, there is the need for measuring how well a pre-
processed camera image a′ matches to the output a of the OpenGL program.

298 S. Markov and A. Birk

Fig. 5. On the left is the original bitmap from the thermo camera. On the right is the
same image after segmenting everything in the range of 28oC to 38oC to be potentially
human.

For this purpose an image distance function which has been defined in [Bir96]
is used:

D(a, a′) =
∑
c∈C

d(a, a′, c) + d(a′, a, c) (1)

d(a, a′, c) =

∑
a[p1]=c min(md(p1, p2) | a′[p2] = c)

#c(a)

where

– c is a color (c ∈ C, C denotes the set of all colors)
– a[p] is the color at position p = (x, y) in a
– md(p1, p2) is the Manhattan distance between p1 and p2

– #c(a) = #{p1 | a[p1] = c}, i.e. the number of pixels in a with color c.

The lower the value of the image distance function, the better the match between
the two images. Furthermore, this function has two very important properties,
which make it very suitable for the task in hand:

– It gives proper gradients with respect to translation, rotation and scaling of
objects.

– It can be computed in a time that is linear in the number of pixels in a with
color c.

5 The Evolutionary Algorithm

Up to now we have programs that generate images, also called hypotheses, which
attempt to predict the robot’s environment and we can evaluate how good these
predictions are. The last component of the approach is an evolutionary algorithm

Detecting Humans in 2D Thermal Images by Generating 3D Models 299

that works on a set of such programs and attempts to improve the validity of
the generated hypotheses by altering the programs themselves. An evolutionary
algorithm (EA) in general is characterized by a population, a fitness function
and selection and transformation operators used to evolve the population.

The population consists of so-called individuals, which here are programs that
define a complete 3D scene as described in section 3. Furthermore, each program
stores the image that is produced after the execution of all its instructions, i.e.,
the hypothesis defined by the program. The population at any particular time
step of the EA is called a generation. The fitness of an individual is defined
via the image distance function between the output of the individual and the
pre-processed infrared image. In this way, lower fitness value indicates that an
individual is highly fit and vice versa.

At each iteration of the EA a subset from the population is chosen by the
selection operators to evolve through the transformation operators. Individuals
that are highly fit are more likely to yield superior ones after transformation
[S.F93], hence they should be selected with higher probability. For this purpose,
roulette selection is used. Roulette selection is a randomized variant of fitness-
proportionate selection. Each individual is selected with a probability determined
by its fitness. However, since in our case low fitness indicates a better individual
we are using the inverse of the fitness value in order to implement the roulette
selection.

The transformation operators are responsible for ”evolving” the selected in-
dividuals, thus producing generation Si from generation Si−1. For the task in
hand the main operator that we apply is hill-climbing. Hill climbing takes a
single individual, chooses a drawing instruction to optimize, then selects a DOF
from this drawing instruction and then explores a space of nearby values to the
current one in order to return a better new individual. For now, we will consider
the case where we have only a single human drawing instruction per individual.

Due to the many DOF of the human model, hill climbing will perform very
inefficiently if the to-be-optimized DOF is selected randomly. To improve this
we assign a-priori probabilities to each of the 14 joints, position and orientation,
based on our expectation of how well modifying this joint/DOF will improve
the quality of the individual. For example, position in 3D space is expected to
greatly influence the fitness of an individual, the same applies to rotation and
the upper leg joints, hence they are assigned high probabilities. On the other
hand, the elbow and knee joints could be assigned lower probabilities since they
do not have that much influence on the fitness of an individual. Based on these
probabilities, we run roulette selection on the joints/DOF of the human in order
to select a variable that will be optimized. After that, we explore a space of m
neighboring values and select the one that has improved the fitness most.

Further improvement of the hill climbing is to re-apply it on the newly created
individual, if it is better than its parent. This addition significantly improved
the performance of the HRS since now within a single iteration of the EA we can
bring a human model in an individual which is far away in space, for example,
close to the target position of the human on the infrared image. For the case

300 S. Markov and A. Birk

where we have more than a one human in the scene, we first randomly select the
instruction to be optimized and then apply the above-described algorithm.

After hill climbing has returned another individual we have to decide how it
will be inserted in the population, so that the next generation is formed. We have
several choices – inverse roulette selection of the individual that will be replaced,
replacement of the parent if better or replacement of the worst individual in the
population. The one that showed best results is replacement of the parent in
the case when the child has a better fitness. This can be easily explained with
the specifics of the problem. If we replace the worst program, or we use inverse
roulette selection, the population will easily converge to a set of good individuals,
from which however could be impossible to produce a very good match, i.e. we
easily reach a local optimum. On the other hand, a bad program can be easily
made the best by multiple-step hill climbing on position, hence we should not
replace bad programs, but rather just the parents when an improvement has
been found.

The performance of an EA dependents to some extent on the initial popula-
tion. When creating it purely randomly it often happens that there are not any
really good individuals, hence evolution takes more steps. Here some domain
bias can be exploited, namely, the 0th generation is seeded with 3D scenes that
are likely to be encountered, for example a simple standing human, or a human
lying on the floor etc.

6 Experiments and Results

First, the principles and the performance of our approach are illustrated with a
test case of an arm with a hand. The original infrared image is shown in figure
5. Figure 6 shows the input image after segmentation together with three good
matches produced by the EA.

Figure 7 shows an example plot of the fitness of the best individual as a
function of time. Note that the fitness decreases fast in the first iterations while
it takes more time to reach lower values, which is typical for evolutionary algo-
rithms. Large ”jumps” in fitness levels can also be observed, which is mainly due
to the multiple-step hill climbing when applied on the position, since it is the pa-
rameter that influences the fitness most. Figure 7 also shows that the evolution
of the whole population as measured by the average fitness of the population
behaves much in the same way.

The above experiment more or less demonstrates the performance of the ap-
proach when the model only differs in its pose from the real object in the scene.
Now, the posture is also taken into account. In the following example, an image
from a situation is used where an elbow joint is visible in addition to the lower
arm and the hand. Figure 8 displays the pre-processed input image and again
three good matches. Figure 9 shows the best fitness and the average population
fitness as a function of the number of iterations for an example run of the EA.
In these graphs we again observe the same characteristics as described for the
above test case.

Detecting Humans in 2D Thermal Images by Generating 3D Models 301

Fig. 6. Three examples of best matches found in an experiment with a lower arm. Top
left is the input image after pre-processing, the other three images are different results
of the EA. The classification of the according image part as ”human” happens very
fast as the EA can transform the parameters of the general model very efficiently via
hill climbing.

Fig. 7. The development of the fitness of the best individual (left) and the average
fitness of the population (right) in an example run of the EA in the test case with a
lower arm

The approach does not only work with body parts but as well with whole
humans with their many possible posture, i.e., their many DOF. This is indicated
by experiments with scenes that contain infrared images of whole humans. In the
following two examples are presented. In the first one the human is in a position
which is quite standard. In the second one a very complex pose is used, which
is nevertheless successfully reproduced and hence the human is recognized.

302 S. Markov and A. Birk

Fig. 8. An experiment where a full arm with an elbow joint and a hand have to be
matched. Top left is the input image after pre-processing. The best matches, here again
three examples, clearly identify the image by properly representing it via human code
sniplets.

Fig. 9. Fitness of the best individual (left) and average fitness of the whole population
(right) when an elbow joint is added

Figure 10 shows the segmented infrared image and three good matches for the
first test case. Pretty good matching can be observed, even though in the original
image the human back is bended and the model does not support such bending.
Figure 11 shows the best fitness, respectively the average population fitness as
a function of the number of iterations for this example. Here we also observe
the ”jumps” in the fitness due to the hill climbing operator. Also, the number
of generations it takes to improve the fitness has slightly increased, which can
be expected as not only the pose but also the many DOF of the human model
have to be adapted.

Detecting Humans in 2D Thermal Images by Generating 3D Models 303

Fig. 10. Also complete humans can be reliably detected as shown here with an input
image on the top left and three examples of best matches

Fig. 11. Fitness of the best individual (left) and average fitness of the whole population
(right) when recognizing a human

The last example contains a human in a very complex pose. Figure 12 shows
the segmented image with a typical good match. It can be observed that some
parts of the human are not matched completely correctly. But for example the
torso, the head and the leg are still pretty good. What matters most is that
the image is nevertheless represented by a code sniplet for a human 3D model.
It is hence reliably recognized. The best-fitness and average-fitness graphs look
similar to the ones for the other example of a human, especially in respect to
runtimes.

The runtimes in general allow an online recognition of humans with the on-
board processing capabilities of a RugBot, which features a Pentium-M 1.2GHz
processor, i.e., the images can be analyzed while the robot moves along as each

304 S. Markov and A. Birk

Fig. 12. The segmented infrared image of a real human in a rather difficult posture
and an example rendering of an evolved representation. Though there are a few minor
discrepancies between the 2D image and the rendering of the 3D model, the scene is
clearly recognized to contain a human.

generation takes about 300 msec. Note that a victim test is typically only trig-
gered if there is some ”suspicious” data, i.e., a critical temperature range is
present in the thermo image. For the general case, there is no exact estimate of
the actual time it takes to detect a human or even several ones in a scene. First
of all, the performance depends on which body parts can be seen. An arm can be
perfectly matched in a few seconds. For the human in the complex posture, which
forms a so-to-say worst case here, it took about 1.5 minutes on average to nicely
match the 3D model to the 2D image. Second, the recognition is a stochastic
process were increased computation time simply increases the confidence that
there is indeed a human in the scene. It usually just takes a few generations,
i.e., several hundred milliseconds, to transform a code sniplet representing a hu-
man such that its rendering roughly matches an image of a real human, which
is indicated by low fitness values of the best individual. It strongly depends on
the application whether this first rough match is considered important enough
to trigger other functions or whether the EA should continue first for several
seconds to produce a ”perfect” fit.

7 Conclusion

In this paper a new approach to detecting humans in images is presented. Instead
of processing images in a classical way, 3D representations of the underlying scene
are generated, then rendered, and the resulting 2D image is compared to the 2D
input snapshot. In doing so, a special image distance function is used to measure
the similarity between the input snapshot and the renderings. 3D models of
humans and of simple boxes based on OpenGL code are the building blocks for
the 3D representations. As shown in experiments with snapshots from the Jacobs
rescue arena and real humans, the approach is successful. Given images that
contain whole humans or just parts, the EA generates proper representations
that clearly indicate by their good fitness the presence of the human in the
scence.

Detecting Humans in 2D Thermal Images by Generating 3D Models 305

Acknowledgments

The authors gratefully acknowledge the financial support of Deutsche Forschungs-
gemeinschaft (DFG).

Please note the name-change of our institution. The Swiss Jacobs Foundation
invests 200 Million Euro in International University Bremen (IUB) over
a five-year period starting from 2007. To date this is the largest donation ever
given in Europe by a private foundation to a science institution. In apprecia-
tion of the benefactors and to further promote the university’s unique profile
in higher education and research, the boards of IUB have decided to change
the university’s name to Jacobs University Bremen. Hence the two different
names and abbreviations for the same institution may be found in this paper,
especially in the references to previously published material.

References

[Abo98] Abouaf, J.: Trial by fire: teleoperated robot targets chernobyl. Com-
puter Graphics and Applications 18(4), 10–14 (1998)

[AHF+05] Aoyama, H., Himoto, A., Fuchiwaki, O., Misaki, D., Sumrall, T.: Mi-
cro hopping robot with ir sensor for disaster survivor detection. In:
IEEE International Workshop on Safety, Security and Rescue Robotics,
SSRR, pp. 189–194. IEEE Computer Society Press, Los Alamitos
(2005)

[AT04] Agarwal, A., Triggs, B.: Learning to track 3d human motion from sil-
houettes. In: Twenty-first international conference on Machine learn-
ing, ACM Press, New York (2004)

[BC06] Birk, A., Carpin, S.: Rescue robotics - a crucial milestone on the road
to autonomous systems. Advanced Robotics Journal 20(5), 595–695
(2006)

[BINS05] Bahadori, S., Iocchi, L., Nardi, D., Settembre, G.P.: Stereo vision based
human body detection from a localized mobile robot. In: IEEE Confer-
ence on Advanced Video and Signal Based Surveillance, pp. 499–504.
IEEE Computer Society Press, Los Alamitos (2005)

[Bir96] Birk, A.: Learning geometric concepts with an evolutionary algorithm.
In: Proc. of The Fifth Annual Conference on Evolutionary Program-
ming, The MIT Press, Cambridge (1996)

[BJP94] Birk, A., Paul, W.J.: Schemas and genetic programming. In: In-
tern. Conf. on the Integration of Elementary Functions into Complex
Behavior (1994)

[BMDP06] Birk, A., Markov, S., Delchev, I., Pathak, K.: Autonomous rescue oper-
ations on the iub rugbot. In: IEEE International Workshop on Safety,
Security, and Rescue Robotics (SSRR), IEEE Press, Los Alamitos
(2006)

[BPSC06] Birk, A., Pathak, K., Schwertfeger, S., Chonnaparamutt, W.: The iub
rugbot: an intelligent, rugged mobile robot for search and rescue opera-
tions. In: IEEE International Workshop on Safety, Security, and Rescue
Robotics (SSRR), IEEE Press, Los Alamitos (2006)

306 S. Markov and A. Birk

[Bur98] Burion, S.: Human detection for robotic urban search and rescue mas-
ters thesis. Technical report, Institute de Production Robotique (IPR)
(1998)

[CGPV05] Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Computer vision sys-
tem for in-house video surveillance. Vision, Image and Signal Process-
ing, IEE Proceedings- 152(2), 242–249 (2005)

[Dav02] Davids, A.: Urban search and rescue robots: from tragedy to technol-
ogy. Intelligent Systems 17(2), 81–83 (2002)

[HBG+06] Hao, Q., Brady, D.J., Guenther, B.D., Burchett, J., Shankar, M., Feller,
S.: Human tracking with wireless distributed pyroelectric sensors. IEEE
Sensors Journal 6(6), 1683–1696 (2006)

[Hog83] Hogg, D.: Model-based vision: A program to see a walking person.
Image and Vision Computing 1(1), 5–20 (1983)

[JMW+03] Jacoff, A., Messina, E., Weiss, B., Tadokoro, S., Nakagawa, Y.: Test
arenas and performance metrics for urban search and rescue robots. In:
Proceedings of the Intelligent and Robotic Systems (IROS) Conference
(2003)

[JWM03] Jacoff, A., Weiss, B., Messina, E.: Evolution of a performance metric
for urban search and rescue. In: Performance Metrics for Intelligent
Systems (PERMIS), Gaithersburg, MD (2003)

[KM00] Kakadiaris, L., Metaxas, D.: Model-based estimation of 3d human
motion. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 22, 1453–1459 (2000)

[KT01] Kitano, H., Tadokoro, S.: Robocup rescue. a grand challenge for mul-
tiagent and intelligent systems. AI Magazine 22(1), 39–52 (2001)

[MCM01] Murphy, R., Casper, J., Micire, M.: Potential tasks and research issues
for mobile robots in robocup rescue. In: Stone, P., Balch, T., Kraet-
zschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp.
339–334. Springer, Heidelberg (2001)

[MPP01] Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object de-
tection in images by components. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on 23(4), 349–361 (2001)

[Mur04] Murphy, R.R.: Trial by fire. IEEE Robotics and Automation Maga-
zine 11(3), 50–61 (2004)

[OPOP97] Oren, M., Papageorgiou, C., Sinhaand, P., Osuna, E., Poggio, T.:
Pedestrian detection using wavelet templates. In: Proc. Computer Vi-
sion and Pattern Recognition, June 1997, pp. 193–199 (1997)

[PJHK99] Park, S.H., Jung, K., Hea, J.K., Kim, H.J.: Vision-based traffic surveil-
lance system on the internet. In: Computational Intelligence and Mul-
timedia Applications. In: ICCIMA. Third International Conference on,
pp. 201–205 (1999)

[PP00] Papageorgiou, C., Poggio, T.: A trainable system for object detection.
Int’l J. Computer Vision 38(1), 15–33 (2000)

[PS95] Paul, W.J., Solomonoff, R.: Autonomous theory building systems. An-
nals of Operations Research 55(1), 179–193 (1995)

[PWB+05] Paletta, L., Wiesenhofer, S., Brandle, N., Sidla, O., Lypetskyy, Y.:
Visual surveillance system for monitoring of passenger flows at public
transportation junctions. Intelligent Transportation Systems, 862–867
(2005)

[SC04] Shah, B., Choset, H.: Survey on urban search and rescue robots. Jour-
nal of the Robotics Society of Japan (JRSJ) 22(5), 40–44 (2004)

Detecting Humans in 2D Thermal Images by Generating 3D Models 307

[S.F93] Forrest, S.: Genetic algorithms - principles of natural selection applied
to computation. Science 261, 872–878 (1993)

[Sin94] Sinha, P.: Object recognition via image invariants: A case study. In-
vestigative Ophthalmology and Visual Science 35, 1735–1740 (1994)

[Sny01] Snyder, R.G.: Robots assist in search and rescue efforts at wtc. IEEE
Robotics and Automation Magazine 8(4), 26–28 (2001)

[Spa] Sparacino, F.: In: Inter-face body boundaries, issue editor
emanuele quinz, anomalie, n.2, paris, france, anomos (2001),
http://citeseer.ist.psu.edu/615750.html

[SYDY04] Scholtz, J., Young, J., Drury, J., Yanco, H.: Evaluation of human-
robot interaction awareness in search and rescue. In: Proceedings of
the International Conference on Robotics and Automation, ICRA’2004,
pp. 2327–2332. IEEE Press, Los Alamitos (2004)

[TBB+99] Thrun, S., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F.,
Fox, D., Hahnel, D., Rosenberg, C., Roy, N., Schulte, J., Schulz, D.:
Minerva: A second-generation museum tour-guide robot. In: Proceed-
ings of the International Conference on Robotics and Automation
(ICRA) (1999)

[TGP02] Teo, A.W., Garg, H.K., Puthusserypady, S.: Detection of humans
buried in rubble: an electronic nose to detect human body odor.
In: Engineering in Medicine and Biology, 24th Annual Conference
and the Annual Fall Meeting of the Biomedical Engineering Society,
EMBS/BMES, vol. 3, pp. 1811–1812 (2002)

[VAJOWC94] Valentine, D., Abdi, H., O’Toole, A.J., Cottrell, G.W.: Connectionist
models of face processing: a survey. Pattern Recognition 27 (1994)

[WADP97] Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-
time tracking of the human body. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 19(7), 780–785 (1997)

[YC97] Yow, K., Cipolla, R.: Feature-based human face detection. Image and
Vision Computing 15(9), 713–735 (1997)

[YKA02] Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a
survey. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 24(1), 34–58 (2002)

[YSMW98] Yang, J., Stiefelhagen, R., Meier, U., Waibel, A.: Real-time face and
facial feature tracking and applications. In: Proceedings of Auditory-
Visual Speech Processing Conference, pp. 79–84. Terrigal, South Wales,
Australia (1998)

[Yui91] Yuille, A.: Deformable templates for face recognition. J. Cognitive Neu-
roscience 3(1), 59–70 (1991)

[ZCPR03] Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition:
A literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)

http://citeseer.ist.psu.edu/615750.html

Extent, Extremum, and Curvature:

Qualitative Numeric Features for
Efficient Shape Retrieval

B. Gottfried, A. Schuldt, and O. Herzog

Centre for Computing Technologies (TZI)
University of Bremen, Am Fallturm 1, D-28359 Bremen

Abstract. In content-based image retrieval we are faced with continu-
ously growing image databases that require efficient and effective search
strategies. In this context, shapes play a particularly important role, es-
pecially as soon as not only the overall appearance of images is of interest,
but if actually their content is to be analysed, or even to be recognised.
In this paper we argue in favour of numeric features which characterise
shapes by single numeric values. Therewith, they allow compact repre-
sentations and efficient comparison algorithms. That is, pairs of shapes
can be compared with constant time complexity. We introduce three nu-
meric features which are based on a qualitative relational system. The
evaluation with an established benchmark data set shows that the new
features keep up with other features pertaining to the same complexity
class. Furthermore, the new features are well-suited in order to supple-
ment existent methods.

1 Introduction

Content-based retrieval from large image databases is a challenging problem in
computer vision. Its importance grows continuously with the increasing penetra-
tion of image databases in many areas of everyday life. As an example, think of
Flickr1, which is an internet platform for uploading and sharing of photographic
content. Large amounts of image data can also be found in the economic as well
as the scientific area. The pure amount of content, and even more its fast growth,
illustrates the demand for efficient and effective search strategies. Therefore, it
is particularly desirable to choose features with only little computational com-
plexity for the comparison of images. In image retrieval, this has already been
applied for a long time to colour and texture. As an example, think of colour his-
tograms having a fixed number of entries. Consequently, they can be compared
with constant time complexity.

For the comparison of objects by their shape there exist also meaningful meth-
ods [9]. However, their efficiency in terms of computational complexity is still a
problem. As an example, the approach of [8] which achieves promising retrieval
results has a biquadratic time complexity, O(n4). This is different for numeric
1 http://www.flickr.com/

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 308–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extent, Extremum, and Curvature: Qualitative Numeric Shape Features 309

shape features [3, 4]. They characterise shapes by a single numeric value. This
entails two advantages: First, two shapes described by such a feature can be
compared with constant time complexity, O(1). Second, the shapes of an image
database can be ordered in accordance to a numeric shape feature. This allows
retrieval algorithms to be applied which employ binary search strategies with a
time complexity of O(log n), with n being the number of images in the database.

Applied exclusively, however, the retrieval performance for each of these fea-
tures is rather limited since each one describes only one simple property of an
object, e.g. the aspect ratio [3] of the minimal enclosing rectangle. But combining
such simple features improves classification results significantly, still with con-
stant time complexity for the comparison of two shapes. Characterising an object
twice by similar features, however, does most likely not improve its description.
By contrast, it is more promising to combine features which are built upon dif-
ferent foundations. We introduce three new numeric shape features based on a
qualitative approach, thereby complementing existing features. Afterwards, we
combine them with existing quantitative numeric shape features.

The remainder of this paper is structured as follows: In Sect. 2 we intro-
duce previous work that underlies our new approach which is then presented in
Sect. 3. We evaluate our method in Sect. 4 by comparing it to other approaches.
Eventually, a conclusion follows in Sect. 5.

2 Previous Work

The work presented in this paper focuses on the characterisation of shapes. For
this purpose, it is assumed that silhouettes have been segmented from raster
images before. Contours of silhouettes can then represented by polygons, as it
has been motivated from the cognitive point of view by [2]. Additionally, the
following reasons support a pure cognitive motivation: First of all, confining
oneself to contour points the uniform distribution of points of the silhouette’s
interior can be excluded. Since only the contour points are relevant concerning
any object’s outer shape, this restriction does not entail any loss of relevant in-
formation. Secondly, the application of polygonal approximation algorithms [11]
allows a massive data reduction with only little influence on the perception of
shape. We apply especially the method of [10], thereby choosing a scale-invariant
approximation error of one percent of a polygon’s perimeter.

2.1 Reference System

The polygon obtained in the previous step of abstraction forms a quantitative
description of the underlying shape. The concrete representation depends on
scale, translation, and rotation of the object under consideration. Furthermore,
it is imprecise due to noise in the underlying image data. The aim is therefore to
achieve an invariance against scale, translation, and rotation as well as a certain
robustness against noise.

In order to meet the above objectives we apply the orientation grid of [15]
which brings in a qualitative abstraction. It is induced by each of the polygon’s

310 B. Gottfried, A. Schuldt, and O. Herzog

line segments as depicted in Fig. 1 (after an orientation has been imposed on the
polygon) and it consists of three auxiliary lines. The first one runs through the
reference segment allowing the qualitative distinction whether a point is located
on its left or right hand side. The two other lines are oriented orthogonally to the
first one, whereby each of them passes either the reference segment’s start point
or its end point. Their arrangement enables the decision whether a point lies in
front of the reference segment, next to, or behind it. In general, the orientation
grid divides the two-dimensional plane into six sectors, as depicted on the left
hand side of Fig. 1. Instead of its quantitative coordinates it is then possible to
characterise a point by its position relative to the respective line segment. This is
the third sector in the example depicted in the centre of Fig. 1. This description
is invariant against scale, translation, and rotation since the orientation grid is
an intrinsic reference system of the polygon, i. e. it is induced on each of its
line segments. A certain robustness against noise is achieved by partitioning the
two-dimensional plane into sectors. Generally, changing a point’s quantitative
position does not change the sector it is located in; even larger movements of
points only result in neighbouring sectors.

pi

pj

pk

pl

pk

pj

pi

2

3

1

5

4

6

Fig. 1. Left: The orientation grid divides the two-dimensional plane into six sectors.
Centre: The qualitative position of pk is in sector 3, which is located front left w. r. t.
the reference line pipj . Right: The line segment pkpl passes the sectors 3, 4, and 5.

2.2 Bipartite Arrangements

Apart from characterising single points it is also possible to apply the orientation
grid in order to relate two polygonal line segments to each other. This is achieved
by the qualitative concept of bipartite arrangements [5, 6], in short BA. The
extension from characterising single points to line segments is straightforward.
As each line segment is defined by a start and an end point, these points have to
be taken into consideration. Both of them can be located in any of the six sectors
of the orientation grid (Fig. 1 right). Hence, this theoretically leads to a number
of 62 = 36 conceivable arrangements between two line segments. By omitting
symmetries and intersections [5] it is possible to reduce this number to those 23
BA23 relations that are depicted on the left hand side of Fig. 2. Their mnemonic
labels are given in the centre of the same figure. As this approach relates line
segments in the two-dimensional plane it can be categorised as an extension of
Allen’s 13 qualitative relations between one-dimensional intervals [1].

A bipartite arrangement relation describes the position of a line segment
w. r. t. a reference segment. A polygon’s whole course can then be characterised

Extent, Extremum, and Curvature: Qualitative Numeric Shape Features 311

Fl

Id

Fm

FOl
FOml FOmr FOr

FCrFCl

Dl Cl Cr Dr

BOrBOmr

BCrBCl

BOl BOml

Bm

Fr

Bl Br

Fig. 2. Example configurations (left) and mnemonic labels (centre) for the 23 BA23

relations between two line segments in the two-dimensional plane. Right: The iconic
representation of the bipartite arrangement’s scopes.

by applying a sequence of BA23 relations, describing each of the n polygonal line
segments, one after another [6]:

Definition 1 (Course). Let x be a line segment of a simple, closed polygon.
Its course, in short C(x), contains the BA23 relations of all segments yi w. r. t.
x:

C(x) := (xy0 , . . . , Id, . . . , xyn−1), xyi ∈ BA23; i = 0, . . . , n − 1

Hence, we obtain a qualitative description of the considered polygon w. r. t. one
of its segments. In order to arrive at a complete description it is necessary to
apply not only one line segment as a reference, but all of them, one after another.
This results in the following definition:

Definition 2 (Polygonal Course). Let P be a simple, closed polygon. Its
polygonal course, in short C(P), is the conjunction of all courses of P :

C(P) :=
n−1∧
i=0

C(xi)

The result is a matrix that comprises all n2 BA23 relations that exist between
the polygon’s n line segments.

2.3 Scopes of Bipartite Arrangements and Courses

Based on the work of [5,6] a more general approach has been introduced by [12,
13]. Their idea is to represent BA23 relations and even courses as sets of atomic
relations. The advantage of such a representation is that it allows to apply stan-
dard set operations, e. g. union and intersection. A BA is considered atomic if
it populates only one of the orientation grid’s sectors, which holds for Bl, Dl,
Fl, Fr , Dr, as well as Br (Fig. 2 left). Furthermore, those relations connecting
adjacent sectors, namely BOl, FOl, Fm, FOr, BOr , and Bm, are also atomic.
Altogether, these twelve relations form BA12 ⊂ BA23.

312 B. Gottfried, A. Schuldt, and O. Herzog

Each BA23 relation can then be represented by its scope, i. e. the set of atomic
relations it consists of. The right hand side of Fig. 2 visualises the BA23 relations’
scopes. Each of the twelve circles stands for the atomic relation that is located
at its position in the orientation grid. An opaque circle thereby means that the
atomic relation is part of a scope, while a transparent one indicates its absence.
This results in the following definition:

Definition 3 (Scope of a BA). Let x and y be line segments of a simple, closed
polygon. The set of atomic BA12 relations that represents the relation xy ∈ BA23

is called the relation’s scope, in short σ(xy):

σ(xy) := {xy1 , . . . , xyn}, xyi ∈ BA12

Each scope is a description with constant space complexity as the total number
of atomic relations that may be contained in a scope is limited to |BA12| = 12.
While a single BA23 relation is limited to characterising the relationship between
two line segments, this limitation does not hold for scopes. By contrast, it is also
possible to characterise the position of a whole course by a single scope relation.
This can be achieved by exploiting the scope’s set property. In particular, we
create the union of the scopes of all BA23 relations participating in a course:

Definition 4 (Scope of a Course). Let x be a line segment of a simple, closed
polygon and C(x) its course. The set of atomic relations describing the position
of C(x) is called the scope of the course, in short σ(C(x)):

σ(C(x)) :=
n−1⋃
i=0

σ(ri), ri ∈ BA23

Proceeding this way, however, leads to a certain loss of information since Gestalt
features are not further considered within the scope of a given course. Never-
theless, the resulting characterisation offers still the expressiveness for applying
concepts such as the scope histogram [13] which computes the frequencies of a
polygon’s scopes, leading to promising results as has been shown in [12].

3 Qualitative Numeric Shape Features

The scope histogram [13] forms a very compact representation as it characterises
the shape of an object with constant space complexity. It is a statistical shape
descriptor as it considers only the frequencies with which the courses’ scopes
occur. The notion of scope, however, is not limited to statistics. By contrast, it
is also possible to derive further compact shape features from a polygonal course
(Definition 2). In this section we particularly introduce three of them, namely
the numeric shape features extent, extremum, and curvature, which are defined
on the basis of the scope approach.

Extent, Extremum, and Curvature: Qualitative Numeric Shape Features 313

3.1 Extent

The notion of a course (Definition 1) can be applied in order to characterise a
polygon qualitatively w. r. t. its line segment x. Definition 4 introduces the so-
called scope of a course as a more compact representation. By applying a set
of atomic BA12 relations the scope σ(C(x)) specifies which of the orientation
grid’s sectors are populated by the given course. In general, the complexity of a
shape increases with the number of orientation grid sectors that are passed by its
course. This observation leads to the definition of the extent, which is a simple
measure of a shape’s complexity. The number of populated sectors correlates with
the atomic relations within the respective scope. Thus, it is sufficient to count
the atomic relations a scope comprises (Fig. 3). The maximum range ηmax of an
extent η is defined by the maximally possible number of atomic relations within
a scope, which is ηmax = |BA12| = 12. This results in the following definition:

Definition 5 (Extent). Let x be a line segment of a simple, closed polygon and
σ(C(x)) the scope of its course. The number of the atomic BA12 relations of the
scope is called the extent of the scope, in short η(σ(C(x))), and it holds that

η(σ(C(x))) := |σ(C(x))| ∈ {1, 2, . . . , ηmax}

Fig. 3. An apple. The three highlighted reference segments demonstrate the computa-
tion of extent η and extremum ζ from the respective line segments’ scopes.

Definition 5 determines the extent of a single course. This extent characterises
the complexity of a polygon as perceived by the line segment on which the ori-
entation grid is currently induced. However, as mentioned before each polygon
is characterised by n courses, where n is the total number of line segments. We
obtain a single numeric value, that characterises the whole polygon, by comput-
ing the average extent for all courses. In order to arrive at a normalised value in
[0, 1], the polygonal extent is divided by ηmax:

Definition 6 (Polygonal Extent). Let P be a simple, closed polygon. Its
polygonal extent, in short η(P), is the average number of the atomic BA12 rela-
tions of the scopes of all courses C(xi) of P :

η(P) :=
1

n ηmax

n−1∑
i=0

η(C(xi))

314 B. Gottfried, A. Schuldt, and O. Herzog

Figure 4 depicts example silhouettes from the database of [9] that illustrate the
range of possible extents η. The spring at the top left position exhibits the highest
extent. This is due to the line segments that are located within the spring’s ends.
Their extent is maximal, i. e. ηmax = 12, since the course of these segments runs
completely around them. The extent of the depicted objects decreases from the
top left to the bottom right. Out of all objects the triangle has the lowest extent:
for each of its line segments the polygon is solely located in the second sector of
the orientation grid, i. e. η = 1. These examples demonstrate that the extent of
a shape can easily be comprehended. Generally spoken, the extent is the higher
the more complex the underlying shape is, in terms of indentations and how
complex they are shaped.

0.81 0.76 0.75 0.74 0.74 0.73 0.70 0.70 0.69 0.68 0.68 0.68 0.67 0.67

0.66 0.66 0.65 0.64 0.64 0.63 0.63 0.62 0.62 0.58 0.65 0.65 0.64 0.64

0.63 0.61 0.60 0.60 0.59 0.59 0.57 0.57 0.54 0.54 0.58 0.63 0.62 0.53

0.58 0.57 0.56 0.56 0.55 0.55 0.54 0.53 0.52 0.51 0.51 0.51 0.50 0.49

0.49 0.49 0.48 0.47 0.43 0.58 0.54 0.46 0.46 0.46 0.45 0.42 0.37 0.08

Fig. 4. Example shapes ordered accordingly to their extent η

3.2 Extremum

The second qualitative shape feature that can be derived from the scope is called
the extremum. It tells us for a given line segment whether it is an extremum of
its respective polygon. Thereby, we denote a line segment as extreme if it is part
of the polygon’s convex hull. This in turn is the case whenever no other part
of the polygon is located on the right hand side of the considered line segment.
Detecting such a configuration on the basis of the scope representation is fairly
straightforward: in this case the whole polygon is l, i. e. it is located left w. r. t.
the reference segment. One possibility to realise l is the scope σ(Cl) of the BA23

relation Cl (Fig. 2).

Proposition 1 (Extremum). Let x be a line segment of a simple, closed poly-
gon. x is said to be an extremum, in short ζ(C(x)), if

ζ(C(x)) =

{
1 iff η(σ(C(x)) ∪ l) = η(l)
0 else

Extent, Extremum, and Curvature: Qualitative Numeric Shape Features 315

Proof: A union between l and a scope σ(C(x)) of a course C(x), that leads
to an increase in the scope’s extent, means that further atomic relations have
been added by means of the union operation. As the scope l already contains all
atomic relations on the reference segment’s left hand side, the additional atomic
relations must lie on its right hand side. �

From the three example line segments highlighted in Fig. 3 only the leftmost one
is extreme. It is the only one that comprises atomic relations solely on its left
side. The other scopes’ atomic relations populate both halves of their respective
orientation grids. In order to obtain a characterisation of the whole polygon,
we count the extreme segments and relate them to the number of line segments
contained in the polygon:

Definition 7 (Polygonal Extremum). Let P be a simple, closed polygon.
Its polygonal extremum, in short ζ(P), measures, how many segments of P are
extremes:

ζ(P) :=
1
n

n−1∑
i=0

ζ(C(xi))

Figure 5 shows example silhouettes in conjunction with their respective ex-
tremum values. Since they are completely convex the first three objects (a square,
a triangle, and a semi circle) have the highest extremum values. The number and
size of concavities increase from the top left to the bottom right. None of the line
segments of the last three devices is convex. Consequently, the extremum values
of these shapes are zero. Therewith, the ordering established by the extremum
corresponds to the visual perception of the considered shapes’ convexity.

1.00 1.00 1.00 0.85 0.79 0.75 0.71 0.71 0.70 0.67 0.60 0.57 0.54 0.54

0.52 0.50 0.50 0.48 0.48 0.46 0.46 0.44 0.43 0.42 0.42 0.33 0.32 0.31

0.30 0.30 0.29 0.29 0.29 0.29 0.27 0.26 0.26 0.25 0.25 0.24 0.24 0.23

0.22 0.22 0.21 0.19 0.19 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.15

0.15 0.14 0.14 0.14 0.12 0.10 0.10 0.07 0.05 0.04 0.03 0.00 0.00 0.00

Fig. 5. Example shapes ordered accordingly to their extremum ζ

316 B. Gottfried, A. Schuldt, and O. Herzog

3.3 Curvature

The third feature we shall introduce here is referred to as the curvature. It
describes how often the course C(x) changes its position as perceived from its
reference segment x. More specifically, it is examined how often the relations
within the course change from one atomic BA12 relation to another one. For this
purpose, it is not sufficient to analyse the scope σ(C(x)) of the course C(x) as a
whole. It is rather necessary to analyse the scope of every single relation in C(x)
in order to relate it to its successor:

Definition 8 (Curvature). Let x be a line segment of a simple, closed polygon
and C(x) its course. The curvature of C(x), in short ξ(C(x)), arises from the
sequence of its relations ri as follows:

ξ(C(x)) :=
n−1∑
i=0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ri = Id ∧ (str(ri) ∧ int(ri−1, ri+1))
1 if ri = Id ∧ (str(ri) ∨ int(ri−1, ri+1))
2 if ri = Id
η(σ(ri)) − 1 if int(ri, ri+1)
η(σ(ri)) else

The first three cases in Definition 8 occur when the currently considered segment
is the reference segment itself. Before discussing these special cases, we shall start
with an analysis of the more general cases, namely the fourth and the fifth one.

The right hand side of Fig. 2 depicts the distinguishable scopes for single line
segments. Some of these scopes contain more than one atomic relation, which
means that a change of position w. r. t. the reference segment already occurs
within the respective line segment. The total number of changes in position
is thereby defined by the extent of the scope of one line segment’s relation:
η(σ(ri)) − 1. Another change in position may occur between two subsequent
line segments ri and ri+1. However, this is only the case, if their scopes do not
intersect, i. e. they have no atomic relation in common. In order to determine
such an intersection, we apply an auxiliary function. It creates the intersection
of the scopes under consideration. The intersection is not empty if the result’s
extent is greater than zero:

int(r1, r2) :=

{
true iff η(σ(r1) ∩ σ(r2)) > 0
false else

(1)

We shall now address the special case in which the considered line segment is
the course’s reference segment itself. In this case it does not suffice to examine
the intersection in the scopes of the predecessor and the successor. It is addi-
tionally necessary to find out whether or not the course has a kink around this
segment. Therefore, the reference segment’s predecessor and successor have to
be compared. If the scope σ of one relation is the inverse σ−1 of the other one,
the course has no kink. This can be determined using the following auxiliary
function:

Extent, Extremum, and Curvature: Qualitative Numeric Shape Features 317

str(ri) :=

{
true iff σ(ri−1) = σ−1(ri+1)
false else

(2)

Figure 6 gives an example on the application of the two auxiliary functions
with which we are now able to determine the curvature for a single course. How-
ever, in order to compute the curvature for a whole polygon, we have to extend
our definition again. Therefore, the average curvature for all of the polygon’s n
courses is determined. The range of the curvature for a single course is thereby
[1, ∞[. In order to arrive at a value in]0, 1] like for the other features, we compute
each curvature’s multiplicative inverse:

Definition 9 (Polygonal Curvature). Let P be a simple, closed polygon. Its
polygonal curvature, in short ξ(P), is defined as the average of the multiplicative
inverses of the curvatures of all courses C(xi) of P :

ξ(P) := 1 − 1
n

n−1∑
i=0

1
ξ(C(xi))

The curvature values of example silhouettes are given in Fig. 7. The object that
is most curved is the spring on the left hand side. The curvature decreases from
the top left to the bottom right. The triangle exhibits the lowest curvature. That
is, as in the case of the extremum and extent, also the curvature corresponds

int

int

int

¬ int

¬ int

¬ int ¬ int

¬ int

¬ int

¬ int

Id ^ ¬ int ^ ¬ str

int

int

int
int

Fig. 6. A bat. All line segments’ scopes w. r. t. the highlighted reference segment. The
result of the auxiliary functions is denoted for each pair of consecutive line segments.
The curvature ξ of this example course is 21.

318 B. Gottfried, A. Schuldt, and O. Herzog

0.95 0.94 0.93 0.93 0.93 0.92 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.90

0.90 0.90 0.90 0.92 0.90 0.89 0.89 0.89 0.89 0.89 0.88 0.90 0.88 0.89

0.88 0.87 0.87 0.87 0.86 0.86 0.87 0.85 0.85 0.86 0.86 0.84 0.85 0.86

0.84 0.84 0.84 0.85 0.83 0.83 0.84 0.82 0.83 0.83 0.83 0.82 0.82 0.82

0.81 0.81 0.80 0.80 0.80 0.83 0.77 0.79 0.78 0.77 0.72 0.79 0.76 0.00

Fig. 7. Example shapes ordered accordingly to their curvature ξ

with the visual perception of the silhouettes: the more curved an object is the
higher its qualitative curvature value is.

3.4 Comparison

Figures 4, 5, and 7 illustrate, that convex shapes (high extremum values) coincide
with low values for extent and curvature. Thus, there seems to be a correlation
of extremum with both extent and curvature. The correlation observed between
extremum and extent can be explained by the fact that convex shapes are only
located left w. r. t. their polygon which also restricts the range of their extent.
Furthermore, convex shapes are bent only into one direction. Since they comprise
no reversals also the range for their curvature is limited. These correlations
indicate why a combination of these three features will most likely not be as
effective as a combination of completely independent features.

However, our new features are by no means completely redundant. On the
contrary, there exist also situations in which our new features supplement each
other. One counter-example against the correlation is formed by the pencil and
the triangle on the left hand side of Fig. 8. While both of them are completely
convex (i. e. have an extremum of 1.0) they can still be distinguished by their
extent and curvature. The right hand side of Fig. 8 depicts two silhouettes which
exhibit the same curvature, but nevertheless differ in their extent and extremum
values. This is due to the fact that the right polygon comprises some convex
line segments (those lying on the convex hull, i. e. being extreme according to
Definition 1) while the left one has none of them (relating to the extremum
values). Furthermore, the right hand side polygon is much more folded than the
left hand polygon (relating to its higher extent).

Extent, Extremum, and Curvature: Qualitative Numeric Shape Features 319

η = 0.49

ζ = 0.00

ξ = 0.84

η = 0.63

ζ = 0.13

ξ = 0.84

η = 0.25

ζ = 1.00

ξ = 0.42

η = 0.08

ζ = 1.00

ξ = 0.00

Fig. 8. Left: Two convex shapes with same extremum ζ that can nevertheless be dis-
tinguished by their extent η and curvature ξ. Right: Two shapes with same curvature
values ξ, but different extent η and extremum ζ.

4 Retrieval Performance

In order to assess the retrieval performance of our approach we shall now conduct
an evaluation. As introduced above our method focuses on the shape of objects.
Hence, we apply particularly the popular core experiment CE-Shape-1 [9] for
the MPEG-7 standard. The purpose of this experiment is to compare different
shape descriptors. It takes only retrieval results into account, thereby completely
abstracting from the underlying algorithms. Thus, it allows our shape features
to be measured in comparison with others that have already been examined with
this standardised reference test.

4.1 Experiment

We especially focus on Part B of the reference test which addresses similarity-
based shape retrieval. The experiment comes along with a database of 1400
silhouette images. These images are grouped together into 70 classes, whereby
each class comprises 20 instances. Figures 4, 5, and 7 depict example instances
of all 70 classes. During the test each image serves as a query, one after another.
All others are ordered concerning their similarity according to the approach
under consideration. The test’s result is determined accordingly to the following
definition: For each query, the correct matches among the first 40 results are
counted. This number is then related to the maximally possible number of correct
results. This is 20 for each single query (since each class comprises 20 instances)
and 28000 for all 1400 queries. Thus, a result of 100% means that all expected
results are found. Nevertheless, such an outcome is most unlikely if only shape
knowledge is applied [9]. This is due to the fact that the 70 classes are grouped
by semantic aspects, which means that some of them exhibit a broad bandwidth
of different shapes. Conversely, using a hypergeometric distribution, it is easy to
show that a random ordering of the search results achieves about 2.86% in the
MPEG test. This is a lower bound showing how much better an approach is in
comparison with mere chance.

4.2 Existing Approaches

Our new shape features are confined to a single numeric value. This allows a
comparison with constant computational complexity. Hence, it is a good choice
to compare them to approaches exhibiting the same complexity. We consider

320 B. Gottfried, A. Schuldt, and O. Herzog

three quantitative numeric shape features. These are the compactness [3], which
is the ratio 4πA

P 2 of a polygon’s area and perimeter, and the radius ratio [4] Rmin

Rmax

of the minimum enclosing circle and the maximal contained circle. Furthermore,
we apply the aspect ratio [3] Hr

Wr
of the minimal enclosing rectangle. These three

features have in common that they are based on fundamental geometric proper-
ties and that they represent a shape by just one single number.

Apart from the above numeric features, we compare our method also to two
other approaches which also pertain to the same class of complexity. On the
one hand the seven invariant Hu moments [7], which can directly be applied to
polygons [14], on the other hand the scope histogram of [12], which is based
on the scope of polygons like our method. In contrast to our approach which
determines visual shape properties, the scope histogram simply computes how
often the 86 distinguishable scopes occur in a polygon.

4.3 Retrieval Results

The classification results of our new numeric shape features compared to the pre-
vious ones can be found in Table 1. The results show that all numeric features
separately achieve results between about 16% and 25%. Thereby, our new quali-
tative features slightly outperform the quantitative ones. All considered numeric
features clearly exceed the 3% of a random ordering five to eight times. This
is notable since each feature consists of only one single numeric value. The Hu
moments and the scope histogram achieve better results of about 34% and 46%
respectively. This, however, is not surprising as they comprise a more complex
range of distinctions, namely seven and 86 respectively.

Table 1. Retrieval results of the numeric shape features extent (ET), extremum (EM),
curvature (CU), compactness (CO), radius ratio (RR), and aspect ratio (AR) examined
with CE-Shape-1 Part B. Furthermore, also the Hu moments (HU) as well the scope
histogram (SH) are evaluated.

ET EM CU CO RR AR HU SH

24.97 18.19 23.30 21.86 16.82 24.12 34.13 45.52

Owing to their low computational complexity, it is possible and reasonable
to combine multiple numeric features. This, however, only makes sense if the
results are improved by such combinations. The classification results of these
combinations are summarised in Table 2. Our new qualitative numeric features
achieve a retrieval result of about 34%. This is already remarkable as they slightly
outperform the seven Hu moments. Nevertheless, their result lies below 52%
achieved by the three quantitative numeric features. This can be explained by
the fact that all qualitative features are based on the scope (see Sect. 3.4),
while the quantitative ones base on different geometric properties. Together, all
six numeric features achieve a retrieval result of about 62%. This is especially

Extent, Extremum, and Curvature: Qualitative Numeric Shape Features 321

remarkable as we apply only six numeric values for the characterisation of the
objects’ shapes, i. e. we only need constant time for the comparison of two shapes.
Especially, the result of the quantitative numeric features combined with the
Hu moments lies about eight percentage points below their combination with
our new features. The quantitative numeric features and the scope histogram
slightly outperform the combination of the six numeric features. However, the
scope histogram consists of 86 numeric values while we apply only six of them.

Table 2. Combining multiple numeric features improves the retrieval results: the qual-
itative features (QL), the quantitative features (QN), as well as the combination of
all numeric features (AN). For comparison, the quantitative features have also been
combined with the Hu moments (NH) and the scope histogram (NS).

QL QN AN NH NS

34.33 51.58 61.51 53.99 63.75

From the low computational complexity of O(1) results a fast execution. On a
computer with Windows XP and an Intel Centrino Duo processor with 2.16 GHz
it takes only about five seconds in order to conduct the whole MPEG test (nearly
two million comparisons) for the six numeric shape features. Eventually, it is
worth mentioning that a classification result of 62% is only about 15 percent-
age points less than the approach of [8] who achieve 76.45%. However, their
computational complexity is biquadratic while ours is still constant.

5 Conclusion

In this paper we introduce extent, extremum, and curvature, three new numeric
shape features. While other numeric shape features directly base on geometric
properties, we apply a polygonal approximation as well as a qualitative abstrac-
tion before. The orientation grid as an underlying intrinsic reference system
brings in an invariance against scale, translation, and rotation. Furthermore, the
polygonal approximation and the coarse perspective of the qualitative represen-
tation realise a certain robustness against noise in the underlying image data.
The new features are easily comprehensible as they are defined on the qualitative
relational system of the scope approach.

The evaluation results show that our new numeric features can keep up with
comparable methods. The retrieval performance can be improved by combin-
ing multiple numeric features. Together with the three quantitative numeric
features discussed in this paper a retrieval result of about 62% in the MPEG
test is achieved. Hence, the new features in fact supplement the other estab-
lished features. Other features pertaining to the same complexity class can
thus be outperformed. The retrieval result is remarkable as only six numeric
values are applied for the characterisation of each shape. The computational

322 B. Gottfried, A. Schuldt, and O. Herzog

complexity for the comparison of two of these shapes is therefore constant. The
achieved result is only about 15 percentage points less than the 76.45% of [8].
However, their computational complexity is biquadratic while ours is constant.

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Attneave, F.: Some Informational Aspects of Visual Perception. Psychological Re-
view 61, 183–193 (1954)

3. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley &
Sons, Chichester (1973)

4. Garson, G.D., Biggs, R.S.: Analytic Mapping and Geographic Databases. Sage
Publications (1992)

5. Gottfried, B.: Reasoning about Intervals in Two Dimensions. In: IEEE Int. Conf.
on Systems, Man and Cybernetics, The Hague, The Netherlands, pp. 5324–5332.
IEEE Computer Society Press, Los Alamitos (2004)

6. Gottfried, B.: Shape from Positional-Contrast — Characterising Sketches with
Qualitative Line Arrangements. Deutscher Universitäts-Verlag (2007)

7. Hu, M.-K.: Visual Pattern Recognition by Moment Invariants. IRE Transactions
on Information Theory 8(2), 179–187 (1962)

8. Latecki, L.J., Lakämper, R.: Shape Similarity Measure Based on Correspondence
of Visual Parts. IEEE PAMI 22(10), 1185–1190 (2000)

9. Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape Descriptors for Non-rigid Shapes
with a Single Closed Contour. In: IEEE CVPR, Hilton Head Island, SC, USA, pp.
424–429. IEEE Computer Society Press, Los Alamitos (2000)

10. Mitzias, D.A., Mertzios, B.G.: Shape Recognition with a Neural Classifier Based on
a Fast Polygon Approximation Technique. Pattern Recognition 27, 627–636 (1994)

11. Rosin, P.L.: Assessing the Behaviour of Polygonal Approximation Algorithms. Pat-
tern Recognition 36, 505–518 (2003)

12. Schuldt, A., Gottfried, B., Herzog, O.: Retrieving Shapes Efficiently by a Quali-
tative Shape Descriptor: The Scope Histogram. In: Sundaram, H., Naphade, M.,
Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 261–270. Springer,
Heidelberg (2006)

13. Schuldt, A., Gottfried, B., Herzog, O.: Towards the Visualisation of Shape Features:
The Scope Histogram. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS
(LNAI), vol. 4314, pp. 289–301. Springer, Heidelberg (2007)

14. Steger, C.: On the Calculation of Arbitrary Moments of Polygons. Technical Report
FGBV-96-05, Informatik IX, Technische Universität München (1996)

15. Zimmermann, K., Freksa, C.: Qualitative Spatial Reasoning Using Orientation,
Distance, and Path Knowledge. Applied Intelligence 6, 49–58 (1996)

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 323–336, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extraction of Partially Occluded Elliptical Objects by
Modified Randomized Hough Transform

Kwangsoo Hahn, Youngjoon Han, and Hernsoo Hahn

Dept. of Electrical Engineering, Soongsil University
Sando-Dong, Dongjak-Ku, Seoul 156-743, Korea
{kshahn, young, hahn}@ssu.ac.kr

http://visionlab.ssu.ac.kr

Abstract. Ellipse detection is very important in computer vision, object recog-
nition, feature selection and so on. This paper proposes a new ellipse detection
method using local information of edge points. It merges line segments using
modified randomized Hough transform (RHT) that belongs to same ellipse. It is
fast, correct and robust to noise because it detects ellipse using line segments
that are constructed by local information of edge points. The proposed method
in this paper can not apply only ellipse detection but line, circle and partially
occluded elliptical object.

1 Introduction

Detection of elliptical shapes is necessary for collecting peculiar features of objects
and for finding various circular objects. Not only in most industrial parts such as
volts, rings and tires etc., they are included but also in natural object such as a human
face and erythrocyte. Because these circular objects are transformed to elliptical
shapes when they are projected to 2D image sensors, detection of elliptical shapes is a
very important task in computer vision.

Many approaches researches have been proposed for detection of ellipses. Begin-
ning from the Hough transform (HT) proposed at 1962 by P.V.C. Hough [1], a num-
ber of HT-based algorithms have been developed [2-6,10]. One of them is the ran-
domized Hough transform (RHT) proposed by Lei Xu [5]. It represents an ellipse
using a second order polynomial equation which has three parameters so that they can
be derived if the coordinates of three edge pixels are given. That is, it reduces the
computational complexity by dividing a 5D space, required by the traditional HT, by
a 2D space for the epicenter of ellipse and a 3D space for the rest of the ellipse pa-
rameters. It also selects edge pixels in random, not by probabilistic model, to reduce
the computational time. However, a random selection of three edge pixels causes a
detection of false ellipses when objects are overlapped. Connective randomized
Hough transform (CRHT)[14,15] proposed by H. Kalviainen finds the line parameters
using a connective component that was made of local information within a window
whose size is arbitrarily selected and whose center is located at an edge point. Be-
cause this method uses local connective component in sub-image, it is faster than
RHT for line detection that uses every pixels in the image. However, it is too simple

324 K. Hahn, Y. Han, and H. Hahn

to be applied to detect an ellipse. Another method proposed by Xie [7] takes the ad-
vantages of major axis of an ellipse for finding the ellipse parameters fast and effi-
ciently. It selects a pair of pixels and assumes that they are two vertices on the major
axis of an ellipse. Then it can calculate the ellipse parameters such as the center point,
the half-length of major axis and the orientation of ellipse. Then, a third pixel is used
to determine the half-length of minor axis by ellipse geometry by voting to one di-
mensional accumulator array. It has an advantage that it does not require the evalua-
tion of the tangents or curvatures of the edge contours. However, it is pointed out as a
weakness of this approach, compared to the other HT techniques in ellipse detection,
that it becomes rather computationally intensive to select an appropriate pair of pixels
on the major axis of the ellipse. Elmowafy [8] proposed fast graphical ellipse detec-
tion (FGED) algorithm, similar to RHT. In the first step, it estimates center of ellipse
using the arbitrarily selected three pixels and tests its validity using a graphical valid-
ity method (GVM). GVM checks if the mid point of selected pixels is located be-
tween the estimated center and the intersection point of tangent of each selection
pixels. Then, the ellipse center is found by the mid central point voting (MCPV) algo-
rithm and the remained parameters are calculated by RHT. Finally, compute the ratio
of the image pixels lying in the ellipse curve and the approximated circumference of
the ellipse. If the ratio gives significant evidence of the existence of a real ellipse, the
ellipse is recorded as a detected ellipse. This method shows very similar performance
in terms of computation time, but it increases the detection accuracy by checking
validity of ellipses using GVM. Although other approaches which are not based on
Hough Transform but other theories such as genetic algorithms [11,12], still those
approaches based on HT are widely used in ellipse detection.

This paper deals with the speed and accuracy problems in ellipse detection. It pro-
poses a new method of grouping edge pixels by line segments and merging them if
they are in the same ellipse. Whether two line segments are in the same ellipse or not
is tested by comparing their parameters of RHT. Because it can estimate the exact
number of ellipses in the image through the number of the merged segment set, it
reduces significantly the probability of false ellipse detection. Also, this method can
reduce the total execution time because it estimates the ellipse parameters in the line
segment level not in the individual edge pixel level. This paper also solved the prob-
lem included in the previous paper [13] that the edge segment can be over segmented
due to noise resulting in wrong detection and long computation time.

The rest of this paper is organized as follows: Section 2 describes the overview of
the system and the preprocessing of an input image. Section 3 illustrates the line seg-
ment detection scheme and Section 4 explains how to use the line segments to detect
ellipses using RHT. Section 5 shows the experimental results and Section 6 gives the
conclusion.

2 System Overview and Preprocessing

2.1 System Overview

The block diagram of the proposed algorithm is summarized in Fig. 1. The algorithm
begins with the edge detection and thinning process in the first stage to find the

 Extraction of Partially Occluded Elliptical Objects 325

boundaries of the objects in the image. The detected edge pixels are grouped by line
segments using a corner pattern detector and individual line segments are labeled so
that each of them may belong to only one ellipse later. In the second stage, every pair
of edge segments is tested to see whether they satisfy the ellipse condition to merge.
If so, they are merged. This test and merge process is repeated until all line segments
are tested.

Fig. 1. Block diagram of the proposed algorithm

2.2 Preprocessing

The preprocessing includes the edge detection and thinning processes. For detecting
edges in the input image, a modified Canny operator is used which removes noise
using a Gaussian filter and estimates the local maximum edge point using the magni-
tude and orientation of the first differential of each pixel. Figure 2(b) is shows the
result of applying the Canny edge detector for an input image given in Fig. 2(a).

For grouping the edge pixels by line segments to use for RHT, a thinning operation
is required. In the thinning process, the effect of noise is considered. As shown in
Fig. 2(c) and (d), some noise pixels connected to line segment can survive in the edge

(a) (b) (c) (d)

Fig. 2. Canny edge detector (a) Origin image (b) Edge image (c) First patterns of redundant
pixels (d) Second patterns of redundant pixels

Fig. 3. Second redundant pattern, black is edge pixels, white is background and X is don’t care

326 K. Hahn, Y. Han, and H. Hahn

detection process. These noise pixels are defined as redundant pixels and they form
some typical patterns as shown in Fig. 3. By removing these redundant pixels, the
over segmentation problem can be significantly reduced.

3 Grouping Edge Pixels by Line Segments

To find ellipses using RHT, three edge pixels should be selected in the object image.
As shown in Fig. 2, if there are ellipses more than one, the RHT has a high chance
of selecting pixels from different ellipses to construct an ellipse, resulting in false
ellipses with spending a large amount of processing time. To solve this problem, edge
pixels are grouped by line segments first in this paper using the process given in
Fig. 4 and the RHT uses these line segments instead of edge pixels to detect ellipses.

Fig. 4. Process of grouping edge pixels by line segments

To find line segments from the edge image, the process illustrated in Fig. 4 finds
the crossing pixels in the first step. For this purpose, edge pixels are classified by four
patterns, using the 8-connectivity window. The first one is the normal type having two
neighboring edge pixels as shown in Fig. 5(a), the second one is the crossing type
having more than three neighboring edge pixels as shown in Fig. 5(b), and the third
one is the end type having one neighboring edge pixels as shown in Fig. 5(c).

(a) (b) (c)

Fig. 5. Types of edge pixels (a) Normal (b) Crossing (c) End

 Extraction of Partially Occluded Elliptical Objects 327

The fourth one is a corner type to be defined by a difference chain code on the way
of grouping process, since it cannot be determined simply by a 3x3 window. The
difference chain code expresses an angle difference between two vectors, A and B,
each of which can take one of 8 directional vectors shown in Fig. 6(a). The angle
difference between these two vectors can be represented by one of 7 difference codes
ranging from -3 to 3 including 0 as shown in Fig. 6(b). For example, Fig. 6(a) is rep-
resented code 1 by Fig. 6(b).

(a) (b)

Fig. 6. Definition of a difference code (a) Vector definition (b) Code, bright narrow arrow is
vector A in Fig. 6(a) and dark wide one is vector B

Figure 7 shows an example of describing a sequence of edge pixels using the differ-
ence chain code. A part of the edge image is described by the difference chain code.

By empirically testing the images, the difference chain code patterns of corners ap-
pearing in a 5x5 window are summarized in Fig. 8.

Fig. 7. Example of representing a curve using a difference chain code: 1-11-102-11-110-10

020, 0-20 02-1, 1-20 011, -1-10 -10-1, 101 110, 0-1-1

101, -10-1 120, 0-2-1 -121, -1-21 -12-1, 1-21

Fig. 8. Corner patterns in a 5x5 window

328 K. Hahn, Y. Han, and H. Hahn

Based on the types of edge pixels, the grouping and labeling process begins with
testing the leftmost top edge pixel in the input image to see which type it is. If it is a
normal type, it is considered as a starting pixel of a new line segment and the edge
pixel located first in the counterclockwise rotation with reference to X axis is selected
to be tested until an edge pixel of crossing or end type is found, while merging the
edge pixel as the same line segment if it is a normal type. Once a crossing or end type
is found, the process returns to the first edge pixel of the line segment and begins the
same procedure with the edge pixel located in the other direction. One line segment is
completed when the tests along both neighboring edge pixels are finished. If the first
edge pixel is a crossing type, it is the first pixel of three different line segments and its
neighboring pixels are tested one by one repeatedly. Figure 9(b) shows the line seg-
ment image obtained by applying the proposed algorithm to the edge image in Fig.
9(a) where there is no edge pixel of corner type.

(a) (b)

Fig. 9. Edge grouping based on crossing edges (a) Crossing edges (b) Labeled line segments

On the grouping process, if an edge pixel of corner type is found, then it stops the
testing and merging operation. The edge pixel of corner type becomes the starting
pixel of a new line segment from which the grouping process begins again. For exam-
ple, let’s consider an edge image given in Fig. 10(a) where edge pixels of corner type
are included. In this case, if the pixels of corner type are not detected correctly, then
the wrong line segments which include sudden curvature changes are resulted. In Fig.
10(b), line segments 1 and 2 include one corner pixel respectively.

 (a) (b) (c) (d)

Fig. 10. Grouping process considering corner pixels (a) Edge image (b) Wrong result (c) Cor-
ner finding (d) Correct result

 Extraction of Partially Occluded Elliptical Objects 329

If representing the line segment 1 in Fig. 10(b) with the difference chain code, 1-
11-102-11-110-10 is resulted where 02-1, one of corner patterns, is included. At the
edge pixel where this pattern is found, the line segment is divided and the correct
resulting line segments are obtained as given in Fig. 10(d).

(a) (b)

Fig. 11. Test of over segmentation (a) Over segmented line segment and verification point (b)
Line segments are connected

Next step is to test whether a line segment is segmented by more than two line
segments. Although the noise pixels that may cause over segmentation are eliminated
by the thinning process, the survived noise pixels may result in over segmentation as
shown in Fig. 11(a). To find the over segmented line segments, those verification
points are selected first where the line segment is disconnected and the end points of
the line segments are close enough. As shown in Fig. 11, among the five disconnected
points given in Fig. 11(a) only 3 points are selected as the verification points which
are marked by a circle as shown in Fig. 11(a). Since those two points connecting line
segment 2 to line segments 5 and 6 and connecting line segments 4 and 6 to line seg-
ment 3 are branching points, they are not included in the verification points. The line
segments located near the verification points are connected and the difference chain
code is generated to see whether the connected line segment forms a corner pattern or
not. If not, then the connected line segment is considered as one line segment. Fig.
11(b) shows the line segments where the over segmented line segments 1 and 2 are
connected.

4 Ellipse Decision

4.1 Randomized Hough Transform

Ellipses in a X-Y plane can be completely represented by the following quadratic
equation with five parameters (a,b,c,d,e) as other 2nd order curves can be.

2 2 1 0ax by cxy dx ey+ + + + + = (1)

Eq. (1) can be restructured into Eq. (2) to explicitly include the coordinates of the
ellipse center (p,q). Eq. (3) is given as the ellipse condition of Eq. (2). Still five pa-
rameters (A,B,H,p,q) are required to represent an ellipse.

330 K. Hahn, Y. Han, and H. Hahn

() ()() ()2 2
2 1A x p H x p y q B y q− + − − + − = (2)

2 0AB H− > (3)

Since as the number of parameters increases the computational complexity in Hough
Transformation also does rapidly, Yuen et al. [2] proposed a method of representing
an ellipse with 3 parameters to use for Randomized Hough Transformation. It takes
two points (x1,x2) on an ellipse and finds their midpoint (m1)and intersection(t1) of
their tangents, as shown in Fig. 12.

Fig. 12. Estimate center of ellipse

The line connecting m1 and t1 passes the center (O) of the ellipse. Therefore if
three points (x1,x2,x3) on an ellipse are given, its center can be determined as the inter-
section of two lines, and as shown in Fig. 11. Thus, the parameters (p,q) in Eq. (2) can
be removed and Eq. (4) can be used to represent an ellipse where three parameters
(A,H,B) are sufficient.

2 22 1Ax Hxy By+ + = (4)

These three parameters in Eq. (4) can be obtained in the parameter space if any
three points on an ellipse are given in X-Y plane, using Eq. (5).

2 2
1 1 1 1
2 2
2 2 2 2
2 2
3 3 3 3

2 1

2 1

2 1

x x y y A

x x y y H

x x y y B

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (5)

4.2 RHT with Line Segments

To test if a pair of line segments belongs to the same ellipse of not, the process given
in Fig. 13 is used where RHT takes the main role in ellipse decision.

In the first step, the line segments are sorted by length in a decreasing order and
their ellipse parameters of RHT are calculated using Eq. (5). If a line segment satisfies
the ellipse condition given in Eq. (3), it stays in the list. Otherwise, it is considered
not a part of an ellipse and omitted from the list. The merging operation considers the

 Extraction of Partially Occluded Elliptical Objects 331

Fig. 13. Block diagram for ellipse decision

first, longest one in the list as the reference line segment. One of the rests in the list is
selected and its ellipse matching ratio (EMR) defined in Eq. (6) is calculated.

c

w

N
EMR

N
= (6)

In Eq. (6), Nw is the total number of pixels included in two line segments and Nc is
the number of those pixels of segments pair that can be included in the estimated
ellipse which is derived by RHT from the two line segments. Thus, Nc can be repre-
sented by Eq. (7).

()
1

w
N

c
i

N Near i
=

=∑ (7)

() 1 if

0 otherwise

PQ th
Near i

⎧ <= ⎨
⎩

 (8)

In Eq. (8), if Q is the pixel to be tested and P is the pixel of the estimated ellipse at

the intersection with the line from the center of the ellipse to Q, PQ is the distance

between the estimated ellipse and the pixel included in the selected line segment, as
shown in Fig. 14(a). If the selected line segment has an EMR with the estimated el-
lipse within the threshold to be determined empirically, then it is merged to the refer-
ence line segment.

 (a) (b) (c)

Fig. 14. Merging decision (a) Distance (b) Do not merging (c) Merging

332 K. Hahn, Y. Han, and H. Hahn

Figure 14 shows the example images acquired as the results of the line segment
merging. The upper row image in Fig. 14(b) includes two line segments and line seg-
ment 1 (longest one) is selected as the reference one to derive the reference ellipse C
given in the bottom image. Then line segment 2 is selected and its EMR is calculated
which is smaller than the threshold 0.95. Thus it cannot be merged with Line segment
1. Figure 14(c) shows the cases where the line segments can be merged.

5 Experiments

For proving the efficiency of the proposed algorithm, its performance has been com-
pared with those of the RHT [5], Xie’s algorithm [7], and fast graphical ellipse detec-
tion (FGED) [8] in terms of computation time and accuracy. For the experiments,
total 450 synthetic images have been used which are collected in such a way that
every 50 images contain 1 to 9 randomly positioned ellipses. Also, 100 real images
collected in the fields are used for the experiments. Figure 15 shows one example of
synthetic images where the images in the upper row contain four ellipses while those
in the lower row do seven ellipses.

(a) (b) (c) (d) (e)

Fig. 15. Example of ellipse extraction in synthetic image, (a) Origin image, (b) RHT, (c) Xie’s
algorithm, (d) FGED, (e) Proposed method

In Fig. 15, the origin images are shown in (a) and the result images are given in
(b)~(e) where the detected ellipses are described by gray thick lines. The images in
the upper row show the result images containing four ellipses. The algorithms in (b)
and (c) of Fig. 15 failed in detecting the small ellipse in the upper right corner and
estimated the ellipses with visible error. Because RHT detects every ellipse if its vot-
ing is larger than a given threshold, one ellipse can be detected several times as shown
in Fig. 15(b). The result image of FGED given in Fig. 15(d) looks like showing a
better result compared to the other algorithms. But, its accuracy is not that good or

 Extraction of Partially Occluded Elliptical Objects 333

(a) (b)

Fig. 16. Comparing the performance of RHT, Xie's algorithm, FGED and proposed method, (a)
Computation time versus number of ellipse exact Xie’s algorithm because it is so slow, (b)
Accuracy versus number of ellipses

 (a) (b) (c) (d)

Fig. 17. Ellipse detection in real images, RHT and Xie’s algorithm can not detect ellipse (a)
Industrial parts image, (b) Edge image, (c) Result of FGED, (d) Result of proposed method

worse than theirs. Only the results image generated by the proposed method in
Fig. 15(e) has extracted exactly 4 ellipses with the smallest error. The images in the
lower row show the result images containing 7 ellipses. They show that the other
algorithms except the proposed algorithm has detected too many ellipses or failed in
detecting the ellipses.

The experiment results obtained from the synthetic images are summarized in
Fig. 16 and Table 1. Figure 16(a) and (b) shows the computation time and detection

334 K. Hahn, Y. Han, and H. Hahn

Table 1. Comparing the performance of RHT, Xie's algorithm, FGED and proposed method

Computation Time (sec) Accuracy Number of ellipse
in image RHT Xie’s FGED

Proposed
method

RHT Xie’s FGED
Proposed
method

1 6.77 51.503 4.131 1.702 0.97 0.981 0.998 1.000
2 16.5 83.910 13.62 5.945 0.96 0.977 0.982 0.997
3 29.4 287.06 27.54 8.718 0.86 0.753 0.879 0.990
4 48.2 1386.5 46.69 9.398 0.69 0.713 0.725 0.988
5 51.4 1386.5 61.29 10.74 0.62 0.456 0.520 0.973
6 64.9 1419.9 81.20 10.95 0.39 0.390 0.409 0.953
7 71.4 1452.3 85.94 11.60 0.36 0.334 0.355 0.925
8 76.5 1985.8 97.85 14.36 0.30 0.329 0.351 0.920
9 79.4 2105.1 180.9 19.56 0.24 0.293 0.312 0.901

Table 2. Parameter values of ellipses detected in Fig. 17(d)

Parameter values of ellipses in Fig. 17(d-1) Parameter values of ellipses in Fig. 17(d-2)

Center
Major
axis

Minor
axis

Orientation Accuracy Center
Major
axis

Minor
axis

Orientation Accuracy

(170, 85) 51 47 42.03297 0.9212 (181, 127) 50 44 71.47059 0.9201

(146, 238) 51 47 -59.8352 0.9284 (61, 165) 50 44 79.94118 0.9138

(84, 199) 54 47 81.59341 0.9564 (132, 195) 22 22 77.82353 0.9299

(66, 210) 24 20 -64.7802 0.8914 (130, 195) 44 38 -14.2941 0.9222

(98, 120) 34 20 -54.8901 0.9057 (108, 103) 44 41 -25.9412 0.8399

(150, 243) 14 10 -76.6484 0.9366 (112, 109) 22 22 77.82353 0.9080

(180, 76) 24 20 56.86813 0.9013 (132, 197) 13 9 -61.9412 0.9250

(66, 210) 14 10 53.9011 0.9048 (112, 109) 13 9 -46.0588 0.9328

(122, 137) 24 24 89.5055 0.9003 (134, 175) 16 9 30.17647 0.9051

(172, 85) 24 20 33.13187 0.9524 (196, 127) 16 9 57.70588 0.9399

(130, 137) 27 24 -5.43956 0.9075 (205, 117) 9 9 56.64706 0.9009

(140, 227) 17 10 -31.1538 0.9011 (68, 155) 13 6 49.23529 0.9552

(124, 137) 10 10 -45.989 0.9117 (37, 169) 13 13 -71.4706 0.9142

(182, 74) 14 10 43.02198 0.9161 (112, 111) 9 9 43.94118 0.8604

(90, 194) 14 7 49.94506 0.9397

Computation Time (sec) : 12.227 Computation Time (sec) : 9.503

accuracy in terms of the number of ellipses in the original image. As expected from
the result images in Fig. 15, the results of all algorithms when the number of ellipses
in an image is small look similar. However, as the number of ellipses in an image
increases, the performance differences among the algorithms also increase signifi-
cantly. The computation time of the proposed method increases twice proportional to
the number of ellipses, but those of the others do four to ten times proportional to.
The accuracy of the proposed method does not change much even when the number

 Extraction of Partially Occluded Elliptical Objects 335

of ellipses increases, but those of the others drop significantly as the number of ellip-
ses increases.

Figure 17 shows the result images applied to the real images containing industrial
parts randomly positioned. Differently from the synthetic images, the edge images
contain many noise edges generated by shadows or by shapes. Because there exists
many edge pixels inside the boundary ellipses, most other algorithms generate the
result image as shown in Fig. 17(c) containing large error, but the proposed method
does almost correct ones. The accuracy of the proposed algorithm on the real images
is summarized in Table 2. It shows that proposed method extracts accurately the most
ellipses in the real image with a reasonable time expense.

6 Conclusion

This paper has proposed a new ellipse detection algorithm using the RHT based on
line segments. The algorithm intended to solve the problems of RHT which has a
tendency of detecting false ellipses with edge pixels pertained to different ellipses and
whose computational complexity depends on the number of edge pixels. These prob-
lems have been solved in this paper by reducing the number of inputs to RHT by
grouping the edge pixels by line segments. The experimental results have shown that
the proposed algorithm is superior to three conventional algorithms, RHT [5], Xie’s
algorithm [7] and FGED [8] , by at least two times on average in terms of accuracy
and processing time, even when ellipses are overlapped in an input image.

References

1. Hough, P.V.C.: Method and Means for Recognizing Complex Patterns. U.S. Patent
3069654 (December 18, 1962)

2. Yuen, H.K., Illingworth, J., Kittler: Detecting partially occluded ellipses using the Hough
Transform. Image and Vision Computing 7(1), 31–37 (1989)

3. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic Hough Transform. Pattern Recog-
nition 24(4), 303–316 (1991)

4. Jeng, S.-C., Tsai, W.-H.: Scale and orientation-invariant generalized Hough Transform-A
new approach. Pattern Recognition 24(11), 1034–1051 (1991)

5. Xu, L., Oja, E., kultanena, P.: A new curve detection method: Randomized Hough Trans-
form (RHT). Pattern Recognition Letters 11(5), 331–338 (1990)

6. McLaughlin, R.A.: Randomized Hough Transform: better ellipse detection. Digital Signal
Processing Applications 1, 409–414 (1996)

7. Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: International Conference on
Pattern Recognition, vol. 2, pp. 957–960 (2002)

8. Elmowafy, O.M., Fairhurst, M.C.: Improving ellipse detection using a fast graphical
method. Electronics Letters 35(2), 135–137 (1999)

9. McLaughlin, R.A., Alder, M.D: The Hough transform versus the UpWrite. Pattern Analy-
sis and Machine Intelligence 20(4), 396–400 (1998)

10. Cheng, Z., Liu, Y.: Efficient technique for ellipse detection using restricted randomized
Hough transform. Image Processing and Pattern Recognition 2, 714–718 (2004)

336 K. Hahn, Y. Han, and H. Hahn

11. Lutton, E., Martinez, P.: A genetic Algorithm for the detection 2D geometric primitives in
image. In: Proc. 12th international conference on pattern recognition, October 1994, pp.
526–528 (1994)

12. Yao, J., Kharma, N., Grogono: Fast, robust GA-based ellipse detection. In: Proc. 17th In-
ternational Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 859–862 (2004)

13. Hahn, K., Han, Y., Hahn, H.: Ellipse detection using a randomized Hough transform based
on edge segment merging scheme. In: ISPRA 2007 (2007)

14. Kälviäinen, H., Hirvonen, P.: Connective randomized Hough transform. In: The 9th Scan-
dinavian conference on Image analysis, pp. 15–26 (1996)

15. Kälviäinen, H., Hirvonen, P., Xu, L., Oja, E.: Comparisons of probabilistic and non-
probabilistic Hough transforms. In: The third European conference on Computer Vision,
vol. 2, pp. 352–360 (1994)

Solving Decentralized Continuous Markov

Decision Problems with Structured Reward

Emmanuel Benazera

Universität Bremen
Fachbereich 3 - AG/DFKI Robotic Lab

Robert-Hooke-Str 5 D-28359 Bremen, Germany
benazera@informatik.uni-bremen.de

Abstract. We present an approximation method that solves a class of
Decentralized hybrid Markov Decision Processes (DEC-HMDPs). These
DEC-HMDPs have both discrete and continuous state variables and rep-
resent individual agents with continuous measurable state-space, such
as resources. Adding to the natural complexity of decentralized prob-
lems, continuous state variables lead to a blowup in potential decision
points. Representing value functions as Rectangular Piecewise Constant
(RPWC) functions, we formalize and detail an extension to the Cover-
age Set Algorithm (CSA) [1] that solves transition independent DEC-
HMDPs with controlled error. We apply our algorithm to a range of
multi-robot exploration problems with continuous resource constraints.

1 Introduction

Autonomous exploratory robots roam unknown environments where uncertainty
is pervasive. For a single robot, a prevalent direct or indirect consequence of the
uncertainty is observed in the form of highly variated resource consumption. For
example, the terrain soil or slope directly affects a rover’s battery usage: this po-
tentially leads to high failure rates in the pursuit of rewarded objectives. In such
a case, the best strategy is an optimal trade-off between risk and value. It comes
in the form of a tree of actions whose branches are conditioned upon resource
levels [6]. The multiagent problems can be represented as decentralized hybrid
Markov decision problems (DEC-HMDPs). Versions of dynamic programming
(DP) that solve centralized HMDPs use functional approximations to the true
value functions. They can find near-optimal policies with controlled error [4,7,8].

Discrete decentralized MDPs (DEC-MDPs) have been proved to be of high
computational complexity [2], ranging from PSPACE to NEXP-complete. A
handful of recent algorithms can produce optimal solutions under certain con-
ditions. [3] proposes a solution based on Dynamic Programming (DP), while
[12] extends point based DP to the case of decentralized agents, and [13] ap-
plies heuristic search. Of particular interest to us in this paper, work in [1] has
focused on transition-independent decentralized problems where agents do not
affect each other’s state but cooperate via a joint reward signal instead. However,

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 337–351, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

338 E. Benazera

these algorithms are not targeted at the solving of DEC-HMDPs and cannot deal
efficiently with the continuous state-space.

In this paper, we study the solving of transition independent DEC-HMDPs.
Our theoretical approach remains within the brackets of [1]. This approach is
attractive because it allows to consider each agent individually: the core idea is
to compute the coverage set of each agent, that is the set that regroups the agent
strategies such that all of the possible behaviors of the other agents are optimally
covered. Therefore the continuous decision domains of individual agents can be
decoupled during the computations. We extend the Coverage Set Algorithm
(CSA) to DEC-HMDPs. We show how to aggregate those continuous Markov
states for which an agent coverage set is identical. This eases the computations
drastically as the algorithm considers far fewer points than a naive approach.
The true joint value function of the multiagent problem is approximated with
controllable precision. Our contribution is twofold. First, we bring the formula-
tion and the computational techniques from the solving of HMDPs to that of
DEC-HMDPs. Second, we solve problems of increasing difficulty in a multiagent
version of the Mars rover domain where individuals act under continuous re-
source constraints. Results shed light on the relation between the computational
complexity of the problems, and the level of collaboration among agents that is
expressed in the domain.

In Section 2 and 3 we detail computational techniques for continuous and de-
centralized problems respectively, and formulate the general problem. In section
4 we present our solution algorithm. Section 5 provides a thorough analysis of
the algorithm on decentralized planning problems with various characteristics.
While to our knowledge this is the first algorithm to near optimally solve this
class of DEC-HMDPs, much work remains, and we briefly outline future research
threads in section 6.

2 Decision Theoretic Planning for Structured Continuous
Domains

A single agent planning problem with a multi-dimensional continuous resource
state is a special case of a hybrid MDP (HMDP).

2.1 Hybrid Markov Decision Process (HMDP)

A factored Hybrid Markov Decision Process (HMDP) is a factored Markov de-
cision process that has both continuous and discrete states.

Definition 1 (Factored HMDP). A factored HMDP is a tuple (N, X, A, T, R,
n0) where N is a discrete state variable1, X = X1, · · · , Xd is a set of continuous
variables, A is a set of actions, T is a set of transition functions, R is a reward
1 Multiple discrete variables plays no role in the algorithms described in this paper

and for simplifying notations we downsize the discrete component to a single state
variable N.

Solving Decentralized Continuous Markov Decision Problems 339

function. n0 is the initial discrete state of the system, and Pn0(x) the initial
distribution over continuous values.

The domain of each continuous variable Xi ∈ X is an interval of the real line,
and X =

⊗
i Xi is the hypercube over which the continuous variables are de-

fined. Transitions can be decomposed into the discrete marginals P (n′ | n, x, a)
and the continuous conditionals P (x′ | n, x, a, n′). For all (n, x, a, x′) it holds∑

n′∈N P (n′|n, x, a) = 1 and
∫
x∈X P (x′|n, x, a, n′) = 1. The reward is assumed

to be a function of the arrival state only, and Rn(x) denotes the reward asso-
ciated with a transition to state (n, x). The reward function in general defines
a set of goal formulas gj , j = 0, · · · , k. Thus the non-zero Rn(x) are such that
n = gj , and noted as the goal reward Rgj (x).

We consider a special case of HMDP in which the objective is to optimize the
reward subject to resource consumption. Starting with an initial level of non-
replenishable resources, an agent’s action consumes at least a minimum amount
of one resource. No more action is possible once resources are exhausted. By
including resources within the HMDP state as continuous variables, we allow
decision to be made on resource availability. Typically time and energy are in-
cluded as resources. This model naturally gives rise to over-subscribed planning
problems, i.e. problems in which not all the goals are feasible by the agent under
resource constraints. Over-subscribed problems have been studied in [11,14] for
deterministic domains, and in [9] for stochastic domains. Here, it leads to the
existence of different achievable goal sets for different resource levels. Each goal
can be achieved only once (no additional utility is achieved by repeating the
task), and the solving of the problem leads to a tree-like policy whose leaves
contain achieved goals and branches depend on resource levels.

2.2 Optimality Equation

The Bellman optimality equation for a bounded-horizon HMDP is given by

Vn(x) = 0 when (n, x) is a terminal state.

Vn(x) = max
a∈An(x)

[∑
n′∈N

P (n′ | n, x, a)
∫
x′

P (x′ | n, x, a, n′)(Rn′ (x′) + Vn′ (x′))dx′
]

(2.1)

where An(x) is the set of eligible actions in state (n, x), and a terminal state such
that An(x) = ∅. Given a HMDP with initial state (n0, x0), the objective is to
find a policy π : (N ×X) → A that maximizes the expected cumulative reward.
Given a policy π, Pn(x | πi) represents the state distribution over resources in
state n under the policy π. It is given by

Pn(x) = Pn0(x) when (n, x) is the initial state.

Pn(x | πi) =
∑

(n′,a)∈ωn

∫
X′

Pn′(x′ | πi)P (n | n′, x′, a)P (x | n′, x′, a, n)dx′ (2.2)

where ωn = {{n′, a} ∈ N ×A : ∃x ∈ X, Pn′(x | πi) > 0, πi(x) = a}.

340 E. Benazera

(a) Initial discrete state value function: the
humps and plateaus each correspond to
achieving a goal.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

(b) Dynamic partition of the con-
tinuous space.

Fig. 1. Initial discrete state value function for an HMDP with two goals and two
resources

Dynamic programming for structured HMDPs. Computationally, the
challenging aspect of solving an HMDP is the handling of continuous variables,
and particularly the computation of the continuous integral in Bellman backups
and equations 2.1 and 2.2. Several approaches exploit the structure in the con-
tinuous value functions of HMDPs [4,7,8]. Typically these functions appear as a
collection of humps and plateaus, each of which corresponds to a region in the
state space where similar goals are pursued by the policy. The steepness of the
value slope between plateaus reflects the uncertainty in achieving the underlying
goals. Figure 1(a) pictures such a value function for a three goals, two resources
problem. Taking advantage of the structure relies on grouping those states that
belong to the same plateau, while naturally scaling the discretization for the
regions of the state space where it is most useful such as in between plateaus.
This is achieved by using discretized continuous action effects to partition the
continuous state-space, thus conserving the problem structure. It contrasts with
the naive approach that consist in discretizing the state space regardless of the
relevance of the partition. Figure 1(b) shows the state grouping result for the
value function on the left: discretization is focused in between plateaus, where
the expected reward is the most subjected to action stochastic effects.

Theorem 1 (From [4]). For an HMDP such that Vn′(x) is Rectangular Piece-
wise Constant (RPWC), then Vn(x) computed by Bellman backup (Equation 2.1)
is also RPWC.

Our implementation follows [4] and represents both value functions and con-
tinuous state distributions as kd-trees [5]. Tree leaves are RPWC values and
probabilities. We have implemented the two main operations that solve equa-

Solving Decentralized Continuous Markov Decision Problems 341

tions 2.1 and 2.2 respectively, and that we refer to as the back-up and convolution
operators.

3 Decentralized HMDPs (DEC-HMDPs)

Now, we consider any number of agents, operating in a a decentralized manner
in an uncertain environment, and choosing their own actions according to their
local view of the world. The agents are cooperative, i.e. there is a single value
function for all the agents. This value is to be maximized, but the agents can
only communicate during the planning stage, not during the execution, so they
must find an optimal joint policy that involves no exchange of information.

Definition 2 (Factored Locally Fully Observable DEC-HMDP). An m-
agents factored DEC-HMDP is defined by a tuple (N, X, A, T, R, N̂0). N is a set
of m discrete variables Ni that refer to each agent i discrete component, and ni
denotes a discrete state in Ni. X =

⊗m
i=1 Xi is the continuous state space, and

xi denotes a continuous state in state-space Xi. A = A1 × · · · × Am is a finite
set of joint actions. T = T1×· · ·×Tm are transitions functions for each agent i.
R is the reward function, and Rn(x) denotes the reward obtained in joint state
(n; x). N0 = {ni0}i=1,··· ,m are initial discrete states, with initial distributions
over continuous values {Pni

0
(x)}i=1,··· ,m.

In this paper, we focus on the class of transition-independent DEC-HMDPs
where an agent actions have no effects on other agent states. However agents are
not reward-independent.

3.1 Reward Structure

The reward function for a transition independent DEC-HMDP is decomposed
into two components: a set of individual local reward functions that are inde-
pendent; a global reward the group of agents receives and that depend on the
actions of multiple agents. We assume a set of identified goals {g1, · · · , gk}, each
of which is known and achievable by any of the m agents. Basically, a joint re-
ward structure ρ is the distribution of a global reward signal over combinations
of agents over each goal. In other words, ρ maps the achievement of a goal by
possibly multiple agents to a global reward (or penalty), added to the system
global value. For example, in the case of multiple exploratory robots, it would
model a global penalty for when several robots try to achieve the same goal.
The joint reward structure articulates the effect of individual agent actions on
the global value function of the system. Thus the joint reward value for a set of
given policies, one per agent, is a linear combination of the reward signals and
the probability for each agent to achieve each of the goals. For simplifying the
notations, we formally study the case of a single combination of agents per goal:

JV (ρ, x1, · · · , xm | π1, · · · , πm) =
k∑
j=0

cj(x1, · · · , xm)
m∏
l=1

Pgj (xl | πl) (3.1)

342 E. Benazera

where the cj are the global reward signals of ρ, and the Pgj (x | πi) naturally
derive from equation 2.2 such that Pgj (x | πi) =

∑
n s.t. n|=gj

Pn(x | πi). Now,
the global value GV of a joint policy for all agents can be expressed as the joint
gains of individuals and the global signals.

GV (x1, · · · , xm | π1, · · · , πm)

=
m∑
i=1

Vn0
i
(xi) + JV (ρ, x1, · · · , xm | π1, · · · , πm) . (3.2)

The optimal joint policy thus writes

{π∗
1(x1), · · · , π∗

m(xm)} = argmaxπ1,··· ,πm
GV (x1, · · · , xm | π1, · · · , πm) .

3.2 Cover Set Algorithm (CSA)

The influence of other agents on an agent’s policy can be captured by the prob-
abilities these agents have to achieve each of the goals and thus rip some of
the reward. We denote subscription space the |k|-dimensional space of agent
probabilities over goal achievements. In [1] this space is referred to as the pa-
rameter space. In a factored DEC-HMDP, the continuous state often conditions
the reachability of the goals. Therefore the parameter space is resizable and re-
lated to the goal subscription of each agent. Points in the subscription space are
referred to as subscription points.

Definition 3 (Subscription Space). For two agents, the subscription space
for k goals {gj}j=1,··· ,k is a k-dimensional space of range [0, 1]k. Each policy
π over joint continuous state x corresponds to a subscription point s such that
s = [Pg1 (x), · · · , Pgk

(x)].

Following [1], and for m MDPs, the CSA has three main procedures. Procedure
augment(MDPi, ρ, s), that creates an augmented MDP: an agent’s MDP with
reward enriched with the joint reward ρ evaluated at a given subscription point s.
Procedure CoverageSet(MDPi, ρ) that computes the optimal coverage set, that
is the set of all optimal policies for one agent, considering any possible policy
applicable by the other agents. This set is found by sequentially solving series of
augmented MDPs at carefully choosen subscription points. Given agent’s cover-
age sets, procedure CSA(MDP1, · · · , MDPm, ρ) finds the optimal joint policy.
The optimal joint policy returns the maximal global value.

Algorithm 1 puts the three main steps of the CSA together for a two agents
problem. The algorithm remains similar for a larger number of agents. Unfor-
tunately, by lack of space, we need to refer the reader to [1] for the necessary
foundations and algorithmic details of the CSA.

4 Solving Transition-Independent DEC-HMDPs

This section extends the CSA from DEC-MDPs to DEC-HMDPs.

Solving Decentralized Continuous Markov Decision Problems 343

1: Input: MDP1, MDP2, ρ.
2: optimal coverage set ← CoverageSet(MDP1, ρ) (Algorithm 2).
3: for all policies π1 in optimal coverage set do
4: Augment(MDP2, ρ, s1) with s1 subscription point computed from π1.
5: policy π2 ← solve augmented MDP2.

6: GV ∗ = max
(
GV ∗, GV (π1, π2)

)
.

7: return GV ∗ and optimal joint policy (π∗
1 , π∗

2).

Algorithm 1. Cover Set Algorithm for 2 agents [1] (CSA(MDP1, MDP2, ρ))

4.1 Policy Value in the Subscription Space

We assume the Rgj (x) and cj(x) of relation 3.1 are Rectangular Piecewise Con-
stant (RPWC) functions of x. An RPWC is a rectangular partition of the state-
space by a set of rectangles, each with a constant value. The agent transitions Ti
are approximated with discrete (dirac) or RPWC functions, depending on the
approximation method [4,7]. DP leads to value functions that are represented
by tuples (dj , Δj) where the dj are real, and the Δj form a rectangular partition
of the state-space. Figure 3(a) depicts RPWC value functions. Following [1] an
augmented HMDP sl

i for agent i, for a subscription point sl computed from a
policy of agent l is such that:

– Its reward for goal gj becomes: R′
gj

(xi) = Rgj (xi) + Pgj (xi | πl)cj(xi).
– Given that individual agents’ continuous state-spaces are independent, Pgj

(xi | πl) =
∫
Xl

Pgj (xl)dxl and cj(xi) =
∫
Xl

c(xi, xl)dxl.

Given that individual agents’ resource spaces are independent, Pgj (xi | πl) =∫
Xl

Pgj (xl)dxl.

Theorem 2 (Adapted from [1]). If Rgj (x), cj(x) are RPWC for all goals
j = 0, · · · , k and states n ∈ N , the value of a policy πi for HMDP sl

i is Piecewise
Linear (PWL) in the subscription space.

Proof. From theorem 1, and suming over all goals:

V
sl

n0
i
(xi) =

k∑
j=0

Pgj (xi | πi)R
′
gj

(xi) =

k∑
j=0

Pgj (xi | πi)
[
Rgj (xi) + Pgj (xi | πl)ck(xi, xl)

]
(4.1)

V
sl

n0
i
(xi) = Vn̂0

i
(xi) + JV (ρ, xi, xl | πi, πl) (4.2)

The optimal coverage set (OCS) is defined as the set of optimal solutions to
augmented HMDPs.

Definition 4 (Optimal Coverage Set (OCS)). The OCS for agent i is the
set of optimal policies to augmented HMDP sl

i such for any point sl of the sub-
scription space:

344 E. Benazera

OCSi = {πi | ∃sl, π = argmax
π′

i

(V sl

n̂0
(xi))} (4.3)

Relation 4.2 shows that solutions to augmented HMDPs form a set of linear
equations if goal rewards and joint reward signals are RPWC. The solving of the
linear equations yield the Pgj (xi|πl) that are the subscription points of interest.
Given a policy π(xi) with value Vn0

i
(xi) for all xi ∈ Xi, we note planes(πi(Xi))

the set of hyperplanes (planes in short) defined over the subscription space by
equation 4.2.

4.2 Computational Solution to the Discrete Problem

Let us consider an MDP with a single resource fixed point. Since the subscription
space is continuous, there are infinitely many joint reward values w.r.t. this space.
Thus there are infinitely many MDPs to be considered for each individual agent.
However, those that are relevant correspond to policies of other agents. Thus
there is a finite number of MDPs of interest. It follows that the coverage set must
be finite. Theorem 2 ensures that the value of an agent policy w.r.t. other agent
strategies is linear the subscription space of these agents’ policies. This is also
easily seen from relations 3.1 and 3.2, and it implies that the relevant subscription
points can be found by solving sets of linear equations. These equations define
hyperplanes that are agent optimal policy values w.r.t to the subscription space.
Hyperplane intersections yield the subscription points of interest. Computing
augmented MPDs at these points recursively builds the optimal coverage set of
an agent. At these points, the agent must change policy w.r.t. to the subscription
space. A case-study computation is pictured on figure 2.

4.3 Computational Solution to the Continuous Problem

Relaxing the hypothesis of a single fixed resource point produces an infinite
number of policy values per subscription point. The original CSA cannot directly

0 1

π1

π2

Pg(x)

Vn̂0(x)

V 0 V 1

s

(a) Corner points correspond to poli-
cies of other agents that achieve g with
probability 0 and 1 respectively. V 0 and
V 1 are values of the optimal policies for
augmented MDPi at corner points.

0 1

π1

π2π3

Pg(x)

Vn̂0(x)

V 0 V 1

s

(b) Augmenting MDPi at intersection
point s yields yet another policy, and
plane in the subscription space. Recur-
sively intersecting and finding policies
yields a convex set of planes that is the
optimal cover set.

Fig. 2. Cover Set computation for an agent i over single goal, and a single resource
point

Solving Decentralized Continuous Markov Decision Problems 345

xx

x1 x2

000 0 111 1

10 10

1010

5

5
2

2
π1

1
π1

2
π1

2
π2

2

V s0
n0 (x) V s1

n0 (x)

(a) RPWC value functions for two
optimal policies at subscription
points s0 = 0 and s1 = 1.

x1

x2

π1
1

π1
2

π1
2

π1
2

π1
2

π2
2x > x1

x ≤ x1

x2 ≤ r < x1

x > x2

(b) The Coverage Tree (CT) groups the con-
tinuous Markov states that yield identical
coverage sets.

Fig. 3. Grouping the OCS over continuous Markov states with a Coverage Tree

deal with this problem since it would be forced to consider infinitely many linear
equations. A possible extension to the CSA for solving equation 4.2 is to consider
a high number of naively selected resource points. In practice this can work for
problems of reduced size. But most notably, it does not take advantage of the
structure of the continuous space w.r.t. to problem. However, several situations
occur that can be exploited to build a more scalable solution:

1. As exposed in section 2, value functions in equation 4.2 exhibit a structure
of humps of plateaus where continuous points can be regrouped.

2. Several agent policies have similar values over part of the resource space.
3. Similarly, agent policies can be dominated in sub-regions of the resource

space.

Situation 1 is already exploited by the DP techniques mentionned in section
2. Situation 2 can potentially lead to great saving in computation, and this is
precisely what our algorithm is designed for. To see this, consider a two agents
problem with multiple goals. Imagine agent 1 often performs the same goal first
as it lies near its initial position, and that it does so before dealing with remaining
targets. In this case, many of the solution policies to augmented HMDPs could
be regrouped over resources while w.r.t. different subscription points. In other
words, identical sets of linear equations can cover entire regions of the continuous
state-space. Situation 3 considers the dual problem where policies, and thus
linear equations, are dominated in localized regions of the continuous space.
Eliminating these policies locally is key to computational efficiency.

4.4 Implementation

Our implementation represents and manipulates value functions and probabil-
ity distributions as kd-trees [5]. The number of continuous dimensions does not
affect this representation. Each V sl

n0
i
(xi) calculated with equation 4.2 is also cap-

tured by a kd-tree. Therefore, an OCS translates into a special kd-tree whose
leaves contain the linear equations in the subscription space defined by 4.2. We
refer to this tree as the Coverage Tree (CT). Each node of the CT corresponds
to a partition of the continuous state-space of an agent. Moving from the root

346 E. Benazera

1: Initialize boundaries to Pgj = 0; Pgj (x) = 1 for all j = 0, · · · , k.
2: Initialize coverage set to ∅, planes=empty CS, subscription points=find intersec-

tions of boundaries.
3: repeat
4: for all s in subscription points do
5: Remove s from subscription points.
6: Do Augment(HMDPi, ρ, s).
7: π∗

i (Xi) ← solve augmented HMDPi.
8: Do planes ← planes ∪ planes(π∗

i (Xi)).
9: Do Depth First Search in planes and prune dominated planes in leaves.

10: If π∗
i (xi) is not dominated over X, add π∗

i (xi) to the coverage set.
11: subscription points ← find intersection points of planes ∪ boundaries.
12: until subscription points is empty

Algorithm 2. Coverage Set computation for HMDPi (CoverageSet(HMDPi, ρ)).

toward the leaves yields smaller regional tiles. Within a tree leaf lay the linear
equations that define the coverage set for continuous Markov states within this
tile. Figure 3(b) pictures the CT for two RPWC functions at different subscrip-
tion points, on figure 3(a). The linear equations are solved locally within each
tile. Access to the leaves requires a depth-first search of the CT. The max op-
erator of relation 4.3 leads to a pruning that is performed within each leave. It
thus removes dominated equations. Dominance is computed by solving a linear
program. Whenever a policy is dominated in all leaves, it can be eliminated from
the OCS.

Algorithm 2 computes the optimal coverage set of an HMDP. It recursively
grows a set of subscription points of interest at which it solves augmented
HMDPs. planes is represented by a CT. It groups continuous Markov states
that are covered by identical sets of linear equations (step 8). It solves these
equations (step 11), augments HMDPs (step 6) and solves them (step 7) by
performing DP. Step 8 is a crucial source of complexity since it unionizes all pol-
icy planes in the subscription space over the continuous state-space. This union
of planes is a kd-tree intersection [10]. The sequential processing of subscrip-
tion points yields an equivalently denser mesh of continuous regions, and thus
a deeper CT. To mitigate the blowup in the number of tree leaves, leaves with
identical coverage sets are merged.

5 Results

Experimental Domain. We consider a multi-robot extension to the Mars
rover domain [6]. Robots have internal measurable continuous resource states
and navigate among a set of locations. Some are goal locations where robots
earn reward for performing analyses. Both navigation and analyses stochastically
consume individual continuous resources, time and/or energy. Continuous state
is irreversible since no action can be performed when resources are exhausted.

Solving Decentralized Continuous Markov Decision Problems 347

Therefore an optimal policy for a robot is in the form of a tree whose branches
are conditioned upon resource values [6]. The Mars rover domain has been widely
studied and results can be found in [1,9,4,7,8]. We study two variations of the
reward structure: a non collaborative (NCL) form where for each goal that is
achieved more than once the system suffers a penalty that is equal to that goal
reward; a collaborative (CL) form where full reward can only be obtained by a
succession of unordered analyses, one per robot.

Planning results. We run our planner on several problems with variated pa-
rameters. Table 1 present results on NCL and CL problems. NCL problems
exhibit a more complex structure than CLs: larger cover sets, high number of in-
tersections, and more HMDPs solved. However, they produce optimal plans that
are more compact and with less branching on resources than those produced for
CL problems. This can be explained as follows. First, individual agents involved
in a NCL problem are more dependent on the strategy of others, since they are
forced to avoid goals possibly achieved by others. This leads to more intersected
planes, and more meaningful subscription points. On the other hand, collabora-
tive agents are facing more goals, and thus choose strategies with more branches,

Table 1. Results on exploration problems. m: number of agents;X:resource
dimensions;G:number of goals;rds:reachable discrete states;rms:reachable Markov
states given the problem’s action discretization;ssp:subscription space size;ocs:optimal
cover set size;I :number of computed plane intersections;HMDPs:number of solved
HMDPs;pp:number of pruned policies;ph:number of pruned planes;time:solving
time;b:number of branches in the optimal joint policy;size:number of actions in the
optimal joint policy.

Model m X G rds rms ssp ocs I HMDPs pp ph time (s) br size

Non Collaborative problems

sp2 1d 2 1 2 ≈ 210 ≈ 218 2 3 420 16 10 12 0.29 2 22

sp2 2d 2 2 2 ≈ 210 ≈ 225 2 4 2560 38 30 3549 25.56 7 39

sp3 1d 2 1 3 ≈ 215 ≈ 224 3 27 46270 84 30 18055 104 4 36

sp3 1d 3a 3 1 3 ≈ 223 ≈ 230 9 17 770484 186 145 10762 233 11 87

sp3 2d 2 2 3 ≈ 215 ≈ 224 3 8 107555 19 3 5457 22.4 8 48

sp4 1d 2 1 4 ≈ 219 ≈ 228 4 31 121716 147 85 41816 1007 21 241

sp5 1d 2 1 5 ≈ 221 ≈ 227 5 32 746730 164 75 15245 2246 18 94

sp5 1d 3a 3 1 5 ≈ 232 ≈ 237 15 85 170M 2735 1768 128570 44292 27 160

Collaborative problems

sp2 1d 2 1 2 ≈ 210 ≈ 218 2 2 300 8 4 18 0.16 2 22

sp2 2d 2 2 2 ≈ 210 ≈ 225 2 4 2240 52 44 5040 65.3 8 62

sp3 1d 2 1 3 ≈ 215 ≈ 224 3 4 21455 21 13 4946 30.55 8 78

sp3 1d 3a 3 1 3 ≈ 223 ≈ 230 9 17 592020 181 136 10642 164 11 101

sp3 2d 2 2 3 ≈ 215 ≈ 224 3 2 44905 13 4 7290 33.4 44 234

sp4 1d 2 1 4 ≈ 219 ≈ 228 4 7 83916 49 35 14084 359 35 313

sp5 1d 2 1 5 ≈ 221 ≈ 227 5 13 107184 62 38 5858 820 65 303

sp5 1d 3a 3 1 5 ≈ 232 ≈ 237 15 113 125M 3679 1497 149074 72221 74 380

348 E. Benazera

 0

 2

 4

 6

 8

 10

 12

 14

 16

 500 1000 1500 2000 2500 3000 3500 4000

Global value (5e1)
OCS

(a) Global value and optimal cover set
size w.r.t. initial resources on a 3 goals
problem with a single resource.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 2.5 3 3.5 4 4.5 5

number of goals

solved HMPDs
intersections (103)

solving time
branches in joint policy

(b) Planning result w.r.t. the number of
goals. We used a 5 goals problem and re-
moved goals while keeping all locations.

(c) Non-Collaborative problem: agent 2
leaves two goals to agent 1. This accounts
for the clear asymmetry in the value func-
tion.

(d) Collaborative problem: the symme-
try of the function comes from the fact
that both agents have incentive to visit
all goals.

Fig. 4. Planning results (1)

and thus actions. However, in CL problems, goals are less constrained by other
agents behavior, and greedy policies of individuals are more likely to be globally
optimal. Overall, the small size of the optimal cover sets (OCS) is striking. The
observed difference between that of CL and NCL problems is explained by the
number of meaningful points in the subscription space. In NCL problems, agents
must distribute the goal visits among themselves. A consequence is that numer-
ous joint policies achieve the same maximum global plan value. In CL problems,
the set of optimal joint policies (and global Nash equilibria) is reduced since
agents have interest in visiting all goals.

A good measure of the efficiency of our algorithm is given by the number of
pruned policies and planes. A naive approach that considers the isolated contin-
uous Markov states would not group the planes, and thus not be able to perform
the two pruning steps. Clearly, using the problem structure drastically eases the
computational effort.

Solving Decentralized Continuous Markov Decision Problems 349

(a) Number of meaningful subscription
points per resource.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

(b) CT partitioning.

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

precision

Joint policy value
Intersections (102)

Solved MDPs

(c) Precision control.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

resource discretization

Joint policy value
Intersections (102)

Solved MDPs

(d) Discretization control.

Fig. 5. Planning results (2)

Subscription space analysis. In over-subscription problems, the amount of
initial resources determines the reachable states and goals. The size of the OCS
is not a linear function of the initial resources (figure 4(a)). This is because the
difficulty of a decision problem varies with the level of resources: as risk is high,
optimal policies for agents with low resources tend to exhibit many branches.
High level resources in general lead to simpler, because less constrained, poli-
cies. Thus similarly, the size of the OCS scales with the difficulty of achieving a
good risk vs. reward trade-off. However, the number of goals, that is the size of
the subscription space is expected to be a main driver of problems’ complexity.
Figure 4(b) pictures solving results w.r.t. the number of goals. Clearly, the solv-
ing time is crucially affected. Interestingly, the number of solved HMDPs drops
with more goals. This is a typical consequence of the over-subscribed nature of
the considered problems: adding more goals can ease up the local decision of
individual agents by dominating the expected reward of more risky goals.

Global value function. Figures 4(c) and 4(d) respectively report the global
value functions for both CL and NCL versions of a three goals problem with

350 E. Benazera

two agents, and a single resource dimension per agent. The expected reward is
better balanced among agents by the solution policy to the CL problem.

Subscription points per resource. The efficiency of our planner can be stud-
ied by looking at the resource partitioning achieved by the CST. Our planner
regroups resources with identical cover sets. As seen above, decision is more
difficult in certain regions of the resource space than in others. It follows that
meaningful subscription points are not uniformly distributed in the resource
space. Figure 5(a) pictures the number of meaningful points for a NCL problem
with two resources. Interestingly, regions that correspond to high resource levels
support very few subscription points. This means that for these levels, an indi-
vidual agent can drive the game and is almost independent. Figure 5(b) pictures
the partition of the resource space achieved by the CT for the same problem.
As can be seen, the upper right corner of high resource levels is captured by a
single tile.

Error control. Figure 5(d) reports on the algorithm’s behavior when varying
the discretization step of the Ti. As expected, the number of plane intersections
jumps exponentially as the step closes zero. The plan value does not vary signif-
icantly and this shows that the algorithm returns solutions that are close to the
optimal. Similarly, varying the numerical precision on real values dj does not
affect the plan value significantly. This is reported on figure 5(c). These results
are encouraging, and we believe our algorithm efficiently reduces the computa-
tional burden of finding near-optimal plans for DEC-HMDPs, and does so while
remaining very close to the true functions.

6 Conclusion

We have formalized the extension of the CSA to agents modelled as HMDPs. To
our knowledge, this paper reports on the first multiagent planner for agents with
continuous independent state-spaces. Performances are promising, but much re-
search remains, mostly on non transition independent DEC-HMDPs. We note
that our technique does not apply straightforwardly to existing planners for
DEC-MDPs and DEC-POMDPs [3,13,12]. This is because agent action spaces
cannot be easily decoupled. However, we have reasons to believe that policies
with equal expected reward in local continuous regions are often found around
Nash equilibria. Therefore the grouping of individual agent policies appears to be
a good prospect. We also note that other techniques for solving HMDPs such as
[8] use analytical building blocks. They yield a usable partition of the continuous
state-space and can be used to further improve our planner at no cost.

Acknowledgements. Emmanuel Benazera is supported by the DFG under
contract number SFB/TR-8 (A3).

Solving Decentralized Continuous Markov Decision Problems 351

References

1. Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Solving transition inde-
pendent decentralized markov decision processes. Journal of Artificial Intelligence
Research 22 (2004)

2. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of de-
centralized control of markov decision processes. Mathematics of Operations Re-
search 27(4) (2002)

3. Hansen, E., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially
observable stochastic games. In: Proceedings of the Nineteenth National Conference
on Artificial Intelligence (2004)

4. Feng, Z., Dearden, R., Meuleau, N., Washington, R.: Dynamic programming for
structured continuous Markov decision problems. In: Proceedings of the Twenti-
eth International Conference on Uncertainty In Artificial Intelligence, pp. 154–161
(2004)

5. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Mathematical Software 3(3), 209–226
(1977)

6. Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., Washington,
R.: Planning under continuous time and uncertainty: A challenge in ai. In: Pro-
ceedings of the Eighteenth International Conference on Uncertainty In Artificial
Intelligence (2002)

7. Li, L., Littman, M.L.: Lazy approximation for solving continuous finite-horizon
mdps. In: Proceedings of the Twentieth National Conference on Artificial Intelli-
gence (2005)

8. Marecki, J., Koenig, S., Tambe, M.: A fast analytical algorithm for solving markov
decision processes with real-valued resources. In: Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (2007)

9. Mausam, Benazera, E., Brafman, R., Meuleau, N., Hansen, E.A.: Planning with
continuous resources in stochastic domains. In: Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence, pp. 1244–1251 (2005)

10. Naylor, B., Amanatides, J., Thibault, W.: Merging bsp trees yields polyhedral set
operations. In: Computer Graphics (SIGGRAPH’90) (1990)

11. Smith, D.: Choosing objectives in over-subscription planning. In: Proceedings of
the Fourteenth International Conference on Automated Planning and Scheduling,
pp. 393–401 (2004)

12. Szer, D., Charpillet, F.: Point-based dynamic programming for dec-pomdps. In:
Proceedings of the Twenty First National Conference on Artificial Intelligence
(2006)

13. Szer, D., Charpillet, F., Zilberstein, S.: Maa*: A heuristic search algorithm for solv-
ing decentralized pomdps. In: Proceedings of the Twentieth National Conference
on Artificial Intelligence (2005)

14. van den Briel, M., Do, M.B., Sanchez, R., Kambhampati, S.: Effective approaches
for partial satisfation (over-subscription) planning. In: Proceedings of the Nine-
teenth National Conference on Artificial Intelligence, pp. 562–569 (2004)

Options in Readylog Reloaded – Generating

Decision-Theoretic Plan Libraries in Golog

Lutz Böhnstedt, Alexander Ferrein, and Gerhard Lakemeyer

RWTH Aachen University
Knowledge-Based Systems Group

Ahornstrasse 55
52056 Aachen

lutzboehnstedt@gmx.de, {ferrein, gerhard}@cs.rwth-aachen.de

Abstract. Readylog is a logic-based agent programming language and
combines many important features from other Golog dialects. One of
the features of Readylog is to make use of decision-theoretic planning
for specifying the behavior of an agent or robot. In this paper we show
a method to reduce the planning time for decision-theoretic planning
in the Readylog framework. Instead of planning policies on the fly
over and over again, we calculate an abstract policy once and store it
in a plan library. This policy can later be re-instantiated. With this
plan library the on-line planning time can be significantly reduced. We
compare computing policies on the fly with those stored in our plan
library with examples from the robotic soccer domain. In the 2D soccer
simulation league we show the significant speed-up when using our plan
library approach. Moreover, the use of the plan library together with a
suitable state space abstraction for the soccer domain makes it possible
to apply macro-actions in an otherwise continuous domain.

1 Introduction

The logic-based agent programming language Golog is a language for autonomous
robots or agents acting in real-world domains. One of its advantages is that it sup-
ports deliberation in form of projecting the world state into the future or perform
decision-theoretic (DT) planning to choose the next action to be performed by the
agent in a rational way. In recent years several extensions to the original Golog

dialect have been proposed to increase the expressiveness of the language to cope
with real-world problems. Such extensions deal with sensors, continuous change,
probabilistic projections, and decision-theoretic planning, to name but a few. The
language Readylog [1] integrates many of the useful Golog features proposed
in the literature. Its usefulness and applicability as a programming language for
agents acting in dynamic real-time domains has been shown with robotic soccer
and service robotics applications [1,2,3,4].

In this paper we investigate the decision-theoretic planning approach adopted
originally from dtGolog [5] and extend the forward-search algorithm which is
used in Readylog. Decision-theoretic planning in Readylog, roughly, works

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 352–366, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Options in Readylog Reloaded 353

as follows. Given an input program which leaves open several action alternatives
for the agent is interpreted and an optimal policy for the input program is
generated. Formally, a Markov Decision Process (MDP, cf. e.g. [6]) is solved.
The transition function between states of the Markov chain is given by Reiter’s
variant of the basic action theory formalized in the underlying situation calculus
[7,8], the policy is calculated with an optimization theory consisting of a reward
function and possibly transition probabilities for the action outcomes (cf. also
[5,9]).

This means that each time a program is interpreted in a decision-theoretic
fashion all outcomes of the used stochastic actions are expanded, for each choice
point the optimal value of being in this particular state of the MDP has to
be calculated, because these values have to be calculated relative to the world
situation when the optimization is invoked. The question we posed was whether
there is an efficient way to store intermediate results of previous calculations
of an optimal policy in such a way that it can be re-used later. This re-using
of previously calculated parts of a policy should also save computation time,
though at the cost of higher memory consumption. But considering an agent
acting in a dynamic domain, where decisions have to be taken quickly, this
trade-off seems to be worthwhile. In this paper we show that this is indeed
feasible. It is possible to store the computation of a policy independent from a
particular world situation in an efficient way such that it can be re-used later
on; and moreover, re-used with savings in the computation time. We show our
modifications to the forward-search algorithm used in Readylog which replaces
the standard MDP value iteration method and show how a decision-theoretic
plan library can be established for a particular application domain in a bootstrap
fashion. With this plan library it is in particular simple to extend an existing
macro-actions or options (as these are sometimes called in the MDP context)
approach in Readylog [10]. With our approach we also overcome limitations of
the original approach proposed in [10] as the original proposal relied on explicit
state enumeration which is not necessary any longer with our novel approach.
Together with a suitable state space abstraction options become applicable also
in continuous domains like robotic soccer where the original approach failed.

The rest of the paper is organized as follows. In Section 2 we introduce the lan-
guage Readylog in greater detail, focusing on decision-theoretic planning and
options in their current form. Section 3 presents the modified forward-search
algorithm which is capable to generate and store abstract DT policies while
Section 4 focuses on the re-instantiation of these abstract policies and on build-
ing the DT plan library. Further, we show how the previously proposed options
approach can be modeled in our new framework. In Section 5 we show several ex-
perimental results from the robotic soccer domain where a soccer plan library is
exemplarily established. We demonstrate the run-time gain with our new method
by comparing the library instantiation with planning the same policies each time
from scratch. We conclude with Section 6.

354 L. Böhnstedt, A. Ferrein, and G. Lakemeyer

2 Readylog

Readylog [2,1], a variant of Golog, is based on Reiter’s variant of the situation
calculus [8,7], a second-order language for reasoning about actions and their
effects. Changes in the world are only due to actions so that a situation is
completely described by the history of actions starting in some initial situation.
Properties of the world are described by fluents, which are situation-dependent
predicates and functions. For each fluent the user defines a successor state axiom
specifying precisely which value the fluent takes on after performing an action.
These, together with precondition axioms for each action, axioms for the initial
situation, foundational and unique names axioms, form a so-called basic action
theory [8].

Golog has imperative control constructs such as loops, conditionals [11], and
recursive procedures, but also less standard constructs like the nondeterminis-
tic choice of actions. Extensions exist for dealing with continuous change [12]
and concurrency [13], allowing for exogenous and sensing actions [14] and prob-
abilistic projections into the future [15], or decision-theoretic planning [5] which
employs Markov Decision Processes (MDPs). Readylog integrates these ex-
tensions in one agent programming framework. In the following we focus on the
decision-theoretic planning with Readylog.

2.1 DT Planning with Readylog

To illustrate how Readylog calculates an optimal policy from a given input
program we give an navigation example from a toy maze domain. A robot should
navigate from its start position S to a goal position G. It can perform one of the
actions from the set A = {go right , go left , go up, go down}. Each of the actions
brings the robot to one of its neighboring locations. The actions are stochastic,
that is there exists a probability distribution over the effects of the action. Each
action takes the agent to the intended field with probability of p, with probability
1 − p the robot will arrive at any other adjacent field. The maze shown is the
well-known Maze66 domain from [16]. In our example p = 0.7 which means that
the action right will succeed with probability 0.7, and with probability of 0.1
nature chooses one of the actions go left , go up, and go down . The robot cannot
go through the walls, if it tries, though, the effect is that it does not change its
position at all.

Accordingly, the basic action theory consists of the fluents loc, start and
goal , and the stochastic actions go right , go left , go up, and go down . As these
are stochastic actions we have to provide the predicates choice(A, a, s) and
prob(n, a, s). This means that we have to define a set of deterministic actions r,
l, u, d from which nature chooses when performing one of our navigation actions.
For ease of notation we assume that the outcomes for each action remain the
same in each situation, i.e.

choice(go right) = choice(go left) = choice(go up) = choice(go down)
def
=

{r, l, u, d}.

Options in Readylog Reloaded 355

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
����������������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

G

S

Room 1

(2,2)

Room 6

(7,5)

Fig. 1. Options for the Maze66 domain from [16]

The probability for each outcome is then
prob(r, go right) = prob(l, go left) = prob(u, go up) = prob(d, go down)

def
=

0.7 and prob(n, A, s)
def
= 0.1 for the remaining action pairs.1 The successor state

axiom for the location fluent is defined as

loc(do(a, s)) = (x, y) ≡
∃x′, y′.loc(s) = (x′, y′) ∧
((a = r ∧ x = x′ + 1 ∧ y = y′) ∨ (a = l ∧ x = x′ − 1 ∧ y = y′) ∨
(a = u ∧ x = x′ ∧ y = y′ + 1) ∨ (a = d ∧ x = x′ ∧ y = y′ − 1) ∨
(a �= r ∧ a �= l ∧ a �= u ∧ a �= d ∧ x = x′ ∧ y = y′)).

The fluents start and goal are situation independent and encode only the
position of the start and the target position. In our example start(s) = (1, 1)
and goal (s) = (7, 5). The reward function is defined as reward(s) = +1 if
loc(s) = goal(s) and −1 otherwise. To find the optimal path from S to G the
robot is equipped with the program

proc navigate
solve(while ¬loc = goal do

(go right | go left | go up | go down)
endwhile, h)

endproc

With the solve statement decision-theoretic planning is initiated. The inter-
preter switches into an off-line mode and optimizes the program given as the
argument of the solve-statement up to horizon h. The “ | ” represent nondeter-
ministic choices of actions. At these choice points the interpreter selects the best
action alternative. The Readylog interpreter does this via predicates BestDo

1 Again, for ease of notation, we do not distinguish between different partitions of the
state space. As all probabilities have to sum up to 1 for each action, the probability
mass of a stochastic action has to be redistributed over the possible outcomes. This
means that at position (1, 1) only the actions r and u are possible and thus the
probability of the outcome for r is 0.875 and for the outcome u is 0.125.

356 L. Böhnstedt, A. Ferrein, and G. Lakemeyer

s0

s1 s2 s3 s4

a1 a2 a1a1a1

a1

a2a2a2

a2

p1 p2 p3 p4

V = max(V1, V2)

V2 = p3 · V3 + p4 · V4

V3 V4

Fig. 2. Decision tree search in Readylog

which implement the forward-search algorithm (Fig. 2). For space reasons we will
not show the whole definition of the algorithm here. For a detailed discussion of
BestDo we refer to [5,2]. As long as the robot is not at the goal location (and the
horizon is not reached) Readylog loops over the nondeterministic choice state-
ment. At each iteration the interpreter expands a subtree for each of the actions
inside the choice statement. As each of the actions are stochastic ones, again for
each outcome of each action the interpreter branches over the nature’s choices.
This goes on until either the agent is located at the goal position or the horizon
is reached. At the leaves of the computation tree over BestDo (at the end of the
recursion) the agent receives the reward for these final situations. Then, “going
up” the computation tree for nondeterministic choices, the best alternative is
evaluated and chosen for the policy. An illustration of the computation tree is
given in Fig. 2. Since it is not known in advance which outcome is chosen by na-
ture at execution time, the policy need to cover all possibilities, which is realized
by nested conditionals. Coming up to the root node the computation terminates
returning the policy, the value for the policy, and its probability of success.

To give an example for BestDo we show how a stochastic action is interpreted
in the following.

BestDo(a; p, s, h, π, v, pr)
def
=

∃π′, v′.BestDoAux(choice′(a), a, p, s, h, π′, v′, pr) ∧
π′ = a; senseEffect(a); π′ ∧ v = reward(s) + v′

The resulting policy is a; senseEffect(a); π′. The pseudo action senseEffect is
introduced to fulfill the requirement of full observability of the underlying MDP
(cf. e.g. [6] for details about MDP theory). The remainder policy π′ branches
over the possible outcomes and the agent must be enabled to sense the state it
is in after having executed this action. The remainder policy is evaluated using
the predicate BestDoAux. The predicate BestDoAux for the (base) case that
there is one outcome is defined as

Options in Readylog Reloaded 357

BestDoAux({nk}, a, δ, s, h, π, v, pr)
def
=

¬Poss(nk, s) ∧ senseCond(nk, ϕk) ∧ π = ϕk?; Stop ∧ v = 0 ∧ pr = 0 ∨
Poss(nk, s) ∧ senseCond(nk, ϕk) ∧

∃π′, v′, pr ′.BestDo(δ, do(nk, s), h, π′, v′, pr ′) ∧
π = ϕk?; π′ ∧ v = v′ · prob(nk, a, s) ∧ pr = pr ′ · prob(nk, a, s)

If the outcome action is not possible, the Stop action is inserted into the policy
and no further calculations are conducted. Otherwise, if the current outcome
action is possible the remainder policy π′ for the remaining program is calculated.
The policy π consists of a test action on the condition ϕk from the senseCond
predicate with the remainder policy π′ attached. senseCond define mutually
exclusive conditions to distinguish between the possible outcomes n1, . . . , nk of
a stochastic action. The case for more than one remaining outcome action is
defined as

BestDoAux({n1, . . . , nk}, a, p, s, h, π, v, pr)
def
=

¬Poss(n1, s) ∧ BestDoAux({n2, . . . , nk}, p, s, h, π, v, pr) ∨
Poss(n1, s) ∧ (∃π′, v′, pr ′).BestDoAux({n2, . . . , nk}, p, s, h, π′, v′, pr ′) ∧
∃π1, v1, pr1.BestDo(p, do(n1, s), h − 1, π1, v1, pr1) ∧ senseCond(n1, ϕ1)

π = if ϕ1 then π1 else π′ endif ∧
v = v′ + v1 · prob(n1, a, s) ∧ pr = pr ′ + p1 · prob(n1, a, s)

The robot is now endowed with a conditional program which tells it, for
each of the positions it can reach, which is the best action to advance to the
goal position. One has to remark that the policy yields only an action for the
projected locations the robot reached during planning, and up to the given fixed
horizon. It does not have any idea which action to take at location, say (10, 4).
This might at first sight seem to be a disadvantage, but on second thought
this turns out as one of the advantages of Readylog. With standard solution
techniques to MDPs like value iteration one would have a solution for each of the
locations, but for the cost that value iteration has to iterate several times over
all states. With Readylog this can be avoided by only expanding the reachable
successor locations.

2.2 Options with Readylog

Macro-actions in the decision-theoretic context are referred to as options, based
on a definition by [17]. The idea is, roughly, to define a partition of the state
space of the MDP and find an optimal solution for this partition. Macro-actions
based on the work of [17,16] have been introduced into Readylog by [10]. Here,
the idea is to find sub-tasks, solve these sub-tasks in an optimal way, and apply
these macro-actions and their solution, resp., for a more complex problem. [10]
shows an exponential speed-up when using options in Readylog compared to
using stochastic actions only.

In our grid world example we have seen that in the full planning approach the
agent can choose between four actions which have four possible outcomes each.

358 L. Böhnstedt, A. Ferrein, and G. Lakemeyer

Thus, at each stage of the algorithm 16 nodes have to be expanded. Solving
the navigation task for large domains becomes infeasible, even with the forward-
search approach used in Readylog. Therefore one has to identify appropriate
sub-tasks to reduce the complexity of the task.

Sub-tasks for finding the way to the goal are to leave certain rooms and enter
other ones. Accordingly, to reach the goal from the start state “S” one pos-
sibility is to execute the action sequence leaveroom 1 north; leaveroom 2 east;
leaveroom 4 east. Figure 1 depicts the situation. There are two possibilities to
leave room 1: through the northern or the eastern entrance. The blue spots in
Figure 1 depicts the two possibilities. The other entrance fields are marked with
spots in the respective room color. This example shows that only three actions
are needed to reach the goal, instead of minimal 8 actions when using the basic
actions which we introduced previously. With these actions, obviously, we can
reduce the number of expanded nodes in the calculation tree when searching for
the optimal policy for the navigation problem.

Clearly, one could define basic actions for leaving a room. Then, one addition-
ally has to specify the behavior the agent should take when it is located inside a
room. But this is not needed as we can make use of decision-theoretic planning.
This, moreover, yields optimal behavior for leaving a room. We can relax the
original problem to the problem of leaving Room 1, solve this problem and save
the policy, the value, and the probability of success. Later, when solving the
original problem we could use the results of solving the MDP which leaves room
1. Figure 1 shows the solution of one of the identified sub-tasks for Room 6. The
arrows represent the optimal policy for leaving Room 6.

As Room 1 has two different doors to neighboring rooms we have to define two
different options, one for leaving through the northern door, and one for leaving
the room through the eastern door. Why do we have to distinguish between both
doors? The reason is even if we want to leave the room through the northern
door, it might be the case that the agent ends up in room 3 due to failing basic
actions. Consider the agent being located on position (3, 2). The optimal policy
should take the agent to position (3, 3) with a go up action. But if the action
fails and nature chooses a go right action we end up in room 3. This is obviously
not what we wanted. Therefore, this case should be declared as a failure case
for the macro action leaveroom 1 north. For each room we have to identify one
macro action for each door, solve the MDP of the sub-task and store the result.
The results can then be re-used for solving the task of reaching the goal position.

3 Solving Decision-Theoretic Plans in an Abstract Way

As we have sketched in the previous section Readylog implements the forward-
search algorithm introduced in dtGolog [5]. This means that from a program
including nondeterministic choices a policy is calculated. A policy is a condi-
tional program where nondeterministic choices are substituted by the best alter-
native according to the background optimization theory. For each agent’s choice
point the forward-search algorithm selects the best alternative, for each nature’s

Options in Readylog Reloaded 359

choice point given by stochastic actions a conditional over the possible outcomes
is introduced. The calculations of values and probabilities rely on the current
situation term, i.e. the reward is given w.r.t. a particular situation. Therefore,
the algorithm can decide optimal choices at choice points.

The idea for generating a plan library is now the following. In a run of the
forward-search we do not calculate explicit numeric values for the reward func-
tion but keep it as terms. Basically, we store the whole computation tree for a
respective input program. Later, when instantiating a plan from the plan library,
we can establish the optimal policy, the values and probabilities of all outcomes
of the policy. Thus, we make use of the trade-off between space and time. It
turns out that with re-instantiating the abstract terms and re-evaluating the op-
timal choices one can save a significant amount of computation time compared
with the on-line interpretation of a decision-theoretic program. For the imple-
mentation of the calculation of policies in an abstract way, we have to modify
several BestDo predicates in such a way that choices are not taken but all pos-
sible continuation policies are calculated. When calculating these policies for a
conditional if ϕ then a1 else a2 endif , for instance, we have to calculate both
branches, where ϕ and ¬ϕ holds. For space reasons we cannot give the com-
plete specification. But as the implementation is quite straight-forward, we can
omit the other predicate definitions giving only our modifications of BestDo for
stochastic actions as an example.

As in the previous section, we first have to expand the outcomes of an stochas-
tic action with the choice predicate. Note that unlike the similar definition in
Sect. 2 we calculate the value in an abstract fashion. This is denoted by the
formula v = +(−(reward(s), cost(a, s)), v′) in prefix notation.

BestDoM(a; p, s, h, π, v, pr)
def
=

∃π′, v′.BestDoMAux(choice′(a), a, p, s, h, π′, v′, pr) ∧
π′ = a; senseEffect (a);π′ ∧ v = +(−(reward(s), cost(a, s)), v′)

As in the previous case for each stochastic outcome n1, . . . , nk we have to
calculate the appropriate continuation policy. The difference to the similar pred-
icate in Sect. 2 is that we do not check for action preconditions and do not
distinguish if an action is possible or not. The reason for this change is that we
cannot decide whether or not the respective outcome action is possible as we are
not given a concrete situation where we could evaluate the predicate. This must
be checked when executing the so calculated policy. Again, the value as well as
the probability of success is calculated as a term depending on situation s, not
as a concrete value.

BestDoMAux({n1, . . . , nk}, a, p, s, h, π, v, pr)
def
=

∃π′, v′, pr ′.BestDoMAux({n2, . . . , nk}, p, s, h, π′, v′, pr ′) ∧
∃π1, v1, pr1.BestDoM(p, Do(n1, s), h − 1, π1, v1, pr1) ∧ senseCond(n1, ϕ1)

π = if ϕ1 then π1 else π′ endif ∧
v = +(v, ·(v1, prob(n1, a, s))) ∧ pr = +(pr ′, ·(p1, prob(n1, a, s)))

360 L. Böhnstedt, A. Ferrein, and G. Lakemeyer

BestDoMAux({nk}, a, δ, s, h, π, v, pr)
def
=

senseCond(nk, ϕk) ∧ ∃π′, v′, pr ′.BestDoM(δ, do(nk, s), h, π′, v′, pr ′) ∧
π = ϕk?; π′ ∧ v = ·(v′, prob(nk, a, s)) ∧ pr = ·(pr ′, prob(nk, a, s))

As we have stressed before, the difference of our BestDoM definitions w.r.t.
the original BestDo is that (1) all possible continuation policies have to be cal-
culated, and (2) the value as well as the probability of success are handed over
as terms. Later, when the policy is instantiated in a concrete situation, we could
evaluate the value and probability term to get the real numbers. Compared to
planning, this simple evaluation of abstract values is able to bring a computa-
tional benefit. In DT planning the whole search tree has to be explored during
runtime, numerical values have to be calculated and compared to choose the
highest one. Abstract planning in contrast already provides the whole tree and
an abstract value. Thus, here the on-line time consumption of DT planning can
be reduced. To illustrate this again, we give the abstract value for the agent
calculating one step of the (simplified) policy to leave room 1 from the start
position “S” through the northern door (see Fig. 1):

v = +(−(reward(do(go up, s)), cost(do(go up, s))), ·(prob(go up, det up, s),

reward(do(det up, s)), ·(prob(go up, noop, s), reward (do(noop, s)))),

+(−(reward(do(go right, s)), cost(do(go right, s))), ·(prob(go right, det right, s),

reward(det right, s)), ·(prob(go right, noop, s), reward(do(noop, s)))), . . .

In our implementation in Prolog which is generated from the macro description
the following policy results:

(poss(go up, S) → ((has val(pos, V6, S), V6 = [V11, V12]), V14 is V12 + (1), . . .),

V111 = [goup, if(pos = [V11, V13], [], [if(pos = [V11, V12], [], [])])]; V111 = [], !),

(poss(go right, S) → ((has val(pos, V19, S), V19 = [V24, V25]), V27 is V24 + (1), . . .),

V110 = [go right, if(pos = [V26, V25], [], [if(pos = [V24, V25], [], [])])]; V110 = [], !),

(poss(go down, S)to((has val(pos, V32, S), V32 = [V37, V38]), V40 is V38 − (1), . . .

has val is a predicate to evaluate a fluent, and poss checks whether the pre-
condition of an action holds. For ease of presentation the example is simplified
as the basic actions only have one failure case, namely a noop action where the
agent will stay on the same position. As one can see from the small examples
above the policies grow large even for small toy problems. Actually, if the op-
timal solution to leave room 1 is encoded as an option, i.e. as a macro-action,
the option cannot be represented in a compact way as each possible outcome
for each action has to be provided when calculating abstract policies and values.
Though, as we will show in Sect. 5 one can buy the larger space consumption
by less computation time.

Options in Readylog Reloaded 361

4 Generating a DT Plan Library

In the previous section we presented our idea of solving decision-theoretic prob-
lems in an abstract way implemented by a new predicate BestDoM . Indepen-
dent from a particular situation, this predicate generates, from a given program,
a list of abstract policies with a corresponding abstract representation of the
value function. In a given situation, this abstract representation can be easily
re-instantiated with numerical values, which makes it possible to choose and exe-
cute the highest valued abstract policy. Our idea is now to use this abstract plan
instead of DT planning and to build a DT Plan Library, a library that con-
tains policies that already were calculated and used before. These stored policies
are then provided for re-use if the agent comes to similar states again.

This then is the basic idea of our new options approach: an option is essentially
a Readylog program with a solve statement which encodes the contents of the
option (similar to the navigate program in Section 2). This means that with this
program the partition of the state space of the option is induced. The states
reachable with the program form the state space of the option. Note that we use
the term state here and use it similar as is done in related action formalisms like
FLUX [18]. A finite subset of instantiated fluents form the state representation
for the option and must be given by the user. This state description must con-
tain enough information to evaluate test and action preconditions mentioned in
the input program from which the option is calculated. For the maze domain
our state representation comprises only the location fluent. It is sufficient for
navigating between the rooms in the maze. In the soccer domain, on the other
hand, we need to find the fluents which are important for the option. For a free
kick option, for instance, taking the positions of all 22 players on the field into
account is too much. Only the players near the ball might be of importance. In
the MDP theory this is referred to as factored representations of the state space.

To calculate a policy for an option the following steps have to be conducted:

1. Off-line preprocessing
(a) Calculate an abstract policy for each solve statement occurring in the

behavior specification.
(b) Replace each solve statement with its abstract policy in the specification.

2. On-line execution
(a) look up the policy, value, and probability of success for the option in the

DT Plan Library.
(b) If the option is not contained in the library, instantiate the option in the

particular situation and store the value and the probability of success
together with the current world state in the library.

In the off-line part we pre-process each occurrence of a solve statement in
our agent high-level specification with the BestDoM predicates shown in the
previous section. As the result we obtain for each solve statement an abstract
policy as presented before.

When executing an option in a particular situation we first query our DT

Plan Library if for the current world situation there exists an instantiated

362 L. Böhnstedt, A. Ferrein, and G. Lakemeyer

getState;
while ϕm do

if DT Plan Library has entry for current state s then
get bestPolicy(s,DT Plan Library,π);
execute(πs);

else
evaluate(s,AbstractValues,πs);
execute(πs);
store((s, πs, v, pr), DT Plan Library);

end
execute(asense);

end

Algorithm 4.1. The algorithm executed by a macro-action

policy for the option currently to be executed. If so, we simply take this policy
from the library and execute it. If there does not exist a policy for the option in
the current world situation, we have to generate it. We take the situation inde-
pendent abstract policy for the option and substitute the situation terms with
the actual situation. Similarly, we evaluate the value and success probability of
the option given the current world situation. With a particular situation we can
re-evaluate the precondition axioms of actions, if-conditions, and nondetermin-
istic choices of the abstract policy and obtain one fully instantiated policy which
is the same as if we would have calculated it on the fly. To gain computation
speed for the next time when the agent wants to execute the option in this par-
ticular situation we store the fully instantiated policy, the value and the success
probability together with the world state. Thus, the next time the option is to
be executed in the very same situation, we simply look up the policy without
the need to calculate anything at all.

The on-line execution is again illustrated in Algorithm 4.1. The predicate
getState calculates the current world state based on fluent values as described
above. The predicate get bestPolicy performs the lookup operation, the pred-
icate evaluate evaluates the abstract plan tree returning a fully instantiated
policy πs, which is then executed with execute(π). The store predicate saves
the instantiated policy, the value, and the success probability together with the
current world situation in the DT Plan Library for the next time it is needed.
The action asense is a sensing action which is executed to sense the actual state
the agent is in when trying to execute the option. The logical formula ϕm is a
condition which checks if the option is executable. This condition can be viewed
as a precondition for the option. This precondition is part of the specification of
the option and must be provided by the user.

The main difference to the original options approach in Readylog [10] is that
we do not use standard value iteration to calculate the behavior policy but make
use of the forward-search algorithm which is also used for decision-theoretic plan-
ning in the framework. The advantage is that with our new approach we gain
flexibility in the sense that the input program from which the option is calcu-
lated determines the state space of the option. Determining the sub-tasks in toy

Options in Readylog Reloaded 363

���
���
���
���

���
���
���
���

(a) First setting
for outplaying
opponents.

����
����
����
����

����
����
����
����

(b) The macro-
action chooses to
pass and go.

����
����
����
����

����
����
����
����

(c) Second setting
for outplaying oppo-
nents.

����
����
����
����

����
����
����
����

(d) The macro-
action chooses to
dribble.

Fig. 3. Outplay Opponent; (a)-(b): “pass and go”.(c)-(d): “dribble”

domains like the maze domain is rather easy (leaving room through doors). But
in realistic domains like robotic soccer this tasks is not that easy and therefore
it helps to define the option by the input program.

5 Experimental Results in the RoboCup Domain

In this section we present the results we obtained by testing our approach in
a continuous real-time domain. The presented results are from the 2D Soccer
Simulation league where two teams of 11 soccer agents compete against each
other. The Soccer Server [19] provides the simulation environment where each
agent can submit basic commands like kick, dash, or turn and receives a world
model in form of visible landmarks like the goals or the corner posts.

We defined two macro-actions here to show the applicability of our approach
in such a demanding environment. For restricting the state space of the soccer
domain we make use of a qualitative world model which abstracts from the
infinite quantitative state space. In [3] Schiffer et al. proposed a qualitative world
model for this soccer domain. The playing field is divided into grid cells, where
each cell of this grid clusters infinite many coordinates. For each of these cells
one quantitative representative (the center of this cell) is provided. Such a cell is
then represented by just one contained position. So instead of the ’real’ positions,
we use these representatives as state variables. This leads to a discretization of
the state space and makes it possible for the macro-action to ’recognize’ a state
again. Without this abstraction we would preclude the re-use of policies stored in
the DT Plan Library as it is very improbable that an agent reaches, say, the
position (12.0226, 5.8475) on the pitch twice. Note, however, that this abstraction
alone is still not enough to make the options as defined in [10] applicable in this
domain.

364 L. Böhnstedt, A. Ferrein, and G. Lakemeyer

The first macro-action is designed to outplay opponents as shown in Fig. 3(a)
and Fig. 3(b). Facing attacking opponents, the ball leading agent either dribbles
or passes the ball to a teammate. If the macro-action chooses the pass, the agent
afterwards moves to a free position to be a pass receiver again. The second
action aims to create a good scoring opportunity to shoot a goal. The agent in
ball possession can dribble with the ball if the distance to the opponent’s goal
is too far. Near the goal the agent can shoot directly to the goal or pass to
a teammate that is in a better scoring position. We compared macro-actions
with DT planning for the game settings we created as test scenarios. Besides
the computational behavior we also investigated the action’s choices in specific
states. We want to remark that by using the proposed state abstraction we
commit to some sort of bias in the representation of the environment that is
reflected in the state variables. In fact, these variables have to ensure that the
macro-action correctly chooses a policy fitting the game setting. Situations which
require different policies have to be represented by different states. This can be
handled by the granularity of the qualitative world model. The provided grid
is adjustable by hand and can be created fine-grained enough to distinguish
significant changes in the game setting In the first setting depicted in Fig. 3(a)
the ball leading agent directly faces an opponent. In this state the macro-action
evaluates a pass to the uncovered teammate and a subsequent move action as
best policy (Fig. 3(b)). In the second setting given in Fig. 3(c) both opponents
cut the possible pass-ways for the ball leading agent to its teammates. The
state representation ’detects’ this difference and evaluates a new policy. The
agent dribbles towards the opponent’s goal (Fig. 3(d)). Qualitatively there is no
difference in the behavior between the on the fly DT planning and the macro
approach as both rely on the same Readylog input programs. What can be
observed, though, is that the macro-action approach needs less time to come to
a decision.

We considered three strategies: (a) using DT planning to cope with the task,
(b) using the macro-action, but only by evaluating a policy in each step2, and
(c) using the macro-action with the DT Plan Library that was generated
in the last step. We conducted 20 iterations per setting. Using the planning
approach the agent needed 0.1 seconds on average to calculate a policy. With
the evaluation strategy (b) only 0.8 seconds are needed. This is a speed-up
compared to planning of about 20 %. The time for off-line computations in this
example was about 0.02 seconds for each macro. Even taking this preprocessing
time into account our macro approach yields reasonable speed-ups. Of course,
preprocessing more and more complex macro-actions consumes more off-line
computation time. But as this time does not need to be spent on-line this off-line
computation time can be justified. The macro-action based on the DT Plan

Library clearly outperforms DT planning. In each test-run, for both macro-
actions, the executing system constantly returns the minimum of measurable
time of 0.01 seconds for searching the best plan in the DT Plan Library. In

2 Each policy evaluated in this step is stored in the DT Plan Library, so we can use
this stored knowledge in the next step (c).

Options in Readylog Reloaded 365

fact, this is a mean time saving of over 90 %. In tests in the RoboCup 3D
simulations which we conducted in another test scenario these savings showed
an impact on the quality of the agent’s behavior in real game situations. Caused
by a reduced reaction time the agent showed fewer losses of the ball during the
game. Moreover the team created more opportunities to score than in test runs
without using the macro-actions. This goes along with a space consumption of
about 10 kB for each defined macro-action. Our examples reflect the task in the
RoboCup for finding a suitable policy in a split second. In practice, our policies
are quite short, since computing larger policies is not (yet) reasonable as the
world changes unpredictably for larger horizons. In our application examples
the larger space consumption does not play a role. For more complex macros
the space consumption of the exponentially growing computation tree has to be
further investigated. It is due to future work to examine how well our method
scales.

6 Conclusion

In this paper we showed how a significant speed-up can be gained for calculating
policies in the logic-based framework Readylog. The basic idea is to calculate
and store all possible calculation branches of the used forward-search algorithm
together with their values and probabilities in an abstract fashion. When the
agent faces a world situation which it already encountered before it can simply
draw on a previously calculated policy, re-instantiate it with the current situation
it is in and gains an optimal policy instantaneously. While previous proposed
approaches like options in Readylog also resulted in an exponential speed-up
[10] for toy domains they fail for continuous domains like robotic soccer. The
reason is that the method presented in [10] relies on an explicit state enumeration
for calculating the result of an option. Even when soccer state space abstractions
[3] are used the problem of deciding the states of an option remains. With our
approach of a plan library on the other hand, this problem is no longer apparent.
Which states belong to an option is implicitly given by the input Readylog

program. Nevertheless, the options approach from [10] can be easily modeled
equivalently with our plan library. The appeal of the plan library lies for one in
the speed-up of agent’s decision making, for another in it simplicity. By simply
exploiting the well-known trade-off between space and time we can speed-up
decision-making in Readylog significantly.

Acknowledgments

This work was supported by the German National Science Foundation (DFG)
in the Priority Program 1125, Cooperating Teams of Mobile Robots in Dynamic
Environments. We would like to thank the anonymous reviewers for their helpful
comments.

366 L. Böhnstedt, A. Ferrein, and G. Lakemeyer

References

1. Ferrein, A., Fritz, C., Lakemeyer, G.: Using golog for deliberation and team coor-
dination in robotic soccer. KI Künstliche Intelligenz (1) (2005)

2. Ferrein, A., Fritz, C., Lakemeyer, G.: On-line Decision-Theoretic Golog for Unpre-
dictable Domains. In: Proc. KI-04 (2004)

3. Schiffer, S., Ferrein, A., Lakemeyer, G.: Qualitative world models for soccer robots.
In: Qualitative Constraint Calculi Workshop at KI-06 (2006)

4. Schiffer, S., Ferrein, A., Lakemeyer, G.: Football is coming home. In: Chen, X., Liu,
W., Williams, M.-A. (eds.) Proceedings of the International PCAR Symposium
(2006)

5. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-Theoretic, High-
Level Agent Programming in the Situation Calculus. In: Proc. AAAI-00 (2000)

6. Puterman, M.: Markov Decision Processes: Discrete Dynamic Programming. Wiley,
New York, USA (1994)

7. McCarthy, J.: Situations, Actions and Causal Laws. Technical report, Stanford
University (1963)

8. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

9. Soutchanski, M.: High-Level Robot Programming in Dynamic and Incompletely
Known Environments. PhD thesis, University of Toronto, Toronto, Canada (2003)

10. Ferrein, A., Fritz, C., Lakemeyer, G.: Extending DTGolog with Options. In: Proc.
IJCAI’03 (2003)

11. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic
programming language for dynamic domains. J. of Log. Progr. 31(1-3) (1997)

12. Grosskreutz, H., Lakemeyer, G.: cc-Golog – An Action Language with Continous
Change. Logic Journal of the IGPL (2002)

13. De Giacomo, G., Lésperance, Y., Levesque, H.J.: ConGolog, A concurrent pro-
gramming language based on situation calculus. Artificial Intelligence 121(1–2),
109–169 (2000)

14. De Giacomo, G., Levesque, H.: An incremental interpreter for high-level programs
with sensing. In: Levesque, H.J., Pirri, F. (eds.) Logical foundation for cognitive
agents: contributions in honor of Ray Reiter, pp. 86–102. Springer, Berlin (1999)

15. Grosskreutz, H.: Probabilistic projection and belief update in the pgolog frame-
work. In: Proc. CogRob-00 at ECAI-00 (2000)

16. Hauskrecht, M., Meuleau, N., Kaelbling, L.P., Dean, T., Boutilier, C.: Hierarchical
Solution of Markov Decision Processes using Macro-actions. In: Proc. UAI (1998)

17. Sutton, R.S., Precup, D., Singh, S.P.: Between MDPs and Semi-MDPs: A Frame-
work for Temporal Abstraction in Reinforcement Learning. Artificial Intelli-
gence 112(1-2), 181–211 (1999)

18. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5(4-5), 533–565 (2005)

19. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer server: a tool for research on
multi-agent systems. Applied Artificial Intelligence 12 (1998)

On the Construction and Evaluation of Flexible
Plan-Refinement Strategies

Bernd Schattenberg, Julien Bidot
, and Susanne Biundo

Institute for Artificial Intelligence
Ulm University, Germany

firstname.lastname@uni-ulm.de

Abstract. This paper describes a system for the systematic construc-
tion and evaluation of planning strategies. It is based on a proper formal
account of refinement planning and allows to decouple plan-deficiency
detection, refinement computation, and search control. In adopting this
methodology, planning strategies can be explicitly described and easily
deployed in various system configurations.

We introduce novel domain-independent planning strategies that are
applicable to a wide range of planning capabilities and methods. These
so-called HotSpot strategies are guided by information about current plan
defects and solution options. The results of a first empirical performance
evaluation are presented in the context of hybrid planning.

1 Introduction

In hybrid planning – the combination of hierarchical-task-network (HTN) plan-
ning with partial-order causal link (POCL) techniques – the solution of planning
problems requires the integration of plan synthesis based on primitive opera-
tions with the use of predefined plans that implement abstract actions. As a
consequence, causal reasoning and task expansion interleave during the plan-
development process.

So far, only few research has been devoted to search strategies in hybrid
planning; nor have existing strategies ever been systematically compared and
assessed in this context. For most of today’s planning systems, this is due to the
fact that search strategies are only implicitly defined and indirectly controlled via
parameters. In these frameworks, search strategies and planning algorithms are
strongly interdependent and changing one of them inevitably affects the other.

Furthermore, all these search strategies are basically fixed; i.e., in each plan-
generation cycle, they follow a pre-defined schema indicating at which kind of
deficiency to look first, and which changes to apply to the plan preferably. In
POCL planning, Joslin & Pollack proposed Least-Cost Flaw Repair, a method
that repairs first the flaws associated with the minimal number of modifications
[1]. Peot & Smith presented strategies that consist of delaying the treatment
� This work has been supported by a grant from the Ministry of Science, Research

and the Arts of Baden-Württemberg (Az: 23-7532.24-14-19).

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 367–381, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

368 B. Schattenberg, J. Bidot, and S. Biundo

of causal threats for which multiple solutions exist [2]. Their results have been
picked up by Schubert & Gerevini who proposed simple but effective plan metrics
for an A∗ heuristic [3]. In HTN planning, Tsuneto et al. described the fewest-
alternatives first heuristic for selecting task expansions in the UMCP system [4].
McCluskey introduced the Expand then Make Sound method [5] in which the
expansion of an abstract task is followed by repairing the plan’s causal structure.

For studying search strategies, we use the hybrid planning approach presented
in Schattenberg et al. [6]. It provides a formal framework in which the plan gen-
eration process is decomposed into well-defined functions for flaw detection and
the generation of plan modifications, respectively. Furthermore, the approach
decouples search strategies from planning algorithms. The strategies are quite
flexible and can be applied to large varieties of system configurations. Recently,
they have been integrated into a planning-and-scheduling system [7].

2 Refinement-Based Planning

We employ a hybrid planning formalism based on sorted first-order logic [6].
An operator or primitive task schema t(τ) = (prec(t(τ)), add(t(τ)), del(t(τ)))

specifies the preconditions and the positive and negative effects of the task. Pre-
conditions and effects are sets of literals, τ̄ = τ1, . . . , τn are the task parameters.
A ground instance of a task schema is called an operation. A state is a finite
set of ground atoms, and an operation t(c̄) is called applicable in a state s, if
the positive literals of prec(t(c̄)) are in s and the negative are not. The result
of applying the operation in a state s is a state s′ = (s ∪ add(t(c̄))) \ del(t(c̄)).
The applicability of sequences of operations is defined inductively over state
sequences as usual.

Abstract actions are represented by complex tasks. In hybrid planning these
show preconditions and effects exactly like the primitive tasks. The associated
state transition semantics is based on axiomatic state refinements that relate
task preconditions and effects across various abstraction levels [8].

A partial plan or task network is a tuple P = (TE,≺, VC, CL) with the fol-
lowing sets of plan components : TE is a set of plan steps or task expressions
te = l : t(τ) where l is unique label and t(τ) is a (partially) instantiated task. ≺
is a set of ordering constraints that impose a partial order on the plan steps in
TE. VC is a set of variable constraints v=̇τ and v ˙�=τ , which codesignate and non-
codesignate variables occurring in TE with variables or constants. Furthermore,
it contains sort restrictions of the form v∈̇Z and v ˙�∈Z, where Z is a sort symbol,
that restrict further codesignations. CL is a set of causal links 〈tei, φ, tej〉, indi-
cating that a task tei establishes a precondition of task tej . Causal links are used
in the usual sense as a book-keeping means for maintaining the causal structure.

Task networks are also used as pre-defined implementations of complex tasks.
An expansion method em = (t(τ), (TEem ,≺em , VCem , CLem)) relates such a
complex task schema t(τ) to a task network.

A domain model for hybrid planning is specified by D = (T, EM), that is a
set of task schemata T and a set EM of expansion methods for implementing

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 369

the complex tasks in T. Please note that there are in general multiple methods
provided for each complex task schema.

A hybrid planning problem is the structure π = (D, sinit, sgoal , Pinit). It con-
sists of a domain model D and an initial task network Pinit. A partial plan
P = (TE,≺, VC, CL) is a solution to a problem specification, if and only if TE
consists of primitive task expressions only, and P is executable in sinit and gener-
ates a state send such that sgoal ⊆ send holds. Plan P is thereby called executable
in a state s and generates a state s′, if all ground linearizations of P, that means
all linearizations of all ground instances of the task expressions in TE that are
compatible with ≺ and VC, are executable in s and generate a state s′′ ⊇ s′.

In our framework, violations of the solution criteria are made explicit by so-
called flaws, data structures that represent critical components of a partial plan,
i.e. those that prevent the plan from being a solution. The flaws serve to classify
sub-problems and to guide the search for a solution.

Definition 1 (Flaw). Given a problem specification π and a partial plan P that
is not a solution to π, a flaw f = {α1, . . . , αn} consists of a set of plan compo-
nents αi of P. It represents a defect in which these components are involved.

The set of all flaws is denoted by F and subsets Fx represent classes of flaws.
For a partial plan P = (TE,≺, VC, CL) the violation of the solution criteria
is mirrored by flaw classes such as the following. The class FCausalThreat, e.g.,
contains flaws f = {〈tei, φ, tej〉, tek} describing causal threats, i.e., indicating
that a task tek is possibly being ordered between plan steps i and j (tek �≺∗ tei

and tej �≺∗ tek) and there exists a variable substitution σ that is consistent
with the equations and in-equations imposed by the variable constraints in VC
such that σ(φ) ∈ σ(del(tek)) for positive literals φ and σ(|φ|) ∈ σ(add(tek)) for
negative literals. This means, the presence of tek in P as it stands will possibly
corrupt the executability of at least some ground linearizations of P.

Flaw classes also cover the presence of abstract actions in the plan, ordering
and variable constraint inconsistencies, unsupported preconditions of actions,
etc. The complete class definitions can be found in [6]. It can be shown that
these flaw definitions are complete in the sense that for any given planning
problem π and plan P that is not flawed, P is a solution to π.

For the definition of the refinement operators, we make use of an explicit
representation of change to the plan data structure: plan modifications. This
representation has two major impacts on the hybrid planning framework: First,
it makes changes to the plan analyzable and with that the available options for
a search strategy become comparable qualitatively and quantitatively. Second,
new functionality can instantly be integrated as soon as it is translated into the
plan modification structure.

Definition 2 (Plan Modification). For a given partial plan P and domain
model D, a plan modification is defined as the structure m = (E⊕, E�). E⊕ and
E� are sets of elementary additions and deletions of plan components over P
and D.

370 B. Schattenberg, J. Bidot, and S. Biundo

E⊕ and E� are assumed to be disjoint and E⊕ ∪ E� �= ∅. Furthermore, we
require plan modifications to be consistent in the sense that all elements in the
deletion set are components of plan P and all elements in the addition set are
new components.

The set of all plan modifications is denoted by M and grouped into modification
classes My. The application of plan modifications is characterized by the generic
plan transformation function app : M × P → P, which takes a plan modification
m = (E⊕, E�) and a plan P, and returns a plan P ′ that is obtained from P by
adding all elements of E⊕ and removing those in E�. As an example, the class
MAddCL contains plan modifications m = ({〈tei, φ, tej〉, v1=̇τ1, . . . , vk=̇τk}⊕, {}�)
for manipulating a given partial plan P = (TE,≺, VC, CL) by adding causal
links. The plan steps tei and tej are in such a modification in TE and the codes-
ignations represent variable substitutions. They induce a VC′-compatible sub-
stitution σ′ with VC′ = VC ∪{v1=̇τ1, . . . , vk=̇τk} such that σ′(φ) ∈ σ′(add(tei))
for positive literals φ, σ′(|φ|) ∈ σ′(del(tei)) for negative literals, and σ′(φ) ∈
σ′(prec(tej)).

The complete collection of refinement operations for hybrid planning is in-
troduced in [6]. This also covers the expansion of abstract plan steps and the
insertion of new plan steps, ordering constraints, and variable (in-) equations.
These plan modifications are the canonical plan transformation generators in
a refinement-based hybrid planner: starting from an initial task network, the
current plan is checked against the solution criteria, and while these are not
met, refinements are applied. If no applicable modification exists, backtracking
is performed. In order to make the search systematic and efficient, the algorithm
should focus on those modification steps which are appropriate to overcome the
deficiencies in the current plan. Based on the formal notions of plan modifica-
tions and flaws, a generic algorithm and planning strategies can be defined. A
strategy specifies how and which flaws in a partial plan are eliminated through
appropriate plan modification steps. We therefore need to define the conditions
under which a plan modification can in principle eliminate a given flaw.

A class of plan modifications My ⊆ M is called appropriate for a class of flaws
Fx ⊆ F, if and only if there exist partial plans P which contain flaws f ∈ Fx and
modifications m ∈ My, such that the refined plans P ′ = app(m, P) do not contain
these flaws anymore.

It is easy to see that the plan modifications perform a strict refinement, that
means, a subsequent application of any modification instances cannot result in
the same plan twice; the plan development is inherently acyclic. Given that, any
flaw instance cannot be re-introduced once it has been eliminated. This qualifies
the appropriateness relation as a valid strategic advice for the plan generation
process and motivates its use as the trigger function for plan modifications:
the α modification triggering function relates flaw classes with their potentially
solving modification classes. As an example, causal threat flaws can be solved by
expanding abstract actions which are involved in the threat (by overlapping task
implementations), by promotion or demotion, or by separating variables through
inequality constraints [8]: α(FCausalThreat) = MExpTask ∪ MAddOrdCstr ∪ MAddVarCstr.

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 371

Please note, that α states nothing about the relationship between the actual
flaw and modification instances.

The modification triggering function allows for a simple plan generation schema:
based on the flaws that are found in the current plan, the calculation of plan modi-
fications is motivated. A strategy component can then freely choose among all ap-
plicable plan modifications in order to try to solve one of the particular problems
that have been identified. If any flaw remains unanswered by triggered modifica-
tion generating entities, no appropriate refinement candidate exists and the plan
can be discarded. There are even flaw classes that do not trigger any modification.
Flaw instances that represent ordering cycles and variable inconsistencies obvi-
ously cannot be resolved by our refinement operators and do therefore not trigger
any modification: α(FOrdInconst) = α(FVarInconst) = ∅.

The above mentioned triggering function completely separates the computa-
tion of flaws from the computation of modifications, and in turn both computa-
tions are independent from search-related considerations. The system architec-
ture relies on this separation and exploits it in two ways: module invocation and
interplay are specified through the α-trigger, while reasoning about search can
be performed on the basis of flaws and modifications without taking their actual
computation into account. Hence, we map flaw and modification classes directly
onto groups of modules which are responsible for their computation.

Definition 3 (Detection Modules). A detection module x is a function that,
given a partial plan P, a domain model D, and a problem specification π, returns
all flaws of type x that are present in the plan: fdet

x : P× D× Π→ 2Fx .

Definition 4 (Modification Modules). A modification module y is a func-
tion which computes all plan modifications of type y that are applicable to a given
plan P and that are appropriate for given flaws with respect to a given domain
model: fmod

y : P× 2Fx × D→ 2My for My ⊆ α(Fx).

Please note that plan modifications carry a reference to the flaw instance they
address, i.e., any plan modification is unambiguously linked with its triggering
flaw.

While the plan deficiency detectors and the refinement generators provide
the basic plan generation functionality, strategy functions can be designed for
reasoning about which paths in the refinement space to pursue. To this end, we
split up reasoning about search into two compartments: The first component is
an option evaluation that is performed in the local view of the currently processed
plan; it reasons about the detected flaws and proposed refinements in the current
plan and assesses the modifications. The second component is responsible for the
global view on the refinement space and evaluates the alternative search options.

We begin with the definition of a strategic function that selects all plan mod-
ifications that are considered to be worthwhile options, thereby determining the
ordered set of successors for the current plan in the plan refinement space. In
doing so, the following function also determines the branching behavior of the
upcoming refinement-based planning algorithm.

372 B. Schattenberg, J. Bidot, and S. Biundo

Definition 5 (Modification-Selection Module). Given a plan, a set of
flaws, and a set of plan modifications, a modification-selection module is a
function fmodSel : P × 2F × 2M → 2M×M that selects some (or all) of the plan
modifications and returns them in a partial order for application to the passed
plan.

Strategies discard a plan P, if any flaw remains unaddressed by the associated
modification modules. That means, we reject any plan P, over any domain model
D and for any planning problem π, if for any fdet

x and fmod
y1

, . . . , fmod
yn

with
My1 ∪ . . .∪Myn = α(Fx) the following holds:

⋃
1≤i≤n fmod

yi
(P, D, fdet

x (P, D, π)) = ∅.
The second aspect of search control concerns the selection of those plans

that are to be processed next by the detection and modification modules. These
unassessed partial plans, the leaves of the search tree, are usually called the
fringe. In other words, concrete implementations of the following module are
responsible for the general search schema, ranging from uninformed procedures
such as depth-first, breadth-first, etc., to informed, heuristic schemata.

Definition 6 (Plan-Selection Module). A plan-selection module is a func-
tion that returns a partial order of plans for a given sequence of plans. It is
described as fplanSel : P∗ → 2P×P.

Building on the components defined so far we can now assemble a hybrid plan-
ning system. A software artifact that implements the generic refinement algo-
rithm (Alg. 1) is making the flaw detection and modification generating modules
operational by stepwise collecting plan deficiencies, collecting appropriate mod-
ifications, selecting worthwhile modifications, and finally selecting the next plan
in the fringe of the search tree. Please note that the algorithm is formulated
independently from the deployed modules, since the options to address existing
flaws by appropriate plan modifications is defined via α.

3 Search Strategies

A large number of search strategies can be realized in the proposed refinement-
planning framework by sequencing the respective selection modules and using the
returned partially ordered sets of modifications, respectively plans, to modulate
preceding decisions: if the primary strategy does not prefer one option over
the other, the secondary strategy is followed, and so on, until finally a random
preference is assumed. The following single-objective heuristics constitute the
building blocks for more sophisticated strategy compositions.

Unflexible Strategies: Previous work has presented the translation of some
existing search strategies into our hybrid planning framework and showed that
most of them are unflexible in the sense that they represent a fixed preference
schema on the flaw type they want to get eliminated primarily and then select
appropriate modification methods. For example, it is very common to care for
the plan to become primitive first and then to deal with causal interactions.

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 373

Algorithm 1. The generic refinement planning algorithm.
Require: Sets of modules Det = {fdet

1 , . . . , fdet
d } and Mod = {fmod

1 , . . . , fmod
m }

Require: Selection modules fmodSel and fplanSel

plan(P1 . . . Pn, D, π): {P1 is the plan that is worked on}
if n = 0 then

3: return failure
P ← P1; Fringe ← P2 . . . Pn

F ← ∅
6: for all fdet

x ∈ Det do {Flaw detection}
F ← F ∪ fdet

x (P, D, π)
if F = ∅ then

9: return P
M ← ∅
for x = 1 to d do {Modification generation}

12: Fx = F ∩ Fx {Process flaws class-wise as returned by corresponding fdet
x }

for all f ∈ Fx do
for all fmod

y ∈ Mod with My ⊆ α(Fx) do
15: M ← M ∪ fmod

y (P, f, D)
if f was un-addressed then

Pnext ← fplanSel(Fringe)
18: return plan(Pnext ◦ (Fringe \ Pnext), D, π)

for all m in linearize(fmodSel(P, F, M)) do {Strategic choices}
Fringe ← app(m, P) ◦ Fringe

21: Pnext ← first(linearize(fplanSel(Fringe)))
return plan(Pnext ◦ (Fringe \ Pnext), D, π)

We will not recapitulate the results obtained in [6], but rather give a short,
systematic overview over the possible instances of unflexible selection schemas
for modification and plan selection.

A traditional form of modification selection is either to prefer or to disfavor
categorically specific classes of plan modifications; e.g., we prefer the expansion
of tasks to task insertions or we try to avoid an assignment of variables to
constants “as long as possible.” Systems with built-in strategies of this kind are
typically provided with hand-tailored heuristics such that certain plan properties
modulate the preference schema to some extent, but for now we focus on purely
modification-based forms of decisions.

In the presented framework, the preference of a modification class is encoded
as follows: Let MPref be the preferred modification class by modification-selection
module fmodSel

PrefMC , then the corresponding function is defined as

mi < mj ∈ fmodSel
PrefMC (P, {f1, . . . , fm}, {m1, . . . , mn}) if mi ∈ MPref and mj �∈ MPref

for all plans P ∈ P, sets of flaws f1, . . . , fm ∈ F, and sets of plan modifications
m1, . . . , mn ∈ M. Avoiding the selection (and consequently the application) of
instances of particular modification classes is realized by an analogue selection
module that is returning the inverse of the above definition: fmodSel

DisfMC .

374 B. Schattenberg, J. Bidot, and S. Biundo

Plan selection can also be based upon the availability of refinement options for
a plan. For simplification, the presented algorithm performs three consecutive
sections: one loop for the flaw detection, one loop for the modification generation,
and finally the strategic choices. In the little more complicated implementation
of the framework, after applying the selected plan modifications to the current
plan (line 20), for every new plan in the fringe, flaws and modifications are
calculated in advance, so that the following two plan-selection modules can be
defined for the preference of a modification class:

Pi < Pj ∈ fplanSel
PrefMC ({P1, . . . , Pn}) if |mods(Pi) ∩ MPref| > |mods(Pj) ∩ MPref|

The function mods : P → 2M thereby returns all modifications that have been
published for a given plan. This plan selection can be formulated in relation to
the plan size; e.g., it is related to the number of plan steps:

Pi < Pj ∈ fplanSel
PrefMRatio({P1, . . . , Pn}) if

|mods(Pi) ∩ MPref|
|TEi|

>
|mods(Pj) ∩ MPref|

|TEj|

The plan selection can also be defined inversely, thereby evading partial plans
for which undesired refinement options are available.

Strategies that concentrate on the flaw situation rather than on the available
refinement options are more “problem-oriented” and are typical for agenda-based
planning algorithms, which collect the plan defects and then decide which one to
tackle first. Let FPref be the preferred class of flaws and let modFor : F× P→ 2M

be the function that returns all modifications that have been answered to a given
flaw in a given plan. A modification strategy module for preferring FPref is then
defined as:

mi < mj ∈ fmodSel
AddrFC (P, {f1, . . . , fm}, {m1, . . . , mn})

if 1 ≤ xi, xj ≤ m, 1 ≤ i, j ≤ n, mi ∈ modFor (fxi , P), mj ∈ modFor(fxj , P)
and fxi ∈ FPref, fxj �∈ FPref

Like for the modification-dependent strategies, a flaw avoiding modification-
selection module can be set up, and also corresponding absolute and relative
plan selections are available.

Flexible Modification-Selection Strategies: Flexible strategies are capable
of operating on a more general level by exploiting flaw/modification information:
they are neither flaw-dependent as they do not primarily rely on a flaw type
preference schema, nor modification-dependent as they do not have to be bi-
ased in favor of specific modification types. A representative is the modification-
selection strategy Least Committing First (LCF). It works according to the least-
commitment principle and has proven to be very successful in the context of
hybrid planning [6]. It is a generalized variant of Least-Cost Flaw Repair [1] and
selects those modifications that address flaws for which the smallest number of
alternative modifications has been found:

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 375

mi < mj ∈ fmodSel
LCF (P, {f1, . . . , fm}, {m1, . . . , mn})

if 1 ≤ xi, xj ≤ m, 1 ≤ i, j ≤ n, mi ∈ modFor (fxi , P), mj ∈ modFor(fxj , P)
and |modFor (fxi , P)| < |modFor (fxj , P)|

It can easily be seen that this is a flexible strategy, since it does not depend on
the actual types of issued flaws and modifications: it just compares answer set
sizes in order to keep the branching in the search space low.

The so-called HotSpot-based modification-selection strategies have their origin
in the observation that the least-commitment principle is in practice a very
efficient search schema, although it does not take the actual structure of the
compared options into account. It is, for example, not very intuitive to say
that choosing one of two large task expansions represents less commitment than
choosing one of three variable codesignations. The expansion obviously makes
considerably more changes to the plan structure, and we expect that the “amount
of change” has side effects on the overall flaw and modification availability in the
future. Lifting the least-commitment schema on the plan structure level led to the
development of the HotSpot notion, that is plan components that are referred
to by multiple flaws and modifications [6]. We are now going to extend this
strategy family by new modification-selection modules and will later introduce
plan selection that is based on HotSpot calculations.

We begin with flaw-based modification selections, that means plan modifica-
tions are chosen based on the number of cross-references the addressed flaw has
with other flaws. The simplest form of a HotSpot is the number of references to
shared plan components. The following module avoids modifications that address
flaws that contain frequently referenced components:

mi < mj ∈ fmodSel
DirUniHS (P, F, M)

if fxi , fxj ∈ F, mi ∈M ∩modFor (fxi , P), mj ∈M ∩modFor (fxj , P)

and
∑

f∈F\fxi

|f ∩ fxi| <
∑

f∈F\fxj

|f ∩ fxj |

Direct HotSpot calculations offer a first insight into inter-flaw relationships
but do not capture relatively trivial indirect dependencies. We therefore intro-
duce the notion of plan sub-components which are the structures that constitute
plan components. E.g., a task expression is a component of a plan, but may also
be a sub-component of an ordering constraint. In order to represent HotSpot el-
ements on the sub-component level, the modification selection has to be adapted
as follows: Given a function comp that returns all sub-components of a set of plan
components, we define the indirect uniform HotSpot selection as the function:

mi < mj ∈ fmodSel
IndUniHS (P, F, M)

if fxi , fxj ∈ F, mi ∈M ∩modFor (fxi , P), mj ∈M ∩modFor (fxj , P)

and
∑

f∈F\fxi

| comp(f) ∩ comp(fxi)| <
∑

f∈F\fxj

| comp(f) ∩ comp(fxj)|

376 B. Schattenberg, J. Bidot, and S. Biundo

The extension of the HotSpot focus on sub-components is that of finding “tran-
sitive relationships” between HotSpot components on the component and sub-
component level: HotZones. The idea is to build an initial map of all HotSpots
in a plan, and then to re-evaluate each individual HotSpot according to the
HotSpots in its neighborhood:

mi < mj ∈ fmodSel
HZone (P, {f1, . . . , fm}, {m1, . . . , mn})

if 1 ≤ xi, xj ≤ m, 1 ≤ i, j ≤ n, mi ∈ modFor (fxi , P), mj ∈ modFor(fxj , P)
and h(fxi , {f1, . . . , fm}, 0) < h(fxj , {f1, . . . , fm}, 0)

The recursive evaluation of the HotSpot value with respect to the HotSpot values
of flaws that share components is defined as follows (constant parameter θ mod-
ulates the slope of the decay in the influence neighbors’ values with increasing
distance d):

h(f, F, d) =

⎧⎨⎩
0 for F = ∅∑
fi∈F\f

|f ∩ fi| · e−
d
θ + h(fi, F \ {f, fi}, d + 1) else

The HotSpot strategies defined so far solely focused on the flaws’ commonalities.
As already suggested in [6], overlappings in plan modifications can also be ana-
lyzed for commitment estimates. A direct HotSpot calculation is of course possi-
ble, however not very promising, since elementary additions never share compo-
nents directly (all of them are new) and deletion overlappings are seldom (only
occur in alternative expansions). We therefore define the modification-selection
module fmodSel

ModBasedHS analogously to the indirect uniform HotSpot function such
that it treats the respective domain model entities as sub-components of the
referenced components (by doing so, two task insertion modifications overlap if
they share the same task schema). A second element of the heuristic is that the
influence of transitive references decays (like in the HotZone calculation) because
of the strong interdependencies of the domain model components. We refer to
the experimental results, however omit this module due to lack of space.

In first experiments with learning strategies, we found in adaptive HotSpot cal-
culation a straightforward enhancement of the uniform calculations. The adaptive
variant tries to predict the conflict potential between two flaw classes in the cur-
rent refinement space exploration and modulates the calculated HotSpot values
with that estimate.

mi < mj ∈ fmodSel
DirAdaptHS (P, F, M)

if fxi , fxj ∈ F, mi ∈M ∩modFor (fxi , P), mj ∈M ∩modFor (fxj , P)

and
∑

f∈F\fxi

|f ∩ fxi| · g(f, fxi) <
∑

f∈F\fxj

|f ∩ fxj | · g(f, fxj)

Modification-selection module fmodSel
DirAdaptHS works exactly like the uniform module

except every summand is multiplied with the estimate function g : F × F → IR
which is defined as follows:

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 377

g(fa, fb) =
count(Fa, Fb)

maxfx,fy∈F(count(fx, fy))
· guser(fa, fb) for fa ∈ Fa, fb ∈ Fb

Function count records the accumulated amount of HotSpot overlappings be-
tween the corresponding flaw classes according to the results of the fmodSel

DirUniHS

computations that have been obtained in the current plan generation and nor-
malizes the value with the current maximum of all count records. The second
function guser is a user-defined modulation table in which certain conflict weights
can be set. This mechanism allows us to mark, e.g., a HotSpot relationship be-
tween an open precondition flaw and an abstract task flaw to be less critical
than the one between an open precondition and a causal threat.

Like for the uniform selections, the direct adaptive modification selection can
also be formulated as an indirect working module with calls to the respective
indirect uniform HotSpot calculations.

Flexible Plan-Selection Strategies: The simplest way of selecting plans is
choosing the first or last plan in the fringe, which are the conventional un-
informed plan-selection modules fplanSel

First for a depth-first and fplanSel
Last for a

breadth-first search scheme. If a “depth-first-flavor” is to be added in a combi-
nation of strategies, the fplanSel

LongerHistoryFirst selection prefers plans that have been
obtained by a longer sequence of modification applications (the inverse strategy
favors leaves of shorter refinement paths). Other simple plan metrics that can
be used to estimate the stage of development for a given plan are based on the
size of the constraint sets and in particular on the number of plan steps.

An effective plan-selection module that is based on plan metrics is the follow-
ing:

Pi < Pj ∈ fplanSel
ConstrPlans (P1, . . . , Pn) if

(| ≺i |+ |VCi|+ |CLi|) · |TEj|
|TEi| · (| ≺j |+ |VCj |+ |CLj |)

> 1

The idea behind this selection function is to focus on plans that are more con-
strained than others and that are therefore more likely to either get completed
or turn out a failure. Since processed plans tend to get processed again, it is
more of a depth-first search but it is less vulnerable to getting trapped in useless
task-insertion paths (for solely inserting tasks reduces the heuristic value).

In the fixed-strategy section, we already mentioned flaw- and modification-
based plan metrics. More general forms of that schema compare the relative sizes
of detected flaw sets or those of proposed modification sets:

Pi < Pj ∈ fplanSel
LessFlawsPerTask(P1, . . . , Pn) if

|flaws(Pi)|
|TEi|

<
|flaws(Pj)|
|TEj |

As our experiments have shown, the heuristic to develop plans that have less flaws
per plan step is a very effective estimate (although not admissible in general).
Moreover, plan metrics such as flaws : P→ IN or the size of the plan component
sets are computationally extremely cheap.

The last selection functions is related to an A∗-heuristic proposed in [3], which
is used as a UCPOP plan-selection. In our framework, such a strategy is modelled
as follows:

378 B. Schattenberg, J. Bidot, and S. Biundo

Pi < Pj ∈ fplanSel
S+OC (P1, . . . , Pn) if

|TEi|+ |flaws(Pi) ∩ FOpenPrec|
|TEj |+ |flaws(Pj) ∩ FOpenPrec|

< 1

For plan selection, a set of HotSpot-based metrics can be derived from the
presented modification-selection functions. We will briefly describe the ideas be-
cause their arithmetics are presented above. The first two strategies consider
the flaw-based HotSpot situation in the plans. Plan selections fplanSel

DirUniHS and
fplanSel
IndUniHS accumulate the direct, respectively indirect HotSpot values for each

plan and relate these values to the total number of detected flaws. The result is
in both cases an average of the direct and indirect HotSpot values for flaws and
gives a good estimation of the degree of connectivity between defects in plans.

The HotZone concept can also be transfered to plan-selection task, namely
in two ways: the simpler form is identifying the plan with the smallest maximal
HotZone value. The fplanSel

LeastHZone module performs for each plan the calculations
of fmodSel

HZone for each flaw, keeps the maximum HotZone value for each plan, and
then prefers the plans accordingly. Similarly to the other HotSpot heuristics, this
strategy has also the option to prefer strong or weak interactions in the plan.

The second HotZone derivate is fplanSel
FewerHZones , a module that prefers plans with

fewer HotZone clusters. Such clusters are identified by performing the fmodSel
HZone

computation: When following the transitive overlappings of components, the set
of flaws can be partitioned accordingly into independent sub-sets. The number
of identified sub-sets is the number of HotZones.

Following the modification-based modification selection, the examination of
plan modifications can contribute to the plan selection as well: Corresponding
to the direct uniform HotSpot plan-selection, fplanSel

FewerModHotSpotRatio is a strategy
module that accumulates the computed modification overlappings as provided by
fmodSel
ModBasedHS and relates these values to the total number of plan modifications

issued for a particular plan. The average overlapping of plan modifications is
intended to estimate the amount of interdependencies between the available flaw
resolution proposals on a particular plan, and these interdependencies in turn
indicate potentially conflicting refinement options in the future.

4 Evaluation

Most of the selection modules are not suitable for being used as singular strate-
gies, because they cover only particular aspects of information about the search
space. Consequently, we combine strategies into sequences of selection mod-
ules, as described above. This technique covers a wide area of search control
in planning: e.g., performing modification selection, modulated by the available
alternative modifications, as it is done in the fewest alternatives first heuristic
for task-expansion selection of the UMCP system [4], is achieved by employ-
ing fmodSel

PrefMC (MExpTask) as the primary modification selection, and fmodSel
LCF as the

secondary strategy.
The well-known “expand then make sound” (EMS) strategy can be emulated

by modification selections (1) fmodSel
AddrFC with argument FCausalThreat, (2) fmodSel

AddrFC

with argument FOpenPrec, and (3) fmodSel
PrefMC with argument MExpTask: the strategy

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 379

defers task expansion until the current plan is sound. The reverse combination
correlates with the UMCP-style of HTN planning, which expands until the very
concrete level and then fixes the causal structure.

Although our framework provides the means, a systematic experimental eval-
uation of all strategy combinations is not feasible. About 40 modification and
60 plan-selection modules – combined to triples – are far too many configura-
tions to test; even though this includes many trivially fruitless combinations,
such as fixed strategies that avoid, respectively prefer the same flaw classes. It
also became apparent that all HotSpot variants are only performing well in the
“avoidance” mode, and the same holds for plan selections that prefer less con-
strained or developed plans. Seeking HotSpots implies an early commitment and
going after un-constrained plans tends to degrade into breadth-first search.

Our experiment domains were the UMTranslog domain from [6], a hierarchi-
cal variant of the Satellite competition domain, and an artificial domain “Criss-
Cross”. Its name is derived from the fact that the causal structure includes
many interleaving causal dependencies, and plans in that domain have typically
many HotSpots. The solution space for CC-problems is relatively sparse, while
the larger problems in the Satellite and UMTranslog domains can be solved in
multiple ways. UMTranslog and CC share a deep task expansion hierarchy and
many (typing-) constraints in their methods. This makes both domains behave
exactly the same way during our experiments: every strategy for UMTranslog
is performing well in CC and vice versa. Satellite problems are a little bit less
constrained and hierarchically structured. This may be the reason why they
need different strategies and may also explain, why larger problems, which offer
a larger selection of modification options, are sometimes easier to solve for the
HotSpot strategies than smaller ones.

For this presentation, we conducted a series of experiments with only binary
combinations of modification selection and a plan selection with the modules
fplanSel
LessFlawsPerTask and fplanSel

FewerModsFirst , which is a good compromise between a
prediction of the future efforts and the branching factor for the newly explored
node. Table 1 shows the results in terms of visited plans for finding a solution.
The table contains no pure fixed strategy components, because their performance
was between one and two orders of magnitude worse and also afflicted with a
high variance. The first row displays our reference strategy from [6].

The Satellite domain turned out to be particularly vulnerable to variance
problems and this is reflected in many runs of the smaller problems perform-
ing worse than the larger ones. Also because of high sample variances, we used
the established LCF as a primary selection and used other flexible strategies
for modulation. Two interesting observations could be made: using LCF for
modulation did not work very well in most cases because the primary HotSpot
strategies favor independent (in terms of plan structures) flaw situations, and
those have in turn more modifications available on average due to a higher
degree of freedom. I.e., a secondary LCF strategy mostly contradicts the pri-
mary HotSpot and cannot stabilize its decisions. The second interesting outcome
is the HZone/LCF combination. It is a good example for the dependency of

380 B. Schattenberg, J. Bidot, and S. Biundo

Table 1. Modification-selections for the Satellite and CrissCross domains

fmodSel primary – secondary Sat1 Sat2 Sat3 Sat4 CC1 CC2 CC3 CC4 CC5
LCF – PrefMC(MExpTask) 62 50 957 886 21 33 73 95 190
LCF – DirUniHS 43 48 771 854 21 34 75 92 185
LCF – DirAdaptHS 31 42 596 418 21 31 71 95 184
LCF – IndUniHS 24 37 475 367 21 30 69 95 186
LCF – IndAdaptHS 33 40 468 482 22 29 71 87 209
LCF – HZone 24 40 424 375 21 30 71 98 188
HZone – LCF 36 68 399 718 22 30 70 99 161
LCF – ModBasedHS 36 128 945 702 22 33 70 93 204

domain characteristics and strategy quality: The HotZone is better informed
than LCF in a domain with many interdependencies, while LCF performs bet-
ter if that information is scarce. Furthermore, it was the only stable strategy in
the experiments for the larger Satellite problems.

Table 2 documents the performance of different single plan selections for a
given least-commitment modification selection. It has to be noted that only the
first strategy (our reference plan selection) and the “fewer HotZones” produce
relatively stable results. High sample variances with encouraging low minima
indicate that further experimentation with modulating secondary plan selections
have to be conducted.

Table 2. Plan-selections for the crisscross domain with fmodSel
LCF – fmodSel

PrefMC (MExpTask)

fplanSel CC1 CC2 CC3 CC4 CC5
LessFlawsPerTask 21 33 73 95 190
DirUniHS 22 42 119 159 220
IndUniHS 22 38 125 152 210
LeastHZone 20 35 124 145 215
FewerHZones 21 34 72 94 205
FewerModBHS 22 35 189 365 420

Our empirical analysis confirms previous results that flexible strategies are
suitable domain-independent search procedures. It also raised a number of inter-
esting questions, e.g., why every combination including the FewerHZones plan
selection performs very well for CrissCross problems but only poor for Satellite
problems, while LeastHZone produces the opposite behaviour. The differences
between those two heuristics are very subtle and it has to be clarified, which
property of a domain or problem they specifically address.

5 Conclusions and Future Developments

We presented a formal framework for refinement-based planning in which the
functionality for generation plans is decomposed into plan-deficiency detection,

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 381

plan-modification computation, and (tactical) search reasoning. In particular, we
focused on search strategies: how to systematically construct strategic guidance
and how to evaluate its performance. Strategies from the literature have been
integrated into this framework and novel ones have been developed.

The newly developed search strategies are procedures that are capable of rea-
soning about the interaction of flaws and plan modifications in general, thereby
becoming unlimited in their applicability and expandability: flexible strategies
can be deployed in any system configuration, ranging from hybrid planning to
resource planning, etc.

However, more experimental evidence has to be collected in order to get more
insight into the relation between modification and plan selections and their per-
formance in specific domains. Future work also includes the investigation of dy-
namic strategies, and a more thorough coverage of the available strategy spec-
trum. In particular, we will deal with strategy performance in an integrated
planning-and-scheduling system.

Acknowledgement. The authors would like to thank Andreas Lanz who con-
tributed to the strategy implementation and the experimental evaluation.

References

1. Joslin, D., Pollack, M.: Least-cost flaw repair: A plan refinement strategy for partial-
order planning. In: Hayes-Roth, B., Korf, R. (eds.) Proc. of the 12th National Con-
ference on AI, pp. 1004–1009. AAAI (1994)

2. Peot, M.A., Smith, D.: Threat removal strategies for partial-order planning. In:
Proc. of the 11th National Conference on AI, pp. 492–499 (1993)

3. Schubert, L.K., Gerevini, A.: Accelerating partial order planners by improving plan
and goal choices. In: Proc. of the 7th IEEE International Conference on Tools with
AI, pp. 442–450. IEEE Computer Society Press, Los Alamitos (1995)

4. Tsuneto, R., Nau, D., Hendler, J.: Plan-refinement strategies and search-space size.
In: Steel, S., Alami, R. (eds.) ECP 1997. LNCS, vol. 1348, pp. 414–426. Springer,
Heidelberg (1997)

5. McCluskey, T.L.: Object transition sequences: A new form of abstraction for HTN
planners. In: Chien, S., Kambhampathi, R., Knoblock, C. (eds.) Proc. of the 5th
International Conference on AI Planning Systems, pp. 216–225. AAAI (2000)

6. Schattenberg, B., Weigl, A., Biundo, S.: Hybrid planning using flexible strategies.
In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 258–272. Springer,
Heidelberg (2005)

7. Schattenberg, B., Biundo, S.: A unifying framework for hybrid planning and schedul-
ing. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314,
pp. 361–373. Springer, Heidelberg (2007)

8. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief – A preliminary
report on combining state abstraction and HTN planning. In: Cesta, A., Borrajo,
D. (eds.) Proc. of the 6th European Conference on Planning (2001)

Learning How to Play Hex

Kenneth Kahl, Stefan Edelkamp, and Lars Hildebrand

Computer Science Department
University of Dortmund�

Abstract. In Hex two players try to connect opposing sides by placing
pieces onto a rhombus-shaped board of hexagons. The game has a high
strategic complexity and the number of possible board positions is larger
than in Chess. There are already some Hex programs of recognizable
strength, but which still play on a level below very strong human players.
One of their major weaknesses is the time for evaluating a board.

In this work we apply machine learning for the computer player to
improve his play by generating an fast evaluation function and lookup
procedure for pattern endgame databases. The data structures used are
neural networks for the evaluation of a position and limited branching
trees to determine if a position can be classified as won or lost.

1 Introduction

In this work we study the strategic game Hex a fully observable two-player
zero-sum board game. In the same class of problems we also find Chess and
Checkers, which both refer to a long line of AI research. The first article to
computer Chess was published by Shannon [14], while the latest result is that a
commercial Chess playing program has beaten the world champion in a match
on a regular PC1 [19]. Schaeffer et al. [13] could prove that a certain Checkers

opening (called the White Doctor) results in a draw, assuming optimal play.
Hex has been invented by the Danish mathematician Piet Hein in the year

1942, calling it polygon. Independently, John F. Nash studied the game in 1947,
and wrote an article about it in 1952 [10]. In the same year, Parker Brothers
firstly sold the game using the name Hex. For the general audience, Hex has
been advertised by Martin Gardner [4,5]. The game is played on a squared-
sized rhombus-shaped board, consisting of B hexagons. The board size can be
scaled, the classical size is 11 × 11. The two players are called black and white.
Alternatively, each player places one piece on the board of his color. The task in
the game is to generate a chain of own pieces that connects two opposite sides
of the board (see Figure 1). The number of reachable boards accumulate to(

121
1, 0, 120

)
+
(

121
1, 1, 119

)
+
(

121
2, 1, 118

)
+ . . . +

(
121

61, 60, 0

)
≈ 4.7× 1056.

� The work is supported by DFG in the project ED-74/3.
1 Deep Fritz won against Vladimir Kramnik with 4:2 running on a Intel dual-core with

3 Ghz and 4 GB RAM.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 382–396, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning How to Play Hex 383

A

B

C

D

E

F

G

1

2

3

4

5

6

7

Fig. 1. Terminal position in Hex - game won by black

As intermediate boards may already be classified either to be won for black or
for white, the number feasible positions is lower – an upper bound of 2.38×1056

has been computed by Browne [2].
As the first player has a big advantage, there is an additional, so-called pie-

rule. The first piece is set by player black. Next player white has the choice
whether or not he wants to continue the play or swap colors for the rest of the
game. The pie-rule is applicable only after the first move. It is well-known that
Hex is won by the first player [3]. As the proof is not constructive, for the design
of a Hex game playing program the result is of no use. For a growing board,
Hex is PSPACE-complete [12]. For board sizes 7 × 7, 8 × 8 and 9 × 9 without
pie-rule winning strategies have been provided by [20], together with a winning
strategy for the 7× 7 game with pie-rule.

In this paper we apply machine learning algorithms to generate a strong Hex
player. On the one hand, we train a neural network with the evaluation function
computed by the state-of-the-art program Six2. The learned function can be
evaluated much faster than the original one, which for a given time slot allows
to search the game tree much deeper. For Checkers [16] and Backgammon [17]
neural networks already yield good players, while for Go so far no strong player
could be crated [2]. Moreover, the Chess program NeuroChess could not advance
to human play [18]. These approaches learn from the final outcome of games, and
they recursively learn the evaluation function. As the second learning mechanism,
we will construct a database, in which goals are stored in form of sub-boards
(patterns). As a compromise between space and time for insertion and lookup,
we propose limited branching trees. Additionally, when inserting a goal pattern
into the database, symmetric patterns are taken care of.

The paper is structured as follows. First we introduce virtual connections, as
they play a central role for the evaluation function and goal detection in the
world’s best Hex playing program Six. Then we turn to learning the evaluation
function by training neural networks and cross-validation to detect the best
network structure. Next we consider limited branching trees as the data structure
for storing goal pattern. This subset dictionary structure supports containment
queries and provides a fair compromise between searching time and memory
consumption. We then turn to experiments that we obtained by integrating

2 http://six.retes.hu

384 K. Kahl, S. Edelkamp, and L. Hildebrand

the above technique into a game playing system. The much larger number of
evaluated nodes per second allows deeper searches in the game tree and earlier
matches in the databases, and, subsequently, stronger play.

2 Virtual Connections

The current state-of-the-art program Six uses an unusual approach of electrical
circuit theory to combine the influence of sub-positions – virtual connections –
to larger ones. The program provides an improved implementation of Hexy [1],
whose designer has invented the theory of virtual connections.

A virtual semi-connection (with respect to a given support cell set) of the
board connects two pieces (a.k.a two groups of pieces) provided that the player
to close the connection moves first. A (full) virtual connection allows to connect
pieces even if it is the opponent’s turn to move.

An example is given in Figure 2. Black is requested to transform the virtual
to a real connection, the shaded cells denote the support. For the first case (a),
if its white to move, he cannot avoid black’s connection between the two black
pieces on the two shaded cells, but he can escape the connection to the right;
if it is black to move the connection is trivial. In the second case (b) white can
avoid black’s connection by placing a piece on the shaded cell in the center.

A

B

C

D

E

F

G

1

2

3

4

5

6

7

(a)

A

B

C

D

E

F

G

1

2

3

4

5

6

7

(b)

Fig. 2. Virtual connection (left) and virtual semi-connection (right) in Hex

If a virtual connection between opposite boarders for one player is established,
the game is won (assuming optimal play). The main aspect of evaluating the
strength of the position in Six is to find as many virtual (semi-)connections as
possible to merge them to more complex patterns and to combine all established
connections to an overall game-playing value that is needed to evaluate leaves
in the game playing search tree.

Smaller connections are merged to larger ones by applying and -, and or -rules.
The and -rule appends two virtual connections, while the or -rule combines two
virtual semi-connection to one virtual one. Using an analogy to electronic cir-
cuit theory, transforming all virtual connections into a single number is based

Learning How to Play Hex 385

on computing the resistance for the entire board induced by the resistance for
individual cells and connected piece groups.

With this approach Six generates an expressive function to evaluate boards,
which itself can look 20 moves (and more) ahead. As a drawback, due to the
fact that the evaluation of a single board is quite complex, Six performs a very
shallow game tree search, mostly consisting of not more than 1 move for each
player. For deeper searches, as e.g. common in Chess, the time for evaluating
one position has to be accelerated.

We decided to improve the performance by applying machine learning. As
virtual connections actually serve two purposes, namely evaluating a position
and showing whether it is terminating, two different strategies have been devel-
oped. Firstly, we monitor the evaluation function and model it using function
approximation. A natural choice are neural networks. Secondly, we propose a
data structure to store virtual connections that represent a terminal position to
generate a pattern database that answers so-called containment queries.

3 Learning the Evaluation Function

The purpose to learn the evaluation function of Six with multi-layered feed-
forward neural networks is to reduce the time for evaluating boards in order to
be able to search deeper in the game tree. We take an input neuron for every
cell of the board. The input cell is 1, if a white piece occupies this cell, 0, if the
cell is empty, and −1, if the cell is occupied by black. In the example of Figure 3
we see a board that is encoded in the following way:

0 1 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 3.220380.

The first 49 numbers are the inputs for the neural network, while the last
number is the evaluation of Six for this board. The neural network has one
output neuron, that provides the learned value of the board.

During self- and random play of Six we were able to capture every evalu-
ated board to generate a set of training and validation examples for the neural
network. At first we specified the structure of our neural network for the 6 × 6

A

B

C

D

E

F

G

1

2

3

4

5

6

7

Fig. 3. An evaluated board in Hex

386 K. Kahl, S. Edelkamp, and L. Hildebrand

xB

...

x3

x2

x1

input layer

wxy

ym

...

y2

y1

hidden layer

wyz

z

output layer

Fig. 4. Structure of the neural network

board. We used a set of 112,737 training examples. After experiments with net-
work structures of up to three hidden layers, we decided to use one hidden layer.
We applied a ten-fold cross-validation, where we varied the number of neurons
on the hidden layer and the number of epochs, to find a network structure which
offers a good generalization. The first criterion for the quality of the generaliza-
tion was the arithmetic mean of the validation sets, the second criterion was the
standard deviation. The best network structure found for the 6× 6 board was a
network with one hidden layer of m = 30 neurons and one output neuron, which
was trained for 240 epochs (see Figure 4).

For the 11 × 11 board we used a set of 142,383 examples. The best network
structure we could find is a net with one hidden layer with 50 neurons and one
output layer, which was trained over 300 epochs.

Another approach that we implemented was the use of more than one network
for evaluating the boards, using a layered partition of the example set. For each
search depth (ply) we learned a different evaluation function. Since for the first
moves there is only a small number of different boards, the neural network could
learn the examples exactly, one property that complies with the experiments.

4 Time Complexity

Now we will show, that our approach outperforms Six. We analyze the complexity
for evaluating a board for both programs.

Learning How to Play Hex 387

Theorem 1. (Complexity Neural Network Evaluation) Given that the hidden
layer in the network has m < B neurons, the running time of the neural network
evaluation amounts to at most O(mB).

Proof. Since the running time for calculating the output of a neural network
depends on the inter-connections of the network (it has to be traversed once),
we only need to specify the number of network edges. As the network is fully
connected, O(mB) steps are executed to evaluate a position.

In the following, we support the observation that the time for evaluating a board
in Six is larger than for the neural network with a theoretical comparison. Later
on, we will see how the results match with the experimental outcome.

The running time for the evaluation function in Six is dominated by the
algorithm H-Search [1]. The procedure is rather complex, and takes a maximum
number of virtual connections (θ) as well as the maximal number of virtual
connections for applying an or -rule (θ′) as input parameters. For evaluating a
board, three steps are executed:

1. Thegrouppartition is renewedand thevirtual (semi-)connections are adapted.
2. Procedure H-Search is executed.
3. The electrical resistance of the circuit is computed.

Suppose a new black piece is placed on the board. If the piece is adjacent to
no other black pieces on the board, an individual group is created. If the piece
is, however, adjacent to one or more existing one, the groups have to be merged
using any union-find data structure. Let B be the number of board cells and θ
be a threshold on the number of virtual connections.

Lemma 1. (Step 1) Updating the groups in Six requires O(B2θ) operations

Proof. In Six for each adjacent cell c (out of 6 possible), all groups that contain
c are traversed. Since the groups consist of less than B cells the update runs in
time O(B). To adapt the virtual and virtual semi-connections, all lists for the
support of the group pairs are scanned, which accumulates to O(B2θ). Therefore,
for step 1 Six requires O(B) + O(B2θ) = O(B2θ) operations.

Procedure H-search updates the lists of virtual (semi-)connections. More pre-
cisely, the lists of supports of all virtual connections V C(g1, g2) (for all groups
g1, g2), and all virtual semi-connections SC(g1, g2) (for all groups g1, g2) are up-
dated. Initially, these lists are empty. Unfortunately, the running time of this
approach is large.

Lemma 2. (Step 2) H-Search as implemented in Six requires O(B3θ2+θ′
) steps.

Proof. See [8]

To generate the circuit for each two groups, a wire is inserted into table T , if
there is a virtual connection between the two groups by scanning the list of
groups (computed by H-Search). The list consists of at most B2 pairs of groups.
By playing pieces the number of group pairs can only decrease. According to the
Kirchoff’s rule, starting with a set of linear equations Six computes the overall
resistance [9].

388 K. Kahl, S. Edelkamp, and L. Hildebrand

Lemma 3. (Step 3) The computation of the resistance takes O(B3) operations.

Proof. For the insertion of wires all groups are scanned, which takes O(B2)
operations. Solving the set of linear equations can be done in O(B3) steps.

Theorem 2. (Time Complexity Six) Computing the evaluation function for re-
quires O(B3θ2+θ′

) operations.

Proof. The evaluation function executes the above three steps. Using the lemmas
1, 2 and 3, we arrive at O(B2θ) + O(B3θ2θθ′

) + O(B2) = O(B3θ2θσ) steps to
evaluate a board.

Even if θ and θ′ are constants, H-Search requires O(B3) steps.

5 Goal Pattern Databases

The problem of finding an element in a set of elements such that this element
is a subset (or a superset) of the query occurs in many applications, e.g., the
matching of a large number of production rules, the identification of inconsistent
subgoals in AI planning, and the detection of potential periodic chains in labeled
tableau systems for modal logics. Moreover, efficiently storing and searching
partial information is central to many learning processes.

5.1 Subset Dictionaries

For state space search the stored sets often correspond to partially specified
state vectors or patterns. As an example consider the solitaire game Sokoban [7],
together with a selection of dead-end patterns. As every given state is unsolvable,
if the dead-end pattern is a subset of it, we wish to quickly detect, whether or
not such dead-end pattern is present in the data structure.

Definition 1. (Subset Query and Containment Query Problem, Subset
Dictionary) Let D be a set of n subsets over a universe U . The Subset Query

(Containment Query) problem asks for any query set q ⊆ D if there is any
p ∈ D with q ⊆ p (p ⊆ q). A subset dictionary is an abstract data structure pro-
viding insertion of sets to D, while supporting subset and containment queries.

Since p is a subset of q if and only if its complement is a superset of the com-
plement of q the two query problems are equivalent.

For Hex, we have that each board is an element of U . Inserting a pattern to
the goal database amounts to inserting a subset of U to the subset dictionary.
In Hex a goal pattern is a virtual connection between both sides of the board
(see Figure 7). Subsequently, determining whether or not a state has a match
with a stored pattern in the dictionary, is a containment query.

Definition 2. (Partial Match) Let ∗ denote a special don’t care symbol that
matches every character contained in an alphabet Σ. Given a set D of n vectors
over Σ, the Partial Match problem asks for a data structure, which for any
query q ∈ Σ ∪ {∗} detects if there is any entry p in D such that q matches p.

Learning How to Play Hex 389

The application for this problem is to solve approximate matching problems in
information retrieval. A sample application is a crossword puzzle dictionary. A
query like B*T**R in the Crossword Puzzle would be answered with words
like BETTER, BITTER, BUTLER, or BUTTER.

Theorem 3. (Equivalence Partial Match and Subset Query Problems)
The Partial Match problem is equivalent to the Subset Query problem.

Proof. As we can replace any algorithm for solving the Partial Match problem
to handle binary symbols by using their binary representation, it is sufficient to
consider the alphabet Σ = {0, 1}.

In order to reduce the Partial Match to the Subset Query problem, we
replace each p ∈ D by a set of all pairs (i, pi) for all i = 1, . . . , |U |. Moreover, we
replace each query q by a set of all pairs (i, qi) provided that q is not the don’t
care symbol ∗. Solving this instance to the Subset Query problem also solves
the Partial Match problem.

In order to reduce the Subset Query to the Partial Match problem, we
replace each database set with its characteristic vector, and replace query set q
by its characteristic vector in which zeros are replaced with don’t cares.

As the Subset Query problem is equivalent to the Containment Query

problem, the latter one can also be solved by algorithms designed for the Partial

Match problem.
One possible implementation that immediately comes to mind is a trie3. It

compares a query string with all stored entries. Unfortunately, tries for the Par-

tial Match problem can introduce large searching times as each don’t care
symbol induces a branching.

The next option is to store all possible queries in an array. This solution has
constant search time but an obvious problem – the structure can become very
large. An alternative to reduce the space complexity for the array representation
is to hash the query sets into a smaller table. The lists in the chained hash tables
again correspond to database sets. However, the lists have to be searched to filter
the elements that match.

5.2 Limited Branching Trees

Our compromise between a trie and a hash table subset dictionary data structure
consists of an ordered list of tries. Insertion is similar to ordinary trie insertion
with the exception that we maintain a distinctive root for the first element in
the sorted representation of the set.

This choice of the data structure adapts unlimited branching tree as [6] to our
requirements. As the branching factor is bounded, our data structure is referred
to as limited branching trees, LB trees for short.

3 A trie is a lexicographic search tree structure, in which each node spawns at most
|Σ| children. The transitions are labeled by a ∈ Σ and are mutually exclusive for
two successors of a state. Leaf nodes correspond to stored strings.

390 K. Kahl, S. Edelkamp, and L. Hildebrand

The access operation insert and search in such limited branching trie are
realized as follows. Insertion simply traverses the root list to find whether or
not a matching root element is present. In case we find a root element the
implementation of the ordinary insert routine for the corresponding trie (not
shown) is called. In case there is no such element a new one is constructed and
inserted to the list. The running time of the algorithm is O(k + l), where k is
the size of the current trie list and l the number of elements in the inserted set
– plus the time O(l log l) to sort the elements. As with Hex it is often the case
that all elements are selected from the set {1, . . . , n} such that the running time
is O(n) altogether (given that all elements are distinct, linear sorting algorithms
such as bucket sort apply).

Algorithm: Insert

Input: Limited branching tree L = (T1, . . . , Tk), sorted set p = {p1, . . . , pl}
Output: Modified data structure
foreach i in {1, . . . , k} do1

if (p1 = root(Ti)) then2

return Trie-Insert(Ti, p)3

end4

end5

Generate new trie T ′ from p6

Insert T ′ into list L7

Algorithm 1. Inserting a set in a limited branching tree

In Algorithm 2 we show a possible implementation for the lookup. First all
root elements matching the query are retrieved. Then the corresponding tries
are searched individually for a possible match with the query. As both the query
and the stored set are sorted, the match is available in linear time with respect
to the query set. The number of root elements that have to be processed can
grow considerably and is bounded by the size of the universe U .

The worst-case running time of the algorithm is O(km), where k is the length
of the trie list and where m is the size of the query set – plus the time O(m log m)
to sort the query elements. If all set elements are drawn from the set {1, . . . , n}
the worst-case running time is bounded by O(n2).

5.3 Adaption to Hex

For adapting the above structure to a goal pattern database for Hex we remind
that a goal pattern represents a virtual connection and consists of a set s of cells
and a set of boolean variables b for their occupation. As we store many patterns,
we actually maintains a set of sets S for the cells and a set of sets B for the
occupation. For each s ∈ S we have a matching b ∈ B.

Let B be the number of cells on the board. We assume queries of the form q =
(qs = (qs1 , . . . , qsB), qb = (qb1 , . . . , qbB)) with qsi ∈ {1, . . . , B} and qbi ∈ {0, 1}
for i ∈ {1, . . . , B}. The answer given is whether or not s ⊆ qs for one s ∈ S,
given that the Boolean assignments in qb match with the one in b.

Learning How to Play Hex 391

Algorithm: Lookup

Input: Limited branching tree L = (T1, . . . , Tk), sorted query q = {q1, . . . , qm}
Output: Flag indicating whether or not p contained in L with q ⊇ p
Q ← ∅1

foreach i ∈ {1, . . . , k} do2

if (root(Ti) ∈ q) then3

Q ← Q ∪ {Ti}4

end5

end6

foreach Ti ∈ Q do7

if Trie-Lookup(Ti, q) then8

return true9

end10

end11

return false12

Algorithm 2. Searching for subsets in a limited branching tree

A

B

C

1

2

3

(a) Element A = (sA, bA)

A

B

C

1

2

3

(b) Element B = (sB, bB)

A

B

C

1

2

3

(c) Element C = (sC , bC)

Fig. 5. Goal patterns database example

A node K in the LB tree for the pattern search in Hex represents a cell on
the board and consists of three components: the index I(K) of the node K, a
sentinel E(K), and a boolean flag U(K) denoting either a black (true) or an
empty cell (false).

As an example, we illustrate the insertion of the patterns of Figure 5 into the
empty dictionary. Three patterns, which all show a clear win for black on a 3×3
board, are processed one-by-one. The resulting LB-tree is shown in Figure 6. It
consists of two tries, on of which contains a branching.

Beside the color of the pieces there is no difference between a black and a white
winning position, such that in order to save memory we only stored black’s
winning connections. By swapping the colors and reflecting the board before
querying the database, its entries can be reused for white. During the training
the opposite strategy applies, all winning connections for white are stored as if
they were won by black.

As illustrated in Figure 7 there are many further patterns that can be obtained
through translation, reflection, and rotation. For example, the goal pattern in
(a) is translated into the pattern in (b). Depending on the width of the pattern,

392 K. Kahl, S. Edelkamp, and L. Hildebrand

root

I(K1) = 2,
E(K1) = false
U(K1) = true

I(K2) = 4,
E(K2) = false
U(K2) = false

I(K3) = 5,
E(K3) = false
U(K3) = false

I(K4) = 6,
E(K4) = true
U(K4) = true

I(K5) = 7,
E(K5) = true
U(K5) = true

I(K6) = 7,
E(K6) = true
U(K6) = true

I(K7) = 1,
E(K7) = false
U(K7) = false

I(K8) = 2,
E(K8) = false
U(K8) = false

I(K9) = 4,
E(K9) = false
U(K9) = true

I(K10)= 7,
E(K10) = true
U(K10) = true

Fig. 6. LB tree for the example

A

B

C

D

E

F

G

1

2

3

4

5

6

7

(a)

A

B

C

D

E

F

G

1

2

3

4

5

6

7

(b)

Fig. 7. Hex goal patterns

there are up to B− 1 translations possible. For each pattern we have one that is
obtained by reflection along the middle axis, such that we insert at most 2(B−1)
entries for each established winning position for black. All symmetric patterns
are additionally inserted into the limited branching tree.

Learning How to Play Hex 393

6 Experiments

We implemented a Hex-playing program on top of Six. Six applies limited depth
alpha-beta game tree search. To deal with the large branching factor in Hex only
the k-best successors are kept for each depth. We chose the Fast Artificial Neural
Network Library (FANN) [11] as the basis for learning the evaluation function
and its subsequent use. The Java Native Interface [15] was used to connect a
flexible user interface (written in Java) to the underlying system (written in C).

All experiments were run on a Linux PC with 3 GHz Intel Pentium IV with
512 MB RAM. From the range of different board sizes, we selected two case
studies: the 6× 6 board, which is small enough to completely explore the search
tree, and the 11× 11 board that is used for tournament play.

The decision in Hex on a 6 × 6 board can be make after a few moves. The
game is won4 after three played pieces. Both our Hex-system and Six actually
terminate after the third move. For the first move, both systems perform a game-
tree search to depth one, where 30 boards are evaluated. In Figure 8 we show a
comparison of the evaluation of our system and Six.

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

va
lu

e

move

neural network
Six

Fig. 8. Comparison between the evaluation function values of our system and Six for
a selection of boards

On the one hand, we observe that our system approximates the true value
quite good. On the other hand, there is a large difference between the evalua-
tion times. While the evaluation of a board in our system needs less than one
millisecond, Six needs up to three seconds and more. In Figure 9 we display the
times for evaluating the boards for the first move in Six. The overall time for
the first move in our system was 0.57 seconds, while Six required 47.28 seconds.

After the second player has moved, with the third move both systems create a
virtual connection between the edges. Our system finds an entry the goal pattern
database 0.015 seconds lookup time on the average.

4 We say a game is won, if there is a virtual connection between the sides of the board.

394 K. Kahl, S. Edelkamp, and L. Hildebrand

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20 25 30

tim
e

in
 s

ec
on

ds

move

Fig. 9. Distribution on evaluation times for game tree leaves when evaluating the first
move in Six

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

tim
e

in
 s

ec
on

ds

move

Fig. 10. Distribution on evaluation times for game tree leaves when evaluating the first
move on the 11 × 11 board in Six

Our system can classify the initial state as won for the first player: in a search
depth of three without any limit the branching factor on the first move, the root
of the game tree evaluates to a definite win for the first player. The search time
for this proof was 18.2 seconds, while expanding 1,389 nodes.

Similar results have been obtained for the 11 × 11 board. The evaluation
time of our system is less than one millisecond, while Six needs sometimes more
than 10 seconds for evaluating one of the 30 boards for the first move. The
time distribution for evaluating these 30 boards for the first move is illustrated
in Figure 10. On the same depth limit our system did not find the best move
(placing the piece in the middle of the board [2]), so we allowed a search depth

Learning How to Play Hex 395

of three. Now the best move was found after 44.26 seconds, which is still faster
than the 87.64 seconds that Six needs to calculate the first move with search
depth one.

Our system can search at least two levels deeper than Six and, therefore,
classify some goal states earlier. The largest amount of time is needed for the
lookup in the goal pattern database, with an average of 0.1 seconds.

7 Conclusion

With the combination of a neural network evaluation function and a goal pattern
database based on limited branching trees we were able to generate a perfect
player for the 6× 6 board. For the 11× 11 board, a player was generated that is
able to choose good moves. Due to the limited range of the first two moves the
neural nets computed the evaluation functions precisely without generalization.

We have successfully reduced the time for node expansion and, therefore,
increased the search depth. An evaluation on a larger scale (larger number of
training example) will produce a much better player. For example, TD-gammon
was trained by 1.5 million self-playing games [17].

For a very strong Hex player, the design of a hybrid of Six and our learned
system, seems the most plausible avenue for future research. Both systems can
concurrently execute game tree search given a fixed time frame. Comparing the
evaluations can then exploit the advantage of both approaches. Especially for
ending games, our approach searches deeper, which lead to an earlier classifica-
tion of a board.

References

1. Anshelevich, V.V.: The game of hex: An automatic theorem proving approach to
game programming. In: National Conference on Artificial Intelligence (AAAI), pp.
189–194 (2000)

2. Browne, C.: Hex Strategy: Making the Right Connections. A. K. Peters (2000)
3. Gale, D.: The game of hex and the brouwer fixed point theorem. American Math-

ematical Monthly 86, 818–827 (1979)
4. Gardner, M.: The Scientific American Book of Mathematical Puzzles and Diver-

sions. Simon and Schuster, New York (1959)
5. Gardner, M.: The Second Scientific American Book of Mathematical Puzzles and

Diversions. Simon and Schuster, New York (1961)
6. Hoffmann, J., Koehler, J.: A new method to index and query sets. In: International

Joint Conference on Artificial Intelligence (IJCAI), pp. 462–467 (1999)
7. Junghanns, A.: Pushing the Limits: New Developments in Single-Agent Search.

PhD thesis, University of Alberta (1999)
8. Kahl, K.: Maschinelle Lernverfahren für das Strategiespiel Hex. Diplomarbeit, Uni-

versität Dortmund (2007)
9. Litovski, V.B., Zwolinski, M.: VLSI Circuit Simulation and Optimization. Kluwer

Academic Publishers, Dordrecht (1996)
10. Nash, J.: Some games and machines for playing them. Technical report, Rand

Corporation (1952)

396 K. Kahl, S. Edelkamp, and L. Hildebrand

11. Nissen, S.: Implementation of a fast artificial neural network library (FANN). Tech-
nical report, Department of Computer Science University of Copenhagen (2003)

12. Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15(2), 167–191 (1981)
13. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Müller, M., Lake, R., Lu,

P., Sutphen, S.: Solving checkers. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 292–297 (2005)

14. Shannon, C.E.: Programming a computer for playing chess. Philosophical Maga-
zine 41, 256–275 (1950)

15. Java Native Interface., Javasoft’s Native Interface for Java (1997)
16. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine

Learning 3, 9–44 (1988)
17. Tesauro, G.: Practical issues in temporal difference learning. Machine Learning 8,

257–277 (1992)
18. Thrun, S.: Learning to play the game of chess. Advances in Neural Information

Processing Systems, vol. 7 (1995)
19. Tischbierek, R.: Nur das Schach hat verloren. Deutsche Schachzeitung 1, 4–14

(2007)
20. Yang, J., Liao, S., Pawlak, M.: On a decomposition method for finding winning

strategy in hex game. In: Internat. Conf. Application and Development of Com-
puter Games, pp. 96–111 (2001)

Stochastic Functional Annealing as Optimization

Technique: Application to the Traveling
Salesman Problem with Recurrent Networks�

Domingo López-Rodŕıguez1, Enrique Mérida-Casermeiro1,
Gloria Galán-Maŕın2, and Juan M. Ortiz-de-Lazcano-Lobato3

1 Department of Applied Mathematics, University of Málaga, Málaga, Spain
{dlopez,merida}@ctima.uma.es

2 Department of Electronics and Electromechanical Engineering, University of
Extremadura, Badajoz, Spain

gloriagm@unex.es
3 Department of Computer Science and Artificial Intelligence, University of Málaga,

Málaga, Spain
jmortiz@lcc.uma.es

Abstract. In this work, a new stochastic method for optimization prob-
lems is developed. Its theoretical bases guaranteeing the convergence of
the method to a minimum of the objective function are presented, by us-
ing quite general hypotheses. Its application to recurrent discrete neural
networks is also developed, focusing in the multivalued MREM model,
a generalization of Hopfield’s. In order to test the efficiency of this new
method, we study the well-known Traveling Salesman Problem. Exper-
imental results will show that this new model outperforms other tech-
niques, achieving better results, even on average, than other methods.

1 The Neural Model MREM

A powerful generalization of Hopfield’s model appears in the works [11,12], where
the model MREM (Multivalued REcurrent Model) is presented. This model (in
its discrete version) presents two important characteristics which make it very
versatile and increase its applicability:

– The output of each neuron, si, is a value from the setM={m1, m2, . . . , mL},
which is not necessarily numerical. The state vector of the net is defined as
S = (s1, . . . , sN).

– A new concept is introduced: a function f that measures the similarity be-
tween the outputs of the neurons. This is the so-called similarity function.
So, f(si, sj) represents the similarity between outputs of neurons i and j.

� This work has been partially supported by Junta de Andalućıa project number P06-
TIC-01615.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 397–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

398 D. López-Rodŕıguez et al.

Thus, the energy function of this model, which characterizes the behaviour of
the net, is as follows:

E(S) = −1
2

N∑
i=1

N∑
j=1

wi,jf(si, sj) +
N∑
i=1

θi(si) (1)

where W = (wi,j) is the synaptic weight matrix, representing the interconnection
strength between each pair of neurons, f is the similarity function, and θi : M→
R is a generalization of the thresholds of each neuron.

These characteristics make that certain optimization problems (including the
ETSP) have better representation in this model than in the case of the binary or
the bipolar model developed by Hopfield, as well as in other multivalued models.

It is clear that MREM generalizes Hopfield’s models (with outputs M =
{−1, 1} as well as M = {0, 1}), if we consider the similarity function given by
the product f(a, b) = ab.

This model has been successfully applied to several (combinatorial) optimiza-
tion problems, achieving very good results, which were better than the best
known results in literature [13,14,15].

The aim of this work is to present a technique that helps MREM (as well as other
optimization techniques) to escape from local minima, improving so its efficiency,
by means of a randomized technique that we call Stochastic Functional Annealing.

2 Stochastic Functional Annealing

The Functional Annealing method is designed to help optimization techniques
to avoid some local minima of the objective function. In this case, the objective
function F (defined over a discrete set V) is substituted by a sequence of func-
tions {Fn} such that lim

n→∞
Fn(x) = F (x) for all x ∈ V . Then, an optimization

technique is used to minimize each of the approximating functions Fn.
The point used as initial guess to minimize Fn+1 is the minimum of Fn, which

will be denoted as x
(n)
∗ . We iterate by using a stochastic algorithm which, under

certain hypotheses, will lead to the minimization of F , although the minimization
of Fn is not guaranteed.

This stochastic algorithm is as follows:

1. Begin with m = 1, n = 1.
2. Choose an initial guess x

(n)
1 , randomly (if n = 1), or by taking x

(n)
1 = x

(n−1)
∗

(if n > 1).
3. Select a point z ∈ V according to the law of probability Ps(z; x(n)

m).
4. The update x

(n)
m+1 = z will be accepted with probability Pa(ΔFn), where

ΔFn = Fn(z)− Fn(x(n)
m).

5. Repeat steps 3 and 4 until the acceptance of an update x
(n)
m+1. Let m = m+1.

6. If m ≥ K (for a fixed K), let x
(n)
∗ = x

(n)
K , m = 1 and n = n + 1 and return

to step 2.
7. If m < N , return to step 3.

Stochastic Functional Annealing as Optimization Technique 399

Thus, we obtain a sequence {x(n)
∗ } of points in V which are approaches to

the minima of the corresponding Fn. In the limit, we expect that this sequence
approaches a minimum of F .

Note that we are not making an infinite number of iterations in order to
minimize Fn. We make only a finite number of them, which implies, due to the
stochastic nature of the algorithm, that we are not arriving at the minimum of
Fn.

We must observe that there are several possible ways of sampling a point
z ∈ V . It does not need to be chosen completely at random. This sampling
can be made by taking into account the function values of all points in a cer-
tain neighborhood of x

(n)
m , and assigning to every point a probability which is

proportional to its increase of the function value.
In the next section we will impose some conditions to guarantee the mini-

mization of F .

2.1 Convergence Theorems

At least two hypotheses have to be imposed in order to obtain some results of
convergence:

Condition of Probabilistic Monotonicity
The next equality must hold

lim
n→∞

P

(
Fn(x

(n)
m+1) > Fn(x(n)

m)
)

= 0

for all m ∈ {1, . . . , N − 1}.

Condition of Acceptance of the Update z = x
(n)
m+1

We consider the probability of acceptance of x
(n)
m+1 as

Pa(z) =
{

1, if ΔFn < 0
gn(ΔFn) < 1, if ΔFn ≥ 0

where gn : R
+ → [0, 1) and ΔFn = Fn(z)− Fn(x

(n)
m).

In addition, to simplify the algorithm, let us suppose the following condition:

Condition of Sampling in Neighbourhoods
Given x = x

(n)
m , we consider the probability of sampling a point z ∈ V given by

P(sampling z) = Ps(z) =
{

0, if z �∈ Nx
a(z) > 0, if z ∈ Nx

where Nx is a neighbourhood of x.

We must note that if the functional sequence {gn} tends to 0 uniformly, then
the condition of acceptance of z = x

(n)
m+1 implies that of probabilistic monotony.

400 D. López-Rodŕıguez et al.

With these hypotheses in mind, we can get some technical results that guar-
antee the convergence of our algorithm to a minimum of F . However, due to the
limitation in the length of this paper, proofs for these results will be omitted.

The following technical results (lemmas, propositions and theorems) establish
some quite general conditions to ensure the convergence of our method. These
conditions are simplified in the particular case of discrete recurrent networks, in
the next section.

Theorem 1. With probability 1, there exists L such that

L = lim
n→∞

Fn(x(n)
∗) = lim

n→∞
F (x(n)

∗)

Corollary 1. If ξ is an accumulation point of the sequence {x(n)
∗ }, then, with

probability 1, the next equality holds:

F (ξ) = lim
n→∞

Fn(x
(n)
∗) = lim

n→∞
F (x(n)

∗)

We now proceed to establish the optimality of the accumulation points of {x(n)
∗ }.

Theorem 2. Let z ∈ V with F (z) < L, where

L = lim
n→∞

Fn(x(n)
∗) = lim

n→∞
F (x(n)

∗)

Then, there exists N ∈ N such that if n ≥ N then

Ps(z) · P
(
accept z = x

(n)
2

)
= 0

This technical result gives two interesting corollaries, dealing with the optimality
of the accumulation points of {x(n)

∗ }, and the convergence of this sequence.

Proposition 1. Let ξ be an accumulation point of {x(n)
∗ }. Then, we have F (ξ)≤

F (z) for all z ∈ Nξ. Therefore we can affirm that ξ is a local minimum of F .

Let us study the time required by this algorithm to visit, at least once, the global
optimum x∗.

Suppose that gn(ΔFn) ≥ δ > 0 for all n and for all possible ΔFn = Fn(y)−
Fn(x) with x, y ∈ V and that Ps(z; x) ≥ ρ > 0 for all z ∈ Nx, for all x ∈ V .

Let G = (V , E) be the graph given by V = V and the edge (x, y) ∈ E if, and
only if, x ∈ Ny.

Suppose that G is strongly connected, that is, given two nodes (points of V),
there always exists a path (sequence of nodes) connecting them by means of
edges in E .

Let D be the diameter of the graph G, that is, the longest path between to
nodes of G.

Lemma 1. Under the above hypotheses, given a random initial guess x
(1)
1 ∈ V ,

the expected number of steps to visit x∗ is less than or equal to Dρ−Dδ1−D.

Stochastic Functional Annealing as Optimization Technique 401

Proposition 2. For all k > 0, our algorithm visits the global optimum x∗ in
less than kDρ−Dδ1−D steps with probability greater than 1− 1

k .

But we can say more:

Proposition 3. For all k > 0, our algorithm visits the global optimum x∗ in
less than 2kDρ−Dδ1−D steps with probability greater than 1− 2−k.

These results are applicable when the algorithm can use some memory to store
data, that is, the algorithm is able to remember the best solution up to the
current iteration (the best-solution-so-far).

When the algorithm has no memory, we look for other results proving con-
vergence.

For the next results, which prove the convergence of the sequence {x(n)
∗ },

we need an additional hypothesis on {gn}, the sequence that appears in the
definition of the probability of acceptance.

Definition 1. A sequence {ϕn : [0,∞) → R} of functions converges ε-uniformly
to ϕ : [0,∞) → R if, for all ε > 0, the sequence {ϕn

∣∣
[ε,∞)} of functions restricted

to the interval [ε,∞) converges uniformly to ϕ
∣∣
[ε,∞) , that is, if

lim
n→∞

sup
t≥ε

|ϕn(t)− ϕ(t)| = 0

It is clear that if a sequence converges uniformly, it also converges ε-uniformly,
therefore it is a less restrictive hypothesis.

Proposition 4. If local minima of F are strict, {gn} converges ε-uniformly to
0, and ξ is an accumulation point of {x(n)

∗ }, then the next equality holds:

lim
n→∞

P

(
x

(n+1)
∗ = ξ|x(n)

∗ = ξ
)

= 1

But we can still specify a little more:

Corollary 2. Let us suppose that local minima of F are strict and that {gn}
converges ε-uniformly to 0. Let ξ be an accumulation point of {x(n)

∗ } and {x(nk)
∗ }

one subsequence of {x(n)
∗ } such that lim

k→∞
x

(nk)
∗ = ξ. Then

lim
k→∞

P(x(nk+1)
∗ = ξ) = 1

From this result we can deduce the convergence of the sequence {x(n)
∗ }.

Theorem 3. Let us suppose that local minima of F are strict and that {gn}
converges ε-uniformly to 0. Let ξ be an accumulation point of {x(n)

∗ }. Then

ξ = lim
n→∞

x
(n)
∗

Note that we have arrived at the strong convergence of the sequence {x(n)
∗ }, not

only convergence in probability, to ξ, which is a minimum of F .

402 D. López-Rodŕıguez et al.

3 Application to Recurrent Networks

In this section, we will specify the previous results in the case in which the
optimization algorithm used to minimize each Fn is a recurrent neural network.
Therefore, we will consider energy functions such as the one given in Eq. (1) for
the MREM model.

3.1 Stochastic Functional Annealing Applied to MREM

Now, in order to minimize the energy function E given by Eq. (1), we will
consider a sequence of energy functions {En}, defined as in Eq. (2):

En(S) = −1
2

N∑
i=1

N∑
j=1

w
(n)
i,j f (n)(si, sj) +

N∑
i=1

θ
(n)
i (si) (2)

where {W (n) = (w(n)
i,j)} is a sequence of synaptic weights matrices verifying

that lim
n→∞

W (n) = W , {f (n) : M×M → R} is a functional sequence such that

the limit lim
n→∞

f (n)(x, y) = f(x, y) for all x, y ∈ M, and {θ(n)
i : M → R}n≥1

is a sequence of threshold (or bias) functions for neuron i, i = 1, . . . , N , which
converges punctually to θi, for all i.

Obviously, E(S) = lim
n→∞

En(S) for each state vector S ∈MN .
For every state vector S we define a neighbourhood NS such that the next

state of the net will be chosen from this neighbourhood.
Let us suppose that, to minimize En, we iterate and obtain S

(n)
m and make

a sampling in its neighbourhood to arrive at the state vector S. We define the
probability of acceptance of the update S = S

(n)
m+1 as follows (analogous to what

was made in the previous section):

Pa(S) =
{

1, if ΔEn < 0
gn(ΔEn) < 1, if ΔEn ≥ 0

where gn : R
+ → [0, 1) and ΔEn = En(S)− En(S(n)

m).
Thus, for each n, given S

(n)
1 , we will obtain a finite sequence of state vectors

{S(n)
i }i=1,...,K , since we only iterate K times, to arrive at the state vector S

(n)
K

which will be denoted S
(n)
∗ , in order to keep the notation introduced in the

previous sections.
So, as a result of applying the previous technical results, we can affirm that:

Theorem 4. With the previous hypotheses, we have:

– There exists a value L which is the common limit of the sequences {En(S(n)
∗)}

and {E(S(n)
∗)}.

– If S∗ is an accumulation point of {S(n)
∗ }, then

E(S∗) = lim
n→∞

En(S
(n)
∗) = lim

n→∞
E(S(n)

∗)

Stochastic Functional Annealing as Optimization Technique 403

and, in addition, E(S∗) ≤ E(S) for all state vector S belonging to the
neighborhood NS∗ of S∗.

– If {gn} converges ε-uniformly to zero, and local minima of E are strict, then

S∗ = lim
n→∞

S
(n)
∗

3.2 A Particular Case: The Stochastic MREM Model

If we consider En = E for all n, we arrive at a stochastic version of MREM.
This version, which will be called sMREM (stochastic MREM), will converge

to a state of (local) minimal energy, since it is a particular case of the Stochastic
Functional Annealing, and it verifies the conditions of Probabilistic Monotonic-
ity, Acceptance of Updates and Sampling in Neighborhoods.

The main drawback of this model sMREM, with respect to its deterministic
version, is the amount of computational time needed to achieve that conver-
gence. However, this increase in the computational effort obtains its reward as
an increase in the quality of the solution, as we will see in the experimental
results.

4 The Euclidean Traveling Salesman Problem

The Euclidean Traveling Salesman Problem (ETSP) is a classical and very well-
known issue of study in the field of Operations Research, as well as in Artificial
Intelligence, since it has become one of the most popular benchmarks to test the
efficiency of optimization-related methods.

We can define this problem as follows: given N cities in the Euclidean space
X1, . . . , XN ∈ R

2 and distances di,j between each pair of cities Xi and Xj , the
objective is to find the shortest closed path that visits each city only once.

Real-life applications cover aspects such as automatic route planning for
robots, and hole location in printed circuits design [1], as well as gas turbine
checking, machine task scheduling or crystallographic analysis [2], among oth-
ers.

Despite the simplicity of this definition, this problem is one of the most typical
representatives of the complexity class of NP-hard problems, showing its high
level of difficulty in its resolution. Thus, there is need of algorithms to achieve
good approximations to the optimal solution with little time consumption.

For this reason, in addition to classical methods of Operations Research and
Optimization, several different algorithms have been developed, including genetic
algorithms [3], simulated annealing [4], taboo search [5], and neural networks [6].

Concerning neural networks, the main subject to deal with is to achieve a
good representation or formulation of the problem such that its resolution arises
as an energy function minimization problem.

In 1985, Hopfield and Tank [7] proposed the first neural network for the study
of combinatorial optimization problems (Hopfield’s analog model), which was
precisely used to solve this problem.

404 D. López-Rodŕıguez et al.

This analog model has more ability to escape from local minima than the
discrete model. Some deficiencies are present in both models, as it is the need
to fine-tune a high number of parameters in the energy function, as mentioned
by Wilson and Pawley [8].

Other approaches are entirely based on Kohonen’s self-organizing maps [9],
achieving the best results with the so-called KNIES network [10], in which some
statistical measures were incorporated into the original model. This model also
presents the drawback of the fine-tuning of a high number of parameters to
achieve good results.

In the last few years, the multivalued model MREM has achieved very good
results, outperforming KNIES, and presenting the advantage of not needing any
adjustment of parameters, quite the opposite to KNIES.

5 The MREM Model for the Travelling Salesman
Problem

In order to solve the ETSP with this neural model, two identifications must be
made:

– A network state must be identified to a solution of ETSP
A solution of ETSP can be represented as a permutation in the set of numbers
{1, . . . , N}, where N is the number of cities, since it represents the order in
which cities are visited. For this reason, the net will be formed by N neurons,
each of them taking a value in the set M = {1, . . . , N}, such that the state
vector S = (s1, . . . , sN) represents a permutation of {1, . . . , N} (a feasible
state). With this representation, si = k means that the k-th city will be
visited in i-th place.

– The energy function must be identified to the total distance of the
tour
If we make, in Eq. (1), f(x, y) = −2dx,y and

wi,j =
{

1 if (j = i + 1) ∨ ((i = N) ∧ (j = 1))
0 otherwise

then the energy function that we obtain is E(S) =
N−1∑
i=1

dsi,si+1 +dsN ,s1 , that

is, the total distance of the tour represented by the state vector S.

Computational dynamics is based in beginning with a random feasible initial
state vector and updating neurons outputs such that the state vector of the net
will always be feasible. To this end, in each iteration, a 2-opt [16,17,18] update
will be made over the current state vector. That is, every pair of neurons, p, q
with p > q + 1, is studied and the net checks for crosses between the segments
[sp, sp+1] and [sq, sq+1]. In that case, the next inequality holds:

dsp,sp+1 + dsq,sq+1 < dsp,sq + dsp+1,sq+1

Stochastic Functional Annealing as Optimization Technique 405

(a) (b)

pp

q

q p+1

p+1

q+1q+1

Fig. 1. An example of 2-opt iteration: (a) Original tour. (b) Tour modified by 2-opt
technique.

Then, the path from city sp+1 to sq is reversed (see Fig. 1), that is, if S is the
current state, the new state vector S′ will be defined as:

s′i =
{

sq+p+1−i if p + 1 ≤ i ≤ q
si otherwise

As an additional technique for improvement, 3-opt updates have also been
used: the tour is decomposed in 3 consecutive arcs, A, B and C, which are
recombined in all possible ways: {ABC, ACB, AB̂C, ABĈ, AB̂Ĉ, AĈB, ACB̂,
AĈB̂}, where Â, B̂, Ĉ are the arcs corresponding to the inversion of A, B,
and C, respectively. For example, if A = (8, 9, 4, 6), B = (1, 5, 3) and C =
(2, 7), then Â = (6, 4, 9, 8), B̂ = (3, 5, 1) and Ĉ = (7, 2), and the combination
AĈB̂ = (8, 9, 4, 6, 7, 2, 3, 5, 1). Note that {ABC, AB̂C, ABĈ, AĈB̂} are 2-opt
updates and there is no need to check them again.

The next state of the net will be the combination (chosen from the above list)
which decreases most the value of the energy function. For more details, please
refer to [12].

6 Functional Annealing for the Resolution of ETSP

In this section, several ways of applying Functional Annealing to ETSP are
considered. In each of them we will try to introduce some kind of knowledge
about the problem in its resolution, that is, this knowledge will be present in
the construction of the sequence {En}.

We will represent this knowledge by means of a transformation of the distances
between each pair of cities, that is, we will consider approximating energy func-
tions as in Eq. (2), with W (n) = W for all n, and f (n)(x, y) = −2d

(n)
x,y. The

introduction of these functions d
(n)
x,y will intensify the fact that cities close to

406 D. López-Rodŕıguez et al.

zn

M

M
m
m

M

M
m
m

(a) (b)

Fig. 2. Graphical representation of the proposed d
(n)
x,y: (a) for FA1, (b) for FA2

each other should be visited consecutively, and that cities which are far away
from each other should not. Thus, energy function En defined in this way will
represent the total distance of the tour associated to the corresponding state
vector, but with different measures of the distances between cities.

For simplicity, only a finite number of En will be considered: E1, E2, . . . , EL,

EL+1 = E. Let us define a pair of sequences {En} (it suffices to define d
(n)
x,y)

which introduce some of this knowledge in the resolution:

– The first approach will be called FA1: In this case, d(n) is defined as

d(n)
x,y =

{
dx,y, if dx,y ≤ θn
M, otherwise

where θn = m + (n− 1)(M −m)
L , and m and M are, respectively, the min-

imum and maximum values of dx,y for x �= y.
This election of d(n) makes the algorithm order cities which are close to
each other, giving no importance to cities that are far away. That is, in the
first few iterations, a partial ordering is induced in the neighborhood of each
city. As the neighborhood expands, this series of partial orderings becomes
less partial, generating inductively a total ordering that usually represents a
better tour in terms of total distance.

– The second approach (FA2), consists in defining

d(n)
x,y =

{
0, if x ∈ VL−n+1(y) ∨ y ∈ VL−n+1(x)
dx,y, otherwise

where Vm(Xk) is the set formed by Xk and the m nearest cities to Xk, such
that V0(Xk) = {Xk}.
This means that, in the first iterations, the model will try to build a global
ordering, not focusing in cities that are close to each other, but achieving a
rough ordering that can be refined in the following iterations, by taking into
account distances between cities close to each other.

Stochastic Functional Annealing as Optimization Technique 407

In fact, these techniques can help to avoid certain local minima of the energy
function E, since the objective function to minimize in each step is En, allowing
the net to increase temporarily the value of the original energy function.

A graphical representation of d(n) for these two techniques FA1 and FA2 can
be found in Fig. 2.

7 Experimental Results

Our algorithm has been tested with a wide set of ETSP instances. These in-
stances come from the well-known repository TSPLIB, available on the world
wide web and created by Reinelt [19,20]. One of its most important features is
that every instance has a record with the distance of the optimal tour, allowing
to compare the relative efficiency of our algorithms with respect to MREM. It
must be noted that MREM results are better than those of KNIES [12].

Experimental results are shown in Tables 1 and 2. 25 independent executions
were made for each instance. The quality measure used in these tables is the
percentage of error over the optimum, that is, to compare two results we use
their respective relative errors, given by (in percentage):

error =
(Best or average) tour length−Opt

Opt
· 100

We have tested the sMREM model and Functional Annealing with dynamics
FA1 and FA2. The acceptance function gn considered takes the following form:
gn(Δ) = exp

(
−Δ
Tn

)
, where Tn is a ‘temperature’ parameter, converging to 0,

what makes {gn} converge ε-uniformly to 0.
Since we only use a finite number of approximating energy functions, we can

consider that the temperature parameter Tn decreases linearly from T1 = 1 to
TL = 0 and K = 20 iterations for each value of the temperature.

The parameter L takes the following values:

– L = 20 for sMREM and FA1, L = 5 for FA2, whose results are shown in
Table 1.

– L = 40 for sMREM and FA1, L = 10 for FA2, whose results are shown in
Table 2.

We must also specify the way the next state of the net is sampled:

– The increase of energy corresponding to each of the states which are in the
neighborhood of the current state, S, is computed.

– The probability of sampling the state S′ ∈ NS is proportional to the expo-
nential of the opposite of its increment of energy, divided by the temperature

at that iteration: Ps(S′) ∝ exp(−ΔS,S′

Tn
).

Once the next state is sampled, it is accepted or not depending on the prob-
ability of acceptance Pa, which is defined in terms of gn.

408 D. López-Rodŕıguez et al.

T
a
b
le

1
.

C
o
m

p
a
ra

ti
v
e

re
su

lt
s

(2
5

ex
ec

u
ti
o
n
s

p
er

in
st

a
n
ce

)
b
et

w
ee

n
M

R
E

M
a
n
d

th
e

st
o
ch

a
st

ic
m

et
h
o
d
s

h
er

ei
n

p
ro

p
o
se

d
fo

r
d
iff

er
en

t
in

st
a
n
ce

s
o
f
th

e
T
ra

v
el

li
n
g

S
a
le

sm
a
n

P
ro

b
le

m
(L

=
2
0

fo
r

sM
R

E
M

a
n
d

F
A

1
,
L

=
5

fo
r

F
A

2
)

K
N

IE
S

M
R

E
M

sM
R

E
M

F
A

1
F
A

2

In
st

a
n
ce

O
p
t.

B
es

t
B

es
t

A
v
er

a
g
e

t
B

es
t

A
v
er

a
g
e

t
B

es
t

A
v
er

a
g
e

t
B

es
t

A
v
er

a
g
e

t

ei
l5

1
4
2
6

2
.8

6
0
.2

3
2
.4

3
3
.1

2
0
.2

3
1
.4

2
1
1
.9

1
0

1
1
2
.1

4
0
.2

3
1
.6

7
3
.7

3
st

7
0

6
7
5

1
.5

1
0

1
.8

9
9
.0

1
0

0
.9

4
2
3
.0

9
0

0
.8

5
2
3
.1

9
0

1
.1

1
8
.3

2
ei

l7
6

5
3
8

4
.9

8
1
.3

3
.4

3
1
0
.8

0
.1

9
1
.7

2
2
8
.1

5
0

1
.6

2
2
8
.1

1
0

1
.8

8
.8

7
rd

1
0
0

7
9
1
0

2
.0

9
0

3
.0

2
6
1
.7

0
.6

2
2
.9

9
5
7
.6

6
0

2
.1

6
5
2
.4

4
0
.4

3
2
.9

2
3
.3

3
ei

l1
0
1

6
2
9

4
.6

6
1
.4

3
3
.5

1
2
7
.7

6
0
.4

8
1
.7

8
5
4
.4

4
0

2
.1

4
5
3
.7

1
0
.1

6
1
.3

8
2
4
.8

1
li
n
1
0
5

1
4
3
7
9

1
.2

9
0

1
.7

1
2
8
.8

3
0
.7

9
3
.1

7
6
5
.1

0
.1

5
2
.2

7
6
6
.3

7
0

2
.8

1
2
9
.3

p
r1

0
7

4
4
3
0
3

0
.4

2
0
.1

5
0
.8

2
4
9
.7

9
0
.8

3
1
.5

7
7
6
.1

2
0
.2

0
.6

4
7
1
.9

5
0

0
.4

5
2
6
.5

9
p
r1

2
4

5
9
0
3
0

0
.0

8
0

1
.2

3
5
9
.5

1
0
.2

6
1
.8

7
1
0
0
.9

8
0

1
.1

9
1
0
0
.8

1
0
.2

6
1
.3

6
4
3
.8

8
b
ie

r1
2
7

1
1
8
2
8
2

2
.7

6
0
.4

2
2
.0

6
6
6
.2

9
1
.2

2
3
.7

8
1
1
2
.4

3
0
.6

5
2
.4

4
1
1
2
.1

8
0
.7

3
2
.2

6
6
1
.1

5
k
ro

A
2
0
0

2
8
5
6
8

5
.7

1
3
.4

9
6
.7

0
3
1
8
.4

4
4
.7

9
7
.3

0
4
7
4
.5

1
3
.2

2
4
.9

7
3
7
7
.4

3
4
.2

3
6
.2

7
2
6
0
.7

4

Stochastic Functional Annealing as Optimization Technique 409

T
a
b
le

2
.

C
o
m

p
a
ra

ti
v
e

re
su

lt
s

(2
5

ex
ec

u
ti
o
n
s

p
er

in
st

a
n
ce

)
b
et

w
ee

n
M

R
E

M
a
n
d

th
e

st
o
ch

a
st

ic
m

et
h
o
d
s

h
er

ei
n

p
ro

p
o
se

d
fo

r
d
iff

er
en

t
in

st
a
n
ce

s
o
f
th

e
T
ra

v
el

li
n
g

S
a
le

sm
a
n

P
ro

b
le

m
,
se

co
n
d

v
er

si
o
n

(L
=

4
0

fo
r

sM
R

E
M

a
n
d

F
A

1
,
L

=
1
0

fo
r

F
A

2
)

K
N

IE
S

M
R

E
M

sM
R

E
M

F
A

1
F
A

2

In
st

a
n
ce

O
p
t.

B
es

t
B

es
t

A
v
er

a
g
e

t
B

es
t

A
v
er

a
g
e

t
B

es
t

A
v
er

a
g
e

t
B

es
t

A
v
er

a
g
e

t

ei
l5

1
4
2
6

2
.8

6
0
.2

3
2
.4

3
3
.1

2
0

1
.2

2
2
2
.7

8
0

1
.0

3
2
3
.2

5
0
.4

7
2
.1

9
6
.6

6
st

7
0

6
7
5

1
.5

1
0

1
.8

9
9
.0

1
0

0
.5

9
4
3
.4

6
0

0
.5

8
4
4
.1

0
.5

9
1
.4

3
1
4
.2

6
ei

l7
6

5
3
8

4
.9

8
1
.3

3
.4

3
1
0
.8

0
1
.4

6
5
2
.4

3
0
.1

9
1
.0

7
5
3
.0

3
0
.9

3
2
.4

5
1
6
.0

7
rd

1
0
0

7
9
1
0

2
.0

9
0

3
.0

2
6
1
.7

1
.3

1
4
.3

8
1
0
3
.4

4
0
.5

9
2
.5

2
9
7
.0

9
0
.4

3
2
.5

3
6
.2

8
ei

l1
0
1

6
2
9

4
.6

6
1
.4

3
3
.5

1
2
7
.7

6
0

1
.3

5
9
4
.6

0
.1

6
1
.4

9
9
6
.7

5
0
.1

6
2
.1

7
3
5
.9

2
li
n
1
0
5

1
4
3
7
9

1
.2

9
0

1
.7

1
2
8
.8

3
0
.7

7
3
.6

6
1
1
0
.1

4
0
.3

8
1
.9

1
1
0
.8

3
0

1
.4

1
4
2
.2

9
p
r1

0
7

4
4
3
0
3

0
.4

2
0
.1

5
0
.8

2
4
9
.7

9
0
.3

1
.0

6
1
3
2
.9

4
0
.5

1
.1

8
1
1
7
.3

3
0
.1

2
0
.7

8
4
4
.3

8
p
r1

2
4

5
9
0
3
0

0
.0

8
0

1
.2

3
5
9
.5

1
0
.0

8
1
.6

6
1
6
6
.7

7
0
.3

8
1
.7

6
1
6
3
.2

9
0

1
.2

2
6
3
.9

7
b
ie

r1
2
7

1
1
8
2
8
2

2
.7

6
0
.4

2
2
.0

6
6
6
.2

9
1
.9

6
3
.1

8
1
9
5
.0

7
0
.7

2
2
.4

1
1
8
6
.1

9
0
.9

1
1
.9

3
8
3
.6

8
k
ro

A
2
0
0

2
8
5
6
8

5
.7

1
3
.4

9
6
.7

3
1
8
.4

4
4
.3

8
7
.0

4
6
4
8
.6

4
3
.4

7
5
.9

5
5
8
.6

5
3
.4

5
6
.0

2
2
7
3
.3

4

410 D. López-Rodŕıguez et al.

When n = L, the next iteration (n = L+1) does not use a stochastic dynamics,
so it is the 2-opt (or 3-opt) mentioned before.

Regarding solution quality, we can observe in Tables 1 and 2 that the for-
mulation that gets the best results is FA1, achieving the best average results in
almost every test instance, showing its ability to escape from local minima. This
fact can also be observed by comparing the optimal results of these methods.

It must be noted that results obtained by KNIES were achieved by means
of a trial-error process, since this algorithm has to fine-tune a high number of
parameters.

In columns labeled ’t’ in these tables, we can check that the time consumption
is not a drawback in this case, since there are instances in which FA2 is, at
least, as fast as MREM and FA1 does not represent a high increase of time
consumption. This kind of ‘acceleration’ comes from the fact that Functional
Annealing gets good solutions in the first iterations. Then, since Fn is very close
to F in the last iterations, these good solutions are actually good approximations
of the final solution, and the algorithm hardly iterates.

8 Conclusions

In this work we have studied an optimization technique, Functional Annealing,
based on stochastic searches that can help to avoid certain local minima of the
objective function. This technique also allows us to introduce some knowledge
about the problem in its resolution.

We have proposed the theoretical results on which the algorithm is based.
These results prove the convergence of Functional Annealing to a local minimum
of the objective function.

We have used the proposed techniques to solve the well-known Traveling Sales-
man Problem. With these methods, we eliminate long paths in the tour, at the
same time that crosses are avoided. Not eliminating those long paths is the main
cause of the local minima in which an optimization algorithm may get trapped.

The proposed algorithms outperform, in most cases, results obtained by
MREM, without a great increase of time consumption.

References

1. Reinelt, G.: The Travelling Salesman. In: Computational Solutions for TSP Appli-
cations, Springer, Heidelberg (1994)

2. Bland, R., Shallcross, D.F.: Large traveling salesman problem arising from exper-
iments in x-ray crystallography: a preliminary report on computation. Technical
Report No. 730, School of OR/IE, Cornell University, Ithaca, New York (1987)

3. Potvin, J.: Genetic algorithms for the traveling salesman problem. Annals of Op-
erations Research 63, 339–370 (1996)

4. Aarts, E., Korst, J., Laarhoven, P.: A quantitative analysis of the simulated anneal-
ing algorithm: A case study for the traveling salesman problem. J. Stats. Phys. 50,
189–206 (1988)

Stochastic Functional Annealing as Optimization Technique 411

5. Fiechter, C.: A parallel tabu search algorithm for large scale traveling salesman
problems. Technical Report 90/1, Department of Mathematics, Ecole Polytech-
nique Federale de Lausanne, Switzerland (1990)

6. Potvin, J.: The traveling salesman problem: A neural network perspective. IN-
FORMS Journal on Computing 5, 328–348 (1993)

7. Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems.
Biological Cybernetics 52, 141–152 (1985)

8. Wilson, V., Pawley, G.: On the stability of the TSP problem algorithm of Hopfield
and Tank. Biological Cybernetics 58, 63–70 (1988)

9. Kohonen, T.: Self-organizing Maps. Springer, Heidelberg (1995)
10. Aras, N., Oomen, B.J., Altinel, I.: The Kohonen network incorporating explicit

statistics and its application to the Travelling Salesman Problem. Neural Net-
works 12, 1273–1284 (1999)

11. Mérida-Casermeiro, E.: Red Neuronal recurrente multivaluada para el re-
conocimiento de patrones y la optimización combinatoria. PhD thesis, Universidad
de Málaga, Spain (2000)

12. Mérida-Casermeiro, E., Galán-Maŕın, G., Muñoz Pérez, J.: An efficient multivalued
Hopfield network for the travelling salesman problem. Neural Processing Letters 14,
203–216 (2001)

13. Mérida-Casermeiro, E., Muñoz Pérez, J., Domı́nguez-Merino, E.: An n-parallel
multivalued network: Applications to the Travelling Salesman Problem. In: Mira,
J.M., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 406–413. Springer,
Heidelberg (2003)

14. Mérida-Casermeiro, E., López-Rodŕıguez, D.: Graph partitioning via recurrent
multivalued neural networks. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.)
IWANN 2005. LNCS, vol. 3512, pp. 1149–1156. Springer, Heidelberg (2005)

15. López-Rodŕıguez, D., Mérida-Casermeiro, E., Ortiz-de Lazcano-Lobato, J.O.,
López-Rubio, E.: Image compression by vector quantization with recurrent dis-
crete networks. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN
2006. LNCS, vol. 4132, pp. 595–605. Springer, Heidelberg (2006)

16. Lin, S., Kernigham, B.W.: An effective heuristic algorithm for the Traveling Sales-
man Problem. Operations Research 21, 498–516 (1973)

17. Johnson, D.S., McGeoch, L.A.: The Traveling Salesman Problem: A Case Study in
Local Optimization. In: Local Search in Combinatorial Optimization, John Wiley,
Chichester (1997)

18. Hoos, H.H., Stuetzle, T.: Traveling Salesman Problems. In: Stochastic Local Search,
Morgan Kaufman (2004)

19. Reinelt, G.: TSPLIB - a Travelling Salesman Problem library. ORSA Journal of
Computing 3, 376–384 (1991)

20. Bixby, B., Reinelt, G.: Travelling Salesman Problem library (1999),
http://www.crpc.rice.edu/softlib/tsplib.html

http://www.crpc.rice.edu/softlib/tsplib.html

A Stochastic Local Search Approach

to Vertex Cover

Silvia Richter1,3, Malte Helmert2, and Charles Gretton1

1 NICTA, 300 Adelaide St, Brisbane QLD 4000, Australia
{silvia.richter,charles.gretton}@nicta.com.au

2 Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 052,
79110 Freiburg, Germany

helmert@informatik.uni-freiburg.de
3 Institute for Integrated and Intelligent Systems, Griffith University,

170 Kessels Road, Nathan QLD 4111, Australia

Abstract. We introduce a novel stochastic local search algorithm for
the vertex cover problem. Compared to current exhaustive search tech-
niques, our algorithm achieves excellent performance on a suite of prob-
lems drawn from the field of biology. We also evaluate our performance on
the commonly used DIMACS benchmarks for the related clique problem,
finding that our approach is competitive with the current best stochastic
local search algorithm for finding cliques. On three very large problem
instances, our algorithm establishes new records in solution quality.

1 Introduction

Finding a minimum vertex cover of a graph is a well-known NP-hard problem [1].
Given an undirected graph G = (V, E), a vertex cover is defined as a subset of
the vertices C ⊆ V , such that every edge of G has an endpoint in C, i.e. for all
(u, v) ∈ E : u ∈ C or v ∈ C. The task then is to find a vertex cover of minimum
size, or, for the corresponding NP-complete decision problem k-vertex cover, to
decide whether a vertex cover of size k exists.

Applications of the vertex cover problem arise in network security, scheduling
and VLSI design [2]. For example, finding a minimum vertex cover in a network
corresponds to locating an optimal set of nodes on which to strategically place
controllers such that they can monitor the data going through every link in
the network. Algorithms for minimum vertex cover can also be used to solve
the closely related problem of finding a maximum clique, which has a range of
applications in biology, such as identifying related protein sequences [3].

Over the past decade, numerous algorithms have been proposed for solving the
vertex cover problem, including evolutionary algorithms [4], ant colony system
approaches [5] and complete search [6]. A recent approach of the latter kind that
has proven useful in biological applications is the work of Abu-Khzam et al. [3].

In this work, we introduce a stochastic local search algorithm for vertex cover,
dubbed COVER (Cover Edges Randomly), and show that it achieves excellent

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 412–426, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Stochastic Local Search Approach to Vertex Cover 413

performance on a large variety of benchmarks. For the protein sequencing prob-
lems used by Abu-Khzam et al. [3], COVER is several orders of magnitude
faster at finding the optimal solution than their approach. On a suite of “hard”
benchmarks with hidden optimal solutions [7], COVER performs very well and
establishes a new record on the largest instance. Furthermore, we compare the
performance of COVER against state-of-the-art solvers for the related indepen-
dent set and clique problems, showing that we achieve competitive results on a
commonly used benchmark set. We also explore the importance of knowing the
target solution size k for our algorithm.

The remainder of this article is organized as follows. We first give an overview
of related work, including algorithms for the clique and independent set prob-
lems. We then describe the general idea of stochastic local search, and the specific
details of our algorithm. In Sec. 5, we describe the empirical evaluation of our
algorithm conducted on a wide range of benchmarks, after which we conclude.

2 Background and Related Work

Various complete algorithms for k-vertex cover have been derived from the the-
ory of fixed-parameter tractability (FPT) [6,8,9,3]. The characterizing feature
of FPT algorithms is that their run-time is bounded by f(k) · p(n), where the
dependence f(k) on the parameter k may be arbitrary, but the dependence p(n)
on the graph size n is polynomial. FPT algorithms generally work by first reduc-
ing the problem at hand in what is called a kernelization phase (transforming
the problem to an equivalent problem with smaller parameter k), and then per-
forming a bounded tree search on the remaining problem kernel. Recently, FPT
algorithms have been implemented in a parallel fashion [9,3].

Besides FPT methods, there are a number of heuristic approaches to the ver-
tex cover problem. Evans describes an evolutionary approach, and also reviews
previous evolutionary algorithms for the problem [4]. Ant colony systems have
been employed by Shyu et al. [10] and Gilmour and Dras [5]. Looking beyond
work on vertex cover, a wide range of heuristic algorithms have been proposed
for related problems, which we review in the following.

2.1 Maximum Clique and Independent Set

A clique of a graph G = (V, E) is a subset of the vertices K ⊆ V such that all
vertices in K are pairwise connected. An independent set of a graph G = (V, E)
is a subset of the vertices S ⊆ V such that no two vertices in S are connected.
A maximum clique (maximum independent set) is a clique (independent set) of
maximum cardinality for a given graph.

Cliques and independent sets are closely related to vertex covers. In particular,
a vertex set S is an independent set of G iff V \ S is a vertex cover of G, and a
vertex set K is a clique of G iff K is an independent set of the complementary
graph G, in which two vertices are connected iff they are unconnected in G.
Hence, the problems of computing maximum cliques or maximum independent

414 S. Richter, M. Helmert, and C. Gretton

sets can be reduced to the computation of minimum vertex covers. In particular,
all these problems are NP-hard, and the associated decision problems are NP-
complete.

Many of the algorithms that have been proposed for computing maximum
cliques or maximum independent sets in the past have been evaluated on the set
of benchmark problems from the Second DIMACS Implementation Challenge in
1992–1993 [11]. The instances in this benchmark set are taken from a variety of
application domains and also include examples that are specifically engineered
to be “hard”. They can be considered the standard benchmark for algorithms
that compute cliques or independent sets.

For the maximum independent set, a recently proposed heuristic approach
is the Widest Acyclic Orientation algorithm by Barbosa and Campos, which is
competitive with the algorithms used in the original DIMACS challenge [12].
Even better results are obtained with the recent QSH algorithm by Busygin,
Batenko and Pardalos [13], which outperforms the maximum clique algorithms
used during the DIMACS challenge. However, QSH fares badly on two classes
of the DIMACS benchmarks.

For maximum clique, the recently published DLS-MC algorithm by Pullan and
Hoos seems to deliver the best results, clearly dominating previously published
algorithms on the DIMACS benchmark set [14]. DLS-MC stands for Dynamic
Local Search – Maximum Clique and works by iteratively growing a candidate
solution (initially one vertex) and conducting a plateau search where no further
improvement is possible. When neither improvement nor new plateau steps are
possible, search restarts from a single vertex. The DLS-MC algorithm has since
evolved into the Phased Local Search algorithm [15], which eliminates the need
for tuning a parameter while producing similar results.

3 Stochastic Local Search

Stochastic Local Search (SLS) methods are a popular means of solving notoriously
hard combinatorial problems. They can be very effective while usually being con-
ceptually simple [16]. For example, SLS algorithms are state of the art for solving
Boolean Satisfiability problems [17]. In the following, we give a short description
of SLS using the terminology of the textbook by Hoos and Stützle [16].

An SLS algorithm operates by searching in a space of candidate solutions for
a problem π, where a candidate solution may not satisfy all of the constraints
required by a solution.

Starting from an initial candidate solution, an SLS algorithm iteratively per-
forms a small step to a neighbouring candidate solution by perturbing its current
candidate solution. These steps, as well as the initialization of the search, may
be randomized. The perturbation steps are only based on local information and
on some memory state m of the algorithm (for example a taboo list). Pseudo
code for a general SLS algorithm for a decision problem is shown in Alg. 1.

In line 1 of Alg. 1, a candidate solution s and an initial memory state m
of the algorithm are computed. In line 2, a termination criterion is used to

A Stochastic Local Search Approach to Vertex Cover 415

Algorithm 1. SLS(π)
1: initialize (s, m)
2: while not terminate(π, s, m) do
3: (s, m) = step(π, s, m)
4: end while
5: if s ∈ S∗(π) then
6: return s
7: else
8: return failure
9: end if

determine whether the search should be terminated. In line 3, the step function
replaces the current candidate solution s by a new candidate solution from the
neighbourhood of s, while replacing the memory state m with a corresponding
new memory state. If after terminating the search the candidate solution s is in
the set S∗(π) of solutions to π, then s is returned; otherwise, the algorithm fails.

In the following section, we describe the COVER algorithm as a specific in-
stance of an SLS algorithm by elucidating the exact choices we made for the
nature of candidate solutions as well as the initialization, termination and step
functions.

4 The COVER Algorithm

COVER is an SLS algorithm for k-vertex cover, i. e. it takes as input a graph
G = (V, E) and a parameter k, and searches for a vertex cover of size k of
G. Its candidate solutions are subsets of the vertices V of size k (which are not
necessarily vertex covers). The step to a neighbouring candidate solution consists
of exchanging two vertices: a vertex u that is in the current candidate solution
C is taken out of C, and a vertex v which is not currently in C is put into C.

The initial candidate solution is constructed greedily. In detail, COVER builds
C by iteratively adding vertices that have a maximum number of incident edges
which are not covered by C, i. e. they have no endpoint in C, until the cardinality
of C is k. When several vertices satisfy the criterion for inclusion in C, COVER
selects one of them randomly, with uniform probabilities. Favouring vertices of
high degree is a common heuristic for vertex cover algorithms. In fact, we find
that some benchmark problems are even solved by this initialization step alone,
e. g. the p-hat class of the DIMACS benchmark set.

The termination criterion COVER uses is straightforward: at each step, it
tests whether its current candidate solution is a vertex cover of G. The algorithm
terminates when either a vertex cover is found, or when a maximum number of
steps, denoted by MAX ITERATIONS, has been reached.

The most influential part of an SLS algorithm is the definition of its step
function. COVER uses several heuristic criteria to choose which two vertices to
exchange in C, but also utilizes a substantial element of randomness, thus strik-
ing a balance between guided search and the diversity that is necessary to escape

416 S. Richter, M. Helmert, and C. Gretton

local optima. This balance is achieved with a simple division of responsibilities:
the vertex to be taken out of C is chosen mainly according to heuristics, while
the vertex to be put into C is chosen almost randomly.

When choosing possible candidates for inclusion in C, COVER selects uni-
formly at random an edge e that is not covered (following the strategy popular-
ized by Selman and Kautz for SAT [18]). The vertex added to C is then chosen
from one of the endpoints of e, ensuring that e will be covered in the successive
candidate solution. When choosing which one of the two endpoints of e to in-
clude and which vertex to take out of the current candidate solution, COVER
uses a heuristic based on an edge weighting scheme: with each edge of G, we
associate a positive real number. Intuitively, these weights indicate for each edge
how “difficult” it is to cover it – i. e. how difficult it is to find a candidate solution
that contains one of the endpoints of that edge.

In the beginning, all edge weights are initialized to a small constant (0.05).
In each of the following iterations, COVER adds 1 to the weights of all edges
that are not covered. We then derive vertex weights from the weights of edges
incident to the vertex. We say that a vertex v potentially covers an incident edge
(v, u) if u is not in the current candidate solution C. Let the weight of a vertex v,
weight(v), be the weighted sum of all edges that vertex v potentially covers. An
exchange of two vertices a and b, where a is taken out of C and b is put into C
then results in a gain defined as weight(b)−weight(a)+δ, where δ is the weight
of the edge between a and b if they are connected, and zero otherwise. COVER
tries to maximize this gain, thereby covering the more “difficult” edges of higher
weight with greater priority. Using weights to direct the search of stochastic
local search algorithms is popular practice, and a similar approach has led to
very good results for the Boolean Satisfiability problem [19].

COVER also employs a taboo list of size 2, keeping track of the vertices last
inserted into C and last removed from C. This prevents it from immediately
reversing a decision made in the last iteration. Moreover, COVER remembers
for each vertex the iteration count at which it was last removed from C. When
inserting a vertex into C, COVER favours vertices that have not been in the
cover recently. In particular, this “time stamp” criterion is used to break ties
between all insertion candidates that result in maximum gain and are not taboo.
When removing vertices from the candidate solution, COVER chooses randomly
with uniform probability between all removal candidates.

Pseudo code for the algorithm is given in Alg. 2.

5 Empirical Performance Results

We evaluate the performance of COVER on an extensive set of benchmarks
from three different sources. In Sec. 5.1, we use graphs representing biological
real-world problems, which were kindly provided to us by Abu-Khzam et al. [3].
In Sec. 5.2, we report results on the BHOSLIB benchmark suite [7], a set of
graphs with “hidden optimal solutions” that are specifically designed to be hard
to solve. In Sec. 5.3, we evaluate our performance on the (complement) graphs of

A Stochastic Local Search Approach to Vertex Cover 417

Algorithm 2. COVER(G, k, MAX ITERATIONS)
1: initialize C greedily with |C| = k
2: initialize weights
3: iteration number = 1
4: while exists uncovered edge and iteration number < MAX ITERATIONS do
5: choose uncovered edge e = (u1, u2) randomly
6: choose vertices u ∈ {u1, u2} and v ∈ C according to max gain criterion
7: C = C\{v}
8: C = C ∪ {u}
9: taboo list = {v, u}

10: u.time stamp = iteration number
11: update weights
12: increase iteration number by 1
13: end while

the Second DIMACS Implementation Challenge for the maximum clique prob-
lem [11]. For each benchmark set, we compare against the best results we could
find in literature. Unfortunately, we have to compare against a different system
for each benchmark set, as we could not obtain the respective programs to run
them on the other benchmark sets.

Our experiments were run on a machine with a 2.13 GHz CPU with 2 GB
RAM. For comparing different algorithms on the DIMACS benchmark suite,
three machine benchmarks are available from the DIMACS web site. When run
on our machine, we obtained run-times of 0.51 seconds for r300.5, 3.01 seconds
for r400. 5, and 11.31 seconds for r500. 5.

Due to the random elements of COVER, we ran the algorithm 100 times, with
different random seeds, on each instance of each experiment described in this
section. In all cases, the MAX ITERATIONS parameter was set to 100,000,000.
For each instance, we report the following information:

– solution quality: This is denoted as a triple a-b-c, where a is the number
of runs (out of 100) in which the algorithm found a vertex cover with the
minimal (or lowest known) cardinality k∗; b is the number of runs in which
a vertex cover of size k∗ was not found, but a vertex cover of size k∗ + 1 was
found; and c is the number of runs where only vertex covers of cardinality
k∗ + 2 or worse could be found.

– median run-time and 1st quartile run-time: We ordered the outcomes of the
100 runs by the cardinality of the solution found (the lower, the better) and,
in case of vertex covers of equal cardinality, by search time. Median run-time
is the run-time for the median element in this sequence (i. e., the 50th-best
result), and 1st quartile run-time is the run-time for the element at the 1st
quartile (i. e., the 25th-best result). Thus, median run-time is indicative of a
“typical run” of the algorithm, and 1st quartile run-time is indicative of the
typical performance one might obtain by running the algorithm repeatedly,
with four restarts. If the median (or 1st quartile) run did not achieve an
optimal solution, the run-time result is reported in parentheses.

418 S. Richter, M. Helmert, and C. Gretton

5.1 Biological Data

The graphs used in this section originate from phylogeny and correspond to
protein sequencing data [3]. The task here is to find maximum sets of closely
correlated protein sequences, which can be directly cast as a (weighted) maxi-
mum clique problem. Our input graphs are obtained from the biological problems
as follows: first a weighted graph is constructed with vertices corresponding to
protein sequences, and weighted edges between vertices corresponding to the ex-
tent of correlation between two sequences. Then, for a chosen threshold all edges
with weights below the threshold are removed. The complement of this graph is
the input for a vertex cover algorithm. The problems we use here were obtained
from Abu-Khzam et al., who use them in their paper on parallel FPT algorithms
for vertex cover [3].

Our run-time results, as well as the results obtained by the algorithm of Abu-
Khzam et al. which we will denote by P-FPT (parallel FPT) in the following, are
shown in Tab. 1. COVER found optimal solutions in all runs on all graphs except
for the globin-15 instance, where 98 of the 100 runs found optimal solutions, with
the other two finding solutions of size k∗ + 1 and k∗ + 3, respectively.

Table 1. Results on biological problems. |V | and |E| denote the number of vertices
and edges of the input graph, k∗ the minimum vertex cover size, as determined by
Abu-Khzam et al. The performance metrics for COVER (solution quality, 1st quartile
run-time, median run-time) are explained in detail at the start of this section. The last
column denotes the run-time of the P-FPT algorithm. All run-times are in seconds.

COVER P-FPT
Graph Quality Runtime

Instance |V | |E| k∗ Hist. 1st Qu. Median Runtime

globin3 972 3898 165 100–0–0 0.01 0.01 23
globin7 972 38557 350 100–0–0 0.01 0.01 47
globin9 972 62525 378 100–0–0 0.01 0.01 227
globin15 972 149473 427 98–1–1 0.01 0.01 14

sh2-3 839 5860 246 100–0–0 0.01 0.01 22
sh2-4 839 13799 337 100–0–0 0.01 0.01 2593
sh2-5 839 26612 399 100–0–0 0.01 0.01 7
sh2-10 839 129697 547 100–0–0 0.01 0.01 332
sh3-10 2466 1508850 2044 100–0–0 0.47 0.80 8400

The difference in run-time between the two approaches is compelling. A prob-
lem that took P-FPT more than two hours to solve is solved by COVER in
less than one second. Of course, our local search algorithm may fail to find an
optimal solution, while P-FPT searches exhaustively, guaranteeing optimality.
However, as the results show, COVER reliably finds optimal vertex covers.

The approach used by Abu-Khzam et al. has reportedly delivered valuable
results in collaboration projects with biologists: they report that, based on the
cliques they derived from microarray data, “neurobiologists have identified what
appear to be both network structures and gene roles in intra-cellular transport
that were previously unrecognized”. The vast difference in run-time between the
two approaches prompts the question of what could be gained by using a local
search algorithm like COVER in practice.

A Stochastic Local Search Approach to Vertex Cover 419

It is noteworthy that for many application domains of vertex cover, a near-
optimal solution may be sufficient. In the protein sequencing domain, for ex-
ample, choosing a certain correlation threshold has a somewhat arbitrary influ-
ence on the size of the greatest clique, which has more impact on the resulting
solutions than the fact that the algorithm might be slightly suboptimal. Our
algorithm is likely to provide solutions that are very close to the optimal, even
for problems where the optimal solution is difficult to find. Hence, for solving
large real-world problems, an incomplete algorithm like ours might prove to be
more fruitful than a complete, but prohibitively slow algorithm.

5.2 The BHOSLIB Problems

The BHOSLIB problems (“Benchmarks with Hidden Optimal Solutions”) [7] re-
sult from translating binary Boolean Satisfiability problems that were generated
randomly according to the model RB [20]. The satisfiability versions of these
benchmarks are guaranteed to be satisfiable, and the model parameters were set
to such values that the instances are in the phase transition area of model RB.
They have been proven to be hard both theoretically and in practice [20]. The
full BHOSLIB set of instances we use here is available on the Internet [7]. Some
of these instances were also used in the 2004 SAT competition [21].

The problem instances are grouped by size into 8 groups, with 5 graphs per
group, where all graphs of a group have the same number of vertices and edges.
In addition to the 40 instances that form the actual benchmark suite, there is a
single “challenge problem”, a very large graph with 4,000 vertices and 572,774
edges. The minimum vertex cover for this instance has size 3,900.

The first two instances from each of the groups 3–8 (the frb40–frb59 graphs)
were used in the 2004 SAT competition. From the 6th group (frb53) onwards,
none of the 55 solvers in the 2004 SAT competition was able to solve either of the
two instances within a time limit of 10 minutes. For the very large instance, the
best solution found up to now was a vertex cover of size 3,904, using a run-time
of 3,743 seconds on a Pentium IV 3.4GHz/512MB machine [7]. This solution was
obtained by translating the problem to a propositional logic formula extended
with cardinality atoms, and using a dedicated solver [22].

The results obtained by COVER on these benchmarks are displayed in Tab. 2.
The increasing difficulty of the instances is apparent both in the increasing run-
times, as the graph sizes grow, and in the fact that COVER does not find optimal
solutions consistently, i.e. in all runs. However, COVER does find optimal so-
lutions for each graph at least once, and the sizes of the vertex covers it finds
never exceed the minimum by more than 1.

For comparison, Gilmour and Dras recently developed a series of ant colony sys-
tem algorithms for the vertex cover problem, evaluated on the BHOSLIB bench-
marks [5]. They do not report run-times or solution results for individual graphs,
but only the average vertex cover size found over all BHOSLIB graphs. (We ob-
tained the detailed results shown in Tab. 2 from personal communications.)

The best result they achieve, using the CKACS algorithm, is an average vertex
cover size of 975.875, while 967.25 is the optimal value. This means that the

420 S. Richter, M. Helmert, and C. Gretton

Table 2. Results on the BHOSLIB benchmark suite

COVER CKACS
Graph Quality Runtime Quality

Instance |V | |E| k∗ Hist. 1st Qu. Median Hist. Avg.

frb30-15-1 450 17827 420 100–0–0 0.06 0.08 0–1–9 424.0
frb30-15-2 450 17874 420 100–0–0 0.07 0.10 0–0–10 424.5
frb30-15-3 450 17809 420 100–0–0 0.21 0.40 0–0–10 424.6
frb30-15-4 450 17831 420 100–0–0 0.05 0.08 0–0–10 424.0
frb30-15-5 450 17794 420 100–0–0 0.12 0.17 0–0–10 423.6
frb35-17-1 595 27856 560 100–0–0 0.45 0.90 0–0–10 565.5
frb35-17-2 595 27847 560 100–0–0 0.40 0.84 0–0–10 566.5
frb35-17-3 595 27931 560 100–0–0 0.15 0.27 0–0–10 564.4
frb35-17-4 595 27842 560 100–0–0 0.62 1.12 0–0–10 565.5
frb35-17-5 595 28143 560 100–0–0 0.34 0.49 0–0–10 564.1
frb40-19-1 760 41314 720 100–0–0 0.33 0.62 0–0–10 725.6
frb40-19-2 760 41263 720 100–0–0 4.52 10.21 0–0–10 726.8
frb40-19-3 760 41095 720 100–0–0 1.37 3.17 0–0–10 727.6
frb40-19-4 760 41605 720 100–0–0 3.37 8.81 0–0–10 726.1
frb40-19-5 760 41619 720 96–4–0 21.80 63.47 0–0–10 725.3
frb45-21-1 945 59186 900 100–0–0 3.54 8.48 0–0–10 908.2
frb45-21-2 945 58624 900 100–0–0 11.67 28.46 0–0–10 908.5
frb45-21-3 945 58245 900 99–1–0 28.91 70.13 0–0–10 908.3
frb45-21-4 945 58549 900 100–0–0 4.90 12.28 0–0–10 908.4
frb45-21-5 945 58579 900 99–1–0 22.14 66.53 0–0–10 909.1
frb50-23-1 1150 80072 1100 89–11–0 58.32 171.92 0–0–10 1110.4
frb50-23-2 1150 80851 1100 30–70–0 543.56 (1.72) 0–0–10 1109.7
frb50-23-3 1150 81068 1100 24–76–0 (0.70) (2.61) 0–0–10 1108.3
frb50-23-4 1150 80258 1100 100–0–0 8.45 16.94 0–0–10 1109.6
frb50-23-5 1150 80035 1100 98–2–0 24.43 88.94 0–0–10 1110.3
frb53-24-1 1272 94227 1219 9–91–0 (5.17) (11.31) 0–0–10 1229.9
frb53-24-2 1272 94289 1219 34–66–0 403.98 (4.24) 0–0–10 1229.3
frb53-24-3 1272 94127 1219 91–9–0 65.21 157.80 0–0–10 1231.6
frb53-24-4 1272 94308 1219 24–76–0 (1.26) (10.74) 0–0–10 1230.5
frb53-24-5 1272 94226 1219 84–16–0 109.36 253.05 0–0–10 1231.8
frb56-25-1 1400 109676 1344 15–85–0 (8.48) (20.73) 0–0–10 1356.8
frb56-25-2 1400 109401 1344 12–88–0 (10.06) (30.33) 0–0–10 1355.7
frb56-25-3 1400 109379 1344 76–24–0 130.11 435.30 0–0–10 1355.6
frb56-25-4 1400 110038 1344 84–16–0 85.60 291.11 0–0–10 1354.8
frb56-25-5 1400 109601 1344 98–2–0 30.45 89.58 0–0–10 1354.6
frb59-26-1 1534 126555 1475 11–89–0 (14.18) (30.76) 0–0–10 1486.8
frb59-26-2 1534 126163 1475 6–94–0 (18.11) (40.86) 0–0–10 1486.4
frb59-26-3 1534 126082 1475 12–88–0 (23.08) (65.04) 0–0–10 1487.8
frb59-26-4 1534 127011 1475 1–99–0 (31.47) (73.92) 0–0–10 1487.3
frb59-26-5 1534 125982 1475 89–11–0 90.18 292.60 0–0–10 1487.3

vertex covers found by CKACS, on average, have 8.625 more vertices than an
optimal solution. In comparison, COVER achieves an average vertex cover size
of 967.50 on the BHOSLIB suite, i. e. the vertex covers it finds are only off by
0.25 on average.

On the challenge problem, COVER does not find an optimal solution. Indeed,
the designer of the BHOSLIB benchmark set conjectures that this problem will
not be solved on a PC in less than a day within the next two decades [7].
However, the COVER algorithm finds a solution of size 3,903 within 71 seconds,
surpassing the best solution known so far in terms of both quality and run-time.

5.3 The DIMACS Benchmark Suite

The DIMACS benchmark set is taken from the Second DIMACS Implementation
Challenge (1992-1993) [11], a competition targeting the maximum clique, graph

A Stochastic Local Search Approach to Vertex Cover 421

colouring, and satisfiability problems. The maximum clique benchmarks from
this competition have since been used in many publications as a reference point
for new algorithms [4,12,13,14,15]. The benchmark set comprises 80 problems
from a variety of applications. For example, the C-fat family is motivated by
fault diagnosis, the johnson and hamming graphs by coding theory, the keller
group is based on Keller’s conjecture on tilings using hypercubes, and the MANN
graphs derive from the Steiner Triple Problem [11]. In addition, there are graphs
generated randomly according to various models. For example, the brock family is
generated by explicitly incorporating low-degree vertices into the cover, in order
to defeat algorithms that search greedily with respect to vertex degrees [23]. The
sizes of the graphs range from less than 30 vertices and ∼200 edges to more than
3000 vertices and ∼5,000,000 edges.

The results for COVER are shown in Tab. 3 and 4. For comparison, the tables
also contain the results obtained by Pullan and Hoos with the DLS-MC algo-
rithm [14]. DLS-MC was also run 100 times with the same limit on iterations as
COVER. The times reported are the ones published by Pullan and Hoos [14],
and refer to a 2. 2GHz Pentium IV machine with 512 MB RAM, which executed
the DIMACS machine benchmarks r300. 5 (r400. 5, r500. 5) in 0.72 (4.47, 17.44)
seconds. The run-times are thus roughly comparable, our machine being 30–35%
faster according to this measure. The “avg.” column shows the mean run-time
for COVER across all runs where optimal solutions were found, for graphs where
both algorithms found optimal solutions. This allows a direct comparison with
the corresponding column for DLS-MC, taken from the article by Pullan and
Hoos and determined by the same method. Note that this only compares the
run-time for the cases where an optimal solution was found, and thus ignores runs
where the found vertex cover was sub-optimal. Unfortunately, a direct compari-
son of our median run-time criterion (which we consider more indicative of actual
performance because it is also influenced by sub-optimal runs) is not possible
with the published results on DLS-MC.

In 75 of the 80 benchmarks, COVER finds a vertex cover of the putative
minimum size for that instance. Note that it is only for some graphs of the
brock family that COVER never finds optimal results. For the brock graphs, the
cardinality of the vertex covers found by COVER can become as large as k∗ + 5
in the worst case. This is not surprising, as COVER favours vertices of high
degree, which generally is a helpful heuristic for finding minimum vertex covers.
The brock graphs, however, were explicitly designed to counteract this approach.

Of the 75 instances where COVER finds an optimal solution, in 69 cases it
does so consistently, i. e. in all 100 runs. For the remaining instances, there are
occasional sub-optimal runs, but COVER always finds vertex covers of cardi-
nality k∗ + 2 or less. For MANN a81, the putatively hardest problem in this
benchmark set, COVER finds an optimal solution in 4 runs, is off by 1 in 3 runs,
and off by 2 in the remaining 93 runs.

Comparing against the results of the DLS-MC algorithm, we find that the
two algorithms are largely competitive. In fact, many of the benchmarks seem
to be too easy for a state-of-the-art solver nowadays. On the graph families c-fat,

422 S. Richter, M. Helmert, and C. Gretton

Table 3. Results on the DIMACS benchmark suite (continued in Tab. 4)

COVER DLS-MC
Graph Quality Runtime Quality Runtime

Instance |V | |E| k∗ Hist. 1st Qu. Median Avg. Hist. Avg.

brock200 1 200 5066 179 100–0–0 0.01 0.01 0.01 100–0–0 0.02
brock200 2 200 10024 188 100–0–0 0.15 0.23 0.43 100–0–0 0.02
brock200 3 200 7852 185 100–0–0 2.32 5.54 7.62 100–0–0 0.04
brock200 4 200 6811 183 100–0–0 2.04 6.52 7.90 100–0–0 0.05
brock400 1 400 20077 373 0–0–100 (0.04) (0.06) n/a 100–0–0 n/a
brock400 2 400 20014 371 0–1–99 (0.04) (0.05) n/a 100–0–0 n/a
brock400 3 400 20119 369 60–30–10 71.36 247.87 135.26 100–0–0 0.18
brock400 4 400 20035 367 76–18–6 44.16 137.68 112.98 100–0–0 0.07
brock800 1 800 112095 777 0–0–100 (0.77) (1.06) n/a 100–0–0 n/a
brock800 2 800 111434 776 0–0–100 (0.60) (0.98) n/a 100–0–0 n/a
brock800 3 800 112267 775 0–0–100 (1.43) (2.31) n/a 100–0–0 n/a
brock800 4 800 111957 774 0–0–100 (0.99) (1.35) n/a 100–0–0 n/a

C125.9 125 787 91 100–0–0 0.01 0.01 0.01 100–0–0 0.01
C250.9 250 3141 206 100–0–0 0.01 0.01 0.01 100–0–0 0.01
C500.9 500 12418 443 100–0–0 0.08 0.24 0.31 100–0–0 0.13
C1000.9 1000 49421 932 100–0–0 1.32 3.27 5.82 100–0–0 4.44
C2000.5 2000 999164 1984 100–0–0 0.82 1.84 3.78 100–0–0 0.97
C2000.9 2000 199468 1922 84–16–0 124.03 323.11 369.33 93–7–0 193.22
C4000.5 4000 3997732 3982 100–0–0 423.08 621.38 689.74 100–0–0 181.23

c-fat200-1 200 18366 188 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat200-2 200 16665 176 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat200-5 200 11427 142 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-1 500 120291 486 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-2 500 115611 474 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-5 500 101559 436 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-10 500 78123 374 100–0–0 0.01 0.01 0.01 100–0–0 0.01
DSJC500.5 500 62126 487 100–0–0 0.01 0.01 0.01 100–0–0 0.01
DSJC1000.5 1000 249674 985 100–0–0 0.28 0.95 2.17 100–0–0 0.80

gen200 p0.9 44 200 1990 156 100–0–0 0.01 0.01 0.01 100–0–0 0.01
gen200 p0.9 55 200 1990 145 100–0–0 0.01 0.01 0.01 100–0–0 0.01
gen400 p0.9 55 400 7980 345 100–0–0 0.04 0.06 0.08 100–0–0 0.03
gen400 p0.9 65 400 7980 335 100–0–0 0.01 0.01 0.01 100–0–0 0.01
gen400 p0.9 75 400 7980 325 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming6-2 64 192 32 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming6-4 64 1312 60 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming8-2 256 1024 128 0–0–100 (0.01) (0.01) n/a 100–0–0 n/a
hamming8-4 256 11776 240 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming10-2 1024 5120 512 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming10-4 1024 89600 984 100–0–0 0.01 0.01 0.11 100–0–0 0.01
johnson8-2-4 28 168 24 100–0–0 0.01 0.01 0.01 100–0–0 0.01
johnson8-4-4 70 560 56 100–0–0 0.01 0.01 0.01 100–0–0 0.01
johnson16-2-4 120 1680 112 100–0–0 0.01 0.01 0.01 100–0–0 0.01
johnson32-2-4 496 14880 480 100–0–0 0.01 0.01 0.01 100–0–0 0.01

keller4 171 5100 160 100–0–0 0.01 0.01 0.01 100–0–0 0.01
keller5 776 74710 749 100–0–0 0.01 0.03 0.07 100–0–0 0.02
keller6 3361 1026582 3302 100–0–0 12.35 15.18 15.63 100–0–0 170.48

MANN a9 45 72 29 100–0–0 0.01 0.01 0.01 100–0–0 0.01
MANN a27 378 702 252 100–0–0 0.01 0.01 0.01 100–0–0 0.05
MANN a45 1035 1980 690 41–59–0 246.92 (0.28) n/a 0–100–0 n/a
MANN a81 3321 6480 2221 4–3–93 (3.36) (30.89) n/a 0–0–100 n/a
p hat300-1 300 33917 292 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat300-2 300 22922 275 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat300-3 300 11460 264 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat500-1 500 93181 491 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat500-2 500 61804 464 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat500-3 500 30950 450 100–0–0 0.01 0.02 0.02 100–0–0 0.01
p hat700-1 700 183651 689 100–0–0 0.01 0.01 0.04 100–0–0 0.02
p hat700-2 700 122922 656 100–0–0 0.01 0.02 0.01 100–0–0 0.01
p hat700-3 700 61640 638 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat1000-1 1000 377247 990 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat1000-2 1000 254701 954 100–0–0 0.01 0.04 0.04 100–0–0 0.01

A Stochastic Local Search Approach to Vertex Cover 423

Table 4. Results on the DIMACS benchmark suite (continued from Tab. 3)

COVER DLS-MC
Graph Quality Runtime Quality Runtime

Instance |V | |E| k∗ Hist. 1st Qu. Median Avg. Hist. Avg.

p hat1000-3 1000 127754 932 100–0–0 0.06 0.10 0.11 100–0–0 0.01
p hat1500-1 1500 839327 1488 100–0–0 13.80 18.25 21.27 100–0–0 2.71
p hat1500-2 1500 555290 1435 100–0–0 0.09 0.12 0.12 100–0–0 0.01
p hat1500-3 1500 277006 1406 100–0–0 0.07 0.10 0.11 100–0–0 0.01
san200 0.7 1 200 5970 170 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san200 0.7 2 200 5970 182 100–0–0 0.01 0.01 0.01 100–0–0 0.07
san200 0.9 1 200 1990 130 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san200 0.9 2 200 1990 140 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san200 0.9 3 200 1990 156 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san400 0.5 1 400 39900 387 100–0–0 0.05 0.14 0.12 100–0–0 0.16
san400 0.7 1 400 23940 360 100–0–0 0.05 0.06 0.06 100–0–0 0.11
san400 0.7 2 400 23940 370 100–0–0 0.06 0.07 0.08 100–0–0 0.21
san400 0.7 3 400 23940 378 100–0–0 0.08 0.12 0.13 100–0–0 0.42
san400 0.9 1 400 7980 300 100–0–0 0.01 0.01 0.01 100–0–0 0.01

san1000 1000 249000 985 100–0–0 0.98 3.88 3.91 100–0–0 8.36
sanr200 0.7 200 6032 182 100–0–0 0.01 0.01 0.01 100–0–0 0.01
sanr200 0.9 200 2037 158 100–0–0 0.01 0.01 0.01 100–0–0 0.01
sanr400 0.5 400 39816 387 100–0–0 0.01 0.02 0.06 100–0–0 0.04
sanr400 0.7 400 23931 379 100–0–0 0.01 0.01 0.03 100–0–0 0.02

DSJC, gen, hamming, johnson, p hat, san and sanr, both DLS-MC and COVER
consistently find optimal solutions within extremely short run-times. However,
on MANN a45 and MANN a81, COVER significantly outperforms the DLS-
MC algorithm. On these graphs, DLS-MC does not find an optimal solution.
On the hard MANN a81 instance, DLS-MC indeed only finds solutions that are
of distance 2 or more from the optimum, while COVER finds optimal solutions
for both graphs. In fact, to our knowledge COVER is the first algorithm to find
covers of this quality for the two MANN graphs.

On the other hand, on the brock family DLS-MC shows far better results than
COVER. This can be explained by the fact that DLS-MC uses a parameter called
penalty-delay, which Pullan and Hoos hand-tuned for each graph to achieve the
best possible performance. While for almost all other graphs this parameter was
set to a value between 1 and 5, it was set to 15 and 45 for the larger brock
graphs, encouraging DLS-MC to quite drastically change its usual behaviour in
these cases [14]. We conclude that, despite the fact that COVER is designed for
vertex cover problems and DLS-MC is designed for clique problems, COVER is
competitive with DLS-MC on clique benchmarks. COVER furthermore has the
advantage of requiring no parameters, while achieving excellent results but for
one special class of artificial graphs.

5.4 Search Without Parameter

To further understand the run-time complexity of COVER, we conduct a set
of experiments aimed at determining the importance of knowing k, the target
cover size. Most state-of-the-art solvers, including the ones we compared against
in this paper, are, like COVER, solving the k-vertex cover problem (or k-clique,
respectively). In practice, however, we do not usually know the optimal value

424 S. Richter, M. Helmert, and C. Gretton

Table 5. Run-time distribution for various parameters

Graph Run-time(s) k∗ k∗ + 1 k∗ + 2 k∗ + 3 > k∗ + 3
Globin7 0.54 48.15% 48.15% 3.70%
Sh2-5 0.70 37.14% 37.14% 25.71%

johnson32-2-4 0.92 28.26% 28.26% 26.09% 11.96% 5.43%
brock200 1 1.52 21.71% 17.11% 17.11% 16.45% 27.63%
p hat700-1 2.16 43.06% 24.54% 11.57% 10.65% 10.19%

keller5 5.12 40.43% 7.23% 5.08% 5.08% 42.19%
frb30-15-1 7.15 41.68% 24.20% 7.27% 3.64% 23.22%

hamming10-4 10.73 47.62% 25.63% 2.42% 2.42% 21.90%
san400 0.5 1 15.30 34.77% 22.35% 15.82% 19.28% 7.78%
DSJC1000.5 88.10 97.63% 1.16% 0.30% 0.30% 0.62%
brock200 3 166.01 99.18% 0.19% 0.16% 0.16% 0.32%
san1000 645.26 28.25% 20.13% 18.73% 18.72% 14.16%

frb50-23-4 1344.88 85.85% 9.78% 2.42% 1.42% 0.53%
frb59-26-5 17611.90 84.57% 13.84% 0.89% 0.35% 0.35%

for k. Instead, we want to find a minimum (or close to minimum) vertex cover
of unknown size.

The question thus arises whether COVER can be used efficiently for finding
a minimum vertex cover by iteratively searching for various decreasing values
of k. Specifically, we are interested in determining how much run-time is spent
searching for several values of k as opposed to just searching with a known
optimal value k∗. We expect that it is much easier to find solutions that are
suboptimal than ones that are optimal, and that indeed only the last few runs
where k is close to k∗ substantially influence run-time.

To test this hypothesis, we extend COVER to an iterative version COVER-I,
which runs without a parameter k, as follows. First, COVER-I greedily computes
a vertex cover for the input graph. This is done much in the same way as COVER
computes an initial candidate solution. Instead of stopping when the size of the
candidate solution reaches a prespecified parameter, however, COVER-I keeps
adding vertices until the candidate solution is indeed a vertex cover. The size k
of this vertex cover is thus an upper bound for the optimal value k∗. COVER-I
then iteratively calls COVER as a subroutine, decreasing k each time COVER
succeeds in finding a solution within the usual limit of 100,000,000 iterations.
When COVER fails to find a solution, COVER-I stops and returns the last
solution found.

For our experiment, we select a representative set of graphs containing in-
stances from all three benchmark suites in varying sizes. The results are dis-
played in Tab. 5. The run-time column shows total run-time for COVER-I for
the given graphs, summed up for 25 different random seeds, to give an impression
of the relative difficulty of these instances. The column k∗ shows the percentage
of total run-time spent on the final iteration (producing the optimal solution),
with columns k∗ + 1, k∗ + 2 etc. referring to the previous iterations.

The results largely confirm our expectations. For small graphs, where the
search times for the optimal value k∗ are already short, run-time is some-
times spread out fairly evenly across iterations; but for the larger graphs, the
amount of time spent in the ultimate iteration dominates the total run-time of
COVER-I.

A Stochastic Local Search Approach to Vertex Cover 425

6 Conclusion and Outlook

We have presented a stochastic local search algorithm for the vertex cover prob-
lem, COVER, and evaluated its performance on a wide variety of benchmarks.
COVER is surprisingly effective while being conceptually simple and not re-
quiring any instance-dependent parameters. For biological real-world problems,
COVER finds optimal solutions in just a fraction of the time needed by a com-
plete search, which leads us to believe that COVER is a valuable approach
for practical problems. On the hard BHOSLIB benchmark set, COVER vastly
improves on existing results and sets a new record for the 20-year challenge
problem.

Compared to the state-of-the-art solver DLS-MC for the maximum clique
problem, COVER shows competitive results on the DIMACS suite. We empha-
size the fact that unlike DLS-MC and many algorithms proposed in the literature
previously, COVER has not been tuned in any way to the benchmark sets we
evaluated it on. The excellent performance of COVER is further underlined by
the fact that it sets a new record in solution quality on two large benchmark in-
stances of the DIMACS set. However, COVER did not perform well on the brock
family of graphs from the DIMACS test set. An obvious direction of future work
is therefore to develop further techniques to more reliably escape local minima
during search.

Acknowledgements

NICTA is funded by the Australian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research Council. We thank Abdul
Sattar for his input on the direction of this project and Duc Nghia Pham for
helpful discussions. We also thank Stephen Gilmour, Wayne Pullan and Michael
Langston for providing problem graphs, results, and helpful suggestions.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company (1979)

2. Gomes, F.C., Meneses, C.N., Pardalos, P.M., Viana, G.V.R.: Experimental anal-
ysis of approximation algorithms for the vertex cover and set covering problems.
Computers and Operations Research 33(12), 3520–3534 (2006)

3. Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable parallel
algorithms for FPT problems. Algorithmica 45, 269–284 (2006)

4. Evans, I.K.: Evolutionary algorithms for vertex cover. In: Porto, V.W., Waagen,
D. (eds.) Evolutionary Programming VII. LNCS, vol. 1447, pp. 377–386. Springer,
Heidelberg (1998)

5. Gilmour, S., Dras, M.: Kernelization as heuristic structure for the vertex cover
problem. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory.
LNCS, vol. 4076, Springer, Heidelberg (2006)

426 S. Richter, M. Helmert, and C. Gretton

6. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A frame-
work for systematically confronting computational intractability. In: Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. DI-
MACS Series, vol. 49, pp. 49–99 (1999)

7. Xu, K.: BHOSLIB: Benchmarks with hidden optimum solutions for graph problems
(maximum clique, maximum independent set, minimum vertex cover and vertex
coloring) – hiding exact solutions in random graphs. Web site,
http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm

8. Niedermeier, R., Rossmanith, P.: Upper bounds for vertex cover further improved.
In: Proceedings of the 16th Symposium on Theoretical Aspects in Computer Sci-
ence (STACS’99), pp. 561–570 (1999)

9. Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving large
FPT problems on coarse grained parallel machines. Journal of Computer and Sys-
tem Sciences 67, 691–706 (2003)

10. Shyu, S.J., Yin, P.Y., Lin, B.M.T.: An ant colony optimization algorithm for the
minimum weight vertex cover problem. Annals of Operations Research 131(1–4),
283–304 (2004)

11. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: Second DI-
MACS Implementation Challenge. DIMACS Series, vol. 26. American Mathemat-
ical Society (1996)

12. Barbosa, V.C., Campos, L.C.D.: A novel evolutionary formulation of the maximum
independent set problem. Journal of Combinatorial Optimization 8, 419–437 (2004)

13. Busygin, S., Butenko, S., Pardalos, P.M.: A heuristic for the maximum indepen-
dent set problem based on optimization of a quadratic over a sphere. Journal of
Combinatorial Optimization 6, 287–297 (2002)

14. Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem.
Journal of Artificial Intelligence Research 25, 159–185 (2006)

15. Pullan, W.: Phased local search for the maximum clique problem. Journal of Com-
binatorial Optimization 12, 303–323 (2006)

16. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

17. Kullmann, O.: The SAT 2005 solver competition on random instances. Journal on
Satisfiability, Boolean Modeling and Computation 2, 61–102 (2005)

18. Selman, B., Kautz, H.A.: Domain-independent extensions to GSAT: Solving large
structured satisfiability problems. In: Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence (IJCAI-93), pp. 290–295 (1993)

19. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative
clause weighting for SAT. In: Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI 2004), pp. 191–196 (2004)

20. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate
hard satisfiable instances. In: Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI-05), pp. 337–342 (2005)

21. Le Berre, D., Simon, L.: The SAT’04 competition. Web site,
http://www.lri.fr/∼simon/contest04/results/

22. Liu, L., Truszczynski, M.: Local-search techniques for propositional logic extended
with cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp.
495–509. Springer, Heidelberg (2003)

23. Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random
graphs, pp. 75–88 [11]

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.lri.fr/~simon/contest04/results/

A Connectionist Architecture for Learning to

Play a Simulated Brio Labyrinth Game

Larbi Abdenebaoui1, Elsa A. Kirchner1, Yohannes Kassahun1,
and Frank Kirchner1,2

1 Robotics Group, University of Bremen
Robert-Hooke-Str. 5, D-28359, Bremen, Germany

2 German Research Center for Artificial Intelligence (DFKI)
Robert-Hooke-Str. 5, D-28359, Bremen, Germany

1 Introduction

The Brio labyrinth, shown in Figure 1, is a popular game consisting of a board
with holes and walls. In addition, the game has knobs which are used to tip the
board in two planar directions for controlling the angle of the board. The aim
of the game is to maneuver a steel ball along a marked path from a starting
position to a final position on the board by tipping it so that the ball moves
without falling into any of the holes. The path is partially bordered by the walls.
Some of the walls form corners, where the ball can be controlled easily.

(a) (b)

Fig. 1. (a) The Brio labyrinth (b) The simulation with the first two subareas labeled

To enable an artificial agent to play the game, an ODE [3] based simulation
of the game has been realized (see Figure 1b). The dimensions of the board and
the number of holes and walls of the simulated game correspond to those of the
real one. The walls are modeled as rigid bodies represented by boxes connected
to the main board with fixed joints. The ODE-based simulation allows a realistic
reproduction of the physical properties of the game. Collision-handling routine

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 427–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

428 L. Abdenebaoui et al.

was called at each step of the simulation using the Coulomb friction model. The
knobs are simulated with motors.

2 Learning Architecture

Steering the ball through the whole Brio labyrinth is a very complex task. A
human player solves it by breaking it down into several smaller problems. To
learn the proper movements a hierarchical learning architecture based on QCON
has been developed. The QCON is a connectionist Q-learning model proposed by
Lin [1] where each action has a separate network. As observed in human players
and following the divide and conqueror paradigm, the labyrinth was subdivided
into small regions, where a QCON is assigned to each region (Figure 1b/2a).

(a) (b)

Fig. 2. (a) Illustration of the whole architecture. The current state and reward are
inputs into the architecture. The output of the whole architecture is the output of an
active QCON. (b) QCON architecture: Each action-value is represented by a feedfor-
ward network with one hidden layer that is trained using back-propagation algorithm
and Q-learning with the parameters given in Table 1. We have four possible actions
a0, a1, a2, a3 (see Table 1).

First the QCONs are trained separately on their respective subareas. In order
to connect two subsequent areas, the subgoal of the first area is used as a starting
region for the next one. In the play phase, based on the current position of the
ball, a spatial selector module selects the appropriate learned QCON to be active
and sends the output of the QCON to the actuators. This solution is inspired
by ”place cells” [2] found in the hippocampal brain region of rats. Place cells
are found to be selectively active when the rat is situated in different locations
while performing navigational tasks in a labyrinth environment [4]. The chosen
approach has the following advantages: (1) It is easier to achieve a solution with
an architecture composed of a committee of QCONs than a monolithic one.
(2) The solution scales up easily as the complexity of the game increases. The

A Connectionist Architecture for Learning to Play 429

complexity of the architecture (the number of QCONs and the number of the
hidden neurons in each QCON) is directly proportional to the complexity of the
game (number of holes and walls).

3 Experiments

The parameters of the experimental setup are shown in Table 1. They are found
empirically after performing various experiments on different subareas.

Table 1. Parameters of the experimental setup

Factor Description

State state s=(x, y, Vx, Vy , P1, P2)
(x,y) The ball position on the board
(Vx,Vy) The ball velocity on the board
(P1,P2) Motors position values

Action For every motor there are two possible rotations:
turn clockwise or turn anti-clockwise relative
to the current position in steps of 0.1 deg; there are 4 possibles actions
a0 = (−0.1, 0.1), a1 = (−0.1,−0.1), a2 = (0.1, 0.1), a3(−0.1,−0.1)

Reward -0.5 if in hole; 1 if in subgoal; 0 otherwise

Learning Discount factor γ=0.8; Learning rate α=0.2
Number of hidden units in a QCON net H=10

Actions Stochastic: eQ/T∑
eQ/T

selection Simulated annealing T:1 → 0.0002

Study Average over 10 experiments in a single area;
Play after after each 10 trials with greedy policy
Maximum number of steps per play 600

For each study, where a QCON was trained in a given subarea, we performed
10 experiments. An experiment consisted of 300 trials, and after each tenth trial
the agent played with the learned greedy policy. A trial begins with a random
position and terminates when the ball falls in a hole, or when it attains the
subgoal, or when the number of steps is greater than 600. We subdivided the
labyrinth manually based on a predefined number of holes on a single subarea.
This number is limited to two holes (see Figure 2b).

4 Results

The plots in Figure 3 show the results on the first two subareas. Two subtasks are
solved by the agent. The first one is to avoid the holes which needed on average
about 100 trials for both areas, and the second one is to attain a subgoal in a
given subarea as fast as possible. The second subtask needed about 250 trials for
both areas. We have found that the number of trials to learn the two subtasks

430 L. Abdenebaoui et al.

First area Second area

Fig. 3. Plots of the number of steps versus plays. One step corresponds to one action,
and every play was performed after 10 trials using the learned greedy policy. Red curve
(hole): number of steps needed before the ball falls in a hole. Green curve (subgoal):
number of steps needed to reach the defined subgoal.

was similar for the other remaining subareas. Once trained, a QCON network
does not need further adaptation when playing the game continually from the
start point to the final goal in the whole labyrinth.

5 Summary and Outlook

We have presented a connectionist architecture for learning to play a simulated
Brio labyrinth game that uses the divide and conquer paradigm inspired by
the way a human player plays the game. We have shown that the architecture
scales up easily as the number of subareas increases. In the future, we want to
develop a way of automatically dividing the board into subareas. We also want
to transfer and test the architecture on the real labyrinth and thereby improve
its performance.

References

1. Lin, L.-J.: Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine Learning 8(3-4), 293–321 (1992)

2. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary evidence
from unit activity in the freely-moving rat. Brain Research 34(1), 171–175 (1971)

3. Smith, R.: Open dynamics engine (2005), http://www.ode.org
4. Wilson, M.A., McNaughton, B.L.: Dynamics of the hippocampal ensemble code for

space. Science 261(5124), 1055–1058 (1993)

http://www.ode.org

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 431–434, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Divergence versus Convergence of Intelligent Systems:
Contrasting Artificial Intelligence with Cognitive

Psychology

Stefan Artmann

Friedrich-Schiller-University, Institute of Philosophy, 07737 Jena, Germany
stefan.artmann@uni-jena.de

1 Introduction

Artificial Intelligence (AI) and Cognitive Psychology (CP) are two sciences of
intelligent systems that share many features. If we want, nevertheless, to contrast AI
with CP, we must investigate differences between the strategies they follow in
exploring intelligence. To do so, I transform the Turing Test into a more adequate
intelligence test based on a necessary condition for intelligence, namely that
intensions of second-order intentional predicates are observable in a system (sect. 2). I
then contrast CP and AI by their criteria for progress in research on this necessary
condition for intelligence (sect. 3).

2 Artificial Intelligence Face to Face with Human Intelligence

The conduct of a Turing Test (TT) minimally requires the following components:
first, two devices that not only can encode written linguistic information and send it,
but also can receive encoding signals and decode them into written linguistic
information; second, a reliable bidirectional communication channel through which
those devices are connected; third, a human that acts as an information source and
destination at one of the devices; fourth, a digital computer that acts as an information
source and destination at the other device; fifth, a sensory barrier that hinders the
human to perceive that a digital computer is at the other end of the communication
channel. The communication between the human and the computer obeys the
following procedure: first, the human inputs a question in a predefined language into
one of the devices; second, the question is encoded and transmitted through the
communication channel; third, the computer’s device receives the signals and decodes
them into linguistic information; fourth, the computer inputs an answer into its device;
fifth, the encoding of the answer is sent through the communication channel and
decoded by the human’s device. This exchange is to be repeated until, after a given
time interval, the communication channel is blocked. Then the human must answer
the following metaquestion about the conversation: ‘Did you communicate with
another human or with a computer?’ The computer passes TT if the human answers
that the interlocutor has been another human.

TT provides AI and CP with a sufficient condition for intelligence. Yet any science
of intelligence needs a set of necessary conditions each of which implies an

432 S. Artmann

observable criterion that, if satisfied, makes the presence of intelligence in a system
more likely. To ascribe intelligence to a system, its internal organization has also to
be taken into account. Externally observable behaviour shows only that a computer
can use linguistic signs in a way that does not disappoint human expectations of how
the computer relates communicated signs to denoted objects (extensions). What is
needed is at least a test of whether the computer designates, by means of its internal
information processing, intensions of linguistic signs. Thus, TT has to be transformed
from an extensional into an intensional test, which I call Simon and Newell Test
(SNT). A human “[…] can determine the computer’s exact intensions by examining
the portions of its program and memory that incorporate its perceptual tests for
discriminating among observed objects, processes, or relations […].” [1] In SNT the
discrimination tests of the computer refer, not to sensory data, but like in TT to
signals that already have been decoded into linguistic information. Letting the
computer undergo SNT requires that the computer must answer the human’s
questions also by truthfully giving information about its own internal processing of
these questions. The main difference between TT and SNT is that the computer not
only inputs an answer into its device but also true information about how it has
generated this answer. For humans, to give a reasonable answer to the metaquestion
about the conversation: ‘Did you communicate with another human or with a
computer?’ means therefore that they have to find out the procedures by which the
computer tests whether linguistic signs received from its environment denote certain
extensions. If humans think that these procedures are similar to those followed by
themselves, they must answer that they have talked to another human. Then the
computer passed SNT. SNT thus requires a formal schema for representing
metainformation about information transmission, processing, and storage both in the
messages the interlocutors exchange with each other and in the theory about their
communication.

John McCarthy has proposed a criterion for the satisfaction of a necessary
condition that a system must fulfil in order to be regarded as intelligent, namely the
condition that a system thinks. This criterion concerns the semantic compressibility of
metainformation about a machine: “Perhaps, a machine should be regarded as
thinking if and only if its behavior can most concisely be described by statements,
including those of the form ‘It now believes Pythagoras’ theorem.’” [2] To apply
McCarthy’s criterion in SNT, we must answer the question of what schema is used for
representing intentional predicates, which express a system’s epistemic qualification
of the information it processes, as metainformation. Let s be a state of a system and p
an information expressed by a sentence in a predefined language. Then the intentional
predicate B(s,p) means that, if the system is in state s, it believes p. For TT and SNT,
it is necessary that at least the human can intensionally represent intentions of
intentions. This requires second-order definitions of beliefs by second-order
predicates ((W,M,B) asserting that a first-order predicate B is a useful notion of belief
for the machine M in the world W. [3] If a system did not have second-order
intentional predicates at its command, it could not process meta-epistemic
qualifications of first-order intentional predicates.

An intelligent system must be able to intensionally represent other systems in its
environment as possibly having intentions, so it must possess intensions of second-
order intentional predicates to represent the intentions of other systems. I shall call an

 Divergence versus Convergence of Intelligent Systems: Contrasting AI with CP 433

SNT that ends with the following metaquestion McCarthy Test (MT): ‘Did you
communicate with another system that has intensions of second-order intentional
predicates?’ In MT the human must decide whether the computer does ascribe
intentions to the human. If so, the human has to consider the machine, not as another
human, but as satisfying a necessary condition for being intelligent. In this case, the
human comes to the result that the communication with the computer has been
symmetrical in the following sense: both interlocutors must have used second-order
intentional predicates for intensionally representing, e.g., beliefs about each other’s
beliefs. MT thus implies a criterion for the satisfaction of a necessary condition that
the computer must fulfil in order to be regarded as intelligent: there exists, after some
questions of the human and answers of the computer, an invariant symmetry between
the human and the computer in that they ascribe intensions of second-order
intentional predicates to each other in a formal representational schema.

3 Artificial Intelligence Back to Back with Human Intelligence

I use the terms ‘convergence’ and ‘divergence’ to differentiate between two sciences
of intelligence, and take them to mean ‘process of mimicking the behaviour and
information processing of a paradigm more and more closely’ and ‘process of
becoming in behaviour and information processing more and more dissimilar to a
paradigm’, respectively. The progress fostered by research into intelligence may
consist in the convergence of models of intelligence towards human intelligence: any
artifact that implements such a model must then be compared, in its externally
observable behaviour and its internally detectable information processing, to the gold
standard of intelligence that is set by the biological paradigm of homo sapiens. This
idea of progress is implied if a science of intelligence uses TT, since TT is nothing but
a concrete operalizationization of the convergence of intelligent artifacts towards
human intelligence. SNT does not leave TT’s orientation to convergence behind, quite
the contrary: the metaquestion that is put to the human after the conversation with the
machine has ended addresses the overall similarity of the machine to the human. This
implies that success in SNT requires of a computer to internally process information
in a human-like fashion. SNT follows, thus, a methodology that is even more mimetic
than TT – yet thanks to its integration of internal information processing into the
communication between human and machine SNT also allows AI to follow another
research strategy.

The scientific and technological progress as driven by another type of research into
intelligence may consist in the divergence of human and non-human intelligence: here
an artifact whose intelligence is tested has, neither in its externally observable
behaviour nor in its internally detectable information processing, to measure up to
homo sapiens. If, in this sense, all intelligent beings are created equal, the science that
searchs for the most divergent forms of intelligence is in need of formally expressible
necessary conditions for general intelligence. One way of discovering such conditions
is by thought experiments like MT. A science of divergent forms of intelligence needs
manifold transformations of SNT that each take a necessary condition of intelligence
as the subject of the question asked at the end of a test.

434 S. Artmann

CP may be construed as aiming at an understanding of human intelligence so that
CP must foster a convergence of intelligent artifacts towards the standard of human
intelligence, and AI may be regarded as being indifferent towards the alternative of
convergence and divergence. Yet to compare CP and AI on an equal footing it is more
distinct to consider the divergence of intelligent artifacts from human intelligence as
the idea of technological progress in basic AI research. Now we picture two
disciplines, AI and CP, positioned at opposite ends of the spectrum of possible
sciences of intelligence with regard to their acceptance of human behaviour and
information processing as the paradigm of general intelligence. A science like CP is,
thanks to its interest in a clearly demarcated class of empirical objects, quite near to
traditional natural sciences. A science like AI is more inclined towards engineering
and formal science, since it tries to systematically expand the class of actual objects
whose imitation might have been the original stimulus for its research, into the class
of all possible objects that satisfy some formal definition of intelligence. Sciences like
AI (and Artificial Life) constitute a particular type of engineering that may be called
modal engineering. Modal engineers construct artifacts that are equivalents of, or
improvements on, fundamental functional properties of organisms, though they try to
diverge as much as possible from the biochemical constitution and the anatomical
organization of the latter. By so doing, modal engineering tries to define the minimal
structures of intelligence, life, etc. From the perspective of common sense and
empirical science, the realizations of these structures continue to be possible objects
in the sense that they remain being imitations of actual paradigms.

Focussing on MT, an important task of AI is the modal engineering of second-
order intentions. AI investigates possible systems that have intensions of second-order
intentions by building artifacts that might diverge in their internal information
processing from human beings to a very high degree. AI systematically tests the
principal limits of how to construct such intensions by engineering empirically
testable machines, and contributes thereby to a formal theory of necessary conditions
of general intelligence. One method of doing AI research in this vein, the method of
transforming TT into other experiments, uses metainformation that is communicated
in well-defined test situations about the internal information processing of
interlocutors to explore the range of possible systems satisfying a formal definition of
intelligence. In MT, AI might try to stretch the communicational symmetry of both
interlocutors as regards their use of second-order intentional predicates to its extreme,
i.e., as far as it still lets the interlocutors recognize each other as intelligent beings.

References

1. Simon, H.A., Eisenstadt, S.A.: A Chinese Room that Understands. In: Preston, J., Bishop,
M. (eds.) Views into the Chinese Room, pp. 95–108. Clarendon Press, Oxford (2002)

2. McCarthy, J.: The Inversion of Functions Defined by Turing Machines. In: Shannon, C.E.,
McCarthy, J. (eds.) Automata Studies, pp. 177–181. Princeton UP, Princeton/NJ (1956)

3. McCarthy, J.: Ascribing Mental Qualities to Machines. In: Ringle, M. (ed.) Philosophical
Perspectives in Artificial Intelligence, pp. 161–195. Harvester Press, Brighton (1979)

Deep Inference for Automated Proof Tutoring?�

Christoph Benzmüller1,2, Dominik Dietrich1, Marvin Schiller1, and Serge Autexier1,3

1 Dept. of Computer Science, Saarland University, 66041 Saarbrücken, Germany
2 Computer Laboratory, The University of Cambridge, Cambridge, CB3 0FD, UK

3 German Research Centre for Artifificial Intelligence (DFKI), Stuhlsatzenhausweg 3, 66123
Saarbrücken, Germany

1 Introduction

Ω MEGA [7], a mathematical assistant environment comprising an interactive proof as-
sistant, a proof planner, a structured knowledge base, a graphical user interface, access
to external reasoners, etc., is being developed since the early 90’s at Saarland Univer-
sity. Similar to HOL4, Isabelle/HOL, Coq, or Mizar, the overall goal of the project is to
develop a system platform for formal methods (not only) in mathematics and computer
science. In Ω MEGA, user and system interact in order to produce verifiable and trusted
proofs. By continously improving (not only) automation and interaction support in the
system we want to ease the usually very tedious formalization and proving task for the
user.

A very recent application direction of Ω MEGA, studied in the DIALOG project [3],
is e-learning in mathematics. The hypothesis is that our system can fruitfully support
the tutoring of mathematical proofs.

In 2001 our group opted for a major reimplementation of the Ω MEGA system. A
major motivation was to replace the natural deduction (ND) calculus at the logical core
of the system by another, ideally more suitable, logical base formalism. What exactly
did we have in mind?

1. An earlier study (cf. [5]) of the influence of the Ω MEGA’s ND core to its abstract
level reasoning mechanism, such as proof planning, revealed a negative influence
mainly due to unnatural, structural peculiarities of ND. We conjectured that a less
‘low-level’ logical core should remedy this problem.

2. Abstract level proofs in Ω MEGA may be unsound. They have to be expanded at
logical core level before they can be verified and finally trusted. Expansions to ND
level, however, often dramatically increase the proof size and they typically lead
to very unnatural and human incomprehensible proofs. Supporting the tutoring of
proofs based on these unnatural, low-level proofs thus seemed a suboptimal starting
point for our DIALOG project.

For our reimplementation we therefore picked Serge Autexier’s CORE calculus [1] as
a promising alternative to ND. CORE has then been transformed into an ’assertion level’
inference mechanism [11] which constitutes the logical kernel of the new Ω MEGACORE

system. CORE and our assertion level inference mechanism are (higher-order) variants
of the deep inference approach1, that is, they support deductions deeply inside a given
� Funded by the DFG SFB378 (Project OMEGA) and by EPSRC under grant EP/D070511/1.
1 http://alessio.guglielmi.name/res/cos/index.html

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 435–439, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://alessio.guglielmi.name/res/cos/index.html

436 C. Benzmüller et al.

s1: Let (x,y) ∈ (R◦S)−1.
t1: Good. correct
s2: It follows that (y,x) ∈ (R◦S).
t2: That’s correct. correct
s3: Therefore ∃z ∈M : (y,z) ∈ R∧ (z,x) ∈ S.
t3: Yes, that’s right. correct
s4: This implies: ∃z ∈M : (z,y) ∈ R−1.∧ (x,z) ∈

S−1

t4: Your deduction is correct. You are on a good
way. correct

s5: It follows: (x,y) ∈ S−1 ◦R−1.
t5: Yes. Therefore it is shown that every ele-

ment from (R◦S)−1 already lies in S−1 ◦R−1.
correct

s6 : Now let (x,y) ∈ S−1 ◦R−1.
t6: O.k. correct
s7 : ⇒ ∃z ∈M : (x,z) ∈ S−1∧ (z,y) ∈ R−1.
t7: Yes. correct
s8 : ⇒ ∃z ∈M : (z,x) ∈ S∧ (y,z) ∈ R.
t8: This deduction is also correct. correct
s9: ⇒ (y,x) ∈ R◦S.
t9: This deduction is again correct.

correct
s10: ⇒ (x,y) ∈ (S◦R)−1.
t10: Congratulations! With this you have

shown both inclusions. Your solution is
now complete. correct

Fig. 1. Example dialog; s are student turns and t are tutor turns

formula without requiring preceding structural decompositions as needed in ND (or
sequent calculus). In Ω MEGACORE we thus have a smaller ‘distance’ between abstract
level proofs and their expansions to the verifiable assertion level. Most importantly, we
now support reasoning directly at the assertion level, while such a layer did only exist
in the old Ω MEGA for a posteriori proof presentation purposes.

In this short paper we report on our ongoing application and evaluation of the
Ω MEGACORE-system for proof tutoring in the DIALOG project. For this, we apply our
novel proof assessment module [6] developed in the DIALOG project to 17 proof di-
alogs which we have obtained in a previous experiment [4]. We study the ‘quality’ of
the automatically reconstructed proofs and analyse the coverage of our proof assess-
ment module.

2 Evaluation

We have applied our proof assessment module to 17 tutorial dialogs taken from the
Wizard-of-Oz experiment reported in [4]. These dialogs consist in alternating utterances
by a student and a tutor. The student attempts to solve an exercise from the domain of
binary relations, namely to show that (R ◦ S)−1 = S−1 ◦ R−1 holds for two relations
R and S in a set M, where ◦ denotes relation composition and −1 denotes inversion.
The tutor responds to the subsequent proof step utterances of the student. Each step is
annotated with a judgment regarding its correctness by the tutor. One example dialog
from our evaluation set is shown in Figure 1.

The idea of the proof assessment module is to support automated proof tutoring,
that is, to automatically judge about the correctness (and also the granularity and the
relevance – not discussed in this paper) of each single student proof step (cf. [2]). For
this, the assessment module is initialized with the relevant axioms for this domain,
which are automatically transformed into inference rules at the assertion level (cf. [8])
by Ω MEGACORE and made available for proving.

Deep Inference for Automated Proof Tutoring? 437

s5: (x,y) ∈ s−1 ◦ r−1 � ”—”
Close

s4: (z,y) ∈ r−1 ∧ (x,z) ∈ s−1 � ”—”
De f .◦

(y,z) ∈ r∧ (x,z) ∈ s−1 � ”—”
De f−1

s3: (y,z)∈ r∧ (z,x) ∈ s � ”—”
De f .−1

s2: (y,x) ∈ (r ◦ s) � ”—”
De f .◦

s1: (x,y) ∈ (r ◦ s)−1 � (x,y) ∈ s−1 ◦ r−1
De f .−1

� (r ◦ s)−1 ⊆ s−1 ◦ r−1
De f . ⊆

s10: (x,y) ∈ (r ◦ s)−1 � ”—”
Close

s9: (y,x) ∈ (r ◦ s) � ”—”
De f .−1

s8: (z,x) ∈ s∧ (y,z)∈ r � ”—”
De f .◦

(x,z) ∈ s−1 ∧ (y,z) ∈ r � ”—”
De f .−1

s7: (x,z) ∈ s−1 ∧ (z,y)∈ r−1 � ”—”
De f .−1

s6: (x,y) ∈ s−1 ◦ r−1 � (x,y) ∈ (r ◦ s)−1
De f .◦

� s−1 ◦ r−1 ⊆ (r ◦ s)−1
De f . ⊆

t10: � (r ◦ s)−1 = s−1 ◦ r−1
De f . =

Fig. 2. Annotated Ω MEGACORE assertion level proof for the example dialog

Then, for each of the 17 dialogs, the assessment was performed stepwise by our as-
sessment module. The assessment module maintains an assertion level proof object that
represents the current state of the proof under construction, which can include several
proof alternatives in the case of underspecified, that is, insufficiently precise, proof step
utterances by the student causing ambiguities (cf. [2,6]). For each proof step uttered by
the student, the module uses a depth-limited breadth-first search (with pruning of super-
fluous branches) to expand the given proof state to all possible successor states up to that
depth. From these, those successor states that match the given utterance wrt. to some filter
function (analyzing whether a successor state is a possible reading of the student proof
step) are selected. We thus obtain, modulo our filter function, assertion level counterparts
to all possible interpretations of correct student proof steps. If for a given utterance, no
matching successor state can be reached, the utterance is considered as incorrect.

We compared the results of the automated proof step analysis with the original cor-
rectness judgments by the tutors. All steps in the example dialog are correctly classified
as valid by our assessment module (used with proof depth four), taking approximately
13.2 seconds on a standard PC.

Figure 2 shows one complete assertion level proof (in sequent notation and anno-
tated by the corresponding student proof steps) that was constructed by the assessment
module for the dialog in Figure 1. The number of assertion level steps required (13,
excluding the automatic Close steps) is still comparable to the number of proof steps
as uttered by the student in the original dialog (10), which provides evidence that the
Ω MEGACORE assertion level proof is at a suitable level of granularity. Had we used
natural deduction as in the old Ω MEGA system, we would have obtained many inter-
mediate steps of rather technical nature making breadth-first proof search for our task
infeasible, compare:

(z,y) ∈ r−1∧ (x,z) ∈ s−1

(y,z) ∈ r∧ (x,z) ∈ s−1 De f−1

Core

A := (z,y) ∈ r−1∧ (x,z) ∈ s−1

(y,z) ∈ r−1 ∧E

(y,z) ∈ r
De f .−1 A

(x,z) ∈ s−1 ∧E

(y,z) ∈ r∧ (x,z) ∈ s−1 ∧I

Natural Deduction

438 C. Benzmüller et al.

The 17 dialogs in the evaluation contain a total of 147 proof steps. All the steps
within a dialog are passed to the assessment module sequentially until a step that is
labeled as correct cannot be verified, in which case we move on to the next dialog. This
way, we correctly classify 141 out of the 147 steps (95.9%) as correct or wrong. Among
the remaining six steps are three where the verification fails, and further three remain
untouched.

3 Concluding Remarks

Our initial question whether moving from Ω MEGA’s previous ND based logical core to
assertion level reasoning in Ω MEGACORE was a reasonable decision, can (preliminarily)
be answered with ’Yes’:

In Ω MEGACORE we obtain more adequate formal counterparts of the human proofs
as was possible before. Most importantly, we directly search for these proofs at the
assertion level which enables us to employ a simple depth-limited breadth-first search
algorithm in our proof step assessment module. Interestingly, already a depth limit of
just four assertion level steps enables our approach to correctly classify 95.9% of the
proof steps in our corpus.

Related to our work are the EPGY Theorem Proving Environment [9], using Otter to
justify or reject proof steps proposed to the environment, and the computational frame-
work by Claus Zinn [10] for the analysis of textbook proofs. Our approach differs in
the following ways: (i) We address the problem of underspecification and multiple in-
terpretations of student proof step utterances, (ii) we construct one, or several, global,
coherent proof object(s) for each dialog instead of just looking from step to step, (iii)
we are not just interested in the correctness of proof steps but also in their granularity
and relevance; for this adequate formal proofs are even more important.

References

1. Autexier, S.: The core calculus. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20.
LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)

2. Benzmüller, C., Vo, Q.B.: Mathematical domain reasoning tasks in natural language tutorial
dialog on proofs. In: Proc. AAAI-05, AAAI Press/The MIT Press (2005)

3. Benzmüller, C., et al.: Natural language dialog with a tutor system for mathematical proofs.
In: Ullrich, C., Siekmann, J.H., Lu, R. (eds.) Cognitive Systems. LNCS (LNAI), vol. 4429,
Springer, Heidelberg (2007)

4. Benzmüller, C., et al.: Diawoz-II - a tool for wizard-of-oz experiments in mathematics. In:
Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, Springer,
Heidelberg (2007)

5. Benzmüller, C., et al.: Proof planning: A fresh start? In: Proc. of IJCAR 2001 Workshop:
Future Directions in Automated Reasoning, Siena, Italy (2001)

6. Dietrich, D., Buckley, M.: Verification of Proof Steps for Tutoring Mathematical Proofs. In:
Proc. AIED 2007 (to appear)

7. Siekmann, J., et al.: Computer supported mathematics with omega. J. Applied Logic 4(4),
533–559 (2006)

Deep Inference for Automated Proof Tutoring? 439

8. Autexier, S., Dietrich, D.: Synthesizing Proof Planning Methods and Oants Agents from
Mathematical Knowledge. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS
(LNAI), vol. 4108, Springer, Heidelberg (2006)

9. McMath, D., Rozenfeld, M., Sommer, R.: A computer environment for writing ordinary
mathematical proofs. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 507–516. Springer, Heidelberg (2001)

10. Zinn, C.: A computational framework for understanding mathematical discourse. Logic J. of
the IGPL 11, 457–484 (2003)

11. Dietrich, D.: The tasklayer of the omega system. Master’s thesis, Universität des Saarlandes,
Saarbrücken, Germany (2006)

Exploiting Past Experience – Case-Based

Decision Support for Soccer Agents
– Extended Abstract –

Ralf Berger and Gregor Lämmel

Humboldt University Berlin, Department of Computer Science
berger@informatik.hu-berlin.de, laemmel@vsp.tu-berlin.de

http://www.robocup.de/AT-Humboldt

Abstract. Selecting and initiating an appropriate (possibly coopera-
tive) behavior in a given context is one of the most important and dif-
ficult tasks for soccer playing robots or software agents. Of course, this
applies to other complex robot environments as well.

In this paper we present a methodology for using Case Based Rea-
soning techniques for this challenging problem. We will show a complete
workflow from case-acquisition up to case-base maintenance. Our system
uses several techniques for optimizing the case base and the retrieval step
in order to be efficient enough to use it in a realtime environment.

The framework we propose could successfully be tested within the
robot soccer domain where it was able to select and initiate complex
game plays by using experience from previous situations. Due to space
constraints we can give just a very brief overview about the most impor-
tant aspects of our system here.

1 Introduction

Selecting and initiating an appropriate (long term and possibly cooperative) be-
havior in a given context is one of the most important tasks for autonomous
robots in complex and dynamic environments. Various methods have been de-
veloped in order to determine the best action or the best behavior (in terms of
action sequences).

Case Based Reasoning (CBR) is a method of problem solving and learning
based on the principle of conclusion by analogy. In simple terms it means using
old experiences to understand and solve new problems - a reasoner remembers a
past problem/situation similar to the current one and uses this to solve the new
problem.

The goal of the system we are about to introduce is to support the decision
making processes of our soccer playing robots / agents with the help of experi-
ence gained by already played games. We found this particular useful on a higher
behavior selection level, where the designer wants to influence the decision mak-
ing processes in an easy and symbolical way. Our test scenario is the wall pass1

1 Player one passes the ball to player two, who immediately passes it back to player
one. The idea is to use the ball as a distraction for the opponent team to allow the
passer to move into a position of advantage in order to receive the ball again.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 440–443, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.robocup.de/AT-Humboldt

Exploiting Past Experience – Case-Based Decision Support 441

in RoboCup [1] – a typical coordination problem where a cooperative behavior
has to be initialized and controlled only by individual cognition and reasoning.
Although the wall pass is stated the simplest combination play in soccer, it is
hard to achieve intentionaly for robots, especially without using communication.

Case Based Reasoning has been used in RoboCup for a long time and for very
different purposes. [2] gives a very broad overview about what has been achieved
so far in this field. An approach that is quite similar to ours in some aspects comes
from Ros [3]. The major differences are that our system addresses the whole CBR-
workflow and could already provide first results in a competitive environment.

As we already stated, we can only pick some interesting points from our work
here, namely the topics of case acquisition, retrieval, case base optimization and
maintenance.

2 Building Up a Case Base

The selection of a suitable case format is of vital importance for the Case Based
Reasoning system. Basically the case format dictates by which features the sim-
ilarity between a case from the case-base and a query situation is determined.
Several spatial features are possible, like positions, velocities as well as game-
based features as current score or remaining playing time. In the underlying
domain, a snapshot of a situation seems to be sufficient to determine, whether a
wall pass is possible or not. We think the possibility and utility of performing a
wall pass most of all depends on the spatial relation between the involved play-
ers (attackers and defenders). Information about velocities are neglected here,
especially since the perception of other’s velocities is quite unreliable. Finally
we define the similarity between cases / situations to be only dependant on
the similarity of positional features. Thus, a case contains, besides the informa-
tion about the class (wall pass possible/ impossible), the information about the
players’ positions on the field as quantified Euclidean coordinates.

For every CBR system the question comes up how to acquire cases for a
first case base. Our test domain (RoboCup Simulation League) provides the
exceptional opportunity to access a huge repository of logfiles of already played
games. We exploit this pool of experience by building up our initial case-base
from these matches. Our goal is, that after the primary case acquisition, the
agents start to advance and extend their case-bases by own experience.
First, we have experimented with a fully automated case extraction. But because
of the minor number of already played wall passes the automatic case acquisition
was not suitable to built up the initial case base2.

To get an initial case-base under these circumstances, we decided to extract
all ’potential’ wall pass situations automatically and to classify the situation
manually afterwards. The thusly built-up case-base contains so far 1010 cases
(560 cases belong to the class wall pass possible, 450 cases belong to the class
wall pass impossible).
2 However, after more teams are able to perform such game-plays intentionally, the

automatic case acquisition could be again an option to acquire additional cases.

442 R. Berger and G. Lämmel

3 Retrieval

There are two key issues for the retrieval mechanism. Firstly, it should find the
most similar case out of the case-base for a given query situation. Secondly,
the retrieval needs to be fast, especially in the underlying domain. In spatial
domains it is common to use a distance function to describe the relation between
similarity and distance. In many approaches the similarity decreases with the
distance according to a Gaussian function (e.g. [4]). However, in this approach
the similarity is rather defined by degree of match of the quantified spatial
features, then of the (spatial) distance. That means, a feature based retrieval
mechanism was required. A Case Retrieval Net (CRN) [5] excellently meets those
requirements. It provides an efficient and flexible way of retrieving a relatively
small number of relevant cases out of a possibly huge case base. Especially, the
avoidance of exhaustive memory search speeds up the retrieval. We not only
show that the CRN work with a high grade of accuracy, but we also show that
this kind of retrieval mechanism is very fast3.

4 Case Base Optimization and Maintenance

It is obvious that the runtime performance of the retrieval mechanism does
not only depend on the retrieval mechanisms itself, but also on the amount of
information that a case in the case base describes. There are two opposed needs,
on the one hand we want to reduce the information that a case describes (i.e.
deletion of irrelevant players out of the cases). On the other hand we must keep
the cases unambiguous, otherwise a case based retrieval is not applicable. In the
underlying domain it is easy to see, that only a few players have an influence on
the success of a wall pass. If a player can take influence depends on its spatial
relation to the directly involved players. We developed a simple procedure to
extract the relevant players. We could show that mostly 3-4 players are sufficient
to describe a case sufficiently.

Using the procedure in 2 it’s obvious that the initial case base contains some
redundant cases. Thus we have to find a way to find and delete redundant cases.
Competence models provide a way to identify redundant parts of knowledge-
bases [6]. Smyth and McKenna introduced a competence model that select re-
dundant cases based on their individual competence contribution [7]. We show
that this model outperforms other (competence) models in the number of delete-
able cases without a decrease of competence.

Maintenance in the context of CBR usually denotes the enduring adaptation,
refinement and optimization of the system (mainly the case-base), as well as
remedying deficiencies, in order to ensure or improve the usability and appli-
cability of the CBR-system. It is substantial for the success of CBR in soccer
programs, since the overall behavior of the teams or individual skills are subject
to continuous changes. However, maintenance was often ignored for a long time
3 For a given query situation, the retrieval of the most similar case takes not even

1 ms, although the case base is built-up of much more than 1000 cases.

Exploiting Past Experience – Case-Based Decision Support 443

[8], also in RoboCup. We have developed a framework and a tool-chain for offline
maintenance of our case bases. It handles the automatic acquisition of new cases
from own experience, the monitoring of consistency and redundancy within the
case-base, analysis and optimization based on use- and success-histories to name
only the most important things.

5 Conclusion

We have developed a methodology for using Case Based Reasoning for high-level
decision making in the robot soccer domain. Our work encompasses the complete
workflow of finding an appropriate case-format, the case-acquisition, defining
similarity measures and an efficient retrieval, as well as providing optimization
and maintenance tools. We have successfully tested the system in the RoboCup
Soccer Simulation League with a first cooperative game-play (wall pass), where
it showed very promising results. Right now we are working on applying it to
other cooperative combination plays, e.g. free-kicks.

References

1. The RoboCup Federation: Official Website URL: http://www.robocup.org
2. Burkhard, H.D., Berger, R.: Cases in Robotic Soccer. In: 7th International Con-

ference on Case-Based Reasoning (ICCBR’07) (2007)
3. Ros, R., Arcos, J.L.: Acquiring a robust case base for the robot soccer domain. In:

Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007) (2007)

4. Ros, R., Veloso, M., de Mantaras, R.L., Sierra, C., Arcos, J.: Retrieving and reusing
game plays for robot soccer. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A.
(eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, Springer, Heidelberg (2006)

5. Burkhard, H.D.: Extending some Concepts of CBR – Foundations of Case Retrieval
Nets. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based
Reasoning Technology. LNCS (LNAI), vol. 1400, pp. 17–50. Springer, Heidelberg
(1998)

6. Smyth, B., Kean, M.T.: Remembering to forget: A competence preserving deletion
policy for case-based reasoning systems. In: Proceedings of the 14th International
Joint Conference on Artificial Intelligence, pp. 399–382. Morgan Kaufmann, San
Francisco (1995)

7. Smyth, B., McKenna, E.: Building compact competent case-bases. In: Althoff, K.-
D., Bergmann, R., Branting, L.K. (eds.) Case-Based Reasoning Research and De-
velopment. LNCS (LNAI), vol. 1650, p. 329. Springer, Heidelberg (1999)

8. Smyth, B.: Case-base maintenance. In: IEA/AIE ’98: Proceedings of the 11th In-
ternational Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, London, UK, Springer, Heidelberg (1998)

http://www.robocup.org

Externalizing the Multiple Sequence Alignment

Problem with Affine Gap Costs�

Stefan Edelkamp and Peter Kissmann

Computer Science Department
University of Dortmund

Abstract. Multiple sequence alignment (MSA) is a problem in compu-
tational biology with the goal to discover similarities between DNA or
protein sequences. One problem in larger instances is that the search
exhausts main memory. This paper applies disk-based heuristic search
to solve MSA benchmarks. We extend iterative-deepening dynamic pro-
gramming, a hybrid of dynamic programming and IDA*, for which opti-
mal alignments with respect to similarity metrics and affine gap cost are
computed. We achieve considerable savings of main memory with an ac-
ceptable time overhead. By scaling buffer sizes, the space-time trade-off
can be adapted to existing resources.

1 Introduction

When designing a cost function for MSA, computational efficiency and biolog-
ical meaning have to be taken into account. Altschul [1] argues that at least a
character-pair scoring matrix and affine gap costs have to be included in the
most widely-used function sum-of-pairs. Affine gap costs induce a linear func-
tion a + bx, where x is the size of the gap, a is the cost for gap opening and b
is the cost for extending the gap. Use of an affine gap cost in multiple sequence
alignment is a challenge because identifying the opening of a gap is challenging.
In terms of [1] the gap costs we consider are quasi-natural. It is the cost model
used in practice by biologists and their alignment programs [11].

There is a host of algorithms that has been applied to solve the MSA prob-
lem. In contrast to its name, dynamic programming is a static traversal scheme,
traversing the problem graph in a fixed order. The storage requirements are con-
siderable, all reachable nodes are visited. Given k sequences of maximal length
n this accumulates to O(nk) nodes and O(2k · nk) edge visits.

Hirschberg [2] proposes a strategy that stores only the search frontier and re-
constructs the solution path in divide-and-conquer manner. The reduction of the
search frontier has inspired most of the upcoming algorithms. Frontier search [4]
combines A* with Hirschberg’s approach to omit already expanded states from
the search. Sparse-memory graph search [8] stores some of the already expanded
states to speed-up the computation. Compared to frontier search it describes an

� The work is supported by DFG in the projects ED-74/3 and ED-74/4.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 444–447, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Externalizing the Multiple Sequence Alignment Problem 445

alternative scheme of dealing with back leaks. Sweep-A* [9] is the MSA adaption
of breadth-first heuristic search [10].

Iterative-deepening dynamic programming [6], IDDP for short, is a hybrid
of dynamic programming and IDA*. A difference to the above approaches is
that not the nodes but the edges are expanded, with extra start edge se and
target edge te. IDDP carries out a series of searches with successively larger
thresholds. The estimate for the path from se to te via the current edge e is
given by f(e) = g(e) + h(e). The traversal order is along increasing levels, such
that all states that do not lie on a shortest path can be removed. Additionally,
path compression algorithms can be applied to store less states in main memory.
By the same argument as in IDA*, IDDP will find an optimal solution. IDDP
shares similarities with iterative-deepening bounded dynamic programming as
introduced by [4]. The use of a global upper bound U additionally saves memory
as it prunes generated edges whose f -value is outside the current threshold.

2 External IDDP

Externalization considers maintaining data structures on (one or several) hard
disks by the application program. In External IDDP [3], all file access is buffered.
For the expanded layer, we need one read buffer for the nodes with edges that
have not yet been expanded, and one write buffer for the nodes with edges that
have been expanded. Additionally, we need n write buffers for placing successors
in one of the next n layers. An advantage is that the memory requirements can
be adapted to match the existing hardware.

Nodes are sorted with respect to their coordinates and read, if an outgoing
edge is expanded. For affine gap costs we further have to check, whether a gap is
continued or opened. Moreover, we do no longer support the internal compression
of the list of already expanded nodes through deletion of states, as the buffers
already reduce the memory for each layer considerably, and further backup data
is flushed to the disk. This implies that each coordinate between two nodes v and
v′ can differ by either 0 or 1, such that the coordinate difference between v and
v′ can be encoded by the integer diff(v, v′) = (v′1− v1)2k−1 ++ . . .+(v′k− vk)20.
Using the reversed encoding given v′ and diff(v, v′) we can reconstruct v.

External algorithms are measured in the number of file accesses (I/Os) and
the number of times they scan or sort N data items scan(N) and sort(N),
respectively. We denote the number of expanded nodes by |VExp| = |{n′ ∈
V | e = (n, n′) ∧ f(e) ≤ f∗}| and the number of expanded edges by |EExp| =
|{e ∈ E | f(e) ≤ f∗}| where f∗ is the optimal solution path cost. Let L = h (se)
be the initial threshold and U be the global upper bound. The optimality of
IDDP is inherited from IDA* and dynamic programming, provided that U is
correct. It is also simple to see that the last iteration is actually the largest,
since each iteration contains at least one more edge than the previous one.

As the length of any alignment is bounded by nk the number of iterations
is polynomial in n, k and the maximal edge cost. The last iteration applies
O(sort(|EExp|)+ scan(|VExp|)) I/Os. To perform delayed duplicate detection we

446 S. Edelkamp and P. Kissmann

Table 1. Comparing IDDP with Ex-IDDP (time in hh:mm:ss and space in kilobytes)

k Cost h(se) Time RAM Time RAM DISK

1lcf 6 134,097 133,540 5:30:22 219,824 6:40:23 106,772 437,888
1rthA 5 70,387 70,243 0:00:20 11,216 0:00:43 13,684 1,365
1taq 5 119,552 119,160 12:02:26 678,020 60:03:41 129,356 3,012,294
1ac5 4 39,675 39,515 0:03:13 44,352 0:03:34 40,276 4,787
1bgl 4 80,552 80,406 0:03:45 42,380 0:03:31 48,888 8,860
1dlc 4 49,276 49,141 0:02:48 29,724 0:03:29 36,992 2,044
1eft 4 33,151 33,053 0:00:39 12,060 0:00:44 11,184 1,262
1gowA 4 40,727 40,577 0:03:09 22,348 0:03:41 30,896 1,246
2ack 5 69,608 69,060 3:39:14 419,944 4:59:43 264,240 363,705
arp 5 58,300 57,865 1:12:22 91,636 1:26:30 69,300 182,314
glg 5 66,606 66,408 0:06:22 44,644 0:07:01 51,940 3,332
1ajsA 4 34,501 34,277 0:09:57 66,964 0:10:28 60,148 19,148
1cpt 4 36,612 36,414 0:02:54 38,784 0:03:10 42,220 6,094
1lvl 4 39,849 39,602 0:20:18 194,432 0:20:11 179,744 42,567
1ped 3 16,333 16,170 0:00:05 11,244 0:00:22 255 3,311
2myr 4 41,281 40,935 5:48:18 937,612 12:05:19 722,324 533,749
gal4 5 57,286 56,632 - >1,048,576 182:55:51 580,008 7,354,524

sort the layers with respect to the nodes. The number of nodes in the next layer is
bounded by the number of edges from the nodes in the previous layer. Therefore,
the cumulated sorting efforts for removing duplicates in the individual layers are
less than the sorting efforts for the entire set EExp. For reading a layer and for
solution reconstruction at most scan(|VExp|) I/Os are needed. Therefore, given
that there are at most U − L + 1 iterations, the overall run time is bounded by
O((U −L) · (sort(|EExp|)+ scan(|VExp|))) I/Os. Factor U −L can be avoided by
using a strategy called refined threshold determination [7].

3 Experimental Results

We experimented on a 64-bit Opteron 2.2GHz Linux machine with 1 gigabyte
memory and a total runtime limit of 480 hours. Table 1 displays the cost-optimal
solutions obtained with internal and external IDDP on the hardest sequences of
BAliBASE. We denote the number of sequences to be aligned, the initial and
optimal cost, as well as the resource consumption of the exploration. We see that
there are considerable RAM savings while the time increase remains moderate
and that the ratio of disk space and RAM usage can be large. Up to the storage
structures for the estimate, the RAM requirements remain constant.

On a 32-bit system IDDP consumed 140 kilobytes to solve 1lcf, while for
External IDDP only 79 kilobytes were used. As the heuristic calls IDDP for
a smaller set of sequences (3 in case of the triple heuristic), it is also possible
to externalize its calculation. For solving 1lcf with External IDDP, the time
increased from 6:40:23 for the internal heuristic to 18:18:54 for the external
one.

Externalizing the Multiple Sequence Alignment Problem 447

Table 2. Comparison with other quasi-natural gap cost sequence alignment solvers

OMA 5-Group A* IDDP External IDDP

1aboA 10,674 973 10,674 199 10,665 8 10,665 15
1aho 9,807 6 9,807 0 8,828 0 8,828 0
1hfh 19,208 23 19,208 3 17,628 2 17,628 9
1idy 9,542 3 9,508 45 8,637 3 8,637 10
1pfc 17,708 19 17,708 3 15,843 0 15,774 5
1plc 14,205 4 14,195 0 12,745 0 12,745 3
2mhr 16,687 4 16,687 0 14,765 0 14,765 3
451c 13,364 200 13,364 74 12,171 1 12,171 8

Compared to the literature, the cost function used in [4] neither uses similarity
measures nor affine gap costs. Niewiadomski [5] showed good results in solving
BAliBASE alignment problems with internal parallel frontier search using sim-
ilarity matrices with fixed gap cost. The peak RAM requirements for solving
1pamA were 55.8 gigabytes. K-group A* [11] extends Sweep-A* [9] and uses
quasi-natural gap costs (but different metrics). Table 2 shows that (External)
IDDP is competitive (cost in unit, time in seconds).

Besides parallelization, in the future we will look at variants that adapt to
the time one wants to spend on computing the alignment.

References

1. Altschul, S.: Gap costs for multiple sequence alignment. Journal of Theoretical
Biology 138, 297–309 (1989)

2. Hirschberg, D.S.: A linear space algorithm for computing common subsequences.
Communications of the ACM 18(6), 341–343 (1975)

3. Kissmann, P.: Externalisierung des Sequenzenalignierungsproblems. Diploma The-
sis, University of Dortmund (January 2007)

4. Korf, R.E., Zhang, W., Thayer, I., Hohwald, H.: Frontier search. Journal of the
ACM 52(5), 715–748 (2005)

5. Niewiadomski, R., Amaral, J.N., Holte, R.C.: Sequential and parallel algorithms
for frontier A* with delayed duplicate detection. In: AAAI (2006)

6. Schroedl, S.: An improved search algorithm for optimal multiple sequence align-
ment. Journal of Artificial Intelligence Research 23, 587–623 (2005)

7. Wah, B.W., Shang, Y.: A comparison of a class of IDA* search algorithms. Inter-
national Journal of Tools with Artificial Intelligence 3(4), 493–523 (1995)

8. Zhou, R., Hansen, E.: Sparse-memory graph search. In: IJCAI, pp. 1259–1268
(2003)

9. Zhou, R., Hansen, E.: Sweep A*: Space-efficient heuristic search in partially-ordered
graphs. In: ICTAI, pp. 427–434 (2003)

10. Zhou, R., Hansen, E.: Breadth-first heuristic search. In: ICAPS, pp. 92–100 (2004)
11. Zhou, R., Hansen, E.: K-Group A* for multiple sequence alignment with quasi-

natural gap costs. In: ICTAI, pp. 688–695 (2004)

Text Generation in the SmartWeb

Multimodal Dialogue System

Ralf Engel and Daniel Sonntag

DFKI GmbH, Stuhlsatzenhausweg 3, 66123 Saarbrücken
{ralf.engel,daniel.sonntag}@dfki.de

Abstract. This paper presents the text generation module of
SmartWeb, a multimodal dialogue system. The generation module
bases on NipsGen which combines SPIN, originally a parser developed for
spoken language, and a tree-adjoining grammar framework for German.
NipsGen allows to mix full generation with canned text.

Introduction. This paper presents how the generation of text is handled in
the SmartWeb system1 [1], a multimodal dialogue system to access seman-
tic databases and Web Services using a smartphone. For this task, we use the
NipsGen module which combines two already existing components: (1) the SPIN
parser [2] which was originally designed for natural language understanding and
(2) a tree-adjoining grammar (TAG) framework for German [3]. SPIN is basi-
cally a rewriting system for typed feature structures (TFSs) with a powerful rule
language. Instead of TFSs representing the recognized words, the object which
should be verbalized is used as input for the parser.2 The processing result is a
derivation tree which describes how to construct the syntax tree using the TAG
grammar. The rule set of the parser is divided into two parts, a domain specific
rule set that transforms the input into an intermediate syntactic representation
(ISR) and a domain independent rule set that transforms this intermediate rep-
resentation into a TAG derivation tree. The TAG framework is finally used to
assemble the trees, to propagate the associated features through the syntax tree
and to inflect the words assigned to lexical leafs. We introduced the intermediate
representation since a direct generation of the TAG derivation tree would lead
to a rule set that is difficult to write and maintain. In order to avoid the con-
struction of a syntactic representation for static text, the derivation tree might
contain so-called TC nodes (text collection nodes). Possible child nodes of a TC
node are nodes containing canned text (which may include formatting instruc-
tions like HTML tags), other TC nodes and nodes containing TAG derivation
trees. The canned text remains unmodified by the TAG grammar.3

The SmartWeb demonstrator includes a semantic database containing infor-
mation about previous FIFA World Cups and access to Web Services including
1 http://www.smartweb-project.org
2 The name NipsGen stands for a reversed usage of the SPIN parser as generator.
3 The approach to compose canned text is also called a template based approach in

contrast to a full generation approach; a discussion on that can be found in [4].

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 448–451, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Text Generation in the SmartWeb Multimodal Dialogue System 449

(2) Input

(1) Control

(3) Short answer

(4) Main answer

(5) Status line

(6) Navigation

Fig. 1. The user interface of SmartWeb. The left screenshot shows the names of the
World Cup mascots, the right screenshot shows a picture of a selected mascot.

weather forecast, information about points of interest (POIs) and route plan-
ning. SmartWeb’s primary language is German, but an English version with
reduced SPIN and NipsGen functionality is also available. In the context of the
SmartWeb system text generation means that objects represented in terms
of the system-wide used ontology SWIntO

4 which is RDF/S-based have to be
converted into textual representations. The textual representations includes full
utterances for the speech synthesizer as well as typography-enriched texts and
tables which are presented on the mobile device. Figure 1 shows the graphical
user interface of SmartWeb. A more detailed description can be found in [5].

Processing Steps. Natural language generation (NLG) systems that work
on the planning of coherent multisentential and longer texts exist since the
late 80’s, e.g., Penman5. Recent products, e.g., RealPro6, work with TFS-based,
multi-level linguistic representations. We build NLG systems for Semantic Web
data on mobile devices based on ontology instances. Content determination and
micro-planning (e.g., reference to images in generated captions) are generated
according to the requirements of the football domain, and the presentation en-
vironment. In our case the rendering on a small PDA requires more advanced
summarization capabilities.7 In addition, multimodal deixis in visual graphical
presentations comes to the fore (cf. result presentation example in figure 1).
The generation may have different but allegedly interchangeable surface real-
izations. We present our micro-planning system concerned with an expressive
lexicalization—the choice of particular words and constructions used to com-
municate domain concepts and relations used to generate the short answer, the
4 http://smartweb.dfki.de/ontology en.html
5 http://www.isi.edu/natural-language/penman/penman.html
6 http://www.cogentex.com/technology/realpro/
7 A glance on the display while walking and short synthesis because of modality busy

setting: users can only draw attention to short information pieces.

450 R. Engel and D. Sonntag

Input to

ISR

Intermediate syntactic

representation

ISR to

ETDD

Constr. of

final TAG tree

Morphosyn.

adaptation

Extended TAG

derivation tree

Extended final

TAG tree

Instance to be

verbalized

Generated text

and TAG tree

Step 1 Step 2 Step 3 Step 4

Fig. 2. The four processing steps within the NipsGen module

main answer, and the status line. The main processing consists of four processing
steps (see also figure 2):

Step 1: Construction of the intermediate syntactic representation A direct trans-
formation to the TAG derivation tree is not desirable as the derivation tree is
hardly human-readable and the creation of it is an error-prone task. There-
fore, an intermediate syntactic layer has been introduced which reads well and
is quite easy to create. A set of domain-dependent SPIN rules transforms the
input object into an intermediate syntactic representation. The nodes of the in-
termediate syntax tree are phrase nodes representing nominal phrases (NPs),
verb phrases (VPs), adjective phrases (AdjP), adverbial phrases (AdvP), prepo-
sitional phrases (PPs), and a special node for canned text, called TC. The nodes
are connected by syntactic relations like sub (subject), iObj (indirect object),
dObj (direct object), pp (prepositional phrase), etc.

Step 2: Transformation to the extended TAG derivation tree A second set of
domain-independent SPIN rules transforms the intermediate syntactic repre-
sentation into an extended TAG derivation tree. We call it an extended TAG
derivation tree as it is possible to include TC nodes which contain canned text.
A TAG derivation tree is represented as a TFS whereby each TAG tree has its
own type. Initial trees have the supertype InitialTagTree, adjunct trees the su-
pertype AdjunctTagTree. Features of each tag tree encode the possible actions
together with the positions, e.g., s 221 stands for substitution operation at the
tree position 2218.

Step 3: Construction of the derived TAG tree The syntax tree is built up in a
top-down fashion using the derivation tree which is the result of step 2 and the
elementary trees of the TAG grammar. After the syntax tree is built up, the

8 The tree position 221 means, that starting from the root node, the second child node
is selected, then again the second child node and finally the first child node. The top
node has the position 0.

Text Generation in the SmartWeb Multimodal Dialogue System 451

features of the nodes are propagated using structure sharing and unification.
The features are important to propagate syntactic information within the tree,
e.g., the number of a sentence subject is propagated to its corresponding finite
verb.

Step 4: Morphosyntactic surface realizations In a last step, the word stems are
inflected. For example, case, gender, number, weak/strong, tense, and person are
extracted from each lexical leaf and the corresponding inflected words are looked
up in a full-form lexicon. To allow the inclusion of typographic formatting com-
mands, the lexical leaves provide the features formatBegin and formatEnd which
may contain, e.g., HTML tags, or markers of a user defined layout language.

Outlook. In the future, we plan to develop a tool that takes the TAG grammar
as input and generates types, features, and rules which transform the interme-
diate syntactic representation into the TAG derivation tree semi-automatically
(step 2 in the processing chain). We also plan to generate multiple alternative
less constrained texts (something that is already supported by the SPIN parser)
and test the texts against layout and presentation constraints, like the available
space in the presentation area, to choose among one of these texts.

Acknowledgments. The research presented here is sponsored by the Ger-
man Ministry of Research and Technology (BMBF) under grant 01IMD01A
(SmartWeb). The responsibility for this paper lies with the authors.

References

1. Reithinger, N., Bergweiler, S., Engel, R., Herzog, G., Pfleger, N., Romanelli, M.,
Sonntag, D.: A look under the hood - design and development of the first SmartWeb
system demonstrator. In: Proc. ICMI 2005, Trento (2005)

2. Engel, R.: Robust and efficient semantic parsing of free word order languages in
spoken dialogue systems. In: Proc. of Interspeech 2005, Lisbon (2005)

3. Becker, T.: Natural language generation with fully specified templates. In: Wahlster,
W. (ed.) SmartKom: Foundations of Multi-modal Dialogue Systems, pp. 401–410.
Springer, Heidelberg (2006)

4. Becker, T., Busemann, S.: ”May I Speak Freely?” Between Templates and Free
Choice in Natural Language Generation. In: Burgard, W., Christaller, T., Cremers,
A.B. (eds.) KI-99: Advances in Artificial Intelligence. LNCS (LNAI), vol. 1701,
Springer, Heidelberg (1999)

5. Sonntag, D.: Interaction design and implementation for multimodal mobile Seman-
tic Web interfaces. In: Proceedings of 12th International Conference on Human-
Computer Interaction (HCI 2007), Beijing, China (2007)

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 452–455, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Method to Optimize the Parameter Selection in Short
Term Load Forecasting

Humberto F. Ferro1,2, Raul S. Wazlawick1,3, Cláudio M. de Oliveira1,3,
and Rogério C. Bastos1,3

1 Universidade Federal de Santa Catarina, UFSC-PPGCC, Florianópolis, SC, Brazil
2 Centrais Elétricas de Santa Catarina, Florianópolis, SC, Brazil

3 Instituto IDESTI, Florianópolis, SC, Brazil
humbertoff@celesc.com.br, raul@inf.ufsc.br,
claudiom@inf.ufsc.br, rogerio@inf.ufsc.br

Keywords: parameter selection, load forecasting, feature extraction, industrial
applications of AI, power systems.

1 Introduction

Load forecasting allows electric utilities to enhance energy purchasing and genera-
tion, load switching, contracts negotiation and infrastructure development [1].

The consumption regions have characteristic consumption profiles which deter-
mine a causal relationship between the load and a set of predictors. For short term
load forecasting, in which the predictions range from few minutes to some days
ahead, it is crucial to model this relationship. Because only a subset of all the avail-
able variables is relevant [3, 4], they should be examined before the model is speci-
fied. Figure 1 shows this procedure and presents the scope of this work: parameter
selection and predictors identification.

Input Variables Parameter
Selection Predictors Forecasting

Model

mℜ nℜ mn ≤
All available

Variables
Relevant
Variables

Scope of the Work

Fig. 1. Schematic Diagram of an Electrical Load Forecasting Model

The causal relationships are dynamic; i.e., predictors may change continuously
their predictive relevance over time [4]. Hence, a forecasting model should be moni-
tored continuously and rebuilt as necessary. This cycle might be repeated continually
to prevent forecast errors from growing progressively with time [4].

By exploring empirical evidences that similar profiles have similar sets of predic-
tors, a similarity measure among profiles is proposed. This way, new forecasting
models might be constructed from the existing ones. The bigger the similarity be-
tween two profiles, the more their forecasters are alike. In the limit, the profiles will
be identical and a single forecaster will fit both.

 A Method to Optimize the Parameter Selection in Short Term Load Forecasting 453

2 Load Forecasting Solutions

Hybrid models process the input data before an ANN could actually forecast. By
omitting this step, known as preprocessing, the performance of the model is greatly
decreased [2, 3]. Indeed, the overall performance of the model is far more likely to be
dependent on the preprocessing than on the neural network architecture [4].

The preprocessing tries to find a set of predictors by combining input variables in
several ways. The predictive relevance of these sets is tested by an evaluation model
and, if the performance of such model is acceptable, a definitive model is built.

The concept of similarity among profiles can enhance preprocessing by using the
knowledge that exists in forecasters already constructed. In practical terms, a criterion
of similarity could help to set the slack parameters of an ANN and gives valuable
insights about the optimal predictors of a new profile.

3 Forecasting Optimization Method

Figure 2 shows the proposed method as a block diagram. The feature extraction trans-
forms a profile (represented by several time series of meteorological and electrical
variables) in a manageable feature vector. The knowledge base stores information
about profiles already processed; i.e., vectors, predictor sets and forecasting models.
The Control Center recognizes the similarity among profiles and supplies some a
priori information to boost the construction of the models. This approach sets the
slack parameters of an ANN in a such way that the convergence is accelerated.

Fig. 2. Forecasting System Optimized by the Use of a Knowledge Base

Feature extraction
Let ξx an estimator specifically constructed to an unknown profile ρx. Due to the lack
of knowledge about ρx, ξx employs all available variables as inputs and it is called a
dummy estimator of ρx. Once just a subset of all variables has actual prediction power,
this approach worsens the estimation. However, this is not an issue because the actual
goal of ξx is to detect similarities among profiles, instead of estimate load.

If ξx is employed to estimate the load of another profile, say ρy, and the observed
performance is fair, one may assume that ρx and ρy are similar; otherwise, they are not.
In order to accept this similarity criterion, similar consumption profiles should have
similar predictor sets, according to the following hypotheses:

454 H.F. Ferro et al.

H1 – The performance of a load estimator set applied to a consumption profile de-
termines a feature vector of that profile;

H2 – Profiles with similar feature vectors have similar sets of predictors.
Figure 3 shows the performance (RMSE) of some dummy SVM estimators when

they process similar (a) and different (b) profiles, producing performance curves.

Fig. 3. Performance of several SVM estimators applied to different consumption regions

Each point of a performance curve determines a vector, which stands for a profile in a
feature space. The plot shown in Figure 4a shows some vectors in the feature space,
which was reduced to the Cartesian plane with MDS. The figure indicates that H1 is valid
because the clusters match the intuitive definition of similarity among profiles.

I CO_W I N

I CO_AU T

I C O_SU M

I NE_W I N

I NE_AUT

I NE_SUM

I SS_W I N

I SS_AU T

I SS_SUM

SI A_W I N
SI A_AUT

SI A_SU M

SRA_W I NSRA_AUT
SRA_SUM

TD E_W I N

TDE_AUT

TDE_SUM

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Dimension 1

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

D
im

en
si

on
 2

3

5

4

2

1

A

ICO_WIN

ICO_AUT

ICO_SUM

INE_WIN

INE_AUT

INE_SUM

ISS_WIN

ISS_AUT

ISS_SUM

SIA_WIN

SIA_AUT

SIA_SUM

SRA_WIN

SRA_AUT

SRA_SUM
TDE_WIN

TDE_AUT

TDE_SUM

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Dim ension 1

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

D
im

en
si

on
 2 1

3

5

2

4

B

Fig. 4. Consumption profiles: (a) Feature vectors (b) Relevance vectors

A dummy estimator is employed to capture the relevance degree of a variable in
the load forecasting. The worse the estimation performance when the variance of a
variable is artificially nullified, the more relevant is it. Hence, such performance is a
quantitative measure for the degree of relevance of that variable.

A vector (named vector of relevance) may be created by grouping the relevance
degrees of all variables available in a profile. Such vector stands for the relevance of
all variables in that profile and may be plotted in a space named causal space.

Figure 4b is a low resolution version of the causal space obtained by MDS. The
clusters of both plots of Figure 4 are corresponding, meaning that the profiles tend to
form the same clusters as their vectors of relevance, as highlighted by the numbered
ellipses in both plots. This way, H2 is accepted.

 A Method to Optimize the Parameter Selection in Short Term Load Forecasting 455

4 Results and Conclusions

Twenty neural forecasters (ANNs) were created from scratch for the profiles of Fig-
ure 4a. Table 1 shows the minimum (MINTC), maximum (MAXTC) and average
(AVGTC) times of convergence required to construct such forecasters.

Subsequently, the profiles were compared to each other through their feature vec-
tors (Figure 4a). To a given profile ρa (column Profile in table 1), it was determined
the profile ρb (Profile-S) that more resembles it by applying the Euclidean distance to
the feature space. Also, the ANN that converged faster for ρb was retrained with the
data of ρa, which produced a new ANN called optimized ANN. In relation to the origi-
nal AVGTC of ρa, the optimized ANN converged faster in all cases, as indicated by
the columns OTC (optimized time of convergence) and OTC% of Table 1.

Table 1. Elapsed times, given in seconds, to build basic forecast models

 Profile MINTC MAXTC AVGTC Profile-S OTC Gain OTC%
1 ICO_WIN 615.6 1272.8 1022.9 ICO_AUT 621.5 401.4 39.2%
2 ICO_AUT 1056.5 1661.7 1350.5 ICO_WIN 951.1 399.4 29.6%
3 ICO_SUM 1336.4 1696.5 1530.9 ICO_AUT 1509.0 21.9 1.4%
4 INE_WIN 91.6 194.5 123.9 INE_AUT 88.3 35.6 28.7%
5 INE_AUT 120.9 212.1 175.0 INE_WIN 57.4 117.7 67.2%
6 INE_SUM 87.7 173.8 128.2 TDE_SUM 61.2 67.0 52.2%
7 ISS_WIN 60.8 155.6 106.2 ISS_AUT 29.9 76.3 71.9%
8 ISS_AUT 113.4 220.0 165.1 ISS_WIN 27.5 137.6 83.3%
9 ISS_SUM 62.1 89.0 72.7 ISS_AUT 31.8 40.9 56.2%
10 SIA_WIN 141.3 199.5 162.2 SIA_AUT 50.0 112.2 69.2%
11 SIA_AUT 129.0 185.9 156.0 SIA_WIN 56.5 99.5 63.8%
12 SIA_SUM 93.4 211.8 142.8 SIA_AUT 58.4 84.5 59.1%
13 SRA_WIN 141.8 258.3 190.7 SRA_AUT 86.7 104.0 54.5%
14 SRA_AUT 102.4 186.5 163.6 SRA_WIN 56.9 106.6 65.2%
15 SRA_SUM 97.9 178.6 132.0 SIA_WIN 61.5 70.4 53.4%
16 TDE_WIN 84.3 139.4 106.7 TDE_AUT 59.3 47.4 44.4%
17 TDE_AUT 93.8 128.8 113.4 TDE_WIN 30.7 82.7 72.9%
18 TDE_SUM 91.5 341.2 153.4 INE_SUM 47.7 105.7 68.9%

Table 1 shows considerable improvements in the learning time of all forecasters.

Hence, Figure 2 may be considered a realistic approach to optimize load forecasting.

References

1. Iyer, V., Che, C., Gedeon, T.: A Fuzzy-Neural Approach to Electricity Load and Spot Price
Forecasting. Tencom (2003)

2. Guo, X., Chen, Z., Ge, H., Liang, Y.: Short-Term Load Forecasting Using Neural Network
With Principal Components Analysis. In: 3rd International Conference on Machine Learn-
ing and Cybernetics, Shanghai, China (2004)

3. Tao, X., Renmu, H., Peng, W., Dongjie, X.: Input Dimension Reduction for Load Forecast-
ing Based on Support Vector Machines. In: 2004 IEEE Conference on Electric Utility De-
regulation, Restructuring and Power Technologies (2004)

4. Oliveira, C.M.: Modelo Adaptativo Para Previsão De Carga Ativa De Curto Prazo. PhD
Thesis, Production Eng. Dept. – UFSC (2004)

Visual Robot Localization and Mapping Based

on Attentional Landmarks

Simone Frintrop

Comp. Science III, University of Bonn, Germany
frintrop@iai.uni-bonn.de

Abstract. In this paper, we present a system for simultaneous localiza-
tion and map building of a mobile robot, based on an attentional land-
mark detector. A biologically motivated attention system finds regions
of interest which serve as visual landmarks for the robot. The regions are
tracked and matched over consecutive frames to build stable landmarks
and to estimate the 3D position of the landmarks in the environment.
Furthermore, matching of current landmarks to database entries enables
loop closing and global localization. Additionally, the system is equipped
with an active camera control, which supports the system with a track-
ing, a re-detection, and an exploration behaviour.

1 Introduction

One of the most important tasks of a mobile robot is to localize itself within its
environment. This task is especially difficult if the environment is not known in
advance. Within the robotics community, this problem is well known as SLAM
(Simultaneous Localization and Mapping). Currently, there has been special in-
terest in visual SLAM, which uses cameras as main sensors since cameras are
low-cost, low-power and lightweight sensors [1,6,7].

A key competence in visual SLAM is to choose useful visual landmarks which
are easy to track, stable over several frames, and easily re-detectable when re-
turning to a previously visited location. Here, we present a visual SLAM system
based on an attentional landmark detector: the attention system VOCUS [2] de-
tects regions of interest (ROIs) which are tracked and matched over consecutive
frames. To improve the stability of the features, the ROIs are combined with
Harris corners. When re-visiting a location after some time, knowledge about
the appearance of expected landmarks is used to search in a top-down manner
for expected features. Additionally, active camera control improves the quality
and distribution of detected landmarks.

The novelty of the presented system in comparison to other approaches of
visual SLAM – e.g., [1,6,7] – lies first, in the attentional feature detection in
combination with Harris corners [4], second, in the top-down, target-directed
feature computations to improve loop closing [3], and third, in the active camera
control [5]. Here, we combine the results of these previous findings.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 456–459, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Visual Robot Localization and Mapping Based on Attentional Landmarks 457

Fig. 1. The visual SLAM system builds a map based on image data and odometry

2 The Visual SLAM System

The visual SLAM architecture (Fig. 1) consists of a robot which provides camera
images and odometry information, a feature detector to find ROIs in the images,
a feature tracker to track ROIs over several frames and build landmarks, a tri-
angulator to identify useful landmarks, a SLAM module to build a map of the
environment, a loop closer to match current ROIs to the database, and a gaze
control module to determine where to direct the camera to.

When a new frame from the camera is available, it is provided to the feature
detector. This module finds ROIs based on the visual attention system VOCUS
[2]. VOCUS computes a bottom-up saliency map, based on strong contrasts
and uniqueness of the features intensity, orientation, and color. For each ROI, a
feature vector is stored which is used for matching and top-down search. Since
the shape of attentional ROIs differs sometimes in consecutive frames, the ROIs
are combined with Harris corners to improve position stability [4]. A bottom-up
saliency map and the corresponding ROIs are displayed in Fig. 2.

Next, the features are provided to the feature tracker which stores the last
n frames, performs matching of ROIs and Harris corners in these frames and
creates landmarks which are lists of features found in several frames. Matching
of ROIs and Harris corners is based on proximity and similarity of the feature
vector (ROIs) or a SIFT descriptor (Harris) [4]. The purpose of the buffer is to
identify features which are stable over several frames and have enough paral-
lax information for 3D initialization. These computations are performed by the
triangulator. Selected landmarks are stored in a database and provided to the
SLAM module which computes an estimate of the position of landmarks and
integrates the position estimate into the map (details to SLAM module in [6]).

The task of the loop closer is to detect if a scene has been seen before. The
SLAM module provides the loop closer with expected landmark positions and
their feature descriptions. The attentional feature vector is used to search in a
top-down manner for the expected landmarks. The result is a top-down saliency
map which highlights regions which correspond to the target (cf. Fig. 2). The
corresponding top-down ROIs are compared with the ROIs of the expected land-
marks by comparing the similarity of their feature vectors. If two ROIs match,

458 S. Frintrop

Fig. 2. Left: bottom-up saliency map. Middle: attentional ROIs (rectangles) and Harris
corners (crosses). Right: top-down saliency map for target “wastebin” (black box).

this information is provided to the SLAM module to update the positions of the
robot and the landmarks.

Finally, the gaze control module controls the camera actively with three be-
haviours: a tracking behaviour identifies the most promising landmarks and pre-
vents them from moving out of the field of view. A redetection behaviour actively
searches for expected landmarks to support loop-closing. Finally, an exploration
behaviour investigates regions with no landmarks, leading to a more uniform
distribution of landmarks. The process to decide which behaviour is activated
is based on the amount of uncertainty about the current position and on the
number of currently visible landmarks (details in [5]).

3 Experiments and Results

To illustrate the advantages of the presented visual SLAM system, we per-
formed two experiments which show i) the advantages of the top-down atten-
tional matching approach in loop closing situations, and ii) the advantages of
active over passive camera control. In both experiments, the robot drove through
a room in an office environment, through a corridor, and entered the room again.
Here, it should detect that it closed a loop.

In the 1st experiment, we compared bottom-up matching of ROIs (VOCUS
computes a bottom-up saliency map and the similarity of ROIs is compared
based on a threshold) and top-down matching (VOCUS searched for the expected
landmarks in the current frame and the resulting ROIs are compared afterwards)
(Fig. 3, left). If only very few false matches are accepted, the bottom-up matching
is better. But if more false matches are acceptable, we get a significantly higher
number of correct matches (42% more). Note that this number of false matches is
not the number of false matches reported to SLAM since several of the matched
ROIs belong to the same landmark and we also use matching of Harris corners
afterwards to reduce the number strongly (details in [4]). In the current example,
only one false landmark match remained.

In the 2nd experiment, we compared passive with active camera control. The
resulting maps are displayed in Fig. 3, middle/right. With active control, we
achieve a better distribution of landmarks and more matches, e.g. loop closing
takes places earlier and more reliably (details in [5]).

Visual Robot Localization and Mapping Based on Attentional Landmarks 459

Fig. 3. Left: Experiment 1: Correct matches for bottom-up and top-down matching
depending on the error rate: For a low number of false detections, bottom-up match-
ing results in more correct matches. If more false matches are acceptable, top-down
matching provides more correct matches. Middle/Right: Experiment 2: Two maps
consisting of visual landmarks (green/cyan dots), created with passive (middle) and
with active (right) camera control. Two robots in one image correspond to the robot at
the beginning and at the end of the buffer, i.e., the robot further ahead on the path is
the real robot, the one behind is the virtual robot position 30 frames later. Landmarks
matched to database entries are displayed as large, red dots. Active control enables a
better distribution of landmarks and more matches.

4 Conclusion

We have presented a visual SLAM system based on an attentional landmark
detector. The attentional regions are especially useful landmarks for tracking
and redetection; the loop closing is improved by using top-down guidance. Ac-
tive camera control helps to achieve better, more stable landmarks, a better
distribution of landmarks, and a faster and more reliable loop closing.

In future work, we plan to combine the method with other visual loop-closing
techniques, for example by considering not only one expected landmark for
matching, but all in the current field of view.

References

1. Davison, A.J.: Real-time simultaneous localisation and mapping with a single cam-
era. In: Proc. of the ICCV (october 2003)

2. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-
directed Search. PhD thesis, Bonn, Germany. LNAI, Springer (2006)

3. Frintrop, S., Cremers, A.B.: Top-down attention supports visual loop closing. In:
Proc. of ECMR (to appear, 2007)

4. Frintrop, S., Jensfelt, P., Christensen, H.: Pay attention when selecting features. In:
Proc. of the 18th Int’l Conf. on Pattern Recognition (ICPR 2006) (2006)

5. Frintrop, S., Jensfelt, P., Christensen, H.: Attentional robot localization and map-
ping. In: ICVS Workshop WCAA (2007)

6. Jensfelt, P., Kragic, D., Folkesson, J., Björkman, M.: A framework for vision based
bearing only 3D SLAM. In: Proc. of ICRA’06, Orlando, FL (May 2006)

7. Newman, P., Ho, K.: SLAM- loop closing with visually salient features. In: Proc. of
the International Conference on Robotics and Automation (ICRA 2005) (2005)

Bridging the Sense-Reasoning Gap Using DyKnow: A
Knowledge Processing Middleware Framework

Fredrik Heintz, Piotr Rudol, and Patrick Doherty

Department of Computer and Information Science
Linköpings universitet, Sweden

{frehe, pioru, patdo}@ida.liu.se

Abstract. To achieve complex missions an autonomous unmanned aerial vehicle
(UAV) operating in dynamic environments must have and maintain situational
awareness. This can be achieved by continually gathering information from many
sources, selecting the relevant information for current tasks, and deriving models
about the environment and the UAV itself. It is often the case models suitable for
traditional control, are not sufficient for deliberation. The need for more abstract
models creates a sense-reasoning gap. This paper presents DyKnow, a knowledge
processing middleware framework, and shows how it supports bridging the gap
in a concrete UAV traffic monitoring application. In the example, sequences of
color and thermal images are used to construct and maintain qualitative object
structures. They model the parts of the environment necessary to recognize traffic
behavior of tracked vehicles in real-time. The system has been implemented and
tested in simulation and on data collected during flight tests. 1

1 Introduction

Unmanned aerial vehicles (UAVs) are becoming commonplace in both civil and mili-
tary applications, especially for missions which are considered dull, dirty and danger-
ous. One important application domain for UAVs is surveillance. Such missions may
involve flying over unknown areas to build terrain models, to quickly get an overview of
a disaster area including helping the rescue services to find injured people and deliver
medical supplies, or to help law enforcement agencies to monitor areas or people for on-
going or potential criminal activity. To achieve these complex missions an autonomous
UAV must continuously gather information from many different sources, including sen-
sors, databases, other UAVs, and human operators. It then selects relevant information
for the current task, and derives higher-level knowledge about the environment and the
UAV itself in order to understand what is happening and to make appropriate decisions.
In other words, the UAV must create and maintain its own situational awareness in a
timely manner.

To create situation awareness a UAV needs to build models of the environment and
use them to reason contextually about the past, current, and future state of the world.

1 This work is supported in part by the National Aeronautics Research Program NFFP04 S4203
and the Strategic Research Center MOVIII, funded by the Swedish Foundation for Strategic
Research, SSF.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 460–463, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bridging the Sense-Reasoning Gap Using DyKnow 461

These models should be constructed from information gathered from distributed sources
and aggregated in a timely manner in order to capture the latest developments. Since
there are many models that could be built and since a UAV has limited resources it
is important that the appropriate models are constructed contextually for the particular
task at hand. When the task changes this should be reflected in the models as well.

What is an appropriate model will depend on what properties of the world are rel-
evant, what reasoning is needed to make decisions to achieve a task, and the context
within which that reasoning is made. One functionality is the construction of models
from data aggregated from different sensors that can be used to reason about the envi-
ronment and the UAV in real-time. There are numerous approaches to building quan-
titative models based on sensor data. These models are suitable for traditional tracking
and control applications but do not provide appropriate abstractions when reasoning
about complex situations such as traffic. On the other hand, there are many qualitative
modeling approaches using formal symbols which are well suited to do high level rea-
soning about the environment. How to connect these different approaches and to close
the gap between sensing and reasoning is still an open research question.

This paper presents an implemented traffic monitoring application that uses the
knowledge processing middleware framework DyKnow [1,2] to bridge the sense-reaso-
ning gap. It is done by creating tailored models at different levels of abstraction as
described by declarative policies. The models are interconnected in order to describe
dependencies and to keep them updated. The models created can be used to reason
qualitatively about the world as it develops using for example temporal logic and a
complex event formalism called chronicle recognition.

2 Traffic Monitoring

Imagine a human operator trying to maintain situational awareness about a traffic situ-
ation in an urban area using UAVs which look for accidents, reckless driving, or other
relevant activities. One approach would be for one or more UAVs to relay videos and
other data to an operator for human inspection. Another more scalable approach would
be for the UAVs to monitor traffic situations which arise and only report back the high
level events observed. This would reduce the amount of information generated and help
an operator focus attention on salient events. This paper describes such a traffic mon-
itoring application where cars are tracked by a UAV platform and streams of observa-
tions are fused with a model of the road system in order to draw conclusions about the
behavior of cars.

The input consists of images taken by color and thermal cameras on a UAV which
are fused and geolocated into a single world position. This stream of positions is then
correlated with geographical information system (GIS) data in order to know where in
a road system an object is located. Based on this information, high level behaviors such
as turning at intersections and overtaking are recognized in real-time as they develop
using a chronicle recognition system.

An overview of the components of the traffic monitoring application is shown in
Fig. 1. The three sensors used, the two cameras and the helicopter state estimation
(which is fused from inertial and GPS data), are shown to the left. These provide the

462 F. Heintz, P. Rudol, and P. Doherty

Color camera

Thermal camera

Heli state estimation

Chronicle
recognition

Temporal logic

Reasoning Engines

GIS

Databases

Image processing DyKnow
Sensors

Fig. 1. Overview of the components of the traffic monitoring application

low level data about the environment and the UAV. The next component is an image
processing system which tracks objects seen by the cameras. When an object is being
tracked, images from the two cameras are fused to provide an estimation of the position
in the world of the tracked object. Each time a new frame is analysed a new position
estimate is produced. From this stream of position estimations DyKnow derives further
abstractions used to recognize high level events and closes the sense-reasoning gap.

To describe a high-level event a formal representation called a chronicle is used [3].
A chronicle defines a class of events using a simple temporal network (STN) [4] where
the nodes are primitive events and the edges are temporal constraints between event
occurrences. The chronicle recognition engine takes a stream of primitive events and
detects all chronicle instances. An instance is detected if the stream contains a set of
event occurrences which satisfy all the constraints in a chronicle model. The chronicles
used in this application contain primitive events which capture the structure of the road
network, qualitative information about cars such as which road segment they are on, and
qualitative spatial relations between cars such as beside and behind. Creating a stream
of events based on sensor data which accurately represents the environment of the UAV,
is a concrete instance of the sense-reasoning gap.

To bridge the gap, DyKnow takes a stream of position observations provided by the
image processing system and derives an event stream representation of cars and qualita-
tive spatial relations between cars. DyKnow also derives an event stream representation
of the road network from the information stored in the GIS. One issue that must be han-
dled is how to anchor car symbols used in the chronicles to objects being tracked [5].
Since the image processing system may lose track of cars or start tracking other non-
car objects, DyKnow has to dynamically estimate and continually monitor the type and
identity of objects being tracked. To do this, the normative behavior of different objects
and the conditions for assuming that two objects have the same identity are described
using temporal logic. When a tracked object is found which satisfies the normative be-
havior of e.g. a car, a new car representation is created and the tracked object is linked
to the new car representation. From this moment the car representation will be updated
each time the tracked object is updated. Since links only represent hypotheses, i.e. they
are always subject to becoming invalid given additional observations, the UAV continu-
ally has to verify the validity of the links. This is done by monitoring that the normative
behavior of the assumed object type is not violated. For example, an object assumed to
be a car must not violate the normative constraints on cars, e.g. leaving the road. If it
does violate the constraint, then the corresponding link is removed, in other words the
object is no longer assumed to be a car.

Bridging the Sense-Reasoning Gap Using DyKnow 463

To evaluate a temporal logical formula, DyKnow has to derive a model representing
the value over time of the variables used in the formula. These values must be syn-
chronized in time, so that the evaluation mechanism receives a state for each time-point
containing the value of each of the variables at that time-point. This is done by defining
a policy for each of the formulas which DyKnow uses to derive the required model.
Since these models are derived from sensor data, it is another concrete example of how
DyKnow can be used to bridge the sense-reasoning gap. The evaluation is done using
progression which means that the evaluation is performed in real-time as soon as a new
state is available. This means that the truth value of a formula will be derived as soon
as it is possible.

The application has been tested both on simulated cars driving in a road system and
on real data captured during flight tests.

3 Conclusions

A traffic monitoring application which is an instance of a general approach to creating
high-level situation awareness has been presented. The implemented system takes as
input sequences of color and thermal images. They are used to construct and maintain
qualitative object structures and recognize the traffic behavior of the tracked vehicles
in real-time. The system is tested both in simulation and on data collected during flight
tests. We believe that this type of system where streams of data are generated at many
levels of abstraction using both top-down and bottom-up reasoning handles many of the
problematic issues related to closing the sense-reasoning gap in robotic systems. One
reason for this is that the information derived at each level is available for inspection
and use at all times. This means that the subsystems have access to the appropriate ab-
straction while it is being continually updated with new information and used to derived
even more abstract structures. High-level information, such as the type of vehicle, can
then be used to constrain and refine the processing of lower level information. The result
is a very powerful and flexible system capable of achieving and maintaining high-level
situation awareness.

References

1. Heintz, F., Doherty, P.: DyKnow: An approach to middleware for knowledge processing. Jour-
nal of Intelligent and Fuzzy Systems 15(1), 3–13 (2004)

2. Heintz, F., Doherty, P.: A knowledge processing middleware framework and its relation to the
JDL data fusion model. Journal of Intelligent and Fuzzy Systems 17(4), 335–351 (2006)

3. Ghallab, M.: On chronicles: Representation, on-line recognition and learning. In: Proceedings
of the Fifth Intl Conf on Principles of Knowledge Representation and Reasoning (1996)

4. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. AIJ 49 (1991)
5. Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics and Au-

tonomous Systems 43(2-3), 85–96 (2003)

Emotion Based Control Architecture for

Robotics Applications

Jochen Hirth, Tim Braun, and Karsten Berns

Robotics Research Lab
Department of Computer Science

University of Kaiserslautern Germany
{j hirth,braun,berns}@infromatik.uni-kl.de

Abstract. Assistance and service systems are one of the main research
topics in robotics today. A major problem for creating these systems
is that they have to work and navigate in the real world. Because this
world is too complex to model, these robots need to make intelligent
decisions and create an intelligent behavior without knowing everything
about the current situation. For these aspects, the importance of emo-
tion increases, because the emotional influence helps human beings as
well as animals to make their decisions. To enable a robot to use emo-
tions, a concept for an emotion based control architecture was designed.
The basis of this architecture is a behavior based approach. This paper
presents the developed architecture. Furthermore two application possi-
bilities are presented, where parts of the architecture were already tested
and implemented.

Keywords: control architecture, behavior based control, intelligent
robotic systems.

1 Introduction

The realization of emotions should be a central aspect of any intelligent machine.
Rational and intelligent behavior is needed in nearly every autonomous robot
system. These robots have to make decisions depending on their sensor data.
Neuroscience, psychology and cognitive science suggest that emotion plays an
important role in rational and intelligent behavior [1]. Because of this it is very
important to use the emotional component in a robot system that should work
and decide autonomously.

Worldwide, several research projects focus on the development of emotional
control architectures for robot systems, like e.g. [2] or [3]. In [4] a survey of arti-
ficial cognitive systems is presented. Different models, theories, and paradigms
of cognition addressing cognitive approaches, emergent systems approaches, en-
compassing connectionist, dynamical, and enactive systems. Furthermore several
cognitive architectures drawn from these paradigms are presented.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 464–467, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Emotion Based Control Architecture for Robotics Applications 465

2 Emotional Architecture

Depending on psychological theories [5] [6] an emotion based robot control ar-
chitecture was designed. In the following section the concept of this architecture
will be described in detail. The architecture consists of 3 main parts: behavior,
emotion, and cognition. All possible movements of the robot from simple reflexes
up to high level motor skills are located in the behavior group. These behaviors
are activated in different ways, e.g. directly depending on sensor data, depending
on the emotional state of the machine or deliberately by the cognition part.

Behavior. Every single behavior is build out of the behavior nodes, described
in [7]. Depending on these behavior-nodes all different kinds of behaviors can be
realized. Low level behaviors that moves the different motors to one direction
like e.g. reflexes or high level behaviors that represent complex motor skills.
These behaviors are activated by different parts of the architecture. The more
high level behaviors are mostly activated by the emotion and especially by the
cognitive part. Whereas the low level behaviors are also activated directly by
sensor input. These low level reflexes directly activated by the sensor perception
build the reactive layer of our architecture. In the information flow of this reactive
system is displayed.

Emotion. The emotion group consists of 2 parts. The emotional state which is
just for the representation of the actual internal emotional state of the robot and
drives. The drives represent low level goals of the robots behavior like e.g. survival
or energy consumption etc. A drive gets active if the discontent reaches a certain
threshold. The drive than calculates parameters that change the emotional state
and that select the behaviors of the robot. The aim of the drive is to reach a
saturated state by the selection of the behaviors. If the saturation of the drive
is getting higher the activity of the drive is getting lower. According to projects
like e.g. [2] an emotional space for the representation of the emotional state was
developed. The 3 axis of this emotional space are arousal (A), valence (V), and
stance (S). That means every emotion is described by these 3 parameters. In
most emotional spaces for every emotion a certain area in the emotional space is
reserved. If the actual emotional space is in this area the corresponding emotion
is activated. That means every emotion that should be used has to be defined.
The problem is that psychologists say that there are a lot of emotions and they
do not even know all of them. But most of them agree that all emotions are
build out of the 6 basic emotions: anger, disgust, fear, happiness, sadness, and
surprise.

Cognition. The cognition should generate a plan to reach a certain goal by
combining several behaviors of the system. Therefore it can use sensor informa-
tion as well as emotional information and behavior information. As mentioned
above, especially the emotional state is a main factor to create an intelligent
decision. According to a human the cognitive part is also able to suppress the
emotional state for a while or to influence deliberately the expression of the emo-
tional state to reach a certain goal. The cognitive layer then creates a chain of

466 J. Hirth, T. Braun, and K. Berns

behaviors. Running this chain should lead to the goal. If something unexpected
happens during this run the cognitive layer has to reschedule this chain. For this
reschedule decision the emotional state is of enormous importance if the system
should work in a real world environment.

3 Possible Applications of the Emotional Architecture

Humanoid Robot Head ROMAN. The emotional architecture was already
used for the humanoid robot head ROMAN (see Fig. 1). Because of the actual
emotional state the corresponding facial expressions are generated more details
and experiments can be found in [8].

The architecture was also used to realize a drive-based behavior of the robot.
That means within the architecture different drives like e.g. exploration and com-
munication are defined. These drives determine the goals of the robots behavior
and the emotional state of the robot (see [9]).

One of the next steps in this project will be the usage of the cognitive layer
of the proposed architecture. The robot should use its expressions to reach a
certain goal within an interaction.

Mobile Robot RAVON. Another application possibility for the emotional
architecture described in this paper arises in the path planning component of the
mobile outdoor robot RAVON (Fig. 2). Here, the introduction of an ’emotional
state’ into the robots’ navigational layer allows the system to solve the ’action-
selection’ type problem of choosing a path from the set of currently possible
trajectories in a psychologically plausible way. Using the emotional state as an
abstracted indication of the overall robot situation (considering navigational
capabilities, battery state and/or available mission time), the path planner can
weight the different factors that influence the path finding decision appropriately
and select a solution that is globally optimal.

With the basic emotionally influenced cost model for path planning in place,
the project currently focuses on adding the drives component described in this
paper in order to adjust the motivational state of the robot according to success

Fig. 1. The robot head ROMAN Fig. 2. The mobile robot RAVON

Emotion Based Control Architecture for Robotics Applications 467

and failure in exploration and exploitation of the topological map. It is planned
to combine drives modeling self-preservation, curiosity and fatigue for this.

4 Summary and Outlook

The concept of an emotion based control architecture for autonomous robots is
presented. This architecture consists of 3 main parts: Behavior, Emotion, and
Cognition. The great advantage of the introduced architecture is that it can be
used in completely different systems, as described in section 3. In the future
the proposed architecture had to be improved with the help of psychologists,
sociologist, and biologists. In addition the parts that had not been implemented
and tested till now have to be realized on robots. And finally the whole system
has to be tested on different robots.

References

1. Picard, R.: Affective computing. Technical Report 321, MIT Media Laboratory,
Perceptual Computing Section (November 1995)

2. Breazeal, C.: Sociable Machines: Expressive Social Exchange Between Humans and
Robots. PhD thesis, Massachusetts Institute Of Technoligy (May (2000)

3. Zhang, H., Liu, S., Yang, S.X.: A hybrid robot navigation approach based on partial
planning and emotion-based behavior coordination. In: Proceedings of the 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,
China, October 9-15 2006, pp. 1183–1188 (2006)

4. Vernon, D., Matta, G., Sandini, G.: A survey of artificial cognitive systems: Im-
plications for the autonomous development of mental capabilities in computational
agenst. IEEE Trans. Evolutionary Computation, special issue on Autonomous Men-
tal Development, 2006 (in press)

5. Bösel, R.: Biopsychologie der Emotionen. Walter de Gruyter (1986)
6. Martin, L., Clore, G.: Theories of Mood and Cognition. Lawrence Erlbaum Asso-

ciates, Inc., Mahwah (2001)
7. Albiez, J., Luksch, T., Berns, K., Dillmann, R.: An activation-based behavior control

architecture for walking machines. The International Journal on Robotics Research,
Sage Publications 22, 203–211 (2003)

8. Berns, K., Hirth, J.: Control of facial expressions of the humanoid robot head roman.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
October 9-15 2006, Beijing, China (2006)

9. Hirth, J., Schmitz, N., Berns, K.: Emotional architecture for the humanoid robot
head roman. In: IEEE International Conference on Robotics and Automation
(ICRA), Rome, Italy, April 11-13, 2007, IEEE Computer Society Press, Los Alami-
tos (2007)

Inductive Synthesis of Recursive Functional

Programs

A Comparison of Three Systems

Martin Hofmann, Andreas Hirschberger, Emanuel Kitzelmannn,
and Ute Schmid

University of Bamberg, Faculty of Information Systems
and Applied Computer Science

{martin.hofmann, andreas.hirschberger}@stud.uni-bamberg.de,
{emanuel.kitzelmann, ute.schmid}@wiai.uni-bamberg.de

1 Introduction

One of the most challenging subfields, and a still little researched niche of ma-
chine learning, is the inductive synthesis of recursive programs from incomplete
specifications, such as examples for the desired input/output behavior [1,2,3,4].
The special appeal of an inductive approach to automated program construction
is that the user only provides some examples of the desired program behaviour,
such as [A, B, C] → [C, B, A], as input to the synthesis system and a general pro-
gram (here for reversing a list) is created. Potential applications for automatic
program induction are to enable end-users to create their own simple programs,
to assist professional programmers or even to automatically invent new and ef-
ficient algorithms.

Existing inductive program synthesis systems use either a search-based or an
analytical approach. While the most promising are allocated in the subfield of
program synthesis, also concept learners with extended codomain and especially
ILP-based systems exhibit success worthy to mention.

Since no broadly accepted fundamentals and approaches prevail in the field of
inductive program synthesis. We have systematically evaluated three systems to
inductively synthesise functional recursive programs,1 which are based on three
fundamentally different induction methods.

2 The Systems

Adate [5] (Automatic Design of Algorithms Through Evolution) is a system
for automatic programming utilising evolutionary computation for program gen-
eration. It’s specifications written in a sub-language of ML, which are then em-
bedded in Adate’s own ML source code. This is used as an initial program which
is evolved by applying evolutionary operators during the search.
1 By “functional” we refer to the mapping of each input to a unique output by a

synthesised program and not to a specific programming paradigm.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 468–472, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Inductive Synthesis of Recursive Functional Programs 469

Atre [6,7] is a classification learner, capable of simultaneously learning mutu-
ally dependent, recursive multi-class target predicates. Atre performs a general-
to-specific parallel beam search in the space of definite clauses ordered by
generalised implication [7]. The search space can be described as a forest of
several search trees, where multiple trees are processed by a sequential covering
algorithm simultaneously, following a learn-one-rule strategy.

Dialogs-II (Dialogue-based Inductive and Abductive LOGic program Syn-
thesiser)[8] is a schema-guided, interactive, inductive and abductive recursion
synthesiser that takes the initiative and queries a (possibly computational naive)
specifier for evidence in her/his conceptual language.

Although our focus is on the synthesis of recursive functions, our nomenclature
is, for the sake of convenience, based on the ILP glossary. Therefore, we under-
stand background knowledge as any additional, user provided, problem-specific
information, as e.g. predefined predicates or helper-functions and predicate in-
vention [2] as the automated generation of new predicates or subfunctions to
solve the problem, neither mentioned in the background knowledge, nor in the
training examples.

3 Empirical Setup and Results

Problem Classes. Although all three synthesis systems provide to some extend
the same means to learn recursive programs, they still remain quite inhomoge-
neous concerning their underlying concepts. To properly evaluate them, we were
forced to some common denominator for their problem space. The Venn diagram
(Fig. 1) shall illustrate the extend of the capabilities of the three systems and
explains the identified classes used in the evaluation process.

Single recursive call without predicate invention (I.):
solvable with a single recursive call in the body of the predi-
cate definition; no predicate or variable invention is required.
Single recursive call with predicate invention (II.): at
least the invention of an auxiliary predicate is required.
Multiple recursive call (III. + IV.): at least a second re-
cursive call is necessary (either of another recursive predicate
or of the target predicate itself)
Miscellaneous (V. + III.): emphasises the individual
strengths of a certain system.

Fig. 1. Venn Diagram of System Capabilities2

2 Classes III. and VI. were combined, since Dialogs-II is not capable of multiple
recursive calls and an Atre specification for such a problem would result in an
extensive enumeration of input/output pairs.

470 M. Hofmann et al.

Table 1. Overview of the evaluated problems

(1.) Single Recursive Call without Predicate Invention
evenpos(X,Y) holds iff list Y contains all elements of list X at an even position

in unchanged order.
insert(X,Y,Z) holds iff X is a list with its elements in a not decreasing order,

and Z is X with Y inserted on the right place.
inslast(X,Y,Z) holds iff Z is the list X with Y inserted at the end.
last(X,Y) holds iff Y is the last element of the list X.
length(X,Y) holds iff Y is the length of the list X.
member(X,Y) holds iff X is a list containing the element Y .
switch(X,Y) holds iff list Y can be obtained from list X were all elements on an

odd position changed place with their right neighbour.
unpack(X,Y) holds iff Y is a list of lists, each containing one element of X in

unchanged order.
(2.) Single Recursive Call with Predicate Invention

i-sort(X,Y) holds iff the list Y is a permutation of list X with elements in a non
decreasing order.

multlast(X,Y) holds iff the list Y contains nothing but the last element of list
X as many times as the number of elements in X.

reverse(X,Y) holds iff the list Y is the reverse of list X.
shift(X,Y) holds iff list Y could be derived from list X by shifting the first element

to the end.
swap(X,Y) holds iff list Y could be derived from list X by swapping the first and

the last element.
(3.) Multiple Recursive Call with(out) Predicate Invention

lasts(X,Y) holds iff X is a list of lists, and Y contains the last elements of each
list in X in the correct order.

flatten(X,Y) holds iff Y is the flattened version of the list of lists X.
(4.) Miscellaneous Problems

mergelists(X,Y,Z) holds iff the list Z could be derived from the lists X and Y
such that Z = [x1, y1, x2, y2, . . .] where each xn and yn is the nth of the list X
and Y , respectively.

odd(X)/even(X) holds iff X is an odd, respectively even number, and each pred-
icate is defined in terms of zero(X) and the other.

Description of Problems. We especially concentrated on problems over lists,
because with their simple structure they allowed us to tailor problems with a mini-
mum of necessary background knowledge and also remained more or less
unchanged for all systems, to make the whole evaluation more transparent and
facilitate the comparison of results between the different systems. Table 1 gives a
short description of our examined problems. It contains typical, already researched
problems [9], as well as some of our own problems, tailored to these classes.

3.1 Results of the Test Setting

Table 2 shows the results of the test runs with different systems on problems
from classes described above. It is not surprising that program synthesis is up till

Inductive Synthesis of Recursive Functional Programs 471

Table 2. Problem runtimes in seconds on different systems

(1.) (2.) (3.) (4.)
m

e
m

be
r/

2

u
n
p
a
c
k
/
2

le
n
g
th

/
2

la
st

/
2

in
sl
a
st

/
3

sw
it
c
h
/
2

e
v
e
n
p
o
s/

2

in
se

rt
/
3

re
v
e
rs

e
/
2

i-
so

rt
/
2

sw
a
p
/
2

sh
if
t/

2

m
u
lt
la

st
/
2

fl
a
tt
e
n
/
2

la
st

s/
2

o
d
d
/
1

e
v
e
n
/
1

m
e
rg

e
li
st

s/
3

Adate 2.0 1.5 1.2 0.2 2.7 2.8 1.6 16 78 >70 232 15 4.3 110 822 — 80
Atre 91.6 × 17.9 6.4 × 1983 156⊥ — — — — — — — — 0.05 —
Dialogs-II 0.03⊥ 0.05 0.04 0.03⊥ 0.03 0.19 × 0.06 0.07 0.09⊥ 0.15 0.11 0.13⊥ × × — —

(— not tested × failed ⊥ wrong)

now characterised by a very strong trade-off between the restriction of the search
space and the time needed for synthesis. Adate operates in a quite unrestricted
search space, capable of finding powerful solutions for complex problems, whereas
Dialogs-II successively confines the search space, but with disadvantageous loss
of expressional power. Atre is an indicative example that extending a concept
learner with recursive abilities is not sufficient for satisfactory program synthesis.

4 Conclusion

The goal of future research should be to combine the Dialogs-II’s search bias
with the unrestricted search space of Adate and the expressional power of
functional languages. This could for example be done by using the input/output
examples during Adate’s search not only for validation but also as an heuristic.
Nevertheless, Atre can still serve as a salutary example, since the accessory
adoption of Atre’s k-beam search strategy could make it possible to learn mu-
tually dependent recursive target functions, provided Adate’s search time could
be reduced significantly. We currently use these insights in our system Igor [4].
This new approach formalises functional program synthesis in the term-rewriting
framework and represents functional programs as constructor term rewriting sys-
tems containing recursive rules.

References

1. Biermann, A.W., Guiho, G., Kodratoff, Y. (eds.): Automatic Program Construction
Techniques. Macmillan, New York (1984)

2. Flener, P., Yilmaz, S.: Inductive synthesis of recursive logic programs: Achievements
and prospects. J. Log. Program. 41(2-3), 141–195 (1999)

3. Flener, P., Partridge, D.: Inductive programming. Automated Software Engineer-
ing 8(2), 131–137 (2001)

4. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An explana-
tion based generalization approach. Journal of Machine Learning Research 7(Febru-
ary), 429–454 (2006)

472 M. Hofmann et al.

5. Olsson, J.R.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1), 55–83 (1995)

6. Esposito, F., Malerba, D., Lisi, F.A.: Induction of recursive theories in the normal
ILP setting: Issues and solutions. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000.
LNCS (LNAI), vol. 1866, pp. 93–111. Springer, Heidelberg (2000)

7. D. Malerba, A. Varalro, M.B.: Learning recursive theories with the separate-and-
parallel conquer strategy. In: Proceedings of the Workshop on Advances in Inductive
Rule Learning in conjunction with ECML/PKDD, pp. 179–193 (2004)

8. Flener, P.: Inductive logic program synthesis with Dialogs. In: Muggleton, S. (ed.)
Proceedings of the 6th International Workshop on Inductive Logic Programming,
pp. 28–51. Stockholm University, Royal Institute of Technology (1996)

9. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proceedings of
the 1st Conference on Algorithmic Learning Theory, pp. 368–381. Ohmsma, Tokyo,
Japan (1990)

Training on the Job — Collecting Experience

with Hierarchical Hybrid Automata�

Alexandra Kirsch and Michael Beetz

Technische Universität München

Abstract. We propose a novel approach to experience collection for
autonomous service robots performing complex activities. This approach
enables robots to collect data for multiple learning problems at a time,
abstract it and transform it into information specific to the learning
tasks and thereby speeding up the learning process. The approach is
based on the concept of hierarchical hybrid automata, which are used as
expressive representational mechanisms that allow for the specification
of these experience-related capabilities independent of the program itself.

1 Motivation

Our vision is to build general purpose service robots that do not have to be pre-
programmed for every task variation and every new environment. Such robots
should be capable of improving and adapting themselves doing training on the
job. If their jobs are complex activities such as household chore they have to do
these optimizations in little training time and with sparse experience. In such
settings being effective in the collection of experiences is an essential precondi-
tion for successful robot learning. To achieve training time efficiency robots must
decompose their overall learning task into sets of modular and specific learning
tasks that address detected flaws in their behavior. Learning task specific expe-
riences for these subtasks that capture the interaction of the robot’s behavior
and the context conditions have to be collected concurrently. Finally, collected
experiences must be stored, managed and transformed into abstract descriptions
that speed up the learning process.

An instance of this vision is a household robot (see figure 1) equipped with
default plans for setting the table, cleaning, etc. It has basic skills for manipu-
lating and navigating as well as default plans — general purpose plans that are
developed to be applicable in a variety of environments and to be stable and
robust in most cases — for its high-level tasks. However, the plans can fail or
operate suboptimally if the robot’s lower-level routines are not adapted to the
specific environment. For example, when objects are to be taken out of cup-
boards or drawers the robot might encouter difficulties in a new kitchen, e.g.
when it hasn’t positioned itself appropriately for the manipulation task.
� The research reported in this paper is partly funded by the cluster of excellence

CoTeSys (www.cotesys.org) and the DFG under the project “Semi-automatic Ac-
quisition of Visuo-motoric plans” (SPP 1125).

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 473–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

474 A. Kirsch and M. Beetz

Fig. 1. Kitchen scenario with a simulated B21 robot equipped with a camera, laser
and sonar sensors

The robot can recognize such failures and locate its source and execution
context inside the program. So when it detects that the manipulation task fails
strikingly often, it puts it on the agenda of problems that have to be learned. The
experience for all of those unsolved learning problems are then gathered while
it performs its household chores. One of the difficulties here is that experience
sometimes is only desired in a certain context. For example, when the robot
detects that the navigation routine performs different while it is cleaning the
floor (presumably because the floor is wet), it is only interested in experience
about the navigation routine while cleaning the floor. Other navigation tasks are
of no interest at all in this situation.

As learning takes place at various levels of abstractions, it does not suffice to
simply log all sensor data and control signals. The learning systems also need
information about the program state, such as local variable values. For example,
to learn informative causal models of gripping actions the learning mechanism
might need information about the scene — its clutteredness and the existence
of reaching corridors. Or it might need information about which hand was used
and why, or the position where the robot intended to grasp the cup. This data
is learning task specific and typically not contained in the low-level sensor and
control data.

To account for the robot’s behavior being a result of its interaction with
the environment, meaningful learning experience can only be obtained with a
context-specific experience acquisition. We also need a compact and powerful
behavior abstraction by segmenting continuous behavior into states that are
meaningful with respect to the learning task. Furthermore, the abstraction of
experience for learning should be possible on different levels.

In this paper we propose hierarchical hybrid automata (HHA) as a basic
mechanism to fulfill these criteria. We propose HHAs to collect experience and
learn from it that allow for

– the modular specification of experience collection independent of primary
activity. This is necessary, because the interesting points in the control pro-
gram can be distributed within the code and because our control program
is modified by plan transformations.

Training on the Job — Collecting Experience 475

– anchoring experience collection into the control program such that program
execution automatically effectuates state transitions in the automaton.

– the specification of the problem specific data to be recorded, such as prop-
erties of objects being grasped or context conditions such as clutter.

– abstraction of behavior into learning problem specific information, for ex-
ample the duration of the activation of a state or the number of failures
encountered.

Our approach is implemented in RPL (Reactive Plan Language) [1], a pro-
gramming language for reactive plans implemented as a set of LISP macros. It
provides high-level programming constructs like loops and conditionals as well
as process control (parallel execution, mutual exclusion, etc.). The constructs for
acquiring experience are embedded in a language called RoLL (Robot Learning
Language), which is based on RPL.

2 Approach

For an illustration of our approach see Figure 2.
The first step is to define the required experience by specifying execution

episodes and data associated with it. We model this information as an experience
automaton, which is a hierarchical hybrid automaton where the episodes are
modeled as discrete states with continuous behavior.

We anchor the experience automaton to the control program in such a way
that it starts accepting an interpretation stream when the program task match-
ing the automaton starts in order to interpret the sensor and execution data in

experience automaton
Control
Program

anchoring

experience acquisition

ra
w

e
x
p
e
ri

e
n
c
e

. . .
experience abstraction

a
b
st

ra
c
t

e
x
p
e
ri

e
n
c
e

. . .

Functionlearning

in
te

g
ra

ti
o
n

model automaton

?

?

fg

Fig. 2. Overall procedure for learning with RoLL

476 A. Kirsch and M. Beetz

the context of the experience. Because the behavior that generates the episodes
emerges from different parts of the program, it is not practicable to add the
automaton code at the specific places in the program. Rather, we run a process
parallel to the primary activity that is anchored in the control program and in
this way can detect state transitions and observe the desired data.

The automaton returns experiences, i.e. data traces structured along the def-
inition of the specified automaton. These experiences contain all information
for understanding the interaction of the program and the environment needed
for the respective learning task. In Figure 2 the experience data is structured
according to the automaton structure and possible data sources are the robot’s
internal variables (indicated as bars) and external variables (indicated as zigzag-
ging lines). After the acquisition, the experiences are stored in a database, which
facilitates the retrieval, but also purification of the data with data mining tools.

Before starting the learning process, the experience must usually be converted
to more abstract features. This can be regarded as a transformation of the hierar-
chical hybrid automaton of the experience acquisition process to a more abstract
form. Figure 2 illustrates this by showing the possible abstraction steps, chang-
ing the automaton structure (the data of the two automata in the middle are
combined into one) and combining data (as in the data of the third automataon,
where robot and environment data is merged).

Finally, the whole learning process can be regarded in the light of HHA. We
can build models of the robot’s control program with probabilistic hierarchical
hybrid automata (PHHA). PHHA are HHA with the difference that state tran-
sitions are not activated by conditions, but rely on a probability distribution.
After learning from experience, the program model can be replenished with the
probability distributions of state transitions.

With the techniques presented here, we can for example observe the activity
of lifting an object whose weight is greater than 2 kg. The respective automaton
would be active as soon as a gripping action starts and the gripped object fulfills
the specification. During the execution of the action, several interesting pieces
of data can be observed, e.g. the required time, failures, or if both grippers are
used or only one.

References

1. McDermott, D.: A reactive plan language. Technical report, Yale University, Com-
puter Science Dept. (1993)

2. Kirsch, A., Beetz, M.: Combining learning and programming for high-performance
robot controllers. In: Autonome Mobile Systeme (2005)

3. Kirsch, A., Schweitzer, M., Beetz, M.: Making robot learning controllable: A case
study in robot navigation. In: Proceedings of the ICAPS Workshop on Plan Execu-
tion: A Reality Check (2005)

4. Beetz, M., Kirsch, A., Müller, A.: RPL-LEARN: Extending an autonomous robot
control language to perform experience-based learning. In: 3rd International Joint
Conference on Autonomous Agents & Multi Agent Systems (AAMAS) (2004)

Selecting Users for Sharing Augmented Personal

Memories

Alexander Kröner, Nathalie Basselin, Michael Schneider1, and Junichiro Mori2

1 German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

firstname.lastname@dfki.de
http://www.dfki.de/sharedlife/

2 University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

jmori@mi.ci.i.u-tokyo.ac.jp

Abstract. Dense records of user actions allow an intelligent environ-
ment to support its user with an augmented personal memory. In this
article, we report on task-oriented user studies concerning mechanisms
for sharing such memories, and show how the structure of a social net-
work can be exploited in order to extend the resulting sharing approach.

1 Sharing Augmented Personal Memories

Human decision making usually takes not only the decision maker’s personal
experiences into account, but also experiences made by other persons. This be-
havior can be supported by a personal assistant with access to a digital memory.
For instance, Gemmell et al. describe how a memory of documents allows its
owner to create stories about past occurrences [1]. This idea can be extended
in order to support users during the planning of future actions. For instance,
by combining blogs with a trust-based recommender, a user may be supported
on the basis of trusted blogs (cf. [2]). In this article, we report on research
conducted in SharedLife (BMBF grant 01 IW F03), which is focusing on user
support for sharing and exploiting augmented personal memories. This ongoing
work is based on experience records, which are automatically created for single
users by an instrumented environment. Here, we think of an “experience” as a
user action, involved objects, contextual information (e.g., location, time), and
personal annotations (e.g., ratings, written comments).

The system is tested in a grocery shopping and cooking environment (see Fig-
ure 1 and [3]), which supports its users in sharing information such as recipes,
personal cooking instructions, and experiences with ingredients. A user controls
most sharing processes by means of a mobile device. In order to learn about
potential users’ preferences regarding these mechanisms, we conducted a focus
group study with 23 students (around 23 years old) from a school of engineering.
The study consisted of mockups of user interfaces for more or less automated
sharing of experiences, examples of sharing occasions, questionnaires, and a dis-
cussion round. Its participants understood the need for support in handling a

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 477–480, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

478 A. Kröner et al.

Fig. 1. Building an augmented memory in a shopping (left-hand side) and cooking
(right-hand side) environment. In the middle: events tracked by means of RFID.

large number of requests and appreciated automated methods for reducing the
need of manual intervention. Some participants expressed concerns regarding the
efforts needed to configure such services, especially in a “cold start” situation
where a new system needs to be personalized. Others worried about losing con-
trol of their augmented memories if the set of constraints affecting the sharing
process becomes complex. In order to deal with these issues they favored mecha-
nisms such as access rights for user groups, and voted strongly for the possibility
to make exceptions from such general approaches to protect selected data (e.g.,
to hide events which could be misinterpreted by a recipient).

We used the participants’ comments to guide the implementation of a peer-to-
peer sharing mechanism. Incoming requests are recorded in the user’s augmented
memory, so that the user (and the system as well) may handle them at any time.
Here, one option for the user is to inspect requested experiences, exclude selected
ones, and then reply manually. This approach is in compliance with comments
from our study concerning the option to make exceptions from regular response
behavior, either to protect certain data without ignoring a request completely,
or to eliminate irrelevant information1. This manual treatment is complemented
by rules, which can be created to trigger automated sharing behavior (e.g., reply,
dismiss, notify user) in response to similar requests in the future. The precon-
dition of such a rule consists in features such as questioner, location, action
type, action patient, which are extracted from experiences in the user’s memory
matching the request. The user may verify these features’ impact on a potential
response and edit them if desired.

2 Selecting Sharing Partners

These mechanisms allow our users to exchange experiences—but they don’t assist
them in the challenging task of finding “sharing partners” actually able and
willing to answer an information need. A contextual inquiry regarding general
properties of our scenario with 4 persons indicated the special value of food
profiles for this problem: countries of origin, religion, health issues and dietary
constraints are attributes upon which “relationships by common property” can

1 As pointed out by Consolvo et al., if people are willing to share information, then they
are usually interested in providing information which is useful for the questioner [4].

Selecting Users for Sharing Augmented Personal Memories 479

Fig. 2. A user interface for discovery and selection of sharing partners. The screen on
the left-hand side enables the specification of initial selection constraints, while the
screen on the right-hand side allows exploring and refining the selection.

be specified. Matsuo et al. assume that people sharing common properties are
implicitly related and form sub-communities [5]. Relations based on common
environments or artefacts (stores, regions, products, or dishes) also belong to
this category of relationships. Other relationships result from the community
members’ communication. In our case, such “relationships by communication” [5]
imply that the community evolves through the exchange of experiences: with
time, individuals will build relationships based on their evaluation of the received
experiences. To some extent, these relationships may be extracted from a user’s
augmented memory, where we store records of each sharing process.

In order to design a user interface for selecting sharing partners, we conducted
two iterations of design and evaluation. We implemented four prototypes, all of-
fering the same possibilities of selection criteria based on information from food
profiles (e.g., “is vegetarian”), some other relationships by common properties
(e.g., age or physical proximity) and relationships by communication (e.g. num-
ber of experiences exchanged). In each design, potential partners were grouped
into three categories: the user’s buddies (i.e. people known from the user in the
real world), “familiar strangers” (people the user has exchanged information with
in the past, but who are actually unknown to her), and other candidates (e.g.,
other people nearby). For the prototypes’ design we chose techniques known
from community-based applications (buddy lists, social networks) and from in-
formation visualization (e.g., data clouds, fish eye view effect).

Participants had to perform the same tasks (constraining a candidate set of
users) with all of the prototypes in different orders. They performed best with
an interface composed from regular widgets (e.g., checkboxes, sliders). However,
while well-suited for the selection task, that interface does not support the user
in exploring the candidate set, which is reflected by a participant’s comment:
“not enough information about the persons is available”. Therefore, we com-
bined this prototype with a two-dimensional plot in which sharing candidates
are distributed according to two customizable dimensions (see right-hand side of

480 A. Kröner et al.

Fig. 2). A second evaluation with 6 participants attested that the combination
was better than the previous prototypes.

Our selection approach relies on profiles of people known to the user. While
these profiles may be refined in the daily information exchange, there is still
the question of how to select new contacts and create initial profiles. Therefore,
we made an attempt to exploit information explicitly expressed by members of
a social network service for user selection support in our ubiquitous comput-
ing setting. The goal was not only to reuse information previously specified by
the user, but also to exploit the network’s structure in order to obtain sharing
candidates, which are socially close to the user (and thus more likely willing
to reply) and which are considered by the community to be experts regard-
ing a set of task-specific constraints. Our prototype extracts from HTML pages
of BakeSpace (http://bakespace.com) information such as user profiles, friend
lists, and recipes. When the system is queried for an expert (e.g., for vegetar-
ian dishes), it searches the user’s social network and computes the expertise of
neighboring users according to relevancy to the given query based on a prob-
abilistic language model [6]. To find an expert who is socially close to a user,
we employ Breadth First Search due to its strength of finding the target closest
to the source (which matches our requirement to find socially close experts).
In addition, we consider the network centrality of an expert. In social network
analysis, several ways to measure centrality for sociological interpretation of net-
work structure have been proposed [7]. We employ the simplest measure, called
degreeness, which is based on the number of a node’s links. Here, our assumption
is that if an expert has less links, he or she can be more accessible than other
experts who have many links therefore are overloaded with many seekers.

References

1. Gemmell, J., Aris, A., Lueder, R.: Telling stories with MyLifeBits. In: ICME 2005
(2005)

2. Avesani, P., Massa, P., Tiella, R.: A trust-enhanced recommender system applica-
tion: Moleskiing (2004)

3. Schneider, M.: The Semantic Cookbook: Sharing Cooking Experiences in the Smart
Kitchen. In: Proceedings of the 3rd International Conference on Intelligent Environ-
ments (IE’07) (to appear, 2007)

4. Consolvo, S., Smith, I.E., Matthews, T., LaMarca, A., Tabert, J., Powledge, P.:
Location disclosure to social relations: why, when, & what people want to share.
In: CHI ’05: Proceedings of the SIGCHI conference on Human factors in computing
systems, New York, NY, USA, pp. 81–90. ACM Press, New York (2005)

5. Matsuo, Y., Hamasaki, M., Mori, J., Takeda, H., Hasida, K.: Ontological consid-
eration on human relationship vocabulary for FOAF. In: Proceedings of the 1st
Workshop on Friend of a Friend, Social Networking and Semantic Web (2004)

6. Balog, K., Azzopardi, L., Rijke, M.: Formal models for expert finding in enterprise
corpora. In: Proceedings of SIGIR’06 (2006)

7. Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social net-
works 1, 215–239 (1979)

Semantic Reflection – Knowledge Based Design

of Intelligent Simulation Environments

Marc Erich Latoschik

AI & VR Lab, AI Group, Bielefeld University
marcl@techfak.uni-bielefeld.de

Abstract. This paper introduces Semantic Reflection (SR), a design
paradigm for intelligent applications which represents applications’ ob-
jects and interfaces on a common knowledge representation layer (KRL).
SR provides unified knowledge reflectivity specifically important for com-
plex architectures of novel human-machine interface systems.

1 Introduction

A principle found in intelligent virtual environments [4] is a semantic repre-
sentation of scene content [2,3,5,7,8]. Reflecting semantic information on a de-
dicated KRL has shown to be beneficial for several domains of computational
intelligence, from novel – e.g. multimodal – man-machine interactions to vir-
tual agents, or advanced computer games. Semantic models strongly influence
recent semantic web efforts and have also gained interest in OOP [6] as enriched
representations for object reflection. In the software engineering domain, recent
approaches explore the usefulness of ontologies to describe the engineering pro-
cess of complex systems [1].

impl. language binding

data/objects/interfaces

specific techniques

impl. language binding

data/objects/interfaces

specific techniques

impl. language binding

data/objects/interfaces

specific techniques

impl. language binding

data/objects/interfaces

specific techniques

application
design

Fig. 1. Semantic Reflection reflects objects, interfaces, and techniques from various
modules on a unified knowledge representation layer for high-level application design

Semantic Reflection. (SR) combines and advances these directions. It is a de-
sign principle based on a unified semantic description and implementation layer
for modular but closely coupled applications which require a built-in knowledge
layer support. Integrated into a modular architecture as illustrated in figure 1,
SR first establishes a semantic binding to the implementation languages of given
modules. Second, it reflects a module’s low level design primitives, i.e., the chosen

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 481–484, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

482 M.E. Latoschik

node 1
position
bounds
velocity

node 2
rotation
bounds
angle1

triggers

rotation position
...core events

node 1
position
bounds
velocity

node 2
rotation
bounds
angle1

triggers

rotation position
...

Fig. 2. Semantic representation of application graph technique. Each object is reflected
by a semantic net node. A new triggers relation is defined which denotes a required
event propagation between the objects. The triggers relation is implemented by the
FESN’s core event system by establishing core event connections between compatible
slots of the connected nodes (see right side).

proc.
step

func.
call

step1 step2func1
retval
param1
...
paramN

retval
param1
...
paramN

retval
param1
param2
...
paramN

cell24

value

step3
retval
param1
param2
...
paramN

followd_byfollowed_by

inst inst inst

isa

executes

context realization

module
mod-type
calling-conv
...

function
retval

executes

inst

Fig. 3. Basic scheme of function call representation. Functions are lifted to the KRL
where they serve as execution targets for processing steps (terminological knowledge
represented as grey nodes). The processing steps representing function calls carry a list
of slots for their return values and parameters according to the associated functions.
The core event system is used to a) define the sources for required parameters as well
as b) to finally trigger function execution. Decomposition into function description and
processing steps allows for multiple arbitrary processing chains. Independent storage
cells are used to insert arbitrary parameters into the call chain between the functions.

data structures, objects, and interfaces. Third, it reflects the modules’ particular
techniques like state machines, scene graphs, application graphs etc. To provide
Semantic Reflection as a central design feature, a dedicated Functional Extend-
able Semantic Net (FESN) base formalism provides performance optimizations
like hashing and an internal core event system for implementing the procedural
semantics for the reflected techniques and interface bindings.

Semantic Reflection 483

2 Example Module Techniques and Interfaces

Figure 2 illustrates how the base formalism is used to design an application
graph, a specific technique for a message system with limited types of events
and a fixed chronology of event processing, on the KRL: triggers-relations are di-
rected relations between two nodes. The procedural semantics for the assignment
of triggers-relations between nodes is as follows: Core FESN-event connections
are established between all compatible slots of connected nodes (see dotted lines
in figure 2). This behavior is conveniently implemented using the FESN’s func-
tional extendibility by deriving the triggers-relation from the base relation and
then redefining its assert method. It is to the developers choice to implement
different semantics, e.g., application designers might desire field connections to
be established per field and not per object.

There are situations where either the provided modules’ techniques are in-
sufficient in terms of a required inter-module data exchange or such dedicated
techniques are plainly not provided and modules require direct access to the
other modules’ interfaces. Hence, modules can export their interface to provide

user
rep.

agent
rep.

inter-
action

anim.

cogn.

phy-
sics

KRL

graphics

Fig. 4. Left: Interaction with a virtual agent. The agent’s perception components au-
tomatically access user interactions in the context of the current environment. For
example, the agent’s vision is implemented as a view sensor monitoring the scene. Us-
ing semantic reflection, the agent derives the semantics of what he sees. His higher
cognitive processes use this knowledge to further process incoming percepts and to
generate appropriate multimodal responses.

484 M.E. Latoschik

interface reflection on the semantic layer for a high-level definition of function
call execution as illustrated in figure 3.

3 Conclusion

Semantic reflection has proven to be extremely useful in recent application de-
signs implemented at our lab. It is a novel design paradigm which effectively
supports the development of complex but on the other hand extensible and
reusable components. As one example, the left pictures in figure 4 are taken
during interaction scenes with a virtual agent. The right side illustrates, how
semantic reflection of the graphical scene is utilized to reflect the agent’s per-
ception as well as the agent’s and the user’s interaction.

Acknowledgment. This work is partly supported by the DFG under grant Wa
815/2 and the EU project PASION under contract number 27654 in FP6-IST.

References

1. Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Technol-
ogy. Springer, Heidelberg (2006)

2. Kalogerakis, E., Christodoulakis, S., Moumoutzis, N.: Coupling ontologies with
graphics content for knowledge driven visualization. In: Proceedings of the IEEE
VR2006, pp. 43–50. IEEE Computer Society Press, Los Alamitos (2006)

3. Latoschik, M.E., Schilling, M.: Incorporating VR Databases into AI Knowledge Rep-
resentations: A Framework for Intelligent Graphics Applications. In: Proceedings of
the Sixth International Conference on Computer Graphics and Imaging, IASTED,
pp. 79–84. ACTA Press (2003)

4. Luck, M., Aylett, R.: Applying Artificial Intelligence to Virtual Reality: Intelligent
Virtual Environments. Applied Artificial Intelligence 14(1), 3–32 (2000)

5. Lugrin, J.-L., Cavazza, M.: Making Sense of Virtual Environments: Action Repre-
sentation, Grounding and Common Sense. In: Proceedings of the Intelligent User
Interfaces IUI’07 (2007)

6. Meseguer, J., Talcott, C.: Semantic models for distributed object reflection. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

7. Peters, S., Shrobe, H.: Using semantic networks for knowledge representation in an
intelligent environment. In: PerCom ’03: 1st Annual IEEE International Conference
on Pervasive Computing and Communications, Ft. Worth, TX, USA, March 2003,
IEEE Computer Society Press, Los Alamitos (2003)

8. Soto, M., Allongue, S.: Modeling methods for reusable and interoperable virtual en-
tities in multimedia virtual worlds. Multimedia Tools Appl. 16(1-2), 161–177 (2002)

Prolog-Based Real-Time Intelligent Control of
the Hexor Mobile Robot�

Piotr Matyasik, Grzegorz J. Nalepa, and Piotr Zięcik

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

ptm@agh.edu.pl, gjn@agh.edu.pl, kosmo@agh.edu.pl

Abstract. The paper presents a concept of an intelligent control plat-
form for the Hexor mobile robot, based on the XTT knowledge repre-
sentation method for rule-based systems. The control systems is imple-
mented in Prolog, with use of the Embedded Prolog Platform. The paper
presents real-time control capabilities provided by this solution.

1 Introduction

The paper presents a research in the area of intelligent control of embedded
real-time systems. A knowledge-based hierarchical control platform has been de-
veloped for the Hexor mobile robot. The platform combines a high-level control
logic expressed with use of the XTT-based representation [1], and an embed-
ded runtime environment using the Embedded Prolog Platform [2]. In the paper
practical enhancements of the XTT towards effective control of reactive systems
in real-time are proposed.

2 The Hexor Platform

HexorII is an autonomous 6-legged intelligent robot, developed by Stenzel
(www.stenzel.com.pl) company as a didactic platform. It has a modular con-
struction and can be easily extended by additional components (e.g. compass,
laser sensors, etc.). The company provides a simple Basic-based software devel-
opment environment. However, HexorII lacks some features needed for advanced
control algorithm development. The transmission protocol implemented in Hexor
does not allow to send data independently. Environmental information can only
be pooled from the robot by the host software. Writing microcontroller software
with a single control loop in Basic is easy. Unfortunately, this approach results
in performance loss and domino effect while modifying subsystems.
Because of the software platform limitations, a new Hexor’s internal control-

ling software architecture is proposed. Simple Basic program with one control
loop was replaced by a real-time embedded operating system. High-level control
logic is knowledge-based with use of the XTT representation.
� The paper is supported by the Hekate Project funded from 2007–2009 resources for
science as a research project.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 485–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.stenzel.com.pl

486 P. Matyasik, G.J. Nalepa, and P. Zięcik

3 New Knowledge-Based Control Platform Architecture

Several possibilities where taken into consideration while developing the new
Hexor low-level software. The first one was a dedicated application running di-
rectly on hardware. This one was abandoned because of problems with control-
ling whole hardware with a complicated state machine for each task, running off
an interrupt timer. Thus embedded operating system became an obvious choice.
New Hexor controlling software is written on top of FreeRTOS

(www.freertos.org). It is an open source portable hard real-time operating
system. It can run with small memory footprint (700 bytes for OS, depending
on configuration). The new HexorNG software architecture (Fig. 1) features: a
multi-layer, easy extensible design, an intelligent knowledge-based control, based
on the XTT rule-based representation, ability to distribute computations be-
tween many processing units, reliable real-time operating system based hardware
control.

Hexor hardware

FreeRTOS

HexorNG Software

HEP

EPP

HighLevelLogicControl

Fig. 1. HexorNG system architecture

HexorNG software substitutes all of the functions of the original one (low-
level hardware control, movement execution, sensors reading, communication).
The intelligent behavior of the controlled system can be described using a high-
level, rule-based model. Following assumption are taken into consideration in
constructing the knowledge base model: a top down approach, visual form, hi-
erarchical structure, ability to verify system properties, high-level of abstraction
from the hardware, distinguishing time as a special attribute for time-oriented
verification and time-related behavior.
The knowledge base is described using the XTT (eXtended Tabular Trees)

method ([1]). It provides implementation agnostic approach for rule-based sys-
tems [3,4], and allows for fast prototyping of the knowledge-based models with
Prolog. A very important feature of the XTT method is the visual, hierarchical
form of representation. XTT-based development allows for fast implementation
of new, high level control algorithms. Moreover, with its ability to verify knowl-
edge during the design phase, it allows for avoiding problems related to system
completeness, determinism, or optimization. Development of knowledge-based
control system in XTT-based environment is presented on Fig. 2. XTT repre-
sentation allows for generating a Prolog-based control logic prototype. In order

www.freertos.org

Prolog-Based Real-Time Intelligent Control of the Hexor Mobile Robot 487

Hexor robot
Embedded

Prolog

Linux

Prolog
prototype

Physical level

Logical desing
based on XTT

Formal analysis
in Prolog

Veryfication
optimalization

Logical level

Deployment

Fig. 2. XTT-based development cycle

to execute this logic, a Prolog interpreting environment must be provided. In
this approach the Embedded Prolog Platform is used [2].

4 XTT Enhancements and Real-Time Control Features

XTT lacks some features needed for control applications like event handling
and interchanging information with controlled object. Originally XTT execution
starts from a single entrance point. Handling multiple events forced to change
this feature. Below an extension to XTT is introduced based on the following
postulates: every event is represented as tabular tree, every event is processed
separately but may share attributes with the others, events can be of two kinds:
asynchronous (coming from environment, for example if sensor finds obstacle),
and synchronous (generated by the timers). Events are executed according to
the assigned priorities, events with higher priorities are executed before those
with lover ones, events with the same priorities are queued with FIFO policy.
Extended graphical notation is presented on Fig. 3. Program consist of two

kinds of XTT table sets. The first one is responsible for handling the timed
events (above). It is represented by marking a starting point with a clock icon.
After the slash in event name a priority is specified. Second one handles the
asynchronous events. Starting points of those events are marked with an arrow
and also contain name and priority information.
Embedded Prolog Platform (EPP) [2] introduces real-time capabilities and

hardware drivers for Prolog. EPP consists of a Prolog layer, with an interpreter
for executing control logic code, a supervising middleware, for connecting the in-
terpreter with the operating system, and an operating system itself, general pur-
pose or embedded for interfacing hardware, possibly with real-time extensions.

488 P. Matyasik, G.J. Nalepa, and P. Zięcik

Timer1/1

Table3

Table2

Table5
Table4

Table1

Event1/2

Fig. 3. XTT event handling control logic view

EPP it implements events as asynchronous calls to Prolog, that can be used in
similar way as the interrupts. But events in EPP can carry data, and provide
bi-directional communication with Prolog.

5 Future Work

The research presented in this paper should be considered a work in progress.
Future work will be concentrated on improving the visual representation of the
knowledge in editor, and more EPP integration. The original contribution of this
paper includes the concept of using an embedded Prolog-based logic for real-
time control of reactive systems, and the practical enhancements of the XTT
knowledge representation method towards effective control of such systems.

References

1. Nalepa, G.J., Ligęza, A.: A graphical tabular model for rule-based logic program-
ming and verification. Systems Science 31(2), 89–95 (2005)

2. Nalepa, G.J., Zięcik, P.: Integrated embedded prolog platform for rule-based con-
trol systems. In: Napieralski, A. (ed.) MIXDES 2006: MIXed DESign of integrated
circuits and systems: proceedings of the international conference, Gdynia, Poland,
22–24 June 2006, Ł odź, Technical University Lodz. Department of Microelectronics
and Computer Science, pp. 716–721 (2006)

3. Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press, Boca
Raton (1998)

4. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Heidelberg (2006)

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 489–493, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improving the Detection of Unknown Computer Worms
Activity Using Active Learning

Robert Moskovitch, Nir Nissim, Dima Stopel, Clint Feher,
Roman Englert, and Yuval Elovici

Deutsche Telekom Laboratories at Ben-Gurion University,
Be’er Sheva, 84105 Israel

{robertmo,nirni,stopel,clint,englert,elovici}@bgu.ac.il

Abstract. Detecting unknown worms is a challenging task. Extant solutions,
such as anti-virus tools, rely mainly on prior explicit knowledge of specific
worm signatures. As a result, after the appearance of a new worm on the Web
there is a significant delay until an update carrying the worm’s signature is
distributed to anti-virus tools. We propose an innovative technique for detecting
the presence of an unknown worm, based on the computer operating system
measurements. We monitored 323 computer features and reduced them to 20
features through feature selection. Support vector machines were applied using
3 kernel functions. In addition we used active learning as a selective sampling
method to increase the performance of the classifier, exceeding above 90%
mean accuracy, and for specific unknown worms 94% accuracy.

Keywords: Classification, Active Learning, Support Vector Machines,
Malcode Detection.

1 Introduction

The detection of malicious code (malcode) transmitted over computer networks have
been researched intensively in recent years. One type of abundant malcode is worms,
which proactively propagate across networks while exploiting vulnerabilities in
operating systems or in installed programs. Nowadays, excellent technology (i.e.,
antivirus software packages) exists for detecting known malicious code, typically,
through detection of known signatures. Nevertheless, it is based on prior explicit
knowledge of malcode signatures rendering helpless against unknown malcode. This
solution has obvious demerits, however, since worms propagate very rapidly. [1].

Intrusion detection, commonly done at the network level, a more local technique is
Host-based Intrusion Detection (HIDs). Our suggested approach can be classified as
HIDs, but the novelty here is that it is based on the computer behavior, reflected by
the operating system measurements, in which the knowledge is acquired
automatically based on a set of known worms. In a previous study we performed this
task using several classification algorithms [2]. In this study we employ Support
Vector Machines (SVM), which are known in their outperforming capabilities in
binary classification tasks. Active Learning is commonly used to reduce the amount

490 R. Moskovitch et al.

of labeling required from an expert – often time consuming and costly. However, in
this study, in which all the examples are labeled, we are using the Active Learning
approach, as a selective sampling method to improve the classification accuracy.

3 Methods

3.1 Support Vector Machines and Feature Selection

SVM is a binary classifier, which finds a linear hyperplane that separates the given
examples of two classes, known to handle large amount of features. Given a training
set of labeled examples in a vector format: xi = <f1,f2…f m, yi>, where fi' is a feature,
and its label yi = {-1,+1}. The SVM attempts to specify a linear hyperplane that has
the maximal margin, defined by the maximal (perpendicular) distance between the
examples of the two classes. The examples lying closest to the hyperplane are the
"supporting vectors". The Normal vector of the hyperplane, denoted as w in formula
1,is a linear combination of the supporting vectors, multiplied by LaGrange
multipliers (alphas). Often the dataset cannot be linearly separated, thus a kernel
function K is used. The SVM actually projects the examples into a higher dimensional
space to create a linear separation of the examples. We examined the 3 commonly
used kernels: Linear, Polynomial and RBF. Generally, the SVM classifier is in the
form shown in formula 1, in which n is the number of the training examples. We used
the Lib-SVM implementation [3] which also provides a multiple classification.

⎟
⎠

⎞
⎜
⎝

⎛=Φ⋅= ∑)())(()(
1

n

iii xxKysignxwsignxf α (1)

To reduce the amount of features we employed three filtering feature selection
measures: Chi-Square (CS), Gain Ratio [4, 5] (GR) and ReliefF [6]. After having the
ranks for each feature, the top 5, 10, 20 and 30 features were selected, based on each
measure and their ensemble.

3.2 Active Learning

Active Learning (A.L) is usually used to reduce the efforts in labeling examples, a
commonly time consuming and costly task, while maintaining a high accuracy rate. In
A.L the learner actively asks to label specific examples from a given pool, which
expected to result in a better classifier. In our study all the examples are labeled,
however, we employed this approach as a selective sampling method to increase the
accuracy. We implemented a pool based active learner which aims to reduce the
expected generalization error, named Error-Reduction, presented by [7], in which, an
example is acquired from a pool only if it dramatically expected to improve the
confidence of the current classifier over all the examples in the pool. Through the use
of a log-loss function the error degree of acquiring a specific example, having a
specific label, enables the self-estimation of the mean error. Finally, the example with
the lowest self-estimated mean error is selected and added to the training set.

 Improving the Detection of Unknown Computer Worms Activity 491

3.3 DataSet Creation

Since there is no benchmark dataset we created a dataset. A controlled network of
computers was deployed, into which we could inject worms, monitor and log the
computer features. Finally all the data was aggregated into a vector of 323 features for
every second. Five available computer worms, representing a variety of worms, were
selected: (1) W32.Dabber.A, (2) W32.Deborm.Y, (4) W32.Sasser.D, (5)
W32.Slackor.A. All the worms perform port scanning and possess different
characteristics. A detailed description of the dataset is in [2]. To examine the
influence of the machine hardware or software and user activity on the accuracy, we
performed the monitoring operation on eight combinations, resulting from three
binary aspects: old and new computer configuration, background activity of software
or absent, and User activity or absent. More details on these aspects in [2]. Thus, we
had eight datasets including six class examples of the five worms and none activity.

3.4 Evaluation Measures

For the purpose of evaluation we used the True Positive (TP) measure presenting the
rate of instances classified as positive correctly (true), False Positive (FP) presenting
the rate of positive instances misclassified and the Total Accuracy – the rate of the
entire correctly classified instances, either positive or negative, divided by the entire
number of instances.

4 Experiments and Results

In the first part of the study, we wanted to identify the best feature selection measure,
the best kernel function. In the second part we wanted to measure the possibility of
classifying unknown worms using a training set of known worms, and the possibility
to increase the performance using selective sampling.

We performed a wide set of experiments, called e1, in which we evaluated each
kernel function, feature selection and top selection combination to determine the
outperforming combination. We trained each classifier on a single dataset i and tested
iteratively on the other eight datasets. Note, the classification task included five
worms or none (worm) activity. The mean performance of the top 20 features (Gain
Ratio) runs outperformed, which we used in the next experiments.

4.1 Experiment II – Unknown Worms Detection

To evaluate the capability to classify an unknown worm activity, an experiment,
called e2, was performed. In this experiment the training set consisted of (5-k) worms
and the testing set contained the k excluded worms, while the none activity appeared
in both datasets. This process repeated for all the possible combinations of the k
worms, for k = 1 to 4. In these experiments there were two classes: (generally) worm,
for any type of worm, and none activity.

Figure 1 presents the results of e2. A monotonic improvement observed, as more
worms included in the training set, in which the RBF outperformed. However, in
specific worms, when a single worm was excluded, 95% accuracy observed.

492 R. Moskovitch et al.

4 3 2 1
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of excluded worms

A
cc

u
ra

cy

SVM Linear
SVM Polynomial
SVM RBF

4 3 2 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of excluded worms

A
cc

u
ra

cy

Sel. sampling 50
All examples

Fig. 1. The performance monotonically
increases as fewer worms are excluded (and
more worms appear in the training set), RBF
kernel has quite different accuracy trend that
had one decreasing.

Fig. 2. The considerable improvement when
using selective sampling compare to training
the SVM on all the examples. When 1 worm
was excluded there was almost 30%
improvement in accuracy.

4.2 Experiment 3 – Using Selective Sampling

To maximize the performance achieved by the RBF kernel, in e3 we employed
selective sampling methods, using error reduction criterion. Generally, we performed
the same experiment as in e2, however, the training set included all the eight datasets
and the test set only one of them. For the selective sampling process, initially six
examples from each class (worms and none) were selected randomly, and then in each
AL iteration additional single example selected. Figure 2 presents the results of e3.
The selective sampling had improved significantly the baseline performance even
when 50 samples were selected, as shown in figure 2.

5 Conclusions and Future Work

We presented the concept of detecting unknown computer worms based on a host
behavior, using the SVM classification algorithm with several kernels. Using feature
selection we shown that even with 20 features a high accuracy is achieved. Often the
RBF kernel outperformed the other kernels. In the detection of unknown worms (e2),
a high level of accuracy was achieved (exceeding 80% in average); as more worms
were in the training set. To reduce the noise in the training set and improve the
performance we employed the A.L approach as a selective sampling method which
increased the accuracy after selecting 50 examples to above 90% of accuracy and
94% when the training set contained four worms. These results are highly
encouraging and show that unknown worms can be detected in real time. The
advantage of the suggested approach is the automatic acquisition and maintenance of
knowledge, based on inductive learning. This avoids the need for a human expert who
is not always available and familiar with the general rules. This is possible these days,
based on the existing amount of known worms, as well as the generalization
capabilities of classification algorithms. However, in order to detect more
sophisticated worms, we develop a temporal classification method.

 Improving the Detection of Unknown Computer Worms Activity 493

References

1. Fosnock, C.: Computer Worms: Past, Present and Future. East Carolina University. Kabiri,
P., Ghorbani, A.A. Research on intrusion detection and response: A survey. International
Journal of Network Security, 1(2), 84–102 (2005)

2. Moskovitch, R., Gus, I., Pluderman, S., Stopel, D., Fermat, Y., Shahar, Y., Elovici, Y.: Host
Based Intrusion Detection Using Machine Learning. In: Proceedings of Intelligence and
Security Informatics, May 2007, Rutgers University (2007)

3. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software
available at http://www.csie.ntu.edu.tw/c̃jlin/libsvm

4. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1993)

5. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
6. Liu, H., Motoda, H., Yu, L.: A Selective Sampling Approach to Active Selection. Artificial

Intelligence 159, 49–74 (2004)
7. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of

error reduction. In: Proceedings of ICML-2001, 18th International Conference on Machine
Learning, pp. 441–448 (2001)

The Behaviour-Based Control Architecture iB2C

for Complex Robotic Systems

Martin Proetzsch, Tobias Luksch, and Karsten Berns

University of Kaiserslautern, Robotics Research Lab
Gottlieb-Daimler-Str., 67663 Kaiserslautern, Germany

{proetzsch,luksch}@informatik.uni-kl.de
http://www.agrosy.informatik.uni-kl.de

Abstract. This paper1 presents the behaviour-based control architec-
ture iB2C (integrated Behaviour-Based Control) used for the develop-
ment of complex robotic systems. The specification of behavioural com-
ponents is described as well as the integration of behaviour coordination
and hierarchical abstraction. It is considered how the design process can
be supported by guidelines and by tools for development as well as anal-
ysis. Finally some application platforms are presented.

Keywords: behaviour-based control, system analysis, system design.

1 Introduction

In the development of complex robotic applications the process of building up a
control system should be supported by an adequate methodology to help over-
coming difficulties like ensuring secure operation, modularity, or keeping track
of a system of growing complexity. Behaviour-based approaches have proven to
handle such difficulties rather well but still the problem of controlling complex
robotic systems is not solved by this paradigm alone. Difficulties are the coordi-
nation of multiple behaviours and the identification of error sources in a control
that shows an emergent system behaviour. Additionally there is the matter of
how the architecture can help structuring the design process, e.g. giving support
in the process of selecting the best set of behaviours and coordinating their ac-
tion. The architecture proposed in this paper tries to address most of the issues
just mentioned.

The problem of controlling complex autonomous robots has resulted in many
different kinds of behaviour-based architectures, e.g. [1], [2], [3], and evaluations
about the coordination problems have been undertaken [4]. However, the design
and analysis aspect is still one of the key issues. In [5] the Behaviour Oriented
Design (BOD) is proposed as development process for a modular architecture.
While this concept reflects procedures on high reasoning levels, there seems to
be a lack of low level motion control coordination, whereas iB2C is intended to
cover the whole span from low-level to high-level behaviours.
1 A detailed version of this paper can be found at http://agrosy.informatik.
uni-kl.de/en/publications/

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 494–497, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.agrosy.informatik.uni-kl.de
http://agrosy.informatik.uni-kl.de/en/publications/
http://agrosy.informatik.uni-kl.de/en/publications/

The Behaviour-Based Control Architecture iB2C 495

2 Components of iB2C and Their Interaction

The fundamental unit of the proposed control architecture is the behaviour mod-
ule (see Fig. 1, left) as already introduced in [6] and [7] and modified towards its
present form in [8]. Each atomic behaviour is wrapped into such a module with
a uniform interface.

F (�e, ι, i)�e �u

a r ι

i

F
(
�e,�a, �r, ι,�i

)�e

�a

�r

�u

a r ι

�i

Fig. 1. Basic iB2C behaviour module (left) and fusion behaviour module (right)

Behaviours can be described as three-tuples of the form B = (r, a, F), where
r is the target rating function, a is the activity function, and F is the transfer
function of the behaviour. Additionally each behaviour receives an input vector
e, an activation ι, and an inhibition i and generates an output vector u.

Coordination within the behaviour network can be achieved by so called fusion
behaviours (see Fig. 1, right) which are integrated in the case of competing
behaviours. The transfer function of fusion behaviours is the fusion function
f(a, e) which processes input values to a merged output control vector u using
the activity of the coordinated behaviours.

3 Design Guidelines

In iB2C the development begins by figuring out the relevant degrees of free-
dom (DOF), e.g. rotation and velocity of a vehicle. Each of the DOF is divided
into positive and negative direction, leading to two control data paths for ev-
ery motion possibility. The conflation of the data flow is accomplished using a
fusion behaviour for each of the DOFs. In order to fulfil basic safety require-
ments behaviours reacting on safety related sensor input are added leading to
an interface for higher level behaviours and encapsulating the functionality of a
safety behaviour system. High-level behaviours are then added using a top-down
task-oriented approach (e.g. as proposed in [5])

In order to simplify the structure and to clarify the functionality iB2C fea-
tures the concept of hierarchical abstraction using behavioural groups. These
are groups in the sense of the embedding programming framework – in this
case the modular control architecture MCA – i.e. a collection of modules or fur-
ther groups with a new interface and dedicated connections between group and
modules.

496 M. Proetzsch, T. Luksch, and K. Berns

The main challenge when coping with systems growing in complexity is mak-
ing statements about the current system status. In this sense it becomes invalu-
able having a common interface of behaviours representing their internal state
in an abstract way – in iB2C the meta information signals activity (a) and target
rating (r) which can be used for deadlock detection, risk determination, effort,
oscillation detection, etc. iB2C also makes extensive use of the Modular Con-
troller Architecture (MCA, [10]) and the provided tools Builder, MCAGUI, and
MCABrowser for creation and supervision of behaviour networks. Besides these
tools for analysing the behaviour network and the overall system performance
it might be necessary to guarantee certain system properties. In this case an
approach for the formal verification of a subset of behaviours can be followed as
described in [11].

4 Applications

Figure 2 shows some platforms controlled by an iB2C network, reflecting the
flexibility of the approach. The complexity of the systems makes it indispensable
to apply concepts as described before. The outdoor robot RAVON [8] is intended
for rough offroad terrain to fulfil exploration and navigation tasks. The indoor
robots ARTOS and MARVIN [12] deal as service robots in home and office
environments. ROMAN [13] is a humanoid head for interaction using emotional
states. Finally the dynamic control of bipeds is in development exploiting the
features of iB2C on a low actuator level.

Fig. 2. Robots of the Robotics Research Lab controlled by a iB2C system: RAVON,
MARVIN, ARTOS, ROMAN (skeleton and skin) and simulated humanoid biped

5 Conclusion and Future Work

This paper presented a behaviour-based architecture appropriate for the de-
velopment of a multitude of complex robotic systems. A fixed interface for all
behavioural components involved provides a means of abstraction allowing the
analysis of the functionality of the behaviour network. The modular character-
istic of the architecture increases the reusability of behaviours while the design
and analysis of iB2C-networks is facilitated by tools and plugins giving complete
access to all relevant information.

Future work includes the extension of tooling functionality and design strate-
gies as well as the investigation about the degree of representation required at
different layers of the control system.

The Behaviour-Based Control Architecture iB2C 497

References

1. Brooks, R.A.: A Robust Layered Control System for a Mobile Robot. IEEE Journal
of Robotics and Automation RA-2(1), 14–23 (1986)

2. Mataric, M.J.: Behavior-Based Control: Examples from Navigation, Learning, and
Group Behavior. Journal of Experimental and Theoretical Artificial Intelligence,
Special issue on Software Architectures for Physical Agents 9(2-3), 323–336 (1997)

3. Langer, D., Rosenblatt, J., Hebert, M.: A Behaviour-Based System for Off-Road
Navigation. IEEE Journal of Robotics and Automation (1994)

4. Scheutz, M., Andronache, V.: Architectural Mechanisms for Dynamic Changes of
Behavior Selection Strategies in Behavior-Based Systems. IEEE Transactions on
Systems, Man, and Cybernetics – Part B: Cybernetics 2377–2395 (2004)

5. Bryson, J.: Intelligence by Design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agents. Dissertation, Massachusetts Institute of
Technology (September 2001)

6. Albiez, J., Luksch, T., Berns, K., Dillmann, R.: An Activation-Based Behavior
Control Architecture for Walking Machines. The International Journal on Robotics
Research 22, 203–211 (2003)

7. Albiez, J.: Verhaltensnetzwerke zur adaptiven Steuerung biologisch motivierter
Laufmaschinen. GCA Verlag (2007)

8. Proetzsch, M., Luksch, T., Berns, K.: Fault-Tolerant Behavior-Based Motion Con-
trol for Offroad Navigation. In: 20th IEEE International Conference on Robotics
and Automation (ICRA), Barcelona, Spain, April 18-22, 2005, IEEE Computer
Society Press, Los Alamitos (2005)

9. Arkin, R.C.: Moving up the food chain: Motivation and Emotion in behavior-based
robots. Technical report, Mobile Robot Laboratory, College of Computing, Georgia
Institute of Technology, Atlanta, GA, USA (2003)

10. Scholl, K.U., Albiez, J., Gassmann, G.: MCA – An Expandable Modular Controller
Architecture. In: 3rd Real-Time Linux Workshop, Milano, Italy (2001)

11. Proetzsch, M., Berns, K., Schuele, T., Schneider, K.: Formal Verification of Safety
Behaviours of the Outdoor Robot RAVON. In: Fourth International Conference
on Informatics in Control, Automation and Robotics (ICINCO), Angers, France,
May 2007, INSTICC Press (2007)

12. Schmidt, D., Luksch, T., Wettach, J., Berns, K.: Autonomous Behavior-Based Ex-
ploration of Office Environments. In: 3rd International Conference on Informatics
in Control, Automation and Robotics - ICINCO, Setubal, Portugal, August 1-5,
2006, pp. 235–240 (2006)

13. Berns, K., Hirth, J.: Control of facial expressions of the humanoid robot head RO-
MAN. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), October 9-15, 2006, Beijing, China (2006)

Concept for Controlled Self-optimization in

Online Learning Neuro-fuzzy Systems

Nils Rosemann and Werner Brockmann

University of Osnabrück, Albrechtstr. 28, 49076 Osnabrück

1 Introduction

Many modern control systems, e.g., in automotive or robotic applications get
increasingly complex and hard to design. This is due to the complex interactions
of their internal subsystems, but additionally, these systems operate in a dynam-
ically changing, complex environment. The Organic Computing (OC)1 initiative
tries to cope with the resulting engineering demands by introducing emergence
and self-x properties into the systems (e.g., self-organization, self-optimization).
Within this context, we focus on control systems which adapt their behavior
autonomously by learning.

To be more specific, these systems are required to control a complex interac-
tion with the environment online and in a closed loop way. Thus, these systems
have to react continuously, in real time, and learning has to occur incrementally.
As this closed loop may lead to chaotic system behavior, one needs a strategy
of guiding the process of learning online which will be presented in this paper.

2 Safe Self-adaptation

2.1 Basic Architecture

In order to be self-adapting, a system needs to correct its behavior solely on
the basis of incoming data. But this cannot be done by unsupervised learning
(safety reasons) or by supervised learning based on external training samples.
Our approach is thus to use direct adaptation similar to [1,2]. This architecture
tunes the control systems behavior directly by another system which determines
the changes required for optimization.

In our case, the actual behavior lies in a zero order Takagi-Sugeno fuzzy sys-
tem [3,4] with triangular membership functions and a normalized rule base. The
conclusions of the individual rules, i.e., non-fuzzy singletons, are changed by
learning. A learning stimulus is distributed over all rules contributing to a corre-
sponding wrong output. Because of the triangular membership functions, every
learning stimulus only acts locally. This local fuzzy learner can learn quickly to
drive the process under control to a certain working point. But as the learn-
ing architecture allows an arbitrary systems behavior, it may become chaotic.

1 http://www.organic-computing.de

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 498–501, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.organic-computing.de

Concept for Controlled Self-optimization 499

Algorithm 1. The SILKE algorithm with a sample template applied to the
current state s and a local fuzzy learner L with adjustment rate λ.

PerformLearning(L, s)
active rules ← all rules of L which are applicable to state s
for all a ∈ active rules do

silkea ← mean value of conclusions of all neighbors of a {example template}
end for
for all a ∈ active rules do

conclusiona ← (1 − λ) · conclusiona + λ · silkea {adapt rule conclusions}
end for

Prior work has shown how to prevent critical system states and how to control
learning in non-critical regions [2]. A further approach called SILKE (system to
immunize learning knowledge based elements) aims at meta level control of the
learning process, e.g, monotony and limited steepness [5].

2.2 Controlling Direct Adaptation with the SILKE Approach

As described above, the learning system is based on a local fuzzy learner with
rules forming the knots of a fixed grating over the input space. The basic idea
of meta level control of learning is based on the notion of neighborhood of the
fuzzy rule conclusions. If a certain rule conclusion is not in accordance with its
neighbors after a learning step, then it is deemed pathologic. This decision is
done by a local operator, the so called template function, in order to preserve
the local function approximation characteristic.

A template function is defined on the neighborhood of the current active rule
and calculates a real number usable to correct this rule. This way, each template
represents meta level characteristics which the neighboring conclusions should
fulfill. The SILKE algorithm with a sample template is shown in Alg. 1. The
following policy is used: The mean value of the neighbors is calculated for every
rule which was involved in the last learning step. Afterwards, the conclusions of
the investigated rules are corrected towards their specific mean value.

2.3 Extension of the SILKE Approach

Applying the SILKE approach acts similar to regularization because it enforces
specific meta properties [6]. For instance, in case of an averaging template like
the one used in these experiments, the SILKE approach enforces the learning
system to approach a smooth (linear) function.

In order to adapt the SILKE approach to a given application, we introduce
the adjustment rate λ to steer its effect: the higher λ, the stronger the influence
on the learning process. An adjustment rate of 1 causes a complete match with
the template policy, and an adjustment rate of 0 switches the SILKE approach
off. The adjustment rate is easily incorporated into the basic SILKE approach as
Alg. 1 shows. It is a parameter weighting the correction term determined by the

500 N. Rosemann and W. Brockmann

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.8

0.9

1

1.1

1.2

1.3

adjustment rate

to
ta

l e
rr

or
 /

10
00

0

error with SILKE
error without SILKE

Fig. 1. The sum of the absolute errors between cart position and target position for
different adjustment rates over a period of 210 seconds

0 50 100 150 200

−4

−2

0

2

4

6

8

time / seconds

po
si

tio
n

/ m
et

er
s

cart position
reference position

0 50 100 150 200

−4

−2

0

2

4

6

8

time / seconds

po
si

tio
n

/ m
et

er
s

cart position
reference position

(a) λ = 0.0 (b) λ = 0.2

Fig. 2. The cart position (a) without the SILKE approach and (b) with optimal ad-
justment rate

template in relation to the rule conclusion. By selecting a suited template func-
tion and by tuning the adjustment rate, the learning can be improved concerning
its dynamics and convergence as the following example demonstrates.

3 Demonstrational Example

To show the effect of controlling online learning by the SILKE approach, we used
the same set up as in [5], namely a simulated pole balancing cart. The task of
the cart was to balance the pendulum as close as possible to a changing target
location s0. The control software was composed of two cascaded self-optimizing
control subsystems, P and A, both were able to self-adapt independently giving
rise to complex (internal) dynamic interactions. The task of P was to map the
current speed of the cart and the remaining distance to s0 to an appropriate
target pendulum angle p0. The task of A was to map the current angular speed

Concept for Controlled Self-optimization 501

of the pendulum and the difference between the current pendulum angle and
the target angle p0 to an appropriate motor voltage. The target position s0 was
switched every 30 seconds.

The simulation was repeated with different adjustment rates. For each run,
the total absolute position error was accumulated. The effect of λ on this error
is shown in Fig. 1. Fig. 2 shows the dynamic behavior of the pole balancing cart
without the SILKE approach and for the optimal adjustment rate.

4 Conclusion

The results of the experiment clearly show that the SILKE approach can influ-
ence the learning process and its dynamics advantageously. Although it works
only locally, the SILKE approach ensures global meta properties. As in this case,
even two strongly interacting learning systems can be guided quickly towards a
stable solution. Convergence is improved significantly concerning speed an ac-
curacy. By introducing the adjustment rate λ, the effect of the SILKE approach
can be optimized by a single global parameter.

Acknowledgments

This project is funded by the German Research Foundation in the framework of
the Organic Computing priority research program under No. BR 1980/1-1.

References

1. Shao, S.: Fuzzy self-organizing controller and its application for dynamic processes.
Fuzzy Sets and Systems 26(2), 151–164 (1988)

2. Brockmann, W.: Online Machine Learning For Adaptive Control. IEEE Int. Work-
shop on Emerging Technologies and Factory Automation, pp. 190–195 (1992)

3. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to mod-
eling and control. IEEE Trans. Systems, Man, and Cybernetics 15, 116–132 (1985)

4. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing frame-
work. IEEE Trans. Neural Networks 11(3), 748–768 (2000)

5. Brockmann, W., Horst, A.: Stabilizing the Convergence of Online-Learning in
Neuro-Fuzzy Systems by an Immune System-inspired Approach. IEEE Int. Conf.
On Fuzzy Systems - FUZZ-IEEE 2007 (to appear, 2007)

6. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks archi-
tectures. Neural Computation 7(2), 219–269 (1995)

LiSA: A Robot Assistant for Life Sciences

Erik Schulenburg1, Norbert Elkmann1, Markus Fritzsche1, Angelika Girstl2,
Stefan Stiene3, and Christian Teutsch1

1 Fraunhofer Institute for Factory Operation and Automation, Sandtorstrasse 22,
39106 Magdeburg, Germany

<firstname>.<lastname>@iff.fraunhofer.de
2 Sympalog Voice Solutions, Karl-Zucker-Strasse 10, 91052 Erlangen, Germany

girstl@sympalog.de
3 University of Osnabrück, Albrechtstrasse 28, 49069 Osnabrück, Germany

sstiene@informatik.uni-osnabrueck.de

Abstract. This paper presents a project that is developing a mobile
service robot to assist users in biological and pharmaceutical laboratories
by executing routine jobs such as filling and transporting microplates. A
preliminary overview of the design of the mobile platform with a robotic
arm is provided. Moreover, the approaches to localization and intuitive
multimodal human-machine interaction using speech and touchpad input
are described. One focus of the project is aspects of safety since the robot
and humans will share a common environment.

Keywords: service robotics, mobile robot, human-machine interaction.

1 Introduction

Biological and pharmaceutical research entails a great deal of repetitive manual
work, e.g. preparing experiments or loading equipment such as drying chambers
and centrifuges. Classical automation uses band conveyors or indexing tables to
interconnect such units. The basic idea behind the Life Science Assistant (LiSA)
is to employ a mobile service robot to interconnect equipment. This makes au-
tomated experiment cycles flexible, while simultaneously allowing stations to
be used for other purposes. In addition, the robot helps employees prepare ex-
periments, e.g. by collaboratively executing transportation tasks or filling mi-
croplates. The LiSA project is constructing a demonstrator that executes the
aforementioned tasks.

Safety is an important aspect in service robotics since robots and humans
share a common environment. Previous projects [1,2] only marginally examined
relevant requirements. Safety assumes even greater importance in the life sciences
because a robot may handle toxic or hazardous substances. The LiSA project
reflects this in its manifold safety sensors.

Figure 1 presents a design study of the particular robot currently under de-
velopment. The development work will converge in the construction and testing
of the final service robot by March 2009.

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 502–505, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

LiSA: A Robot Assistant for Life Sciences 503

SCARA arm

thermographic
camera

stereo
camera

gripper

holonomic
plattform

Fig. 1. LiSA platform design study (left) and thermographic image (right)

2 Hardware and Safety Components

The robot assistant’s design consists of a custom-built robotic arm mounted on
a mobile platform as depicted in Figure 1.

The mobile platform is equipped with a holonomic drive. For navigation and
obstacle avoidance it is equipped with a gyroscope, wheel encoders and six 2-D
laser scanners. The laser scanners provide an alert area and a protection area. If
an obstacle violates the alert field of a laser scanner, the mobile platform slows
down. Activating the protection area or one of the bumpers mounted all around
the bottom edges of the platform results in an immediate stop.

The robotic arm is covered by a pressure-sensitive artificial skin for collision
detection. The SCARA design selected gives the manipulator clearly defined
directions of movement (horizontal for the joints, horizontal and vertical for the
linear axis). Therefore, tactile sensor elements only have to cover specific areas.
Torque measurement and contouring error control are integrated in the joints as
additional electronic safety functions. Moreover, the manipulator is padded to
prevent injuries in the case of a collision.

The robotic arm is equipped with two camera systems for camera-guided
movement. A stereo camera system is installed near the linear axis and a com-
bined camera system is mounted at the base of the robot arm. The stereo camera
determines the 3-D pose of exchange positions and the microplates with high pre-
cision (< 0.5mm) based on a photogrammetric approach. Corresponding pixel
pairs in both cameras are identified by using statistical correlation between im-
age segments on the epipolar lines [3]. This information is used to guide the
robotic arm. The combined camera device consists of two calibrated cameras,
one for the infrared and one for the visible spectrum. The thermographic com-
ponent detects human interaction in front of the robotic arm and its gripper to
ensure the safety of the manipulation process (see Figure 1 (right)).

504 E. Schulenburg et al.

3 Localization and Navigation

For localization the LiSA robot employs a novel sensor configuration that in-
creases safety by enabling it to navigate with full 3-D obstacle avoidance, pro-
duced by combining 6 laser scanners to a robot centered 360◦ 3-D laser scanner as
depicted in Figure 2 (left). Two laser scanners (SICK s300) are mounted on op-
posite corners of the robot. The scanners’ 270◦ field of view generate a 360◦ field
of permanent 2-D view with overlapping regions. This combined 360◦ scanner is

obstacle Sick s300 laser scanner

Hokuyo URG-04LX laser scanner

Fig. 2. Laser configuration of the LISA robot (left) and combined sensor data (right)

used for localization in an a-priori map and to avoid collisions with humans. It is
inadequate for general obstacle avoidance, since obstacles may interfere with the
robot in its complete bounding box. Thus, the setup is extended by four Hokuyo
URG-04LX laser scanners, each of which is mounted at the bottom of one of
the robot’s sides and angled upward, enabling the robot to detect obstacles in
the respective data. If this occurs, the 3-D laser data points (belonging to the
obstacle) are projected onto the floor plane and inserted into a local perception
map. Thus, the robot generates a detailed perception map while moving (see
Figure 2 (right)). For obstacle avoidance, the horizontal localization scanners
are combined with the perception map regarding the current robot position.

The complete system has been tested in the robot simulation environment
USARSim [4]. The simulation environment is connected to the hardware ab-
straction layer of Player/Stage [5]. Figure 2 (right) shows the standard player
sensor data visualization tool as well as the combined sensor data (blue) and the
map generated by the Hokuyo scanners (black). The robot is aware of its en-
tire environment including tabletops. A classical horizontal sensor configuration
would only be able to detect the chair and table legs.

4 Multimodal Interaction

Interaction with LiSA is multimodal, i.e. spoken and touchpad input is possible.
Speech recognition is speaker-independent. The commercial dialog engine used
for LiSA supports mixed-initiative, natural language dialogs and conversation in
full sentences. It has been expanded for multimodal input based on experiences
from various projects [6,7].

LiSA: A Robot Assistant for Life Sciences 505

The dialog engine extracts all pieces of information from a spoken utterance
and touchpad input and enters them into a predefined XML form, requesting
missing pieces of information and forwarding a completed form to the LiSA Task
Manager. Spoken commands and touchpad input can be used in combination or
independently throughout the dialog. This includes combinations of touchpad
input and speech signals in a single utterance, e.g. the sentence “take the sam-
ple from this point to that point” is combined with two touchpad input events on
the map displayed. The dialog engine interacts with a knowledge database that
stores information on the location of laboratory inventory such as the fluores-
cence reader or drying chambers and their location in the different rooms of the
lab. All these features generate intuitive mixed-initiative, multimodal interaction
between laboratory assistants and LiSA.

Acknowledgments. This research and development project is funded by the
German Federal Ministry of Education and Research (BMBF) within the Frame-
work Concept “Research for Tomorrow’s Production” (fund number 02PB2170-
02PB2177) and managed by the ProjectManagement Agency Forschungszentrum
Karlsruhe, Production and Manufacturing Technologies Division (PTKA-PFT).

References

1. Prassler, E., Dillmann, R., Fröhlich, C., Grunwald, G., Hägele, M., Lawitzky, G.,
Lay, K., Stopp, A., von Seelen, W.: Morpha: Communication and interaction with in-
telligent, anthropomorphic robot assistants. In: Proceedings of the International Sta-
tus Conference – Lead Projects Human-Computer-Interactions, Saarbrücken (Ger-
many) (2001)

2. Scherer, T., Poggendorf, I., Schneider, A., Westhoff, D., Zhang, J., Lutkemeyer, D.,
Lehmann, J., Knoll, A.: A service robot for automating the sample management in
biotechnological cell cultivations. In: Emerging Technologies and Factory Automa-
tion. Proceedings. ETFA ’03. IEEE Conference, vol. 2, pp. 383–390. IEEE Computer
Society Press, Los Alamitos (2003)

3. Shi, J., Tomasi, C.: Good features to track. In: Proc. Computer Vision and Pattern
Recognition (CVPR’94), pp. 593–600 (1994)

4. Albrecht, S., Hertzberg, J., Lingemann, K., Nüchter, A., Sprickerhof, J., Stiene,
S.: Device level simulation of kurt3d rescue robots. In: Third Intl. Workshop on
Synthetic Simulation and Robotics to Mitigate Earthquake Disaster (SRMED 2006).
CDROM Proceedings (2006)

5. Gerkey, B., Vaughan, R., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proceedings of the International Confer-
ence on Advanced Robotics (ICAR 2003), Coimbra, Portugal, June 30 - July 3,
2003, pp. 317–323 (2003)

6. Sonntag, D., Engel, R., Herzog, G., Pfalzgraf, A., Pfleger, N., Romanelli, M., Rei-
thinger, N.: Smart web handheld – multimodal interaction with ontological knowl-
edge bases and semantic web services. In: Proc. International Workshop on AI for
Human Computing (in conjunction with IJCAI), Hyderabad, India (2007)

7. Horndasch, A., Rapp, H., Röttger, H.: SmartKom-Public. In: SmartKom: Founda-
tions of Multimodal Dialogue Systems, Springer, Heidelberg (2006)

Semantic Graph Visualisation for Mobile

Semantic Web Interfaces

Daniel Sonntag and Philipp Heim

German Research Center for Artificial Intelligence
66123 Saarbrücken, Germany

sonntag@dfki.de

Abstract. Information visualisation benefits from the Semantic Web:
multimodal mobile interfaces to the Semantic Web offer access to com-
plex knowledge and information structures. Natural language dialogue
systems are ideal interfaces to personal digital assistants (PDAs) or other
handheld clients. We explore more fine-grained co-ordination of multi-
modal presentations as answers to natural language questions about a
specific domain by graph-based visualisation and navigation in onto-
logical RDF result structures. Semantic Navigation on mobile devices
leverages graphical user interface activity for dialogical interaction in
mobile environments. Constraint-based programming helps to find opti-
mised multimedia graph visualisations.

Introduction. For every specific type of information there are certain cate-
gories of visual representations that are more suitable than others. The use of
a graph for the visualisation of information has the advantage that it can cap-
ture a detailed knowledge structure. Therefore graphs are suitable for conveying
semantic relations between individual information items and for providing an
understanding of the overall information structure. Apart from that dialogue
systems are very useful for interacting with Web-based information services in
mobile environments.

The challenge we address is the intuitive navigation in a structured, semanti-
cally organised information space on small interaction devices such as PDAs. Our
aim is to implement and evaluate mobile Semantic Web interfaces by application
of direct structure mapping from RDF1 graphs toward their multimedia visual-
isations. Displaying RDF data in a user-friendly manner is a problem addressed
by various types of applications using different representation paradigms [1]. At
least the following types can be identified: keyword search, e.g. Swoogle2, faceted
browsing [2], explicit queries, e.g. Sesame3, and graph visualisations. In our ap-
proach we use an automatic layouter for dynamic constrained graph display
tailored to suit small displays as valuable extension to other graph visualisation
techniques. By additional graph presentation capabilities in a primary linguistic

1 http://www.w3.org/RDF/
2 http://swoogle.umbc.edu/
3 http://www.openrdf.org/

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 506–509, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Semantic Graph Visualisation for Mobile Semantic Web Interfaces 507

Fig. 1. Graphical user interface and semantic navigation (centre and right)

question answering scenario, the users would become more engaged in the dia-
logue, navigate through the incrementally presented result space, and would be
encouraged to pose follow-up questions in natural language. In our most recent
dialogue system project SmartWeb [3] following experiences in [4,5,6], we try
to provide intuitive multimodal access to a rich selection of Web-based infor-
mation services; especially the handheld scenario is tailored toward multimodal
interaction with ontological knowledge bases and Semantic Web services [7] in
the football domain. For example, the user can ask questions like How many
goals has Michael Ballack scored this year? or How did Germany play against
Argentina in the FIFA World Cup? The summarised answer to the last question,
SmartWeb provides and synthesises, is 5 Spiele (5 matches). Figure 1 shows
the PDA interaction device. When the structure of the dynamic graph changes,
a new optimal layout is computed server-side. A further click on the Ergebnis
(result) node results in displaying the information: 5:3 n. E., 1:1 n. V. (1:1, 0:0),
Ereignis (incidence) reveals red card for player Cufre, for example. A shared rep-
resentation and a common ontological knowledge base ease the data flow among
components and avoid costly transformation processes [8]. This applies to the
visualisation process, too. We use the ontological RDF metadata to arrange in-
formation pieces in automatically layout graphs with respect to their semantic
relations extracted from RDF results obtained from our knowledge servers. Hu-
mans themselves may encode information based upon its meaning [9]. Users feel
familiar with this way of information arrangement at least.

508 D. Sonntag and P. Heim

Integration. We integrated the semantic graph visualisation approach into our
distributed dialogue system. In SmartWeb, the graph-based user interface on
the client is connected to the automatic graph layouter that resists on the server.
All data transfer between server and client is organised by special XML struc-
tures transmitted over socket connections in both directions. We extended this
XML structure by an new dynamic graph environment, for the graph structure
data to be exchanged, the graph node layout positions, and the user interactions.
The data flow is shown in figure 2. The presentation capabilities after integration

RDF data

Communicates

Communicates

Requests information
from SmartWeb

Structurally maps

Automatically layouts

Distorts (Fisheye)Displays

User

GUI

Distorted
graph layout

Interaction:
New focus point

Interaction:
New active instance,

new relation

Graph
data

User
interaction

Graph layout

User
interaction

Graph
layout

Graph layout

Server

Client

Fig. 2. Semantic graph visualisation data flow. Graph layouts for arbitrary RDF graph
data are calculated on the server.

include (1) summarising multimodal result and finding an appropriate mapping
toward a lower-level visual object and its attributes which we model in the inter-
action ontology, (2) finding out visual pattern interrelationships, (3) automating
the visualisation of multimodal graph information which complements natural
language generation output, and (4) provide consecutive information displays
communicated from the server to the client for semantic navigation.

Conclusion and Future Work. Semantic graph visualisation as presented re-
lies on ontological formulation of interaction and presentation constraints, as well
as on highly structured RDF data as result structures in the question answering
scenario we model. Since the RDF result data are already in a graph-like format,
we explored how to map this RDF data into a graph structure and how the re-
sulting graph can be visualised, as an example of how to visualise the Semantic
Web. During the development of our system, we used two evaluation phases that
involved 20 users in testing design ideas and to get their feedback at an early
stage of development. These feedbacks were useful sources of suggestions for the
further improvement of our graph presentation system, and show additionally,
that graph visualisations and interactions are generally welcomed alternatives for

Semantic Graph Visualisation for Mobile Semantic Web Interfaces 509

highly structured result data in question answering scenarios; 85% describe the
graph interaction possibilities as easy to understand (after an initial demonstra-
tion), 95% easily understand the difference between instance nodes and relation
nodes. We conclude by further motivating the use of ontologies and Semantic
Web data structures [10] for multimodal interaction design and implementation,
and in particular, for visualising graph-like information spaces on mobile PDA
devices. We hope that in the future graph visualisation approaches as presented
here can help to provide an answer to the question how conceptual data models
facilitate the generation of semantic navigation structures on mobile devices.

Acknowledgements. The research presented here is sponsored by the Ger-
man Ministry of Research and Technology (BMBF) under grant 01IMD01A
(SmartWeb). We thank our project partners, our research assistants, and the
evaluators. The responsibility for this papers lies with the authors.

References

1. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A browser-independent pre-
sentation vocabulary for RDF. In: International Semantic Web Conference, pp.
158–171 (2006)

2. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search
and browsing. In: CHI ’03: Proceedings of the SIGCHI conference on Human factors
in computing systems, New York, NY, USA, pp. 401–408. ACM Press, New York
(2003)

3. Wahlster, W.: SmartWeb: Mobile Applications of the Semantic Web. In: Dadam, P.,
Reichert, M. (eds.) GI Jahrestagung 2004, pp. 26–27. Springer, Heidelberg (2004)

4. Wahlster, W. (ed.): VERBMOBIL: Foundations of Speech-to-Speech Translation.
Springer, Heidelberg (2000)

5. Wahlster, W.: SmartKom: Symmetric Multimodality in an Adaptive and Reusable
Dialogue Shell. In: Krahl, R., Günther, D. (eds.) Proc. of the Human Computer
Interaction Status Conference 2003, Berlin, Germany, pp. 47–62. DLR (2003)

6. Wahlster, W.: SmartKom: Foundations of Multimodal Dialogue Systems (Cogni-
tive Technologies). pringer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

7. Sonntag, D., Engel, R., Herzog, G., Pfalzgraf, A., Pfleger, N., Romanelli, M., Re-
ithinger, N.: Smartweb handheld–multimodal interaction with ontological knowl-
edge bases and semantic web services. In: Proceedings of the International Work-
shop on Artificial Intelligence for Human Computing at IJCAI 2007 (2007)

8. Oberle, D., Ankolekar, A., Hitzler, P., Cimiano, P., Sintek, M., Kiesel, M.,
Mougouie, B., Vembu, S., Baumann, S., Romanelli, M., Buitelaar, P., Engel, R.,
Sonntag, D., Reithinger, N., Loos, B., Porzel, R., Zorn, H.P., Micelli, V., Schmidt,
C., Weiten, M., Burkhardt, F., Zhou, J.: Dolce ergo sumo: On foundational and
domain models in SWIntO (SmartWeb Integrated Ontology). Technical report,
AIFB, Karlsruhe (July 2006)

9. Myers, D.G.: Psychology. Worth Publishers (2004)
10. Fensel, D., Hendler, J.A., Lieberman, H., Wahlster, W.: Spinning the Semantic

Web: Bringing the World Wide Web to Its Full Potential. The MIT Press, Cam-
bridge (2005)

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 510–513, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Qualitative Model for Visibility Relations

Francesco Tarquini, Giorgio De Felice, Paolo Fogliaroni, and Eliseo Clementini

University of L’Aquila Department of Electrical and Information Engineering
67040 Poggio di Roio, L’Aquila, Italy

tarquini@ing.univaq.it , giorgiodf@tiscali.it,
p.fogliaroni@hotmail.it, eliseo@ing.univaq.it

Abstract. The visibility concept is related to many application fields such as
robot navigation, computer graphics and telecommunication systems. In this
paper we propose a new qualitative model for visibility relations based on
properties of the projective space. Within the model we present a set of seven
ternary relations among convex regions. Our model is capable to determine the
visibility relation between a primary object A with the respect to a “region of
view” C and an obstacle B. We developed the reasoning system, which allows
the prediction of ternary relations between specific regions.

Keywords: Qualitative Saptial Reasoning, Projective Relations, Visibility.

1 Introduction

One of the most common definition of visibility says that “visibility is the maximum
distance an object may be seen considering air conditions”. In this paper we restrict
the concept to the drawing a line from a point to another one without crossing any
obstacle. This definition of visibility is very close to the line-of-sight concept: a
calculus of line-of-sight relations, developed in [4], defines the different qualitative
relations in which one object in a person’s visual field can be positioned in relation to
another one. The relations of the occlusion calculus, presented in [6], qualitatively
describe configurations of two convex objects in the projective view from a 3D scene.
In our approach, the visibility concept is related to the study of projective
characteristics: a qualitative model about projective relations based on collinearity
was presented in [1] [2] [3]. The motivation of having a qualitative model arises from
the fact that in many applications there is no need to have the whole expressivity of a
metric space. For example in robot navigation [7] the robot could take decisions about
the route to take on the basis of few information obtained by the knowledge on
qualitative projective relations without calculating each time its exact position with
the respect to other robots or obstacles. The region occlusion calculus, presented in [8],
is a first-order logical theory that describes the spatial relations between bodies as seen
from a robot’s viewpoint. The most important novelty of our model, with the respect to
the previously mentioned models [4] [6] [8], is that our “point of view” is not a simple
point but any convex geometry. Furthermore, since the point of view is not implicit,
we need to model the visibility relation as a ternary relation, leading to a more general
model.

 A Qualitative Model for Visibility Relations 511

2 Acceptance Areas for Visibility

We will define visibility relations that check if the primary object A is visible with an
obstacle object B from a “point of view” object C.

In order to model the visibility relations, we need to identify their acceptance areas.
In detail, we define a Shadow Zone (SZ), a Twilight Zone (TZ) (possibly split into
Right Twilight Zone (RTZ) and Left Twilight Zone (LTZ)), and a Light Zone (LT) as
shown in Fig. 1.

Fig. 1. Acceptance Areas

3 Visibility Relations

In this section, we use the acceptance areas defined in Section 2 (SZ, TZ, LZ) to build
a jointly exhaustive and pair-wise disjoint (JEPD) model for visibility relations among
three convex regions A, B, C. Let us consider the following matrix of
empty/nonempty intersections of a region A with these three areas:

A ∩ LZ(B,C) A ∩ TZ(B,C) A ∩ SZ(B,C)

In the matrix, a value 0 indicates an empty intersection, while a value 1 indicates a

nonempty intersection. This matrix can have 23–1 different configurations (all empty
values configuration (0 0 0) is not possible because the primary object must intersect
at least a region of the space). Each configuration corresponds to a visibility relation
among three regions A, B, C.

If we consider the basic configurations of the matrix, with only one non-empty
value, we can define the visibility relations of Fig. 2.

Visible(A,B,C): (100) PartiallyVisible(A,B,C):(010) Occluded(A,B,C): (001)

Fig. 2. Basic visibility relations

512 F. Tarquini et al.

Considering the other configurations of the matrix we can define the relations of
Fig. 3.

Visible&PartiallyVisible(A,B,C): (1 1 0) PartiallyVisible&Occluded(A,B,C): (0 1 1)

Visible&Occluded(A,B,C) : (1 0 1) Visible&PartiallyVisible&Occluded(A,B,C) (1 1 1)

Fig. 3. Compound visibility relations

5 Reasoning

A full discussion of properties of ternary relations is outside the scope of this paper. A
relation algebra of ternary relations has been introduced in [5]. It is possible to build a
reasoning system, which allows the prediction of ternary relations between specific
regions, on the basis of the following rules:

(1) r(A,B,C) → p(A,C,B) (converse)
(2) r(A,B,C) → q(C,A,B) (rotation)
(3) r1(A,B,C) ⊕ r2(B,C,D) → r3(A,C,D) (composition)

For the sake of brevity, we will use short names for visibility relations
corresponding to the capital letters of full relation names. We denote by U the
universal disjunctive visibility relation. Moreover, for some cases the result is

Table 1. Permutation table

r(A,B,C) p(A,C,B) q(C,A,B)
V U U
P V,P,O,PO V,O,VO,VPO
O V,P,O,PO V,P,O,PO
VP V,VP V,P,VP,PO,VO,VPO
PO V,P,O,PO V,P,O,PO
VO V,VP,VO,VPO P,O,PO
VPO V,VP,VO,VPO U

 A Qualitative Model for Visibility Relations 513

Table 2. Composition table

r2\r1 V P O VP PO VO VPO
V U U U U U IMP U
P V V,P,VP U V,P,VP U U U
O V V,P,VP U V,P,VP U U U
VP V,VP,

VO,
VPO

V,P,VP,
PO,VPO

U V,P,VP,
PO,VO,
VPO

U IMP U

PO V P,VP O,PO,
VPO

V,P,VP P,O,VP,
PO,VPO

V,O,
PO,VPO

V,P,O,
VP,PO,
VPO

VO V,VP,
VO,
VPO

P,VP,
PO,
VPO

O,PO,
VO,
VPO

V,P,VP,
PO,VO,
VPO

P,O,VP,
PO,VO,
VPO

IMP U

VPO V, VP,
VO,
VPO

P,VP,
PO,
VPO

O,PO,
VO,
VPO

V,P,VP,
PO,VO,
VPO

P,O,VP,
PO,VO,
VPO

IMP U

impossible, denoted by IMP. For any relation r(A,B,C) in the model, Table 1 gives the
corresponding relations resulting from permutation rules (1) and (2). Table 2 gives the
corresponding relations resulting from composition rule (3).

References

[1] Billen, R., Clementini, E.: Introducing a reasoning system based on ternary projective
relations. In: Fisher, P. (ed.) Developments in Spatial Data Handling, 11th International
Symposium on Spatial Data Handling, Leicester, UK, pp. 381–394 (2004)

[2] Billen, R., Clementini, E.: Semantics of collinearity among regions. In: Meersman, R.,
Tari, Z., Herrero, P. (eds.) On the Move to Meaningful Internet Systems 2005: OTM 2005
Workshops. LNCS, vol. 3762, pp. 1066–1076. Springer, Heidelberg (2005)

[3] Clementini, E., Billen, R.: Modeling and computing ternary projective relations between
regions. IEEE Transactions on Knowledge and Data Engineering 18, 799–814 (2006)

[4] Galton, A.: Lines of Sight. In: Keane, M., Cunningham, P., et al. (eds.) AI and Cognitive
Science ’94 Proceedings of the Seventh Annual Conference, September 8-9, 1994, pp.
103–113. Trinity College Dublin (1994)

[5] Isli, A., Cohn, A.G.: A new approach to cyclic ordering of 2D orientations using ternary
relation algebras. Artificial Intelligence 122, 137–187 (2000)

[6] Kohler, C.: The Occlusion Calculus. In: Workshop on Cognitive Vision Zurich
Switzerland (2002)

[7] Oommen, B., Iyengar, S., Rao, N., Kashyap, R.: Robot navigation in unknown terrains
using learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE Journal of
Robotics and Automation 3, 672–681 (1987)

[8] Witkowski, M., Shanahan, M., Santos, P., Randell, D.: Cognitive Robotics: On the
Semantic Knife-edge. In: 3rd British Conf. on Autonomous Mobile Robotics and
Autonomous Systems (2001)

Author Index

Abdenebaoui, Larbi 427
Albayrak, Sahin 1
Artmann, Stefan 431
Autexier, Serge 435

Baader, Franz 52
Baiget, Pau 279
Basselin, Nathalie 477
Bastos, Rogério C. 452
Beetz, Michael 19, 129, 473
Benazera, Emmanuel 337
Benzmüller, Christoph 435
Berger, Ralf 440
Berns, Karsten 464, 494
Bibel, Wolfgang 2
Bidot, Julien 367
Birk, Andreas 293
Biundo, Susanne 367
Böhnstedt, Lutz 352
Braun, Tim 464
Brockmann, Werner 498
Buss, Martin 19

Christaller, Thomas 43
Clementini, Eliseo 510

Dietrich, Dominik 435
Doherty, Patrick 460
Dorffner, Georg 235
Drescher, Conrad 68

Edelkamp, Stefan 382, 444
Edgington, Mark 205
Elkmann, Norbert 502
Elovici, Yuval 44, 489
Engel, Ralf 448
Englert, Roman 489

Fangmeier, Thomas 175
Feher, Clint 489
Felice, Giorgio De 510
Fernández Tena, Carles 279
Ferrein, Alexander 352
Ferro, Humberto F. 452
Figueroa, Alejandro 144

Finthammer, Marc 114
Fogliaroni, Paolo 510
Fox, Dieter 51
Frintrop, Simone 456
Fritz, Gerald 235
Fritzsche, Markus 502
Fürstenau, Norbert 251

Galán-Maŕın, Gloria 397
Gea, Jose de 205
Girstl, Angelika 502
Glezer, Chanan 44
Gonzàlez, Jordi 279
Gottfried, B. 308
Gretton, Charles 412

Hafner, Roland 220
Hahn, Hernsoo 323
Hahn, Kwangsoo 323
Hammer, Barbara 190
Han, Youngjoon 323
Hasenfuss, Alexander 190
Heim, Philipp 506
Heintz, Fredrik 460
Helmert, Malte 412
Herzog, O. 308
Hildebrand, Lars 382
Hirschberger, Andreas 468
Hirth, Jochen 464
Hitzler, Pascal 84
Hofmann, Martin 468

Irran, Jörg 235

Jain, Dominik 129

Kahl, Kenneth 382
Kassahun, Yohannes 205, 427
Kern-Isberner, Gabriele 114
Kintzler, Florian 235
Kirchlechner, Bernhard 129
Kirchner, Elsa A. 427
Kirchner, Frank 205, 427
Kirsch, Alexandra 473
Kissmann, Peter 444

516 Author Index

Kitzelmannn, Emanuel 468
Kröner, Alexander 477

Lakemeyer, Gerhard 352
Lämmel, Gregor 440
Lange, Sascha 220
Latoschik, Marc Erich 481
Lauer, Martin 220
López-Rodŕıguez, Domingo 397
Luksch, Tobias 494

Markov, Stefan 293
Matyasik, Piotr 485
Matzner, Tobias 84
Meilicke, Christian 99
Mérida-Casermeiro, Enrique 397
Merke, Artur 220
Metzen, Jan Hendrik 205
Mori, Junichiro 477
Moskovitch, Robert 44, 489
Muhl, Claudia 264
Müller, Heiko 220

Nagai, Yukie 264
Nalepa, Grzegorz J. 485
Neumann, Günter 144
Nissim, Nir 489

Oliveira, Cláudio M. de 452
Ortiz-de-Lazcano-Lobato, Juan M. 397

Paletta, Lucas 235
Peñaloza, Rafael 52
Proetzsch, Martin 494

Ragni, Marco 175
Richter, Silvia 412
Riedmiller, Martin 220
Ritterskamp, Manuela 114
Roca, Xavier 279
Rosemann, Nils 498
Rudol, Piotr 460

Sagerer, Gerhard 264
Schattenberg, Bernd 367
Schenk, Simon 160
Schiller, Marvin 435
Schleipen, Stefan 175
Schmid, Ute 468
Schneider, Michael 477
Schuldt, A. 308
Schulenburg, Erik 502
Shabtai, Asaf 44
Sonntag, Daniel 448, 506
Stiene, Stefan 502
Stopel, Dima 489
Stuckenschmidt, Heiner 99
Suntisrivaraporn, Boontawee 52

Tahan, Gil 44
Tarquini, Francesco 510
Teutsch, Christian 502
Thielscher, Michael 68

Wazlawick, Raul S. 452
Wollherr, Dirk 19

Zi ↪ecik, Piotr 485

	Title Page
	Preface
	Table of Contents
	The Role of AI in Shaping Smart Services and Smart Systems
	Early History and Perspectives of Automated Deduction
	Introduction
	How Automated Deduction Started
	Important Historical Advances in AD
	Gerd Veenker (1936–1996)
	Perspectives for AD
	References

	Cognitive Technical Systems—What Is the Role of Artificial Intelligence?
	Introduction
	Why Cognitive Technial Systems Are Not Merely AI-Based Technical Systems
	Realizing Cognitive Technical Systems
	Motor Control in Natural Systems
	The CoTeSys Approach

	Cognition in the Perception-Action Loop
	The Assistive Kitchen as a Cognitive Technical System
	Infrastructure
	Perception
	Model Acquisition
	Execution
	Reasoning and Planning

	Conclusions
	References

	Location-Based Activity Recognition
	Pinpointing in the Description Logic \ELplus
	Introduction
	The Description Logic \ELplus
	A Pinpointing Algorithm for \ELplus
	The Complexity of Computing All MinAs
	Computing One MinA
	Additional and Future Work on Pinpointing
	References

	Integrating Action Calculi and Description Logics
	Introduction
	Preliminaries
	Fluent Calculus
	Description Logics

	Integration
	ABoxes and State Formulas
	Updated ABoxes and State Update Axioms
	TBoxes and Domain Constraints

	Summary
	Related Work
	Conclusion

	References

	Applying Logical Constraints to Ontology Matching
	Motivation
	Problem Statement
	Approach and Contributions
	RelatedWork

	General Approach
	Translation
	Formalization

	Algorithms
	Optimization
	Reasoning
	Search

	Experiments
	Experimental Settings
	Experimental Results

	Discussion and Conclusions
	References

	Resolving Inconsistencies in Probabilistic Knowledge Bases
	Introduction
	A Motivating Example from the Domain of Auditing
	Building a Knowledge Base
	Extending the Knowledge Base

	Overall Concept of Heureka
	Optimization Criteria and Ranking Heuristics
	Consistency Heuristics
	Consistency Heuristic “Rules Removal: Branch and Bound”
	Consistency Heuristic “Probability Change: Intervals”

	Heureka – Walkthrough by Example
	Conclusion and Further Work
	References

	Extending Markov Logic to Model Probability Distributions in Relational Domains
	Introduction
	Application Scenarios
	Contributions

	Demands on the Representation Language
	Markov Logic Networks
	Inference
	Problems

	Analyzing the Problem
	The Example Domain
	Domain Shifts
	Domain-Specific Modifications

	Extending Markov Logic
	Conclusion
	References

	A Multilingual Framework for Searching Definitions on Web Snippets
	Introduction
	Mining the Web for Definitions
	Obtaining Descriptive Sentences
	Potential Senses Identification
	Redundancy Removal

	Experiments and Results
	Conclusions and Future Work
	References

	A SPARQL Semantics Based on Datalog
	Introduction
	Foundations
	RDF
	Named Graphs

	Introduction to SPARQL
	SPARQL Syntax
	Normalisation of GRAPH Patterns

	Semantics
	Properties of the Logic Based SPARQL Semantics
	Complexity of the Translation
	Complexity of Query Evaluation

	Extensions
	Binding Variables to Filter Functions
	Views in Datasets

	Related Work
	Conclusion
	References

	Negation in Spatial Reasoning A Computational Approach
	Introduction
	Theoretical and Mathematical Approach
	Empirical Data
	First Experiment - Acceptance
	Second Experiment - Simple Generating Experiment
	Third Experiment - Complexity of Proof

	Algorithmic Approach
	General Discussion and Outlook
	References

	Relational Neural Gas
	Introduction
	NeuralGas
	Relational Data
	Metric Data
	Dot Products

	Supervision
	Experiments
	Discussion
	References

	A General Framework for Encoding and Evolving Neural Networks
	Introduction
	Review of Work in Evolution of Artificial Neural Networks
	Common Genetic Encoding (CGE)
	Properties of the Encoding
	CGE for Direct Encoding Case
	Exploitation and Exploration of Structures
	Learning the Dynamic Model of a Robot Manipulator

	CGE for Artificial Embryogeny
	Comparison of CGE to Other Genetic Encodings
	Conclusion and Outlook
	References

	Making a Robot Learn to Play Soccer Using Reward and Punishment
	Introduction
	Reinforcement Learning
	Markov Decision Process
	Value Iteration
	Q-Learning

	Learning on a Real Robot
	Robot Learning Task
	Modeling the Learning Task
	Value Function Approximation
	Training the Robot

	Experimental Results
	Grid Map
	Lattice Map
	Learning for the Real Robot

	Discussion
	References

	Perception and Developmental Learning of Affordances in Autonomous Robots
	Introduction
	Computational Models on Affordances
	Related Work
	Affordance Based Perception and Learning of Affordances

	Developmental Learning of Affordances
	Reinforcement Learning of Basic Affordances
	Affordance Based Cueing
	Reinforcement Learning

	Proof of Concept
	Conclusions
	References

	A Computational Model of Bistable Perception-Attention Dynamics with Long Range Correlations
	Introduction
	Theory
	The Recursive Interference Model
	Stationary Solutions

	Computer Experiments
	Simulated Perception–Attention Dynamics
	Reversal Time Statistics

	Conclusion and Outlook
	References

	On Constructing a Communicative Space in HRI
	Introduction
	Sociological Aspects of Communication
	Involvement in Social Interaction
	Dealing with Disturbances

	A Communication Robot with Primal Visual Attention
	Robot Simulation
	Mechanism of Primal Visual Attention
	Disturbance in Robot’s Vision

	Method for HRI Experiment
	Participants
	Setting
	Procedure
	Sociological Analysis

	Results of People’s Responses to Robot’s Disturbance
	Categorization of People’s Frequent Responses
	Diversity of People’s Responses

	Discussions
	Constructing Communicative Spaces in Interactions
	Potential of Robot’s Primal Visual Attention in HRI

	Conclusion and Future Issues
	References

	Natural Language Descriptions of Human Behavior from Video Sequences
	Introduction
	Evaluation of Human Behaviors in Video Sequences
	The Conceptualization Step
	Agent Trajectories
	Scene Modeling
	Situation Graph Tree

	Linguistic Implementation
	Generation of textual descriptions

	Experimental Results
	Conclusions
	References

	Detecting Humans in 2D Thermal Image sby Generating 3D Models
	Introduction
	Background
	The 3D Scene Representation
	Image Distance Function
	The Evolutionary Algorithm
	Experiments and Results
	Conclusion
	References

	Extent, Extremum, and Curvature:Qualitative Numeric Features for Efficient Shape Retrieval
	Introduction
	Previous Work
	Reference System
	Bipartite Arrangements
	Scopes of Bipartite Arrangements and Courses

	Qualitative Numeric Shape Features
	Extent
	Extremum
	Curvature
	Comparison

	Retrieval Performance
	Experiment
	Existing Approaches
	Retrieval Results

	Conclusion
	References

	Extraction of Partially Occluded Elliptical Objects by Modified Randomized Hough Transform
	Introduction
	System Overview and Preprocessing
	System Overview
	Preprocessing

	Grouping Edge Pixels by Line Segments
	Ellipse Decision
	Randomized Hough Transform
	RHT with Line Segments

	Experiments
	Conclusion
	References

	Solving Decentralized Continuous Markov Decision Problems with Structured Reward
	Introduction
	Decision Theoretic Planning for Structured Continuous Domains
	Hybrid Markov Decision Process (HMDP)
	Optimality Equation

	Decentralized HMDPs (DEC-HMDPs)
	Reward Structure
	Cover Set Algorithm (CSA)

	Solving Transition-Independent DEC-HMDPs
	Policy Value in the Subscription Space
	Computational Solution to the Discrete Problem
	Computational Solution to the Continuous Problem
	Implementation

	Results
	Conclusion
	References

	Options in Readylog Reloaded – Generating Decision-Theoretic Plan Libraries in Golog
	Introduction
	Readylog
	DT Planning with Readylog
	Options with Readylog

	Solving Decision-Theoretic Plans in an Abstract Way
	Generating a DT Plan Library
	Experimental Results in the RoboCup Domain
	Conclusion
	References

	On the Construction and Evaluation of Flexible Plan-Refinement Strategies
	Introduction
	Refinement-Based Planning
	Search Strategies
	Evaluation
	Conclusions and Future Developments
	References

	Learning How to Play Hex
	Introduction
	Virtual Connections
	Learning the Evaluation Function
	Time Complexity
	Goal Pattern Databases
	Subset Dictionaries
	Limited Branching Trees
	Adaption to Hex

	Experiments
	Conclusion
	References

	Stochastic Functional Annealing as Optimization Technique: Application to the Traveling Salesman Problem with Recurrent Networks
	The Neural Model MREM
	Stochastic Functional Annealing
	Convergence Theorems

	Application to Recurrent Networks
	Stochastic Functional Annealing Applied to MREM

	The Euclidean Traveling Salesman Problem
	The MREM Model for the Travelling SalesmanProblem
	Functional Annealing for the Resolution of ETSP
	Experimental Results
	Conclusions
	References

	A Stochastic Local Search Approach to Vertex Cover
	Introduction
	Background and Related Work
	Maximum Clique and Independent Set

	Stochastic Local Search
	The COVER Algorithm
	Empirical Performance Results
	Biological Data
	The BHOSLIB Problems
	The DIMACS Benchmark Suite
	Search Without Parameter

	Conclusion and Outlook
	References

	A Connectionist Architecture for Learning to Play a Simulated Brio Labyrinth Game
	Introduction
	Learning Architecture
	Experiments
	Results
	Summary and Outlook
	References

	Divergence versus Convergence of Intelligent Systems:Contrasting Artificial Intelligence with Cognitive Psychology
	Introduction
	Artificial Intelligence Face to Face with Human Intelligence
	Artificial Intelligence Back to Back with Human Intelligence
	References

	Deep Inference for Automated Proof Tutoring?
	Introduction
	Evaluation
	Concluding Remarks
	References

	Exploiting Past Experience – Case-Based Decision Support for Soccer Agents– Extended Abstract –
	Introduction
	Building Up a Case Base
	Retrieval
	Case Base Optimization and Maintenance
	Conclusion
	References

	Externalizing the Multiple Sequence AlignmentProblem with Affine Gap Costs
	Introduction
	External IDDP
	Experimental Results
	References

	Text Generation in the SmartWeb Multimodal Dialogue System
	Introduction.
	References

	A Method to Optimize the Parameter Selection in Short Term Load Forecasting
	Introduction
	Load Forecasting Solutions
	Forecasting Optimization Method
	Results and Conclusions
	References

	Visual Robot Localization and Mapping Based on Attentional Landmarks
	Introduction
	The Visual SLAM System
	Experiments and Results
	Conclusion
	References

	Bridging the Sense-Reasoning Gap Using DyKnow: A Knowledge Processing Middleware Framework
	Introduction
	Traffic Monitoring
	Conclusions
	References

	Emotion Based Control Architecture for Robotics Applications
	Introduction
	Emotional Architecture
	Possible Applications of the Emotional Architecture
	Summary and Outlook
	References

	Inductive Synthesis of Recursive Functional Programs A Comparison of Three Systems
	Introduction
	The Systems
	Empirical Setup and Results
	Results of the Test Setting

	Conclusion
	References

	Training on the Job — Collecting Experience with Hierarchical Hybrid Automata
	Motivation
	Approach
	References

	Selecting Users for Sharing Augmented Personal Memories
	Sharing Augmented Personal Memories
	Selecting Sharing Partners
	References

	Semantic Reflection – Knowledge Based Design of Intelligent Simulation Environments
	Introduction
	Example Module Techniques and Interfaces
	Conclusion
	References

	Prolog-Based Real-Time Intelligent Control of the Hexor Mobile Robot
	Introduction
	TheHexorPlatform
	New Knowledge-Based Control Platform Architecture
	XTT Enhancements and Real-Time Control Features
	Future Work
	References

	Improving the Detection of Unknown Computer Worms Activity Using Active Learning
	Introduction
	Methods
	Support Vector Machines and Feature Selection
	Active Learning
	DataSet Creation
	Evaluation Measures

	Experiments and Results
	Experiment II – Unknown Worms Detection
	Experiment 3 – Using Selective Sampling

	Conclusions and Future Work
	References

	The Behaviour-Based Control Architecture iB2C for Complex Robotic Systems
	Introduction
	Components of iB2C and Their Interaction
	Design Guidelines
	Applications
	Conclusion and Future Work
	References

	Concept for Controlled Self-optimization in Online Learning Neuro-fuzzy Systems
	Introduction
	Safe Self-adaptation
	Basic Architecture
	Controlling Direct Adaptation with the SILKE Approach
	Extension of the SILKE Approach

	Demonstrational Example
	Conclusion
	References

	LiSA: A Robot Assistant for Life Sciences
	Introduction
	Hardware and Safety Components
	Localization and Navigation
	Multimodal Interaction
	References

	Semantic Graph Visualisation for Mobile Semantic Web Interfaces
	Introduction.
	References

	A Qualitative Model for Visibility Relations
	Introduction
	Acceptance Areas for Visibility
	Visibility Relations
	Reasoning
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

