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Preface

This book is based on the joint research activities of specialists in X-ray and
neutron optics from 11 countries, working together under the framework of
the European Programme for Cooperation in Science and Technology (COST,
Action P7), initiated by Dr. Pierre Dhez in 2002–2006, and describes modern
developments in reflective, refractive and diffractive optics for short wave-
length radiation as well as recent theoretical approaches to modelling and
ray-tracing the X-ray and neutron optical systems. The chapters are written
by the leading specialists from European laboratories, universities and large
facilities. In addition to new ideas and concepts, the contents provide practical
information on recently invented devices and methods.

The main objective of the book is to broaden the knowledge base in the
field of X-ray and neutron interactions with solid surfaces and interfaces, by
developing modelling, fabrication and characterization methods for advanced
innovative optical elements for applications in this wavelength range. This aim
follows from the following precepts:

– Increased knowledge is necessary to develop new types of optical elements
adapted to the desired energy range, as well as to improve the efficiency
and versatility of existing optics.

– Enhanced optical performances will allow a significant increase in the range
of applications possible with current and future X-ray and neutron sources.

– Better cooperation between national groups of researchers in the design
and application of X-ray and neutron optics will lead to improvements in
many key areas fundamental to societal and economic developments.

Behind each of these precepts is the knowledge that similar optical com-
ponents are required in many X-ray and neutron systems, although the optics
may have originally been developed primarily for X-rays (e.g., zone plates)
or for neutrons (e.g., multilayer supermirrors). Bringing together expertise
from both fields has led to efficient, cost-effective and enhanced solutions to
common problems.
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The editors are very grateful to Prof. Dr. h.c. Wolfgang Eberhardt, BESSY
scientific director, for his continuous support of the COST P7 Action on X-ray
and neutron optics and for his great help in the preparation of this book. The
editors also wish to thank Prof. Dr. William B. Peatman for his critical anal-
ysis of the original manuscripts. Their support has contributed significantly
to the publication of this book. Finally, the editors want to express their
thanks to BESSY and the Hahn-Meitner-Institute, Berlin (HMI) for financial
support, as well as Prof. Dr. Norbert Langhoff and Dr. Reiner Wedell for
their help.

Berlin, Paris and London, A. Erko
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84511 Bratislava, Slovakia
eva.majkova@savba.sk

Igor Matko
Laboratoire des Matériaux
et du Génie Physique
INP Grenoble – Minatec
3, parvis Louis Néel BP 257
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Box 534 SE-751 21, Upppsala
and
Institutionen för Biologi och
Kemiteknik
Mälardalens Höghskola
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Vrbovská cesta 110, SK-921 01
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13397 Marseille Cedex 20, France
Bernard.Vidal@l2mp.fr

Vladimir Vidal
CNRS, L2MP, Case 131
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X-Ray and Neutron Optical Systems

A. Erko, M. Idir, Th. Krist, and A.G. Michette

Abstract. Although X-rays and neutrons can provide different information about
samples, there are many similarities in the ways in which beams of them can be
manipulated. The rationale behind bringing experts in the two fields together was
the desire to find common solutions to common problems. The intention of this brief
introduction is to give a flavour of the state-of-the-art in X-ray and neutron optics
as well as an indication of future trends.

1.1 X-Ray Optics

There is a growing need for the determination and characterization of ele-
ments at trace concentrations that can be well below one part per million by
weight. This is true in many fields of human activity, including the environ-
mental sciences and cultural heritage as well as the more obvious physical and
biological sciences. Although for quantitative as well as qualitative investiga-
tions, X-ray microanalysis is an established method for determining elemental
composition, this is now often insufficient, a distribution map of each element
being much more useful. However, this can be achieved only with large flux,
optimal excitation energy, and high lateral resolution. For these to be satis-
fied appropriate optical elements must be developed to transport radiation
from source to sample, providing powerful, highly concentrated and possibly
monochromatic X-ray beams. As a result X-ray optics has grown rapidly in
recent years as an important branch of physics and technology.

The phrase “X-ray optics” encompasses a wide range of optical elements
exploiting reflection, diffraction, and refraction – or combinations of these –
utilizing sub-micrometer and sub-nanometer artificial structures and natu-
ral crystals to focus, monochromate or otherwise manipulate X-ray beams.
Historically, natural crystals can be regarded as prototypes of many of the
artificial structures now in use or proposed. The development of multilayer
interference mirrors for the nanometer wavelength range which provides effi-
cient reflection at angles close to normal incidence was a great step forward.
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These mirrors can be stable in ultrahigh power X-ray beams and can be
also used for broadband high-flux monochromators providing energy resolu-
tions E/ΔE ∼ 25 in the range ∼100 eV−15 keV. Developments in the design
and manufacture of multilayers have also allowed their capabilities as broad-
band polarizers and analyzers to be explored. In addition, recent technological
progress now allows the manufacture of highly aspheric multilayer-coated
optics. These preserve the efficiency, flux, and ease of alignment of spheri-
cal or partially aspheric mirrors, while eliminating spherical aberration, thus
allowing high collection and convergence angles and small spot sizes.

A compromise between the reflected flux and the necessary energy resolu-
tion can be achieved by the choice of a suitable crystal or multilayer monochro-
mator. Low-resolution monochromators can be also built from diffractive
elements such as transmission and reflection zone plates. Zone plates as focus-
ing elements and X-ray waveguides to relay sources of nanometer size are
recognized as significant optical elements in the nano-world. The great major-
ity of X-ray microscopes and microprobes currently use zone plates, and this
has allowed such devices to become available as laboratory instruments and at
synchrotron radiation facilities. However, during the last decade conventional
zone plate technology has reached the theoretical limit of spatial resolution,
with volume diffraction effects in the outer zones (with sizes comparable
to X-ray wavelengths) providing the fundamental limitation of zone plate
resolution.

Further development of micro and nanofabrication techniques, in partic-
ular for planar nanometer-scale structures with sizes of the order of X-ray
wavelengths, as well as the deposition and growth of thin films of different
materials, has enabled the manufacture of a new generation of diffractive
optical elements. In a similar fashion, the fabrication and successful tests
of a synthesized X-ray hologram on a crystal have been reported. With
such improvements in nanotechnology, mostly for microelectronic applica-
tions, methods have been developed to create nanostructures and multilayer
films for the effective control of X-rays to provide sub-micrometer spatial reso-
lutions. These include two- and three-dimensional Fresnel and Bragg–Fresnel
optical elements based on zone plates, with lateral resolutions as good as
15 nm, and diffraction gratings in combination with natural crystals or arti-
ficial multilayer structures. The recent development of graded crystals allows
simultaneous focusing and enhancement of the spectral flux at the sample
by several orders of magnitude. All these optical elements are related via the
basic principles of Bragg, Bragg–Laue, or Bragg–Fresnel diffraction on arti-
ficially made volume structures and differ from other types of optic through
combinations of optical properties. Refractive/diffractive X-ray optics were
first realized in 1986 and have successfully been used with third-generation
synchrotron radiation sources, as they are ideal for high-energy undulator
radiation characterized by low divergence in both the vertical and horizontal
directions.
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Capillary X-ray optics, including microchannel plates, have been success-
fully used with conventional X-ray sources. Straight glass monocapillaries are
efficient in transporting X-rays from the source leading to increased radia-
tion intensity on the sample. Tapered monocapillaries are used in synchrotron
beamlines for focusing radiation into micrometer and submicrometer spots.
Polycapillary arrays with curved channels can be used for transforming diver-
gent radiation from a point source into a quasiparallel beam or for focusing a
divergent beam onto a small spot. Straight polycapillary arrays have been used
for X-ray imaging and for beam splitting and filtering. Recent developments
have been in making arrays with different geometries to enhance the perfor-
mances of such optics. Also, of late, elliptically bent Kirkpatrick–Baez mirrors
have been used to produce submicrometer size X-ray beams. These optics are
achromatic and have relatively long focal distances compared to capillaries.
This property can be very important for microfluorescence applications in
special environments, for example when the sample needs to be contained in
a gas-filled temperature-controlled chamber. Refractive X-ray optics represent
a rapidly emerging option for focusing high energy synchrotron radiation from
micrometer to nanometer dimensions. These devices are simple to align, offer a
good working distance between the optics and the sample, and are expected to
become standard elements in synchrotron beamline instrumentation in general
and in high energy X-ray microscopy in particular.

1.2 Metrology

Most synchrotron radiation facilities and large industrial companies have
developed their own metrology laboratories to meet the needs of optical char-
acterization in terms of microroughness, radius of curvature, slope errors,
and shape errors. The instrumentation used consists mainly of commercial
instruments: phase shift interferometers for microroughness characterization,
Fizeau interferometers for bidimensional topography, and optical profilome-
ters – for measurements of long optical components – such as the long
trace profiler (LTP) or the nanometer optical component measuring machine
(NOM). In this book an attempt is made to systemize recent knowledge in
ultraprecise surface metrology. This is directly linked to instrument calibra-
tion, but up to now there is no standardization of calibration. In round-robin
endeavor, typical X-ray mirrors – plane, spherical or toroidal – were exam-
ined by the various laboratories using their own instrumentation in order
to better understand the accuracy achievable. The ultimate goal of this
Round Robin was to create a database of the measurement results in order
to provide these references as calibration tools available to the metrology
community.
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1.3 Neutron Optics

Because of their unique properties, neutrons are used to investigate a growing
number of research areas, in both traditional and new fields and from funda-
mental science to technology; no end to this growth can be foreseen. Currently
4,000–5,000 European researchers are using neutron scattering for their scien-
tific work. This demand drives the improvement of neutron instrumentation
which, to a large extent, is related to neutron optics. During the last decade
the main advancement has been the introduction of supermirrors (with lat-
eral or transverse grading of the laying thicknesses, either quasiperiodically
or aperiodically) for neutron transport in guides, while the next decade will
see the increased application of focusing and polarizing devices which will
also be based mainly on supermirror coatings. It is in this field of multilayers
where there is much similarity between neutron and X-ray optics. Focusing
systems for neutrons also have much in common with their X-ray equivalents;
in particular, focusing tests using capillary optics and Fresnel zone plates have
been performed with neutrons.

An important property of a supermirror is its critical angle, θc, the glanc-
ing angle up to which it reflects efficiently. By convention θc is measured in
multiples, m, of the critical angle of nickel, which has the largest critical angle
of all naturally occurring elements.

For multilayer production an important advance has been the reduction of
stress development during the growth of the film coatings; this is important
for the production of X-ray multilayers as well as those designed as neutron
reflectors. By varying several parameters during the sputtering process, their
influences on the stress development have been determined, leading to an
order of magnitude decrease in the stress. Another important step has been
progress in the production of polarizing and nonpolarizing supermirrors. For
polarizing supermirrors the critical angle up to which they reflect neutrons
has been increased and the magnetic field necessary to retain good polariza-
tion has been lowered. For nonpolarizing supermirrors the critical angle has
also been increased, while the temperature and radiation stability as well as
the corresponding crystal structures were characterized and the homogeneity
increased for the coating of large areas. Phase space mapping of a neutron
beam following neutron optical devices containing supermirrors has also been
demonstrated.

Research on bent perfect crystals has been aimed at the development of
the technique and demonstrating the properties of systems based on one or
two components. One component enables ultrahigh resolution for monochrom-
atizsation or analysis, while two components allow for an adjustable spectral
resolution and collimation of ∼10−3–10−4. Such systems have allowed the
realization and test of a multianalyzer module for a three-axis spectrome-
ter consisting of an array of 31 individual channels, covering a scattering



1 X-Ray and Neutron Optical Systems 5

angle range of 75◦. This new device offers improved momentum resolution
and enhanced data collection efficiency in experiments aimed at mapping
of inelastic response over extended areas in momentum/frequency space
and, at the same time, keeps the high incident flux and most of the flex-
ibility of up-to-date triple axis spectrometry using doubly focusing crystal
optics.



Part I

Theoretical Approaches and Calculations
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The BESSY Raytrace Program RAY

F. Schäfers

Abstract. The raytracing program RAY simulates the imaging properties of an
optical system. It randomly creates a set of rays within various types of light sources
and traces them according to the laws of geometric optics through optical elements
onto image planes. The distribution of the rays at the source, optical elements and
image planes can be displayed.

A ray is described not only by its coordinates with respect to a suitable coor-
dinate system, but also by its energy and its polarisation determined by the Stokes
vector. Different source types are implemented with special emphasis on a realis-
tic simulation of source intensity, volume and emission characteristics, especially
for synchrotron radiation including dipole and undulator sources. Optical elements
can be reflection mirrors of nearly any figure (plane, cylindrical, spherical, aspher-
ical. . . ), gratings, zone plates, foils or crystals. The absolute transmission of the
optics including the effect of optical (multilayered) coatings is calculated according
to the reflection/refraction/transmission process from the optical constants of the
materials involved. The influence of misalignment of the source and/or the optical
elements, slope errors and thermal deformation of the optics can also be taken into
account. A graphical display of spot patterns at any position of the beam, intensity
and angular distributions, absolute flux, polarisation, energy resolution is possible.

2.1 Introduction

The development of the raytracing program RAY was started at BESSY
in 1984 for basic raytracing calculations of VUV- and soft X-ray optical
schemes [1]. Since that time RAY has been in continuous evolution and it has
grown into a widely used design tool for synchrotron radiation beamlines as
well as for other optical systems. Most of the BESSY I monochromators have
been designed using RAY. To meet the requirements of the new undulator-
based third generation storage ring BESSY II, many new features have been
implemented into the code in the last 10 years such that RAY now has become
an indispensable tool for modern beamline design. Its capabilities are simi-
lar to the widely used SHADOW–XOP program [2,3]. Considerable effort has
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been made to ensure that it is a user friendly, easy accessable and easy-to-learn
program for everyday use with a minimum effort on data and file handling.

Alternative to these programs based on intensity distributions and geo-
metric optics, wavefront propagation codes have been developed such as
PHASE [4], which applies the Stationary Phase Approximation and SRW [5]
employing Fourier Optics, which on the basis of the complex electric field
of the radiation are able to intrinsically take into account interference and
coherence effects. These codes are treated separately in this book [6].

This report is intended to be a practical reference and to give an outline
of the underlying geometrical, mathematical, physical and optical principles
which can be found in textbooks [7–9] or synchrotron radiation handbooks
[10]. In particular, Chap. 3.2 of [10] (Ray tracing) is strongly recommended
as an introductory guide before calculating a real beamline design. Here the
procedure, problems, limitations and the importance of checking the raytrace
results for the various kinds of errors that can occur are discussed. Various
specific RAY-features have been described previously: crystal optics in [11]
and zoneplate optics employing Fresnel diffraction where the collective effects
are treated on a statistical (Monte Carlo) basis [12, 13]. Extended manuals
for RAY [14] and the reflectivity program REFLEC [15] which share the
same optics software library are also available. Examples for the use of the
program in a variety of synchrotron radiation applications are given in [16]:
plane grating monochromator (PGM-) beamlines, [17] IR-beamlines, [18] ellip-
tical undulator beamlines, [19] gradient crystal monochromators, [20] μ-focus
X-ray beamline.

Chapter 3 explains the basic statistical treatment to simulate any kind
of intensity patterns, while the next chapters describe the simulation of
sources (Chap. 4), optical elements (Chap. 5) and of the treatment of absolute
reflectivity and polarisation (Chap. 6).

In Chap. 7 crystal diffraction optics employing dynamical theory is
described. Looking ahead, in ‘Outlook’, the time evolution of the rays to
describe wave, coherence and interference phenomena is discussed (Chap. 8).
This extension of the program and the implementation of the zoneplate
optics [12, 13] have been made possible by support through the COST-P7
action and intensive discussions during the COST meetings.

The complete code is available as a PC-Windows version.

2.2 Beamline Design and Modelling

The raytracing program RAY simulates the imaging and focussing properties
of an optical system. It randomly creates a set of rays within various types of
light sources and traces them through one or more optical elements on image
planes. The geometric distribution of the rays at the source, at all optical
elements and at the image planes can be visualized.
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Fig. 2.1. BESSY soft X-ray computational tools and their interplay

Various interesting features like focal properties, power distribution, energy
resolution, rocking curves, absolute transmission and polarisation characteris-
tics of an optical setup are simulated. It combines pure geometrical raytracing
with calculations of the absolute transmission and is, thus, a central and
indispensable part of the BESSY software tools for the design and opti-
mization of new monochromators and beamlines from the infrared spectral
region to the hard X-ray range. The interplay of the software tools available
at BESSY [21,22], is demonstrated in Fig. 2.1 as a flowchart.

Special emphasis was put on realistic simulations of beamlines, in partic-
ular those employing synchrotron radiation: the path of the photons can be
followed from any source, including bending magnets and insertion devices
via reflection/diffraction/transmission at optical elements through apertures,
entrance and/or exit slits on the sample. The influence of slope errors, surface
roughness, thermal bumps, measured or calculated surface profiles as well as
a misalignment of the source and optical elements can be studied in a simple
way. Thus, it is possible to predict the real performance of the beamline under
realistic conditions and to specify the requirements for all the components to
be ordered.

In a well defined source volume, rays are created within a given hori-
zontal and vertical divergence. Each ray has the same intrinsic probability.
The spatial and angular intensity distribution of the source is given by the
spatial and angular density of the rays (i.e. rays per volume and solid angle).
Thus, the outgoing rays simulate the intensity distribution of the correspond-
ing source. The rays are traced according to geometrical optics through one
or more optical elements (mirrors, gratings, foils, crystals, slits, zoneplates)
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of which the surface can have nearly any figure such as plane, cylindrical,
spherical, toroidal, paraboloidal or ellipsoidal and can be arranged in any
geometry (horizontal, vertical, oblique). The absolute transmission of the
optics including the effect of (multilayer-) coatings is calculated according
to the reflection/refraction/transmission/diffraction processes from the opti-
cal constants of the involved materials. Special monochromator mounts and
(coma-corrected) varied line-spacing (VLS-) gratings and (graded) crystals
with automatic calculation of structure factors can also be handled.

A ray is determined not only by its coordinates with respect to a suit-
able coordinate system (e.g. by its starting point) and by its direction,
but also by its energy E, its polarisation, described by the Stokes vector
S = (S0, S1, S2, S3), and its pathlength. Thus, a ray is described by 12 param-
eters, which are traced through the optical setup and for which the geometrical
and optical modifications are calculated according to its interaction with the
optical coating (reflection/refraction/transmission). Since all rays have equal
probability (the intensity of a ray, S0, is either 1 or 0), the throughput of
a beamline is simply given by the number of rays, for SR-sources multiplied
with the absolute photon flux as scaling factor.

For a first overview of the focal properties of an optical system, the hori-
zontal and vertical widths of the beam can be visualized along the beam path
for the determination of the focus position. At any position along the beam
path image planes can be defined. The footprints of the rays on the optical
elements and the focal properties of the optical system are analyzed and are
visualized graphically as point diagrams, 2D or 3D intensity distributions etc.

The menu-driven program is user friendly and so a first-performance test
of an optical design can be gained rapidly without any file handling. Once the
beamline has been defined the parameters are stored and can be modified in a
subsequent run. The graphics output is directed to monitors, printers, or PS
or EPS-files, and alternatively ASCII-data tables of all results can be created
for further data evaluation and display.

A flowchart of the program is shown in Fig. 2.2.

2.3 Statistics: Basic Laws of RAY

2.3.1 All Rays have Equal Probability

To simulate realistic intensity patterns on optical elements and image planes
(e.g. for heat load studies) it is necessary to create the source points and the
rays in such a way that the same intensity is attributed to each ray.

Generally there are two possibilities:

• A systematic distribution of the rays within the source so that the real
emission characteristic is simulated. For this a large number of rays is
required and needs to be calculated before an optical setup is completely
described.
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Fig. 2.2. Flow chart of RAY

• The rays are distributed statistically within the source so that within the
statistical error the real emission characteristic is simulated. The intensity
distribution of the source is thus understood as the probability distribution
of the necessary parameters, namely position and angle. The main advan-
tages of this Monto–Carlo procedure are its simplicity and the fact that a
calculation of relatively few rays already is enough to create a reasonable
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simulation of the optics. When the statistics and the accuracy seem to
be sufficient, the calculation can always be interrupted without making a
systematic error.

This second option is realized in RAY. The procedure is as follows:

1. Create a random number ran1 between 0 and 1.
2. Scale the corresponding variable, e.g. the x-coordinate of the source point:

x = (ran1 − 0.5) dx, (2.1)

where dx is the source-dimension in the x-direction.
3. Calculate the probability, w, of this randomly chosen start value for x (nor-

malized to a maximum value of 1), for example the electron density in a
dipole-source (gaussian profile w(x) = exp(−x2/(2σ2

y)) or the synchrotron
radiation intensity for a fixed wavelength at a definite horizontal and
vertical emission angle (Schwinger theory [23]).

4. Create a second random number ran2. The ray is accepted only if the
difference of the probability w(x) and this new random number is larger
than zero:

w (x)− ran2 > 0. (2.2)

5. If the difference is less than zero neglect this ray and start again with a
new one according to (2.1).

2.3.2 All Rays are Independent, but. . . (Particles and Waves)

All rays are independent, and so they are considered as individual particles
not knowing anything about each other. Thus, RAY works exclusively in the
particle model. Nevertheless, the statistical method explained above is an
elegant way to overcome the particle–wave dualism and to simulate wave
phenomena and collective effects such as interference, diffraction, coherence
and wave fronts.

This is done by a statistical treatment of an ensemble of individual rays
which behave within the statistical errors as a collective unit, as a wavefront.

This random selection of a parameter is used extensively throughout the
program not only to simulate the emission characteristics of a light source,
but also, for example, to simulate the reflection angle on a mirror to simulate
slope errors that are assumed to be gaussian. It is used to simulate reflection
losses of rays where w(x) = R with (0 < R < 1) by which the surviving ray
is assigned a probability of 1.

Furthermore, it is applied to simulate diffraction effects on slits for which
the outgoing beam direction is modulated by a sin v/v term for the case of
rectangular slits or by a bessel function for the case of circular slits.

The same diffraction routine is used for zone plate optics to simulate airy
patterns at the focus point in first, third and fifth harmonic [12, 13].
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2.4 Treatment of Light Sources

Various light sources are incorporated in RAY. Generally the rays are starting
in a defined source volume and are emitted with a defined horizontal and
vertical divergence. Either hard (flat-top) edges or a gaussian distribution
profile can be simulated. In the latter case, rays are created statistically (see
3.1) within a ±3σ-width of the gaussian profile (i.e. more than 99.9% of the
intensity).

For synchrotron radiation beamlines, the polarised emission characteris-
tic of bending magnets, wigglers and undulators is incorporated. For other
sources, such as twin or helical undulators, or to take beam emittance effects
into account, the input can be given as an ASCII-file taken from programs
for undulator radiation: URGENT [24], SMUT [25] or WAVE [26]. In this file
the intensity and polarisation patterns of the light source must be described
as intensity (photons/seconds) and Stokes parameters at a distance of 10m
from the centre of the source in a suitable x-y mesh.

Each ray is attributed an energy, E, and a polarisation. The energy can be
varied continuously within a ‘white’ hard-edge band of E0 ±ΔE, or toggled
between three discrete energies E0, E0+ΔE and E0−ΔE. This feature allows
one to determine easily the energy dispersion and the spatial separation of
discrete energies for monochromator systems, thereby giving a picture of the
energy resolution that one can expect.

Table 2.1 lists the main features of the different light sources.
The source coordinate system for the case of bending magnet synchrotron

radiation is given in Fig. 2.3. The storage ring is located in the x-z plane,

Table 2.1. Parameters of the RAY-sources

Name Width Height Length Div. Div. S0 S1, S2, S3

x y z hor. φ vert. ψ

Matrix MA Hard Hard Hard Hard Hard 1 Input
Point PO Hard Hard Hard Hard Hard 1 Input

soft soft soft soft
Circle CI Hard Hard Hard Hard Hard 1 Input
Dipole DI Soft Soft Hard Hard Calc. Flux Calc.
Wiggler WI Soft Soft L = nλu Hard Calc. Flux Calc.
Wiggler/Undul. WU Soft Soft 0 Calc. Calc. Flux Input
Double–Undul. HU Soft Soft Hard Soft Soft Flux Input
Undul.–data file UF Soft Soft Hard File File Flux File
Helical Undul.
data file

HF Soft Soft Hard File File Flux File

Source data file FI Soft Soft Hard File File 1 Input

hrd, a hard (flat-top) edge; soft, soft – a gaussian distribution of the respective
variable within a 6σ-width is simulated; calc, calculated according to a theoretical
model (e.g. Schwinger theory); n, number of wiggler periods; L, length of undulator;
λu, period length; file, parameters taken from data-file; input, parameters to be given
interactively
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Fig. 2.3. Coordinate system for storage ring-bending magnet sources (DI pole) as
viewed from above
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Fig. 2.4. Spot pattern of various source types in x-y plane, projected onto z = 0
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Fig. 2.5. Spot pattern of synchrotron radiation sources in x-y plane, projected onto
z = 0

for clockwise revolution of the electrons the x-axis is pointing away from the
centre, while for counter-clockwise revolution the x-axis is pointing inside
the storage ring centre. This is important to be noticed especially for opti-
cal systems with large horizontal divergence (e.g. IR-beamlines), where the
source cross section is very asymmetric because of the depth-of-field effect
(see Fig. 2.5).

Examples of the intensity distribution (footprints) of various sources are
given in the Figs. 2.4 and 2.5.
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2.5 Interaction of Rays with Optical Elements

2.5.1 Coordinate Systems

The definition of the coordinate system used in RAY is shown in Figs. 2.6
and 2.7. Its origin lies in the centre of the source (with the x-axis in general
(e.g. SR) being horizontal). The coordinate system is transformed along the
optical path from the source to the optical elements and then to the image
planes. The z-axis points into the direction of the central ray, the x-axis
is perpendicular to the plane of reflection, i.e. horizontal in the case of a
vertically deviating optical setup (azimuthal angles 0◦ or 180◦), and it is
vertical for horizontal mounts (azimuthal angles 90◦ (to the right) and 270◦

(to the left), respectively). The y-axis is always the normal in the centre of the
optical element. The plane of reflection or dispersion is, thus, always the y-z
plane and the surface of the optical elements is the x-z-plane, regardless of
the azimuthal angle χ chosen. After the optical element the coordinate system
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2Θ

COORDINATE SYSTEM OF RAY

α β
2Θ

1. OPTICAL
 ELEMENT

IMAGE
PLANE

xIm

yIm

zIm

ZMi

ZMi
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Xso
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SOURCE

χψ
φ

χψ
φ

χ

Vertical mount

Horizontal mount

Fig. 2.6. Coordinate system (right-handed screw) and angles used in RAY. (Top)
Vertical deviation (upwards (downwards)) mount (azimuthal angle χ = 0◦ (180◦)).
(Bottom) Horizontal deviation (to the right (left)) (azimuthal angle χ = 90◦ (270◦)).
The optical element is always in the XM-ZM-plane
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y

x

z y
x

z

Fig. 2.7. Coordinate systems used in RAY. For optical elements (left) the coordinate
system is fixed to the optical surface (X-Z plane). Transmission elements, screens
and image planes (right) are in the X-Y plane, the x-axis is in the horizontal plane.
The red line is the light beam

for the outgoing ray is rotated back by −χ, i.e. it has the same orientation as
before the optical element. In this way another optical element can be treated
in an identical manner.

2.5.2 Geometrical Treatment of Rays

The geometric calculations proceed in the following way:
Statistical creation of a ray within a given source volume and emission cone

and within the ‘correct’ statistics (see Chap. 3). The ray is determined by its
source coordinates (xs, ys, zs) and its direction cosines (ls,ms, ns) determined
by the horizontal and vertical emission angles ϕ and ψ (see Fig. 2.8):

�αS =

⎛
⎝ lSmS

nS

⎞
⎠ =

⎛
⎝ sinϕ cosψ

sinψ
cosϕ cosψ

⎞
⎠ (2.3)

The vector equation of the ray is then

�x = �xS + t�αS with tε�+
0 (2.4)

or, in coordinates ⎛
⎝xy
z

⎞
⎠ =

⎛
⎝xs

ys
zs

⎞
⎠+ t

⎛
⎝ lSmS

nS

⎞
⎠ (2.5)

or

x− xs

lS
=
y − ys
mS

=
z − zs
nS

(2.6)
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Fig. 2.8. Source coordinate system: Definition of angles and direction cosines
in RAY

2.5.3 Intersection with Optical Elements

The source coordinate is translated into a new coordinate system with the
origin in the centre of the first optical element (hit by the central ray), and
the z-axis parallel to a symmetry axis of the optical element (for a simpli-
fied equation). The coordinate system is translated by the ‘distance from the
source’ to the optical element, zq, rotated around z by the azimuthal angle,
χ, and around the new x̃-axis by the grazing incidence angle, θ. The trans-
formation to the new-coordinate system is performed by the following matrix
operations:

�xS′ = Dx̃ (θ)Dz (χ)Tz (zq) �xS (2.7)

zq distance source to first optical element or nth to (n+ 1)th element
θ rotation angle around x (y-z plane)
χ azimuthal rotation around z (x-y plane) (clockwise),

which corresponds to⎛
⎝xS′

yS′

zS′

⎞
⎠ =

⎛
⎝1 0 0

0 cos θ −sinθ
0 sin θ cos θ

⎞
⎠ ◦

⎛
⎝cosχ −sinχ 0

sinχ cosχ 0
0 0 1

⎞
⎠ ◦

⎛
⎝
⎛
⎝xS

yS
zS

⎞
⎠−

⎛
⎝0

0
zq

⎞
⎠
⎞
⎠

(2.8)

or finally

⎛
⎝xS′

yS′

zS′

⎞
⎠ =

⎛
⎝xs cosχ− ys sinχ
xs sinχ cos θ + ys cosχ cos θ − (zs − zq) sin θ
xs sinχ sin θ + ys cosχ sin θ + (zs − zq) cos θ

⎞
⎠ (2.9)
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The direction cosines are transformed correspondingly:

�αS′ = Dx̃ (θ)Dz (χ) �αS, (2.10)

and finally

⎛
⎝ lS′mS′

nS′

⎞
⎠ =

⎛
⎝ ls cosχ−ms sinχ
ls sinχ cos θ +ms cosχ cos θ
ls sinχ sin θ +ms cosχ sin θ

⎞
⎠ . (2.11)

In the new coordinate system the ray is described by⎛
⎝xy
z

⎞
⎠ (t) =

⎛
⎝xS′

yS′

zS′

⎞
⎠+ t

⎛
⎝ lS′mS′

nS′

⎞
⎠ (2.12)

2.5.4 Misalignment

A six-dimensional misalignment of an optical element can be taken into
account: three translations of the coordinate system by δx, δy and δz and
three rotations by the misorientation angles δχ (x-y plane), δϕ (x-z plane)
and δψ (y-z plane). Since the rotations are not commutative, the coordinate
system is first rotated by these angles in the given order and then translated.
For the outgoing ray to be described in the non-misaligned system, the coor-
dinate system is backtransformed (in reverse order). Thus, the optical axis
remains unaffected by the misalignment.

2.5.5 Second-Order Surfaces

Optical elements are described by the general equation for second-order
surfaces:

F (x, y, z) = a11x2 + a22y2 + a33z2 + 2a12xy + 2a13xz
+ 2a23yz + 2a14x+ 2a24y + 2a34z + a44 = 0.

(2.13)

This description refers to a right-handed coordinate system attached to the
centre of the mirror with its surface in x-z plane, and y-axis points to the
normal). This coordinate system is used for the optical elements PL ane,
CO ne, CY linder and SP here.

Note that for the elements EL lipsoid and PA raboloid a coordinate system
is used, which again is attached to the centre of the mirror (with x-axis on the
surface), but the z-axis is parallel to the symmetry axis of this element for an
easier description in terms of the aij parameters (see Figs. 2.9 and 2.10). The
aij-values of Table 2.2 are given for this system. Thus, the rotation angle of
the coordinate system from source to element is here θ+α (EL) and 2θ (PA),
respectively, θ being the grazing incidence angle and α the tangent angle on
the ellipse.
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Fig. 2.10. Paraboloid: Definitions and coordinate systems

The individual surfaces are described by the following equations:

• Plane y = 0
• Cylinder(in z − dir.) x2 + y2 = 0
• Cylinder(in x− dir.) y2 + z2 = 0
• Sphere x2 + (y −R)2 + z2 −R2 = 0
• Ellipsoid x2/C2 + (y − y0)2/B2 + (z − z0)2/A2 − 1 = 0
• Paraboloid x2/C2 + (y − y0)2/B2 − 2P (z − z0) = 0

(2.14)

Alternatively to the input of suitable parameters, such as mirror radii or
half axes of ellipses, in an experts modus (EO), the aij parameters can be
directly given, such that any second-order surface, whatever shape it has, can
be simulated.
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2.5.6 Higher-Order Surfaces

A similar expert modus is available for surfaces, which cannot be described
by the second-order equation. The general equation is the following:

F (x, y, z) = a11x2 + signa22y2 + a33z2 + 2a12xy + 2a13xz + 2a23yz

+ 2a14x+ 2a24y + 2a34z + a44 + b12x2y + b21xy2

+ b13x2z + b31xz2 + b23y2z + b32yz2 = 0

(2.15)

Here, again all aij and bij parameters can be given explicitly by the user to
describe any geometrical surface.

For special higher order surfaces the surface is described by the following
equations.

Toroid

F (x, y, z) =
(
(R− ρ) + sign (ρ)

√
ρ2 − x2

)2

− (y −R)2 − z2 = 0 (2.16)

Sign = ±1 for concave/convex curvature.

The surface normal is calculated according to (see Chap. 5.7)

Fx =
−2x sign(ρ)√
ρ2 − x2

(
(R− ρ) + sign(ρ)

√
ρ2 − x2

)2

(2.17)

Fy = −2(y −R) (2.18)
Fz = −2z. (2.19)

Elliptical Paraboloid

F (x, y, z) =
2fx2

2f − z+z0
cos 2θ

− 2p(z + z0)− p2 = 0. (2.20)

Elliptical Toroid

In analogy to a spherical toroid, an elliptical toroid is constructed from an
ellipse (instead of a circle) in the (y, z) plane with small circles of fixed radius
ρ attached in each point perpendicular to the guiding ellipse.

The mathematical description of the surface is based on the description of
a toroid, where in each point of the ellipse a ‘local’ toroid with radius R(z)
and center (yc(z), zc(z)) is approximated (Fig. 2.11).

Following this description the elliptical toroid surface is given by

F (x, y, z) = 0 = (z − zc (z))2 + (y − yc (z))2 −
(
R (z)− ρ+

√
ρ2 − x2

)2

(2.21)
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(z0,y0)
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x

Fig. 2.11. Construction of an elliptical toroid. The ET is locally approximated by
a conventional spherical toroid with radius R(z) and center (zc(z), yc(z))

with R(z) = a2b2
(
z2

a4
+

(
a2 − z2)
a2b2

) 3
2

=
1
ab

(
b2 − a2
a2

z2 + a2
) 3

2

zc(z) = z −R(z) sinα(z),
yc(z) = y(z) +R(z) cosα(z),
z′c = 1−R′ sinα−Rα′ cosα,
y′c = y′ +R′ cosα−Rα′ sinα,
y(z) = − b

a

√
a2 − z2,

α = arctan(y′) = arctan
(
b

a

z√
a2 − z2

)
,

y′ =
∂y

∂z
= tanα =

b

a

z√
a2 − z2

α′ =
∂α

∂z
=

y′′

1 + y′2
,

y′′ =
∂2y

∂z2
=

ab

(a2 − z2) 3
2
.

The surface normal is given by the partial derivatives

∂F

∂x
= 2

x√
ρ2 − x2

(
R− ρ+

√
ρ2 − x2

)
, (2.22)



2 The BESSY Raytrace Program RAY 25

∂F

∂y
= 2(y − yc), (2.23)

∂F

∂z
= 2(z − zc(1 − z′c)− 2y′c(y − yc)− 2R′

(
R− ρ+

√
ρ2 − x2

)
. (2.24)

2.5.7 Intersection Point

The intersection point (xM, yM, zM) of the ray with the optical element is
determined by solving the quadratic equation in t generated by inserting (2.12)
into (2.13) or (2.15). For the special higher-order surfaces (TO, EP, ET) the
intersection point is determined iteratively.

Then the local surface normal for this intersection point �n = n(xM, yM, zM)
is found by calculating the partial derivative of F (xM, yM, zM)

�f = ∇F, (2.25)

with the components

fx =
∂F

∂x
fy = −∂F

∂y
fz =

∂F

∂z
. (2.26)

The local surface normal is then given by the unit vector

�n =

⎛
⎝nx

ny

nz

⎞
⎠ =

1√
fx

2 + fy2 + fz2

⎛
⎝ fxfy
fz

⎞
⎠ . (2.27)

Whenever the intersection point found is outside the given dimensions of the
optical element, the ray is thrown away as a geometrical loss and the next ray
starts within the source according to Chap. 5.2.

2.5.8 Slope Errors, Surface Profiles

Once the intersection point and the local surface normal is found, these are
the parameters that are modified to include real surfaces as deviations from
the mathematical surface profile, namely figure and finish errors (slope errors,
surface roughness), thermal distortion effects or measured surface profiles.

The surface normal is modified incrementally by rotating the normal
vector in the y-z (meridional plane) and in the x-y plane (sagittal). The
determination of the rotation angles depends on the type of error to be
included.

1. Slope errors, surface roughness: the rotation angles are chosen statistically
(according to the procedure described in Sect. 2.3.1) within a 6σ-width of
the input value for the slope error.

2. Thermal bumps: a gaussian height profile in x- and z-direction with a given
amplitude, and σ-width can be put onto the mirror centre.
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3. Cylindrical bending: a cylindrical profile in z-direction (dispersion direc-
tion) with a given amplitude can be superimposed onto the mirror surface.

4. Measured surface profiles, e.g. by a profilometer.
5. Surface profiles calculated separately, e.g. by a finite element analysis

program.

In cases (2–5) the modified mirror is stored in a 251 × 251 surface mesh
which contains the amplitudes (y-coordinates). For cases (2) and (3) this mesh
is calculated within RAY, for the cases (4) and (5) ASCII data files with
surface profilometer data (e.g. LTP or ZEISS M400 [27]) or finite-element-
analysis data (e.g. ANSYS [28]) can be read in. The new y-coordinate of
the intersection point and the local slope are interpolated from such a table
accordingly.

2.5.9 Rays Leaving the Optical Element

For those rays that have survived the interaction with the optical element –
geometrically and within the reflectivity statistics (Chap. 6) – the direction
cosines of the reflected/transmitted/refracted ray (�α2) = (l2,m2, n2) are cal-
culated from the incident ray (�α1) = (l1,m1, n1) and the local surface normal
�n.

Mirrors

For mirrors and crystals the entrance angle, α, is equal to the exit angle, β.
In vector notation this means that the cross product is

n× (�α2 − �α1) = 0, (2.28)

since the difference vector is parallel to the normal. For the direction cosines
of the reflected ray the result is given by

α2 = �α1 − 2(�n ◦ �α1)�n (2.29)

or in coordinates
l2 = l1 − 2nx

lnx +mny + nnz

nx
2 + ny

2 + nz
2

(2.30)

and, correspondingly, for m2 and n2.

Gratings

The emission angle β for diffraction gratings is obtained by the grating
equation

kλ = d (sinα+ sinβ) , (2.31)

k, diffraction order; λ, wavelength; d, grating constant.
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1. The grating is rotated by δχ = a tan(nx/ny) around the z-axis and by
δψ = a sin(nz) around the x-axis, so that the intersection point is plane
(surface normal parallel to the y-axis). The grating lines are parallel to the
x-direction.

2. Then the direction cosines of the diffracted beam are determined by

⎛
⎝ l2m2

n2

⎞
⎠ =

⎛
⎜⎝
l1√
m2

1 + n2
1 − (n1 − a1)2

n1 − a1

⎞
⎟⎠ , (2.32)

a1 = k
λ

d
cos δψ.

3. The grating is rotated back to the original position by −δψ and −δχ.

For varied line spacing (VLS) gratings, the local line density n = 1/d(l/mm)
as a function of the (x, z)-position is determined by [29]

n = n0 ·
(
1 + 2b2z + 3b3z2 + 4b4z3 + 2b5x+ 3b6x2 + 4b7x3

)
. (2.33)

Transmitting Optics

For transmitting optics (SL it, FO il) the direction of the ray is unchanged by
geometry. However, diffraction is taken into account for the case of rectangular
or circular slits by randomly modifying the direction of each ray according to
the probability for a certain direction ϕ

P (ϕ) =
sinu
u
, (2.34)

with u =
πb sinϕ
λ

(b, slit opening; λ, wavelength),

so that for a statistical ensemble of rays a Fraunhofer (rectangular slits) or
bessel pattern (circular slits) appears (see Fig. 2.12). ZO neplate transmitting
optics are described in [12, 13].

Azimuthal Rotation

After successful interaction with the optical element the surviving ray is
described in a coordinate system, which is rotated by the reflection angle
θ and the azimuthal angle χ, such that the z-axis follows once again the
direction of the outgoing central ray as it was for the incident ray. The old
values of the source/mirror points and direction cosines are replaced by these
new ones, so that a new optical element can be attached now in similar way.
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Fig. 2.12. Fraunhofer diffraction pattern on a rectangular slit

2.5.10 Image Planes

If the ray has traversed the entire optical system, the intersection points
(xI , yI) with up to three image planes at the distances zI1,2,3 are determined
according to (

xI

yI

)
=
(
x
y

)
+

1
n

(
l
m

)
(zI1,2,3 − z). (2.35)

Once a ray reaches the image plane or whenever a ray is lost within the optical
system a new ray is created within the source and the procedure starts all over.

2.5.11 Determination of Focus Position

For the case of imaging systems, if the focus position is to be determined, the
x- and y-coordinates of that ray which has the largest coordinates are stored
along the light beam in the range of the expected focal position (search in a
distance from last OE of . . .+/− . . .). The so found cross section of the beam
(width and height) is displayed graphically. Since at each position a different
ray may be the outermost one, there may be bumps in this focal curve which
depend on the quality of the imaging. Especially, for optical systems with large
divergences (and thus large optical aberrations) or which include dispersing
elements, this curve is only schematic and serves as a quick check of the focal
properties of the system.

2.5.12 Data Evaluation, Storage and Display

The x, z-coordinates of the intersection point (x, y for source, slits, foils,
zoneplates and image planes) and the angles l, n (l, m, respectively) are stored
into 100× 100 matrices. These matrices are multichannel arrays, one for the
source, for each optical element and for each image plane, whose dimensions
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(and with it the pixel size) have been fixed before in a ‘test-raytrace’ run.
They represent the illuminated surface in x-z projection. The corresponding
surface pixel element that has been hit by a ray is increased by 1, so that
intensity profiles and/or heat load can be displayed.

Additionally, the x- and z-coordinates (y, respectively) of the first 10,000
rays are stored in a 10,000x2 ASCII matrix to display footprint patterns of
the optical elements, for point diagrams at the image planes or for further
evaluation outside the program.

2.6 Reflectivity and Polarisation

Not only the geometrical path of the rays is followed, but also the inten-
sity and polarisation properties of each ray are traced throughout an optical
setup. Thus, it is easily possible to preview depolarisation effects throughout
the optical path, or to optimize an optical setup for use as, for example, a
polarisation monitor. For this, each ray is treated individually with a defined
energy and polarisation state.

RAY employs the Stokes formalism for this purpose. The Stokes vector
�S = (S0, S1, S2, S3) describing the polarisation (S1, S2: linear, S3: circular
polarisation) for each ray is given either as free input parameter or, for dipole
sources, is calculated according to the Schwinger theory. S0, the start intensity
of the ray from the source

(
S0 =

√
S1

2 + S2
2 + S3

2
)
, is set to 1 for the artificial

sources. It is scaled to a realistic photon flux value for the synchrotron sources
Dipole, Wiggler or the Undulator-File.

The Stokes vector is defined by the following equations:

S0 =
[
(Eo

p)2 + (Eo
s)

2
]/

2 = 1,

S1 =
[
(Eo

p)2 − (Eo
s)

2
]/

2 = Pl cos(2δ),

S2 = Eo
pE

o
s cos(φp − φs) = Pl sin(2δ),

S3 = −Eo
pE

o
s sin(φp − φs) = Pc, (2.36)

with the two components of the electric field vector defined as

Ep,s(z, t) = Eo
p,s exp [i (ωt− kz + φp,s)] . (2.37)

and Pl, Pc are the degree of linear and circular polarisation, respectively. δ is
the azimuthal angle of the major axis of the polarisation ellipse. Note that

Pl = P cos(2ε)
and Pc = P sin(2ε), (2.38)

with P being the degree of total polarisation and ε the ellipticity of the
polarisation ellipse (tan ε = Rp/Rs) .
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Table 2.3. Definition of circular polarisation

Phase φp−s 90◦, −270◦ −90◦, 270◦

(π/2, −3π/2) (−π/2, 3π/2)

Rotation sense (in time) Clockwise Counter-clockwise
Rotation sense (in space) Counter-clockwise Clockwise
Polarisation (optical def.) R(ight) CP L(eft) CP
Helicity (atomic def.) Negative (σ−) Positive (σ+)
Stokes vector Negative Positive

Table 2.4. Physical interaction for the different optical components

Mirrors Gratings Foils Slits Zone-plates Crystals

Fresnel
equations

Diffraction Fresnel
equations

– – Dynamic
theory

Reflectivity Efficiency Transmission Transmission Transmission Reflectivity
Rs, Rp, Δsp Es, Ep, Δsp Ts, Tp, Δsp Ts, Tp = 1

Δsp = 0
Ts, Tp = 1,
Δsp = 0

Rs, Rp, Δsp

Since the SR is linearly polarised within the electron orbital plane (Iperp =
0), the plane of linear polarisation is coupled to the x-axis (i.e. horizontal).
Thus, the Stokes vector for SR is defined in our geometry as (see Chap. 3.4)

Plin = S1 = (Iperp − Ipar)/(Iperp + Ipar) = (Iy − Ix)/(Iy + Ix) = −1, (2.39)

S1 = +1 would correspond to a vertical polarisation plane.
For the definition of the circular polarisation the nomenclature of

Westerfeld et al. [30] and Klein/Furtak [31] has been used. This is summarised
in Table 2.3:

For example, for the case of synchrotrons and storage rings, the radiation
that is emitted off-plane, upwards, has negative helicity, right-handed CP
(S3 = −1), when the electrons are travelling clockwise, as seen from the top.

The modification of the Stokes vector throughout the beamline by inter-
action of the light with the optical surface is described by the following steps
(see e.g. [28]):

(1) Give each ray a start value for the Stokes parameter within the source,
Sini, according to input or as calculated for SR sources

(2) Calculate the intensity loss at the first optical element for s- and p-
polarisation geometry and the relative phase, Δ = δs − δp, according
to the physical process involved (see Table 2.4):
• Mirrors, Foils
The optical properties of mirrors, multilayers, filters, gratings and crystals
are calculated from the compilation of atomic scattering factors in the
spectral range from 30 eV to 30keV [32]. Another data set covers the X-
ray range from 5 up to 50 keV [33]. Additional data for lower energies
down to 1 eV are also available for some elements and molecules [34].
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10-3 10-2 10-1 100 101 102

Structure factors fo, fH, fHC

Cromer f1,f2
(Z=2-92)

Henke (Z=1-92) f1, f2

Palik (Al, Au, C, Cr, Cu, Ir, Ni, Os, Pt, Si...  n, k)

Molecules: Al2O3, MgF2, Diamond, SiC, SiO2...n,k

Photon Energy (keV)

Optical data tables for RAY

Fig. 2.13. Data bases used for the calculation of optical properties

A summary of the various data tables available within the program is
given in Fig. 2.13. For compound materials that can be defined by the case
sensitive chemical formula (e.g. MgF2), the contributions of the chemical
elements are weighted according to their stochiometry. A tabulated or,
if not available, calculated value for the density is proposed but can be
changed. The surface roughness of mirrors or multilayers is taken into
account according to the Nevot–Croce formalism [35].

All reflection mirrors and transmission foils in an optical setup can
have a multilayer coating (plus an additional top coating). The optical
properties of these structures are calculated in transmission and reflection
geometry by a recursive application of the Fresnel equations. For periodic
multilayers, the layer thickness, the density and the surface roughness
must be specified for each type of interface. For aperiodic structures like
broad-band or supermirrors, the exact structure has to be provided in a
data-file.
• Gratings
For the calculation of (monolayer covered) reflection gratings, a code
developed by Neviere is used [36], which allows for the calculation for
three different grating profiles (sinusoidal, laminar or blazed). In addition
to fixed deviation angle mounts, optionally the incidence angle can be
coupled to the photon energy and the cff factor in the case of a Petersen
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SX700 type monochromator (PGM or SGM with a plane pre-mirror which
enables the deviation angle across the grating to be varied).
• Crystals
For crystals the diffraction properties are calculated from the dynamical
theory using the Darwin–Prins formalism [37]. For all crystals with zinc
blende structure such as Si, Ge or InSb as well as for quartz and beryl,
the crystal structure factors are determined within the program for any
photon energy and the corresponding Bragg angle. For other crystals, the
rocking curves can also be evaluated if the structure factors are known
from other sources. The calculation is possible for any allowed crystal
reflection and asymmetry (see Chap. 2.7).

(3) Transform the incident Stokes vector, �Sini, into the coordinate system of
the optical element �SM by rotation around the azimuthal angle χ (R-
matrix)

�SM = Rỹ(χ)�Sini, (2.40)

�SM =

⎛
⎜⎜⎜⎝
S0M

S1M

S2M

S3M

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 0 0
0 cos 2χ sin 2χ 0
0 − sin 2χ cos 2χ 0
0 0 0 1

⎞
⎟⎟⎟⎠ •

⎛
⎜⎜⎜⎝
S0ini

S1ini

S2ini

S3ini

⎞
⎟⎟⎟⎠ . (2.41)

Thus, the azimuthal angle of an optical element determines the polarisa-
tion geometry of the interaction. For instance, for horizontally polarised
synchrotron radiation (S1 = −1), an azimuthal angle of χ = 0◦ corre-
sponds to an s-polarisation geometry (polarisation plane perpendicular
to the reflection plane) with the beam going upwards. Since the coordi-
nate system is right-handed, χ = 90◦ corresponds to a deviation to the
right, when looking with the beam and a p-polarisation geometry (polar-
isation plane parallel to reflection plane). Similarly χ = 180◦ and 270◦,
respectively, determine a beam going down and to the left, respectively.
Note that the azimuthal angle is coupled to the coordinate system and not
to the polarisation state. χ = 0 ◦ always determines a deviation upwards,
but this may be an s-polarisation geometry, as in our example above, and
can also be a p-geometry (when S1inc = +1).

(4) Calculate the Stokes vector after the optical element �Sfinal by applying
the Müller matrix, M , onto �SM

�Sfinal =M�SM (2.42)⎛
⎜⎜⎜⎝
S0final

S1final

S2final

S3final

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Rs+Rp
2

Rp−Rs
2 0 0

Rp−Rs
2

Rs+Rp
2 0 0

0 0 RsRp cosΔ RsRp sinΔ

0 0 −RsRp sinΔ RsRp cosΔ

⎞
⎟⎟⎟⎟⎠ ◦

⎛
⎜⎜⎜⎝
S0M

S1M

S2M

S3M

⎞
⎟⎟⎟⎠ .

(2.43)
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(5) Accept this ray only when its intensity (S0,final) is within the ‘correct’
statistic, i.e. when

(S0,final/S0,ini − ran (z)) > 0. (2.44)

(6) Rotate the Stokes vector �Sfinal back by −χ and take this as incident Stokes
vector for the next optical element

�S′ini = Rỹ(−χ)�Sfinal. (2.45)

(7) Store the Stokes vector for this optical element, go to the next one (2) or
start with the next ray within the source (1).

2.7 Crystal Optics (with M. Krumrey)

For ray tracing, the geometrical point of view is most relevant. In this aspect,
the main difference between crystals and mirrors or reflection grating is that
the radiation is not reflected at the surface, but at the lattice planes in the
material. In contrast to gratings which have already been treated as dispersive
elements, reflection for a given incidence angle on the lattice plane occurs only
if the well-known Bragg condition is fulfilled:

λ = 2d sin Θ, (2.46)

where λ is the wavelength, d is the lattice plane distance and Θ is the incidence
angle of the radiation with respect to the lattice plane. The selected lattice
planes are not necessarily parallel to the surface, resulting in an asymmetry
described by the asymmetry factor b:

b =
sin(θB − α)
sin(θB + α)

, (2.47)

with ΘB being the Bragg angle for which (2.46) is fulfilled and α the angle
between the lattice plane and the crystal surface.

The subroutine package for crystal optics in RAY is based on the descrip-
tion of dynamic theory [38–40] as given by Matsushita and Hashizume in [41]
and the paper from Batterman and Cole [37]. The reflectance is calculated
according to the Darwin–Prins formalism, which requires the knowledge of
the crystal structure factors Fo, Fh and Fhc. These factors can be derived
for any desired crystal reflection, identified by the Miller indices (hkl), if the
crystal structure, the chemical elements involved and the lattice constants
(or constants for non-cubic crystals) are known. For some crystals with zinc
blende structure (e.g. Si, InSb, etc.) or quartz structure, the structure factors
are calculated automatically. This calculation combines the geometrical prop-
erties, especially the atomic positions in the unit cell which are read from a
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file, with the element-specific atomic scattering factors. The atomic scattering
factor, f , is written here as

f = f0 + Δf1 + Δf2. (2.48)

This form allows one to separate the form factor f0, which is calculated in
dependence on (sin θB)/λ based on a table of nine coefficients which are read
for every chemical element from a file. The photon energy dependent anoma-
lous dispersion corrections Δf1 and Δf2 are calculated from the Henke tables
for photon energies up to 30 keV. For higher photon energies, the Cromer
tables are directly used up to 50 keV and extrapolated beyond. Both data sets
are also stored in files for all chemical elements.

Using the structure factors Fo, Fh and Fhc, which can, for other crystals,
also be inserted by the user, the reflectance is obtained as

R = (η ±
√
η2 − 1)s. (2.49)

Here, s is simply defined as

s =
√
Fh/Fhc

(2.50)

while the parameter η is calculated according to

η =
2b(α−ΘB) sin 2Θ + γFo(1 − b)

2γ |P | s√|b| , (2.51)

where γ is defined as

γ =
reλ

2

πVC
. (2.52)

Here, re is the classical electron radius and Vc is the crystal unit cell volume.
The polarisation is taken into account by the factor P , which equals unity for
σ-polarisation and cos 2ΘB for π-polarisation.

In addition to the reflectance, the dispersion correction ΔΘ for the incident
and the outgoing ray at the crystal surface is calculated. For this purpose a
crystal reflection curve is calculated according to (2.49) and the difference from
its centre to the Bragg angle ΘB is extracted. Only in the case of symmetrically
cut crystals are the dispersion corrections identical:

ΔΘout = bΔΘin. (2.53)

At present, plane and cylindrical crystals are treated in reflection geometry
(Bragg case). Also crystals with a d-spacing gradient (graded crystals with
d = d(z)) are taken into account. This versatility enables a realistic sim-
ulation to be made of nearly every X-ray-optical arrangement in use with
conventional X-ray sources or at synchrotron radiation facilities (double-, four
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Fig. 2.14. Rocking curves of Si(311) crystal with asymmetric cut (15◦ and −15◦)
and symmetric cut (0◦) for σ-polarisation at a photon energy of 10 keV

crystal monochromators, 2-bounce, 4-bounce in-line geometries for highest
resolution, dispersive or non-dispersive settings, etc. [42, 43]).

Typical X-ray reflectance curves obtained with this subroutine package are
shown for illustration. The raytracing code was applied for the calculations
of Si(311) asymmetrically and symmetrically cut flat crystals. The angle of
asymmetry was chosen to be 15◦ and −15◦. In Fig. 2.14 the comparative
results between RAY and REFLEC [12] codes for the σ-polarisation state are
shown. RAY results in this figure are represented by the noisy curve. The
statistics are determined by the number of rays calculated (106 incident rays,
distributed into 100 channels).

2.8 Outlook: Time Evolution of Rays
(with R. Follath, T. Zeschke)

In this article a program has been described, which is capable of simulating the
behaviour of an optical system. Originally the program was designed for the
calculation of X-ray optical setups on electron storage rings for synchrotron
radiation. Similar programs had been written at most of the facilities for
in-house use tailored to their specific applications. Many of them have not
survived. Over more than 20 years of use by many people and continuous
upgrade, debugging and development, the RAY-program described here has
turned into a versatile optics database, by which almost all of the existing
synchrotron radiation beamlines from the infrared region to the hard X-ray
range can be accessed. In addition, other sources can be modelled since the
light sources are described by relatively few parameters.
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However, the program has limitations, of course, and it is essential to be
aware of them when using it:

• The results are valid only within the mathematical or physical model
implemented.

• The program may still have bugs (it has – definitely!!).
• The user may have made typing errors in the input menu.
• The user may have made errors in interpreting unclear or ambiguous input

parameters or results.

The program is in continuous development and new ideas about sources or
optical elements are implemented relatively fast, so that new demands can be
addressed quickly.

One of the latest developments was driven by the advent of the new gen-
eration Free Electron Light (FEL) Sources at which the time structure of
the radiation in the femto-second regime is of utmost importance. As outlook
for the future of raytracing this development, which is still in progress, is
discussed here briefly.

To handle the time structure, a ray is not only described by its geometry,
energy and polarisation, but also by its geometrical path length or, in other
words, by its travel time.

This enables one to follow the time evolution of an ensemble of rays, start-
ing with a well-defined time-structure in the source, through an optical system.
By storing the individual path lengths of each ray a pulse-broadening at each
element and at the focal plane can be detected.

In the source, each ray is given a start-clock time, t0, which can be either
t0 = 0 for all rays (complete coherence), or have a gaussian or flat-top
distribution (less than complete coherence).

The path length of a ray is calculated as difference between the coordinates
of the previous optical element (x old, y old, z old) (or, for the first optical
element, the source coordinates (x so, y so, z so)) and the actual coordinates
(x,y,z). The path length is measured with respect to the path length of the
principal ray, given by the distance to the preceding element zq. Only geo-
metrical differences are taken into account, no phase changes on reflection or
penetration effects on multilayers are considered.

The path length is given by the equation

pl =
√

((x− xold)2 + (y − yold)2 + (z − zold)2)− zq. (2.54)

The phase of the ray with respect to the central ray and its relative travel
time is then

ϕ =
2π
λ

pl, (2.55)

t =
pl
c

c: speed of light (m s−1). (2.56)

Assuming pl in millimetre, the travel time is given in nanoseconds.
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Fig. 2.15. Illumination of a reflection grating and baffling to preserve the time
structure of the light beam
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Fig. 2.16. Time structure of the rays after travelling through the beamline;
confined–unconfined by the grating of Fig. 2.15

As an example, Fig. 2.15 shows the illumination of a reflection grating,
which is part of a soft X-ray plane grating monochromator (PGM-) beamline
that has been modelled for the TESLA FEL project [44], in which the conser-
vation of the fs-time structure is essential. By baffling the illuminated grating
length down to 10mm in the dispersion direction the pulse broadening of the
monochromatic beam (Fig. 2.16) can be kept well within the required 100 fs,
which corresponds to the time structure of a SASE-FEL-source. As a result,
the pulse length remains essentially unchanged by the optics.

By combining the path length information of each ray with its spatial
information (footprint on an optical element or focus) a three-dimensional
space–time picture over an ensemble of rays can be constructed. Such an
example is given in Fig. 2.17. Here the focus of a highly demagnifying toroidal
mirror (10:1) illuminated at grazing incidence (2.5◦) by a diffraction-limited
gaussian source with σ = 0.2 mm cross section and σ = 0.3 mrad divergence
is shown. The illumination is coherent, i.e. all rays have the same start-time
within the source. The focus (Fig. 2.17a) shows the typical blurring due to
coma and astigmatic coma, and the grey scale colour attributed to each ray
(Fig. 2.17b) determines the relative travel time (i.e. phase) with respect to
the central ray. This is a snap shop over the focus; rays arrive at the focus in
a time indicated by an increasing grey-scale.
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(a) (b) 

Fig. 2.17. Footprint of rays (a) and their individual phases (b) arriving at the focus
of a toroidal mirror in grazing incidence (θ = 2.5◦, 10:1 demagnification)

Fig. 2.18. Interference pattern at the focus of a 2.5◦ incidence toroidal mirror, 10:1
demagnification

In the individual phases an interference pattern in the coma blurred wings
becomes visible. After complex addition of all rays within a certain array
element according to

I =

∣∣∣∣∣∣
∑

j

eiϕj

∣∣∣∣∣∣
2

, (2.57)

an interference pattern becomes visible also in the intensity profile (Fig. 2.18).
This profile looks very similar to the results obtained with programs on
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the basis of Fourier-Optics (see this book [6]) and shows the potential of
a conventional raytrace program in treating interference effects.

So far in this simple example only the phase and the space coordinates of
the rays have been connected to demonstrate the treatment of collective inter-
ference effects in the particle model. This model can be extended further to
incoherent or partially coherent illumination simply by modifying the incident
time-variable of the source suitably. Coherent packages within a total ensemble
of rays can be extracted, which are determined by the same wavelength, the
same polarisation plane, the same x-y-position (lateral coherence length) or
the same path length (transversal coherence). Hence, there is a huge potential
for further development of wave-phenomena within the particle model.
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9. F.A. Jenkins, H.E. White, Fundamentals of Optics, 4th edn. (McGraw-Hill, New
York, 1981)

10. W.B. Peatman, Gratings, Mirrors and Slits (Gordon & Breach, New York, 1997)
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12. A. Erko, F. Schäfers, N. Artemiev, in Advances in Computational Methods for

X-Ray and Neutron Optics SPIE-Proceedings, vol. 5536, 2004, pp. 61–70
13. A. Erko, in X-Ray Optics; Raytracing model of a Zoneplate, ed. by B. Beckhoff

et al. Handbook of Practical X-Ray Fluorescence Analysis (Springer, Berlin
Heidelberg New York, 2006) pp. 173–179
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3

Neutron Beam Phase Space Mapping

J. Füzi

Abstract. A method based on energy-resolved pinhole camera imaging is pro-
posed and characterized as a tool for neutron-beam phase-space mapping. It relies
on time-resolved, two-dimensional position-sensitive neutron detection. Examples
of applications in neutron source brightness evaluation, quality assessment of neu-
tron optical components and velocity selector transfer function determination are
presented.

The neutron beam phase space in real space is defined as the flux distribution
with respect to five parameters: two positional (x and y with respect to the
beam axis or a laboratory reference axis), two angular (δx and δy with respect
to the same axis) dimensions and wavelength (velocity, energy). The result of
its determination is a five-dimensional array that characterizes the beam in a
given cross section.

The knowledge of the neutron beam phase space can serve several pur-
poses:

– Experimental verification of numerical simulations
– Quality assessment of neutron optical components
• Brightness of moderators and cold neutron sources
• Average reflectivity, alignment accuracy, throughput of neutron guides
• Selectivity, transmission of monochromators
• Transfer functions of velocity selectors, focusing devices

– Information for corrective actions
– Input data for downstream instrument design and optimization

Direct and simultaneous measurement of the whole phase space is not
possible because the detectors cannot assess the orientation of the neutron
velocity. Pinhole imaging offers the possibility to measure the beam intensity
distribution with respect to the neutron velocity direction in real space, for
the position in the beam cross section defined by the pinhole.

Moreover, exceedingly intense beams lead to saturation or even damage
of the detectors. The use of small pinholes leads to the reduction of the total
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flux that reaches the detector below its saturation level. The image obtained
also becomes clearer as the pinhole diameter is reduced.

A third issue is that small pinholes together with narrow chopper open-
ings allow accurate determination of the flight time, thus improving the
energy/wavelength resolution.

The main advantage of pinhole imaging is that the neutron paths can be
traced back to the source, including – if necessary – a few reflections.

3.1 Measurement Principle

The energy resolved pinhole imaging technique [1] enables successive measure-
ment of three-dimensional restrictions (to the position of the pinhole in the
beam cross section) of the five-dimensional phase space to be made. The neu-
trons originating from a pinhole situated at the position (x0, y0) with respect
to the reference axis z will reach the detector situated at distance l from the
pinhole at a point (x, y) with respect to the same axis (Fig. 3.1):

x = x0 +Δx = x0 + l tan δx (3.1)
y = y0 +Δy = y0 + l tan δy.

The speed components with respect to the reference axis are connected to
the divergence angles by:

vx = vz tan δx
vy = vz tan δy

vz =
v√

1 + tan2 δx + tan2 δy
. (3.2)

The neutron wavelength is determined by measurement of the flight time,
t, required for the neutron to cover the distance between the source and the

Fig. 3.1. Parameter definition and measurement principle
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detector. In case of continuous sources a chopper is required to perform this
measurement, and the origin of the flight distance is at the chopper. When
the pinhole and the chopper are at the same position,

v =
l

t

√
1 + tan2 δx + tan2 δy (3.3)

λ =
h

mnv
≈ 3,956

v

holds, where h is the Planck constant and mn the neutron mass. The
wavelength units are in Angstrom if the velocity is expressed in m s−1.

The flux distribution is computed according to

Φd =
I

ηdλdΩdAt
kch, (3.4)

where η is the detector gas absorption efficiency; I the number of counts
measured on nx × ny detector pixels in one time bin; dA [cm2] the pinhole
area; dΩ = nx · ny · d2/lp2 the solid angle corresponding to the observed
area; lp [mm] the pinhole-detector distance; d [mm] the detector pixel size; t
[s] the measurement time; dλ = 3,956 · td/lf [Å] the incremental wavelength;
td [ms] the length of a time bin, lf [mm] the flight length (chopper-detector
distance in case of continuous sources, moderator–detector distance in case of
pulsed sources); kch the chopper ratio (chopper period/chopper open time):
kch = tch/to. The detector gas absorption efficiency is

η = 1− exp
(
− g
μ

)
= 1− exp

(
−gp
k
λ
)
, (3.5)

where p [bar] is the 3He gas pressure, g [cm] its active thickness μ [cm] the gas
absorption length. For p = 2.5 bar and g = 3.5 cm, the constant k = 12.98 cm
bar Å results. Finally the formula

Φd = I
lf l

2
p

3,956ηtdnxnyd2dAt
kch [n cm−2 s−1 sr−1 Å

−1
] (3.6)

holds for the brightness determination of the pinhole area and of the beam
cross section, respectively, of the elements viewed through it.

The uncertainty of the wavelength determination is

Δλ =
lf

l2f − g2

4

[λg + 3,956(to + td)] , (3.7)

where lf is expressed in cm.
The angular accuracy is defined by the pinhole radius r, parallax error, the

detector pixel size and the quality-filtering limit, ε, defined as the accepted
error of the sum of the delay times in the two senses with respect to the delay
line length:

Δδ =
r + g

2 tan δ + d+ ε
l

. (3.8)
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3.2 Measurement Results

The experimental setup for beam phase space investigations at the exit of
a tapered supermirror guide on a beam at the Budapest Neutron Centre
is shown in Fig. 3.2. Dimensions are given in mm. CNS stands for the cold
neutron source, M is a graphite monochromator tuned to 4.26 Å, G is a tapered
neutron guide, Ch, P a chopper with 1mm wide slit and a 1mm diameter
pinhole at 95mm from chopper axis (kch = 600) and D a 3He multiwire gas
chamber with 1.3mm pixel size, nx × ny × nt array size: 156 × 156 × 2,000,
time bin length: td = 15 ms.

The data array obtained for one position of the pinhole makes possible the
determination of the restriction f(x0, y0, δx, δy, λ) of the five-dimensional
phase space f(x, y, δx, δy, λ).

Figure 3.3 shows beam images for wavelength range selections, according to

f1(x0, y0, δx, δy) =
∫ λ2

λ1

f(x0, y0, δx, δy, λ)dλ. (3.9)

The wavelength–horizontal divergence distribution

f3 (δx, λ) =
∫ δy2

δy1

f(x0, y0, δx, δy, λ)dδy (3.10)

for ±1.5 mrad vertical divergence range and the wavelength–vertical diver-
gence distribution

f2(δy, λ) =
∫ δx2

δx1

f(x0, y0, δx, δy, λ)dδx (3.11)

for ±1.5 mrad horizontal divergence range are plotted in Fig. 3.4.
It can be observed how the supermirrors come into effect as the criti-

cal angle increases with increasing wavelength. The narrow dark stripes are
direct and reflected images of the guide interruption at the location of the
monochromator. The large dark stripes on the 4–4.5 Å picture of Fig. 3.3,
the wide vertical stripe 4 and the dark rectangles in Fig. 3.5 are due to the

Fig. 3.2. Measurement setup
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Fig. 3.3. Beam images in several wavelength ranges (angular dimensions in mrad)

monochromator which is opaque at 4.26 Å (the wavelength diverted toward a
reflectometer). The δx(λ) plot shows a continuous dark stripe since its sum-
mation area lies entirely in the monochromator shadow, while the δy(λ) plot
shows discrete dark rectangles because the monochromator occupies only a
part of the beam cross section in vertical direction (as shown in Fig. 3.6).
The wide dark horizontal stripe on the δy(δx) plot for 4.1–4.5 Å wavelength
range around the zero vertical divergence value is the direct view of the
monochromator, the other wide stripes are its reflections on the guide walls.

The spectra

f4 (λ) =
∫ δx2

δx1

∫ δy2

δy1

f(x0, y0, δx, δy, λ)dδxdδy (3.12)

are plotted in Fig. 3.5 for the summation areas shown on the insert. The first-
and second-order gaps caused by the monochromator are observable in the
spectrum of an area lying inside the monochromator shadow (a) but missing
from the spectra of areas lying outside the shadows (b and c).
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Fig. 3.4. Wavelength–horizontal divergence and wavelength–vertical divergence
images

Fig. 3.5. Spectra of selected areas. (Insert) beam image for 0–10 Å range showing
the summation areas
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3.3 Neutron Guide Quality Assessment

The energy resolved pinhole imaging method has been applied for surveying
the condition of the neutron beam extraction system and for determining the
characteristics of the neutron moderator at the Los Alamos Neutron Scat-
tering Center [2]. Figure 3.6 shows the setup of the experiment [3]. The
dimensions are given in mm, the vertical-to-horizontal scale is 50:1.M is the
moderator surface, E the FP12 neutron beam extraction guide, including a
shutter, D is the position sensitive neutron detector, P a 1mm diameter pin-
hole in a Cd plate. Also shown are the limits of the upper single reflection (bb)
and the corresponding direct view region (d). It turned out that there was an
eccentricity of 3.5mm in the horizontal and 4.5mm in the vertical direction of
the pinhole with respect to the neutron guide axis. The neutron guide inner
cross-sectional area is 9.5× 9.5 cm2.

The experiment can be considered to be an in situ reflectometry measure-
ment. To each pixel (x1, y1) of the reflection region corresponds a pixel (x0, y0)
of the direct view. The corresponding ray tube – not to scale – is plotted in
dark gray. The ratio

R =
I (x1, y1, λ)
I (x0, y0, λ)

∣∣∣∣
λ∈(λ1,λ2)

(3.13)

is the reflectivity at the relative momentum transfer (q/qcNi where q is the
momentum transfer of the mirror, qcNi is the critical momentum transfer of
natural Ni) given by

m = 20
θ

λ1 + λ2
. (3.14)

Fig. 3.6. Experimental setup at the Los Alamos Neutron Scattering Center
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The wavelength range in (3.14) is selected as small as allowed by the
number of neutrons per pixel required to ensure acceptable statistics.

The measurement gives an average reflectivity over the mirror surfaces
viewed through the given pinhole position. By moving the pinhole in the
beam cross section another average reflectivity curve can be determined. The
results are affected by the alignment accuracy of the neutron guide sections
because the angle θ is determined with respect to the theoretical position of
the mirror surface. The insert in Fig. 3.7 shows the image of the neutron beam
extraction guide system. Area d is a direct view of the moderator, in areas
aa, ab, bb, and ba the neutrons had one reflection, while in areas ac, ad, bc,
and bd two reflections. The outer frame size is 142× 142 pixels, the detector
pixel size in this experiment is 0.75mm.

The resulted average reflectivity curve is plotted in Fig. 3.7. In reality, the
reflectivity of the individual mirror plates is better than that shown by these
results (about 80% atm = 3). Dark stripes in the Fig. 3.7 insert are due to the
imperfect alignment of the FP12 shutter section, which reduces considerably
the average reflectivity.

There is a further possibility to assess the global quality (reflectivity, align-
ment accuracy) of a neutron guide: to determine its transfer function – the
ratio between the incoming and transmitted flux. For this the flux vs. wave-
length has to be determined at both the entrance and exit cross section of the
guide section investigated. When the direct view of the source is available, the
ratio between the brightness of the guide exit and the brightness of the direct

Fig. 3.7. Average reflectivity of the neutron guide supermirror plates at LANSCE.
Inset: Image of the neutron beam extraction guide system of the FP12 beamline.
Wavelength range: 2.74–9.55 Å
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view area (Fig. 3.8) gives the guide transfer function for the given position
of the pinhole (Fig. 3.9). Repeating the measurement for various positions of
the pinhole in the beam cross section the average transfer function can be
determined as the mean of the individual results.

Fig. 3.8. Spectra of the direct view (g) and the entire guide exit (d), showing
detected flux, not corrected for gas absorption efficiency, or for detector saturation

Fig. 3.9. The transfer function of the neutron beam extraction guide system of the
FP12 beamline at LANSCE
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3.4 Transfer Function of a Velocity Selector

The method is applicable for determination of transfer functions of devices
that select a certain range of the incoming beam phase space. As an example
a multidisk rotational velocity selector [4] has been investigated. The results
obtained for a selector tilted by 2◦ with respect to the beam axis in azimuthal
direction (Figs. 3.10a, b – to be compared to Fig. 3.4 for the incoming beam)
show the phase space configuration of the transmitted beam [5].

The beam cross-section image is shown in Fig. 3.10c and the spectra of
incoming and transmitted (selected) beam are plotted in Fig. 3.10d.

Fig. 3.10. Divergence-wavelength plots (a and b) of a beam transmitted by a veloc-
ity selector, beam cross-section image (c) and spectra of incoming and transmitted
(selected) beam (d)
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The method presented offers the means for experimental measurement
of the transfer function of velocity selectors (monochromators in general) –
the extent to which certain domains of the incoming beam phase space are
transmitted. This also allows a quality assessment of the devices to be made.
For example, the effect of any false channel due to misalignment of the disks
of a selector can be detected.

3.5 Moderator Brightness Evaluation

The reconstruction of a 100mm high and 25mm wide cold neutron beamline
at BNC offered the possibility to perform a measurement at a position where
direct view of the moderator was available.

Figure 3.11a shows the detected images in two wavelength ranges. The
epithermal neutrons, shining through both the pinhole mask and the closed
chopper disk, outline the footprint of the guide exit. The chopper period has

Fig. 3.11. Beam images before (a) and after (b) epithermal contribution sup-
pression, the latter with selected summation area over the moderator direct view
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Fig. 3.12. Cold moderator spectrum with Maxwell–Boltzmann distribution fit

been set such that it included a time range where no cold neutrons reached the
detector. The events acquired in this time are due to the epithermal neutrons
only and their average for every pixel can be subtracted from the raw data at
each time bin, allowing the suppression of the epithermal contribution.

The results can be seen in Fig. 3.11b. The horizontal dark lines in Fig. 3.11b
are due to an incompletely opened shutter. The brightest region is the direct
view of the BNC cold source. The spectrum of the cold source together with
the Maxwell–Boltzmann distribution fit is plotted in Fig. 3.12. The Maxwell–
Boltzmann distribution of the cold source brightness is

Φλ = 2Φ
λ4

T

λ5
exp
(
−λ

2
T

λ2

)
; λT =

h√
2mkT

=
30.81√
T

(Å), (3.15)

with peak coordinates:

(λp, Φλp) =

(√
2
5
λT,

25
√

5
2
√

2
Φ

λT
exp(−5/2)

)
. (3.16)

It can be observed that a sum of three distributions is necessary to obtain
a proper fit, one at room temperature corresponding to the contribution of
thermal neutrons, one at 20K (the temperature of the cold source) and one
at 100K due to incomplete moderation in the finite cold moderator.
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3.6 Conclusions

Energy resolved pinhole imaging offers the possibility to map the neutron
beam phase space with good spatial, angular, and wavelength resolution.
Direct images of bright sources can be obtained and significant information
gained on the status of neutron optical systems hardly accessible by other
means of investigation. This is especially the case of moderators and beam
extraction systems, both new ones and systems which have been in operation
for some time.

Investigation of energy dependent features of neutron optical elements is
possible as well as the determination of brightness, uniformity, and spectrum
of neutron sources.
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Raytrace of Neutron Optical Systems
with RESTRAX

J. Šaroun and J. Kulda

Abstract. RESTRAX is an advanced software package for raytrace simulations of
neutron optical systems. This chapter reviews the techniques used by its efficient
raytrace code, namely sampling strategy, numerical optimizations and details of the
random-walk technique used to simulate transport through neutron optical compo-
nents. In addition, raytrace simulations of resolution functions and model spectra
for three-axis neutron spectrometers are briefly described.

4.1 Introduction

Raytrace simulation permits realistic modeling of neutron optics components
as well as of complete neutron scattering instruments. While development of
neutron raytrace software goes back to the 1970s (MCLIB library, [1]), it has
been significantly accelerated by the advent of powerful desktop computers
in 1990s and has lead to the creation of several software packages capable
of realistic modeling of most of modern neutron optics devices. They include
the programs NISP [2] based on the MCLIB library, IDEAS [3], McStas [4],
VITESS [5] or RESTRAX [6]. Of course, Monte Carlo (MC) simulation always
involves a trade-off between the level of physical reality implemented in the
description of neutron transport and computing speed. Consequently, these
programs differ in both the physical models underlying simulation of partic-
ular components and the structure of their code, depending on the different
purposes for which they have been written. While some put emphasis on mod-
ularity (McStas, VITESS, NISP), which permits one to easily incorporate
new components and to test new ideas of experimental techniques, others,
like RESTRAX, trade part of their flexibility for a highly efficient sampling
strategy permitting to gain several orders of magnitude in computing speed.

In the first part of this chapter, we review some principles and methods,
upon which the efficient raytrace code used by the RESTRAX package1 is
based, namely sampling strategy, numerical optimizations, and details of the

1 The RESTRAX package is available at http://omega.ujf.cas.cz/restrax
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random-walk technique used to simulate neutron transport through neutron
optical components. This part is followed by a brief description of the ray-
tracing method used to simulate resolution functions of three-axis neutron
spectrometers.

4.2 About the RESTRAX Code

The RESTRAX package actually consists of two independent modules. One is
designed specifically to simulate three-axis spectrometers (TASs) and includes
tools for simulation of resolution functions, convolutions, data fitting, and a
set of modules implementing different scattering functions. The other one,
called SIMRES, is equipped with a raytrace code which simulates instrument
components on a more detailed level and provides more flexibility in varying
instrument configuration. In addition, functions for parameter space map-
ping and numerical optimizations are provided, which makes this module a
useful tool for designing novel neutron optical components and instrument
configurations.

4.2.1 Instrument Model

The instrument model has a closed structure of a three-axis neutron spec-
trometer with a fixed number and succession order of the optical elements
(Fig. 4.1). Each of the elements is, however, described in considerable detail

7 collimator
segments

sample

crystal
assemblies

source

detector

M11
M10

M9

M8
M7

M6M5M4M3

M2

M1

M0

Fig. 4.1. Instrument layout in SIMRES with positions of beam monitors
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and some offer a high degree of flexibility, e.g., a collimator with suitably
adjusted parameters can be used to describe a neutron guide, Soller colli-
mator, polarizing bender, or a multichannel supermirror focusing guide. As
a result, with corresponding simplifications RESTRAX can simulate many
types of conventional instruments at steady-state or pulsed neutron sources,
except for time-of-flight aspects. One can thus estimate performance of newly
developed neutron optical devices realistically as a part of the whole instru-
ment where they are intended to be used. The program relies on lookup tables
for the description of properties which are too difficult or time consuming to
calculate in real time. These include tables for source flux distribution and
reflectivity of supermirror coatings. In this way, simulations can be made very
realistically without significantly decreasing computing speed provided, of
course, that we have reliable experimental data or calculations for generating
the lookup tables.

4.2.2 Sampling Strategy

An efficient sampling strategy is a crucial part of any raytrace code, which can
increase computing speed by orders of magnitude without any cost in terms
of accuracy and physical relevancy of the results obtained. In RESTRAX,
optimization is done at several levels.

First, raytrace can be started at any point and followed either downstream
or upstream, yielding equivalent results due to the symmetry of underlying
transport equations [7, 8]. In most experiments, the sample dimensions are
much smaller than those of any other spectrometer component, so that the
sample represents a real bottleneck for the neutron trajectories. Starting the
simulation at the sample permits, hence, to significantly reduce the part of
rejected events.

Second, the initial estimation of sampling intervals and correlations
between phase-space variables is made from the known instrument configura-
tion using analytical formulas. They involve, in particular, the Bragg condition
at the (possibly curved) monochromator and analyzer crystals and an assump-
tion of a point-like sample, thereby imposing correlations between spatial
and momentum coordinates of neutrons, which are likely to pass through the
instrument.

Third, an adaptive covariance estimation technique [9] is employed to
refine the initial analytical estimation of the sampling intervals. The phase-
space coordinates and other random quantities (e.g., scattering angles or
penetration depth in a crystal) determining the neutron trajectory are taken
from a common array Y ≡ (ki, r, kf , . . .), generated by linear transforma-
tion of an array of random numbers X uniformly distributed over the range
(−0.5; 0.5), Y = M·X+Y0. The optimum choice of the transformation matrix
M has to lead to a sampling volume det(M), which is as small as possible in
order to minimize the number of wasted events. On the other hand, it must
be large enough to intercept all points, which may lead to a successful event
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Table 4.1. Comparison of simulation speed for different levels of sampling
optimization [10]

Sampling Intensity Peak width (◦) CPU time
optimizationa (rel. units) (ms per event)

1 + 2 + 3 652 ± 3 0.287 2.0
1 + 3 649 ± 3 0.277 2.6
1 + 2 655 ± 4 0.277 3.5
1 650 ± 4 0.284 18.3
2 + 3 655 ± 3 0.283 237.1

a Sampling optimization methods: (1) upstream tracing from the sample to the
source, (2) initial setting of known phase-space correlations, (3) adaptive covariance
estimation

(completed neutron history from the source to the end monitor). Initially,
M is estimated from the known instrument configuration and correlations,
e.g., due to the Bragg conditions for the crystals. After a certain number
(∼500) of completed histories, M is recalculated using the covariance matrix
〈YiYj〉. To check that the sampling volume is not too small, a “safety pool”
near the limits of sampling intervals is defined. If any successful event is gen-
erated from a point inside the safety pool, the simulation is automatically
restarted with extended limits. Though this procedure usually calls for sev-
eral automatic restarts of the simulation before the optimum sampling volume
is found, it substantially decreases the total accumulation time.

The importance of sampling strategy is illustrated in Table 4.1 comparing
the CPU time per successful event needed for the simulation of a diffrac-
tion line on the powder diffractometer D1A, ILL Grenoble. The statistical
accuracy of the results is equivalent in all cases, but the simulation speed dif-
fers substantially for different combinations of the three sampling strategies.
Obviously, the effect of upstream tracing is enormous due to the small gauge
volume (∼10 mm3) in this particular case.

4.2.3 Optimization of Instrument Parameters

An efficient sampling strategy permits one to simulate even complex instru-
ments with considerable speed, often exceeding 103 of complete neutron
histories per second. Under such circumstances, it is feasible to use the ray-
tracing code as a generator of the cost function in numerical optimizations.
The choice of a suitable optimization algorithm depends on the number of
free parameters and character of the cost function. RESTRAX implements
the Levenberg–Marquardt method, which is well suited to problems with few
free parameters and a well resolved single extremum of the cost function.
Despite of these restrictions, this method proves to be useful in practice since
only mutually correlated parameters need to be optimized simultaneously, and
a reasonably good first guess of the optimum position can often be made on
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Fig. 4.2. Maps of simulated neutron intensity at the sample after a 100 m long
curved neutron guide followed by an elliptically shaped tapered section. The maps
are taken in two different sections through the space of the elliptic guide parameters

the basis of physical considerations. As an example, Fig. 4.2 shows two maps
of simulated neutron intensity for a system consisting of a 100m long super-
mirror guide with a tapered elliptically shaped guide at the end for focusing
the neutrons at a sample. The maps are taken at two different section planes in
the space of instrument parameters including the elliptic guide width, length,
and distance from the sample. They give clear idea of the extent and the posi-
tion of the optimum in parameter space, although accumulation of such maps
by neutron raytrace method is very costly in terms of CPU time. Therefore
they cannot be used to find a global optimum for more than two parameters.
On the other hand, the iterative optimization procedure can be applied to
higher number of free parameters (in practice less than about ten). For our
example (Fig. 4.2) with the third free parameter (guide length) added, the
optimum was found in less than 20min on an ordinary desktop computer.

With a growing number of free parameters of the component to be opti-
mized, gradient methods typically fail due to (a) increasing computing time
and (b) a tendency to be trapped at local extrema. Recently, methods employ-
ing genetic algorithms and particle swarm optimization techniques [11] have
been successfully used in a search for the optimum design of neutron optics
components, particularly neutron guides, with several tens of free parame-
ters involved. These methods are much less affected by the problem of local
extrema and are less bogged down as the number of free parameters increases
than are gradient algorithms.

4.3 Simulation of Neutron Optics Components

4.3.1 Neutron Source

The raytrace simulation of a neutron spectrometer does not need to involve
propagation of neutrons in a moderator, which is a task for other special-
ized programs like MCNP [12] or TRIPOLI [13]. Instead, the neutron source
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is represented by a rectangular, circular, or elliptical area at the interface
between moderator and neutron channel with an associated neutron flux dis-
tribution. In RESTRAX, the neutron flux is described either analytically as
a Maxwellian distribution, or more accurately by a lookup table. In the latter
case, a one-dimensional table with wavelength distribution is combined with
two-dimensional tables describing correlations between angular and spatial
coordinates. Such a table can be easily created by postprocessing of modera-
tor simulation data, which results in a much more realistic model compared
to the analytical description and allows for simulations of neutron fluxes on
absolute scale.

4.3.2 Diffractive Optics

Simulation of neutron transport through crystals in RESTRAX is based on a
random-walk algorithm, which solves intensity-transfer Darwin equations [8]
numerically, in principle for any shape of the crystal block. Details of the algo-
rithm are described in [14]. It is based on the assumption of dominant effect
of the mosaic structure on the rocking curve width, where mosaic blocks are
treated as perfect crystal domains. However, the random walk is not followed
through individual mosaic blocks, which would be an extremely slow process
in some cases. Instead, the crystal is characterized by the scattering cross sec-
tion per unit volume, σ(ε), which depends on the misorientation angle, ε of a
mosaic block as

σ(ε) = Qη−1g(ε/η), (4.1)

where η is the width of the misorientation probability distribution, g(x) and Q
stands for the kinematical reflectivity. The diffraction vector depends on the
misorientation angle and, in the case of gradient crystals, also on the position
in the crystal, which can be expressed as

G(r) = G0 +∇G · r +G(ε + γ), (4.2)

where the second term describes a uniform deformation gradient and the third
one the angular misorientation of a mosaic block parallel (ε) and perpendicular
(γ) to the scattering plane defined by G0 and incident beam directions. For
a neutron with given phase-space coordinates, r, k, we can write the Bragg
condition in vector form as

[k + G0 +∇G · (r + kτ) +G(ε + γ)]2 − k2 = 0, (4.3)

where kτ is the neutron flight-path from a starting point at r. For the random-
walk simulation, we need to find an appropriate generator of the random
time-of-flight, τ . By neglecting second-order terms in (4.3), we obtain a linear
relation between ε and the time-of-flight parameter, τ ,

ε = ε0 + βkτ , (4.4)
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where ε0 =
(k + G0 +∇G · r +Gγ)2 − k2

2Gk cos θB
and β =

(k + G0) · ∇G · k
Gk2 cos θB

.

(4.5)

Substitution for ε in (4.1) then leads to a position-dependent scattering
cross-section, which, by integration along the flight path, yields the proba-
bility, P (τ) that a neutron will be reflected somewhere on its flight path kτ .
With the symbol Φ(ε/η) denoting the cumulative probability function corre-
sponding to the mosaic distribution g(ε/η), we can express this probability
as [15]

P (τ) = 1− exp
[
−Q
β

(
Φ

(
ε0 + βkτ

η

)
− Φ

(
ε0
η

))]
. (4.6)

Provided that we know the inverse function to Φ(x), we can generate τ by
transformation from uniformly distributed random numbers, ξ. Let τo be the
time-of-flight to the crystal exit. Then the next node (scattering point) of the
random walk would be

τ =
η

kβ
Φ−1

[
Φ

(
ε0
η

)
− β
Q

ln (1− ξP (τ0))
]
− ε0
kβ
, (4.7)

while the neutron history has to be weighted by the probability P (τ 0). In
subsequent steps, the random walk continues in the directions k + G(τ) and
k until the neutron escapes from the crystal (or an array of crystals) or the
weight of the history decreases below a threshold value. Absorption is taken
into account by multiplying the event weight by the appropriate transmis-
sion coefficient calculated for a given neutron wavelength and material [16].
In Fig. 4.3, such a random walk is illustrated by showing points of second
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Fig. 4.3. A map of simulated points of second and further reflections inside a
Ge crystal, reflection 511, mosaicity η = 6′, and deformation corresponding to a
temperature gradient along y-axis, |∇G|/G = 0.1 m−1. On the right hand, simulated
spatial profiles of reflected neutron beam are plotted for different magnitudes of the
deformation gradient
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and further reflections in a deformed mosaic Ge crystal and the resulting
topography of the reflected beam.

There are two important aspects of this procedure. First is the efficiency,
because for usual mosaic crystals, only few steps are made in each history
resulting in a very fast procedure. Second, both mosaic and bent perfect crys-
tals can be simulated by the same algorithm. Indeed, in the limit η → 0, we
obtain τ = −ε0(kβ)−1 and the neutron transport is deterministic, as expected
for elastically bent crystals in the quasiclassical approximation [17]. In addi-
tion, the weight factor in this case, P (∞) = 1 − exp(−Q|β|−1), is identical
to the quantum-mechanical solution for the peak reflectivity of bent perfect
crystals [18]. On the other hand, this model fails in the limit of perfect crys-
tals (very small mosaicity and deformation), which would require another
approach using dynamical diffraction theory.

The crystal component is flexible enough for modeling most of the contem-
porary neutron monochromators and analyzers as far as they can be described
as a regular array of crystal segments with a linear positional dependence
of tilt angles. More sophisticated multianalyzers (e.g., the RITA spectrome-
ter [19]) featuring independent movements of individual segments can only be
simulated in a step-by-step manner with the final result being obtained by a
superposition of the partials.

4.3.3 Reflective Optics

Raytrace of neutrons through various types of reflecting optics elements is a
straightforward task, provided that we can treat the problem in the framework
of the geometrical optics approximation and that we know the reflectivity
function of the reflecting surfaces. With neutrons, the geometrical approx-
imation is fully adequate for the simulation of transport through elements
such as neutron guides or benders and the reflectivity of real Ni and super-
mirror coatings can be determined experimentally. Mirror reflectivity can be
thus stored in lookup tables and the problem is reduced to a geometrical
description of the device, apart from computing issues related to numerical
precision and convergence problems. Using this approach, RESTRAX can sim-
ulate various neutron optics elements, such as curved neutron guides, benders,
elliptic or parabolic multichannel guides and most recently also supermirror
transmission polarizers.

As an example, we present the simulation of multichannel supermirror
guides aimed to focus neutrons onto small samples after passing through
a doubly focusing monochromator [20]. Although RESTRAX can simulate
two-dimensional grids of reflecting lamellae, for practical reasons we have con-
sidered a multichannel device as a sequence of one-dimensional horizontally
and vertically focusing sections (Fig. 4.4). Equidistant 0.5mm thick blades
were assumed to be curved either elliptically or parabolically, having reflect-
ing surfaces on the concave sides with the reflectivity of anm = 3 supermirror.
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Fig. 4.4. The multichannel supermirror device with the dimensions indicated

For elliptic guides, the number of blades was 20 and 30 for horizontal and ver-
tical focusing, respectively. For the parabolic guide, the respective numbers
were 14 and 22. Gaps between the blades and focal distances were defined
by entrance and exit widths (or heights) of the guides. We have assumed
that the entrance dimensions are equal to the ellipse minor axis in the case
of elliptic profile. The simulations involved the entire beam path including
a cold source with a tabulated flux distribution, straight 58Ni neutron guide
with cross section 6 × 12 cm2 and a doubly focusing PG002 monochromator
with 7×9 segments at the nominal wavelength 0.405nm. A lookup table with
the measured reflectivity of a real m = 3 supermirror was used to achieve
a realistic description of the guide properties. Except for the multichannel
guide and the horizontally focusing monochromator, the instrument layout
corresponded to the IN14 spectrometer at the Institut Laue-Langevin in
Grenoble.

It is quite difficult to optimize the parameters of such a device analyti-
cally, because it is not obvious how the focusing by the monochromator and
the multichannel guide would link to each other and also what the penalty
in terms of neutron transmission through the guide and what the effect of
the relaxed instrument resolution would be. Some of the relevant parameters
(crystal curvatures, guide focal lengths, and spacing between the lamellae)
were optimized using the raytrace code and Levenberg–Marquardt techniques
implemented in RESTRAX [20]. The results for an optimized parabolically
shaped multichannel guide are shown in Fig. 4.5. In contrast to an experiment,
Monte Carlo simulation permits one to investigate the beam structure in dif-
ferent phase-space projections quite readily. For example, a projection in the
plane of divergence angle and wave-vector magnitude can clearly resolve the
directly transmitted and reflected neutrons due to their different dispersion
relation, resulting from prior reflection on the monochromator. This effect is
entirely hidden in other projections, as illustrated in Fig. 4.5.
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Fig. 4.5. Simulated beam profiles at the sample in different real and momentum
space projections for the optimized parabolic guide. The right-hand image permits
one to easily distinguish directly transmitted neutrons in the central part from the
reflected ones, due to their inverted dispersion relation

4.4 Simulations of Entire Instruments

Ultimately, the matter of concern is in simulations of the entire neutron scat-
tering instrument, which provide data relevant for instrument design and data
analysis, such as neutron flux, beam structure in phase-space or resolution
functions. Examples of RESTRAX applications in instrument development
can be found in the literature [21–26]. In the following section, we give a brief
summary of the raytrace method used to simulate TAS resolution functions.

4.4.1 Resolution Functions

The intensity of a neutron beam scattered by the sample with a probability
W (ki, kf) and registered by the detector in a TAS configuration with the
nominal settings of initial and final wave-vectors, ki0, kf0, is given by

I(ki0,kf0) =
∫
W (ki,kf)ΦI(r,ki)PF(r,kf)drdkidkf . (4.8)

The function ΦI(r,ki) represents the flux distribution of incident neutrons
at a point r inside the sample while PF(r,kf) is the distribution of probability
that the neutron with phase-space coordinates (r,kf) is detected by the ana-
lyzer part of the instrument. Evaluation of this integral by the MC method is
advantageous for two reasons: the high dimensionality of the integral and the
fact that the latter two distributions in the integrand can be sampled directly
by the raytrace technique. For this purpose, we set the scattering probabil-
ity of the sample W (ki,kf) = 1. The instrument response function is then
obtained as an ensemble of (ki,e,kf,e) vectors and their weights, pe, which
describe all possible scattering events detected by the instrument. They have
the distribution given by the integral

R(ki,kf) =
∫
ΦI(r,ki)PF(r,kf)dr. (4.9)
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Fig. 4.6. Resolution functions of the whole TAS instrument without (left) and with
(right) the multichannel guide. The center of the resolution function corresponds to
elastic scattering at Q = (0, 0, 10) nm−1

Convolution with a scattering function, S(Q, ω), is carried out in analogy
to the integral in (4.8) as a sum of the scattering function values over all
events,

I(Q0, ω0) =
∑

e

kf,e
ki,e
S(Qe, ωe)pe, (4.10)

where Q = k f − k i and ω = h̄
2m

(
ki

2 − kf 2
)
.

Since the events can bear memory of initial and final spin states, this
method makes it possible to distinguish resolution functions for the four
combinations of initial and final neutron spin states.

In Fig. 4.6, we show the resolution functions simulated for the TAS IN14
at the ILL, Grenoble, equipped with the multichannel guide described in the
previous section. Inflation of the resolution volume as a result of beam com-
pression by the multichannel guide is proportional to the gain in neutron
flux at the sample. However, the resolution in energy transfer is not affected
because the guide can be tuned to the monochromator curvature so that
monochromatic focusing condition is fulfilled.
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Wavefront Propagation

M. Bowler, J. Bahrdt, and O. Chubar

Abstract. The modelling of photon optical systems for third generation syn-
chrotrons and free electron lasers, where the radiation has a high degree of coherence,
requires the complex electric field of the radiation to be computed accurately, taking
into account the detailed properties of the source, and then propagated across the
optical elements – so called wavefront propagation. This chapter gives overviews of
two different numerical approaches, used in the wavefront propagation codes SRW
and PHASE. Comparisons of the results from these codes for some simple test cases
are presented, along with details of the numerical parameters used in the tests.

5.1 Introduction

In recent years, there has been an upsurge in the provision of new powerful
sources of transversely coherent radiation based on electron accelerators. Free
electron lasers (FELs) are providing coherent radiation from THz wavelengths
to the ultraviolet, and there are projects in place to build FELs providing X-
rays with the XFEL at HASYLAB in Hamburg, the Linear Coherent Light
Source LCLS at Stanford and the Spring8 Compact SASE Source SCSS in
Japan. Coherent synchrotron radiation (CSR) at wavelengths similar to or
longer than the electron bunch is also produced by accelerating electrons. For
CSR, the intensity is proportional to the square of the number of electrons in
the bunch, hence very intense THz radiation is produced at bending magnets
when the bunch length is of the order of a hundred microns, such as is required
for FEL operation. Finally, the radiation from undulators, which provide the
main sources of radiation in the new storage ring synchrotron radiation (SR)
sources from UV to hard X-rays, has a high degree of coherence.

Traditionally, ray tracing, based on geometric optics, has been used to
model the beamlines that transport the SR radiation from the source to the
experiment. This has provided a sufficiently accurate model for most situa-
tions, although at the longer wavelength end of the spectrum some allowances
for increased divergence of radiation due to diffraction at slits must be made.
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For the coherent sources, interference effects are important as well as diffrac-
tion, and one needs to know the phase of the radiation field as well as the
amplitude. Hence wavefront propagation, which models the evolution of the
electric field through the optical system, is required.

The full solution of the Fresnel Kirchoff equation for propagating the field
is possible, but it is computationally intensive and approximate solutions are
sought. One approximation applicable to paraxial systems is to use the method
of Fourier Optics. The code SRW (synchrotron radiation workshop) generates
the source radiation field and also allows for its propagation across “thin”
optics. This code is described in Sect. 5.2. Beamlines at UV and shorter
wavelengths require highly grazing incidence optics, and in this case the thin
optic assumption may not be appropriate. The Stationary Phase method is
applicable in this regime and is used to approximate the propagation in the
code PHASE, described in Sect. 5.3.

To cross-check both approximations, a Gaussian beam has been propa-
gated across toroidal mirrors of different grazing angles and demagnifications,
using both codes, and the size of the focal spots compared. These results are
presented in Sect. 5.4 along with a study of the ability of both codes to handle
astigmatic focusing.

SRW and PHASE have both been used to model the beamline for trans-
porting THz radiation from the Energy Recovery Linac Prototype (ERLP)
at Daresbury Laboratory. This is described in Sect. 5.5. Finally Sect. 5.6
summarizes the results and looks at future needs for wavefront propagation
simulations.

The contribution of the COST P7 action has been in making two of these
codes, PHASE and SRW, more widely known to the optics community, in
running the test cases and in providing documentation to aid the new user.
Two of the authors of these codes have joined with the COST P7 participants
to write this chapter.

5.2 Overview of SRW

The SRW software project was started at the European Synchrotron Radia-
tion Facility in 1997 [1]. The purpose of this project was to provide users with
a collection of computational tools for various simulations involving the pro-
cesses of emission and propagation of synchrotron radiation. The SRW code
is composed of two main parts, SRWE and SRWP, enabling the following:

• Computation of various types of synchrotron radiation emitted by an elec-
tron beam in magnetic fields of arbitrary configuration, being considered
in the near-field region (SRWE)

• CPU-efficient simulation of wavefront propagation through optical ele-
ments and drift spaces, using the principles of wave optics (SRWP).
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Thanks to the accurate and general computation method implemented
in SRWE, a large variety of types of spontaneous synchrotron emission by
relativistic electrons can be simulated, e.g., radiation from central parts and
edges of bending magnets, short magnets, chicanes, various planar and ellip-
tical undulators and wigglers. Either computed or measured magnetic fields
can be used in these simulations. Simple Gaussian beams can also be easily
simulated. The extension of this part of the code to self-amplified spontaneous
emission (SASE) and high-gain harmonic generation (HGHG) is currently in
progress. An SRWE calculation typically provides an initial radiation wave-
front, i.e., a distribution of the frequency-domain electric field of radiation
in a transverse plane at a given finite distance from the source (e.g., at the
position of the first optical element of a beamline), in a form appropriate for
further manipulation.

After the initial wavefront has been computed in SRWE, it can be used by
SRWP, without leaving the same application front-end. SRWP applies mainly
the methods of Fourier optics, with the propagation of a (fully-coherent) wave-
front in free space being described by the Fresnel integral, and the “thin”
approximation being used to simulate individual optical elements – apertures,
obstacles (opaque, semi-transparent or phase-shifting), zone plates, refractive
lenses.

If necessary, the calculation of the initial electric field and its further
propagation can be programed to be repeated many times (with necessary
pre- and post-processing), using the scripting facility of the hosting front-end
application.

5.2.1 Accurate Computation of the Frequency-Domain Electric
Field of Spontaneous Emission by Relativistic Electrons

The electric field emitted by a relativistic electron moving in free space is
known to be described by the retarded scalar and vector potentials, which
represent the exact solution of the Maxwell equations for this case [2]:

�A = e
∫ +∞

−∞

�β

R
δ(τ − t+R/c)dτ , ϕ = e

∫ +∞

−∞

1
R
δ(τ − t+R/c) dτ , (5.1)

where e is the charge of electron, c is the speed of light, �β = �β(τ) is the electron
relative velocity, R is the distance between the observation point �r and the
instantaneous electron position �re(τ), R = |�R(τ)|, �R(τ) = �r − �re(τ), t is the
time in laboratory frame, τ is the integration variable having the dimension
of time, and δ(x) is the delta-function. The Gaussian system of units is used
in (5.1) and subsequently.
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One can represent the delta-function in (5.1) as a Fourier integral, and
then differentiate the potentials (assuming the convergence of all integrals) to
obtain the radiation field

�E = −1
c

∂ �A

∂τ
−∇ϕ =

1
2π

∫ +∞

−∞
�Eω exp(−iωt)dω,

�Eω =
ieω
c

∫ +∞

−∞

[
�β −
(

1 +
ic
ωR

)
�n

]
1
R

exp[iω(τ +R/c)]dτ , (5.2)

where �Eω is the electric field in frequency domain; �n = �R/R is a unit vector
directed from the instantaneous electron position to the observation point. We
note that (5.2) has the same level of generality as (5.1), since no particular
assumptions about the electron trajectory or the observation point have been
made so far. One can show equivalence of (5.2) to the expression for the electric
field containing the acceleration and velocity terms [3]. The exponent phase
in (5.2) can be expanded into a series, taking into account the relativistic
motion of the electron, and assuming small transverse components of the
electron trajectory and small observation angles:

τ +R/c ≈ z − ze0
c

+
1
2

[
τγ−2

e +
∫ τ

0

(x′2e + y′2e )dτ̃ +
(x− xe)2 + (y − ye)2

c(z − cτ)
]
, (5.3)

where γe is the reduced energy of electron (γe  1); x, y, z are respectively
the horizontal, vertical, and longitudinal Cartesian coordinates of the obser-
vation point �r; xe, ye are the transverse (horizontal and vertical) coordinates
of the electron trajectory; x′e, y

′
e are the trajectory angles (or the transverse

components of the relative velocity vector �β); and ze0 is the initial longitu-
dinal position of the electron. The transverse components of the vector �n in
(5.2) can be approximated as

nx ≈ (x− xe)/(z − cτ), ny ≈ (y − ye)/(z − cτ). (5.4)

The dependence of the transverse coordinates and angles of the electron trajec-
tory on τ can be obtained by solving the equation of motion under the action
of the Lorentz force in an external magnetic field. In the linear approximation
this gives

(xe, x
′
e, ye, y

′
e)

T ≈ A · (xe0, x
′
e0, ye0, y

′
e0)

T + B, (5.5)

where (xe0, x
′
e0, ye0, y

′
e0)

T is the four-vector of initial and instantaneous
transverse coordinates and angles of the electron trajectory, A = A(τ) is
a 4 × 4 matrix, and B = B(τ) is a four-vector with the components being
scalar functions of τ .

Since the approximations used by (5.3) and (5.4) take into account the
variation of the distance between the instantaneous electron position and the
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observation point during the electron motion, the expression (5.2) with these
approximations is valid for observations in the near field region.

Consider a bunch of Ne electrons circulating in a storage ring, giving an
average current I. The number of photons per unit time per unit area per
unit relative spectral interval emitted by such an electron bunch is

dNph

dtdS(dω/ω)
=

c2αI

4π2e3Ne

∣∣∣�Eωbunch

∣∣∣2 , (5.6)

where �Eωbunch is the electric field emitted by the bunch in one pass in a storage
ring, α is the fine structure constant. �Eωbunch can be represented as a sum of
two terms describing, respectively, the incoherent and coherent synchrotron
radiation [4]:∣∣∣ �Eωbunch

∣∣∣2 ≈ Ne

∫ ∣∣∣ �Eω(�r; Xe0, γe0)
∣∣∣2 f̃(Xe0, γe0)dXe0dγe0 +

Ne(Ne − 1)
∣∣∣∣
∫
�Eω(�r; Xe0, ze0, γe0)f(Xe0, ze0, γe0)dXe0dze0dγe0

∣∣∣∣
2

, (5.7)

where �Eω is the electric field emitted by one electron with the initial phase
space coordinates xe0, ye0, ze0, x

′
e0, y

′
e0, γe0, abbreviated to Xe0ze0, γe0 in

(5.7); f is the initial electron distribution in 6D phase space, normalized to
unity; f̃ =

∫
fdze0. The Stokes components of the spontaneous emission can

be calculated by replacing the squared amplitude of the electric field in (5.7)
with the corresponding products of the transverse field components or their
complex conjugates.

5.2.2 Propagation of Synchrotron Radiation Wavefronts:
From Scalar Diffraction Theory to Fourier Optics

Let us consider the propagation of the electric field of synchrotron radiation
in free space after an aperture with opaque nonconductive edges. Using the
approach of scalar diffraction theory, one can find the electric field of the
radiation within a closed volume from the values of the field on a surface
enclosing this volume by means of the Kirchhoff integral theorem [5]. After
applying the Kirchhoff boundary conditions to the transverse components of
the frequency-domain electric field emitted by one relativistic electron (see
(5.2)), one obtains

�Eω2⊥(�r2) ≈ ω2e

4πc2

∫ +∞

−∞
dτ
∫

Σ

∫ �βe⊥ − �nR⊥
RS

exp[iω[τ + (R+ S)/c]]

(�� · �nR + �� · �nS)dΣ, (5.8)

where �R = �r1 − �re, �S = �r2 − �r1, with �re being the position of the electron,
�r1 a point at the surface Σ within the aperture, and �r2 the observation point
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Fig. 5.1. Illustration of the Kirchhoff integral theorem applied to synchrotron
radiation

(see Fig. 5.1). S = |�S|, R = |�R|, �nR = �R/R, �nS = �S/S, �� is a unit vector
normal to the surface Σ. The expression (5.8) is valid for R  λ, S  λ,
where λ = 2πc/ω is the radiation wavelength. One can interpret (5.8) as a
coherent superposition of diffracted waves from virtual point sources located
continuously on the electron trajectory, with the amplitudes and phases of
these sources dependent on their positions. This approach allows the calcula-
tion of complicated cases of SR diffraction, not necessarily limited by small
observation angles.

In the approximation of small angles, the propagation of the SR elec-
tric field in free space can be described by the well-known Huygens–Fresnel
principle [6], which becomes a convolution-type relation for the case of the
propagation between parallel planes:

�Eω2⊥(x2, y2) ≈ ω

2πicL

∫∫
�Eω1⊥(x1, y1)

exp
[
iω
c

[L2 + (x2 − x1)2 + (y2 − y1)2]1/2

]
dx1dy1, (5.9)

where �Eω1⊥ and �Eω2⊥ are the fields before and after the propagation and
L is the distance between the planes. For efficient computation of (5.9), the
methods of Fourier optics can be used.

The propagation through a “thin” optical element can be simulated by
multiplication of the electric field by a complex transfer function T12, which
takes into account the phase shift and attenuation introduced by the optical
element:

�Eω2⊥(x, y) ≈ �Eω1⊥(x, y)T12(x, y). (5.10)

As a rule, the “thin” optical element approximation is sufficiently accurate for
(nearly) normal incidence optics, e.g., for slits, Fresnel zone plates, refractive
lenses, mirrors at large incidence angles, when the optical path of the radiation
in the optical element itself is considerably smaller than distances between the
elements or the distance from the last element to the observation plane.



5 Wavefront Propagation 75

For cases when the longitudinal extent of an optical element (along the
optical axis) cannot be neglected, e.g., for grazing incidence mirrors, in partic-
ular when the observation distance is comparable to the longitudinal extent of
the optical element, the “thin” approximation defined by (5.10) may need to be
replaced by a more accurate method, which would propagate the electric field
from a transverse plane just before the optical element to a plane immediately
after it. Such propagators may be based on (semi-) analytical solutions of the
Fourier integral(s) by means of asymptotic expansions. The general approach
is still valid; the free-space propagator defined by (5.9) can be used imme-
diately after the optic, followed by propagators through subsequent optical
element(s), if any.

To take into account the contribution to the propagated radiation from
the entire electron bunch, one must integrate over the phase space volume
occupied by the bunch, treating the incoherent and coherent terms. For the
simulation of incoherent emission (first term in (5.7)), one can sum up the
intensities resulting from propagation of electric fields emitted by different
“macro-particles” to a final observation plane. In many cases, like imag-
ing by a thin lens, diffraction by a single slit, etc., the intensity in the
observation plane is linked to the transverse electron distribution function
via a convolution-type relation. In such cases the simulation can be acceler-
ated dramatically. An alternative method for the propagation of the incoherent
(partially-coherent) emission consists in manipulation with a mutual intensity
or a Wigner distribution [6].

If the synchrotron radiation source is diffraction limited, the wavefront
described by the first term in (5.7) is transversely coherent, and therefore
it is sufficient to treat the propagation of the electric field emitted by only
one “average” electron. Similarly, to simulate propagation of the coherent
SR described by the second term in (5.7), it is also sufficient to manipulate
with only one electric field wavefront, obtained after integration of the single-
electron field over the phase space volume of the electron bunch.

5.2.3 Implementation

The emission part of the code (SRWE) contains several different methods
for performing fast computation of various “special” types of synchrotron
radiation. However, the core of the code is the CPU-efficient computation of
the frequency-domain radiation electric field given by (5.2) with the radi-
ation phase approximated by (5.3) in an arbitrary transversely uniform
magnetic field.

The wavefront propagation in SRWP is based on a prime-factor 2D FFT.
The propagation simulations are fine-tuned by a special “driver” utility, which
estimates the required transverse ranges and sampling rates of the electric
field, and re-sizes or re-samples it automatically before and after propagation
through each individual optical element or drift space, as necessary for a given
overall accuracy level of the calculation. In practice this means that running
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SRWP is not more complicated than the use of conventional geometrical ray-
tracing.

The SRW code is written in C++, compiled as a shared library, and inter-
faced to the “IGOR Pro” scientific graphing and data analysis package (from
WaveMetrics). Windows and Mac OS versions of the SRW are freely available
from the ESRF and SOLEIL web sites.

5.3 Overview of PHASE

In this section, we describe the principle of wavefront propagation within the
frame of the stationary phase approximation. The method is complementary
to the Fourier Optics technique with the following advantages:

• There is no ray tracing required across the optical elements as is needed
in Fourier Optics. Hence, the method is valid also for thick lenses or long
mirrors under grazing incidence angles.

• There are no restrictions concerning the grid spacing, the number of
grid points, or the grid point distribution in the source and the image
planes. One-dimensional cuts as well as images with small dimensions
in one direction (e.g., monochromator slits with arbitrary shape) can be
evaluated.

• Under certain conditions the propagation across several elements can be
done in a single step.

• No aliasing is observed even for strongly demagnifying grazing incidence
optics.

• The memory requirements are low.

The disadvantages are the following:

• The speed of simulation is significantly slower for the same number of grid
points since the CPU time scales with N4 rather than N2 lnN , with N
being the number of grid points. On the other hand, the array dimensionN
needed to propagate±3σ of a Gaussian mode with a comparable resolution
is generally much smaller as compared to Fourier Optics, which makes the
CPU times of both methods comparable.

• The locations of the source plane and intermediate planes can not be
chosen arbitrarily (see further).

• The description of the optical surface is restricted to low order polynomials,
i.e., randomly distributed slope errors cannot be modelled.

The algorithm has been implemented into the code PHASE [7, 8]. The opti-
cal elements are described by fifth order polynomials. All expressions have
been expanded up to fourth order in the image coordinates and angles. The
FORTRAN code has been generated automatically using the algebraic code
REDUCE [9].
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Currently, PHASE is being rewritten to be used as a library within a script
language. Several existing codes for pre- and post processing the electric fields
will be included. This version will provide more flexibility to the user than
the existing monolithic program.

5.3.1 Single Optical Element

In the following we assume a small divergence of the photon beam, which
allows us to neglect the longitudinal field component. First, we will derive the
transformation of the transverse field components from the source plane across
a single optical element to the image plane (see Fig. 5.2 for the definition of
the variables).

According to the Huygens–Fresnel principle the electric fields transform as

�E(�a′) =
∫
h(�a′,�a) �E(�a)d�a, (5.11)

where

h(�a′,�a) ∝ 1
λ2

∫
Surface

exp(ik(r + r′))
rr′

b(w, l)dwdl, (5.12)

k = 2π/λ is the wave vector and b(w, l) is the transmittance function of the
optical element, which is not included in further equations. The propagator
h includes the integration over the element surface. Principally, the propaga-
tor for two elements can be composed of the propagators of two individual
elements in the following manner:

h( �a′′,�a) =
∫
h2( �a′′, �a′)h1(�a′,�a)d�a′. (5.13)

Fig. 5.2. Variables in the source and image plane and at the optical element
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The total number of integration dimensions has increased to six, two dimen-
sions for the surface integration over each element and two dimensions for
the intermediate plane. The combined propagator can be rewritten in a way
that the integration across the intermediate plane is skipped. This is justi-
fied since the beam properties are not modified at the intermediate plane.
Therefore, the two element geometry requires two additional integrations as
compared to the one element case. Each further optical element enhances the
integration dimensions by two. Even for the one element geometry a simpli-
fication of the propagator is required to carry out the integration within a
reasonable CPU time.

The integration over an optical element surface can be confined to a
rather narrow region where the optical path length is nearly constant. If the
path length changes rapidly, the integrand oscillates very fast and does not
contribute to the integral.

We expand the propagator h around a principle ray where the optical
path length PL has zero first derivatives with respect to the optical element
coordinates and, hence, the phase variations are small.

h(�a, �a′) ∝ 1
rw0,l0r

′
w0,l0

exp[ik(rw0,l0 + r′w0,l0)]∫
exp[ik(

∂2PL
∂δw2

δw2

2
+
∂2PL
∂δl2

δl2

2
+
∂2PL
∂δw∂δl

δwδl)]dδwdδl. (5.14)

The quadratic form in δw and δl can be transformed to a normal form where
the cross products vanish (principle axis theorem). Then, the double integral
can be broken up into two integrals, which can be integrated analytically to
infinity: ∫ ∫

· · ·dδwdδl =
2πi · sign
k
√|a |·| b| =

2πi · sign
k
√|D| , (5.15)

where a and b are the principle axes. The determinant D is invariant for
orthogonal transformations:

a · b = D =

∣∣∣∣∣∣
∂2PL
∂δw2

∂2PL
∂δw∂δl

∂2PL
∂δl∂δw

∂2PL
∂δl2

∣∣∣∣∣∣ (5.16)

Thus, the integral can be solved analytically using the coefficients of the
untransformed quadratic form. The second invariant of the quadratic form
is the trace T and using D and T the expression sign can be evaluated:

sign = 1 if T,D > 0
sign = −1 otherwise

The surface integral of the propagator has been removed and the propagation
now scales with the fourth power of the grid size N . This procedure is called
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the stationary phase approximation [10] and it is justified as long as (1) the
optical element does not scrape the beam and (2) the principle rays with
identical source and image coordinates are well separated, which means that
the quadratic approximation of the path length variation is valid. The latter
constraint requires a careful choice of the location of the source plane in
order to exclude a zero second derivative of the path length. A proper choice
is indicated by a weak dependence of the results on small variations of the
position of the source plane. The input data that are given for a certain
longitudinal position can easily be propagated in free space to the source
plane of the following PHASE propagation. This first step is done by Fourier
optics.

For a sequence of optical elements it is useful to describe all expressions in
terms of the coordinates and angles of the image plane, which we call initial
coordinates in this context (the coordinates of the source plane are named
final coordinates). The integration over the source plane is replaced by an
integration over the angles of the image plane:

�E(�a′) =
∫
h(�a′,�a) �E(�a)

∣∣∣∣ ∂(y, z)
∂(dy′, dz′)

∣∣∣∣d(dy′)d(dz′). (5.17)

The functional determinant containing the derivatives of the old with respect
to the new coordinates is expanded in the initial coordinates (y′, z′, dy′, dz′).
Similarly, the expression 1/

√|D| can be expanded in the same variables. These
equations are the basis for the extension of the propagation method to several
optical elements in the next section.

For narrow beams the path length derivatives can be replaced by∣∣∣∣∣∂
2PL
∂δw2

∂2PL
∂δl2

−
(
∂2PL
∂δw∂δl

)2
∣∣∣∣∣ = cos(α) cos(β)

r2r′2

∣∣∣∣ ∂(y, z)
∂(dy′, dz′)

∣∣∣∣. (5.18)

The expression on the right hand side can be generalized to a combination
of several optical elements. There is, however, no obvious way to improve the
accuracy of this substitution for wider photon beams.

Prior to the wavefront propagation, analytic power series expansions with
respect to the initial coordinates (y′, z′, dy′, dz′) of the five items listed in
Table 5.1 are evaluated [7, 8]. Items 2 and 3 describe the phase advance ΔΦ
across the element:

ΔΦ = ((PL(w0, l0)− PL(0, 0))/λ+ mod(w, 1/n)) 2π, (5.19)

where 1/n is the groove separation if the element is a grating. For mirrors
the second term in the bracket is skipped. Items 4 and 5 are described by a
common set of expansion coefficients and are multiplied together.

5.3.2 Combination of Several Optical Elements

Generally, the transformation of the coordinates and angles across an opti-
cal element is nonlinear. On the other hand, the transformation of all cross
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Table 5.1. Quantities to be expanded with respect to the initial coordinates and
angles

1 The final coordinates (y, z) in the source plane have to be known for the
interpolation of the electric fields.

2 The path length differences which determine the phase variations of the
principle rays.

3 The intersection points (w0, l0) of the principle rays with the optical element
are needed if the element is a diffraction grating.

4 The functional determinant relating source coordinates and image angles.

5 The expression 1/
√|D| accounting for the surface integration.

products of the coordinates and angles is linear and can be described in a
matrix formalism:

Y f =M · Y i
Y f/i = (yf/i, zf/i, dyf/i, dzf/i, yf/i

2, yf/izf/i . . .). (5.20)

Expanding the products to fourth order the corresponding matrix has the
dimensions of 70 × 70. First, the quantities 1–4 of Table 5.1 are derived for
each optical element k. Then, the coordinates and angles of the intermediate
planes are expressed by the coordinates and angles of the image plane of the
complete beamline:

Ym =

(
N∏

k=m+1

Mk

)
· Y N = ℵ · Y N . (5.21)

Using these transformation maps the expressions 1–4 of Table 5.1 can be
expanded with respect to the variables in the image plane of the beamline, e.g.,

ΔΦm = ΔΦCm · Y m = ΔΦCm · ℵ · Y N

w0m = wc0m · Y m = wc0m · ℵ · Y N . (5.22)

The derivation of the fifth expression in Table 5.1 is more complicated. To
account for all possible optical paths a 2N -dimensional integral A has to be
evaluated. Again, all cross terms are removed via a principle axis transforma-
tion from the coordinates (δw1, δl1, · · · δlN) to the coordinates (y1, · · · y2N )
and the integral is solved analytically using the stationary phase approxima-
tion. The integral is related to the product of the eigenvalues (λ1, λ2, · · ·λ2N )
of the matrix G (see (5.24)) via

A(w10, l10, . . . wN0, lN0) =
1

N+1∏
i=1

ri

∂(δw1, δl1 · · · δlN)
∂(y1 · · · y2N )

·

(
2π
k

)N

eimπ/4 − e−i(2N−m)π/4 1√|λ1 · λ2 · · ·λ2N |
. (5.23)
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The expression ∂(w1, l1 · · · lN)/∂(y1 · · · y2N) equals one if the principle axis
transformation is a pure rotation. m is the number of positive eigenvalues.

Using again the invariance of the determinant we get

λ1 · λ2 · · ·λ2N =

∣∣∣∣∣∣∣∣∣∣∣∣∣

gw1w1 gw1l1 gw1w2 gw2l2 · · · 0
gl1w1 gl1l1 gl1w2 gl1l2 · · · 0
gw2w1 gw2l1 gw2w2 gw2l2 · · · 0
gl2w1 gl2l1 gl2w2 gl2l2 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · glN lN

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.24)

The expansion coefficients gpiqj represent the second derivatives of the path
length with respect to the optical element coordinates pi and qj of the elements
i and j. They are zero if |p− q| > 1. Each coefficient is a fourth order power
series of the initial coordinates and angles and using these expansions the
square root of the inverse of the determinant can be expanded with respect
to the same variables. In principle m can be determined within an explicit
derivation of all eigenvalues. We evaluate, however, only the determinant, the
product of the eigenvalues, and we can only conclude from the sign of the
determinant whether m is even or odd. A sign ambiguity of the integral A
remains. This is acceptable since we are finally interested in the intensities
rather than the amplitudes. For more details we refer to [11].

5.3.3 Time Dependent Simulations

So far we have discussed the propagation of monochromatic waves that are
infinitely long. In reality, finite pulses with a certain degree of longitudinal
coherence have to be propagated. The complete radiation field of an FEL
can be generated with time dependent FEL codes like GENESIS [12]. Gen-
erally, these radiation pulses are described by hundreds or thousands of time
slices where each slice describes the transverse electric field distribution at a
certain time.

Prior to the propagation these fields have to be decomposed into their
monochromatic components. For each grid point in the transverse plane the
time dependence of the electric field is converted to a frequency distribution
via an FFT. All relevant frequency slices (those for which the intensity is large
and the frequency is not blocked by the monochromator) are then propagated
as already described. The resulting frequency slices in the image plane are
again Fourier transformed providing the time structure of the electric field in
the image plane.

A detailed description of the longitudinal and transverse coherence of the
FEL radiation is essential if the generation and the propagation of the radia-
tion fields are combined. The spectral content and the time structure of the
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FEL output can be modified by a monochromator as demonstrated in the
following two cases:

• The signal-to-noise ratio of a cascaded HGHG FEL decreases quadratically
with the harmonic number of the complete system. The output power of
a four stage HGHG FEL can be significantly improved if the spectrum of
the first stage is spectrally cleaned with a monochromator before it passes
the following three stages. [13–15].

• The spectral power and purity of a SASE FEL can be enhanced by more
than an order of magnitude using a self-seeding technique as proposed for
the FLASH facility [16]. The SASE radiation of the first undulators that
are operating far below saturation is monochromatized and used in the fol-
lowing undulators as a seed. Combined GENESIS and PHASE simulations
have been performed for this geometry [17].

5.4 Test Cases for Wavefront Propagation

To compare the numerical methods used in SRW and PHASE, simple test
cases looking at the focusing of Gaussian beams by a toroidal mirror have
been carried out for a range of incident angles and demagnifications. For
astigmatic optics, where the extent of the field is very different in different
directions, it can be difficult to adequately represent the electric field, hence
the tests were repeated using astigmatically focusing mirrors. The numerical
parameters used in running the codes are given to assist new users.

5.4.1 Gaussian Tests: Stigmatic Focus

The optical system consists simply of a single toroidal mirror placed 10m
beyond the waist of a Gaussian radiation source. Focus distances of 10, 2.5,
and 1 m were studied, giving demagnifications of 1, 4, and 10, respectively.

SRW was used to create the radiation field of a Gaussian beam of energy
2 eV, (wavelength 620 nm) with a waist of RMS size 212 μm at 1m from the
waist. Note that for Gaussian sources, the waist size is defined as

√
2 times

the RMS size, that is, the input waist value was 300 μm. A small interface
code was written to convert the format of the SRW field files to the input
required for PHASE. Both codes could then be used to propagate the field
along a 9m drift space, across a toroidal mirror and then along a further drift
space to the focus.

Numerical Set-Up

For propagation by SRW, the input field was generated using the automatic
radiation sampling option, with an oversampling of 4, giving an input mesh for
the propagation of 32× 32 points over a 2mm square. As a starting point for
the propagation, automatic radiation sampling was used with the accuracy
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PHASE SRW

Fig. 5.3. Focal spot for the 87.5◦ incidence mirror, 10:1 demagnification. Intensities
are in arbitrary units

parameter set to 4, and 100 × 100 points were used to define the mirror
surfaces. However, for the optics with incidence angles of 85◦ and 87.5◦, more
points were required to define the mirror surface otherwise ghosting occurred
in the image, and for the 10:1 demagnification the large number of points
required to represent the field led to the code running out of memory when
attempting to propagate the 1m to the focal plane in 1 step. The focus shown
in Fig. 5.3 for the 87.5◦ case with 10:1 demagnification was obtained using a
grid of 2,000 by 2,000 points on the mirror, and propagating to the focus in
three stages, resizing the beam at each stage.

For input to PHASE, a fixed grid of 51×51 points was used over the 2mm
square. PHASE requires the range and number of angles used to calculate the
image to be set up (see Sect. 5.3.1). For the cases run above, the angular range
used varied from ±5 mrads for unit magnification to ±25 mrads in the 10:1
demagnification case. One hundred and one angles were more than sufficient
to give an accurate description of the field in the image plane.

Results

Horizontal and vertical cuts through the peak of the beam at the foci have
been fitted using Gaussian functions. Table 5.2 compares the RMS sizes of
the fitting functions for the PHASE and SRW calculations.

It can be seen that the focal spot sizes are in good agreement (<10%)
except for the cases of 10:1 demagnification and the 4:1 demagnification for
the most grazing system. It was found that this discrepancy is due to the prin-
ciple rays not being well separated for highly demagnifying systems, thereby
violating the conditions for the stationary phase approximation. The position
of the source plane for PHASE can be altered so that the principle rays do
not interfere; in this region the details of the image should be independent of
the position of the source plane – see Sect. 5.3.1 and [11] for further details.
Phase was rerun with the input source field calculated by SRW 1 m before
the mirror and then propagated by PHASE. The new results are marked by
superscript 1 in Table 5.2 and are in good agreement with those from SRW.
The shape of the foci are similar, as can been seen from Fig. 5.3.
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Table 5.2. Focal spot sizes from SRW and PHASE for a range of toroidal mirrors

Incidence Demagnification Focal spot size Focal spot size PHASE
angle (◦) SRW (h× v) (μm) (h× v) (μm)

45 1 210× 210 213× 213
45 4 52.7 × 52.7 52.9 × 52.9
45 10 22.3 × 21.8 28.4 × 21.4
75 1 220× 211 213× 213
75 4 55.7 × 54.0 54.4 × 53.8
75 10 27.8 × 22.8 28.0 × 23.8
85 1 216× 212 206× 206
85 4 63.1 × 59.8 68.9 × 57.3
85 10 36.9 × 24.3 28.6 × 25.4

10 35.8 × 27.21

87.5 1 220× 217 205× 206
87.5 4 72.1 × 68.4 66.6 × 60.2
87.5 10 45.8 × 30.1 31.9 × 25.8
87.5 10 43.4 × 29.11

1 Result obtained by propagating field in PHASE from 1m before mirror – see text

5.4.2 Gaussian Tests: Astigmatic Focus

The set-up for these tests is very similar to that described in the previous
section, with a single toroidal mirror again placed 10m from the Gaussian
waist point. An incidence angle of 75◦ was chosen for these tests, with one
focus either at 5.0m or at 2.5m from the mirrors, and the farther focus at 10m.

Numerical Set-Up

For SRW, an accuracy parameter of 2 was used with the automatic sampling
option for the propagation.

For PHASE, in the case of the 2:1 demagnification for the nearer line focus,
a range of ±5 mrads was sufficient in order to reconstruct the wavefront at
both line foci. For the farther focus, 301 angles were required in the nonfocused
direction, whereas 201 were sufficient in the focused direction. In Fig. 5.4, the
effect of using an insufficient number of angles can be seen in the distortion
at the edge of the image.

Both programs in principle are able to handle astigmatic focusing. How-
ever, in PHASE, when the image plane is out of focus, the angles required to
reconstruct the image and transverse position are strongly correlated, leading
to an increase in the angle range needed over the whole image. This problem
increases with the astigmatism. For the case of 4:1 demagnification at the
nearer focus, a range of ±10 mrads was needed at the farther focus to recon-
struct the image. However, this was required over a fine mesh of angles for
the nonfocused direction, and the maximum number of angles allowed in the
code was not sufficient to reconstruct the wavefunction. The inner focus at
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Fig. 5.4. Tangential line focus at 10 m from the toroidal mirror, which has the
sagittal focus at 5 m. Left hand image used 301 angles in the nonfocusing direction,
where the image on the right used 201 angles, and distortion at the image edge can
be seen. Note the order of magnitude difference in the scales on the y and z axes

Table 5.3. Beam widths at the positions of the line foci for the astigmatically
focusing toroidal mirrors

Distance to Distance to Beam size at tangential Beam size at sagittal
tangential sagittal (h× v) (μm) (h× v) (μm)
focus (m) focus (m)

SRW PHASE SRW PHASE

10 5 212× 2,349 205× 2,269 1,118× 105 1,123× 102
10 2.5 212× 6,975 1,697× 52.6 1,635× 51.9
2.5 10 53.7 × 1,713 54.9× 1,697 6,992× 212

2.5m could be modeled using 501 points in the nonfocused direction over a
±10 mrads range.

This problem in PHASE can be solved by setting the distance, d foc, from
the image to the focal plane. The range of angles used is then centered around
y/d foc, where y is the transverse distance in the image plane, rather than
centered round zero. In the version of the code used, this has been done for
stigmatic focussing only, but can easily be extended to astigmatic systems.

Results

As before, horizontal and vertical cuts through the beam were fitted with
Gaussian functions and the RMS widths are presented in Table 5.3. It can be
seen that the agreement between PHASE and SRW is within 5% for the beam
sizes at the foci where comparisons can be made. For SRW, the results with
2:1 and 4:1 demagnification in one direction are consistent with each other.
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5.5 Beamline Modeling

PHASE has mainly been used to model the highly grazing incidence systems
required for XUV and X-ray beamlines. The effect of diffraction gratings can
also be included in PHASE as a phase shift across the wavefront. SRWP was
designed for “normal incidence” geometries, and has been used for IR and THz
wavelength beamlines. For these systems, the monochromator is not part of
the beam transport system and SRW does not include any gratings. SRW has
also been used for imaging X-rays using X-ray lenses and zone plates.

To compare the codes for modeling a real beamline, the THz beamline on
the Energy Recovery Linac Prototype (ERLP) at Daresbury Laboratory [18]
has been chosen as it had already been designed using SRW. This exam-
ple extends the use of PHASE into a regime for which it was not originally
designed.

5.5.1 Modeling the THz Beamline on ERLP

The Beamline

A 70mrad fan of THz radiation will be extracted from ERLP where the
electron bunch is shortest, i.e., at the last bend of the dipole chicane bunch
compressor, just before the wiggler of the mid-infrared FEL. The THz radia-
tion will be piped to a diagnostic room for analysis before being transported
further to an experimental facility. The layout of the accelerator and beamlines
is shown in Fig. 5.5; the beamlines have been constrained by the geography of
the area, in particular the need to exit the machine room through a labyrinth
resulting in the dog-leg in the beamline.

Fig. 5.5. Layout of ERLP, showing the paths of THz and IR-FEL beamlines
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The main problem in designing this beamline is that, for longer wave-
lengths, diffraction becomes significant at the extraction aperture in the dipole
magnet vacuum vessel and hence there is no single effective source point to
image down the beamline. A second difficulty is that the radiation is natu-
rally very divergent and, for the longer wavelengths, the mirrors will clip the
radiation, giving rise to further diffraction.

To start from a known situation, the beamline has been designed to cor-
rectly focus the shorter wavelengths, which are not significantly diffracted by
the extraction aperture. Two toroidal focusing mirrors, the first mirror (M1)
after the aperture and the third mirror (M3) at the start of the labyrinth, are
used in the transport path to the diagnostic room. There the radiation is colli-
mated by a third toroidal mirror for input into a purpose-built large-aperture
step-scan Fourier Transform Spectrometer. The mirrors have a diameter of
150mm. The path length from the source to the collimating mirror is 17.3m.

SRW was used to calculate the radiation emitted by the 35MeV electrons
at the 0.1T bending magnet in the bunch compressor. The radiation field
was generated just before the extraction aperture, at 0.659m from the source
point. Note that the intensity calculations are based on an average current,
and so there is no account taken of the finite electron bunch length and hence
there is as yet no allowance for the coherent enhancement of the radiation in
SRW. Hence the intensities are in arbitrary units. Initial modelling was carried
out at 62 μm (20meV), for which diffraction is not important, to check that
the mirror foci occurred at their nominal positions and the radiation could
be well collimated. Propagation was then carried out at longer wavelengths,
including 620 μm (2 meV) shown below. Of particular interest is the degree
of collimation that can be obtained when there is no unique source point as
described earlier.

Numerical Considerations

For propagation by SRW of the 620 μm radiation, the radiation field just
before the extraction aperture plane was generated using automatic radiation
sampling with an oversampling factor of 4. This generated 40×40 points over
the initial grid of 45mm by 45mm. Propagation through the 37mm diameter
aperture and along the beamline to beyond the collimating mirror was done
using the automatic field sampling option with the accuracy parameter set
to 4.

For input into PHASE, a fixed grid of 51 by 51 points was used in SRW over
the same 45mm by 45mm area and the output converted into PHASE field
format. The aperture is included in PHASE by setting the radius of a pinhole
in the input source plane, defined in the input parameter file (fg34.par). An
angular mesh of 201 points over ±50 mrads was used for the propagation.

In PHASE, if the mirrors do not aperture the beam, the transformation
across the whole beamline can be carried out in one step. This was done and
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the results compared with those from SRW using large optics that do not clip
the beam.

To allow for the finite size of the optics in PHASE, the beam should be
propagated in stages to each aperturing optic, the radiation field output at the
optic, and then used as the source for the next step in the propagation down
the beamline, setting the source aperture appropriately. As the phase of the
radiation field can vary rapidly, the field should be represented by its phase
and amplitude, rather than by the real and imaginary parts. This has been
done, e.g., by Bahrdt et al. [19] but not all the codes needed are generally
available and hence the effect of the finite size of the mirrors was included
using SRW alone.

Results

As the beam profiles are approximately Gaussian, cuts through the beam at
three different locations were fitted with Gaussian functions. The RMS widths
are presented in Table 5.4. It can be seen that the horizontal widths are in
good agreement, but the vertical widths at the collimating mirror are about
15% larger from SRW than those from PHASE. This discrepancy is bigger
than the variation of about 5% obtained when different sampling of the field
is used. The origin of the difference has not yet been found.

The width of the 620 μm beam at the nominal focus of the first mirror,
given in Table 5.4, is about an order of magnitude wider than the (correctly
focused) 62 μm radiation. This results from the lack of a unique source to
image down the beamline for the longer wavelengths. The effect on the colli-
mation of the radiation can be seen by comparing the fitted beam widths at
the collimating mirror and 2m beyond; the 620 μm radiation after the “col-
limating mirror” is in fact converging. The percentage decrease in the beam
size over the 2m beyond the collimating mirror is very similar from both
codes, and should be slow enough for FTIR measurements to be made. These
simulations demonstrate the need to use wavefront propagation for systems
where diffraction is important.

The effect of the finite mirror size was then investigated using SRW by
setting the mirrors to 150×150 mm2. The intensity distributions at and beyond

Table 5.4. Widths (RMS values) of Gaussian fits of horizontal and vertical cuts
through the middle of the 620 μm beam at different locations in the beamline

Position in beamline Horizontal Vertical width
width (mm) (mm)

SRW PHASE SRW PHASE

At nominal “focus” of first mirror 10.9 11.1 12.0 11.3
At position of collimating mirror 38.1 37.0 43.9 36.9
2m beyond collimating mirror 30.9 30.05 36.3 31.1
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Fig. 5.6. (LHS) Image 2m after the collimating mirror; (RHS) Horizontal cuts
through the beam at and after the mirror, 620 μm radiation

the collimating mirror are shown in Fig. 5.6, where the diffraction due to
significant clipping of the radiation by the collimating mirror is clearly seen.
Since this work was carried out, the size of the collimating mirror has been
increased to 200mm.

5.6 Summary

Both methods for wavefront propagation, namely Fourier Optics and the
Stationary Phase Approximation, are applicable to a wide range of situa-
tions. In general, Fourier techniques are fast, but can become more difficult
to implement numerically for highly demagnifying systems. Good agreement
was obtained between the results of SRW, which employs Fourier Optics, and
PHASE even for highly grazing systems and 10:1 demagnification. Both codes
are capable of handling astigmatic systems.

SRW and PHASE have between them been used very successfully to design
a wide range of beamlines, from the transport of THz radiation to seeding
schemes for XUV FELs. As coherent sources move to ever shorter wavelengths,
further developments are required. More types of optical elements need to be
included in the codes, in particular crystal optics. Work on wavefront prop-
agation through crystals has for example been carried out by Mocella and
co-workers [20] and Oreshko et al. [21]. The effect of imperfect surfaces, which
introduce speckle and degrade micro and nanofocusing systems, also needs to
be included.
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Theoretical Analysis of X-Ray Waveguides

S. Lagomarsino, I. Bukreeva, A. Cedola, D. Pelliccia, and W. Jark

Abstract. X-ray waveguides are efficient in the generation of nanometre sized
beams in the hard X-ray spectral region. This chapter addresses the theoretical
behaviour of waveguides in two coupling geometries: resonant beam coupling and
front coupling. A quantitative estimation of the transmission efficiency, not else-
where reported, is presented. For front coupling a detailed study of the internal field
structure is reported for a range of structured incident wave-fields.

6.1 Introduction

X-ray waveguides (WG) were first introduced in 1974 by Spiller and Segmüller
[1] who demonstrated the propagation of the X-rays in a waveguide composed
of a BN film sandwiched between two layers of Al2O3. In 1992, exploiting pre-
vious studies made by Bedzyk [2] on the X-ray standing waves created above
a reflecting mirror surface, Wang [3] studied the resonance-enhanced effect
that takes place inside a two layer system. In 1993 Feng [4] re-proposed the
three layer structure of Spiller with different materials (Si/polymide/SiO2)
and he showed the higher enhancement effect created inside the middle layer
with respect to the two layer structure of Wang. Only in 1995 did Feng
et al. [5] and Lagomarsino et al. [6, 7] independently propose the use of this
waveguide configuration for X-ray microbeam production. Since then, differ-
ent configurations and different materials have been used to obtain smaller
and smaller beams using both planar and two-dimensional WGs [7–10]. The
interest in WGs results from their ability to provide coherent beams as small
as 10 nm [11,12], accepting the full coherent phase space volume of the incom-
ing radiation [13, 14]. Since WGs do not act as a lens, but rather as a spatial
and coherence filter, the final beam dimensions do not depend on the source
size and on the focal distance, as for the other optical elements generally
used. Therefore, nanometer beams can, in principle, be obtained even with
table-top sources [15]. Moreover, WGs are essentially achromatic, and their
potential use extends from EUV and soft X-rays up to hard X-rays. These
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characteristics make it possible to use WGs in several applications, from the
determination of local strain with 100 nm spatial resolution in materials for
microelectronics [16] to the determination of fiber structure [17], to studies of
structural properties of engineered bone tissue [18]. Besides the applications
that use the waveguide as an optical element, capable of providing nanosize
beams, other studies rely directly on the interaction of the guided field with
a specimen placed inside the WG. This is the case of studies on confined flu-
ids [19] and on thin macromolecular films [20]. Some recent reviews [21–23]
report both the basic principle and some interesting scientific results obtained
using X-ray WGs. In this chapter we will present a theoretical analysis of
X-ray WGs, analyzing their efficiency, the formation of the resonance modes
inside the guiding layer, and the main properties of the exiting beam. We will
consider essentially planar WGs. In the case of two-dimensional waveguides
with a rectangular section, the two orthogonal directions can be considered
as independent.

The incident radiation can be coupled into the guiding layer of X-ray
WGs in two different ways: resonant beam coupling (RBC) and front cou-
pling (FC). RBC [1, 5, 6] takes place in a three layer WG, with the incident
beam at a grazing angle transmitted by the very thin upper layer and trapped
by the intermediate guiding layer (see Fig. 6.1a). With this scheme the incom-
ing beam of several tens of microns can be compressed down to nanometer
dimensions and a significant effective gain (>100) can be achieved [8]. In the
FC scheme [10] the incoming radiation is directly side-coupled with the WG
aperture, and the spatial acceptance is therefore equal to the WG gap (see
Fig. 6.1b). Moreover, several modes can be excited simultaneously in the WG.
A variant of the front coupling scheme can be adopted with a reflection of the
incoming beam just in front of the WG entrance at one of the resonance angles
(see Fig. 6.1c). In this way only one particular mode can be selected.

Fig. 6.1. The different coupling modes: (a) resonant beam coupling through the
cover layer. (b) Front coupling directly into the guiding layer. (c) Front coupling
with prereflection and generation of a standing wave pattern
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In Sect. 6.2 we will consider RBC coupling, analyzing in some detail the
efficiency of WGs as a function of their geometrical and physical parameters
(guiding layer thickness, guiding materials, etc.). In contrast, in Sects. 6.3
and 6.4, the FC schemes with an air (or vacuum) gap will be taken into
account. We will make extensive use of a computer simulation code based on
solutions of wave-field equations in the parabolic approximation. We will also
present an analytical asymptotic solution to describe the wave field formation
in an air-gap front-coupling geometry with relatively low absorbing cladding
layers.

6.2 Resonance Beam Coupling

This chapter follows the historical development in the field of use of X-ray
waveguides, which first saw the use of thin film (slab) waveguides with res-
onant beam couplers [1, 5, 6]. It will thus only treat the feeding by use of a
resonant beam coupler [1] and is based on the more detailed studies in [13,14].

As far as the output flux is concerned we can easily estimate an upper
limit, which is still applicable for all types of waveguide. When the exiting
beams from X-ray waveguide terminals were first observed by Feng et al. [5]
and by Lagomarsino et al. [6], they were identified by their appearance as
interference patterns. In fact an X-ray waveguide is a resonator and as such it
acts as a coherence filter, because only coherent radiation can participate
in the accumulation of resonantly enhanced intensity in the optical path,
especially in a slab waveguide. In any case, the exiting beams were always
found to be coherent [5, 7]. If we then want to use these coherent beams in
order to obtain high spatial resolution in micro-diffraction experiments, we
have to be aware of the effects for this application, as discussed by De Caro
et al. [24]. For the output flux we now know that it cannot exceed the spatially
coherent part of the incident flux (Note: we do not consider here the temporal,
i.e., longitudinal, coherence. As long as one uses a crystal monochromator
in a synchrotron radiation beamline, it is always sufficient for the present
considerations). As far as X-rays are concerned we do not yet have coherent
emitters and thus, at a given distance from a source we will have spatially
coherent radiation only if we limit the beam in size and in angular divergence.
The latter is usually produced by the finite apparent source size. According
to Attwood [25] the phase space volume for spatially coherent radiation is
given by

AFWHMΔΦFWHM ≈ 0.44λ (6.1)

In the following we will express A and Φ as a function of the geometrical and
physical characteristics of the WG. Electromagnetic modes can be excited if
the refractive indices of a layer system, as presented in Fig. 6.1a, fulfill the
condition [26] n2 > n1 ≥ n3, where the index 2 refers to the guiding (i.e., the
median) layer, and 1 and 3, respectively, the upper and lower cladding layers.
In the X-ray range the refractive index is usually written as n = 1 − δ − iβ,
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where δ and β are small compared to unity. We can easily obtain them from the
internet [27,28], in which they are calculated in the appropriate way from the
atomic scattering factors as tabulated by Henke et al. [29] and Chantler et al.
[30]. For X-rays δ is a positive number, which varies with the electron density.
Generally lighter materials have smaller δ values and thus they have the larger
refractive index n compared to heavier materials. Lighter materials usually
also absorb less. Hence, X-ray mode excitation is possible in a lighter low
absorbing layer sandwiched between heavier materials with higher absorption.
The coupling of the beam into the core is very efficient as the air or vacuum
environment has the largest refractive index n with δ0 ≈ 0. As shown in
Fig. 6.1a, the incident intensity is coupled through a thin enough cover layer
directly to permitted modes in the core layer [1]. This gives rise to the name
of resonant beam coupling. In fact, the constructive interference, in the entire
illuminated beam footprint, between the wavefield coupled into the waveguide
and the two internally reflected fields produces standing waves in the direction
of the surface normal; as a consequence, the intensity can by far exceed the
intensity of the incident wavefield [31]. For the resonance condition to be
met, the angle of grazing incidence onto the waveguide surface, Φ0, and the
grazing angle onto the internal interfaces, Φ2, must be properly related to the
thickness of the guiding layer and to the wavelength λ.

The discussion will here be restricted to the fundamental guided mode
and to symmetric waveguides with n1 =n3. The thickness of the absorbing
cover layer will always be assumed to be adjusted for maximum internal field
enhancement. Obviously, the fundamental guided mode with an intensity max-
imum in the guiding layer has one node in the vicinity of the top surface and
another in the vicinity of the interface with the absorbing underlayer. We
assume here that the node separation is given by the effective resonator thick-
ness, defined as Deff = d1 + d2, where d2 is the waveguide aperture and d1 is
the extension of the electromagnetic field into the cladding layers. Then for
an incident X-ray beam of wavelength λ and an angle of grazing incidence Φ2

onto the internal interfaces the mode excitation condition, i.e., the standing
wave condition, is given by

2Deff sin(Φ2) = λ. (6.2)

The optimum cover layer thickness cannot be explained in the present
simple model. It needs to be derived from the rigorous calculation of the field
progression through the layer system, which can be done with the recursive
technique presented by Parratt [32]. For the purpose of the present discussion
it is sufficient to know that we always find d1 < d2 and d1 < 10 nm. In general,
thicker cores need thinner cover layers, which, however, need to be increased
towards higher photon energies, i.e., shorter wavelengths.
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We are using here the approximations sin(Φ) ≈ Φ ≈ tan(Φ) and cos (Φ) ≈
1 − 0.5Φ2 as all angles are small. The critical angle for total reflection in air
at a mirror made of material “i” is then given as

θc,i =
√

2δi. (6.3)

The guiding condition from above can then also be written as θc,2 < θc,1 =
θc,3 and the refraction at the interfaces will lead to

Φ0 =
√

Φ2
2 + θ2c,2. (6.4)

Finally, we find θc,1 > Φ0 > θc,2. In other words, for RBC the incident
wave field is tunneling through the cover layer.

The limiting case for efficient RBC is when Φ0 is only slightly smaller
than the critical angle of the cladding layer material Φ0 < θc,1. Then, only
one guided mode will be excited in the waveguide. Its thickness, i.e., the
minimum thickness for efficient beam coupling Dmin, can be obtained by use
of (6.2.) and (6.4):

Dmin >
λ

2
1√

θ2c,1 − θ2c,2

=
1
2

1√
2δ1
λ2 − 2δ2

λ2

. (6.5)

Here we will always put lighter cores between heavier cladding layers for
which we can assume δ1  δ2. Then (6.5) reduces to

Dmin >
λ

2
√

2δ1
. (6.6)

In the X-ray range (E > 4 keV) away from the absorption edges δ varies
approximately with λ2. Thus Dmin is essentially independent of the wave-
length and depends only on the cover material chosen. The latter will be a
heavier material or metal. In this latter group Dmin varies very little and is
about Dmin = 10 nm. This number and (6.6) are also derived by Bergemann
et al. [11] in the rigorous treatment of the minimum spot size obtainable in
a tapered double plate X-ray waveguide [33]. The number Dmin = 10 nm
is in agreement with the experimental results of Pfeiffer [34], who could
still identify a weak exiting beam in a single-mode Ni/C waveguide with
d1 +d2 = (4.1 nm)+(10.1 nm) = 14.2 nm. Because of the RBC this waveguide
provided still six times more output flux [12,34] than a hypothetical aperture
with d = 10.1 nm. Bergemann et al. [11] argued that this beam size of 10 nm
is the ultimate limit to which an X-ray beam can be focused by diffraction.
However, other authors later showed that it is not the ultimate limit for X-ray
microspots [35–37].

Lengeler et al. [38] introduced the effective aperture as a means of
objectively comparing focusing components. It is defined as the component



96 S. Lagomarsino et al.

transmission function, t(y), integrated over its geometrical aperture
{y1, y2}:

Aeff =
∫ y2

y1

t(y) dy (6.7)

The result is the size of an aperture that will provide the same output
photon flux [38] as a given optical component behind its geometric aperture
Ageo = y2 − y1. Obviously t(y) = 1 leads to Aeff = Ageo, while absorbing
systems have Aeff < Ageo.

For the present geometry it is more convenient to discuss the effective
footprint size, leff , in the reference frame of the waveguide. A ray that impinges
onto the waveguide at a distance l upstream of the waveguide exit has a
vertical distance from the waveguide exit of y = Φ0l. Then we can write

Aeff = Φ0leff = Φ0

∫ l1=0

l2=−∞
t(l)dl. (6.8)

Along the footprint the guided wave will be attenuated because of absorp-
tion and because of intensity losses in the reflection processes at the two
interfaces (1–2) and (2–3). In a symmetric waveguide the interface reflectivity
is R1,2 = R2,3 = R. R is calculated from R = R̃1,2R̃

∗
1,2, where the superscript

“∗” denotes the complex conjugate and the coefficients R̃1,2 are given by [39]

R̃1,2 =
√

Φ2
0−2δ1+i2β1−

√
Φ2

0−2δ2+i2β2√
Φ2

0−2δ1+i2β1+
√

Φ2
0−2δ2+i2β2

. For N reflection processes this yields

t(l) = e−| l
L |RN . Here L is the attenuation length of the core material, which

is tabulated [29, 30]. We will substitute the integer N with a continuously
varying number N(l) =

∣∣ l
Δl

∣∣, where Δl ≈ Deff
Φ2

is the inter-bounce distance in
the direction of the beam footprint. In efficient waveguides the reflectivity will
be only slightly smaller than 1, so that we can introduce the reflectivity decre-
ment, ΔR, and write R = 1−ΔR. This allows us to rewrite RN(l) = e−| l

Δl |ΔR,
leading to the exponentially decaying transmission function t(l)

t(l) = e−|l|(
1
L +ΔR

Δl ). (6.9)

The effective aperture is then

Aeff = Φ0

∫ l1=0

l2=−∞
t(l) dl =

Φ0

1
L + ΔR

Δl

. (6.10)

It is straightforward to extend this discussion to two-dimensional waveg-
uides, i.e., to rectangular channels, the shape that Pfeiffer et al. [9] used in
their prototype for the beam confinement in two dimensions. In this case the
guided modes also bounce between the horizontal interfaces and are thus sub-
ject to additional reflectivity losses. Therefore, the transmission function from
(6.9) needs to receive an additional reflectivity term
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t(l) = e−|l|
(

1
L +ΔRv

Δlv
+

ΔRh
Δlh

)
(6.11)

and we have to distinguish between vertical (v) and horizontal (h) bounces.
The indices v and h need now to be added also to Φ0, Φ2 and Deff .

Even though the transmission function t(l) for the waveguide in (6.9) is
not a symmetric function, we will assign a FWHM to it. For a Gaussian trans-
mission function the FWHM, at whose borders the transmission is reduced
to half of its maximum value, contains 76% of the ultimately transmittable
flux. The same 76% will be used to define the FWHM aperture AFWHM of
the waveguide. Then, we have

AFWHM = 1.43Aeff. (6.12)

With the result from (6.12) we can calculate the angular acceptance of
the waveguide by use of (6.1) and we can check its matching to the given
experimental conditions.

We will now do this for the successful combination of materials Mo/Be
and Cr/C [7]. The first combination is actually found to be the optimum
choice for a photon energy of 13 keV by use of a genetic algorithm [40],
which, however, does not take into account any matching between the angu-
lar acceptances of waveguides and the beam divergence in the experimental
setup. Our model uses approximations valid only for light layers sandwiched
between heavier layers and can thus not be used for the calculation of waveg-
uides in light materials like C/Be/C, which was prepared and tested by
Kovalenko and Chernov [41], or for layer systems produced in carbon of
different density [42].

Figure 6.2 presents the FWHM spatial acceptances as calculated by
using (6.12) depending on the effective resonator thickness for several pho-
ton energies. The apertures level off at larger resonator thicknesses and do
not exceed values on the order of 10–30 μm for all photon energies. On
the other hand, towards smaller resonator thickness the apertures decrease
rapidly. Obviously these small apertures can always be filled by any radia-
tion beam.

The calculations with exchanged core layers in the comparison at 13 keV
photon energy indicates that the spatial acceptance is dominated at smaller
effective thicknesses by reflection losses, which depend more on the cover than
on the core material, while at larger Deff it is dominated by the absorption in
the guiding materials. In fact, in the latter case the aperture is simply given
by AFWHM,max = 1.43 θc,2L, which is essentially constant, i.e., is independent
of the core layer thickness.

At this point it is still too early to discuss the preferable material combi-
nations. In fact, we first need to inspect the angular acceptances of the same
waveguide combinations. This is done by use of (6.1), and the results are
presented in Fig. 6.3.

For the further discussion we first have to recognize that at state-of-the-art
high brightness synchrotron radiation sources the angular spread of unfocused
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Fig. 6.2. FWHM spatial acceptances depending on effective guiding layer thickness
for different photon energies and for X-ray waveguides in Cr/C (dotted line) and in
Mo/Be (solid line). At 13 keV photon energy (top right) the calculations for inter-
changed materials, i.e., for Cr/Be (dash-dotted line) and for Mo/C (dashed line), are
presented (reprinted with permission from [14])

radiation is mostly smaller than γ = 2 μrad. Compared to this number the
angular acceptances of waveguides with smaller guiding layer thicknesses,Deff ,
are inconveniently large with numbers that even exceed 100 μrad or about 50
times the available beam divergence. In this case, we cannot efficiently fill
these angular acceptances of waveguides, which provide the more interesting
smaller beam sizes for microbeam experiments. As a consequence the output
photon flux is then smaller than the spatially coherent part of the incident
radiation. The divergence matching is not much of a problem for larger res-
onator thickness and for higher photon energies. Here we mostly overfill the
angular acceptance, and thus we expect the output flux to be identical to the
spatially coherent content of the incident beam. From (6.1) we see that this
spatially coherent contribution decreases towards shorter wavelengths, i.e.,
towards higher photon energies. Nevertheless, easy-to-produce X-ray waveg-
uides could become the object of choice in this range, where submicron focii
are not so easily obtained by use of other microscopy objectives. For the choice
of the best resonator thickness we will now also look at the required resonator
length, i.e., to the footprint size. This is approximately given by

lFWHM,max = 1.43L. (6.13)



6 Theoretical Analysis of X-Ray Waveguides 99

E = 13 keV

1

10

100
Δφ

fw
h

m
 [μ

ra
d

]
Δφ

fw
h

m
 [μ

ra
d

]
E = 8 keV

1

10

100

Deff [nm] Deff [nm]

E = 20 keV

20 50 100 200

E = 50 keV

 Cr / C
 Mo / Be

20 50 100 200

Fig. 6.3. Angular acceptances of the X-ray waveguides in Cr/C (dotted line) and
in Mo/Be (solid line) depending on the effective guiding layer thickness for different
photon energies (reprinted with permission from [14])

The related data for some lighter materials for the core layer, i.e., for the
materials discussed here, beryllium (Be) and carbon (C) and for PMMA (poly-
methylmethacrylate, which is C5H8O2 with density 1.19 g cm−3) are shown
in Fig. 6.4.

We see that the mirror lengths remain below about 60mm. Neverthe-
less, such objects could be expensive as the tolerance for their flatness and
an eventually remaining surface waviness need to be smaller than the angu-
lar acceptance. Variations in the tangents to the surface along the footprint
on the order of or smaller than 1 μrad push the capabilities of quality con-
trol instrumentation based on lasers. With this in mind, carbon core layers
offer some advantages if we are interested in higher photon energies. In that
case, the divergence matching condition is achieved at relatively small res-
onator thickness below 100nm (for E > 20 keV). Under these conditions,
the surface finish required for the substrate is slightly less demanding. More
important is the fact that the substrate can be short with a length of the
order of 25mm. To make good use of the relatively higher coherent content in
the incident radiation towards smaller photon energies and in thinner waveg-
uides, it is necessary to adjust the phase space volume for spatially coherent
radiation by increasing the beam divergence with other prefocusing optical
elements. For two-dimensional waveguides we have to be more careful in the
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Fig. 6.4. Maximum FWHM footprint size for waveguides with different low Z cores
(reprinted with permission from [14])

optimization and the matching to the experimental conditions. Although the
mode excitation conditions for both directions are independent, the calcu-
lation of the effective travel length needs to take into account all reflection
processes. Then, if we want to obtain smaller resonator thicknesses, the smaller
of the two dimensions may actually limit the traveling length and thus the
correlated effective aperture and angular acceptance.

Up to now we have ignored the spectral bandwidth of the incident radi-
ation. This was possible because the waveguide angular acceptance is found
to lead to a spectral acceptance, which is much larger than the bandwidth
of crystal monochromators, if operated at synchrotron radiation sources. All
reported feasibility studies for the practical application of X-ray waveguides
have been made in this combination. However, we have to recognize that the
photon flux could be increased if we could afford to worsen the bandwidth of
the probing radiation for the experiment.

6.3 Front Coupling Waveguide
with Preliminary Reflection

In this section we consider the theoretical investigation of the mode transmis-
sion for air-gap FC X-ray waveguides with preliminary reflection (Fig. 6.1c)
using both an analytical and a numerical solution approach. The computer
simulations were carried out using a computer code based on finite difference
scheme solutions of parabolic wave equations [43]. For the incident radiation
both synchrotron radiation sources and table-top laboratory sources have been
simulated.
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6.3.1 Plane Wave Incoming Radiation

We based our analysis of the mode structure inside and outside the planar
waveguide on the numerical solution of the parabolic wave equations

2ik ∂U/∂x+ ∂2U/∂y2 = 0, in vacuum

2ik ∂U/∂x+ ∂2U/∂y2 + k2(ε− 1)U = 0, inside WG
(6.14)

E(x, y) = U(x, y) exp(ikx), (6.15)

where U(x, y) is the complex amplitude of the electric field E(x, y) which
changes slowly along the optical axis 0X. ε is the dielectric constant of the
materials, and as usual the refractive index n = ε1/2 = (1 − δ − iβ) and
k = 2π/λ is the wavevector. As before, x is parallel to interfaces in the plane
of incidence, y is perpendicular to guiding layer, and z is parallel to it. It is
assumed that the dimensions along z are much higher than along y; therefore,
the field can be considered constant along z (planar waveguide).

Because of the high brilliance and of the large distance between source
and WG, synchrotron radiation is well approximated, in general, by a plane
wave. In the pre-reflection geometry the plane wave with grazing incidence
angle θm is totally reflected just in front of the WG entrance, giving rise to a
standing wave above the reflecting surface with the periodicity corresponding
to a resonance mode. θm corresponds to the resonance mode condition

tan
[
k sin θm d− (m− 1)π

2

]
=
√

cos2 θm − cos2 θc
sin θm

, (6.16)

where d is the width of the vacuum gap between the two cladding layers, m
is the mode number; θc is the critical angle for total reflection.

Equation (6.16) is equivalent to (6.2), but takes into account in a quan-
titative way the penetration of the electromagnetic waves into the cladding
layers.

Simulations presented in Fig. 6.5a refer to first resonance from a WG with
Pt cladding layers and gap of 100nm at λ ≈ 0.154 nm. The spatial intensity
distribution in front, inside and after the WG is shown. Figure 6.5b shows in
more detail the comparison for the same WG between the simulation result
of the intensity distribution perpendicular to the WG length (bold lines) and
the analytical formulation (empty circles) of the solution Um of (6.15) for the
mode m, given by [26]

Um(y) =

⎧⎪⎨
⎪⎩

exp (δmy)
cos (κmy) + (δm/κm) sin (κmy)
[cos (κmd) + (δm/κm) sin (κmd)] exp [−δm (y − d)]

y < 0
0 ≤ y ≤ d
y > d

,

(6.17)

where κm = k sin θm and δm =
[
(1− ε)k2 − κ2

m

]1/2

.
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Fig. 6.5. (a) Intensity distribution in monomodal regime for the first mode in
front of and along a front coupling WG, (b) Intensity profile along 0Y of the same
waveguide calculated with computer code (full line) and with (6.17) (open circles)

The distribution of intensity for the first mode in free space close to the WG
exit coincides with the diffraction pattern of a confined wave with amplitude
given by (6.17) by a slit with size d corresponding to the WG gap. In the near
field zone, i.e., Δx < xdif ∼ d2/4λ = 1.6 × 104 nm, where Δx is the distance
from the WG end, the beam cross section is practically constant (∼d). At
Δx = xdif it is possible to note a focusing effect (see Fig. 6.7a) with a clear
narrowing of the cross section. In the far field zone x > xdif the beam diverges
with the divergence ≈λ/d.

6.3.2 Radiation from an Incoherent Source at Short Distance

As mentioned before, the WG accepts and transmits the coherent part of
radiation. WGs are used mostly with synchrotron radiation sources, but it
has been demonstrated that they can provide useful intensity also with table-
top laboratory sources [15,44]. For the latter we have to investigate the effect
of the illumination of the waveguide entrance with spatially incoherent radi-
ation on the properties of the exiting beam. This may enable us to derive
the geometrical condition for optimized coupling. For excitation of indepen-
dent modes in the front coupling waveguide the next condition, based on the
definition of the transverse coherence length, Lc, should be fulfilled:

2d ≤ Lc = λX/s, (6.18)

whereX is the distance between source and waveguide, d is the thickness of the
guiding layer, 2d is the spatial acceptance of the waveguide, s is the size of the
source, and λ is the wavelength of the incoming radiation. If the equality sign
holds in (6.18), the distance X can be considered as Xmin, the minimum dis-
tance for coherent illumination. If d = 100 nm, s = 15 μm, and λ = 0.154 nm
then Xmin = 20 mm. An incoherent source of radiation in computer code
is considered as a set of N radiators with random initial phases distributed
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Fig. 6.6. Intensity distribution in front of and inside a WG illuminated by an
extended source. Case (a) is for a distance Xmin = 20 mm, which corresponds to
the lower limit for spatially coherent illumination for a gap d = 100 nm, a source
size s = 15 μm, and λ = 0.154 nm (Pt cladding). In case (b) at X = 10mm the
illumination is spatially incoherent under the same conditions

within the interval [−π, π]. The elementary radiator gives rise to a spherical
wave with the origin positioned randomly within the source area s.

Figure 6.6a, b illustrates the intensity distribution calculated following the
code described above, in front and inside a planar WG with Pt cladding layer,
for a distance X = Xmin and Xmin/2, respectively. The gap was d = 100 nm,
the source size s = 15 μm, and λ = 0.154 nm. Figure 6.7a, b shows in more
detail the distribution at the exit of the WG, and Fig. 6.7c, d the cross-section
profiles just at the WG exit at a distance x = xdif for X = Xmin and X =
Xmin/2, respectively. As can be seen, for X = Xmin the WG can provide
a single mode coherent beam, whilst for X = Xmin/2 a clear mode mixing
takes place.

6.3.3 Material and Absorption Considerations

In the front coupling mode with an air or vacuum gap, absorption losses
are due only to the penetration of the tails of the intensity distribution into
the cladding material. Rigorous calculations should involve physical optical
considerations, but simple ray-tracing can give very good approximate values
for the estimation of absorption losses.

In the case of independent mode propagation, the variation of power along
the WG length X (θ << θc) is given by [45]

W (X) =W0RFr
N (θm) ≈W0 exp(− β

δ3/2

X

d
√

2
θ2m), (6.19)

W0 is the energy of radiation coupled by the waveguide, RFr is the Fresnel
coefficient of reflection for the vacuum–cladding layer boundary, N = Xθm/d
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Fig. 6.7. The intensity distribution in the vicinity of the exit of the waveguide
illuminated by an incoherent source located at the distance Xmin = 20mm (a) and
X = 10mm (b). The vertical intensity distribution just at the exit of the WG and at
a distance from the waveguide end corresponding to xdif for X = 20mm (c) and
X = 10mm (d) (see text)

is the number of reflections that the ray undergoes. The same function W (X)
can be calculated using the computer code. A very good correspondence is
found between the calculated Xabs according to (6.19) and the result of a
computer simulation based on the solution of parabolic wave equation.

6.4 Direct Front Coupling

When the incoming beam is directly coupled to the waveguide (see Fig. 6.1b),
the interaction of the beam with the cladding layers must be considered in
detail, especially if the cladding material for the photon energy considered
is weakly absorbing. This analysis, which reveals several interesting diffrac-
tion and refraction phenomena, substantially modify the wave field in the
waveguide. For a more complete treatment see [46].
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6.4.1 Diffraction from a Dielectric Corner

Let us have an S-polarized plane wave of wavelength λ = 0.1 nm incident
at right angles to the side of a planar hollow X-ray waveguide. The gap d is
limited by two cladding walls with refractive index n = ε1/2 = (1 − δ − iβ).
In the following, silicon is considered as the material constituting the walls.
At the given photon energies in this paper β << δ. We start by considering a
single dielectric corner (half of the waveguide in our case). In this case Kopylov
and Popov [47] have shown that the diffracted field U(x, y) can be expressed,
in the paraxial approximation, as

U(x, y) =

{
F (η) +M(η, ν), vacuum
(F (ν) +M(η, iν)) exp(−ν2), material

(6.20)

M(η, ν) = (πi)−1

∫ ∞−ia

−∞−ia

exp(−t2 − 2tη
√

i)/
√
t2 − ν2 dt

≈M1(x, y) +M2(x, y)

η = |y|
√
k/(2x), ν =

√
kx(β + iδ), k = 2π/λ,

where F (x, y) is the Fresnel integral and M(x, y) is a new special function
whose influence is more significant for weakly absorbing materials. In the
approximation of relatively large distances, x, from the WG entrance (x >>
1/(kθc2) with θc = (2δ)1/2 the critical angle for total reflection), the function
M(x, y) can be expressed asymptotically as a sum of two terms

M1(x, y) ≈
√

2x
πk

exp
(

i
ky2

2x
− i
π

4

)/√
θ2cx

2 − y2,

M2(x, y) ≈
√

2x
πk

exp
(

ik(θcy − θ
2
c

2
x) + i

π

4

)/√
θcx(θcx− y).

(6.21)

The first one,M1(x, y), is a correction to the Fresnel edge diffraction term
due to the material of the wall, and the second one, M2(x, y), represents a
lateral plane wave propagating in the wall material along the material–vacuum
interface 0X, with the enhanced phase velocity Vp = c/ε1/2 and entering into
the vacuum at the critical angle θc [47]. In (6.20) and (6.21), the origin of the
y coordinate is at the vacuum–wall interface.

The superposition of the direct and diffracted beams with the lateral wave
gives rise to an interference pattern of successive maxima and minima (see
Fig. 6.2 in [46]). Coordinates of maxima in the spatial intensity distribution
can be found from the condition for constructive interference of wave fields
described in (6.20) and (6.21). The comparison between the spatial distribu-
tion of intensity calculated analytically using the above equations, and the
result of a computer simulation based on the parabolic wave equation (PWE)
numerical solution [43], reveals a very good agreement between the two [46].
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6.4.2 Diffraction in a Dielectric FC Waveguide

We extended the same formalism to the analysis of the field at the entrance
aperture of the waveguide. In the following, the origin of the y coordinate is in
the middle of the gap d, and the cladding walls are at ±d/2. An approximate
solution in the far field zone (x > (d/2)2/λ) is the superposition of the field

Φ(x, y) ≈ Φ̃(kθ)exp
(−iπ/4 + ikθ2x/2

)
/
√
λx,

where Φ̃(kθ) ≈ d
[

sin(kθd/2)
kθd/2

+
cos(kθd/2)

(kd/2)
√
θc

2 − θ2

]
,

(6.22)

with two lateral plane waves,M2(x, y) (see (6.21)), entering into the vacuum
gap from the opposite boundaries y = ±d/2 of waveguide. In (6.22) θ = y/x.
The spatial spectral amplitude Φ̃(kθ) in (6.22) includes the sin function of
(kθd/2), corresponding to the Fraunhofer diffraction of a plane wave from a
thin slit and a correction term due to the material of the walls. The correction
term shifts the positions of the angular spectrum maxima towards smaller
angles. It is easy to show that the spectral amplitude Φ̃(kθ) in (6.22) is equal to

Φ̃(kθ) ≈
∫ +∞

−∞
ϕ(y)dy, where (6.23)

ϕ(y) =

{
cos(kθy), |y| < d/2
cos(kθd/2) exp[−kμ (|y| − d/2)] , else,

where μ = (θc2− θ2)1/2. For θ values equal to the waveguide resonance angles
θm, the function ϕ(θm) = ϕm corresponds exactly to the expression of guided
modes. Taking the orthogonal modes {ϕm} of the waveguide as a basis, the
projection of the field Φ(x, y) on the guided modes at distances x > xmin =
(d/2)2/λ is given by [26]

Φ(x, y) =
∑m=mmax

m=0
cm(θm)ϕm(y), (6.24)

where the coefficients cm are given by

cm(θm) = ‖ϕm‖−1
∫ +∞

−∞
ϕm(y)dy. (6.25)

θm are the resonance angles, μm ≈ (θc2− θm2)1/2, and mmax is the maximum
number of allowed resonance modes. Taking into account the propagation
factor exp(−iχmx) for each mode, where in the parabolic approximation
(θ << θc)χm ≈ θ2m[k/2 − i(β/δ3/2)/(21/2d)] [45], the wave field Φ(x, y) at
any point of the waveguide is given by

Φ(x, y) =
∑m=mmax

m=0
cm(θm)ϕm(y) exp(−iχmx). (6.26)
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Fig. 6.8. Total field in a waveguide with Si walls and a 30 nm gap (wavelength
= 0.1 nm) with a plane wave at the entrance: (a) analytical solution; (b) com-
puter simulation; (c) computer simulation, with a step function field (U = 1 in the
gap, 0 elsewhere) at the entrance (from Bukreeva et al. [46] with permission of the
publisher)

The total field U(x, y) is therefore given by the superposition of prop-
agating modes (6.26) and function, which represents a sum of two lateral
waves M2(x, y) (see (6.21)) entering into the vacuum gap from the opposite
boundaries, y = ±d/2, of the waveguide

Ψ (x, y) ≈ d√
λx

exp
(
iπ/4− ikθ2cx

/
2
) cos (kθcy)

kθcd/2
exp (ikθcd/2) . (6.27)

In Fig. 6.8 the global intensity distribution in the vacuum guiding layer
for a 30-nm gap waveguide with Si walls and photon wavelength λ = 0.1 nm is
shown. The waveguide supports only one mode. Figure 6.8a depicts the ana-
lytical solution given by (6.26) and (6.27), and Fig. 6.8b represents the result
of the computer simulation based on the numerical solution of the parabolic
wave equation (6.14). The agreement is very good. Figure 6.8c shows the
intensity distribution when the field at the waveguide entrance is a step func-
tion (U(0, y) = 1 for y ∈ [−d/2, d/2] and U(0, y) = 0 elsewhere), and
therefore penetration through the cladding walls is excluded. Figures 6.8a–c
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shows that the interference of a guided mode with lateral waves introduces a
strong spatial modulation of the signal.

A more quantitative comparison, not shown here for reasons of space, gives
a very good agreement between the asymptotic solution and the computer
simulation for both the distribution of the intensity and of the phase of the
resulting field along the optical axis 0X (see Fig. 6.1).

The contribution of the field diffracted and refracted by the cladding walls
is not only related to the spatial modulation of the signal. Both analytical and
computer calculations show that the field penetrating into the waveguide from
the weakly absorbing cladding walls significantly increases (approximately
1.5 times) the electromagnetic power in the waveguide compared to the case
when the field at the waveguide entrance is a simple step function, thereby
eliminating penetration through the cladding walls. In Fig. 6.9 we report the
normalized integrated power within the WG gap as a function of propagation
distance x.

We have shown here that the calculation of the field in a hollow weakly
absorbing X-ray waveguide must take into account the interaction of the
incoming beam with the cladding material at the entrance of the waveguide.
The total field in the guiding vacuum layer can then be expressed as the super-
position of guided modes with nonuniform plane waves penetrating into the
guiding gap from the cladding walls at the critical angle of reflection, θc (lat-
eral waves). An analytical expression of the total field is given and compared

Fig. 6.9. The normalized value of the electromagnetic power integrated within the
vacuum gap vs. coordinate X calculated for a step-like entrance function (bottom
lines) and for the total field calculated following (6.25) and (6.26) (top lines). The
solid lines are the result of a computer simulation while the dashed lines are
the result of an analytical calculation (from Bukreeva et al. [46] with permission
of the publisher)
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with the results of a computer simulation based on the numerical solution of
the parabolic wave equation. The two independent approaches to the diffrac-
tion problem, the asymptotic analytical solution and a computer simulation,
demonstrate very good qualitative and quantitative agreement.

6.5 Conclusions

The analysis of the behavior of WGs in three different coupling geometries
has led us to some conclusions about their optimal use as a function of the
source characteristics. We have shown in Sect. 6.2 that the angular acceptance
of RBC WGs is by far larger than the beam divergence of most synchrotron
radiation beam lines, at least at photon energies below 50 keV and gap values
below 100 nm. On the other hand, the spatial acceptance is much smaller than
the full beam size at the distances typical of synchrotron radiation facilities.
Therefore, to maximize the total flux, a prefocusing optics with quite long
focal distance, providing an input beam for WG matched to its spatial and
angular acceptances, should be used. Similar considerations are valid for front
coupling WGs, but in this case the spatial acceptance is on the order of the
gap value, and the angular acceptance is larger than in the RBC case. There-
fore, focusing optics with a much shorter focal distance are best matched, as
demonstrated also from the experimental point of view in 2D WGs [9]. In any
case, irrespective of the coupling mode, the total available flux is limited by
the coherent flux, as expressed by (6.1). It is interesting to note that this is a
limit applicable to any kind of optics if the requirement of a coherent beam
holds. This is an interesting point to consider especially when designing optics
for coherent sources such as free electron lasers. The emerging field of coherent
diffractive imaging [48] is attracting great interest for its impressive potential
in the structural determination of nonperiodic objects with nanometer resolu-
tion. WGs, because of their characteristics, are ideally suited for this kind of
application. A first demonstration of the possibility to make coherent diffrac-
tive imaging experiments using the beam from a WG has been recently carried
out [49]. Another aspect to consider in regard to the best coupling mode is that
RBC cannot be used in the soft X-ray range, because of the strong absorp-
tion from the cover layer. Therefore, in this spectral region only FC (with or
without prereflection) must be used. In this case, it has been shown here that
careful considerations of all the refractive and diffractive effects resulting from
interaction of the incoming beam with the cladding must be taken into proper
account to predict the field distribution and the intensity inside the WG.
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Focusing Optics for Neutrons

F. Ott

Abstract. Neutrons beams are difficult to handle since the neutron is a neutral
particle with a very weak interaction with matter. In addition, neutron sources are
broad and isotropic, which makes it very challenging to provide high neutron fluxes
at sample positions in order to perform scattering experiments. Despite these prob-
lems techniques have been developed that allow high neutron fluxes to be brought
to the sample position, focused over small areas. The whole range of optical solu-
tions has been considered, namely refraction, reflection and diffraction. Progress in
the field of neutron optics has accelerated in the last decade and as a consequence
has provided major improvements for all types of neutron spectrometers and their
applications.

7.1 Introduction

In the past decade, the request for higher neutron flux at the sample posi-
tion has driven research for advanced focusing neutron optics. Three main
principles have guided the techniques of focusing neutrons:

• Refraction (refractive lenses or magnetic lenses)
• Reflection (focusing guides, reflective lenses, capillary optics)
• Diffraction (Fresnel zone plates)

We discuss and compare the performances of different focusing devices
based on these principles. Presently, on neutron scattering spectrometers, the
main request is for an illumination spot of the order of a few mm up to
10mm. Only in exceptional cases is submillimeter focusing requested. Neutron
spectrometers are usually rather large and focal lengths of several meters can
generally be accommodated. Focal lengths below 1m are also requested for
some applications.
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7.2 Characteristics of Neutron Beams

Neutrons are created in a uranium core and then moderated in a tank of
heavy water at 50◦C. Their energy is then of the order of 25meV. In a num-
ber of experiments, neutrons with lower energies are required and they must
be cooled down further to energies below 5 meV. This takes place in so-called
“cold sources.” This cold source is a metal canister containing about 20 l of
liquid hydrogen or deuterium (at 25K). This source has an isotropic emission,
and the neutrons are conducted to spectrometers using neutron guides con-
sisting of neutron reflecting walls. The cross section of the neutron tubes has
reached considerable dimensions, up to 100 cm2. The wavelength distribution
of the neutron spectrum is Maxwellian centered on the source temperature.
This corresponds to neutron wavelengths ranging from 0.2–2nm. The beam
divergence in the guides is given by the angle of total reflection of the guide
coatings. For nickel coatings it is equal to 0.1◦ Å

−1
. Typically form = 2 super-

mirror guides, the divergence is of the order of 0.2◦ Å
−1

.
There are fundamental differences in the phase space distribution between

(a) synchrotron X-ray beams, which are intrinsically small, and well col-
limated, (b) X-ray tubes in which the source is almost a point, but the
divergence is high and (c) neutron sources which are both large in size and
have a large divergence (Table 7.1).

If one puts in perspective what is expected from X-ray and neutron sources,
a comparison of typical values for the beam size and beam divergence shows
that, more or less, the neutron phase space is approximately 1,000 times less
dense than X-ray phase space. The ultimate aim in focal spots size is thus
also within this 1,000 scaling factor.

The wavelength spectrum of neutrons is quite limited compared to syn-
chrotron radiation, ranging typically from 0.5 up to 30 Å. The optical index
of neutrons is of the same order of magnitude as the optical index of X-rays
with the same wavelength. One advantage of neutrons is that their absorption
by matter is very small. This enables one to build devices which would not
be feasible for X-rays. Since the neutron flux is much lower than the photon
flux, one must avoid as much as possible neutron losses, and devices with a
very high efficiency are required (above 50%).

In order to maximize the number of available neutrons at the sample posi-
tion, one is usually ready to compromise on the phase-space distribution.

Table 7.1. (a) Point source with low divergence (synchrotron); (b) divergent point
source (X-ray tube); (c) divergent and extended source (neutrons)

Synchrotron X-ray tube Neutrons

Beam size 100 μm 100 μm 100 mm
Divergence 10 μrad 1 rad 10mrad (in guides)
Aimed spot 1 μm 100 μm 1mm
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A number of experiments require high resolution only in the scattering plane.
In the direction perpendicular to the scattering, a downgraded resolution can
often be accepted. In such a case, a spatially high beam is often vertically
focused on the sample position. This results in a divergent beam in the verti-
cal direction at the sample position. Going from a beam size of 100mm down
to 10mm typically increases the flux by a factor 10 and increases the vertical
divergence by a factor of 10.

Two possibilities can be considered to shape the phase space: reduce δx
at the expense of δθ (classical focusing on the sample); increase δx to reduce
δθ, this last solution is never considered on scattering experiments since it
would lead to nonpractical sample sizes, but it is being considered for new
geometries of neutron guides in order to increase the guide transmission over
long distances.

In the case of neutron focusing, a number of parameters affect the choice
of a specific focusing solution:

• What is the wavelength spectrum? Short or long wavelengths? Broad or
narrow wavelength spectrum?

• 1D or 2D focusing?
• Required focal length? It can range from 20mm up to 10m depending on

the application (e.g., neutron activation or small angle scattering)
• What is the size of the focal spot?
• Polarized/non polarized?

Depending on these characteristics, different solutions should be consid-
ered. In the following, we will present the different devices which have been
developed over the years to focus neutron beams. This field is presently evolv-
ing more rapidly than ever and a number of solutions are proposed which have
not been implemented yet on real spectrometers.

7.3 Passive Focusing: Collimating Focusing

On all neutron spectrometers, the neutron beams need to be shaped to fulfill
the requirements of the specific neutron scattering experiments. The beam
divergence needs to be tuned with respect to the required resolution. The
beam size needs to be tuned with respect to the sample size, in order to
minimize the background noise. Thus, one usually “passively” focuses and
collimates neutrons by taking advantage of the fact that the neutron beams
are large and divergent. Instead of changing the phase space distribution, one
simple reduces it. This is usually achieved by using so-called Soller collimators
(see Fig. 7.1a, b). These devices work in one dimension only and are among the
most frequently used neutron optical components. The collimating channels
are defined by absorbing gadolinium oxide on PETP foils (thickness 50 μm).
The device transmission is of the order of 90%.
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Fig. 7.1. (a) Principle of a Soller collimator; (b) Real 1D and radial collimators with
a beam cross section of several cm2; (c) Embossed aluminum foil (left); Honeycomb
collimator (right) [1]

sample

detector

Fig. 7.2. Converging multibeam collimation

More advanced geometries have been developed. In order to perform a
collimation in two dimensions, focusing honeycomb collimators have been
developed [1]. They are made of embossed aluminum foils (0.1mm thick)
in a hexagonal shape which are coated with Gd oxide. They are then stacked
together in order to form a honeycomb structure. The entire structure is 4m
long with channels of 7 mm at the entrance and 6mm at the exit.

Another efficient geometry is the geometry of focusing small angle neu-
tron scattering (SANS) spectrometers in which several well collimated neutron
beams are focused on the detector. Again, this setup takes advantage of the
fact that neutron beams are large and divergent. The principle was proposed
and implemented very early (Fig. 7.2) [2]. Such a setup is most efficient for
scattering at very small Q values which require very small collimations (pin-
holes Ø ∼ 1–2 mm). A simple pinhole geometry would provide a very small
flux. This geometry has been revived recently for two reasons: (a) the new
neutron guides are much bigger than earlier ones and this permits one to
significantly multiply the number of incoming channels, even for big pinhole
collimations ∼10–20 mm; (b) very high resolution SANS spectrometers are
required for new types of experiments. S. Désert at the Lab. Léon Brillouin
is developing a converging multibeam very small angle neutron scattering
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(VSANS) spectrometer which will use about 120 beams, multiplying the
luminosity of the spectrometer by an equivalent factor.

7.4 Crystal Focusing

7.4.1 Focusing Monochromator

The earliest active focusing technique was implemented by combining the
monochromatization process with the focusing. In typical neutron scattering
experiments such as powder diffraction or triple axis spectroscopy (TAS), the
sample size is of the order of 1 cm3. Usually, no resolution is required in the
direction perpendicular to the scattering plane. Thus, since the incoming beam
is very high (>100 mm), the crystal monochromator can be curved to diffract
most of the intensity onto the sample (Fig. 7.3a). Usually, the monochromator
is not curved but divided into a number of subelements which have a size of the
order of 10–20mm. In some situations where the measurement is not disturbed
by a significant divergence in the scattering plane, such as diffuse scattering
or TAS measurements, double focusing monochromators can be used.

Figure 7.3b shows an example of such a monochromator. In this case,
the curvature can be tuned with motorized movements. In the case of these
focusing monochromators, the focal spot is defined by the monochromator
crystal size (of the order of 1 cm2) and its mosaic (of the order of 0.5◦

∼10 mrad) which gives an extra broadening of the beam at the sample posi-
tion (1,000mm× 10 mrad = 10 mm). This technology is thus limited to focal
spots of the order of 20 × 20 mm2. The system is quite expensive but has
proven to be very efficient and reliable over the years. The limitation of the
focal spot size is determined by the finite mosaic and the size of the indi-
vidual monochromator crystals. This can be overcome with a more advanced
technology using bent perfect crystals.

(a) (b) 

samplesource

mono-
chromator

Fig. 7.3. (a) Focusing using a composite monochromator. Typically, the monochro-
mator elements are 10–20 mm in size. The total height – width of the monochromator
can be larger than 100 × 100 mm2. (b) Double focusing monochromator consisting
of 357 graphite crystals (total surface 1,428 cm2) (MACS, NIST) [3]
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Fig. 7.4. (a) Horizontal focusing by a curved crystal in real space; (b) momentum–
space representation of the diffraction by a bent crystal in the case 2δhθ >> Δω [4]

7.4.2 Bent Perfect Crystal Monochromators

Another possibility to focus neutrons consists in using elastically bent per-
fect crystals. The principle is described in Fig. 7.4 [4]. Bent perfect crystals
have no mosaic structure. Their angular reflection profile is rectangular with
a width given by simple geometrical factors: bending radius, thickness, and
length of the irradiated part of the crystal. One of the crucial advantages of
the silicon crystals is the absence of second-order contamination for the hkl-
odd reflections, which avoids the use of pyrolitic graphite or beryllium filters.
The use of such bent crystals is discussed in [5]. Even though perfect crystals
are used, which suggests that their use should be restricted to high-resolution
experiments, it is suggested that it can be a more efficient variant to com-
binations of mosaic crystals with Soller collimators. Such bent crystals have
been implemented on strain scanners and on TAS instruments [6, 7].

7.5 Refractive Optics

7.5.1 Solid-State Lenses

A straightforward way of focusing a beam consists in using refractive optics.

Neutron Optical Index

The optical index for neutrons is given by:

n = 1− λ
2

2π
ρb− λ

π
ρσa = 1− δ − iβ

where b is the coherent scattering length, ρ is the atomic density and σa is
the absorption cross section. δ is the real part of the optical index, β is the
imaginary part of the optical index corresponding to the absorption in the
material. Neutron optical indices are extremely small for thermal neutron
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Table 7.2. Comparison of the possible elements for refractive optics

Element δ (×10−6) β (×10−12) δ/β (a.u.) Comment

Be 150.0 7.31 20.5 Handling difficult
C 186.2 4.9 38 Diamond
Mg 36.8 21.5 1.7
Al 33.0 110 0.3
Si 33.0 68 0.5
Ni 149.8 3200 0.05 High absorption
Zr 48.9 63.1 0.8
Pb 49.4 44.9 1.1
Al2O3 90.4 85 1.1
MgF2 80.7 15.20 5.3
MgO 95.2 26.8 3.6 Not stable in air

wavelengths, δ∼ 10−6. Absorption is even smaller β∼ 10−11. So even if the
neutron refraction is very small at an interface, it is possible to multiply the
number of lenses while keeping a good transmission. The quality factor of a
material can be defined by the ratio δ/β, the ratio of the optical index to the
absorption. Table 7.2 summarizes the optical index and absorption of some
materials. Among single crystal oxide materials, Al2O3 (sapphire) and MgF2

have rather large optical indices. The absorption of MgF2 is very low and
thus this material appears much better than sapphire. Moreover, MgF2 is
used in UV optics which makes MgF2 lenses readily available as off-the-shelf
components. This is the reason why most of the devices developed until now
have used this material. Other materials present a very high potential for
refractive optics such as Be and diamond. However beryllium is difficult to
handle and machine, and thus Be refractive optics has been developed only
for the field of X-rays. Until recently, the use of diamond was limited for cost
and availability reasons. However, since 2005, commercial diamond lenses have
been made available by Diamond Materials Ltd [8]. Until now they have been
evaluated only in the field of X-rays.

Since the optical index is smaller than 1, converging neutron lenses are
concave. This is an advantage since the geometry of concave lenses reduces
the absorption in the middle of the lens.

Implementations

The first report of the use of a refractive lens on a neutron spectrometer was
by Gahler et al. [9] for the search for the neutron electric dipole moment.
But the first test of refractive lenses on a neutron scattering spectrometer was
performed 20 years later by Eskildsen et al. [10, 11] following the proposal
from Snigirev et al. [12] to use Compound Refractive Lenses (CRL) on hard
X-ray spectrometers. A CRL made of 30 MgF2 biconcave lenses was tested for
wavelengths ranging from 0.9 to 2 nm. The focal length of the device ranged
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Fig. 7.5. A set of 20 MgF2 lenses implemented on a SANS machine [10]

from 1 to 6m. Such a lens was implemented in a focusing SANS geometry
(see Fig. 7.5). The experimental results showed that gains in intensity above
15 could be achieved.

Besides focusing neutrons in SANS, it has also been proposed that refrac-
tive optics could be used to implement a neutron microscope [13].

Advantages-Drawbacks

The potential advantages of such systems are quite clear: the systems are
inexpensive (MgF2 lenses are available as standard optical components) and
very flexible (one simply needs to remove lenses to change the focal length as
a function of the wavelength).

However, a number of drawbacks have hampered the generalization of the
use of refractive lenses on neutron spectrometers.

The low-refractive optical index reduces the use of such optics to long
wavelengths (λ > 1 nm) and long focal lengths (several meters).

Neutron absorption in the optical elements is a second drawback. As soon
as one needs to handle large beams (>10 mm) which is the general situation on
neutron spectrometers, the transmission of the system decreases very quickly,
down to 10% for a beam diameter of 25mm. This is due to two reasons. On the
one hand, the thickness of the lens increases when one goes away of the cen-
tral optical axis. Attempts have been made to build Fresnel lenses [14, 15].
These attempts have not been successful since spurious refraction effects
appear and since the machining of the lenses strongly increases the diffuse
scattering. The second problem arises from the fact that experimentally, the
absorption is not defined by the intrinsic absorption of the material but more
by inelastic scattering in the material. This could be solved by cooling the
CRL to low temperatures, typically liquid nitrogen temperature. This would
of course cancel the ease of use of room temperature CRL setups.

Diffuse scattering is a major problem. The polish finish of MgF2 lenses
is well suited for visible light or UV light but is not yet good enough for
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very short wavelengths. Diffuse scattering at the interfaces is important and
strongly reduces the signal to noise ratio. This hampers the implementation
of such devices on SANS spectrometers. The use of single crystal materials is
also compulsory to avoid that the sample SANS signal is overwhelmed by the
signal from the optics system.

Another limitation is that these lenses are very chromatic, with a λ2

dependence. In the case of monochromatic spectrometers this is not a signifi-
cant issue, even though the wavelength resolution is typically 10%, since one
does not want to achieve ultimate spatial resolution on neutron spectrometers
except in the case of applications such as neutron microscopes. Chromaticity
is however a major problem for all the time-of-flight instrumentation which
cannot benefit from such optical systems.

Significant research is still required to achieve viable refractive optics sys-
tems, on materials (use of diamond?), on polishing techniques and on the
development of suitable cooling systems.

7.5.2 Magnetic Lenses

Neutrons carry a spin which leads to a large neutron-magnetic induc-
tion interaction. Thus, neutrons are deflected by magnetic field gradients
(Stern–Gerlach effect). The deflection force applied to a neutron is given
by Fx = ±μn· grad Bx, depending on the neutron polarization parallel
and antiparallel with respect to the direction of the magnetic field. In a
sextupole magnetic field, the equation of motion can be approximated by
d2r/dt2 =±ω2r, with ω2 =αG, α= |μ/m|=5.77 m2 s−2 T−1 and the sex-
tupole field |B|=(G/2)r2 [16]. Such a magnetic configuration acts as a
focusing lens for one of the neutron spin states (see Fig. 7.6).

The magnitude of the effect is not very large: it is of the order of the refrac-
tion through a solid lens. However, since it is proportional to λ2, it becomes
significant for long wavelengths. The key advantage of magnetic focusing is
that no material is put into the beam path. Hence, no diffuse scattering occurs.
Extra degrees of freedom are provided by the fact that the magnetic field can

Fig. 7.6. Hexapole magnetic lens. One of the spin states is focused; the other spin
state is defocused [17]
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be easily tuned or modulated in time. Of course, such a device requires polar-
ized neutron beams since one of the spin-states is focused while the other spin
state is defocused. This reduces the efficiency of such a device to a maximum
of 50% (unless one is interested in polarized neutrons).

A first sextupole magnet device was built by Shimizu et al. [17] using
permanent magnets to demonstrate the feasibility of such a lens (with G =
32,000T m−2). The intensity gain was 30 for λ = 14.4 Å. One of the limita-
tions was that the lens was very long (2m) and the inner diameter was limited
(9mm), thus only a small fraction of the beam could be used.

Subsequently, a 2 m long superconducting sextupole magnet (SSM) with an
aperture diameter of 46.8mm was developed [16]. The SSM consists of Nb/Ti
superconducting coils and achieves a field gradient of G=1.28×104 T m−2.
The focal length is of the order of 1.5m for λ = 13.5 Å neutrons. Demonstra-
tion experiments have been performed [18].

The latest developments in magnetic lenses consist in modulating the mag-
netic field in time so as to be able to focus white neutron beams and to be able
to implement such lenses on ToF spectrometers and spallation sources [19].

7.5.3 Reflective Optics

A number of different reflective optics systems have been proposed in the
past (Lobster eye, stacked layers. . .). In the last decade, the progress in thin
film deposition has made it possible to design neutron mirrors consisting of
thousands of layers which artificially increases the optical index by a factor
up to 6 compared to nickel. This opens up new possibilities in the field of
reflective optics since one is not limited anymore by the very small angle of
total reflection. Optical systems employing elliptical or parabolic shapes are
being designed, potentially providing tremendous increases in the neutron flux
at the sample position.

The field of reflective optics is the field in which the largest variety of
solutions have been designed and evaluated. This is mostly due to the fact
that the needs are very different from one spectrometer to the other and
different solutions must be designed to solve specific issues.

7.5.4 Base Elements

Neutron supermirrors are the base elements for the fabrication of most
reflective optics. Multilayer coatings allow one to increase the angle of total
reflection to value up to six times the critical angle of natural Ni coatings.
The critical angle of reflection can thus go up to 0.6◦ Å

−1
. The reflectivity of

neutron supermirrors is usually very high (up to R = 0.8) at the critical angle
of reflection. This is higher than what can be achieved for X-rays because the
absorption of neutrons is very low and makes possible to design supermirrors
with several thousand layers. Figure 7.7 illustrates the reflectivity of neutron
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Fig. 7.7. Neutron supermirrors available from Mirrotron Ltd.

Fig. 7.8. Flat tapered guide (2m long)

supermirrors available from Mirrotron Ltd. The reflectivity is close to 80%
at m = 4.

7.5.5 Focusing Guides (Tapered: Elliptic: Parabolic)

The easiest way to collect more neutrons from a large source consists in using
a flat tapered guide. Such devices are very simple to build since they use
standard flat supermirror substrates. Figure 7.8 shows a square tapered guide.
The size of the exit is reduced by a factor of two with respect to the entrance.
Thus, the flux density at the guide exit is multiplied by a factor of four at
the expense of an increased beam divergence. One drawback of such a device
is that the beam quickly expands after the exit of the guide, the more so as
the beam divergence is increased, and the sample must thus be positioned
very close to the guide exit to benefit from the flux increase. Such guides are
routinely implemented on neutron spectrometers.

More recently, guide profiles with more complex shapes, parabolic, or ellip-
tical, have been proposed. Such guides can be built at relatively low costs since
one is not aiming at sub-μm resolution. The mechanical tolerances are large,
and thus deviation from a perfect profile is not an issue.

It is possible to compare the different types of focusing guides in the most
usual situation where a neutron beam is available from a large straight guide.
Consider a beam which is 80mm high and which exits from a straight 2θc
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Fig. 7.9. Comparison of a tapered, elliptic, and parabolic guide to focus the exit
of a straight neutron guide. (a) The different focusing geometries, tapered, elliptic,
parabolic; (b) flux distribution at the sample position; (c) position/divergence plot

guide. The aim is to maximize the flux on a 1 cm2 sample. It corresponds to
the geometry of a focusing reflectometer.

The comparison between different solutions (Fig. 7.9) gives the following
results:

• Tapered guide: Total transmission = 68% (30% of the flux over 10mm)
• Parabolic guide: Total transmission = 81% (43%)
• Elliptical guide: Total transmission = 86% (52%)

The elliptical guide provides the most complex divergence distribution.
One must note that the improvement of the performances is only of the order
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of 70% as compared to the tapered guide. The parabolic guide would be most
efficient with a point source. The elliptical guide offers the highest flexibility.
The performance could be slightly improved if a closer position of the sample
was possible: 51% at 400mm, 71% at 100mm. This gain is negligible compared
to the accompanying constraints.

The previous situation applies to the case of a facility where the main
guides are already in place and where one wants to maximize the flux at the
sample position. However, in the case of the design of new spectrometers, the
entire beam delivery system should be optimized, including the primary guide.

7.5.6 Ballistic Guides: Neutron Beam Delivery
over Large Distances

In general, one wants to transfer as much neutron intensity from the cold (or
thermal) source to the sample position. Until recently, this was achieved by
using neutron guides (with a square section of the order of 100×50 mm2) which
were bringing the neutrons outside the reactor into an experimental hall where
the spectrometers are located. In the previous decade, the spectrometers were
optimized to make the best use of the flux in these guides. The trend in the
design of new spectrometers is to optimize the setup from the source to the
sample and specifically to optimize the guide geometry for the specific need of
the spectrometer. This assumes that each spectrometer has its own dedicated
guide. The space between the cold source and the spectrometer position is
very large (from 10m to several tens of meters). This makes possible the
implementation of complex optical systems.

The first optimization consists in increasing the amount of neutrons effec-
tively brought to the spectrometer. With the implementation of neutron
supermirror guides (with m=2 or m= 3), the flux at short wavelengths has
been significantly increased (Fig. 7.10). However, the problem is that, contrary
to nickel coatings, the reflectivity of supermirrors is of the order of 0.8. Thus

Fig. 7.10. Flux in a nickel guide and in a supermirror guide
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(a)

(b)

(c)

Fig. 7.11. Principle of a ballistic guide: (a) straight guide, (b) perfect ballistic
guide, (c) approximation of the ballistic guide

after five reflections, the transmission is reduced to 30%. This means that long
supermirror guides are inefficient, besides being expensive. For guides longer
than 30m, the losses outweigh the gains.

Recently, it has been proposed to implement so-called “ballistic guides”
[20]. The principle consists in first expanding the neutron beam so as to reduce
its divergence, let it travel a long distance, and eventually refocus it onto the
sample at the end of the free flight travel. This makes it possible to reduce
the number of reflections by getting closer to a parallel beam. Figure 7.11
illustrates this principle. If the source is small, the beam could be made par-
allel with a parabolic beam expander. In real life, the source is not so small.
The first implementation of such a ballistic guide was approximated by using
first a “tapered” section which mimics the parabolic expansion of the beam.
A straight nickel guide avoids losing the neutrons which are too divergent.
This section is quite efficient since the divergence of the beam is small. The
beam is then refocused onto the sample with a second tapered section. The
cost of such a guide is moderate since a simple nickel coating can be used over
most of the guide length.

The first implementation of such a system was done on the guide H113
at the ILL [21]. The initial section is 6 cm and is increased to 9 cm. The gain
in flux at the sample position was a factor of 4 for a guide length of 72m.
A detailed description of the characteristics of this guide has been published
in [22].

More recently, more complex shapes have been considered for neutron
guides. A detailed comparison of the different geometries (tapered, elliptic,
and parabolic) has been made [23]. It appears that an ellipse is by far the
best geometry which provides the highest neutron flux as well as the best flux
homogeneity at the exit. A thorough comparison with other systems has been
published [24].

Small scale parabolic guides consisting of four bent supermirrors have
recently been made and tested [25]. The entrance was 16 × 16 mm2, the exit
was 3.2×3.2 mm2. The focal spot achieved was 1 mm2. Better result, in terms



7 Focusing Optics for Neutrons 127

of the beam homogeneity and focal length, have since then been obtained by
using elliptical shapes.

7.5.7 Reflective Lenses

A large number of solutions have been devised to fabricate lenses based on
reflection.

Focusing Bender

Silicon is a very transparent material for neutrons. Thus by coating silicon
wafers with neutron supermirrors and stacking the substrates, it is possible
to build neutron channels with a large angular acceptance. By properly bend-
ing the stack, it is possible to focus the neutrons at a given position (see
Fig. 7.12). The principle is very similar to polycapillary systems except that
(a) it is possible to coat the inner part of the channel walls with supermirrors
(possibly polarizing) and thus to have a large angular acceptance and (b) the
transmission is close to 90% since Si is transparent. The drawbacks are (a) the
focalization is only one dimensional and (b) the focal spot increases quickly in
size because of the intrinsic divergence of the beam at the exit of the channel.

Lobster Eye Optics

A number of solutions have been proposed which are based on the princi-
ple of the so-called Lobster eye optics (Fig. 7.13) [26]. This principle seems
very appealing in theory. In practice, a number of difficulties have been

Fig. 7.12. Focusing bender (T. Krist, HMI)

source image

Fig. 7.13. Lobster eye optics [26]
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encountered. In the case of 2D lobster eye optics it is not possible at the
present time to coat the inside of the reflecting walls. On top of that, artifacts
appear because it is not possible to have an optimal geometry over the entire
lens surface. The size of the holes is fixed whereas in an optimal geometry it
should be variable. In the case of a one-dimensional lens, one gains an extra
degree of freedom in the design since it is possible to stack silicon wafers
which have high reflective coatings. The prototype built by Daymond and
Johnson [27] proved to be efficient but still suffered from artifacts, probably
due to defects in the stacking quality. A recent theoretical study [28] has pro-
posed an optimized geometry which could eventually be quite efficient. Such
one-dimensional lenses would be fairly compact, 20mm thick. Thus is would
be possible to use two of them in a Kirkpatrick–Baez arrangement: two lenses
in series turned at 90◦ to each other to perform a 2D focalization.

Toroidal Mirrors

The focusing SANS technique has been known for 50 years but until recently
it was limited by the quality of the mirrors which were too rough and led to
unacceptable diffuse scattering. Only recently, high quality mirrors have been
made available as a result of the needs of X-ray technology. The first tests of
such a mirror were performed at the ILL by Alefeld et al. [29]. The mirror
was 4 m long. The test was satisfactory since the height of the parasitic halo
(at σ from the focal spot center) was as low as 6× 10−5.

Later on, a USANS spectrometer (KWS3) was built at the FZ Jülich
[30,31]. The improvement over the previous design was that the length of the
mirror was much shorter, 1.2m instead of 4 m, to reduce the spherical aber-
rations. The mirror was set in a horizontal position to minimize gravity sag.
The focal spot was reduced to 1mm. The implementation of replica mirrors
to compensate for the use of a shorter mirror has, however, not been suc-
cessful yet because it has not been possible to produce replica mirrors with a
sufficiently high quality.

7.5.8 Capillary Optics

Capillary optics is a standard component for X-ray beams. Such components
are also available for neutrons [32, 33]. A specific section is dedicated to this
topic in “Capillary optics for X-rays and neutrons” by A. Bjeoumikhov et al.

One limitation at present is the low angle of reflection in the capillaries
since it is not possible to coat them with reflecting materials. The overall
transmission is limited but the focal spots can be very small. Such systems
are very efficient if the divergence of the beam and the background signal are
not a problem. Such devices are typically implemented for PGGA applications.
It has also been proposed to use such devices for crystallography [34].
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7.6 Diffractive Optics

Within this category one can find Fresnel lenses and gradient super-mirrors.
Recently, the progress in microfabrication has made it possible to build effi-
cient diffractive optics for thermal neutrons. The disadvantages of such optics
are that they are strongly chromatic and that they generate harmonics.

7.6.1 Fresnel Zone Plates

The principle of Fresnel zone plate is discussed in Sect. 7.9 “Volume effects
in zone plates” by G. Schenider et al. The use of Fresnel zone plates for
neutrons was demonstrated a long time ago by Kearney et al. [35] for focusing
2 nm neutrons. In the past decade, microfabrication techniques have made
tremendous progress and it is now possible to build FZPs which are suitable
for neutrons with wavelengths of the order of 0.5 nm [36].

To maximize the efficiency, one should design phase zone plates (Fig. 7.14).
In this case, the phase shifter must have a thickness of the order of a few μm
depending on the wavelength t = λ/2δ where δ is the optical index of the
phase shifter. Single crystal silicon wafers are the ideal substrate since they
are almost perfectly transparent to neutrons, and they are easy to handle. By
chance, nickel which is the material used for X-ray zone plates is also the most
suitable for neutrons since it has the highest optical index. The technology
transfer from X-rays to neutrons is thus rather easy. The maximum efficiency
for a nickel phase zone plates is of the order of 40%. It can be above 30% for
a wavelength band of the order of 4–6 Å.

Large aperture FZPs were fabricated by Altissimo et al. [36] with the
following characteristics: use of natural nickel, diameter 5 mm, thickness of
4.8 μm, outermost zone width of 0.4 μm. This corresponds to aspect ratios of
12 which are the highest achievable with the present technology. The focal
length of this device is given by: f [m] = 20.8/λ [Å]. This corresponds to a
focal length of 3.15m for λ = 6.6 Å. The theoretical efficiency was 0.28 at the
test wavelength. The experimental achieved efficiency was of the order of 0.15.

drn

rnr1

(a)

Fig. 7.14. (a) Geometry of a phase zone plate. (b) SEM image of the central zone.
(c) SEM picture of the outer most zones
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The geometry of a ZP is defined by the following relation:

fλ = δrnD

where f is the focal length, λ the neutron wavelength, δrN the outermost
zone width and D the ZP diameter. The microfabrication techniques impose
constraints on the minimum value of δrN . We have seen that the phase shifter
needs to be relatively thick for cold neutrons and that this leads to very high
aspect ratios. In this case, δrN is limited to 0.5 μm.

This technological limitation gives rise to a practical limitation in the FZP
diameter. For δrN = 0.4 μm, λ = 5 Å, f = 4 m, the diameter is limited to
5mm. This limitation is very problematic since neutron beams are usually
much larger.

Another drawback is that the efficiency is intrinsically limited and thus a
large part of the neutron flux is not focused and gives rise to background noise
which can be unacceptable in a number of applications, SANS for example.
The problem is that the device is chromatic making it unsuitable for ToF
applications.

Potential advantages however are that the device is extremely compact
and nonabsorbing, very small focal spot sizes (∼μms) can be achieved without
effort. With the progress in microfabrication techniques, it is likely that we
will eventually see practical devices produced in the next decade.

Since the most severe limitation is the intrinsic size of an individual FZP,
arrays of small size FZP (D∼ 0.3 mm) have been considered (Fig. 7.15). In
this case the fabrication process is easy since small FZPs are much easier to
fabricate than large ones. It has been proposed that such arrays could be used
to perform ultrahigh-resolution imaging. Presently, neutron imaging is limited
by the resolution of the neutron detectors (∼50 μm for CCD cameras). The
idea is to scan a highly focused neutron spot (D∼ 10 μm) inside an object. Of
course, if one would scan the full object with a single spot, this would be too
time consuming. The idea is to scan in parallel 1,000 spots in the object while
measuring the absorption of these spots within the object using a regular

Object
to image

High resolution
detector

XYZ stage

ZP matrix

Collimated
Incoming beam

Fig. 7.15. An individual FZP in a 30 × 30 matrix (left); high resolution imaging
using a matrix of FZP (right)
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CCD camera (see Fig. 7.15). The interaction with the object is weak but the
CCD camera resolution is good enough to discriminate the signals from the
different spots. The spots are scanned across the object and the total image
is then reconstructed by adding the different images.

7.6.2 Gradient Supermirrors: Goebel Mirrors

Gradient supermirrors have never been built for neutrons for two reasons.
First, the neutron source is extended (in contrast to an X-ray tube) and thus
the efficiency of a Goebel mirror is limited. Second, since it is possible to
produce very efficient neutron supermirrors, one should implement parabolic
supermirrors which are far less sensitive to the source extension since there is
no angular diffraction condition.

7.7 Modeling Programs

A number of Monte Carlo modeling programs are freely available [37]:
McSTAS, Vitess, ResTrax, NISP. All of them offer possibilities for modeling
more or less complex optical elements, usually reflective optics. However, none
of them handles refractive lenses, magnetic lenses or diffractive optics (FZP).

7.8 Merit of the Different Focusing Techniques

It is impossible to define a general figure of merit for a particular neutron
focusing optics. The types of neutron spectrometers are so numerous that
each technique requires its own specific optics. The relevant parameters are:

• The sample size, ranging from 10mm for TAS down to 100 μm for single
crystal diffraction.

• The focal length, ranging from 1 m for diffraction to 10m for SANS.
• The dimensionality: focusing in one direction (diffraction-reflectivity) or

2D (SANS).
• The wavelength band: focusing a white beam (time of flight) or a short

wavelength band (monochromatic spectrometer).

Different types of optics should be considered for each specific need. Never-
theless, it is possible to define some of the relevant parameters for a number
of focusing techniques.

Another point that should be emphasized is that since neutron beams are
very large and divergent, two possibilities exist: either use the large beam size
and define a proper divergence for each φ(r) (multiple focusing collimation
technique for SANS) or use the large divergence of a point source and refocus
it as a point source. With reflective optics, it is possible to combine both
aspects since it can accommodate a large incoming beam.
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The focal lengths of these different devices are given by:

• r/2 for spherical or elliptical optics where r is the radius of curvature
• πr/λ2 ρb for refractive optics
• δrN/λD for Fresnel zone plates

Table 7.3 summarizes some of the principal types of focusing optics which
exist at the moment. Presently, the most versatile type of optics is reflective
focusing since it can be used for large guides down to microguides. A limi-
tation is however the diffuse scattering which can hamper some experiments
(typically SANS).

Chromatic optics is not suitable for ToF spectrometers. This is a problem
in the case of the new generation of neutron sources based on the spallation
principle (SNS in the USA, JPARC in Japan and possibly ESS in Europe)
which are coming online. They require to operate in the Time of Flight mode.

Overall, focusing monochromators are the best solution for thermal neu-
trons and small bandwidth applications. For longer wavelengths and large
bandwidth, reflective optics is the optimal and most flexible solution.

It should be pointed out that in the case of neutron scattering, the sample
environments can be rather complex: low temperatures (∼1 K), high temper-
ature (∼1,000◦ C), high magnetic fields (∼10 T), high pressures (∼500 Gpa).
Thus, a minimal distance between the optics and the sample usually exists
which prevents the use of some optics.

7.9 Possible Applications of Neutron Focusing
and Conclusion

We quickly summarize the different applications where proper focusing can or
has strongly enhanced the performance of neutron spectrometers:

• Focusing SANS: the gains can reach up to 100 for VSANS. Focusing also
reduces the minimum measurable scattering vector and increases the neu-
tron intensity on the sample. Several solutions are already in operation:
toroidal mirrors (KWS3 at FRM2 Münich), multibeam collimation (TPA
at LLB Saclay, V16 at HMI Berlin).

• Focusing monochromators: gains of 10–50; implemented on most TAS and
on strain scanning machines.

• Reflectivity on small samples: Focusing of large beams (>100 mm) onto
small samples (10mm) using tapered guides. Gains higher than 10 are
routinely achieved without loss of resolution (PRISM at the LLB Saclay,
D17 at the ILL Grenoble).

• Powder diffraction on very small samples (1 mm3 ): Use of focusing guides
(MICRO at the LLB Saclay). Elliptic focusing guides have also been
successfully tested at FRM2 Münich.
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• Single crystal diffraction on ultra small samples: Use of tapered focusing
guides (SXD at ISIS Oxford).

We can see that all the fields of neutron scattering can benefit from focus-
ing techniques. All the gains in flux which have been achieved, often by orders
of magnitude, have enabled neutron scattering methods to progress signif-
icantly over the recent decades even though the intrinsic luminosity of the
sources has only marginally improved. Work in optical and focusing tech-
niques is one of the best investments that can be made to improve neutron
spectrometers. In the next decade a further increase of at least one order of
magnitude in luminosity can be expected.
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Volume Effects in Zone Plates

G. Schneider, S. Rehbein, and S. Werner

Abstract. Fresnel zone plates are key optical elements for nano-focusing of soft
X-rays and multi-keV radiation. Their diffraction properties are dominated by high
aspect ratio phase shifting nanostructures. The three-dimensional shape of high
resolution zone structures and their volume diffraction effects are described by elec-
trodynamic theory. In this review, volume diffraction zone plates are analyzed in
different orders of diffraction, taking into account different possible imperfections.
An efficient way towards sub-10 nm focusing based on stacked volume zone plates is
proposed.

8.1 Introduction

All modern high-resolution X-ray microscopes (TXMs) and scanning trans-
mission X-ray microscopes (STXMs) use zone plates as imaging or focusing
X-ray optical elements [1, 2]. Therefore, the diffraction properties of zone
plates are of particular importance for high-resolution X-ray microscopy. The
progress in spatial resolution of the X-ray microscopes depends mainly on
the resolving power and the diffraction efficiency – defined as the fraction
of the incident intensity diffracted into one selected diffraction order m –
of these X-ray optics. Increasing the spatial resolution obtainable with zone
plates means increasing their numerical aperture (NA). Because zone plates
are made of concentric circular zones with radially increasing line density (see
Fig. 8.1, frontal view), their maximum possible diffraction angle depends on
the outermost zone width. By comparison, the diffraction angle φ realized by
a transmission grating depends on the grating period Λ, the wavelength λ,
and the diffraction order m:

sinφ = mλ/Λ. (8.1)

For constant wavelength and diffraction order, the diffraction angle can be
increased by employing only smaller grating periods or in the case of zone
plates by smaller zones. According to the Rayleigh criterion the point-to-point
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1r

drN
rN

outermost zone width zone height

frontal view side view

Fig. 8.1. Zone plate geometry in the front and side view showing the increasing
line density and aspect-ratio of the zone structures within the radius

resolution, δ, obtainable with an objective is for incoherent imaging conditions
given by

δ = 0.61λ/NA. (8.2)

For illumination with a plane-wave traveling parallel to the optical axis, the
numerical aperture of a zone plate is equal to the sine of the grating diffraction
angle given by (8.1). Introducing (8.1) into (8.2) and replacing the grating
period Λ by the outermost zone period 2 drN of the zone plate leads to

δ = 1.22 drN /m ≈ drN /m. (8.3)

For this reason the spatial resolution achievable in all X-ray microscopes with
zone plates as X-ray objectives is directly correlated with the outermost zone
width. The spatial resolution obtainable with zone plates can be improved
only by manufacturing smaller zone widths or by using higher orders for X-ray
imaging, which will be analyzed by electrodynamic theory in this chapter.

Another important parameter of zone plates is the diffraction efficiency,
because the dose and photon density for object illumination scales inversely
with the diffraction efficiency. For X-rays the complex refractive indices of
matter are slightly different from unity; therefore, absorption and phase shift
occur and lead to a certain zone height for an optimal diffraction efficiency.
Combining this optimal zone height with an ever higher resolving power means
increasing the so-called aspect-ratio – the ratio of the zone height to the zone
width – of the zone structures. Earlier, investigations of zone plate diffrac-
tion used a geometrical optical approach, which neglects the expansion of
the zone structures along the direction of the optical axis [3]. More accurate
dynamical calculations of the diffraction of zone plates with high aspect-ratios
were performed using coupled-wave theory [4]. In these calculations an ideally
smooth rectangular profile of the zones with lines and spaces of equal width
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was assumed. Furthermore, only the first-order diffraction was analyzed. The
aim of this chapter is to extend the theoretical description of zone plates in
order to describe their diffraction properties for arbitrarily shaped zone pro-
files with high aspect-ratios and also to describe the diffraction properties
of high orders for use in X-ray imaging. For this purpose an electrodynamic
theory – the coupled-wave theory – is applied, which allows one the quanti-
tative study, under more realistic conditions, of how sensitive the diffraction
efficiency of zone plate structures is to parameters such as the aspect-ratio,
the deviations of the zone profile from the rectangular shape, the interdiffu-
sion of zone material, and the zone roughness in the direction of the optical
axis. Furthermore, it will be concluded from these theoretical investigations
which materials are suited for zone plates and which deviations from the ideal
rectangular zone profile can be tolerated with respect to optimal diffraction
efficiency and high resolving power.

8.2 Transmission Zone Plate Objectives

Zone plates as focusing diffractive optical elements were invented by Lord
Rayleigh and independently by Soret about 120 years ago [5]. The geometry
for X-ray imaging with zone plates, which is used in this chapter for calculating
their diffraction properties, is shown in Fig. 8.2.

Constructive interference is observed when the optical path difference
between rays from the points P1 to P2 via two subsequent zones with the
radii of the boundaries rn and rn−1 is mnλ/2,

g + b = c + d −mnλ/2, (8.4)

or
g + b − mnλ/2 = (g2 + r2n)1/2 + (b2 + r2n)1/2, (8.5)

Fig. 8.2. X-ray diffraction by zone plate structures approximated by an infinite
grating and plane-wave illumination
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where n denotes the zone number and m the diffraction order. The expansion
of the square roots in (8.5) gives

mnλ/2 = r2n (g−1 + b−1) − 1
4
r4n (g−3 + b−3) ± .... (8.6)

If only aberrations up to the third order are of interest, the approximation
r2n = mnλfm with the focal length f−1

m = g−1 + b−1 of the mth focusing
diffraction order can be used to replace r4n in the second term of (8.6) (see,
e.g. [6, 7, 8]). With the magnification M = b/g we obtain for the radii rn of
the nth zone

r2n = mnλfm +
1
4
(mnλ)2

M3 + 1
(M + 1)3

. (8.7)

This equation is only valid for low zone numbers of several hundreds, for
example, for zone plate objectives that satisfy the condition mnλ/fm � 1.
As already known zone plates work in the focusing diffraction orders like thin
lenses if the lens law f−1 = g−1 + b−1 is fulfilled. For small diffraction angles
we get for the imaging magnification M = b/g = tan θin/ tan θout ≈ θin/θout.
By differentiating (8.7) with respect to the zone number n, the local zone
width drn and the local zone period Λ(rn) are obtained by setting dn = 1:

Λ(rn) = 2 drn =
λmfm
rn

√
1 +
(
rn
mfm

)2
M3 + 1

(M + 1)3
. (8.8)

In the following these relations will be used to calculate the local zone
period and the angle of the incident plane-wave θin, which are parameters in
the electrodynamic theory. In addition, the angle of the transmitted plane-
wave θout of the diffraction order used for X-ray imaging has to be evaluated if
the zone plate works under Bragg conditions with zone structures slanted by
ψ = (θin − θout)/2 to the optical axis [4]. Together with the refractive indices
of the zone materials and the wavelength, these are the relevant parameters
for the electrodynamic calculations of the diffracted amplitudes and their
corresponding efficiency.

As mentioned earlier, the diffraction efficiency has usually been calculated
using the geometric optical approach described by Kirz, which is applicable
to thin laminar gratings with arbitrary line-to-space ratio [9]. Let us assume
that the zone plate diffraction can be approximated by diffraction of a thin
grating, which consists of lines and spaces of the materials A and B. Then the
diffraction efficiency ηm(t) of the mth diffraction order is obtained from the
equation [9]

ηm(t) =
1

π2m2
sin2(mπL/(L+ S)) [exp (−4πβAt/λ)

+ exp (−4πβBt/λ)− 2 cos(2πt(δA − δB)/λ)
× exp (−2π t (βA + βB)/λ)]
for m = ±1,±2, ..., (8.9)
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where t is the path length of the X-rays through the zones and L:S denotes
the line-to-space ratio of the laminar zone structures. The parameters δ(α)
and β(α) represent the phase shift and the absorption properties of matter
as a function of the wavelength. This is described by the complex index of
refraction ñ(α) = 1− δ(α)− jβ(α). Equation (8.9) is independent of the zone
width. Therefore, the diffraction efficiency ηm(t) is always the same for all
zone widths. Furthermore, ηm(t) is independent of the propagation angle of
the waves to be diffracted by the grating. The electrodynamic calculations pre-
sented in the forthcoming sections will be compared with the results deduced
by the Kirz formula.

Numerical calculations performed with the coupled-wave theory for the
first-order diffraction of zone structures with line-to-space ratios of 1:1 have
shown different results from those obtained by the geometric optical approach
if the aspect-ratios of the zones become large [10]. These results were obtained
using a Runge–Kutta algorithm for the numerical integration of the first-
order coupled-wave equations by neglecting second-order derivatives of field
amplitudes and boundary diffraction.

Here we extend the coupled-wave theory to transmission zone plates with
arbitrary line-to-space ratio. Then the limits of validity of the geometric opti-
cal approach will directly be seen by comparing the results of (8.9) with
the results of coupled-wave theory performed for different line-to-space ratios
and high-orders of diffraction. The formulation of the coupled-wave equations
can describe gratings with arbitrary line-to-space ratio and includes a “shift
parameter” that describes a roughness of the zone interface along the direction
of the optical axis. With this extension of the coupled-wave equations realis-
tic zone profiles, which are obtained by reactive ion etching, can be modeled
and their diffraction properties can be calculated. Instead of the Runge–Kutta
algorithm a matrix formalism will be used for solving the resulting differen-
tial equation systems. Although the matrix formalism is not simple to solve, it
allows us to also include the second-order derivatives and boundary diffraction,
which leads to the rigorous coupled-wave analysis of the zone plate diffraction
presented in the last part of this chapter.

8.3 Coupled-Wave Theory for Zone Plates
with High Aspect-Ratios

The diffraction of electromagnetic waves by spatially modulated media has
been extensively studied by several techniques in recent years. The most
common of these methods are the modal theory and the coupled-wave the-
ory, which have been applied mainly to analyse the diffraction of periodic
structures for spectroscopy, holography, acousto-optics, and integrated optics.
The theoretical description of periodically arranged scattering structures with
high aspect-ratios for use in the X-ray domain is a modern application
field for these electrodynamical theories. Here the coupled-wave approach is
applied to diffractive transmission X-ray optics. The most elegant early use
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of coupled-wave theory was reported by Kogelnik for volume gratings with
low sinusoidal modulation illuminated under Bragg conditions, where only
one significant diffraction order exists [11]. Extensions have included higher
diffraction orders and higher grating harmonics [12, 13].

The diffraction analysis of zone plate structures requires the inclusion of
higher diffraction orders as well as the higher grating harmonics with zone
structures slanted to the optical axis. In addition, a parameter describing the
line-to-space ratio of the slanted zone structures has to be included. Therefore,
at first the coupled-wave equations are developed for slanted gratings with
arbitrary line-to-space ratio. In the forthcoming sections this formalism is
used to study special problems, e.g., roughness, interdiffusion, and profile
simulations.

In the X-ray domain the wavelengths are much smaller than the grating
period; therefore, polarization effects can be neglected in good approximation.
Here it is assumed that the structures are illuminated by a plane-wave polar-
ized perpendicular to the plane of incidence (H-mode). For this reason it is
sufficient to consider only one component Ey ≡ E of the electric vector field
E = (Ex, Ey, Ez). In mathematical terms, the problem involves the solution of
a time-independent scalar wave equation in a two-dimensional inhomogeneous
medium illuminated by monochromatic X-rays:

∇2E(x, z) + k2
0 ε(x, z)E(x, z) = 0 with k0 =

2π
λ
, (8.10)

where ε(x, z) denotes the permittivity of the modulated region and λ is the
X-ray wavelength.

The modulated region has to be periodic for the coupled-wave analysis.
Zone plates have an increasing line density as can be seen for example in
Fig. 8.1. Introducing the permittivity distribution according to this zone plate
law in the wave equation, sophisticated mathematics would be required to
find solutions. The problem simplifies if the zone plate pattern is subdivided
into local regions, which are approximated by infinite gratings.

The local zone period Λ = 2 drn changes slowly with the zone number n
if n is large and the zone plate obeys the law 2 drn = r1/

√
n. For this reason

it is justified to assume that an infinite grating of uniform grating constant Λ
has the same diffraction efficiency as a small area of the zone plate with local
zone period Λ = 2 drn [10]. Therefore, in this model the X-ray diffraction
of the zone plate structures is described by an infinite grating with local
periodicity Λ(rn). For such a grating the diffracted amplitudes are evaluated
by coupled-wave analysis.

Figure 8.3 illustrates the diffraction occuring in such a local zone plate
region. The periodically arranged zone structures in the (x, z)-plane are
slanted by an angle ψ against the optical axis. In this case the local zone
period has to be replaced by Λ(rn)/cosψ [14]. The X-ray diffraction of the
local zone plate region is determined with oblique plane-waves illuminating
an infinite grating with slanted structures. The forward-diffracted amplitudes
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Fig. 8.3. Local zone plate region (see also Fig. 8.2) approximated by an infinite
grating with periodicity Λ(rn), grating vector G, slanting angle ψ, and plane-wave
illumination with the wave vector ρ0. The wave vectors of the diffracted plane-waves
are denoted by ρm with m = ±1, 2, . . . . The indices for the regions will be used only
in the rigorous coupled-wave theory of Sect. 8.8, which requires distinguishing these
regions for the boundary conditions

are derived from the solutions of the wave equation describing the modulation
of the infinite grating, which refers to the local zone plate region. The per-
mittivities of the regions I and III are only required if boundary diffraction is
taken into account in the rigorous coupled-wave theory.

The periodically changing permittivity ε(x, z) of a grating with arbitrary
line-to-space ratio is illustrated in Fig. 8.4. The X-ray optical properties of the
grating structures with the permittivities εA and εB of material A and B are
introduced by

ε(x, z) = εA p(x, z) + εB q(x, z) (8.11)

with

p(x, z) =
L

L+ S
+

2L
L+ S

∞∑
h=1,2,3...

sinc
(
hπ

L

L+ S

)
cos
(
hG · r

)
(8.12)

and
q(x, z) = 1− p(x, z) (8.13)

with
| G |= 2 π

Λ
and G · r =

2π
Λ

[x cos ψ − z sin ψ] (8.14)
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Fig. 8.4. Part of the mathematical functions describing the transmission grating
consisting of material A (upper) and material B (lower) with the permittivities εA
and εB. The local zone plate period Λ is given by Λ = L+ S

where the mathematical functions p(x, z) and q(x, z) denote Fourier series,
which are used to describe the spatial distribution of the permittivity of the
grating. This is directly related to the material distribution of the grating,
which is taken into account in the wave equation by a periodically chang-
ing permittivity ε(x, z), represented by a Fourier expansion with the grating
vector G:

ε(x, z) = ε̄ + Δε
2L
L+ S

∞∑
h=1,2,3...

sinc
(
hπ

L

L+ S

)
cos
(
hG · r

)
. (8.15)

The average permittivity ε̄ of the grating is introduced as

ε̄ = εB + (εA − εB)
L

L+ S
= ñ2

B + (ñ2
A − ñ2

B)
L

L+ S
(8.16)

and the difference Δε between the permittivities of the materials A and B in
terms of the refractive indices is

Δε = εA − εB = ñ2
A − ñ2

B, (8.17)

which follows from Maxwell’s relation ε = ñ2. This allows one the calculation
of the function ε(x, z) in terms of the complex indices of refraction usually
used in X-ray physics:

ñA = 1− δA − jβA and ñB = 1− δB − jβB. (8.18)

The X-ray optical parameters δ and β can be determined directly from the
atomic scattering factor (f1+jf2). They are tabulated for all relevant elements
in the energy range interesting for X-ray microscopy [15, 16, 17]. Introducing
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the periodically changing permittivity ε(x, z) in (8.10) leads to the scalar wave
equation describing the modulated region

∇2E(x, z) + k2
0

[
ε̄+Δε

2L
L+ S

×
∞∑
h

sinc
(
hπ

L

L+ S

)
cos
(
hG · r

)]
E(x, z) = 0, (8.19)

which is mathematically a linear second-order differential equation with peri-
odic coefficients (Mathieu differential equation). It may be concluded from
Floquet’s theory that this differential equation has a solution for the electrical
field E(x, z) of the form

E(x, z) =
∞∑

m=−∞
Em(x, z) = E0

∞∑
m=−∞

Am(z) exp (−j ρm · r ) (8.20)

with ρm · r = ρm,x x+ ρm,z z.

This solution of the wave equation can be interpreted as an infinite sum of
plane-waves with wave vectors ρm and spatially varying coefficients Am(z).
Physically, we assume that the electrical field inside the grating can be rep-
resented by a sum of diffracted waves traveling in different directions. As a
result of the Floquet theorem, the wave vector ρm of the mth diffraction order
may be represented by using the K-vector closure relationship:

ρm = ρ0 + mG m = 0,±1, .... (8.21)

The components of the mth wave vector ρm in (x, z)-direction are given
by

ρm,x = k sin θin + mG cosψ (8.22)

ρm,z = k cos θin − mG sinψ, (8.23)

with k = 2πε̄1/2/λ.
An incident plane-wave Einc with wave vector ρ0 is subdivided by X-ray

diffraction inside the grating into many different plane-waves, which are prop-
agating in directions given by (8.21) (see Fig. 8.3). Numerical solutions of the
modulated wave equation will show, which of the diffracted waves will be
damped when propagating into larger depths of the grating and which will be
amplified. Such an amplification can be interpreted as an occurrence of con-
structive interference similar to Laue diffraction in crystals. Physically, equa-
tion (8.21) represents the conservation of momentum for the X-ray scattering
process inside the grating. This means that constructive interference will occur
provided that the change in wave vector is a vector of the reciprocal lattice.

To find the complex amplitudes Am(z), we need to solve the wave equation
in the modulated region. Inserting E(x, z) (8.20) into the scalar wave equation
(8.10) and performing the mathematical operations we obtain
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∞∑
m=−∞

exp (−j ρm · r)
{

d2Am(z)
dz2

− 2 j ρm,z
dAm(z)

dz

− (ρ2m,x + ρ2m,z)Am(z) + k2
0 ε̄ Am(z)

+ k2
0 ΔεAm(z)

2L
L+ S

∞∑
h=1,2,3...

sinc
(
hπ

L

L + S

)
cos(hG · r)

}
= 0. (8.24)

We also note that the cos-functions can be written by exponential functions

cos(hG · r) =
exp(j hG · r) + exp(−j hG · r)

2
. (8.25)

Furthermore, the term (ρ2m,x + ρ2m,z) with the wave vector components is
expressed by

| ρm |2 = ρ2m,x + ρ2m,z. (8.26)

Thus, we can rewrite (8.24)
∞∑

m=−∞
exp (−j ρm · r)

{
d2Am(z)

dz2
− 2 j ρm,z

dAm(z)
dz

− (| ρm |2 − k2
0 ε̄)Am(z) + k2

0 ΔεAm(z)
L

L+ S

×
∞∑

h=1,2,3...

sinc
(
hπ

L

L+ S

)
[exp(j hG · r) + exp(−j hG · r)]

}
= 0. (8.27)

We shall satisfy (8.27) by demanding that the coefficient of exp (−j ρm · r)
should vanish. Before proceeding further one has to take into account the
energy conversion from the mode m to m± h, which may be seen in view of
the relationship:

exp (−j ρm · r) exp(±j hG · r) = exp (−j (ρm ∓ hG) · r)
= exp(−j ρm∓h · r) (8.28)

or
ρm∓h = ρ0 +mG ∓ hG = ρ0 + (m∓ h)G. (8.29)

Equation (8.27) can be rewritten by introducing the relations between the
wave vectors and the grating vector:

∞∑
m=−∞

exp (−j ρm · r)
{

d2Am(z)
dz2

− 2jρm,z
dAm(z)

dz

− (| ρm |2 − k2
0 ε̄)Am(z)

}
+ k2

0Δε
L

L+ S
×

∞∑
m=−∞

∞∑
h

sinc
(
hπ

L

L + S

)

×Am(z) [exp(−jρm−h · r) + exp(−jρm+h · r)] = 0. (8.30)
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By applying the formula (in all practical cases m,h ≤ 100)

∞∑
m=−∞

∞∑
h=1,2,3...

AmBm−h =
∞∑

m=−∞

∞∑
h=1,2,3...

Am+hBm, (8.31)

we obtain a coupling between the field amplitudes Am(z) of different modes,
which is the reason for the energy exchange between the plane-waves inside
the grating in mathematical terms:

∞∑
m=−∞

exp (−j ρm · r)
{

d2Am(z)
dz2

− 2 j ρm,z
dAm(z)

dz

− (| ρm |2 − k2
0 ε̄)Am(z)

}
+ k2

0Δε
L

L+ S

∞∑
m=−∞

∞∑
h

sinc
(
hπ

L

L + S

)

× exp(−jρm · r) [Am+h(z) +Am−h(z)] = 0. (8.32)

By reorganizing the summation over m, we find that the modulated wave
equation for the grating is fulfilled if we equate the term in brackets {..........}
individually with zero:

∞∑
m=−∞

exp (−j ρm · r)
{

d2Am(z)
dz2

− 2 j ρm,z
dAm(z)

dz

− (| ρm |2 − k2
0 ε̄)Am(z)

+ k2
0Δε

L

L+ S

∞∑
h=1,2,3...

sinc
(
hπ

L

L+ S

)
[Am+h(z) + Am−h(z)]

}
= 0. (8.33)

This gives an infinite set of coupled differential equations, which are the
second-order coupled-wave equations we set out to derive

d2Am(z)
dz2

− 2 j ρm,z
dAm(z)

dz
− (| ρm |2 − k2

0 ε̄)Am(z)

+ k2
0

L

L+ S
Δε

∞∑
h=1,2,3...

sinc
(
hπ

L

L+ S

)[
Am−h(z) + Am+h(z)

]
= 0. (8.34)

This system of second-order linear differential equations is mathematically
identical to the physical description of the vibrations of masses, which are
connected by springs and lead to the well-known Pendellösung. For this reason
(8.34) can physically be interpreted as describing a set of coupled-waves. The
theory derives its name from this interpretation.
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8.4 Matrix Solution of the Scalar Wave Equation

Two different coupled-wave approaches are distinguished in the literature:
the second-order (rigorous coupled-wave theory) and the conventional first-
order coupled-wave approach. In the latter case the first-order differen-
tial equations are derived by neglecting the second-order derivatives. An
advantage of retaining the second-order derivatives in the rigorous coupled-
wave theory is that the boundary conditions can be included for both
the electric and the magnetic fields. Therefore, reflected waves can also be
evaluated. Transmission X-ray zone plates are usually illuminated with inci-
dent angles near normal incidence and the refractive indices of matter are
close to unity for X-rays. Therefore, in diffractive transmission X-ray optics
forward-diffracted waves are dominant and sufficiently accurate results will
be obtained with the first-order approach. However, the limits of validity
of the first-order approach can be determined if its results are compared
with the calculations that are performed with the rigorous coupled-wave
theory.

The solution of the modulated scalar wave equation is now derived
by neglecting the second-order derivatives in (8.34). The infinite set of
coupled-wave equations can only be solved by restricting the number of
grating harmonics to a finite number. In practice, it is sufficient to approx-
imate the grating structures with about hmax = 30–50 Fourier compo-
nents. This means that the matrix consists of (2hmax + 1) × (2hmax + 1)
complex elements. We obtain a system of first-order differential equations
for the forward-diffracted amplitudes Am(z), which is rewritten in matrix
notation:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

dAm(z)/dz

dA1(z)/dz

dA0(z)/dz

dA−1(z)/dz

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . 0 0 0

. . . am bm,1
. . . 0 0

. . . b1,1 a1 b1,1
. . . 0

0
. . . b0,1 a0 b0,1

. . .

0 0
. . . b−1,1 a−1

. . .

0 0 0
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Am(z)

A1(z)

A0(z)

A−1(z)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.35)

where according to (8.34) the matrix elements are given by

am =
j (| ρm |2 − k2

0 ε̄)
2ρm,z

(8.36)

and

bmh =
k2
0 ΔεL

2 j ρm,z(L+ S)
sinc
(
hπ

L

L+ S

)
. (8.37)
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The limited number of spatial harmonics, hmax, of the grating is taken into
account by the zeros in the truncated matrix, which – in mathematical terms –
avoids an energy transfer into matrix elements with indices h > hmax.

Equation (8.35) is the expanded form of the matrix equation given by

dA(z)
dz

= M A(z), (8.38)

where M denotes a complex general matrix, which includes the X-ray opti-
cal parameters of the grating as well as the incidence angle of the plane-
wave illumination. Linear first-order differential equation systems of this
type are solved mathematically by calculating the eigenvalues χh and the
corresponding eigenvectors of the matrix M. The solution can be written as

Am(z) =
∑

h

qmh [ch exp(χh z)] (8.39)

or in expanded form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Am(z)

A1(z)

A0(z)

A−1(z)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . . . . . . . .

. . . qm qm,1 qm,2 qm,3

. . .
. . . q1,1 q1 q1,1 q1,2

. . .
. . . q0,2 q0,1 q0 q0,1

. . .
. . . q−1,1 q−1,2 q−1,1 q−1

. . .
. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

ch e
(χhz)

c1 e
(χ1z)

c0 e
(χ0z)

c−1 e
(χ−1z)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.40)

where qmh are the elements of the matrix Q constructed from the eigenvec-
tors. This ansatz involves finding the eigenvalues and the eigenvectors of the
complex general matrix M, which contains up to 101×101 complex elements.
The strategy for finding the eigensystem is to reduce the balanced matrix to
a simpler form, and then to perform an iterative procedure – the Francis QR
algorithm – on the simplified matrix. The simpler matrix is a complex upper
Hesseberg matrix, which has zeros everywhere below the diagonal except for
the first subdiagonal row. Note that the sensitivity of eigenvalues to round-
ing errors can be reduced by the mathematical procedure of balancing if the
elements of the matrix M vary considerably in size. It performs similarity
transformations by interchanging rows and corresponding columns, so that
the smaller elements appear in the top left hand corner of the matrix (for
details, see for example [18]).

In coupled-wave theory the number of differential equations available is
always exactly the number of unknowns ch in (8.39) or (8.40). After computing
the matrix Q with the eigenvector components qmh, we obtain according to
equation (90) a system of linear equations at the zone height z = 0:
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A(z = 0) = Q C, (8.41)

where C denotes the vector of the unknown coefficients ch. The grating is
illuminated by a plane-wave of the form

Einc = E0 exp (−j ρ0 · r), (8.42)

which gives the boundary conditions that all amplitudes are equal to zero
except the zero-order amplitude

A0(z = 0) = 1 and Am(z = 0) = 0 for m �= 0 at z = 0, (8.43)

whose initial value is set equal to one. Thus, the vector C with the unknown
coefficients is derived from the boundary conditions and the inverse matrix
Q−1:

C = Q−1 A(z = 0). (8.44)

Using a technique such as Gauss elimination yields the unknown coeffi-
cients. Introducing the coefficients ch into (8.40) allows one the evaluation of
the complex field amplitudes Am(z) of all diffraction orders inside the zone
structures as a function of the zone height. The diffraction efficiency, ηm,
of the mth diffraction order can be directly calculated from the normalized
amplitudes Am(z) by multiplication with their complex conjugates A∗m(z):

ηm(z) = Am(z)A∗m(z). (8.45)

The matrix solution of the coupled-wave differential equation system pre-
sented here includes absorption as well as phase shift of X-rays, because both
effects were taken into account for the diffraction analysis. As mentioned
before, another way to solve the coupled-wave equations is numerical inte-
gration by applying the Runge–Kutta algorithm. The results obtained from
the matrix solution were compared with the data received by Maser, who per-
formed calculations for ideal rectangular grating profiles with an equal width
of lines and spaces with the Runge–Kutta algorithm. Both methods deliver
with high accuracy (relative deviation about 10−6) identical results (for details
see the thesis [14]). However, as expected, it was found that the numerical inte-
gration of the coupled-wave equations is much more time-consuming than the
matrix solution, which runs fast on a standard PC. The matrix formalism
presented here is therefore superior for studying the diffraction properties of
diffractive X-ray optics and for optimizing their parameters, e.g., the zone
height and shape of the zone profile. In the following, questions regarding var-
ious profiles of zone plate structures with high aspect-ratios will be discussed,
and their diffraction efficiency in different orders will be evaluated by apply-
ing the theory presented above. In addition, chemical elements that are most
suited as materials for high-resolution zone plates for different X-ray energies
are determined.
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8.4.1 The Influence of the Line-to-Space Ratio

Before we discuss the influence of an arbitrary line-to-space ratio on the diffrac-
tion efficiency of zone plates, we summarize results for a line-to-space ratio
of 1:1, which were published by [14]. We start with a comparison between
the first-order diffraction efficiencies of zone structures made from different
elements, which are extended parallel to the optical axis. Calculations were
performed for nickel, germanium, and silicon zone structures with 20 nm lines
and 20 nm spaces. As shown in Fig. 8.5 nickel is more suited than the other ele-
ments for high-resolution zone plates, because it combines high efficiency with
lower zone height for optimal diffraction efficiency. This means that zone plates
manufactured in nickel achieve their optimal diffraction efficiency at lower
aspect-ratios of the zones than the zone plates made of the other elements.

It was already shown by coupled-wave calculations that the geometric opti-
cal approach is no longer valid for the evaluation of the first-order diffraction
efficiency in the 20nm zone width region [14]. For example, the geometric opti-
cal approach delivers optimal first-order diffraction efficiencies of 23.2, 18.8,
and 23.5% at 256, 383, and 630nm height for zone plates with drn = 20nm
made of Ni, Ge, and Si, respectively. However, the coupled-wave calculations
yield for the same L:S-ratio, zone width, wavelength of 2.4 nm and chemical
elements optimal efficiency values of 23.2, 16.5, and 14.4% at optimal zone
heights of 270, 350, and 470nm, respectively. Therefore, good agreement of
both theories is given only for nickel zone structures with a low aspect-ratio.
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Fig. 8.5. Coupled-wave calculations of the first-order diffraction efficiencies at
2.4 nm wavelength of nickel, germanium, and silicon zone plates with a line-to-space
ratio of L:S = 20 nm:20 nm and a rectangular zone profile as a function of the zone
height. Parameters: unslanted zone structures and imaging magnification 1,000×.
The diffraction efficiency evaluated for Ni is the same as can be calculated with
the theory of thin gratings, whereas for Ge and Si significantly smaller values are
obtained by coupled-wave theory
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Fig. 8.6. Coupled-wave calculations of the first-order diffraction efficiencies at
2.4 nm wavelength of rectangular nickel zone structures with different line-to-space
ratios L:S as a function of the zone height. Parameters: unslanted zones, local zone
period Λ = 40 nm and imaging magnification 1,000×. Note that complementary L:S
ratios yield different diffraction efficiencies

The formalism of the previous sections is now used to study how an arbi-
trary line-to-space ratio L:S influences the first-order diffraction efficiency of
zones extending parallel to the optical axis. Results of the coupled-wave calcu-
lations are plotted in Fig. 8.6. The first-order diffraction efficiency is shown for
nickel zone structures with L:S = 20nm:20 nm, 30 nm:10 nm, and 10 nm:30 nm
as a function of the zone height.

The optimal diffraction efficiencies of 23.2, 17.3, and 18% are achieved at
270, 290, and 390 nm height, respectively. By comparison, according to (8.9)
with the theory of thin gratings only 11.6% diffraction efficiency is obtained
at 256nm height for L:S = 10nm:30 nm and L:S = 30nm:10 nm. Note that
the theory of thin gratings predicts that the efficiencies are always equal for
complementary zone structures (see (8.9)), e.g., for L:S = 10nm:30 nm and
30 nm:10 nm we get the same efficiency, which is in contradiction to the results
obtained by electrodynamic theory. We can conclude that even for nickel zone
plates, which have a comparatively low optimal zone height, the local first-
order diffraction efficiency can not be evaluated with sufficient accuracy by
applying the theory of thin gratings if the zone period is in the range of
Λ = 40 nm. Therefore, the parameters of such zone plates, which are cur-
rently under development, have to be optimized by applying the coupled-wave
theory.

The coupled-wave analysis of zone plate diffraction has shown that the
first-order diffraction efficiency can be increased if the zone structures are
slanted against the optical axis according to the Bragg condition [14]. In the
next sections we extend the numerical calculations of slanted zone structures
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to an arbitrary diffraction order with an arbitrary line-to-space ratio by using
the coupled-wave formalism described in the previous sections. Now we derive
the slanting angle, ψ, of the zone structures for arbitrary diffraction orders.
If the zones are regarded as the reflecting lattice planes of a crystal, we can
write according to the Bragg equation

mλ = 2Λ sinα = 4 drn sinα, (8.46)

where α denotes the angle between the incident plane-wave and the planes
of the periodically arranged X-ray scattering zone structures. If the Bragg
condition for an order of diffraction is fulfilled, each zone structure acts as a
partly reflecting mirror, which means that the forward-diffracted plane-wave
has the same angle between the planes of the zone structures as the incident
plane-wave. As can be seen from the Fig. 8.2 and 8.3, we get for the Bragg
angle α

α = θin − ψ = θout + ψ, (8.47)

which leads to the slanting angle, ψ, of the zone structures expressed in terms
of the local zone width drn and the imaging magnification M :

ψ =
θin − θout

2
≈ mλ

4 drn

(
M − 1
M + 1

)
, (8.48)

with

θin = arctan(rn/g) = arctan
[
mλ

2 drn

(
M

M + 1

)]
≈ mλ

2 drn

(
M

M + 1

)
(8.49)

and

θout = arctan(rn/b) = arctan
[
mλ

2 drn

(
1

M + 1

)]
≈ mλ

2 drn

(
1

M + 1

)
. (8.50)

Note that the slanting angle, ψ, increases within the radius of the zone
plate as can be seen from (8.48). Therefore, each local zone plate area has a
different local slanting angle.

The influence of the line-to-space ratio on the first-order diffraction effi-
ciency of zone structures slanted to the optical axis and fulfilling the Bragg
condition is shown for nickel zone plates working at 2.4 nm wavelength with
an imaging magnification of M = 1,000×. It is seen from Fig. 8.7 that the
first-order diffraction efficiency can be enhanced drastically by reducing the
zone width of the nickel structures and increasing their spaces if the Bragg
condition is fulfilled for the first-order radiation. It was found from additional
calculations that the line-to-space ratio can be chosen in such a way that very
high diffraction efficiencies can be realized and zone plates can become in the
first-order nearly as efficient as refractive lenses for visible light. As the Bragg
condition can be fulfilled for any diffraction order, the diffraction efficiencies of
slanted zones with arbitrary L:S are now investigated for arbitrary diffraction
orders.
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Fig. 8.7. Coupled-wave calculations of the first-order diffraction efficiencies at
2.4 nm wavelength as a function of the zone height of rectangular nickel zone
structures slanted against the optical axis fulfilling the Bragg condition. Line-to-
space ratios are 20 nm:20 nm, 10 nm:30 nm, and 30 nm:10 nm. Imaging magnification:
1,000×. The best diffraction efficiency is obtained for smallest L:S ratio

8.4.2 Applying High-Orders of Diffraction for X-ray Imaging

The resolving power of zone plates can be increased in two different ways. The
conventional way is to use smaller zone periods in the first-order of diffraction.
Another way is to use high-order diffraction, because the obtainable resolution
scales inversely with the diffraction orderm used for X-ray imaging (see (8.3)).
However, if optically thin gratings are assumed, it results that an increased
resolving power is achieved at the cost of a drastically reduced diffraction
efficiency (see (8.9)). One intention of this chapter is to demonstrate that
high-orders are nevertheless highly efficient under special conditions, which
are determined in this section by coupled-wave theory.

As shown above for the first-order radiation, the X-ray optical parame-
ters of nickel make it more suited in this wavelength range than many other
elements. Therefore, we are especially interested in the high-order diffraction
at 2.4 nm wavelength of zone plates manufactured in nickel as optical ele-
ments – condensers and objectives – in X-ray microscopes. To approximate
the permittivity of the zone structures with an arbitrary line-to-space ratio
with high accuracy, all the calculations of the high-order diffraction presented
in the following were performed up to the 50th spatial harmonic of the Fourier
expansion, which leads to a general complex matrix consisting of 101 × 101
elements. The energy distribution of the radiation in different orders is shown
in Fig. 8.8 for the case that the Bragg condition is fulfilled for the 6th order.
One can see that this order is very efficient at about 1,500nm zone height,
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Fig. 8.8. Diffraction efficiencies of the zero-order, the 1st-order, the 6th-order, and
the sum over all orders for nickel zone structures with L:S = 24nm:96 nm. Param-
eters: 2.4 nm wavelength, unslanted zone structures and imaging magnification
M = 1×. High efficiency is obtained even in the 6th-order of diffraction
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Fig. 8.9. Diffraction efficiencies η6(z) of the 6th order at 2.4 nm wavelength for
nickel structures with different L:S for Λ = 120 nm zone period as a function of the
zone height. Parameters: rectangular zone structures parallel to the optical axis and
imaging magnification M = 1×. It shows that the smallest L:S leads to the best η6

whereas the contribution of all other orders to the total amount of radiation
is small at this zone height.

Furthermore, as expected, the sum of the diffraction efficiencies of all
orders is continuously attenuated with increasing zone height, which is due
to the photoelectric absorption in the zone structures. Figure 8.9 shows the
diffraction efficiency, η6(z), of the 6th order as a function of the zone height
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Fig. 8.10. Diffraction efficiencies of the 1st, 3rd, and 5th-order at 2.4 nm wavelength
of nickel zone structures with a rectangular zone profile and L:S = 9nm:21 nm,
27 nm:63 nm, and 45 nm:105 nm, respectively. Parameters: slanted zone structures
according to the Bragg condition and imaging magnification M = 1,000×. The
resolution is 1.22 × 15 nm in all cases. Note that the optimal zone height increases
significantly if high order focusing is regarded

for different L:S of 78 nm:42 nm, 60nm:60 nm, 42 nm:78 nm, 24 nm:96 nm, and
12 nm:108nm. In these calculations the imaging magnification is M = 1
and therefore the Bragg condition for the incident and the 6th diffracted
wave is satisfied for zone structures parallel to the optical axis (see (8.48)).
Under these conditions the intensity of the high diffraction order selected
can be increased up to 54% of the incident intensity by decreasing L:S. By
comparison, calculations using the cited geometric optical approach result in
optimal η6(z) of only 0.06, 0, 0.06, 0.22, and 0.58% for the same L:S values
as above.

If the magnification is not equal to one, the zones have to be slanted
according to the Bragg condition against the optical axis, since they work
similarly to small partially reflecting planes. Figure 8.10 shows ηm(z) in the
1st, 3rd, and 5th order for slanted Ni structures with L:S = 9 nm:21 nm,
27 nm:63 nm, and 45 nm:105 nm zone width, respectively.

Note that all three cases can deliver the same spatial resolution. It shows
that the high-orders as well as the first-order become highly efficient if the
Bragg condition is satisfied. Furthermore, it is shown that the optimal zone
height and, therefore, the aspect-ratio increases for high-orders. Additional
calculations have shown that in high-orders diffraction efficiencies of 30–50%
are also possible for harder X-rays in the sub-1 nm wavelength range, which is
also interesting for hard-X-ray microscopy. Note that high-order zone plates
for use at shorter wavelengths require very high aspect-ratios far beyond the
aspect-ratios manufactured by reactive ion etching techniques nowadays. No
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limitation in the aspect-ratio is given if the zone plates are generated by the
so-called sputtered sliced technique (see Sect. 8.5) [19].

Summing up, the diffraction properties in high-orders change with increas-
ing height of the zone structures. Therefore, the geometric optical approach
is no longer valid if ηm of high-orders are calculated for zone structures with
high aspect-ratios. In addition, in this case the diffraction efficiency ηm(z) also
depends critically on satisfying the Bragg condition. The plots of Figs. 8.9 and
8.10 demonstrate that high-order zone plates can be used as X-ray condensers
as well as X-ray objectives. For example, a nickel zone plate objective with
120nm smallest zone period with a L:S of 30 nm:90 nm, averaging η6 over the
whole zone plate, yields about 40% diffraction efficiency at 2.4 nm wavelength
and can resolve about 10 nm features.

By comparison, zone plate objectives to be used in the first diffraction
order with smallest zone structures with L:S = 30nm:30 nm, aspect-ratios up
to 6:1, and measured total η1 of 15% (theoretical maximum 23.2% for nickel
zone plates) at 2.4 nm wavelength were already processed using electron-beam
lithography and reactive ion etching techniques [20].

In the same manner highly efficient condensers with high numerical
aperture and monochromatizing properties can be developed to collect pho-
tons from a large solid angle from laser generated microplasma sources for
object illumination in laboratory X-ray microscopes. Such small plasma X-ray
sources are currently under development. The X-ray source can be imaged by
the high-order condenser with an imaging magnification of M = 1. There-
fore, the Bragg condition is fulfilled for zones parallel to the optical axis,
which makes it possible to manufacture such zone plates by electron-beam
lithography and reactive ion etching.

First measurements of the high-order diffraction of zone plate condensers
produced by these techniques [21] indicate that the coupled-wave method is
convenient to describe their X-ray diffraction properties. Therefore, it can be
expected that the theoretical considerations presented here will lead to the
new type of high-order diffractive X-ray optics with a high numerical aperture.

8.5 The Influence of Interdiffusion and Roughness

Up to now X-ray microscopes mainly operate in the soft X-ray wavelength
range between the K-absorption edges of oxygen and carbon (2.34–4.37nm
wavelength). However, the third generation of electron storage rings are highly
intense X-ray sources, and their insertion devices, e.g., undulators, emit suffi-
cient photon flux at sub-1 nm wavelengths to be well suited as X-ray sources for
microscopy. As the X-ray optical constants of matter change with wavelength,
zone plates suited for shorter wavelengths have to be developed. At these wave-
lengths the maximum diffraction efficiency ηm – the fraction of the incident
intensity diffracted into one selected diffraction order m – of zone plates is
in general achieved at much larger zone heights. Therefore, zone plates with
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much higher aspect-ratios are required for the sub-1 nm wavelength region
and new techniques have to be used to manufacture zone plates for these
wavelengths. Zone plates for use at soft X-ray wavelengths are manufactured
by electron-beam lithography and reactive ion etching (RIE) techniques. In
this technique the zones are supported by a thin foil; no stabilizing spacer
material is located between the zones. It is very difficult to use this technique
for aspect-ratios of significantly more than 10:1 at very small zone widths of,
e.g., drN = 20nm. Therefore, zone plates for use at short wavelengths are
manufactured with another technology. A thin microwire is used, which is
coated alternately with two materials of different X-ray scattering properties.
The so-called “sputtered sliced zone plate” is then obtained from the coated
microwire by slicing it perpendicular to its axis and thinning the slices down
to the required zone plate height [19].

The diffraction efficiency, ηm, of zone plates manufactured by either
method is diminished if the zone walls are not ideally smooth. Furthermore,
the efficiency also depends on the shape of the profile. In the case of sput-
tered sliced zone plates, two different zone materials are in contact at their
interface. This can lead to interdiffusion and roughness at the interfaces of
the two materials, which diminishes the efficiency further. In general, a zone
roughness can be regarded as a local positioning error of segments of the zone
material. This will reduce ηm and possibly the spatial resolution obtainable
with zone plates.

Here it is the intention to perform coupled-wave calculations for zone plates
with interdiffusion at the interfaces and to include a zone roughness in the
radial direction as a function of the zone height. Such a roughness can be
observed in sputtered sliced zone plates, because the deposition process on
the microwire causes roughness of the material interface ranging over many
zones. Mathematically, this effect is taken into account by subdividing the zone
structures in their height (z-axis) into N layers and by randomly shifting the
ith layer by Δxi in the radial direction for roughness simulation (see Fig. 8.11).

In mathematical terms the function pi(x, z) shown in Fig. 8.11 (without
interdiffusion Δxdiff = 0) and Fig. 8.12 (interdiffusion region Δxdiff �= 0) can
be expanded in a Fourier series, which is used to describe the spatial distri-
bution of the permittivity in the grating structures of the ith layer consisting
of the materials A and B with the permittivities εA and εB

pi(x, z) =
Li

Li + Si
+

2Li

Li + Si

×
∞∑

h=1,2,3...

sinc
(
hπ

Δxdiff

Λ

)
sinc
(
hπ

Li

Li + Si

)

× cos
(
hG [(x−Δxi) cos ψ − z sin ψ]

)
, (8.51)

where Li:Si denotes the line-to-space ratio of the ith layer and G is the
magnitude of the grating vector G= 2π/Λ (cos ψ,− sin ψ). Interdiffusion is
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Fig. 8.11. (Lower) Fourier expansions pi(x, z) and qi(x, z) used to describe the
permittivity of the ith layer consisting of two different materials A and B with
corresponding permittivities εA and εB. The local zone plate period Λ is given by
Λ = Li +Si. (Upper) Roughness of the grating is simulated by shifting the layers in
radial direction

Fig. 8.12. (Lower) Fourier expansion describing the interdiffusion region between
the grating structures consisting of two different materials A and B. (Upper) Simu-
lation of interdiffusion in the interface region between the zones manufactured from
two different X-ray scattering materials

described by the mixture of the materials A and B, which is denoted in (8.51)
by the width of the interdiffusion region Δxdiff (see Fig. 8.12).

It is assumed that the permittivity changes linearly with the position
x in the interdiffusion region. Using the relation qi(x, z)= 1 − pi(x, z) (see
Figs. 8.11 and 8.12) we obtain for the periodically changing permittivity
εi(x, z) = εA pi(x, z) + εB qi(x, z) of the ith layer:
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εi(x, z) = ε̄i + Δε
2Li

Li + Si

×
∞∑

h=1,2,3...

sinc
(
hπ

Δxdiff

Λ

)
sinc
(
hπ

Li

Li + Si

)

×
[
cos(hG · r) cos(hGΔxi cosψ) + sin(hG · r) sin(hG Δxi cosψ)

]
,

where G · r denotes the scalar product of the vectors G and r = (x, z). Again
the angle ψ allows one to slant the zones against the optical axis of the zone
plate. Here the average permittivity ε̄i of the ith grating layer is given by

ε̄i = εB + (εA − εB)
Li

Li + Si
= ñ2

B + (ñ2
A − ñ2

B)
Li

Li + Si
(8.52)

and
Δε = εA − εB = ñ2

A − ñ2
B (8.53)

is the difference between the permittivities of the materials A and B in terms
of the refractive index.

As described in Sect. 8.3, the transmitted waves are scattered by the peri-
odically arranged structures into many different directions. Thus, the resulting
electromagnetic field in each layer is developed in terms of plane-waves with
spatially varying coefficients Am,i(z):

Ei = E0,i

∞∑
m=−∞

Am,i(z) exp (−j ρm · r), (8.54)

with
ρm = ρ0 + mG m = 0,±1, ..., (8.55)

where ρm is the wave vector of the mth diffraction order and G is the
grating vector of the local zone plate period. Introducing (8.52) and (8.54)
into the scalar wave equation (8.10) and performing the mathematical opera-
tions shown in Sect. 8.3, we obtain a linear second-order differential equation
system:

d2Am,i(z)
dz2

− 2 j ρm,z
dAm,i(z)

dz
− (| ρm |2 −k2

0 ε̄i)Am,i(z) + k2
0

Li

Li + Si
Δε

×
∞∑

h=1,2,3...

sinc
(
hπ

Δxdiff

Λ

)
sinc
(
hπ

Li

Li + Si

)

×
[
cos(hGΔxi cosψ)

(
Am−h,i(z) + Am+h,i(z)

)

+ j sin(hGΔxi cosψ)
(
Am+h,i(z) − Am−h,i(z)

)]
= 0. (8.56)
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As discussed earlier, transmission zone plates as X-ray optics are commonly
used near normal incidence and therefore, to a good approximation, no waves
are reflected. Thus, the second-order derivatives in (8.56) can be neglected and
linear first-order differential equation systems expressed in matrix notation are
obtained:

dAi(z)
dz

= Mi Ai(z), (8.57)

where Mi denotes the complex general matrix containing the X-ray optical
and illumination parameters of the ith layer. As derived above, the solution
of this matrix equation is of the form

Am,i(z) =
∑

h

Zmh,i [ch,i exp(χh,i z)] for zi ≤ z ≤ zi+1. (8.58)

Note that the eigenvalues χh,i and eigenvectors have to be calculated sep-
arately for each layer. The unknown coefficients ch,i are determined using the
boundary conditions. The initial values for the layer i = 0 are given by

A0,0(z = 0) = 1 and Am,0(z = 0) = 0 for m �= 0. (8.59)

Then the coefficients ch,i+1 of the (i+ 1)th layer are calculated from

ci+1 = Z−1
i+1 Ai(zi) for i = 0, 1, 2, ..., (8.60)

where Ai(z) is determined from (8.56). The normalized amplitudes Am,i(z)
are propagated through the layer system and yield the diffraction efficiency

ηm,i(z) = Am,i(z)A∗m,i(z) (8.61)

of the forward-diffracted orders.

8.6 Numerical Results for Zone Plates
with High Aspect-Ratios

The development of zone plates that are suited for the photon energy range
of 2–10keV is a current field of activity in X-ray optics. One aim is to man-
ufacture zone plates with high resolving power and high diffraction efficiency
by the sputtered sliced technique (see also Sect. 8.5). Here some criteria for
tolerable interdiffusion and roughness values are derived from coupled-wave
calculations for the zone structures.

We start our considerations with zone plates made from alternating Ni
and SiO2 zones, which were sputtered with slight modifications on a glass
microwire and sliced afterwards [22]. From the theoretical point of view these
zone materials are well suited for the energy range mentioned above. Also at
soft X-ray wavelengths in the water window a high efficiency is achieved if the
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Fig. 8.13. First-order diffraction efficiencies for different interdiffusion widths
Δxdiff = 0, 10, and 20 nm at λ = 0.3 nm of zone structures made by alternately
depositing nickel and silicon dioxide with L:S = 20nm:20 nm as a function of
the zone height. Parameters: unslanted zone structures and imaging magnification
M = 1,000×. The plot shows that the optimal zone height increases with increase
in interdiffusion

zone height is adapted to the required optimal values, which are much smaller
than that for higher X-ray energies.

Now the effect of interdiffusion and roughness in zone structures made of
the materials Ni and SiO2 is studied for Λ = 40nm zone period at 0.3 nm
wavelength. Figure 8.13 shows the first-order efficiency, η1(z), for interdiffu-
sions of Δxdiff = 0, 10, and 20 nm. It is found that the interdiffusion should
not exceed approximately Δxdiff ≤ Λ/3, otherwise the first-order diffraction
efficiency significantly decreases and the maximum efficiency is achieved only
at larger zone heights. Roughness, given as a function of the zone height,
is included in the calculations of the Ni/SiO2 system mentioned above by
composing the zone structures from layers of 20 nm height. With N = 500
layers a maximum zone height of 10 μm is achieved. Each layer is randomly
shifted in the x-direction as shown in Fig. 8.11, which can quantitatively be
characterized by the root-mean-square (RMS) roughness σ:

σ =

√√√√ 1
N

N∑
i=1

(Δxi)2. (8.62)

Figure 8.14 shows the first-order efficiency η1(z) for the Ni/SiO2 layer
system as a function of the zone height for different RMS-values at λ = 0.3 nm
wavelength.

It can be seen how the maximum diffraction efficiency decreases with
increasing RMS roughness. Furthermore, if roughness is present the optimal
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Fig. 8.14. First-order diffraction efficiencies η1(z) for different root-mean-square
roughnesses σ = 0, 2.8, 5.7, and 7.3 nm at λ = 0.3 nm of zone structures made of
nickel and silicon dioxide with L:S = 20 nm:20 nm as a function of the zone height.
Parameters: unslanted zone structures and imaging magnification M = 1,000×.
Note that the optimal zone height increases with increasing roughness, whereas η1
decreases
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Fig. 8.15. Sixth-order diffraction efficiency η6(z) for different RMS values of
sigma = 0, 2.9, and 5.9 nm. Parameters: rectangular nickel zone structures with
L:S = 42 nm:78 nm parallel to the optical axis, 2.4 nm wavelength and imaging
magnification M = 1×. Note that the optimal zone height is almost not altered, but
η6 decreases

zone height is achieved at larger zone heights. Therefore, it is proposed that
σ ≤ Λ/7 should be selected as a criterion. If it is fulfilled, the maximum
diffraction efficiency is reduced by less than 20%.

The effect of roughness on the high-order diffraction efficiency of zone
structures is shown in Fig. 8.15, where the Bragg condition is fulfilled for
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the sixth-order. This roughness simulation for nickel zones with L:S =
42nm:78 nm shows a different behavior for the sixth order diffraction efficiency
than that obtained for the first-order radiation. The optimal zone height is
not significantly shifted by roughness, only the diffraction efficiency decreases
with increasing roughness. If we tolerate again an efficiency reduction of 20%
due to roughness, we get – from Fig. 8.15 and additional calculations with
other parameters – for the high-order diffraction the criterion σ ≤ Λ/(7m).

The effect of roughness on the imaging quality of zone plates is not eval-
uated here. However, it can be argued that the image quality is degraded
if the complex field amplitudes Am(z) vary randomly from local zone plate
area to local zone plate area. This means that also the wave-front generated
from the local zone plate areas varies randomly, whereas the wave-front of a
perfect focusing optic is a monotonic function of the radius of the optic. It
is therefore recommended that the effect of roughness on the resolving power
of sputtered sliced zone plates is studied in future works. Summing up, it is
shown by model calculations using coupled-wave theory that both interdiffu-
sion and roughness can reduce ηm [23]. In practice, the two materials for the
zone structures have to be selected very carefully, because low interdiffusion
and roughness have to be realized at the interfaces at the same time. Since the
maximum of the first-order diffraction efficiency is shifted in the presence of
interdiffusion and roughness, an exact knowledge of these parameters yields
the zone height to be processed for an optimal diffraction efficiency η1.

8.7 Nonrectangular Profile Zone Structures

The diffraction efficiency of diffractive optical elements depends on the zone
profile realized by nanostructuring processes. The influence of the profile of
the structures on the diffraction efficiency will now be studied. For this pur-
pose the theory described in Sect. 8.5 for roughness simulation is applied to
describe arbitrarily shaped zone profiles. A change of the profile in the direction
of the optical axis (z-axis) often can be observed for zone plates processed by
electron-beam lithography and reactive ion etching techniques. These profiles
cannot be described by a single Fourier expansion. (A single Fourier expansion
was used to describe the modulated permittivity in the wave equation for rect-
angular profiles.) However, arbitrarily shaped zone profiles may be subdivided
into thin layers. Each layer is again described by a rectangular profile with
line-to-space ratio L:S and the shift parameter, Δxi, for the radial position
(see Fig. 8.11 and (8.52)). With this method any profile can be synthesized.
Similar to the roughness calculations, the field amplitudes are propagated
through the layer system using the previous formalism of the coupled-wave
theory. Note that the eigenvalues and eigenvectors of the grating matrix have
to be calculated separately for each thin layer. In practice, it is sufficient to
approximate zone profiles by about 50 layers.
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Fig. 8.16. Profile of zone structures with nonrectangular shape, periods of 40 nm,
and 280 nm height approximated by 50 grating layers of 5.6 nm thickness

Zone profiles with high apect ratios, which are manufactured by reactive
ion etching (RIE) techniques, can show deviations from the ideal rectangular
shape, which has been demonstrated for grating structures manufactured in
germanium [24]. An example of an etched profile, e.g., for organic polymer
structures, which can be filled with nickel by electroplating, is illustrated in
Fig. 8.16. After electroplating, the organic polymer structures are removed
by RIE. Therefore, the inverse structures of Fig. 8.16 are relevant for the
diffraction analysis of nickel zone plates. The profile of Fig. 8.16, its inverse
profile, and an ideal rectangular profile were used to calculate the first-order
diffraction efficiency of nickel structures with 40nm period by coupled-wave
theory. The results are plotted in Fig. 8.17.

No significant loss of diffraction efficiency is obtained for the first-order.
Therefore, one can expect that a nanostructuring process for nickel as the
material for high-resolution zone plates working in the first-order should
deliver high diffraction efficiency even if a rectangular zone profile cannot
be realized perfectly.

The results presented in Figs. 8.5 and 8.17 suggest that nickel is well suited
for the diffracting structures of zone plates. In particular nickel requires the
lowest aspect-ratio for an optimal diffraction efficiency.

8.8 Rigorous Electrodynamic Theory of Zone Plates

In the previous sections the diffraction efficiency of zone plate structures
was analyzed by applying the first-order coupled-wave approach. Because
of the absorption of X-rays in matter, the calculated field amplitudes are
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Fig. 8.17. First-order diffraction efficiencies as a function of the zone height for
nickel structures with an ideal rectangular profile (L:S = 20 nm:20 nm), the profile
shown in Fig. 8.16 and the inverse profile of Fig. 8.16. Parameters: 2.4 nm wavelength,
zone structures parallel to the optical axis, and imaging magnification M = 1,000×.
No significant change in the first-order diffraction efficiency is obtained if the profile
slightly alters its shape

attenuated in the zone structures and the sum of the diffraction efficien-
cies of all orders should continuously decrease with increasing zone height.
However, it was found by numerical calculations that the solutions of the first-
order coupled-wave approach do not converge if the zone width becomes as
small as the wavelength. To overcome this weak point, the first-order coupled-
wave approach can no longer be applied. The diffraction of zone plates with
very high resolving power and numerical aperture has to be analyzed by the
rigorous coupled-wave theory (RCWT).

In the RCWT, the second-order derivatives in the differential equation
systems are retained and boundary diffraction is included. This was described
at first in [25] for the calculation of cosine-modulated phase gratings with-
out loss by absorption. Applying the RCWT in the X-ray domain to describe
dielectric gratings requires the inclusion of absorption as well as phase shift,
because the imaginary part and the real part of the complex refractive index
are almost equal. Another advantage of the RCWT is that the illumination
angle of the incident plane-wave is no longer restricted to values that do not
lead to significant intensities of reflected waves. Therefore, accurate calcula-
tions of reflection gratings can also be performed, because waves, diffracted
forward as well as backward, are taken into account in the electrodynamic
description. The rigorous coupled-wave formalism is now derived for infinite
gratings, in order to describe zone plate diffraction with zone structure widths
near the wavelength more accurately.
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We proceed further with infinite gratings and study the effect of retaining
the second-order derivatives of the field amplitudes in the rigorous coupled-
wave equations (see (8.34) and (8.56)) given by

d2Am(z)
dz2

− 2 j ρm,z
dAm(z)

dz
− (| ρm |2 − k2

0 ε̄)Am(z) + k2
0

L

L+ S
Δε

×
∞∑
h

sinc
(
hπ

Δxdiff

Λ

)
sinc
(
hπ

L

L+ S

)[
Am−h(z) +Am+h(z)

]
= 0, (8.63)

which is a set of second-order linear differential equations with constant coef-
ficients. The problem leads to an eigenvalue problem, which is solved numer-
ically after including the boundary conditions and restricting the number of
grating harmonics to a finite number.

An advantage of retaining the second-order derivatives in the RCWT is
that the boundary conditions can be included for both the electric and mag-
netic fields. Therefore, reflected waves can also be evaluated. However, the
validity of the first-order approach can be verified by comparing the results
with (more time consuming) calculations performed by RCWT. Numerical
results from the RCWT calculations are shown in Fig. 8.18. The calculation is

Fig. 8.18. Fisrt-order diffraction efficiency of a nickel zone plate with 200 nm
high zones as a function of the zone width calculated by RCWT and CWT. X-ray
wavelength is 2.4 nm
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performed for the first-order diffraction efficiency of a nickel zone plate with
a zone height of 200 nm, an X-ray wavelength of 2.4 nm, and a line-to-space
ratio of L:S = 50:50. Additionally, to RCWT calculations results of CWT
calculations are plotted for comparison.

Scalar theory predicts a constant efficiency of about 22% independent
on the zone width. The RCWT predicts for zones parallel to the optical axis
that the diffraction efficiency decreases continuously if the lateral dimensions
of the zone width approach the wavelength used for imaging. For an outermost
zone width of drn = 8 nm, the diffraction efficiency is close to 0%. Note that
a maximum diffraction efficiency of about 4.6% is obtained for parallel zones
with drn = 8nm if the nickel zone height is reduced to 96 nm, i.e., volume
effects are reduced.

The RCWT calculations plotted in Fig. 8.18 also show that the difference in
diffraction efficiency is small between TE and TM polarization. By comparing
the RCWT and the CWT calculations (Fig. 8.18), it can be concluded that
the CWT gives a sufficiently accurate prediction of the diffraction efficiency
for a zone width larger than 5 nm.

8.9 Proposed Fabrication Process
for Volume Zone Plates

The resolving power of zone plates scales with the order of diffraction m.
By applying high-order of diffraction, it is possible to increase the resolu-
tion without the need to manufacture increasingly smaller outermost zone
widths far below 20 nm. High-orders for imaging requires manufacturing tilted
zone structures with aspect ratios of about 20:1. This is far beyond the cur-
rent nanostructuring processes used for zone plate fabrication. To overcome
the extremely difficult problem of manufacturing tilted zones with such high
aspect-ratios (≥20:1), we propose manufacturing zone plates on top of each
other with slightly decreasing zone radii (see Fig. 8.19).

To a good approximation – depending only on the number of layers – the
zones can be tilted according to the local Bragg condition and each single layer
requires only structures with moderate aspect-ratios. An ideally tilted zone
plate pattern will be approximated by a stack of zone plates. The quality
of the approximation and, therefore, the expected diffraction efficiency will
depend on the number of fabricated layers and on the overlay accuracy for
the layers. Therefore, we study the influence of both effects on the diffraction
efficiency in the following.

Theoretical results on the dependence of the number of layers are shown
in Fig. 8.20. The calculations are performed for the whole stack similar to the
theory applied to the roughness calculations performed in Sect. 8.5. The fifth-
order diffraction efficiency is plotted as a function of the number of layers for
different line-to-space ratios. To obtain 10 nm Rayleigh resolution, the period
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Fig. 8.19. Proposed fabrication process for zone plates with tilted zones and high
aspect-ratio

Fig. 8.20. Fifth-order diffraction efficiency plotted as a function of the number of
layers and the line-to-space ratio of the minimum structures

that has to be manufactured is 84 nm. For the plotted example with a line-
to-space ratio of 30%, 25-nm-wide nickel zones have to be fabricated, which
are separated by 59 nm wide spaces. The total height of the nickel zones is
900nm. This means for five layers, the thickness of a single layer is 180nm.
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Referring to a line-to-space ratio of 30%, e.g., the 59-nm-wide spaces and the
proposed fabrication process, the aspect-ratio of the plating mould structures
is only 3:1.

The line width that has to be exposed by electron-beam lithography is
25 nm, which can be done routinely. The plot in Fig. 8.20 also shows that
the efficiency converges with an increasing number of layers to the optimal
diffraction efficiency for ideally tilted zones, which has almost the same value
as calculated for 50 layers. About 16% diffraction efficiency is obtained with
five layers, which is about half the value of ideally tilted zone structures.

However, the fabrication process proposed in Fig. 8.19 requires a very high
overlay accuracy for electron-beam writing. The plot in Fig. 8.21 shows the
efficiency of the fifth-order of diffraction for five layers as a function of the
maximum positioning error of the layers during electron-beam lithography for
a line-to-space ratio of 25%. For the calculation, a linear grating is assumed
instead of a circular zone plate pattern. The first layer of the stack is expected
to be at its ideal position. Each of the following four layers is shifted randomly,
relative to its ideal position by a positioning error of 0 nm, ±1 nm, ±2 nm,
±3 nm, or ±4 nm. For all possible combinations of the 5 layers the corre-
sponding diffraction efficiency is calculated. These combinations are sorted by
the respective maximum absolute value of the positioning error, which occurs
in one combination and are plotted in Fig. 8.21. For a certain positioning error
the possible minimum and maximum efficiency values as well as the average
efficiency value obtained from all possible combinations are plotted.

Fig. 8.21. Fifth-order diffraction efficiency (five layer, 30% line-to-space ratio)
plotted as a function of the maximum efficiency error of a layer
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We conclude that an overlay accuracy of ≤2 nm is required to obtain
sufficient efficiency for a volume zone plate with 10 nm Rayleigh resolution.
Recently, such an overlay accuracy in the range of the required value for the
volume zone plate was reported [26].
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Slope Error and Surface Roughness

F. Siewert

Abstract. This chapter describes the diffraction theory relationships between
figure errors of grazing incidence mirrors and their imaging performance at syn-
chrotron radiation beam lines. A practical illustrative example is the topographic
errors of a synchrotron mirror as a function of spatial frequency. The basic idea of
figure error inspection by direct slope measurement is described.

Mirrors of high shape accuracy used in grazing incidence are essential to
focus or collimate the light in synchrotron radiation (SR) beamlines. Thus,
many of the synchrotron laboratories have been established the expertise and
equipment to measure the critical characteristics of high performance optical
elements. Better knowledge describing the shape of an optical element allows
better modeling, optimization, and in the final analysis, performance of opti-
cal systems. The quality of reflective optical elements can be described by
their deviation from ideal shape at different spatial frequencies. Usually one
distinguishes between the figure error, the low spatial error part ranging from
aperture length to 1 mm frequencies, and the mid- and high spatial error part
from 1mm to 1 μm and from 1 μm to some 10nm spatial frequencies, respec-
tively [1, 2]. While the figure error will affect the imaging properties of the
system the higher spatial frequency errors will cause light to be deflected or
scattered away from the spectral image. The quantitative description of the
surface errors of a reflecting optical element can be statistically interpreted
in terms of power spectral density function, PSD, and summarized as the
slope error and the surface roughness. Based on Kirchhoff’s theory of diffrac-
tion, Church and Takacs [2, 3] have developed a model to describe this (see
also [4, 5]). The natural “system coherence length,” W , is given by

W =
√

2
λ

Θ cos θi
(9.1)

with Θ as the angular radius of the system image (customer given), θi is
the angle of incidence relative to the mirror plane, and λ is the operating
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wavelength. W is the surface spatial wavelength that diffracts to the 1/e
intensity point in a Gaussian system image [2, 3]. In the case of diffraction
limited optical elementsW is approximately the length of the illuminated area
of the mirror of the length L. In the case of system limited optical components
assumed here it is much less than L [2]. In the case of synchrotron optics W
is a wavelength between the spatial wavelengths ranging from λ to L. We
assume that the influence of the mirror errors on the image quality can be
described by the on-axis Strehl factor for the grazing incidence case, (1.3) [2].
The on-axis Strehl factor

I(0)
I0(0)

(9.2)

is given as the ratio of the on-axis intensity in the presence of real surface errors
to its value for zero errors. For the grazing incidence case can be written [2]:

I(0)
I0(0)

≈ 1− 8
Θ2
δ2 −

(
4π
λ

cos θi

)2

σ2, (9.3)

where δ and σ are the bandwidth limited values of the rms values of the slope
error (δ) and the roughness (σ) given by [2]

δ2 = (2π)2
∫ 1/W

1/L

dfxS1(fx)f2
x (9.4)

and

σ2 =
∫ 1/λ

1/W

dfxS1(fx). (9.5)

S1 (fx) is the profile spectrum of the surface under test (SUT).
The surface roughness can be measured using an interferometric micro-

scope or atomic force microscope (AFM). To inspect the slope error, a different
measuring technique is used: interferometry or various types of surface pro-
filers. The use of an interferometer, to inspect optical components, requires
a reference of complementary shape and excellent quality. Due to the fact
that many of the necessary optical components are of aspherical shape and
are designed individually for each SR-beamline, such reference objects would
cause an extraordinary expense for the metrology. In addition, the quality of
the references used limits the accuracy of the result of the metrology. Because
of the flat (grazing) angles used in SR-beamlines, synchrotron mirrors may
have a length of up to 1m and more and have a large ratio of length to width.
Thus, basic conditions have lead to the idea of inspecting the shape of optical
elements in the long dimension by slope measurement. A few slope measuring
instruments have been developed during the last two decades, foremost among
them, the long trace profiler (LTP) [6, 7], and recently the nanometer optical
component measuring machine (NOM) [8, 9] and the extended shear angle
difference method (ESAD) [10,11]. These methods are based on the principle
of direct measurement of slope deviation and curvature and, in contrast to
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Fig. 9.1. Different measuring instruments cover different ranges of spatial frequency.
Tangential 1D PSD spectra obtained with the 6-in ZYGO-GPITM interferometer,
the LTP-II, the Micromap-570TM, the AFM and the CXRO reflectometry and
scattering experimental facility at the advanced light source (ALS). The figure
is a compilation of data published in [5, 12] (courtesy of Valeriy V. Yashchuk,
LBNL/ALS)

other methods, yield results without the need for a reference. The measure-
ment result is directly traced back to SI base units angle and length (SI – is
the International System of Units). The measurement is a noncontact scan by
using a laser source to create a measurement beam. Depending on the angular
acceptance of the instrument, it is possible to measure the geometry of any
reflective surface.

Figure 9.1 shows the range of spatial frequencies to be inspected by using
different metrological instruments [5]. In the case shown, a stainless steel
mirror was investigated using different measuring techniques over a spatial
frequency range from ∼10−6–10−2 μm [5,12].

9.1 The Principle of Slope Measurements

To measure the shape of an optical element a test beam from a laser source
is reflected from the SUT. The relative position after reflection from the SUT
is determined by the local shape and is detected on a sensor. The reflection
of a test beam from a mirror along the axis of the instrument will depend on
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Fig. 9.2. Result of a direct slope measurement (NOM-scan): slope profile of a plane
mirror (top) and the corresponding profile of height (below), obtained by integration
of the slope data

the angle θ, of the mirror’s normal with respect to the propagation direction
of the laser beam [13,14]. The slope δ is

δ(x) = tan θ = dy/dx. (9.6)

Of interest is the relative slope along the line of inspection. What is detected
in the sensor is the change in angle of reflection from one position, x, on the
SUT to the next position, x+ Δx. From these data the height profile can be
obtained by an integration of the slope function δ(x) over the abscissa x, see
also Fig. 9.2. The height function is given by

h(x) =
∫ x=scanstop

x=scanstart

δ(x)dx (9.7)

The commonly used criteria for the characterization of the shape quality is the
figure slope error or residual slope error, obtained by subtracting the profile
for the theoretically perfect geometry from the raw slope data.
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The Long Trace Profilers

A. Rommeveaux, M. Thomasset, and D. Cocco

Abstract. The Long Trace Profiler (LTP) is the most commonly employed instru-
ment for measuring grazing incidence optics used in synchrotron radiation. This is
a direct slope measurement device, able to detect root mean square slope variations
of the order of 0.1 μrad. It was originally developed at the Brookhaven National
Laboratory in Upton, NY, but several custom modified devices are used at labo-
ratories around the world. In this chapter the main principles as well as various
modifications are described, in order to give a general overview of what is possible
with such instruments.

10.1 Introduction

In this section, we will describe the characteristics of the long trace profiler
(LTP), the most commonly used instrument for measuring grazing incidence
optics used in synchrotron radiation. Some features are common to all the
LTPs available around the world. Many laboratories have modified their
instrument according to their own particular needs or to try to improve
the performance. However, the underlying principle is more or less the same
and will be described here. Some variations for improving or customizing the
instrument will be also highlighted.

This section together with the section on the NOM, are intended as a
guideline for the choice of a particular trace profiler or its configuration,
depending on the requirements and available budget.

10.2 The Long Trace Profiler

The most frequently used instrument for grazing incidence optics is the
LTP. This instrument was developed at Brookhaven National Laboratories by
Takacs et al. [1–4], and marketed by Continental Optical Corporation (later
on by Ocean Optics [5]). It is basically a double pencil, slope-measuring inter-
ferometer, able to directly measure the slope of optical surfaces of any shape
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Fig. 10.1. Picture of the first LTP. The optics head moved on a ceramic bar and
no reference mirror was used. Picture courtesy of Peter Takacs (Brookhaven)

up to 2 m in length (depending on the setup). Under optimum operating con-
ditions, very precise measurements, with a repeatability better than 2 nm P–V
(or 0.1 μrad rms) can be made.

Figure 10.1 shows the first ever LTP to be produced. It was installed
and tested at Brookhaven National Laboratory. In this set up, an optics head
moved along a ceramic beam, using air–vacuum bearing pads. A linear encoder
was used (as today) to determine the position of the measurement.

The most important part of the instrument is, of course, the optics head.
The schematic shown in Fig. 10.2 includes some improvements to the original
design. Originally light coming from a laser diode is collimated and sent to a
beam splitter and corner reflectors so that two parallel, collimated, coherent
beams emerge downward toward the surface under test (SUT). The beams
reflected by the SUT return into the optical system, and a beam splitter
directs the returning beams into the Fourier transform lens (FTL), which
produces an interference pattern at the linear detector array. The interference
pattern contains a sinusoidal component whose phase depends on the angle
of the beam pair with respect to the optic axis, or on the phase difference
between the two beams, produced by the local angle of reflection of the SUT.
Therefore, the position of the sinusoidal component will directly depend on
the slope of the surface at the position where the laser hits the surface.
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Fig. 10.2. Drawing of the optical setup for the LTP 2. The laser beam is split into
two pairs of beams. One is sent to a fixed reference mirror (to compensate for the
nonlinear movement of the head) and the other is sent to the SUT

In other words, the FTL converts a tilt induced in the laser beam pairs,
by the mirror local slope, into a variation of the position of the interference
pattern in the focal plane itself. Using a linear array detector to measure the
position of the minimum of the interference pattern, one can directly measure
the slope of the optic, point by point.

In principle, the measured pattern will depend only on the slope of the SUT
but, in reality, it depends on a number of additional factors, like the beam
pointing instability of the laser, the nonlinearity of the motion of the carriage
on the ceramic bar, imperfect optics inside the optics head, random errors.

Over the years, most of these problems have been overcome. A major
source of error was the imperfect movement of the optics head on the ceramic.
As the beam propagation direction at the laser changes, the angle of the beam
with respect to the optic axis also changes. However, if one can simultaneously
measure the SUT and a fixed reference mirror, one can subtract the reference
signal from that of the SUT and, apart from random noise, one can perfectly
compensate for this effect. This first modification drastically improved the
performance of the LTP, down to the microradian level (this is the main
improvement of the LTP 2). To measure the reference mirror, the laser beam
pair is divided in two by a further corner cube beam splitter. One of the two
beam pairs is sent to a second mirror, rigidly mounted on one of the legs
supporting the ceramic bar and the beam reflected by it is measured together
with the beam reflected by the SUT.

Other sources of error include refractive index changes in the air where
the beams propagate (due to air turbulence induced by sound and thermal
waves), thermal instability which act on the laser as well as causing defor-
mation of the mechanical mounting, mechanical relaxation. Several in-house
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modifications were necessary over the years to improve the performance of the
different LTPs to meet the increasingly demanding precision requirements of
mirrors in the synchrotron radiation field [6]. In the following, some of the
most frequently adopted modifications will be described. In some LTPs, the
solid-state laser source was substituted with a He–Ne laser tube, connected
to the optics head by means of a polarization-preserving optic fiber. This is a
very stable source in terms of wavelength, which is a critical requirement when
the groove density variation of diffraction gratings has to be measured [7–9].
Moreover, Qian [10] suggested a different method of scanning by moving only
a pentaprism. In this case the optics head is stationary and the laser is sent to
the scanning pentaprism. The main advantages of such a configuration were
the introduction of an angle-maintaining pentaprism (less sensitive to vibra-
tions and to the tilting errors of the scanning translation stage), a significant
weight reduction of the movable part of the interferometer (with an obvious
decrease of the mechanical flexure of the scanning slide), and an easy switching
between side-mounting and upward facing configurations for the SUT. Nev-
ertheless the use of a pentaprism can reduce the precision of the profilometer
since the beam has to cross it twice. In fact, an imperfect surface, in par-
ticular in terms of microroughness, introduces a phase shift between the two
beams retro reflected by the SUT. This is seen as a false slope of the mirror
and therefore introduces systematic errors which are not easily removed. This
problem can be overcome by using a pair of superpolished mirrors mounted at
22.5◦ acting in the same way as the reflecting part of the pentaprism. Unfor-
tunately these are not the only optical components along the path of the laser
beam. Therefore, one of the main limitations of the LTP is the presence of
systematic errors due to imperfect optics used in the profilometer.

Another important, and fundamental, hardware improvement is related
to environmental condition control (mainly temperature stability and air
turbulence along the laser beam path). The fundamental need is to shield
completely the area where the scan is made from the external laboratory. This
avoids air turbulence which introduces random noise in the measurement. In
addition thermal stabilization is very important, and several solutions have
been adopted with or without active temperature control. If the tempera-
ture changes during a scan, an artificial slope is introduced, resulting in an
incorrect measurement of the radius of curvature of the optic. Precise ther-
mal monitoring at different points inside this inner room or, even better, by
looking at a reference mirror to be sure that no thermal effect are present is
therefore mandatory if sub-microradian level of precision is required.

With such environmental control, it is possible to reach a very good level of
repeatability. An example, obtained at Elettra, is plotted in Fig. 10.3, where
the same mirror was measured on different days, but the measured residual
slope errors differ by less than 0.04 μrad.

Another important source of error is the misalignment of the different
optics present in the optics head, in particular relative to the position of the
linear array detector which has to be “exactly” in the focal position of the
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Fig. 10.3. Different measurements of a 250 mm long mirror. The measured resid-
ual slope errors differ by less than 0.04 μrad. The curves are shifted to be easily
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FTL [11]. The detector must be in the focal plane of the lens with a precision
better than 0.1mm. If the beam is focused either before or after, it will impinge
on the detector in a different position with respect to the focused one. This is
again a systematic error that can be eliminated by proper alignment which can
be performed in several ways. One of the easiest ways is to measure a mirror at
different positions of the detector. Any discrepancy among the measurements
means that there is a misalignment of the lens and, by trial and error, one
can correct it.

A better way to calibrate an LTP, to estimate and if possible eliminate the
systematic errors, is to use a calibrated reference mirror, i.e. a mirror with a
well-known profile. Of course, this raises the problem of finding the real profile
of the reference mirror. This can be overcome by making cross measurements
at several laboratories and with different instruments.

A cross calibration measurement campaign started in 2004, among some
of the major European laboratories [12], with the aim of defining a set of
reference optics, of calibrating the different instruments, and of finding the
limit of their performances (under the European funded action COST P7 [13]).
The results and the procedure adopted in such a round robin will be described
in detail in chapter 14.

10.3 Major Modifications
of the Original Long Trace Profiler Design

There are a number of “homemade” LTPs in various laboratories. One of
these, the NOM machine developed at Bessy, is described in detail in the
chapter 11. Other designs use the pencil beam concept of Von Bieren [1]
but with major modifications with respect to the original LTP solution. An
example of this is the completely homemade design of the Soleil Profilometer,
described below.
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Fig. 10.4. Picture of the Soleil LTP with the environmental control enclosure

The SOLEIL LTP was constructed from a custom 1-m translation stage
on air bearings powered by a linear motor (Fig. 10.4). It was designed to
make “on the fly measurements.” The guide surfaces of the air bearing are
directly manufactured in the granite optical table. Large distances between the
bearings ensure a high stability of the three angle components. Pitch, roll, and
yaw errors have been measured along the whole carriage travel and are lower
than 5 μrad rms. The position of the carriage is read by a Heidenhain optical
encoder with 1 μm precision. The absolute accuracy has been controlled with
an Hewlett-Packard interferometer and is better than 5 μm over the whole
travel range. The carriage is able to support an overall weight of 45 kg.

The optics scheme is a variant of the pentaprism LTP described by Qian
et al. [10] and is shown in Fig. 10.5. A fixed optical system creates a collimated
light beam which is sent to the movable optical head, parallel to the motion
direction. The beam is then reflected by the combination of three reflectors
(mirrors or total reflection prisms) toward the SUT.

The advantage of the roof configuration of M1 and P1 is to allow a variable
distance between these two elements and therefore an easy way of changing
the transverse position of the measured track on the SUT without moving the
latter. The prisms P1 and P2 are glued together for better stability and ease of
manipulation. The stabilized beam is then reflected by the SUT and the local
slope affects the return direction which is measured by the lateral position
of the image spot on the CCD camera. Between the prisms and the SUT a
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Fig. 10.5. Setup of the LTP of Soleil which was made in-house

compact polarization interferometer is inserted whose main components are
a quarter wave plate and a Wollaston prism. The interferometer is completed
by the polarization beam splitter which acts as a polarization filter.

The vertically polarized beam from the laser source is sent to the optics
head while the horizontal component of the returning beam is sent to the
camera.

The cut angle of the Wollaston prism is calculated to produce a sinusoidal
fringe pattern with a period of about 2.5mm when used in double pass (5 mm
in single pass) between cross polarizers. The size of the beam is defined by an
iris aperture located as close as reasonably possible to the SUT so that the
probe beam size is precisely defined. The only precaution is to “clean” the
beam by focusing the laser source (λ = 532 nm) on a small pinhole.

The camera is a C8040-96 Hamamatsu digital CCD camera, with 1,280×
1,024 pixels at 6.7 × 6.7 μm pixel pitch and integrated microlenses. A 2D
detector allows the alignment of toroidal mirrors in the longitudinal direction
with a precision better than 20 μrad. Objective lenses of different focal lengths
can be used in the fixed optics part. A 500mm focal length is normally used.

The Wollaston interferometer has been chosen for its ease of implementa-
tion and very high stability. In order to get a symmetrical image with a sharp
central minimum on the CCD camera, the dark fringe of the Wollaston must
be properly centered on the aperture. This is done by centering the Wollaston
and by fine adjustment of the quarter wave plate orientation. However it can
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be shown that the spurious signal resulting from a slightly offset sinusoidal
fringe is in quadrature with the signal resulting from the centered fringe. The
depth of the image minimum is affected but its position does not change. The
position of the minimum is interpolated from nine bracketing points.

In some cases, namely when measuring gratings [7–9], the SUT reflectivity
will be different for polarization along or perpendicular to the track direction.
In order to minimize the loss of fringe contrast in this case we use a specially
cut Wollaston prism arrangement where the optical axes of the two prisms
are set at 45◦ to the wedge direction and therefore parallel to the quarterwave
plate axes, instead of being parallel and perpendicular to the wedge as it is
usually constructed. Due to the symmetry, the reflected components for the
two principal directions of polarization are equal and the fringe contrast is
preserved. Finally the direction of the probe beam can be chosen by different
arrangements of the mirrors and prisms in the moving head. By rotating
P2 by 180◦ around the X-axis before gluing, we obtain an upward pointing
stabilized beam. The actual configuration used to measure downward facing
surfaces is obtained by inserting between M1 and P1 a periscope composed of
two flat and parallel mirrors which brings the beam up without changing its
direction. Side illumination is realized using the same principle with M1 and
the following prisms in an upward pointing configuration, turned 90◦ around
the incoming beam so that the lateral direction of the equivalent roof reflector
is now along Y instead of Z.

A 500m long instrument of the type described above is able to measure
slopes in the range of about ±5 mrad corresponding to a radius of 10m in a
100mm long mirror [14,15]. When this range is not enough, it is still possible
to extend the measurement length by stitching a series of successive scans with
different inclinations of the surface. A limited number of scans can be stitched
without degrading the accuracy as they can be overlapped sufficiently.

Another important issue is to be able to measure very long mirrors, up to
2m. With this target in mind, the European Synchrotron Radiation Facility
(ESRF) constructed its own trace profiler.

The ESRF LTP is a homemade instrument. The first version was built
in 1993 with the help of Takacs to measure long mirrors up to 1.5m [3].
Many modifications have been made to the original design: the source and
the detector are now separate from the moving optical head and fixed to the
table (Fig. 10.6), the source is a helium–neon stabilized laser fitted to the
optics head through a polarization-preserving optics fiber, a mirror assembly
equivalent to a pentaprism is carried by the linear motor stage guided by the
2.5m long ceramic beam.

The error in the linearity of the translation is optically corrected by the
pentaprism. A fixed reference mirror corrects for any source instabilities. The
detector is a 1,024 pixels photodiode linear array from Hamamatsu which gives
a maximum measurable range of 12mrad. Placed at the focal plane of the
lens (800mm focal lens), the sensor detects a fringe pattern intensity profile
resulting from the interference of the two beams coming from the Michelson
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Fig. 10.6. Optical setup of the ESRF long trace profiler

Fig. 10.7. ESRF LTP calibration setup

interferometer. The algorithm used to define its position on the detector is
based on a fast Fourier transform calculation. The software has been developed
using Labview R© as programming language and can be easily adapted for
specific needs. In the standard measurement configuration, the sample under
test is reflecting upward but an optical bracket can be added to this setup if
the SUT is reflecting downward.

Measurements are taken “on the fly”; the data are collected while the
optical head is smoothly moving above the mirror at a constant speed of
40 mm s−1. The LTP is surrounded by a Plexiglas enclosure which reduces
greatly the air turbulence. Measurements can be carried out faster, thus
repeatability has been improved and is better than 0.05 μrad rms, while the
slope accuracy on flat mirrors is better than 0.2 μrad. To ensure a reliable
measurement, an important issue is the determination of the calibration fac-
tor. At the ESRF a method based on the well-known wedge angle technique
is used; Fig. 10.7 shows the setup used for calibration. A motor displacement
of 1 μm induces a 1 μrad angular deviation. The precision achieved is 0.1 μrad.

The mirror to be characterized may be integrated on a static or bending
holder system. When no mechanical mounting system is provided, the mirror
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Fig. 10.8. Left: mirror facing down under LTP measurement – Right: detail of the
split retro reflector

is lying with its surface facing up on three balls or two cylinders separated
by a well-known distance. Thus the deformation induced by gravity can be
analytically calculated and subtracted from the measurement. Gravity can
have a strong influence on the slope error profile.

Nevertheless it is always preferable to measure a mirror as close as pos-
sible to its future working conditions on the beamline in terms of mounting
and the X-ray beam reflecting direction. For mirrors reflecting downward an
additional bracket with a split retro reflector is added to on the LTP moving
head (Fig. 10.8) in order to redirect the beam toward the surface through a
roof prism and a right angle prism. This combination keeps the number of
reflections needed to preserve the pentaprism correction. For further details
on the characteristics of this instrument, please see [16].
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The Nanometer Optical Component
Measuring Machine

F. Siewert, H. Lammert, and T. Zeschke

Abstract. The Nanometer Optical component measuring Machine (NOM) has
been developed at BESSY for inspection of the surface figures of grazing incidence
optical components up to 1.2 m in length as in synchrotron radiation beam lines. It
is possible to acquire information about slope and height deviations and the radius
of curvature of a sample in the form of line scans and in a three dimensional display
format. For plane surfaces the estimated root mean square measuring uncertainty
of the NOM is in the range of 0.01arcsec. The engineering conception, the design of
the NOM and the first measurements are discussed in detail.

11.1 Engineering Conception and Design

The nanometer optical component measuring machine (NOM) (Fig. 11.1) was
developed at BESSY for the purpose of measuring the surface figure of optical
components up to 1.2m in length used at grazing incidence in synchrotron
radiation beamlines [1–3]. With it, it is possible to determine slope and height
deviations from an ideal surface and the radius of curvature of a sample in the
form of line scans and in a three-dimensional display format. With the NOM
surfaces, up to 600 cm2 have been measured with an estimated measuring
uncertainty in the range of 0.05 μrad rms and with a high reproducibility. This
is a five- to tenfold improvement over the previous state of the art of surface
measuring techniques such as achieved using the Long Trace Profiler (LTP-
II) [3,4]. The NOM is basically a hybrid of two angle measuring sensor units, a
Long Trace Profiler (LTP-III) and a modified high resolution autocollimating
telescope (ACT). The latter (ACT) has been developed with a very small
aperture of about d = 2 mm [1] (Fig. 11.2). The measuring principle of both
sensors is noncontact deflectometry. In both cases, no reference surface is
needed. The LTP III head is a BESSY-specified development by Ocean Optics
Ltd. in cooperation with Peter Takacs (BNL) who created the optical design.
The autocollimator used is a special development by Möller Wedel Optical
GmbH. The two sensors are mounted stationary and opposite to each other
on a compact stone base (Fig. 11.2) [1,3]. The two test beams are adjusted in a
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Fig. 11.1. The nano optic measuring machine NOM at BESSY. To insure stable
environmental conditions the instrument is enclosed in a double walled housing

Fig. 11.2. Optical set up of the NOM

straight line to each other and are guided by a pentaprism or double reflectors
to and from the specimen. The influence of the pitch tilt on the measurement is
compensated for by the 45◦-pentaprism design. The reflector unit is mounted
on a movable air-bearing carriage system on the upper member of the stone
frame. It consists of two parts: (a) one carriage for the motor, which is linked
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Fig. 11.3. Thermal stability at the BESSY metrology-Laboratory (blue line) and
inside the NOM housing (green line)

by a torque-free coupling to the second, (b) the main carriage with the open
pentaprism. A second air-bearing movable Y-table below positions the sample
laterally. The drive units are linear motors. Both a step-by-step and an on-
the-fly modus are available for data acquisition. To guarantee a maximum of
thermal stability, the complete heat load of the NOM is limited to less than
2W. Furthermore, the NOM is enclosed by a thermally stable, double-walled,
and thermal-bridge-free housing in a temperature controlled measuring lab.
The housing also limits the influence of air turbulence on the measurement.
During measurement a temperature stability of 0.1 mK min−1 is maintained.
The material of choice for the mechanical part of the NOM is stone (Gabbro)
characterized by a sluggish response for thermal change. The use of metallic
parts among the mechanical parts is avoided as far as possible. The weight of
the compact stone parts of about 4,000kg is a simple but very useful technique
to damp the influence of vibrations on the measurement over a wide range
of frequencies. A monitoring system recording the mean environmental data
such as temperature, air pressure, humidity, and vibrations, as detected on the
measurement table close to the specimen, is part of the established conception
of metrology at BESSY. The measured temperature stability inside the test
housing of the NOM is as low as 15mK per 24 h (Fig. 11.3).

11.2 Technical Parameters

The measuring area of the NOM covers 1,200mm in length and 300mm later-
ally. The accuracy of guidance of the scanning carriage system is about ±1 μm
for a range of motion of 1.3m. A correspondingly high accuracy of guidance
is also achieved with the y-positioning carriage over 0.3m. The reproducibil-
ity of the scanning-carriage movement is in the range of 0.05 μrad rms. This
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Table 11.1. Technical parameters of the NOM sensors

LTP Autocollimator

View angle ±6.6mrad ±5mrad
Measurable radius 1m 10 m
of curvature
Spatial resolution about 1mm 2mm
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Fig. 11.4. Height profile of the center line of a 510 mm reference mirror (substrate
material Zerodur∗). Scan length = 480 mm. Peak to valley = 26.5± 0.6 nm. Spatial
resolution for this measurement: 5mm

reproducibility, combined with the insensitivity of the 45◦-double-reflector
for pitch, is an essential condition for the excellent measurement uncertainty
achieved. Table 11.1 shows the parameters of the two optical heads. Both offer
the possibility to scan plane, spherical, or aspherical surfaces. In the case of a
surface curvature of 10m or less the specimen is scanned by the LTP alone.

11.3 Measurement Accuracy of the NOM

To minimize the measurement uncertainty, possible systematic errors of the
measuring device must be determined. Systematic errors can be determined
by making a cross check using different methods for the measurement. This
approach has been realized here [7, 8]. A plane reference surface of 510mm
in length (substrate material Zerodur∗) has been measured using the NOM
at BESSY by the PTB (Physikalisch Technische Bundesanstalt) with the
extended shear angle difference (ESAD) method [9] and by stitching inter-
ferometry at Berliner Glas KG, the manufacturer of the reference. The ESAD
method is the national reference for flatness in Germany. Additionally, two
different measuring heads, based on different measuring principles, are an
integral part of the NOM itself. The influence of random deviations such as
mechanical vibration, instabilities caused by thermal effects, electronic noise,
changes of the refraction index by thermal change, variation of air pressure,
and humidity has been determined by comparing measurement data gained
under essentially identical conditions. The reproducibility achieved is better
than 0.01 μrad rms or 0.5 nm rms in height over a scan length of 480mm at
the center line of the sample (Fig. 11.4).
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Table 11.2. Summary of uncertainty terms for a 480 mm line scan at the NOM on
a plane reference surface (substrate material: Zerodur1)

Error source

ACT 0.015 μrad rms
Air turbulence 0.015 μrad rms
Beam guiding optics 0.005 μrad rms
Mechanical instability 0.005 μrad rms
Other random noise 0.010 μrad rms
Uncertainty overall uc 0.025 μrad rms
expanded uncertainty:
(k = 2)

0.05 μrad rms

1 Zerodur is a trade mark of Schott Glass Mainz/Germany
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Fig. 11.5. Slope profile (above) and height profile (below) of NOM-ACT and NOM-
LTP line scans, step size 0.5 mm on a 200 mm plane mirror. The LTP-slope profile
is the result of 26 averaged line scans. The reproducibility is about 0.12 μrad rms.
The ACT measurement consists of 14 averaged line scans with a reproducibility of
0.03 μrad rms. The estimated measurement uncertainty is 0.25 μrad rms for the LTP
and 0.05 μrad rms for the ACT result

It is difficult to eliminate all sources of systematic errors. However, com-
paring fundamentally different methods, NOM, ESAD, and interferometry,
is a very reliable test. The measurement uncertainty determined for the
NOM measurement is in the range of 0.05 μrad rms. Table 11.2 shows the
estimated uncertainty budget for the measurement result. Compared with
the measurements of the other partners in the round-robin procedure, a
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Fig. 11.6. Power surface density (PSD) curve of NOM-ACT and NOM-LTP line
scans on a 200 mm plane mirror

conformity in the range of 0.7 nm rms compared to ESAD and of 1.3 nm
rms to the result of the stitching interferometry has been achieved [10].

Figures 11.5 and 11.6 show the results of slope measurements on a 200-
mm-long plane mirror (substrate material: single crystal silicon) by use of the
two optical sensor units of the NOM. For both measurements a measuring
point spacing of dx = 0.5 mm was chosen. The conformity of both unfit-
ted results is in the range about 0.3 or 1.1 nm rms. The reproducibility of
0.03 μrad rms for the NOM-ACT measurement is about four times better
than the reproducibility of 0.12 μrad rms achieved for the NOM-LTP.

11.4 Surface Mapping

Highly accurate topography measurements of an optical surface are required
if optical elements are to be characterized in detail or to be reworked to a
more perfect shape. Figure 11.7 demonstrates in principle a three-step “union
jack” like method to scan the complete surface of a rectangular sample. To
generate a 3D-data matrix two sets of surface scans, each consisting of a mul-
titude of equidistant parallel sampled line scans, are traced orthogonally to
each other in the meridional and in the sagittal direction successively. Each
single surface line scan is taken on the fly. Between two single line scans the
sample is moved laterally by the Y -position table. The scan velocity selected
determines the measuring point spacing of the traced line. The lateral step
size is defined by selecting the lateral shift between the lines scans in the
start menu of the scanning software. In a final step the two diagonals have
to be measured as two individual line scans. After taking the data of the two
surface mapping scans, the root mean squares of the height data, obtained
by integration of the slope measurements, are minimized and the points of
the topography that lie on each of the measured diagonals are selected. Using
the directly measured diagonal as a reference, the rms values of the difference
between these two are obtained. In this way, a twisting of the surface, which
is recognized and measured in the direct measurement, is superimposed onto
the generated diagonal and correspondingly onto the entire array of x- and y-
data, yielding the genuine shape of the sample. The agreement of the diagonals
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Fig. 11.7. Principle of 3D-mapping (dimensions in millimeter)

Fig. 11.8. NOM 3D-measurement on a 310×118 mm2 Zerodur reference compared
to a measurement result gained by stitching interferometry. Result of the NOM-
measurement: height, 20.8 nm pv per 3.1 nm rms, and interferometry: height, 27.8 nm
pv per 4.4 nm rms

gained from the calculated surface map and the directly measured line scans is
taken as a criterion of accuracy of the measurement. In the case of plane sur-
faces an agreement in the sub-nanometer range is achieved. Figure 11.8 shows
the result of a comparison of a NOM-measurement with an interferometrical
measurement.
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Shape Optimization of High Performance
X-Ray Optics

F. Siewert, H. Lammert, T. Zeschke, T. Hänsel, A. Nickel, and A. Schindler

Abstract. A research project, involving both metrologists and manufacturers has
made it possible to manufacture optical components beyond the former limit of
0.5 μrad in the root mean square (rms) slope error. To enable the surface finishing, by
polishing and finally by ion beam figuring, of optical components characterized by
a rms slope error in the range of 0.2 μrad, it is essential that the optical surface
be mapped and the resulting data used as input for the ion beam figuring. In this
chapter the results of metrology supported surface optimization by ion beam figuring
will be discussed in detail. The improvement of beam line performance by the use
of such high quality optical elements is demonstrated by the first results of beam
line commissioning.

12.1 Introduction

To benefit from the improved brilliance of third generation synchrotron radia-
tion sources and sources such as energy recovery linacs (ERL) or free electron
lasers (FEL), optical elements of excellent precision characterized by slope
errors clearly beyond the state of the art limit of 0.5 μrad rms for plane
and spherical shapes are needed [1,2]. The challenging specifications for such
beam-guiding elements can be fulfilled by deterministic technology of surface
finishing, for example, by ion beam finishing (IBF) or computer controlled
polishing (CCP) [3, 4]. It is essential that the surface finishing be supported
by metrology instruments of accuracy 3–5 times superior to that of the desired
end product.

12.2 High Accuracy Metrology and Shape Optimization

Here a short description of the optimization of the surface of optical compo-
nents based on ion beam technology is given. To demonstrate the capability
of IBF supported by advanced metrology, three demonstration components
have been shape-optimized after classical and chemical–mechanical polishing
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Fig. 12.1. Three iterations of ion beam finishing on a 100 × 20 mm grating blank
(substrate material: Si). NOM measurement, spatial resolution: 2mm
First iteration: 11.8 nm pv
Second iteration: 5.1 nm pv
Final state: 3.3 nm pv
Residual slope error: 0.1 μrad rms
measured at the center line

by IBF technology. The demonstration components are one plane mirror of
310mm in length, one grating blank of 100mm in length, and a refocusing
mirror of plane–elliptical shape, 190mm in length [3]. To obtain an opti-
mal result of the surface finishing, the initial state of the substrate had to
have a microroughness essentially of that required at the end: 0.2–0.3nm rms
for the plane elements and <0.8 nm rms for the plane–ellipse. To finish the
plane grating blank, the substrate was measured by interferometry and on
the BESSY-NOM. To define the macroscopic shape of the surface, the NOM
3D-data were used. In addition, to have an optimized spatial resolution in the
range of 80–100 μm, required for the IBF, the interferometric data have been
fitted into this matrix. The progress in the shape optimization and the final
state of the blank of 0.1 μrad rms for the residual slope error is illustrated
in Fig. 12.1. In the case of this grating blank, the residual height deviation
of 0.38 nm rms and the microroughness of 0.2 nm rms, which were finally
achieved, are of the same order of magnitude. For the 310mm plane mirror
this procedure was in use for the first two iterations of ion beam treatment.
The last three steps were done based on interferometer data. In a completing
step the final state of about 0.2 μrad rms for the slope error was determined
by NOM measurements (Fig. 12.2)

The refocusing mirror was finished based on the data of NOM mea-
surements only (Fig. 12.3). For this purpose a measuring point spacing of
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Fig. 12.2. NOM-measurements on a 310 mm plane mirror (spatial resolution: 2mm,
substrate material single crystal silicon, 5 iterations of IBF were used). The residual
slope profile of the center line was the following: initial state, 1.69 μrad rms; after
1.IBF, 0.63 μrad rms; final state, 0.2 μrad rms

Fig. 12.3. Map of residual height of a plane–elliptical refocusing mirror after 1st
iteration of ion beam polishing and final state. The residual slope error after three
iterations of IBF is 0.67 μrad rms measured at center line

0.2 × 0.2 mm2 was chosen [6–9]. An interferometric measurement of this
substrate would require a number of partial surface measurements to be
stitched, a time consuming option of questionable reliability. The figuring pro-
cess was realized by a computer controlled scanning of a small-sized ion beam
with an ion beam of near-Gaussian profile across the surface. The linewidth
and the dwell time have been varied in proportion to the amount of material
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Table 12.1. Final results of surface finishing by IBF compared to the initial state
after chemical–mechanical polishing

Optical element Initial state residual Final state after IBF
slope (μrad rms) residual slope

(μrad rms)

Plan grating blank (Si) 0.6 0.1
100 × 20mm2

Plane mirror (Si) 1.7 0.2
310 × 30mm2

Plane–elliptical mirror 5.9 0.67 (0.5 is possible)
(Zerodur) 190× 37mm2

to be removed [8]. The simulation of the figuring is based on a modification
of van Citter deconvolution in the local coordinate space using the Fourier
transformation and contains an optimal turn and smoothing of the output
topology, a graphic output of the topologies and profiles as well as the gener-
ation of the dwell times. A 40mm Kaufmann-type ion source with a focusing
grid system was used [6]. The ion source parameters for the figuring using
Ar as the etch gas were ion beam voltage, 800 eV; ion beam current, 20mA.
The positive charged ion beam was neutralized by a hot filament neutralizer.
Because of the high requirements for X-ray optics these optical elements have
to be finished by tools working at different optically relevant spatial frequency
ranges. The size of the rotational symmetric Gaussian beam has been adjusted
with the help of circular diaphragms of different hole diameters. The beam
profiles and the etch rates have been determined by etching a “footprint”
for a certain time into a test blank. The “footprint” was than measured by
interferometry. The mirror substrate was figured in three IBF steps with the
following ion current density profiles:

• For IBF steps 1 and 2 a beam size of 6mm FWHM (diaphragm hole
diameter: 4mm) was used

• For the final IBF step a beam size of 2.1mm (diaphragm hole diameter:
2 mm) was used

In the case of the three demonstration objects the substrates were moved
relative to the fixed ion beam position. In Table 12.1 a general view on the
capability of surface finishing by ion beam technology is shown.

12.3 High Accuracy Optical Elements
and Beamline Performance

The performance of a SR-beamline is ultimately determined by the qual-
ity of the optical elements in use to guide the light from the source to the
experiment at the focus. The shape-optimized plane–elliptical demonstration
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Fig. 12.4. Foci and horizontal energy distribution of two different refocusing mirrors
characterised by a slope error of (left) 7.22 μrad rms and (right) 0.67 μrad rms

mirror described above serves as a refocusing mirror at the UE52-SGM1
beamline at the BESSY-II storage ring. By measurements of the focus size
while commissioning the beamline the improvement achieved has been deter-
mined [8,9]. Figure 12.4 shows the optimized focus and the horizontal energy
distribution FWHM measured for the previous refocusing mirror and for the
IBF improved mirror. A focus size of less than 20 × 20 μm2 for the energy
range inspected (350–1,100eV) at an exit slit width of 3–4 μm has now been
achieved. Compared to the previously obtained horizontal focus size of about
43 μm (FWHM) the present value of about 17 μm (±10%) represents a more
than twofold improvement. Because of the characteristics of the undulator
source at this beamline, the potentially smallest dimension of the focus size
has been reached. A further surface optimization of this refocusing element
beyond the limit of 0.1 arcsec rms would not provide an improvement of
beamline performance.
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Measurement of Groove Density
of Diffraction Gratings

D. Cocco and M. Thomasset

Abstract. The use of diffraction gratings with variable groove density is becoming
increasingly common. This is because it has become possible to preserve the beam
divergence, reduce aberrations and improve the focal characteristics of such gratings.
The demands in terms of optical performance are becoming even greater and, to be
sure that a grating as manufactured is close to that required, techniques to measure
accurately the groove density variation have had to be developed. In this chapter,
one such method, arguably the most accurate, is described, although it has some
limitations which will also be discussed.

13.1 Introduction

In this chapter, we describe a way to precisely measure the groove density
variation of a diffraction grating. Diffraction gratings are widely used to
monochromatize and even to focus the soft X-ray radiation produced by the
high brilliance third generation synchrotron radiation sources. They consist
of a periodic structure on a substrate which can be completely constant along
the grating surface or can change according to a particular polynomial law.
In this second case, the groove density variation is used to change the focal
property of a grating or to reduce the third-order aberration. The instrument
employed for this work is the long trace profiler [1–4].

13.2 Groove Density Variation Measurement

A diffraction grating is an artificial periodic structure with a well-defined
period, d. The incoming and outgoing radiation directions are related by a
simple formula:

nλ

d
= sin(α)− sin(β), (13.1)

where α is the angle of incidence and β the angle of diffraction, both with
respect to the normal, n the diffraction order, and λ the wavelength of the
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selected radiation. An alternative description of the same law is given by the
following:

nKλ = sin(α) − sin(β), (13.2)

where K = 1/d is the groove density.
Diffraction gratings can be mechanically ruled or holographically recorded.

It is also possible to replicate them from a master. In all these cases some
errors occur during the manufacturing process. These defects can be periodic,
quasiperiodic, or completely random. The final effect of these defects can be
a reduction of the ability of the grating to select the proper photon energy,
a reduction of the photon flux (due to light scattering), or the presence of
unwanted diffracted energy in the focus together with the selected energy
(ghosts).

Sometimes a variable line spacing (VLS) grating is requested. The groove
density K(w) = K0 + K1w +K2W

2 + . . . along the direction of the optical
axis, w, perpendicular to the grooves and centered on the pole of the grating
can be measured by the long trace profiler.

Since our LTP is able to detect small angle deviations of the reflected laser
beam due to a slope variation of the mirror under test, it is equally able to
detect angle deviations of a laser beam diffracted (instead of reflected) by
a grating. Nevertheless, to properly work with an LTP, the direction of the
beam impinging the optics under test and the reflected one must coincide.
For this reason, the incoming and diffracted beams must be superimposed on
each other.

This condition is the so-called Littrow condition, where, the incoming
beam and the diffracted one coincide (Fig. 13.1).

Fig. 13.1. Sketch of the measurement setup. The beam coming from the optics
head of the LTP is directed via a pentaprism to the grating surface. The grating is
rotated in such a way to superimpose the diffracted beam with the incoming one
(in the oval inset an enlarged view of the diffraction configuration). The diffracted
beam travels back to the LTP optics head where a Fourier transform lens focuses it
on a linear array detector
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The incoming and diffracted beam coincide when

β = −α→ 2d sinα = nλ→ 2 sinα = nKλ. (13.3)

If this equation has a real solution, (with λ = 632.6 nm, i.e., our He–Ne
laser source) one is able to measure the groove density, d, of the grating.
Practically, one must rotate the grating by a well-defined angle α0 and after
that make a scan with the LTP (Fig. 13.1), exactly as if it were a mirror.
Therefore, by measuring α, one directly can measure the groove density of
the grating.

The precision of an LTP, when used to measure a mirror, is of the order of
0.5 μrad rms or even better on a 1m long mirror. Even if this is an underesti-
mation of the accuracy of the instrument, with this kind of error in the slope
measurement, the equivalent groove density constancy error (δK/K) that is
measurable is less than 10−5. Alternatively, one can measure the d-spacing
variation with a precision of the order of 1 Å rms or better.

To estimate the error induced, for instance, in the parameter K, one has
to derive it with respect to the measured value, i.e., the back diffracted beam
angle β:

∂K

∂β
=
∂

∂β

(
sinα0

nλ

)
− ∂

∂β

(
sinβ
nλ

)
= −cosβ

nλ
→ δK = −cosβ

nλ
δβ. (13.4)

Alternatively, the precision in the determination of the parameter d can be
derived similarly from the previous equation:

δd =
d2

nλ
cosβδβ =

1
nλK2

cosβδβ. (13.5)

In Fig. 13.2, the expected precision of this method is plotted for both the
groove density and for the d-spacing.

The two graphs demonstrate that this technique is a powerful method to
determine very small deviations from the ideal values of the groove density
of a grating. It is important to recognize that there are some limits to these
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Fig. 13.2. Left: Estimation of the error δK/K as a function of K in first diffraction
order. An overestimated error of 1 μrad in the measurement of the diffracted angle
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measurements. One is the spot size of the laser beam whose typical dimension
is 1mm. Since one has to rotate the grating to satisfy the Littrow condition,
the projection of the laser spot on the grating will increase by a factor equal
to 1/ cos(α). This means that for a high groove density, when α0 becomes
considerable, the projection on the grating surface could be of the order of
several mm, and therefore there is a reduction of the measurable spatial fre-
quency. Moreover, it is impossible to measure groove densities K larger than
2/nλ because (13.3) has no real solution. With a He–Ne laser (632.8 nm), the
maximum measurable groove density does not exceed 32,000 l cm−1.

Another problem is the maximum groove density variation measurable in
a single scan. If the diffracted direction changes, because of the groove density
variation, and is no longer fully captured by the angular acceptance of the lens
or of the linear detector, one cannot measure the entire grating in a single scan.
In this case, it is necessary to stitch several measurements which introduces
a further source of errors.

In the system described earlier, the groove density is measured by rotating
the grating in front of the laser beam. However, there is another possibility:
the one adopted in the Soleil metrology laboratory.

The measurement is made, also in Littrow condition, as described in (13.3).
It is possible to make the measurement without changing anything in the LTP
but instead by simply inclining the grating with respect to the optics table
in order to obtain the proper incidence angle. However, the Littrow angle can
be quite large, e.g., 25◦ for a 1,600 l mm−1 grating. This strong inclination
obliges one to increase the distance between the optics head and the surface
under test which is an additional source of errors. Moreover the X position
along the grating has to be corrected according to the incidence law, and the
sampling interval is no longer given by the translation indexing. It was found
to be easier to slightly modify the optical setup with the simple attachment
described in Fig. 13.3.

Adjustable aperture

458

Adjustable mirror

Quarter wave plate

Wollaston prism

Mirror measurement configuration Grating measurement configuration

Fig. 13.3. The modified optical path in the grating measurement attachment
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Fig. 13.4. View of the optics head with the grating measurement attachment in
place

This attachment is composed of two flat mirrors deflecting the beam in the
measurement track plane. The first mirror has a fixed 45◦ incidence angle; the
second can be rotated around a horizontal axis to adjust the Littrow angle.
The attachment (Fig. 13.4) is set at the place of the normal aperture. A series
of interchangeable apertures is provided between the two mirrors in order to
keep the field stop as close as possible to the surface under test.

With this device it is easy to work either at normal incidence to determine
the grating surface shape, or at Littrow incidence to measure the line density
variation law. Both measurements are made with the same sampling inter-
val. The maximum departure of the line density with respect to its central
value does not depend significantly of the mean line density and is close to
±10 l mm−1. When this variation range is exceeded, the stitching method can
be also applied. To be accurate, one should perform the data stitching on the
line density values rather than on angle deviations.
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The COST P7 Round Robin
for Slope Measuring Profilers

A. Rommeveaux, M. Thomasset, D. Cocco, and F. Siewert

Abstract. As part of the COST P7 Action, the metrology facilities of four Euro-
pean synchrotrons – Bessy, Elettra, ESRF and Soleil – instigated a round-robin
programme of instrument inter-comparison. Other synchrotrons will later join this
programme. The metrology instruments involved are various direct slope measure-
ment devices, such as the well known Long Trace Profiler (either custom built or
modified from commercial devices) and the Bessy Nanometer Optical component
measuring Machine (NOM). The round robin was realized by measuring two flat
and three spherical mirrors (made of either Zerodur or fused silica) made available
by Bessy, Elettra and Soleil. The programme has been a significant aid in the charac-
terization of each of the instruments and could readily be extended to other devices
as a calibration tool. The results and advantages are described in this chapter.

14.1 Introduction

Most of the synchrotron radiation (SR) sources have developed their own
metrology laboratory to meet the need of optics characterization in terms
of microroughness, radius of curvature, slope errors, and shape errors. The
instrumentation used consists mainly of commercial instruments: phase shift
interferometers for microroughness characterization or Fizeau interferometers
for bidimensional topography and optical profilometers for measurements of
long optical components like the long trace profiler (LTP) or the nanometer
optical component measuring machine (NOM). The LTP was developed at
the Brookhaven National Laboratories by Takacs et al. [1], and marketed by
Continental Optical Corporation (now Ocean Optics). It is basically a double
pencil slope-measuring interferometer, for determining the slope error and
radius of curvature and, through integration, the height profile for optical
surfaces larger than 1m in length. Optimally, precise data can be obtained,
with reproducibility on the order of 2 nm P−V (or 0.1 μrad RMS). What,
however, is about the absolute precision of these profilometers? This is directly
linked to instrument calibration, and up to now there is no standardization
of calibration. In this round-robin endeavor, typical X-ray mirrors provided
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by the laboratories, plane, spherical, or toroidal are examined by the several
laboratories using their own instrumentation in order to better understand
the accuracy achievable with them.

The ultimate goal of this Round Robin is to create a database of the
measurement results in order to provide these references as calibration tools
available for metrology community.

14.2 Round-Robin Mirrors Description
and Measurement Setup

Five mirrors have been involved in the present Round-Robin, two plane
and three spherical, with varied parameters: reflectivity, material, radius of
curvature, dimensions. Their main characteristics are given in Table 14.1.

The mirrors were measured with their optical surface up or on the side
according to the standard instrument setup of each laboratory. To limit
mechanical stress (sag) due to gravity in case of mirror facing up, the mea-
surement procedure consisted in supporting the mirror with three balls placed
at the Bessel points. The trace centered on the optical surface is perfectly
defined on each mirror by lateral marks as well as is the scan direction. Each
laboratory was free to define the appropriate number of scans to achieve the
best accuracy of its instrument. Measurement procedures and parameters are
summarized in Table 14.2.

14.3 Measurement Results

For each mirror, the resulting data consist in an array of mirror coordi-
nates and corresponding measured slope. The same calculation method has
been applied to process all these data in order to avoid discrepancies due to
differences in fitting or integration methods. Slope errors and shape errors
correspond to residual slopes and heights after best sphere subtraction. For
plane mirrors (Table 14.3) there are important differences on radii values, but
it is important to underline that each laboratory obtains a good repeatability
of its value. The radius of curvature is obtained from the mirror slope profile.
Obviously for plane mirrors with very large radius, the slope linear trend is
affected by the intermediate frequencies measured. For this reason the radii
results are not in a good agreement.

The graphical results (Fig. 14.1) for mirror P1 show an impressive consis-
tency between residual slopes measured by each laboratory.

For spherical mirrors, the slope variation over the mirror length is obvi-
ously greater, implying a stronger influence of the individual characteristics of
the different instruments on the measurement results. For LTPs, systematic
errors can be corrected by averaging several measurements using different area
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Table 14.2. Measurement parameters and scanning conditions

BESSY ELETTRA ESRF SOLEIL

Instrument Autocollimator LTP LTP LTP
Mirror
position

Face up On the side Face up Face up

Number of
scans averaged

10 6 with
mirror tilt

4 1

Systematic
errors
correction

Not applied By mirror
rotation

By mirror
rotation

Not applied

Scanning
method

Point by point Point by point On fly On fly over
sampling

Scanning
velocity

1mm s−1 1mm s−1 40 mm s−1 0.2 mm s−1

Table 14.3. Statistical results obtained for P1 and P2 mirror

P1 mirror P2 mirror

R (km) Slope error
rms (μrad)

Height
error rms

(nm)

R (km) Slope error
rms (μrad)

Height
error rms

(nm)

BESSY 427 1.16 24 −1,951 0.88 24
ELETTRA 454 1.12 23 753 0.81 19
ESRF 136 1.12 24 242 0.97 28
SOLEIL 193 0.88 17 −100 1.64 52
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Fig. 14.1. P1 residual slopes after best sphere subtraction
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in the internal optics. Table 14.4 shows the statistical results obtained for the
three spherical mirrors.

The values for radius of curvature is in agreement by better than 0.3%.
The concordance of residual errors is better for S3, which has the shortest
length and the longest radius, than for S2 which has the opposite features.
The rms agreement of the slope errors varies from 0.13 μrad (1.6 nm) for S3 to
0.26 μrad (4.1 nm) for S2. A gain, the residual slope profiles obtained at each
facility are in excellent agreement in particular between BESSY, using the
autocollimator sensor of the NOM, and LTP at the ESRF (Figs. 14.2–14.4).

Table 14.4. Statistical results obtained for S1, S2, and S3 spherical mirrors

S3 S1 S2

R (m) Slope Height R (m) Slope Height R (m) Slope Height
error error error error error error
rms rms rms rms rms rms

(μrad) (nm) (μrad) (nm) (μrad) (nm)

BESSY 1,280 0.44 3.2 83.01 0.87 11.7 44.52 1.08 17.4
Elettra 1,274 0.53 4.6 83.21 1.05 15.4 44.67 0.86 13.3
ESRF 1,278 0.40 3.0 83.34 0.99 15 44.76 0.82 13.3
Soleil 1,272 0.51 2.8 83.11 0.92 12.7 44.63 1.41 20.3

Reference Mirror S2 
Residual slopes (after best sphere subtraction)
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Fig. 14.4. S2 (R ≈ 44 m) residual slopes after best sphere subtraction

14.4 Conclusions

The five mirrors involved in this Round-Robin are good representatives of
the kinds of SR optical components to be characterized by slope measur-
ing instruments. These results are in very good agreement with each other,
despite the fact that different instruments have been used, in terms of optical
setup, hardware, and environmental conditions. Even for the spherical mir-
rors with a short radius of curvature, which push the measurement accuracy
of the instruments to their respective limit, due to the quality of their optical
components (mirrors, prisms, lenses), the radii determined agreed better than
0.3%. The curves of the residual slopes after best sphere subtraction are quite
superimposable.

These five mirrors cross measured with high consistency can be consid-
ered as reference mirrors for instrument calibration. The round-robin is going
to be continued, including additional facilities and increasing the number of
reference mirrors to be tested [2].
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Hartmann and Shack–Hartmann Wavefront
Sensors for Sub-nanometric Metrology

P. Mercère, M. Idir, J. Floriot, and X. Levecq

Abstract. The recent development of third generation synchrotron radiation facil-
ities has led to unprecedented progresse in X-ray applications such as microscopy
and photolithography. To optimize performance in such research metrology tools
with capabilities in the nanometre and even the sub-nanometre range, in order to
characterize the surface figure errors of the optics used to focus or collimate the X-
ray beams, to align them on the beam lines and to perform diagnostics of the beam
spatial profile. To answer these needs, Synchrotron Soleil and Imagine Optic have
developed in partnership a Shack-Hartmann long trace profiler (SH-LTP) which per-
forms the bidimensional surface figure measurement of X-ray mirrors with nanometer
precision and an increased dynamic range compared to earlier instruments. The
SH-LTP offers a more complete diagnostic for highly curved surfaces compared to
standard LTPs. This partnership has also led to the development of X-ray Hart-
mann wavefront sensors to measure and control the spatial quality of X-ray beams.
Compared to interferometric tools, these sensors have better flexibility and can be
integrated into closed-loop adaptive optical systems.

15.1 Introduction

Recent evolution of X-ray sources has opened a large field of research and
applications in this spectral range. As in the visible range, one can distin-
guish two main centers of interest: high resolution X-ray imaging on the one
hand, and improvement of the spatial quality of collimated X-ray beams on
the other hand. Applications are, for example, EUV photolithography, X-ray
microscopy, tomography, phase contrast imaging, or material probing.

With the development of such applications, an increasing need of optical
components with better surface figures has appeared. Today, optical shape
requirements in terms of slope errors are typically in the microradian and
sub-microradian ranges. For the characterization of such high-quality compo-
nents, the long trace profiler (LTP), used in mostly all synchrotron radiation
facilities, has become the state-of-the-art off-line metrology tool. However,
this instrument presents some drawbacks: 1D measurement, limited dynamic
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range (small radii of curvature below 1m cannot be measured), and poor
flexibility. To overcome these drawbacks, a stitching Shack–Hartmann long
trace profiler (SH-LTP) has been developed. Resulting from a joint collabora-
tion between Imagine Optic and SOLEIL, this new technology fulfils all the
new requirements of an enhanced metrology. Bidimensional sub-nanometric
characterization of optical surfaces, high precision, high sensitivity, and large
dynamic are among the main advantages of the SH-LTP. First section of this
chapter will be devoted to a description of this new instrument and the lat-
est results obtained at the Optical Metrology Laboratory of SOLEIL will be
presented.

Although off-line characterization of optical components is important (to
know exactly if an optic is suitable for the requirements of one’s applica-
tion, or to know exactly what one is putting on the beamline), it cannot
replace “at wavelength” metrology. A fact is that “at wavelength” metrol-
ogy is increasingly required on EUV and X-ray beamlines, not only for in
situ characterization of individual optics or optical systems, but also for their
precise alignment with respect to the beam. Many kinds of wavefront sen-
sors, mostly based on interferometry, have been developed so far. Up to now,
the phase-shifting point diffraction interferometer (PSPDI) and the shear-
ing interferometer (SI) are among the most effective interferometric tools.
The PSPDI benefits from a very high precision (<λX-UV/350), a high sensi-
tivity (<λX-UV/1,000) and a good spatial resolution, but its low dynamic
range is unsuitable for strongly misaligned or very imperfect optics. The
SI has the advantage of a good dynamic (about λX-UV), a good sensitiv-
ity (<λX-UV/500), and a good spatial resolution, but its poor precision is
not sufficient for the measurement of high-quality diffraction limited optics.
Both are unsuitable with real time active or adaptive optics, and, as for
any interferometer, they are chromatic: the fringe spacing is linked to the
wavelength, requiring realignment of the interferometer after any wavelength
change. Finally, they are expensive and difficult to setup.

Following these statements and in response to the need of highly capable
and flexible wavefront metrology tools, we started, in early 2002, working on
the development of X-ray Hartmann wavefront sensors (HWS). First experi-
ments were performed at 13.4 nm wavelength, demonstrating the high metro-
logical performance of the technique: accuracy better than λEUV/120 rms
and sensitivity better than λEUV/600 rms. Many improvements have been
realized since then, including the extension to shorter and shorter wave-
lengths. Today, HWS are routinely working between 6.4 eV (193nm) and
8 keV (0.155nm), with accuracies as good as 0.04 nm rms. They are used
in industry, by research laboratories and by synchrotron and FEL facilities.
Simultaneously, the coupling of HWS with grazing incidence deformable mir-
rors for in situ X-ray active and adaptive optics has become one of our
main topics today. First wavefront closed-loop corrections were successfully
realized at E = 3.64 keV (λ = 0.341 nm), using a soft X-ray HWS and a 4-
actuator Kirkpatrick–Baez (KB) active optical system. The next steps include
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the closed-loop control of bimorph and mechanical multiactuator deformable
mirrors to allow for correction of higher frequency distortions. Together with
these developments, we are also currently studying the use of scintillators as
detection devices for working energies above 10 keV. Of course, this principle
could be extended to lower energies for low-cost HWS, in applications where
high precision is not absolutely required. In the second section, we will give a
report of our main improvements in this field.

15.2 Generalities and Principle of Hartmann
and Shack–Hartmann Wavefront Sensing Techniques

In the Hartmann (Shack–Hartmann) wavefront sensing technique, a beam
passes through a hole array (microlens array) and is projected onto a CCD
camera that detects the beamlet sampled by each hole (microlens). The posi-
tions of the individual spot centroids are then measured and compared with
reference positions. This enables the local slopes of the wavefront (i.e., its
derivative) to be measured at a large number of points within the beam.
Figure 15.1 shows the principle of both techniques. We will use the term
“subpupil” to define one hole or one microlens of the sampling array, and
the term “pupil” to define all illuminated subpupils which corresponding spot
centroids can be calculated. The different subpupils of the sampling array will
be identified by two indices, i and j, i being associated with the X dimension
and j with the Y dimension.

Let us call
−→
k0

ij and
−→
kij(�=

−→
k0

ij) the local wave vectors coming from the
subpupil (i, j), when sending an incident wavefront without and with phase
distortions, respectively. The corresponding spot centroids are detected in(
x0

ij , y
0
ij

)
and (xij , yij), respectively. For each subpupil, the wavefront’s local

slopes, noted Sx
ij and Sy

ij , are given in radians by the following equations:{
Sx

ij = tan θxij = Δxij

L

Sy
ij = tan θyij = Δyij

L

, (15.1)
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Fig. 15.1. Principle of the Hartmann (a) and Shack–Hartmann (b) wavefront
sensing techniques
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– where θxij =
(−−−→
k

(x,z)
ij ,

−→
k0

ij

)
and θyij =

(−−−→
k

(y,z)
ij ,

−→
k0

ij

)
, with

−−−→
k

(x,z)
ij and

−−−→
k

(y,z)
ij

the respective projections of
−→
kij onto the (X,Z) and (Y, Z) planes.

– where Δxij =
(
xij − x0

ij

)
and Δyij =

(
yij − y0ij

)
represent the displace-

ments of the spot centroids, in the detection plane, with respect to the
reference positions.

– where L is the distance between the sampling and detection planes.

The local slopes of the wave front can also be written according to the
following expressions:⎧⎨

⎩
Sx

ij = tan θxij =
dW(x0

ij ,y0
ij)

dx = λ
2π

dϕ(x0
ij,y0

ij)
dx

Sy
ij = tan θyij =

dW(x0
ij ,y0

ij)
dy = λ

2π

dϕ(x0
ij,y0

ij)
dy

(15.2)

where W (x, y) represents the optical path difference in meters and ϕ(x, y)
the spatial phase in radians. Integration of the measured derivative function
enables reconstruction of the incident beam wave front [1].

For absolute wavefront measurements, HWS need to be calibrated with
help of a well-known reference wave. Typically this wave is obtained by spatial
filtering, wherein an incident beam is focused onto a small pinhole, diffracting
a high-quality spherical wave. The reference positions

(
x0

ij , y
0
ij

)
are obtained

during this preliminary calibration phase of the system.

15.3 Shack–Hartmann Long Trace Profiler:
A New Generation of 2D LTP

15.3.1 Principle of the SH-LTP

SH-LTP uses a 26 × 26 sampling points Shack–Hartmann wavefront sensor
(HP26/Imagine Optic). This sensor is optimized for working wavelengths
around 400 nm, and offers a high performance with an accuracy of better
than λ/1,000 rms and sensitivity better than λ/5,000 rms. The light source is
a single-mode fiber laser diode (405 nm). Once collimated with an achromatic
doublet, the light is sent to the surface under test and reflected on the sensor
for analysis (Fig. 15.2). The basic principle is the same as for a conventional
LTP [2]. However, the analysis pupil size of the sensor is about 12× 12 mm2,
with a spatial resolution of 450 μm (size of the microlenses), and at each point
the local slopes are measured in both directions X and Y.

For the characterization of long mirrors and/or improvement of the spa-
tial resolution, a stitching process has to be applied. Its principle consists in
the overlapping of adjacent surface measurements by translation of the opti-
cal head or of the mirror under test. The overlapping (or coupling ratio) is
adjustable. Redundancy of the information is used to subtract all system-
atic errors including measurement errors induced by the imperfections of the
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optic under test

achromatic doublet
(F = 156 mm)

single-mode
fiber laser diode
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Fig. 15.2. SH-LTP design and principle

translation stage. Thus, the shape of the optical surface can be isolated. Stitch-
ing methods have already been extensively used with interferometers [3], but
not yet with Shack–Hartmann wavefront sensors.

15.3.2 2D Long Trace Profile of a Plane Reference Mirror

To demonstrate the capabilities of this new technique, we first character-
ized a plane reference mirror with specified slope errors about 0.6 μrad rms.
Stitching measurement was performed over 45×12 mm2, with a coupling ratio
of 90%.

Over the entire surface analyzed, height errors were measured of about
2 nm rms (9.5 nm PV) (Fig. 15.3a); X and Y slope errors were measured at
0.58 μrad rms (10.76 μrad PV) and 0.63 μrad rms (8.21 μrad PV). The aver-
aging of three adjacent traces (each trace is 450 μm large) from the SH-LTP
Y slope measurement gave a slope error of 0.5 μrad rms (2.79 μrad PV), while
the LTP (1.5mm size trace) gave 0.6 μrad rms (2.47 μrad PV) (Fig. 15.3b).
We can clearly observe a low-frequency pattern with a spatial period of
about 50mm, probably coming from the polishing process. Results of both
techniques are in good agreement. Nevertheless, the SH-LTP provides bidi-
mensional cartography of the surface and is much less noisy than the LTP.

Reproducibility of the SH-LTP was measured to be about 0.09 μrad rms
(1 μrad PV) over the entire surface, and 0.1 μrad rms (0.44 μrad PV) over
three averaged traces. The reproducibility of the LTP was measured to be
0.15 μrad rms (0.78 μrad PV).

15.3.3 2D Long Trace Profile of a Toroidal Mirror

We also characterized a toroidal mirror with radii of curvature specified to be
25.3m (tangential) and 1.35m (sagital). Alignment of the mirror axes with
respect to the sensor axes was performed by minimizing the 45◦ astigmatism
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Zernike coefficient. Stitching measurements were then performed along the
tangential direction (i.e., the long radius of curvature), over 45 × 12 mm2.
Once again, we used a coupling ratio of 90%.

From the measured toroidal shape (Fig. 15.4a), radii of curvature were mea-
sured to be 24.98m (tangential) and 1.41m (sagittal), and are in good agree-
ment with the specifications given by the manufacturer. By subtracting this
perfect toroidal shape, one can recover the surface figure errors (Fig. 15.4b).
Deviations from the perfect shape in terms of heights, X and Y slopes
were measured to be 19 nm rms (76.1 nm PV), 3.6 μrad rms (32.9 μrad PV),
and 4.3 μrad rms (37.4 μrad PV), respectively, over the whole surface ana-
lyzed. No residual astigmatism could be observed, showing that the axes of
the sensor and those of the mirror were well aligned with each other. We
can notice the presence of low- and high-frequency patterns. The averag-
ing of three adjacent traces from the SH-LTP measurement gave a slope
error of 5.43 μrad rms (20.35 μrad PV), while the LTP gave 5.1 μrad rms
(17.4 μrad PV) (Fig. 15.4c).

Stitching measurements were also performed along the sagittal direction
(i.e., the small radius of curvature), leading to similar results: the same radii
of curvature and the same slope errors were obtained. With the LTP, measure-
ments of such small radii of curvature (1.41m) are not possible, the reflected
beam from the surface falling outside of the analysis path.

15.3.4 Conclusion

The SH-LTP makes possible precise noncontact bidimensional measurement
of the surface figure. At a conventional working wavelength (λ = 405 nm),
high accuracy (0.1 μrad), high repeatability (<0.1 μrad) and sensitivity, high
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dynamic, high-spatial resolution (450 μm), and insensitivity to vibrations are
among the main advantages of this instrument. Radii of curvature down to
0.7m can be measured with 0.1% accuracy, and large optics can be measured
with sub-microradian performances thanks to the stitching approach.

Potential applications of the SH-LTP are various and are not limited to
synchrotron topics. This technology fulfils all the new requirements of an
enhanced metrology [4], and may offer, in the near future, even better perfor-
mance in terms of spatial resolution (down to 100 μm), dynamic (cylinder with
radius of curvature as small as few cm) and accuracy (down to 0.05 μrad).

15.4 X-Ray Wavefront Measurements
and X-Ray Active Optics

The Shack–Hartmann technique is exhaustively used in the IR to UV spectral
ranges, where the important diffraction effects limit the performance of the
Hartmann technique. However, light properties at shorter wavelengths are
reversing this behavior. At X-ray wavelengths, the Shack–Hartmann technique
needs the use of Fresnel or Bragg–Fresnel zone plate (FZP) arrays. These
diffractive optics are strongly chromatic, making the sensor poorly versatile.
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This is the most limiting factor to the use of SHWS at higher energies, because
potential users are interested in using a same sensor on different X-ray sources.
Moreover, to keep high sensitivity on the local slope measurement of the wave
front, one needs a long distance between the sampling and detection planes,
i.e., FZP arrays with long focal lengths. At EUV wavelengths, this leads to
FZP with large diameters (few hundreds of μm to 1 mm) in order to keep
high diffraction efficiency, and results in a poor spatial sampling of the beam.
It is only in the hard X-ray regime that spatial resolution vs. efficiency of
SHWS could become interesting and competitive. However, the efficiency of
FZP in the first diffraction order is low, yielding only a small fraction of the
incident flux, all other diffraction orders contributing only in a reduction of
the signal-to-noise ratio.

On the other hand, hole arrays for Hartmann tests can be manufactured
very easily. Typical sizes of the holes range from 30 to 120 μm, with spacings
from 60 to 300 μm, depending on the working wavelength, the geometrical
properties of the beam to be analyzed, the pixel size of the CCD and the
desired performance of the sensor in terms of accuracy, sensitivity, dynamic,
and spatial resolution. HWS are totally achromatic, offer a much better per-
formance, and are robust and easy to align, as compared to SHWS. Following
these statements, we choose to develop EUV and X-ray wavefront sensors
based on the Hartmann technique.

15.4.1 Hartmann Wavefront Measurement at 13.4 nm
with λEUV/120 rms Accuracy

In 2002, under a close collaboration with the Center for X-Ray Optics
(CXRO), we used ALS beamline 12.0 to perform the first experimental
demonstration of wavefront analysis via the Hartmann technique in the EUV
spectral range.

ALS beamline 12.0 is an undulator beamline designed for experiments
relevant to the development of EUV lithography near 13 nm wavelength [5].
The geometry of ALS beamline 12.0 and the HWS setup are represented
schematically in Fig. 15.5. Focusing of the monochromatic beam is performed
by Kirkpatrick–Baez (KB) optics. The output-side NA of this focused beam
is approximately 0.006, and the dimensions of the focal spot are typically
10× 15 μm2 FWHM [6,7].

HWS employed a hole array made in an 80-μm thick nickel plate with 65×
65 holes over a 15× 15 mm2 area. The holes were 80-μm size squares, spaced
by 225 μm and rotated by 25◦ to minimize the overlap of the diffraction from
adjacent holes in the measurement plane [8]. A back-illuminated, thinned, 16-
bit EUV CCD camera with 1,024× 1,024 pixels (24 μm per pixel) was placed
at 400mm behind this hole array.

The reference spherical wave front needed for HWS calibration was gen-
erated by placing a small pinhole at the focus of the KB optics, creating
nominally spherical wave illumination for the HWS. To guarantee a reference
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Fig. 15.6. Normalized beam intensity profiles obtained with the 1.7 μm pinhole (a)
and the 0.6 μm pinhole (b). With the 1.7 and 0.6 μm pinholes, respectively, wavefront
focus terms (c) and (d), residual absolute wavefronts (e) and (f), and repeatability
measurements (g) and (h)

wave front better than λEUV/100 rms, we used only half of the central Airy
disk. Two series of experiments were performed with 1.7 and 0.6 μm pinholes.
In both configurations, HWS hole array was placed a distance of 610mm from
the KB focus (NA = 0.025), the operational wavelength was 13.4 nm, and the
exposure times were about 150ms typically.

Figures 15.6a, b show the beam’s normalized intensity profiles obtained at
13.4 nm with the 1.7 and 0.6 μm pinhole sizes, respectively. With both pin-
holes, calibration of the sensor was performed over the largest square pupil
illuminated (44 × 44 subpupils) centered on the CCD chip. For wavefront
analysis, we used the largest round pupil inscribed in the beam FWHM, cor-
responding to a circular analysis pupil of 26 (38) subpupils in diameter (NA
∼0.0096 and 0.014, respectively).
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Fig. 15.7. ALS beamline 12.0 wavefront measurement without spatial filtering at
13.4 nm

After calibration of the system we first performed absolute wavefront mea-
surements. Figures 15.6c, d, show the wavefront focus terms obtained with the
1.7 and 0.6 μm pinholes, respectively. In both configurations the diffracted
beams are spherical waves with identical radii of curvature, measured by
HWS as 610.161±0.009 mm. Figures 15.6e, and f display the respective resid-
ual wave fronts obtained after removing the tilt and focus terms. With the
pinhole of 1.7 (0.6) μm the residual absolute wavefront root-mean-square
(rms) and peak-to-valley (PV) values reached at best 0.012λEUV (0.021λEUV)
and 0.055λEUV (0.113λEUV), respectively. As shown in Fig. 15.6g, h, the
repeatability of the sensor (obtained by subtracting two successive wave-
fronts measurements) was measured about λEUV/125 rms, independently of
the analysis pupil size. The sensitivity was measured about λEUV/600 rms
over 50 successive measurements. No degradation of these performances could
be observed between 7 and 25 nm, demonstrating the achromaticity of the
sensor [9].

As an application of the Hartmann technique, we removed the spatial-
filter pinhole to measure the wave front of the focused beam produced by
the KB optics. The wave front displayed in Fig. 15.7, has residual-aberration
magnitudes of 1.879λEUV rms and 6.99λEUV PV. Mostly astigmatism can
be observed. By convolution of the calculated point-spread function with
the geometrical image of the beamline source, we estimated the size of the
KB focal spot to be 23 × 26 μm2 at 1/e2, while direct imaging, by use of
a YAG:Ce crystal and a (10×) magnification visible imaging system, gave
21× 25 μm2 at 1/e2. Thus, HWS can also predict the focal spot properties of
highly distorted beams.

15.4.2 Wavefront Closed-Loop Correction
for X-Ray Microfocusing Active Optics

Most synchrotron beamlines use KB optics for tight focusing of the X-ray
beams. So far, these mirrors are manually aligned by the knife-edge technique
or by use of well-adapted focal spot imaging systems based on wavelength
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conversion to the visible range. This alignment is complicated and time con-
suming. For easy microfocusing of the synchrotron beams, we coupled HWS
with a KB active focusing optics.

First tests were performed on SOLEIL’s beamline LUCIA (Line for
Ultimate Characterizations by Imaging and Absorption), which is presently
implemented on the Swiss Light Source (SLS). Represented in Fig. 15.8,
LUCIA is dedicated to X-ray absorption spectroscopy between 0.8 and 8 keV
[10]. The undulator beam passes successively through a grazing incidence
spherical mirror, a double plane mirror high-order harmonics filter, and a
double crystal monochromator. The monochromatic beam is then focused by
a 4-actuator Kirkpatrick–Baez (KB) active optical system. Based on a Euro-
pean Synchrotron Radiation Facility conception [11], this system is composed
of two plane silicon mirrors, held at their tips by active jaws. Working at 0.4◦

incidence, these mirrors (170× 30× 8mm) are designed to take their perfect
elliptical shapes once bent [12].

For beam diagnosis and to control the KB mirrors, we used a soft X-ray
HWS composed of a hole array made in a 30-μm thick nickel plate, with
75 × 75 holes over a 10 × 10 mm2 area. The holes were 50-μm size squares,
spaced by 135 μm and rotated by 25◦. A back-illuminated, thinned, 16 bit
X-ray CCD camera, with 1,024 × 1,024 pixels (13 μm per pixel), was placed
400mm behind this hole array. The end station with the KB optic and HWS
is given in Fig. 15.9.

First experiments were performed with help of an imaging system of the
KB focal spot, and a dedicated genetic algorithm, to achieve best focusing
of the beam on a removable YAG:Ce crystal. The corresponding wavefront
was then used as reference for calibration of HWS. Closed-loop correction,
performed with HWS, enabled convergence in a single iteration to the KB
configuration taken as reference [13]. However, knife-edge measurements of
the focal spot showed that focusing of the X-ray beam was limited by the
“relative” calibration of HWS, i.e., by the resolution of the system imaging
the KB focal spot.

To overcome this limitation, an absolute calibration of the sensor was
performed by use of the spherical wave diffracted by a 1 μm spatial filter
pinhole placed at the focus of the KB. For this calibration phase, the energy
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Fig. 15.10. Absolute residual wavefront measurements (single CCD image
treatment) (a) before and (b) after closed-loop correction

of the photon beam was tuned down to 700 eV to ensure a large illumination
of the sensor with the central Airy disk.

A closed-loop correction was then performed at E = 3.64 keV (λ =
0.34 nm), the spatial filter pinhole having been removed. In a single itera-
tion, we succeeded in correcting the phase distortions from 7.7 nm rms and
30.9nm PV down to 0.8 nm rms and 4.6 nm PV (Fig. 15.10).

With the KB system correctly aligned, we performed knife-edge scans in
both dimensions to characterize the beam. At the focal spot position, the
beam sections were measured at 2.4 × 2.86 μm2 FWHM (Fig. 15.11). These
dimensions are close to the theoretical limit given by the source size, the
geometry of the beamline, and the slope errors of the KB mirrors (measured
about 1.1 μrad).

The performance of HWS at these high energies, in particular, the signal-
to-noise ratio and the accuracy of the sensor, is strongly limited by shot noise,
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Fig. 15.11. Beam knife-edge measurements at the focal spot position after closed-
loop correction with HWS

from the photon-to-electron conversion process in CCDs. The residual wave-
front that can be observed after correction in Fig. 15.10b is, for example, only
the result of shot noise. To overcome this problem, accumulation of several
images is required. The signal-to-noise ratio and the repeatability of wave-
front measurements were studied at 2.1 keV as a function of the number of
images integrated. To achieve a signal-to-noise ratio of about 100, at least 50
CCD images had to be integrated. By integrating 500 CCD images per wave-
front measurement, we improved the repeatability of the sensor to better than
0.04nm rms. Therefore, high-readout rate CCD cameras may be preferred in
the soft to hard X-ray spectral ranges, when an optimal performance of HWS
is required.

15.4.3 Conclusion

In the EUV spectral range, wavefront measurements were performed over a
wide wavelength range from 7 to 25nm. The accuracy of the sensor was proved
to be better than λEUV/120 rms (λEUV = 13.4 nm), and the sensitivity better
than λEUV/600 rms, demonstrating the high metrological performance of this
system.

In the soft X-ray range, HWS was successfully used to align a 4-actuator
Kirkpatrick–Baez (KB) active optical system. A wavefront closed-loop cor-
rection was performed at E = 3.64 keV, which led to beam focusing down to
2.4×2.86 μm2 FWHM in a single iteration. Variation of the KB focal length is
easily possible by the addition of a curvature term to the closed-loop wavefront
target.

Today, HWS are routinely working between 6 eV (193 nm) and 8 keV
(0.155nm), with accuracies as good as 0.04nm rms. The use of high readout
rate CCD cameras for fast accumulation of images and the use of luminescent
screens for a visible Hartmann analysis of the beams, especially for energy
ranges above 10 keV, are currently under investigation. The coupling of HWS
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with mechanical and bimorph multiactuator deformable mirrors should also
be done in a very near future, to allow easy correction of higher frequency
distortions on synchrotron beamlines.
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Extraction of Multilayer Coating Parameters
from X-Ray Reflectivity Data

D. Spiga

Abstract. Detailed analysis of X-ray reflectivity (XRR) angular scans of multilayer
coated samples has been recognized as a powerful tool to investigate their stack
structure. Even though the interpretation of multilayer XRR scans is made com-
plex by the difficulty of managing the large number of parameters that characterize
the stack, computer programs can be used to address the problem of the multi-
parametric fit of experimental XRR scans of multilayers. This chapter describes a
possible strategy to extract the layer thickness values of a multilayer coating from
accurate fitting of XRR scans, based on the Python Program for Multilayers coded.
The results of a best-fit analysis of XRR with transmission electron microscopy data
are also discussed.

16.1 Introduction

The development of multilayer structures intended to enhance the reflection
of radiation with wavelengths in the range of 10–0.01nm, from extreme ultra-
violet to X-rays, and of thermal neutrons, is at present being very actively
pursued. In particular, the use of wideband multilayer coatings is foreseen
in the next generation of soft (E < 10 keV) and hard X-ray (E > 10 keV)
telescopes with imaging capabilities, like SIMBOL-X [1], Constellation-X [2],
XEUS [3]. The reflection process in multilayers is a complex one, arising from
the interference of the radiation reflected at each interface, beyond the crit-
ical angle for total external reflection. The reflection/focusing performance
over a wide energy band depends essentially on the thickness precision of all
layers and on the smoothness, homogeneity, and sharpness of all interfaces.
It is therefore easy to understand how, in order to improve deposition tech-
niques, methods to investigate the internal structure of multilayer stacks are
needed, and criteria to evaluate the feasibility of the adopted process in terms
of repeatability, uniformity, smoothness, durability must be established.

In this chapter we will compare two techniques that can be used to achieve
a detailed characterization of a multilayer coating: the stack section imag-
ing with TEM (transmission electron microscope) and the analysis of the
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XRR (X-ray reflectivity) curves by means of a powerful computer program,
PPM (Pythonic Program for Multilayers), developed by A. Mirone at ESRF
(European Synchrotron Radiation Facility, Grenoble, France). Although the
usefulness of the XRR curves are already recognized as important diagnostic
tools for multilayers, the exact interpretation is made difficult by their com-
plexity and by the large number of parameters characterizing a multilayer.
Therefore, the matching between the experimental and a modeled XRR curve
with manually adjusted parameters can be only qualitative in most cases.
Consequently, the description of the stack structure is often a poorly detailed
approximation of the real one.

On the other hand, the application of PPM to the analysis of XRR data
returns very detailed fits and a realistic description of the multilayer stack. The
advantages of this technique are an effective, quick, nondestructive, in-depth
probing of the distribution of thicknesses throughout the stack.

In the following sections we review some features of X-ray reflection from
multilayers. Then we describe some methods that can be used to extract
information from the XRR curves and apply PPM to the reflectivity data of
a multilayer. Finally, the PPM results are compared with those of TEM and
the difficulties that can arise in such a comparison, due to artifacts in TEM
images, are discussed.

16.2 A Review of X-Ray Multilayer Coatings
Properties

The usefulness of multilayer coatings resides in their capability of reflecting
radiation with wavelength λ in the nanometer/sub-nanometer range when
the incidence angle and the energy exceed the conditions for total external
reflection. The X-ray amplitude reflectivity, r, of a single interface between two
layers with a difference in refractive index, Δn, decays rapidly with increase
in incidence angle ϑi (measured from the surface plane):

r(λ) ≈ Δn(λ)
2 sin2 ϑi

. (16.1)

Owing to the very small deviation of the real part of n from unity in X-
rays (δ = 10−4 ÷ 10−5, depending on the photon energy and the composition
of the reflecting coating), r is usually very small when the incidence angle is
larger than the critical one. However, if the spacing of the interfaces of layers
in a multilayer is properly conceived, the constructive interference of reflected
rays at each interface enhances the reflectivity at definite photon energies.

The reflectance of a multilayer with 2N layers with thickness t1, t2, . . . t2N

and refractive indexes n1, n2, . . . n2N can be computed by recursive applica-
tion of the single-layer reflection formula [4]:

Rm+1 =
rm,m+1 +Rm exp(−iΔφm)
1 + rm,m+1Rm exp(−iΔφm)

. (16.2)
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In the last equation, rm,m+1 is the reflectance of the electric field amplitude
at the mth/(m+ 1)th layer interface, Δφm = 4πnmtm sinϑm/λ is the phase
shift between reflected rays at the mth and the (m+1)th interface, Rm is the
amplitude reflectivity of the first m layers. The final X-ray reflectance of the
multilayer is |R2N+1|2.

The d-spacing dj(j = 1 . . .N) is the total thickness of the jth couple
of layers (bilayer). Multilayers with constant d-spacing, dj = d, are suited
to reflect narrow bands of the spectrum, whose locations are approximately
(neglecting the beam refraction) determined by Bragg’s law,

2d sinϑi ≈ kλ. (16.3)

In (16.3), k is an integer and λ is the wavelength of the radiation in use.
Multilayers able to reflect a continuous energy band are characterized by a

variable d-spacing throughout the stack (graded multilayers). Radiation with
wavelength λ is reflected when it propagates across bilayers whose d-spacing
satisfies approximately Bragg’s law. A well known possibility is to decrease
gradually the d-spacing according to a power-law [5]:

d(j) =
a

(j + b)c
. (16.4)

We denote with j = 1, 2 . . .N the index of the jth bilayer, ordered from the
multilayer outer surface. Wide-band multilayers of the described type, initially
developed to reflect neutron beams, are called supermirrors and are utilized
also for X-ray mirrors, although in this case the absorption is more severe than
that for neutrons. The coefficients a, b, c, as well as the number of bilayers,N ,
and the ratio high-Z material/d-spacing, Γ , have to be optimized in order to
obtain the desired reflectivity as a function of the photon energy. For graded
multilayers Γ can be constant or slowly variable in order to maximize the
reflection efficiency over the energy band to be reflected, i.e., to find the best
trade-off between constructive interference and photoelectric absorption.

As an example, we show in Fig. 16.1 a comparison of the reflectivity as
a function of the photon energy at 0.2◦ grazing incidence for a constant
d-spacing W/Si multilayer with 200 bilayers, d = 8.7 nm, Γ = 0.46 and
a supermirror with 200 bilayers, a = 12 nm, b = 1.85, c = 0.3, and con-
stant Γ = 0.46. The supermirror stack was especially designed to provide a
reflectivity as uniform as possible in the energy band 1–70keV. The reflec-
tivity is improved at low energies by adding a capping layer of tungsten and
a final layer of carbon [6]. Multilayer stacks of the described type [5, 7] are
foreseen for the optics of future hard X-ray imaging telescopes (SIMBOL-X,
Constellation-X, XEUS).

Imperfections of the interfaces, such as microroughness and layers interdif-
fusion, cause a broadening of the interface width. When the two effects can be
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Fig. 16.1. Calculated X-ray reflectivity of a constant d-spacing W/Si multilayer
(dashed line) and a W/Si supermirror (solid line) in the energy range 1–70 keV at
the grazing incidence angle 0.2◦. The computation supposes zero roughness

considered to be independent of each other, the total interface width, σ, can be
computed as the quadratic sum of the roughness, σr, and the interdiffusion, σd:

σ2 = σ2
r + σ2

d. (16.5)

One of the effects of interface broadening is the exponential reduction of
the “specular” reflectivity (reflection angle equal to the angle of incidence),
following the Névot–Croce formula [8]:

Rσ = R0 exp
(
−16π2σ2nhnl sinϑh sinϑl

λ2

)
. (16.6)

In this formula, nl, nh are the refractive indexes and ϑl, ϑh are the incidence
angles in the two components of the multilayer. The two angles are not equal
due to beam refraction. The reduction is much more severe for high energies
(small λ). The interfacial roughness, σr, has also another effect, the X-ray
Scattering in directions around the specular one. This effect has an important
role in the degradation of imaging quality of X-ray optics.

High precision in the thickness of the layers and a low roughness are
required to ensure a good reflectivity in the energy band of interest. Deviations
of the thickness of the layers from the nominal ones can destroy the ordered
phase shift distribution that generates the high reflectivity or/and the energy
resolution, e.g., for narrow-band multilayers used as monochromators. There-
fore, the reflectivity scan of a multilayer is very sensitive to thickness drifts and
irregularities, and it is easily understood how the deposition facility has to be
carefully calibrated. Furthermore, the deposition rate has to be very steady.

As we shall see in the next section, the sensitivity of X-ray reflectance to
small deviations of the multilayer thickness from the nominal one makes X-ray
reflectivity scans a powerful tool for the investigation of the internal structure
of a multilayer, and consequently, for the evaluation of the improvement of
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a deposition technique. We shall, moreover, see how a detailed description of
the multilayer can be extracted by means of PPM.

16.3 Determination of the Layer Thickness
Distribution in a Multilayer Coating

16.3.1 TEM Section Analysis

A possible technique that can be used to visualize the structure of a multi-
layer coating is the use of a Transmission Electron Microscope (TEM). In TEM
images, the high-density layers appear dark, whereas the low-density layers
are bright. For instance, we show in Fig. 16.2 the TEM sections of a Pt/C
multilayer deposited by e-beam evaporation onto a Si wafer (σ ≈ 0.3 nm) sub-
strate at Media-Lario technologies (Bosisio Parini, Italy); the layered structure
is clearly visible and the thickness of single layers can be directly measured.
For example, the TEM image in Fig. 16.2 highlights the presence of a much
thicker carbon layer due to an instability of the electron beam evaporator.
Indeed, the increase of Pt layers at the right side is an image artifact. It will
be explained in Sect. 16.3.3.

The information provided by the TEM analysis is often useful in helping
to improve the stability of the deposition system. For example, this sample
was a very important test because it constituted the final calibration of the
deposition facility for the manufacturing of a hard X-ray optic prototype [9].

In addition to the layers thickness of the multilayer, TEM images also
provide useful information concerning the crystallization state of the layers,
the interdiffusion between adjacent layers, and sometimes the undulations of

Fig. 16.2. TEM section of a Pt/C multilayer deposited by e-beam evaporation onto
a Si wafer. Pt layers are the dark bands. The section thickness, perpendicular to the
page, decreases from the right to the left side. The growth direction is from bottom
to top (image by L. Lazzarini and C. Ferrari, IMEM-CNR, Parma, Italy)
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the interfaces due to the microroughness growth (see Fig. 16.8). This is a
well-known phenomenon, resulting from the combined effect of the replication
of topography of the underlying layers and the random fluctuations of the
deposition process [10].

The TEM images presented in this work are obtained from a JEOL-2000-
FX installed at IMEM-CNR (Parma, Italy). The accuracy in layers thickness
measurements is ∼0.5 nm for multilayers with abrupt interfaces.

16.3.2 X-Ray Reflectivity Analysis

The TEM technique is expensive and the sample preparation is complex and
destructive; therefore, it can be utilized only for selected samples.

However, a large amount of information can be extracted from the analysis
of the X-Ray Reflectivity (XRR) scan of the multilayer. This technique is a
commonly performed test of the reflectance efficiency and consists of prob-
ing the multilayer by means of a thin X-ray beam incident on the coating
and measuring the reflectivity in the specular direction at different incidence
angles.

The usefulness of the XRR measurement as a diagnostic tool is also well
known: the reflectivity as a function of the grazing incidence angle, resulting
from the interference of the radiation reflected at each interface, is usually very
sensitive to the details of the multilayer structure, namely all the values of
thickness, density, and roughness of the layers. For instance, if the multilayer
has a high periodicity and smooth, abrupt surfaces, it will generally exhibit
high, sharp, clearly defined interference peaks (16.3). Conversely, irregularities
of d-spacing will cause the peaks to be “spread” on the angular scale (see
Fig. 16.3), whereas rough or diffuse interfaces will reduce the intensity of
peaks (16.6).

This technique is not destructive, it is quick, and it does not require any
particular preparation of the sample. In addition, the probed surface is usually
large (several cm2) even with very thin beams because the measurement is
usually performed in grazing incidence. This reduces selection effects because
local fluctuations of d-spacing are averaged out.

The requirements for XRR measurements for deriving the multilayer
structure are a monochromatic X-ray source with a small divergence (a few
10 arcsec) in order to guarantee a good angular resolution. In addition, the
incident X-ray beam has to be very thin (a few tenth/hundredth microns,
depending on the sample size) in order to be entirely collected by the sample
at very small incidence angles (ϑi > 500 arcsec).

Interpretation of X-Ray Reflectivity Data

Although the analysis of XRR curves is a widespread tool, their exact inter-
pretation is a complex problem. Because of the sensitive dependence of
XRR measurements on the thickness, density, roughness of all layers, the
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Fig. 16.3. Comparison of the measured X-ray reflectivity scans of two Ni/C multi-
layers with the same average value (9 nm), but different dispersion of the d-spacing
(deposited in 2003 by e-beam evaporation at Media-Lario technologies). The smaller
dispersion in the case of the solid line curve is made apparent by the narrower and
more regular peaks. The approximate Γ factor is 0.2 for the solid line and 0.4 for
the dashed line

Fig. 16.4. Experimental X-ray reflectivity of the W/Si multilayer with 30 bilayers
deposited by e-beam with ion assistance (grey dots). The black solid line is the initial
reflectivity model, computed with the IMD package [11], assuming a multilayer with
constant d-spacing

interpretation of XRR scans is not trivial. The XRR of a multilayer with
N bilayers can be computed by applying recursively (16.2) including (16.6)
to account for the roughness/interdiffusion. However, to fit the reflectance
modeling to the experimental dataset it would be necessary to handle 4N
parameters, namely all the thickness and roughness values of all layers,
assuming at least constant density values throughout the stack.

We show in Fig. 16.4 an example we adopt in the following pages:
the experimental XRR scan at 8.05 keV (measured at INAF/Osservatorio
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Astronomico di Brera) of a W/Si multilayer (30 bilayers). The sample was
deposited in 2004 by e-beam evaporation with Ar+ ion etching onto a Si
wafer (σ ≈ 0.3 nm) at Media-Lario technologies. The deposition was the first
test of the ion-etching facility: this test confirmed that the ion beam is effective
in reducing the roughness of a W/Si multilayer, as proven by AFM measure-
ments. The XRR scan was measured with a BEDE-D1 X-ray diffractometer
with a Cu-anode X-ray tube as source. The Cu Kα X-ray line is filtered by a
Si Channel-Cut crystal and collimated by a system of slits, obtaining a thin
(70 μm wide, 25 arcsec divergent) and monochromatic (ΔE/E ≈ 10−4) X-ray
beam. The reflected beam is collected by a photon counter, a scintillator with
high linearity.

The measured XRR curve (dots) exhibits a complex structure with broad
peaks: the solid curve in Fig. 16.4 is the best fit that could be reached using
a constant d-spacing model with d = 5.3 nm, Γ = 0.43, and σ = 0.5 nm. The
density values were assumed to be 18.1 g cm−3 for W and 1.8 g cm−3 for Si,
lower than the natural ones (19.3 g cm−3 for W and 2.3 g cm−3 for Si), in
agreement with previous single-layer calibrations. However, the disagreement
is apparent. Therefore, the multilayer has a variation of d-spacing in the stack:
it is likely to be ascribed to a variation of the evaporation rate, combined with
fluctuations of the etching rate in the ion-etching facility. However, the exact
determination by means of manual fits of the trend of thickness of layers is
very difficult.

Fitting Algorithms

The problem of extracting the stack parameters from an XRR scan can be
solved by means of numerical codes, which are able to explore a very wide
range of parameters in order to find the best solution. The first step is the
assumption of an appropriate model for the multilayer stack, as defined by a
set of independent parameters. For example, one can assume a continuous drift
or an irregular variation of the thickness and roughness of the layers. In the
first case the free parameters are the coefficients of the function describing the
drift. In the second, each thickness value is a free parameter. Alternatively,
the model may consist of a drift superimposed onto a fluctuating term.

The second step is the choice of a figure of merit (FOM) to measure the
closeness of the experimental curve to the computed one using a standard
method with variable parameter values. The problem of searching for the best
fit is therefore reduced to the minimization of the FOM, and the best solution
is the set of values for parameters corresponding to the global minimum of the
FOM. A possibility for the FOM could be the χ2 of the measured-simulated
data. However, since in a reflectivity minimum the X-ray beam probes a much
larger depth of the stack, we can recover more information concerning the
thickness of the deepest layers in reflection minima than at reflectivity peaks,
even though the reflectivity signal is usually very weak. The FOM should
then be calculated from the logarithm of the reflectivity in order to make the
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algorithm sensitive to the XRR features located near the reflection minima.
A possible FOM fulfilling this requirement is

FOM =
∑

i

(logRm(i)− logRc(i))
2
. (16.7)

Here Rm(i) and Rc(i) are the measured and calculated reflectivity at the ith
angular position of the X-ray mirror. Another possibility is

FOM =
∑

i

|logRm(i)− logRc(i)|. (16.8)

These and other FOMs have been adopted in the literature (see [12] for a
detailed discussion).

Several algorithms have been studied in the past years aimed at FOM
minimization working on a large number, F , of parameters:

• Downhill simplex. Starting from an initial guess for the parameters values,
a set of F +1 point (the simplex) makes a series of moves selecting the val-
ues with the smallest value of the FOM [13]. This method converges to the
nearest local minimum, where it gets trapped. A more global minimum can
be found by iterating this procedure from different initial guessed values
and selecting the best result. The method is then called Iterated Simplex:
this method has been utilized for the optimization of X-ray multilayers for
the optics of XEUS [14].

• Levenberg–Marquardt (LM). Starting from guessed values, the FOM min-
imum is searched through a combination of inversions of the Jacobian
matrix of Rc with respect to the parameter set [15, 16]. This method
works better when initial values lie near the global minimum, e.g., the
initial values can be computed analytically from the experimental reflec-
tivity curve [17]. The LM can be utilized to refine the calculated parameter
values [18].

• Genetic Algorithms (GA). This very powerful class of minimization algo-
rithms has been used by several authors (see e.g. [12, 19, 20]) in facing
the problem of fitting the reflectivity of multilayers. This method gener-
ates a large number of sets of parameter values, called individuals, and
simulates the evolution of the population through random mutation and
exchange of subsets of parameter values between individuals. The pop-
ulation is also subjected to a “Darwinian” selection in that the poorer
performing individuals are suppressed. The survivors generate the next
generation of individuals. The evolution of the population should lead to
the best fit after a sufficiently large number of generations.

• Downhill Annealing. This method combines the local minimization of the
Downhill Simplex with the capability of the “Simulated Annealing” to
escape from local minima [21–23]. The convergence of the Simplex to the
nearest local minimum is compared with the thermalization process at
a “temperature” T . Each movement of the simplex is compared with an
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energetic transition governed by Boltzmann statistics, with the FOM play-
ing the role of the energy. Owing to the tendency of physical systems to
reach the minimum energy, the Simplex will preferably move down the
FOM gradient. However, transitions that increase the FOM are also sta-
tistically possible. Initially T is high, and so is the rate of transitions
that increase the FOM. In this phase the program has a high capability of
escaping from local minima. When T is slowly decreased (the “annealing”),
the likelihood of occurrence of transitions that increase the FOM becomes
smaller and smaller, and the system approaches the global minimum. This
algorithm has already been implemented in a program developed at ESRF
for multilayer stack analysis [24].

PPM (Pythonic Program for Multilayers)

The program we adopted to perform the XRR fit of the reflectivity curve is
PPM (Pythonic Program for Multilayers), developed by A. Mirone (ESRF).
PPM can perform detailed fits of XRR curves at one or more photon energies
at the same time. PPM takes as input an XML file that describes the modeling
of the stack (thickness drift, free variation of each layer, increasing roughness,
etc.) with values initially set by the user. The parameters can vary within fixed
limits, also set by the user. The comparison of the calculated XRR curve(s)
with the measured one(s) is made quantitative by evaluating the FOM, where
(16.8) was adopted. PPM then searches recursively the global minimum of
the FOM by means of the Downhill Annealing algorithm.

The fitting capabilities of PPM were used to perform fits of U/Fe multi-
layers in order to measure the optical constants of uranium [25]. Moreover, in
a previous SPIE volume [26] we utilized PPM to analyze some XRR curves of
X-ray multilayers, which yielded very accurate fits and a detailed description
of the coatings. In that work we also compared the results obtained from the
PPM analysis with TEM images of sections of the same samples, finding a
good agreement within the error of TEM. In this work we will apply PPM to
another example.

16.3.3 Stack Structure Investigation by Means of PPM

Application of PPM to the XRR Curve of a Multilayer

The analysis with PPM has been applied to the XRR curve at 8.05 keV in
Fig. 16.4 in order to derive the internal structure of the stack. PPM was run
in a LINUX environment with an AMD Sempron64 3400 processor (2 GHz).
Initially, we assumed a second-order drift of W and Si, and the two trends were
considered to be independent. The density values were known from previous X-
ray measurements on single layer samples obtained with the same deposition
facility: 18.1 g cm−3 for W and 1.8 g cm−3 for Si (see Sect. 16.3.2). The rms
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Fig. 16.5. The analysis performed via PPM on the XRR scan of the W/Si multi-
layer, assuming independent, second-order polynomial drifts of thickness values of
W and Si, and a quadratic drift of the roughness

roughness was also assumed to drift throughout the stack with a second-
order polynomial trend. No difference between the roughness of the W and
Si layers was assumed. PPM was then run on the experimental data after the
subtraction of the instrumental noise and the smoothing of apparent noisy
features in the reflection minima.

The fit was performed starting from values obtained from the parameters
adjusted manually (Fig. 16.4), and the final achieved fit is shown in Fig. 16.5.
The shape of the peaks is now fitted better, but not perfectly in particular at
the smallest incidence angles. The fitting procedure required just 10min.

The imperfections in the fit should be ascribed to the assumed continuous
drift, which cannot simulate all the irregularities of the d-spacing. There-
fore, the fit has been repeated by letting all the layer thicknesses to vary
freely within 1 nm, starting again from the values inferred from the man-
ual fit (2.3 nm for W, 3.0 nm for Si). Only the first deposited Si layer was not
included in the model because its presence does not noticeably affect the XRR
diagram. The roughness is still assumed to have a second degree polynomial
drift, and the density values are still the same as used in the previous step.
However, because of the huge increase in the number of free parameters, the
fitting procedure needed to be restarted several times, with changes in the
limits of the allowed values when the fitting value came too close to one of
them. The computation required 2 h, but the experimental XRR curve is now
fitted accurately (see Fig. 16.6).

The fit results are summarized in Fig. 16.7, where the distribution of thick-
nesses of W and Si layers is plotted as a function of their bilayer index,
numbered from the substrate. The thickness of Si layers oscillates around
the 3.0 nm value and that of W around 2.3 nm. Moreover, the rms roughness
exhibits an apparent, almost linear increase from 0.31 to 0.55nm, going from
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Fig. 16.6. The XRR curve fit with PPM by letting each layer thickness value vary
freely

Fig. 16.7. The W/Si multilayer stack structure derived by PPM

the substrate to the multilayer outer surface. This increasing evolution of the
roughness is expected classically, even if the use of the ion etching device
contributed to restrict the roughness growth.

In the next section we shall compare the analysis results with those of the
TEM image (Fig. 16.8).

Interpretation of TEM Images and Comparison with PPM

The results of the fit in Fig. 16.7 can be cross-checked with the results of the
sample section taken with TEM (Fig. 16.8). From the image we can see directly
the microroughness growth detected by the PPM analysis: undulations with
∼25 nm period with increasing amplitude in the growth direction. From a
profile of the TEM image the thickness values were extracted, except for the
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Fig. 16.8. TEM image of the section of the W/Si multilayer sample deposited
by e-beam evaporation with ion etching (at Media-Lario technologies). The growth
direction is from bottom to top (image by L. Lazzarini and C. Ferrari, IMEM-CNR)

bilayers 10 and 11, and the comparison of PPM results with those of TEM is
shown in Fig. 16.9.

When directly compared, the two distributions of layers as derived using
the two methods would be at first glance in disagreement. On the average,
the W layer thickness values measured with TEM are larger than the values
inferred by PPM by 0.5 nm, whereas the contrary occurs for Si layers.

However, as anticipated in Sect. 16.3.1, the thickness values can be altered
by image artifacts: the roughness of the high-Z element tends to obscure the
low-Z element layers by superposition of rough profiles on the image plane.
Thus, the W layers in Fig. 16.8 appear thicker, and the Si layers appear thinner
than they actually are. This is more clearly seen in Fig. 16.2 with the Pt/C
multilayer sample, where the obscuring of the C layers increases rapidly with
the thickness of the TEM section up to the point of disappearing completely
on the right side of the image.

In fact, this artifact depends on the TEM section thickness. When the
TEM sample is thin, a small number of profiles overlap in the image plane
and the measured thickness values are a good approximation to real ones, i.e.,
the distance between the average levels of the interfaces. In Fig. 16.2, this
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Fig. 16.9. The thickness distribution in W/Si multilayer as computed by PPM
(marks) compared with TEM findings (lines). The error bars are the uncertainties
of the TEM measurement

occurs near the edge of the sample, where the section is very thin. Far from
the edge, a very large number of rough profiles are integrated with random
phases along the line of sight, which is perpendicular to the page. This is
schematically depicted in Fig. 16.10. Note that the obscuration equals roughly
twice the maximum amplitude of the high-Z layers. Since the X-ray reflection
occurs at the average level of the interfaces (the dashed lines in Fig. 16.10),
the measured values by PPM will differ from those measured with TEM by
the apparent “broadening” of dark layers.

TEM Artifacts Correction: Comparison of d-Spacings

To estimate quantitatively the correction of TEM data, we can suppose the
interfaces to be isotropic. Therefore, the roughness PSD P (f) along the
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Fig. 16.10. Artifacts in TEM images of multilayers. If the TEM section is thin
(left) the projection of the high-Z material layers approximately equals the average
thickness (delimited by the dashed lines). If the thickness of the section is increased
(center) the low-Z layers will start being “shaded” by the irregularities of the high-Z
layers. Thus, the measured thickness with TEM (vertical arrows) will be lower and
lower (right)

line-of-sight (perpendicular to the page) approximately equals the measured
one in the TEM image plane (parallel to the page), and for a given thickness
of the TEM section τ we can compute the broadening Δz of dark layers as
twice the peak value of the roughness:

Δz ≈ 2
√

2

(∫ +∞

1/2τ

P (f)df

)1/2

. (16.9)

In (16.9) the factor
√

2 is the peak to rms ratio. The root of the integral
of the PSD is the rms roughness and 1/2τ is the minimum frequency being
integrated, in other words, the minimum frequency with a maximum of the
oscillation in a length τ . The increase of Δz with τ is partly due to the
enlargement of the frequency band and partly due to the rapid increase of
P (f) for decreasing frequencies. Furthermore, τ in the TEM section is not
constant, but it is larger in the upper part of the image. This makes the
evaluation of Δz quite difficult.

Some constraints can be set on the value of τ by noting that we do observe
profile undulations in the upper part of the TEM image (see Fig. 16.8). Then,
under the reasonable assumption that the surface topography is isotropic, τ
should be of the order of the average period of the observed oscillations (some
20 nm). The P (f) function was not measured at such a short spatial scale;
hence, we cannot compute directly Δz. We can, however, at least state that the
root of the integral in (16.9) should be much less than the σ roughness value
inferred from the XRR analysis, which usually refers to all the spatial periods
below some microns. Such a value for σ could be used if the TEM sample
were much thicker, i.e., τ ≈ 1 μm, and the correction Δz would amount (on
average) to 2

√
2× 0.4 nm ≈ 1.1 nm. Conversely, if the TEM sample is much

thinner than 1 μm, Δz < 1.1 nm.
In fact, if we assume Δz = 0.5 nm, the main discrepancy between TEM

data and PPM findings is eliminated. To account for the projection effect
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Fig. 16.11. Comparison of d-spacings as extracted from the XRR curve (marks)
and TEM (lines+ bars). The agreement is satisfactory

mentioned, this amount has to be subtracted from W thickness values as
measured from TEM and to be added to the Si layers. The residual discrep-
ancies can be due to errors in localization of the interfaces in the TEM image.
The evolution of the roughness and the increase of τ can be the cause of the
larger discrepancy in the last bilayers.

A confirmation of the assumed interpretation comes from the comparison
of bilayer d-spacings obtained by XRR and TEM. They should not be affected
by the projection effect in TEM image because the correction for W and Si
have opposite signs and cancel out. The d-spacings comparison is shown in
Fig. 16.11. Almost all the d-spacings, as measured with PPM, are in agreement
with TEM to within the TEM error bars (0.5 nm). This is a confirmation of
the correctness of the analysis performed with PPM.

16.3.4 Fitting a Multilayer with Several Free Parameters

We also applied PPM to fit the XRR curve of a graded multilayer deposited
by DC magnetron sputtering at the Harvard-Smithsonian Center for Astro-
physics (Boston, USA), using a deposition facility suitable for the production
of multilayer coated hard and soft X-ray mirror shells [27]. The substrate
used was a superpolished fused silica sample (σ ∼ 0.1 nm). The multilayer
is described by two power-law distributions of d-spacings: the outermost 20
bilayers are thicker and reflect soft X-rays, the innermost 75 bilayers are
thinner and reflect the hardest X-rays.

The reflectivity of the sample was measured using the BEDE-D1 diffrac-
tometer at INAF/Osservatorio Astronomico di Brera up to 15,000 arcsec
grazing incidence at the photon energy of 8.05 keV. In this case, because of
the very large number of bilayers, we could not take all the thickness value as
free parameters. To get around this, we initially modeled the thickness trends
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Fig. 16.12. PPM fit of a graded W/Si multilayer deposited at the Harvard-
Smithsonian Center for Astrophysics. Measured data (dots) and PPM fit (line)

following two power laws, assuming as free parameters a, b, c, as in (16.4). To
account for a drift of the Γ factor (see Sect. 16.2) throughout the stack, we
assumed that the trend of the parameters for W and Si trend were indepen-
dent. The roughness was free to drift according to second-order polynomial
trends, one for each stack. The search for the best fit with PPM enabled us
to determine the parameters a, b, c, for the two stacks.

In a second step, to refine the fit, the layers thickness values were treated as
free variables, starting with the values found in the previous step and allowing
small variations in them (±0.3 nm). The very detailed fit results are shown in
Fig. 16.12.

16.4 Conclusions

The methodology described here highlights the potential of the XRR scan
analysis for investigations of the internal structure of nearly periodic and
graded multilayers. The problem of multi-parametric XRR curve fitting can be
solved by means of computer codes based on several algorithms. In particular,
PPM has proven to be very effective in fitting structured XRR curves, and the
structure inferred is in good agreement with TEM results after the correction
of TEM artifacts.

XRR analysis with PPM yields a reliable description of the multilayer
structure, on condition that the experimental curves are fitted very accurately.
To do this, the fitting strategies can be summarized as follows:

1. For multilayers with 30 bilayers or less, assume each layer thickness value to
be a free variable. Then let them vary within a wide variability range (1÷
2 nm) in order to explore a wide parameter space region. If the multilayer
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has a nearly constant d-spacing, assume a constant thickness throughout
the stack as an initial guess.

2. For multilayers with more than 30 bilayers, start the fit by first assuming
a continuous thickness drift in the stack. Then, let all layers vary freely
within small (0.4 nm) limits around the values found in the previous step
of the fit procedure. The fit can be restarted several times, adjusting the
limits each time, until a satisfactory fit is reached.

3. If the experimental curve exhibits high reflectivity peaks, a preliminary
computation can be done, assigning weights to data proportional to the
reflectance values in order to approximately fit the primary reflectance
peaks. The parameters should then be refined in a successive PPM run
without weights.

4. If the actual density values are uncertain, they can be assumed as fit
variables within small limits.

5. The roughness values can be considered as constant throughout the stack
only for multilayers with less than 20 bilayers, otherwise a drift of the
roughness should be included.

6. Possible angular offsets in the experimental curves, instrumental noise, and
the angular resolution of the measurement should be accurately evaluated
and included in the calculations.

Finally, when comparing XRR analysis and TEM results, correct the thick-
ness values obtained from TEM according to (16.9). These fitting methodolo-
gies were tested on several multilayer samples [26] in addition to the example
provided in the present work.

Further tests are foreseen in order to establish the reliability of PPM as a
diagnostic tool for multilayers. If confirmed, the systematic use of the XRR
scan analysis with PPM will be an important diagnostic tool in the devel-
opment of multilayer mirrors for several applications, such as the wideband
reflective coating of future soft and hard X-ray telescopes.
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Hard X-Ray Microoptics

A. Snigirev and I. Snigireva

Abstract. This chapter presents a summary of micro-focusing optics and methods
for X-rays in the energy range 4–100 keV, as provided by synchrotron radiation
sources. The advent of third generation storage rings such as the ESRF, the APS and
Spring-8 with X-ray beams of high brilliance, low divergence and high coherence has
made possible efficient X-ray focusing and imaging. The main emphasis is on those
methods which aim to produce submicrometre and nanometre spatial resolutions
in imaging applications. These methods fall into three broad categories: reflective,
refractive and diffractive optics. The basic principles and recent achievements are
discussed for optical devices in each of these categories.

17.1 Introduction

A summary of microfocusing optics and methods for hard X-rays is pre-
sented. The hard X-ray region is taken as extending from about several keV
(∼4 keV) to gamma rays with several hundreds keV (∼100 keV) provided by
synchrotron radiation sources. The advent of third generation storage rings
like ESRF, APS, and SPring-8 with radiation beams of high brilliance, low
divergence, and high coherence makes possible efficient X-ray focusing and
imaging. X-ray microscopy techniques are presented first. The main emphasis
will be put on those methods that aim to produce nanometer resolution. These
methods fall into three broad categories: reflective, refractive, and diffractive
optics. The basic principles and recent achievements will be discussed for all
optical devices. The report covers the latest status of reflective optics, includ-
ing mirrors and multilayers, capillaries and waveguides. Special attention will
be given for successful development of Kirkpatrick–Baez (KB) systems pro-
viding nanometer focusing in two dimensions. The basic principles and the
state of the art of diffractive optics such as Fresnel zone plates are reviewed.
Improvement of the spatial resolution without loss of efficiency is difficult
and incremental due to the fabrication challenges posed by the combination
of small outermost zone width and high aspect ratios. Particular attention
will be given to recent invention of refractive optics. Refractive optics is a
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rapidly emerging option for focusing high energy synchrotron radiation from
micrometer to nanometer dimensions. These devices are simple to align, offer
a good working distance between the optics and the sample, and are expected
to become standard elements in synchrotron beamlines instrumentation in
general and in high energy X-ray microscopy in particular.

17.2 X-Ray Microscopy

The history of X-ray microscopy goes back to 1896, the year following the
discovery of X-rays by Roentgen. The method used to study the struc-
tural details of biological objects by enlargement of X-ray radiographs was
called by P. Goby as microradiography in 1913 [1]. Beginning in the late
1940s, X-ray microscopy with grazing incidence mirror optics was proposed
by P. Kirkpatrick in order to surpass the optical microscope in resolution [2].

As a branch of earlier developments in electron microscopy, projection
microscopy was proposed by Cosslett and Nixon [3] and it became very popu-
lar since the 1950s. In the early 1970s, several groups started new technological
developments of X-ray optics, in particular, Fresnel zone plates, and the mod-
ern era of X-ray microscopy started. In 1974, Schmahl and collaborators
built a full-field transmission microscope at DESY (Deutsches Elektronen
Synchrotron) in Germany [4]. Kirz and Rarback at NSLS (National Syn-
chrotron Light Source) at Brookhaven National Laboratory in USA built
the first scanning transmission microscope using a zone plate objective in
1982 [5]. Traditionally, this type of X-ray microscopy deals with rather soft
X-ray energies (100–2,000eV), in particular, in the so-called water window
region between the K-shell X-ray absorption edges of carbon and oxygen at
4.4 and 2.3 nm, where organic materials show strong absorption and phase
contrast while water is relatively nonabsorbing. This enables imaging of spec-
imens up to ∼10 μm thickness, with high intrinsic contrast using X-rays with
a lateral resolution down to 15nm [6].

In recent years, considerable progress has been made in X-ray microscopy
in the hard X-ray regime (E > 4 keV), as a result of the development of high
brilliance, high energy X-ray sources coupled with advances in manufactur-
ing technologies of focusing optics. One of the key strengths of hard X-ray
microscopy is the large penetration depth of hard X-rays into the matter
around 1 mm, allowing one to probe the inner structure of an object without
the need for destructive sample preparation. Resolution of the order of 100nm
was reached with photon energies up to 30 keV.

Lens-based X-ray microscopy can be divided into two classes: full-field
microscopy and scanning microscopy (Fig. 17.1). The full-field transmission
X-ray microscope (TXRM) uses the same optical arrangement as conven-
tional light and transmission electron microscopes. Such types of microscopes
use optical elements like Fresnel zone plates or refractive optics as objective
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Fig. 17.1. Optical schematic of (a) transmission and (b) scanning-transmission
X-ray microscopes

lenses for high-resolution imaging. Scanning microscopes usually use a focus-
ing optics to form a finely focused spot or microprobe through which the
specimen is rastered. The microscope of choice is generally determined by the
specimen and observation to be made on it. Table 17.1 summarizes different
types of X-ray microscopes available nowadays [7–11].

The full-field transmission microscope is illustrated schematically in
Fig. 17.1a. The basic approach is to use a high quality imaging optics as
a microscope objective to create a magnified image of the object. When the
object is placed slightly outside the focal distance (p is slightly larger than F ),
then a strongly magnified image is generated at a distance q = pF/(p − F )
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with magnificationM = q/p = F/(p−F ). This technique offers the possibility
of dynamic imaging and is well suited for phase contrast imaging.

The basic soft X-ray microscope approach is to use a condenser zone plate
to monochromatize and to concentrate X-rays onto the sample. The micro-
objective zone plate forms a magnified real image of the sample at roughly
1,000× magnification. The enlarged image is recorded on a backside-thinned
CCD camera. The sample is mounted in an environmental chamber where it
can be prepared between two thin foils in its natural state, including when wet.
The object chamber is under atmospheric pressure, while the major parts of
the X-ray optical path are in vacuum. Image exposure times range from under
a second with dry specimens to a few seconds for wet specimens, depend-
ing on the zone plate used. Phase contrast in TXRM as a full analogue of
Zernike phase contrast in visible light microscopy has been realized. A removal
ring aperture is placed near the condenser and a phase-ring is permanently
mounted in the conjugate plane. The improved contrast allowed for reduced
illumination and therefore reduced radiation dose to the specimen. A cryo-
genic object chamber has been developed and implemented at the TXRM.
The cryogenic method allows imaging of chemically unfixed samples with res-
olution 20–30nm. Furthermore, the high stability of frozen-hydrated samples
allows taking multiple images for tomography.

For hard X-rays, two types of optics are available today with sufficient
quality to be used in the development of full-field imaging: Fresnel zone plates
(FZPs) and compound refractive lenses (CRLs). Both have in common that
their focal length for X-rays with photon energies around 10 keV and higher is
in the order of meters, and that their apertures are limited to several hundreds
of micrometers. The length of the setup will increase asM increasingly differs
from unity. The length of the entire microscope can be of the order of 10–
25m. Another implication of a long focal length is a very small numerical
aperture, which limits the resolution of the imaging setup. The resolution of
about 100–300nm is routine now.

X-ray microscopy in the scanning mode is illustrated in Fig. 17.1b. The
basic idea in scanning microscopy is to form a microprobe across which the
specimen is mechanically scanned. A proportional counter is used to detect
the transmitted X-rays and the image is built up pixel (picture element)
by pixel. The focused X-ray probe can also be used to excite other pro-
cesses such as photoelectrons and fluorescent X-rays. The spatial resolution
is limited by the focusing optics. Scanning transmission X-ray microscopes
(STXRM) for soft X-rays use Fresnel zone plates as high resolution objectives
to form a focused spot. Scanning microscopes require coherent illumination
and must be used with high brightness sources such as undulators at syn-
chrotron storage rings. Scanning microscopes generally have exposure times
of minutes; each pixel can be formed in a few milliseconds using synchrotron
radiation. Such microscopes impact 5–10 times less radiation dose onto the
specimen and have an energy resolution of 0.1 eV. Scanning transmission
X-ray microscopes are better suited to spectromicroscopy. Two main types of
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scanning microscopes exist today: STXRMs equipped with photon detectors
and scanning photoemission microscopes equipped with electron detectors.

In the case of hard X-rays a microfocus is generated by KB mirrors, a
Fresnel zone plate, or a parabolic CRL. The high-energy microfocusing optics
benefits from longer focal lengths and a larger depth of field, up to a few mil-
limeters, that is advantageous for the use of specific sample environment like
furnaces or high-pressure cells. Shorter wavelengths are favorable for diffrac-
tion studies including wide and small angle scattering. In a microprobe, the
strategy is to scan the beam over the sample and to measure a signal in
diffraction, in fluorescence, or in absorption (XANES, EXAFS) for each beam
position. When combining scanning microscopy with tomographic techniques
the inner structure of a sample can be reconstructed, including the distribution
of different atomic species and even of the valences of atoms.

17.3 X-Ray Optics

The small source size and low divergence of third generation synchrotron
radiation sources gave rise to tremendous advances in the development of
different types of microfocusing optics based on reflection, diffraction, and
refraction phenomena. All available microfocusing devices for hard X rays
are presented in the Table 17.2. The best resolution for the optical systems
presented exceeds the 100 nm limit. From their principles of operation these
optical systems are subdivided into the three broad groups.

17.3.1 Reflective Optics

Kirkpatrick–Baez Systems

Conventional mirrors, as used for visible wavelength, at normal incidence can-
not be used, because the reflectivity is too low and typically less then one
hundred thousand X-ray photons will be reflected. A high reflectivity can,
however, be obtained at grazing incidence angles

(
θ <

√
δ
)
. To reduce the

astigmatism, Kirkpatrick and Baez proposed the use of two spherical or cylin-
drical mirrors in a crossed configuration [2]. Figure 17.2 shows a geometrical
arrangement of such so-called Kirkpatrick–Baez (KB) system. To enhance the
reflectivity, multilayer mirrors, where the refractive index varies periodically
with depth, can be used. To build such mirrors, alternative layers with a thick-
ness λ/4 are evaporated or spattered onto a blank one with a relatively high
refractive index and the other with a relatively low refractive index. The weak
radiation reflected at the interfaces of the multiplayer is superimposed coher-
ently and in phase, and can give a considerably increased reflectivity. The
reflecting focusing systems can be either static, with mirrors polished accord-
ing to the proper figure optimized for a given incidence angle and focus, or



17 Hard X-Ray Microoptics 261

T
a
b
le

1
7
.2

.
M

ic
ro

fo
cu

si
n
g

o
p
ti
cs

fo
r

h
a
rd

X
-r

ay
s

R
efl

ec
ti
v
e

D
iff

ra
ct

iv
e

R
ef

ra
ct

iv
e

K
ir
k
p
a
tr

ic
k
–
B

a
ez

sy
st

em
s

C
a
p
il
la

ri
es

W
av

eg
u
id

es
F
re

sn
el

zo
n
e

p
la

te
s

R
ef

ra
ct

iv
e

le
n
se

s

M
ir
ro

rs
M

u
lt
il
ay

er
s

M
u
lt
i-
b
o
u
n
ce

O
n
e-

b
o
u
n
ce

F
en

g
et

a
l.
,

1
9
9
3

B
a
ez

,
1
9
5
2

S
n
ig

ir
ev

et
a
l.
,

1
9
9
6

K
ir

k
p
a
tr

ik
a
n
d

B
a
ez

,
1
9
4
8

U
n
d
ew

o
o
d

a
n
d

B
a
rb

ee
,

1
9
8
6

K
re

g
er

,
1
9
4
8

B
a
la

ic
,
1
9
9
5

E
<

2
0

k
eV

<
8
0
k
eV

<
2
0

k
eV

<
2
0

k
eV

<
3
0
k
eV

<
1
M

eV

Δ
E
/
E

W
h
it
e

b
ea

m
1
0
−

2
W

h
it
e

b
ea

m
1
0
−

3
1
0
−

3
1
0
−

3

Δ
3
6

n
m

[1
2
]

4
5
n
m

[1
3
]

5
0
n
m

[1
4
]

2
5
0

n
m

[1
5
]

4
0
×

2
5

n
m

2

[1
6
]

3
0
n
m

[1
7
]

5
0
n
m

[1
8
]

E
,
en

er
g
y

ra
n
g
e;

Δ
E
/
E

,
en

er
g
y

b
a
n
d
w

id
th

;
Δ

,
b
es

t
m

ea
su

re
d

re
so

lu
ti
o
n



262 A. Snigirev and I. Snigireva

Fig. 17.2. Schematic view of the two-mirror Kirkpatrick–Baez system. θ is the
mirror incidence angle

dynamic, with actuators bending flat mirrors into the elliptic shapes required
by the experiment. Today, as a result of improved techniques for developing
highly finished and perfect surfaces, ellipsoidal and paraboloidal mirrors can
be manufactured to a high degree of perfection. Focusing down to 100nm spot
size is achievable with KB systems.

The reflecting multilayer supermirrors are able to focus X-rays over large
energy range, whereas Bragg reflecting multilayer mirrors focus only a small
energy bandwidth (∼1–2%). As, within a given energy interval, the optical
properties for total reflecting optics are independent of the X-ray wavelength,
the focal spot is retained while tuning the energy. Therefore, experiments
requiring energy tuning, like spectroscopy, can be performed without any read-
justment of the optics. However, the disadvantage of grazing incidence optic
is its inherent low acceptance and it is mostly used for scanning microscopes.

KB systems at the ESRF are based on dynamical bending systems where
an initially flat, superpolished plate is used [13,19–21]. The obvious advantage
of dynamical bending is that it permits one to tune the focusing conditions.
Different mechanical benders are available at the ESRF. One can easily choose
the most suitable system according to the experimental requirements, such as
energy and energy range, the focusing parameters such as magnification and
focusing distance. In addition, optimal substrate coatings, i.e., single layer
mirrors or multilayers, can be used. The typical geometrical characteristics
of the ESRF KB systems are focal distances ranging from 0.1 to 3m and
circular or elliptical bending radii varying from 20 to 1,000m. Ideally KB
systems require easy alignment procedure and they must preserve coherence
or the wavefront of the reflected beam. Newly developed surface preparation
techniques and a computer control alignment procedure allow a spot size of
about 100×100 nm to be achieved. It is of great importance that the bending
radii of the mirrors remain constant during several hours and even days of
experimental measurements. Hence, the mirror mounting technique is a crucial
point. Furthermore, vibrations should not deteriorate the spot by more than
the mirror slope errors. At present, a typical value of the mirror local slope
error corresponds to less than 0.3–0.4 μrad after polishing. To preserve high
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reflectivity, a good level of vacuum is required to avoid surface contamination.
Normally, a KB prealignment operation is employed, consisting of a laser self-
alignment mirror setup inserted temporarily in front of the KB system. Final
alignment is done with X-ray beam.

Most ESRF beamlines are equipped with in-house developed KB sys-
tems. More than 50 mirrors have been built and installed for microfocusing
applications. Some of them are mounted in pairs to make up KB systems
with different dynamical technologies. Many substrates are multilayer-coated
according to energy, energy tunability, acceptance, and reflectivity require-
ments. The developed technology allows to achieve resolution below 100nm,
and 45 nm was measured recently at ID19 using 24 keV [13].

Although KB mirrors with benders enable the focal length to be varied,
the benders are bulky and the stability achieved is not sufficient to support
long-time scanning experiments on nanofocusing systems. The efficiency for
microfocusing is affected by dynamic stability. In their actual usage of X-ray
KB optics, the ease of setup is a very important factor. As was recognized
at the other facilities, the procedures involved in mirror bending to form an
exact ellipse from a flat surface are so complicated that a long time is needed
to set up and optimize the system.

For these reasons static KB systems were chosen at the SPring-8 [12,22–28]
and APS [29–35] facilities. For KB mirror fabrication at SPring-8, plasma
chemical vaporization machining (PCVM) is employed for rough figuring, and
elastic emission machining (EEM) is used for final figuring and surface super
smoothing. These methods do not cause mechanical damage to the processed
surfaces because their removal mechanism is based on chemical reactions. By
combining these two methods, surfaces of unprecedented accuracy can be cre-
ated with 0.1 nm controllability and 0.3mm spatial resolution. To control the
surface accuracy, the combined technique of microstitching interferometry and
relative-angle-determinable stitching interferometry (RADSI) is used. This
technique makes possible the measurement of elliptical surface profiles with a
spatial resolution of 0.03mm and measurement height accuracy close to 1 nm.
Typically, after the final figuring the surfaces were coated by a 50 nm Pt layer
using an electron evaporation method. The KB system was tested at the 1-km-
long beamline BL29XUL at SPring-8 using a 15 keV monochromatic beam.
A focal spot of 36 nm (horizontal) and 48 nm (vertical) was measured [12].
This proposed KB device employing precisely figured mirrors is promising,
not only on the basis of focusing performances, but also as a user-friendly
instrumentation.

Elliptical surfaces can be obtained by differentially coating a flat or a
spherical mirror with a continuously variable amount of gold. This idea was
proposed more than 60 years ago and was recently realized at the APS [29–35].
Profile coatings have been applied on both cylindrical and flat Si substrates
to make the desired elliptical shape. In a profile-coating process, the sputter
source power is kept constant, while the substrate is passed over a contoured
mask at a constant speed to obtain the desired profile along the direction
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perpendicular to the substrate-moving direction. A KB mirror pair, made
using Au as the coating material, was recently tested at the APS, and X-ray
results showed a focused spot size of 80× 70 nm2 [35].

Capillaries

Similar to reflective mirrors, monocapillary optics rely on total external reflec-
tion of the X-rays from the internal surface of the tube to transport X-rays.
Typical glass materials that have been used to fabricate capillary optics are
borosilicate, lead based, and silica glasses. For hard X-rays the typical values
for critical angles are 0.1–10mrad. The simplest form of a capillary is straight
(cylindrical) glass tube; these have first been used in the 1950s to guide X-rays
from the source point to a distant sample. This leads to an effective reduction
of the source sample distance and thus to an increase in flux on the sample.
The next step was to use tapered capillaries not only to guide but moreover
to squeeze the X-rays to a very small spot [36, 37] (see Fig. 17.3a). The first
experiments were performed with conventional X-ray tubes. In the late 1980s,
conical tapered capillaries were tested at synchrotron facilities [14, 36–38].

Tapered capillaries were shown to have nanofocusing capabilities more
than 10 years ago [14]. However, no appreciable progress of using such simple
devices for nanobeams has been made since that time. For multibounce capil-
laries, the problems are well understood and consist of significant losses in the
multireflection process and almost zero-working distance, which substantially
limits practical applications of capillaries in X-ray microscopy. On the other
hand, proposed single-bounce capillaries [39] show a great potential in devel-
oping nanofocusing devices (Fig. 17.3b). Parabolic and elliptical capillaries
have a large focal distance and very high reflectivity [40–43]. In a typical pro-
cess the predetermined capillary profile is achieved by “pulling” an originally
straight uniform glass tube with accurate control of mechanical movements
and heating parameters. Unfortunately, because of some unavoidable factors,
i.e., surface slope errors of the original glass tube and nonuniform mechani-
cal movement, it is difficult to reliably achieve elliptical or parabolic shapes
with the desired low-figure errors. State-of-the-art technology allows one to
produce a capillary with 70 μrad slope errors [41]. Obviously such slope errors
limit the resolution of the optics to a size of about 10 μm.

To overcome these problems, the use of a small elliptical capillary made by
a stationary pulling technique has been proposed, where the elliptical shape is

Fig. 17.3. Tapered multibounce (a) and single bounce (b) capillaries
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Fig. 17.4. Two-step focusing based on a Fresnel zone plate with a capillary

achieved by stretching an air bubble inside a glass fiber with constant veloc-
ity [44]. It appears that this approach might show a better quality surface as
compared to the computer-controlled glass tube pulling process with a vari-
able speed. For best performance of the ellipsoidal capillary a Fresnel zone
plate was used to generate a secondary source at the first ellipse focus [15]
(Fig. 17.4). The FZP serves as a first microfocusing element to produce a
demagnified micrometer image of the source and then the elliptical capil-
lary makes a final compression of the beam down to 250–500nm. In general,
the two-step focusing setup provides three important benefits: it significantly
improves the flux by increasing the overall acceptance of the optical system;
it makes possible optimal aberration-free focusing by the elliptical capillary
surface; and it considerably minimizes the influence of slope errors. For prac-
tical applications, off-axis illumination of the capillary by a small prefocused
beam eliminates the beam transmitted through the exit aperture and makes
for an easy implementation of a beamstop. By accurate scanning of the tiny
beam along the capillary surface one can control the demagnification factor
and zoom the focal spot size.

The proposed approach allows one to shorten a small capillary further
down to 5–10mm, making it easy to align and operate. Use of short capillaries
might open the possibility of coating the inside of capillaries with smooth films
of the desirable materials such as platinum or gold. In this connection metal
capillary optics look very attractive [45]. Finally, the single-bounce ellipsoidal
capillaries are very attractive for X-ray nanobeam techniques because they
are so simple and can potentially be reproduced inexpensively.

Waveguides

An X-ray planar waveguide is a thin film resonator in which a low absorb-
ing material is enclosed between two metal layers with a smaller refractive
index [46]. For particular grazing incidence angles, a resonator effect takes
place inside the resonator film. Schematic representation of a thin-film wave-
guide is shown in Fig. 17.5. The beam is compressed in one direction and the
trapped wave emerges from the end of the waveguide with enhanced intensity.
In the direction of beam compression, the beam leaves the waveguide with the
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Fig. 17.5. The waveguide structure. θ is the incidence angle on the waveguide
surface; incidence angle α on the interior metal surface of the waveguide differs from
θ due to the refraction on the film

vertical size limited by the resonator layer thickness, which can be as small
as 100 nm [47–49]. The cover layer and under layer can be constituted of the
same material. To date, X-ray waveguide optics have been exclusively one-
dimensional, whereas most nanobeam applications require two-dimensional
point beams. Recently, the first proof of principle that resonant beam cou-
pling can be realized in two dimensions was reported [16,50]. The hard X-ray
beam with a cross section of 25×47 nm2 (FWHM) is impressive. Nevertheless,
many technological improvements will be required before this device can be
used as an efficient X-ray point source.

17.3.2 Fresnel Zone Plates

The focusing properties of zone plates were first discussed in the latter part
of the nineteenth century, and Baez originally suggested their use as X-ray
optical elements in 1952 [51]. In their most common form, this is circular
diffraction grating that works as a lens for monochromatic light. A Fresnel
zone plate consists of a series of concentric rings of radius r2n = nλF . The
rings become narrower with increase in radius until the last, narrowest zone
of width Δrn is reached (Fig. 17.6). Linear, square, and elliptical zone plates
have also been considered, but only circular and, to a lesser extent, linear and
elliptical forms have generally been used. The focusing capability is based on
constructive interference of the wavefront modified by passage through the
zone plate. The wavefront modification is obtained through the introduction
of a relative change in amplitude or phase in the beams emerging from two
neighboring zones. A zone plate is called an amplitude zone plate if the focus-
ing results from different absorptions between two neighboring zones. It is
called a phase zone plate if the phase change upon transmission through a
zone is the mechanism for focusing.
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Fig. 17.6. Fresnel zone plate geometry

Just as the Rayleigh resolution of a light microscope lens is determined
by its numerical aperture (NA), the Rayleigh resolution of a zone plate is
determined by its maximum diffraction angle NA = λ/(2Δrn), so that the
Rayleigh resolution is 1.22Δrn. Using the state-of-the-art lithographic tech-
nologies, zone plates with an outermost ring width of less than 20 nm can be
fabricated. If illuminated with an X-ray beam whose spatial coherence length
is equal to or greater than the diameter of the zone plate, a diffraction-limited
focus can be obtained. The efficiency of zone plates, i.e., the fraction of the
incident photons diffracted into the focal spot, depends on the phase shift and
attenuation introduced by the FZP structures. In the soft X-ray region, zone
plate efficiency is limited to about 15% due to photoelectric absorption. For
X-ray energies greater than 4 keV, it is in principle possible to produce phase
zone plates with focusing efficiencies close to 40%.

The efficiency of a binary FZP reaches its maximum value when the struc-
ture height is chosen to introduce a phase shift of π. As a phase shift generally
decreases with increase in photon energy, higher and higher structures are
required to provide useful efficiency values for harder X-rays. For example, the
appropriate zone thickness for 10 keV X-rays is estimated to be about 2 μm
even for high density materials like gold or tantalum. The resulting extreme
aspect ratios (height/width of finest zone) are the reason why FZPs for hard
X-rays cannot be made with a zone width as small as the ones for soft X-rays.
In fact, FZPs have only very rarely been used for energies beyond 12 keV. It
should be noted that APS [17, 52–68] and SPring-8 [69–87] have very strong
in-house FZP long-term development programs for hard X-ray applications.
Metal based FZPs are now commercially available from X-Radia (USA) [88]
and NTT (Japan) [89].

As mentioned earlier, the spatial resolution of a zone plate is determined
by the outermost zone width, Δrn. Hence, manufacturing techniques must be
capable of delivering small line widths over large areas, to give apertures
as large as possible, with zone thicknesses of correct values to give good
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diffraction efficiencies. The accuracy of the technique must be sufficient to
yield zone boundaries within about one-third of the outer zone width. To
date, basically two main approaches are used to achieve this. The mostly
used technique for FZP manufacturing is based on semiconductor MEMS
(micro-electro-mechanical systems) technology, which is similar to the tech-
nique employed in the manufacture of microcircuits. This technique is based
on lithography methods with consecutive deep pattern transfer. Since optical
lithography is limited to 0.2 μm resolution, mainly electron beam lithogra-
phy is used for manufacturing high resolution zone plates. Currently, the
best performing zone plate lenses for multi-kiloelectronvolt X-rays in terms of
resolution and efficiency are fabricated by means of a deep pattern transfer
process.

To reproduce the zone plate structure in a suitable material the lithograph-
ically based techniques can be subdivided into two main transfer methods: (a)
wet or reactive ion etching and (b) electrochemical deposition (electroplating).
The first method can be applied to metals and semiconductors and is used
for example by NTT in Japan (Ta FZP) [72–76, 81, 84–86] and by PSI (Si
FZP) [90–94]. Electroplating can be applied only for metals and typically
uses gold and nickel [88, 95–99]. To date, typical aspect ratios achieved using
e-beam lithography and consecutive pattern transfer for 100 nm structures
are of the order of 10:1–15:1: for wet etching Si – 15:1 [100]; for reactive ion
etching Ni, W – 10:1 [89]; for electroplating, Au – 16:1 [88].

Recently, microfabrication MEMS technology was successfully used to
produce Si-FZP for hard X-rays, and using reactive ion etching of Si an
aspect-ratio of 40–50 has been demonstrated for modest resolution zone plates
with a 400 nm outermost zone [101, 102]. Compared to other materials com-
monly used for FZPs (Ni, Ta, Au), the absorption losses are negligible in
Si. The phase shifting property of Si is also comparatively weak. The struc-
ture height required for optimum efficiency at 24 keV, for example, is almost
30 μm (Fig. 17.7). The advantage of Si MEMS technology is that Si chips
with a number of different diffraction optical elements (DOE-chips) can be
made. At ESRF, three types of DOE-chips are used by different beamlines as
medium and long focal distance optics (see Table 17.3).

To overcome the aspect ratio limitation inherent in the lithography tech-
nique, the sputtered-sliced FZP (ss-FZP) method was proposed in 1982 [103].
In this technique, two different materials of heavy and light elements are
alternately deposited on a rotating gold wire core to give a concentric
multilayer structure. The ss-FZP is then produced from the multilayer wire
sample by making slices perpendicular to the wire axis and then thinning and
polishing the slice down to the required thickness (10–200 μm). It has been
found that for these ss-FZPs, imperfections in the wire and defects during
deposition lead to accumulative errors in the fine outermost zones, which are
deposited last. Furthermore, it proved very difficult to slice the wire without
deforming the delicate zone plate structure. In principle, this method is capa-
ble of producing zone plates with 10–50nm resolution, and strong activity is
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Fig. 17.7. SEM image of the SI Fresnel zone plate. Insert shows the cross section
of FZP Chip 3 optimized for 23 keV (see Table 4.1.3)

Table 17.3. Chip specification

Tm/h (μm) Erange (keV) ηmax (%) Emax (keV)

Chip1 12/9 6–12 30 7.5
Chip2 80/16 11–21 26 14
Chip3 90/30 17–40 32 23

Tm, thickness of silicon membrane; h, maximum height of the zone phase profile;
Erange, energy range with focusing efficiency higher than 20%; ηmax, maximum focus-
ing efficiency (achieved at energy Emax); Emax, energy at which maximum efficiency
ηmax is achieved

going on at SPring-8 in collaboration with the Photonic Research Institute
AIST (Osaka) [77–79,85].

Another way of solving the aspect-ratio problem proposed recently by a
PSI group is to apply an inclined geometry for a linear zone plate. Linear Si
lenses were produced by electron-beam lithography and anisotropic wet etch-
ing. Two linear FZPs in a crossed geometry similar to a KB mirror system
allowed one to produce a focal spot of 170 nm at 12.7 keV [100]. In addition,
the device, consisting of two crossed linear lenses, can be matched with the
asymmetric shape of synchrotron X-ray sources. This results in a better per-
formance in terms of focal spot shape, spot size, and flux within the spot.
Obviously, using two linear zone plates in series has the disadvantage that the
losses in two optical components have to be considered.

It should be noted that achieving the utmost resolution is much easier
in a magnified imaging mode as compared with a microbeam or microprobe
mode. The microbeam size is a result of the convolution of the demagnified
source size and the resolution of the optics, whereas in the imaging mode the
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source size is not important and the resolution of the image depends only on
the intrinsic resolution of the optical element. As a most illustrative example,
a 60 nm resolution has been obtained using a laboratory source with 5.4 keV
X-rays by an X-Radia full-field microscope equipped with Au FZPs [104].

It is clear, however, that the focusing properties of all binary FZPs devel-
oped for X-ray applications are far weaker than those of an ideal lens because
a significant fraction of incident photons is delivered to the undiffracted zero-
order beam and to diffraction orders other than the primary, first order. For
instance, although in principle the undiffracted zero-order beam for an ideal
phase zone plate is completely reduced to zero, about 60% of the incident beam
is still delivered to other unwanted orders. Improving the focusing efficiency
of a zone plate in the X-ray spectral region by optimizing the zone profiles
was studied in detail in a theoretical article by Tatchyn in 1990 [105], and
the first zone plate with a blazed zone profile was manufactured at Wisconsin
and tested at the APS using 8 keV X-rays showing 45% efficiency for linear
and 39% efficiency for circular ZPs, respectively [57]. Later 55% efficiency for
the nickel circular zone plate at 7 keV was achieved at the ESRF [95]. This
measured focusing efficiency is the highest value that has been demonstrated
in the X-ray region for zone plate optics. In practice, the production of high-
resolution zone plates with a blazed profile is very complicated and expensive
and a resolution better than 0.5 μm was never realized for these devices.

A novel approach for high-resolution X-ray focusing, a Multilayer Laue
Lens (MLL), was proposed at the APS [17, 62, 63, 68]. The MLL concept
is a system of two crossed linear zone plates, manufactured by deposition
techniques. The approach involves the deposition of a multilayer with a graded
period, sectioning it to the appropriate thickness, assembling the sections at
the optimum angle, and using it in Laue geometry for focusing. The approach
is particularly well suited for high-resolution focusing optics for use at high
photon energies (30 nm resolution and 70% efficiency).

To overcome the aspect-ratio limitation to produce thicker FZPs, one can
attempt a multiple zone plate setup. Two stacked zone plates made of gold
were tested at 50 keV [59, 60], but did not show the theoretically predicted
efficiency and resolution for the following reasons: the zone plates were not
exactly identical; the alignment procedure was not accurate enough; the sta-
bility was not sufficient; and a 3mm separation of zone plates was far more
than that is allowable.

Recently, the Microoptics test bench at BM5 at the ESRF was used for
the FZP stacking technique, using Si FZP chips described earlier [101, 102].
The first FZP chip was mounted on the optics stage with all necessary angular
and linear movements. The second chip was mounted on the slit support frame
with two X-Y linear translations. The precise and smooth vertical movement
of the Microoptics test bench enabled one to check the alignment of different
FZPs on the chip. Achieving the exactly aligned condition was easily done by
a straightforward X-ray phase contrast imaging technique by looking at the
X-ray CCD camera image of the beam. When you look through one FZP at
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Fig. 17.8. Experimental moiré patterns recorded at 12 keV at 76 cm, with 6 μm (a),
3 μm (b), 1 μm (c), and 0 μm (d) lateral displacement

another, a moiré pattern always appears as the two repetitive patterns over-
lap. A slight motion of one of the objects creates large-scale changes in the
moiré pattern (Fig. 17.8). Two chips with zone plates were joined together in
a way that the front side of the first chip faces the backside of the other one.
Therefore, the corresponding zone plates are separated from each other by
a substrate thickness of 500 μm. For two zone plates to behave as one, their
relative transverse positions must be adjusted properly to within a hundred
nanometers, so as to directly line up the zones of the two elements. A compact
micromechanical motion system (piezo-based Y -Z stage) was used to execute
such precise alignment with 50nm step size. When two zone plates are nearly
perfectly aligned, the image shows no interference fringe patterns – the fringe
spacing becoming infinite as the stacking alignment becomes perfect. To pro-
vide the desired stability, zone plates are bonded together with epoxy glue
with slow solidification speed for the on-line alignment correction.

Two identical Si Chips3 were used for stacking in order to focus 50 keV
X-rays. Each chip contains nine different FZP elements (five circular and
four linear) with a depth of 30 μm, providing a focusing efficiency of about
34% at 23 keV. Two closely juxtaposed zone plates focus 50 keV X-rays with
35% efficiency [100–102]. Thus, there is a significant improvement in going
from one to two such elements. It should be noted that such systems pro-
vide a focused beam with more than 20% efficiency in the energy range from
40 to 100keV and can be used now for microdiffraction/scattering experi-
ments. One can envisage some new imaging and interferometry techniques
using FZP systems at higher energies. The technique developed will be used
for future Fresnel optics with higher resolution and can be extended to “thin”
nanofocusing FZPs.

17.3.3 Refractive Optics

Refractive lenses made of glass are among the most widely used optical com-
ponents for visible light, with the wide spectrum of applications in focusing
and imaging. Refractive lenses for X-rays were considered unfeasible for a long
time due to the weak refraction and strong absorption. However, in 1996 it
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Fig. 17.9. Parabolic compound refractive lens (CRL). The individual lenses (a)
and stacked behind one another to form a CRL

was shown that focusing by X-ray lenses is possible [106]. Since the (1 − δ)
in the index of refraction is smaller than 1, lenses must have a concave
shape [106–108]. To obtain a focal length F in the range of 1 m, many single
lenses have to be stacked behind each other to form a compound refractive lens
(CRL) as shown in Fig. 17.9. Fabricating the lenses from low-Z materials like
Li, Be, B, C, and Al minimizes the problems associated with absorption. The
focal length of such CRL with a parabolic profile x2 = 2Ry and N individual
biconcave lenses is F = R/2Nδ, where R is the radius of curvature at the apex
of parabola. A lens with thickness 2y0 + d has an aperture 2R0 = 2

√
2Ry0.

Refractive lenses act as a conventional lens and one can apply the Gauss
lens formula, which relates the source distance p, the image distance q, and
the focal distance F via q = Fp (p− F ). The diffraction-limited resolution of
the lens Δ is defined by an effective aperture: Δ = 0.75λ/2NA, where the
numerical aperture is NA = Aeff/2q. Aeff is the effective aperture of the lens,
reduced by photon absorption and scattering, compared with the geometrical
aperture 2R0.

The first lenses consisted of a row of holes, about 1mm in diameter, drilled
in a material such as Al or Be [107]. Two of these lenses in crossed geometry
are able to focus an X-ray beam to a spot size of a few microns. Soon after this
first successful experimental demonstration it was understood that refractive
lenses can be used as a condensers or collimators with relatively long focal
distances. Be, Graphite, and Al lenses were installed at the front-ends (FE)
about 24m from the source at various beamlines [109–112]. The typical FE
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Table 17.4. Typical parameters of the FE CRL lenses at the ESRF

Lens N E for L2 = 41 m
(keV)

E for collimation
(keV)

f for E = 20 keV
(m)

1 7 12.7 15.1 42
2 16 17.0 22.9 18.4
3 28 22.8 30.2 10.5
4 44 28.2 37.9 6.7
5 64 35 45.7 4.6

CRL consists of a series of cylindrical holes drilled into a material. By varying
the number of holes and their radius, it is possible to fine-tune the focal length
of the lenses, making them a very useful device not only to focus but also to
collimate a divergent X-ray beam: by choosing F = p one obtains q= ∝, and
the beam after the lens will be parallel [113–115].

Table 17.4 gives an overview for typical focal lengths of the FE lenses,
collimation energies, and energies used to image the source size with a camera
in the second experimental hutch.

Nowadays some ESRF beamlines (ID2, ID16, and ID18) are equipped with
cylindrical CRL installed in optics hutches. For example, at ID18, in addition
to FE lenses there is a CRL with 120Al holes installed up-stream of the high-
heatload (HHL) monochromator at ID18 to meet the acceptance of the Si
(111) reflection for energies above 30 keV. At 64 keV this lens collimates the
beam from 15 to 1.5 μrad and improves the resolution from about 10–1 eV
while keeping the integral flux. Down-stream of the HHL monochromator
another CRL is also installed to match the beam divergence to the acceptance
of the first crystal of the high resolution monochromator. At 14.4 keV the
intrinsic divergence of the X-ray beam of about 20 μrad has been decreased to
6 μrad, improving the throughput by a factor of two and the resolution from
0.82 to 0.65meV [113].

In the meantime, Al and Be parabolic refractive lenses have been devel-
oped in collaboration with Aachen University [116–124]. They focus in both
directions and are free of spherical aberrations and other distortions. Parabolic
refractive lenses can be used to focus hard X-rays in both directions in the
range from about 5 keV to about 200 keV. They are compact, robust, and
easy to align and to operate. They can be used like glass lenses used for
visible light and provide a resolution on the order of 300–500nm, the main
difference being that numerical aperture is much smaller than 1 [116]. Their
main applications are in micro- and nanofocusing and in imaging by absorp-
tion and phase contrast [121]. In combination with tomography, 3D imaging
of opaque media with sub-micrometer resolution is possible [123]. The Be and
Al lenses for two-dimensional focusing are now used extensively as a standard
tool in experiments. Table 17.5 shows the ESRF beamlines equipped by Al
and Be parabolic refractive lenses made by RWTH in Aachen.
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Table 17.5. Parabolic CRLs from RWTH Aachen used at the ESRF beamlines

Beam line Material Energy
(keV)

Number
of indiv.
lenses

Source
distance

(m)

Focal
distance

(m)

ID1 Be 6–9 20 42 0.5–1.5
ID10A Be 6–20 20 40/55 0.5–3
ID10B Be 7–20 40 35/40 0.5–3
ID11 Be 15–80 61 30/55 1–10

Al 20–100 254 55/100 0.5–10
ID11/ID15 Al 20–200 500 40/50/60 0.5–10
ID13 Be 12–14 24 1.5 1.5
ID22 Al 6–10 200 40/50 0.5–1

Be 8–60 100 40/50 10–30
ID18F Al 15–30 200 20 20
ID32 Be 8–23 15 34 6–13
ID14 Be 14 30 40 0.5–1.5
MOTB/BM5 Be 7–30 25 40/54 1

Al 15–60 200 40/54 0.5–50
MPI/ID15 Al 50–90 300 60 3–6

In recent years a significant demand for focusing of hard X-rays above
40 keV has developed. A number of new applications such as surface and
interface scattering, high pressure Compton magnetic scattering, and depth
strain analysis using powder microdiffraction are under extensive develop-
ment [125–127]. The Max–Planck Institute (MPI) end-station for surface
and interface scattering, which has been recently installed at ID15, is a nice
example of such a development.

Recently, microelectronics planar fabrication technology has been applied
to create silicon-based devices [128–135]. One-dimensionally focusing parabolic
refractive lenses have been manufactured in collaboration with the Institute
of Microelectronics Technology (Chernogolovka, Russia) and Dortmund Uni-
versity using lithography and highly anisotropic plasma etching techniques.
This type of planar lens is well suited for high-resolution diffraction experi-
ments, including standing wave techniques [133–135]. It is possible to make a
composite lens consisting of a set of parallel parabolas with different focal dis-
tances. To change the focal distance or the desirable working energy, one can
switch from one array to another by moving the composite lens. Driven by the
requirements of new 100-m-long beamlines at the ESRF, Si planar parabolic
lenses were designed and fabricated (Fig. 17.10). They have a short focal dis-
tance in the energy range of 10 and 100 keV. The optical test of the new planar
lenses was performed at the ESRF beamlines BM5 and ID15. The resolution
below 200nm was measured in the energy region of 15–80keV. The best reso-
lution of 150 nm was demonstrated at 50 keV energy. Using the same approach
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Fig. 17.10. SEM image of a Si planar refractive lens. The insert shows the 2 μm
web size

of the Si-planar technology, nanofocusing lenses were developed by the Aachen
group [136–138]. They have a focal distance in the range of a few millimeters
at hard X-ray energies. In a crossed geometry, two lenses were used at ID13 to
generate a nanobeam with a lateral size of 115nm by 160 nm at 15.2 keV, and
in December 2004 a focus spot of about 50 nm was achieved [18]. The planar
lens technology is being transferred to materials like diamond that has low X-
ray absorption, low thermal expansion, and high heat conductivity [139,140].
These lenses are mechanically robust and can withstand the high heat load
of the white beam produced by the ESRF in vacuum undulators and from
future X-ray free electron lasers.

The applicability of Al lenses for microbeam analysis at energies above
100keV is limited by the physical size of the lens assembly, because the num-
ber of individual lenses required to produce a reasonable focal distance grows
quickly with energy. Using denser lens materials, such as nickel, the number
of lenses that are needed can be drastically reduced. While the absorption in
nickel is still tolerable, its density and thus its refraction are higher compared
to the low Z materials used. Nickel is the most promising since it is radiation
and corrosion stable and, what is more important, it is one of the best materi-
als for electroplating. LIGA technology including deep X-ray lithography and
electroplating has been widely used in the last ten years for the fabrication
of various microstructures in Ni. These techniques make possible the forma-
tion of planar lens arrays with a wide range of parameters. Lens apertures
can range from a few microns to a few millimeters. Structures up to few mil-
limeters in depth can be realized. Their focal distances can range from a few
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Fig. 17.11. SEM images of two different types of kinoform lenses made in Si (see
text) [128] (a); [130] (b)

millimeters to tens of meters. Ni planar refractive lenses have been manufac-
tured by deep X-ray lithography and LIGA techniques. The optical properties
of lenses were determined at the ESRF ID15 beamline at energies from 40 to
220keV. One- and two-dimensional focusing was performed. Sub-micrometer
focusing was measured in the energy range from 40 to 150 keV [141,142].

Recently, holographic or kinoform optical elements (Fig. 17.11) with a com-
bination of refractive and diffractive properties were manufactured [128,130].
In these refractive lenses passive parts of the material that cause multiples
of 2π in phase shift are removed thereby reducing absorption. With this
method drawbacks of purely diffractive or refractive elements are eliminated
and advantages such as high transmission, absence of zero-order, high effi-
ciency are combined. Recently, Ni kinoform lenses made by LIGA focused
212keV X-rays to a focal line 5 μm wide with a tenfold gain [141, 142]. The
ability to manipulate the local amplitude and phase of the incoming wave
opens the perspective to make a new class of beamshaping X-ray optics for
coherent synchrotron radiation.

17.4 Concluding Remarks

The foregoing overview shows the tremendous development in the possibili-
ties for X-ray focusing that now makes possible the construction of powerful
instruments for microscopy at synchrotron radiation beamlines.

In conclusion we compare the different focusing systems. First, we should
mention that reflective, diffractive, and refractive microoptics have the follow-
ing features in common:
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– All three types are under intensive development at all three big hard X-ray
facilities

– They are becoming commercially available
– They are used as a standard instrumentation at the beamlines
– All three types show nanofocusing capabilities

KB mirrors have an intrinsic advantage over the other focusing elements,
such as Fresnel zone plates and refractive optics: nondispersive or broadband
focusing. In the case of dynamic KB systems sophisticated bending techniques
have been developed to bend mirrors to the desired elliptical shape for micro-
and nanofocusing. The vibration level has to be controlled to within a few
microradians and the figure accuracy of the elliptical mirrors to within a
few nanometers. This is technologically challenging. The reflected beam is
deflected with respect to the incoming beam. These constraints can all be
managed, but have to be taken into account when selecting the most appropri-
ate microfocusing technology. Mirrors with benders can provide an adjustable
focal length, but the benders are bulky. Monolithic or static KB systems are
much easier to use if the desired elliptical surface profile can be fabricated.

FZP and refractive optics being in-line optics have certain advantages over
KB systems:

– On-axis optics do not change the beam direction
– They provide easy alignment and operation
– They can be easily implemented at any beamline (including nonspecific

beamlines)
– In the case of nanofocusing geometries FZP and CRL should have greater

distance from the optics to the sample

FZP elements have attractive features in that they are very compact and
easy to use. The alignment mechanics requires basically only two orthogonal
translations (XZ) and therefore they can be easily used at any nonspecific
beamline [143, 144]. Si FZPs are compatible with ML and “pink” beams
because of high radiation and temperature stability.

The advantages of CRLs are the following: they are very robust and small,
the focal length and size are adjustable by adding or removing individual
lenses, and the lenses can withstand a high heatload. The lens aperture can
range from a few microns to a few millimeters. Their focal distance can range
from a few millimeters to tens of meters. What is more, CRLs can cover the
energy range from 4 to 200 keV and higher.

Compared to mirrors, refractive lenses are about a factor of 1,000 less
sensitive to surface roughness. This is an important aspect in the production
process of the lenses. Surface roughness plays no role in imaging by refractive
X-ray lenses.

For comparing different optics, it is important to consider the physical
limits to the efficient focusing of hard X-rays. It was found that mirrors



278 A. Snigirev and I. Snigireva

and waveguides have a numerical aperture, which is limited by the critical
angle of total reflection. The ultimate resolution limit is 10 nm [145], while for
refractive optics this limit is slightly lower and 2 nm may be achievable [146].
Unlike reflective and refractive optics, zone plates can focus X-rays below
1nm [147,148]. In this case, complex multilayer zone plates have to be manu-
factured and Bragg conditions have to be fulfilled for the outermost zones. As
for conventional zone plates, there is a simple pathway to achieve sub-10nm
resolution X-ray imaging by using a higher diffraction order, such as the third
diffraction order of a currently available zone plate. While progress in the
fabrication of hard X-ray zone plates has significantly advanced within the
last few years, the pattern transfer fabrication process may reach a practical
limit very soon. As the polymer structures of the electroplating mold become
smaller and smaller in width they lose strength and tend to collapse during
the fabrication process. Also, the directionality of the reactive ion etch may
impose practical limits to the achievable sidewall angle in the resist, limiting
the achievable width of features that can be fabricated. From current fabri-
cation data it can be estimated that the practical limit for hard X-ray zone
plates using current pattern transfer technology is 20–30nm (structures height
∼=1 μm). It is believed that by using higher diffraction orders, such as the third
diffraction order, it would be possible to achieve sub-10 nm resolution X-ray
imaging.

To discuss the applicability of one or another type of focusing systems for
nanofocusing applications, let us consider the conditions for new 100-m-long
beamlines at the ESRF. To obtain a resolution about 50 nm in the verti-
cal direction we need to apply a demagnification factor of ×1,000 for the
vertical source size of 50 μm. Therefore, a microoptics device placed at the
source-to-optics distance p = 100 m must have a focal length (distance to
detector/sample distance) q = 0.1 m. We consider the following three optical
systems:

– KB mirror system (Pt coated) with 40-mm-long mirrors and 30mm
working distance

– Fresnel zone plates with the outermost zone width 40 nm
– Planar refractive lenses made of Si, Be, and C (diamond)

The graph in Fig. 17.12 shows effective apertures or acceptances of the KB-
mirrors, FZP and CRLs. The FZP effective aperture in the graph is normalized
to the FZP efficiency ε: Aeff = Afzpε. We optimistically assume that the FZP
is made with optimal thickness providing a phase shift π and an efficiency not
less than 30% over the entire energy range. As can be seen from this graph,
the FZP elements can be applied up to 20 keV energy, whereas KB-mirror
systems look competitive up to 40–50keV. Si nanofocusing lenses can easily
beat FZP after 20–25keV and become competitive with KB-m after 40 keV.

Use of microoptics and exploiting the high brilliance and the spatial coher-
ence of the X-ray beam provided by the third generation synchrotron radiation
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Fig. 17.12. Graph showing the effective aperture dependence vs. energy for different
optical elements

sources makes possible high energy X-ray microscopy as a combination of
diffraction, fluorescence, and imaging techniques. The availability of these
techniques is opening up research opportunities for a broad range of disci-
plines, including material science, biology, environmental, and geosciences.
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Capillary Optics for X-Rays

A. Bjeoumikhov and S. Bjeoumikhova

Abstract. Capillary optics have relatively recently been introduced for the control
of X-ray beams. Such optics have also been widely applied in X-ray analysis. In this
chapter the basic ideas of capillary systems are presented, along with a discussion of
the technological processes involved in their practical realization. Particular exam-
ples of parameter optimization for specific applications are included, and several
applications of capillary optics in X-ray diffractometry, micro-X-ray fluorescence
analysis and absorption spectroscopy are presented.

18.1 Introduction

Traditionally X-ray optical elements consist of crystals or different kinds of
diffraction elements such as multilayer mirrors, zone plates, etc. In the past
10 years, a new type of optical element has been developed – capillary optics.

Capillary optics is based on the principle of total external reflection (TR)
on smooth surfaces in capillary systems. These elements are mainly charac-
terized by the critical angle of TR, which is relatively small. Nevertheless,
optical elements using single and multiple reflections are relatively efficient
and are, in some cases, unique instruments for beam shaping of X-rays from
laboratory sources as well as of synchrotron radiation. In spite of the sceptical
attitude of many specialists concerning the use of capillary optics, these ele-
ments have already found many applications, and new scientific and industrial
instruments and methods have been developed based on capillary optics.

X-ray microprobes are widely used in combination with the most modern
experimental techniques, such as the X-ray absorption fine structure (XAFS)
and X-ray fluorescence analysis (XRF). XAFS is generally divided into two
parts: a near-edge region within some tens of eV above an absorption edge
and an extended region well above the edge. Near-edge X-ray absorption fine
structure (NEXAFS), also known as X-ray absorption near-edge structure
(XANES), requires high-energy resolution within an energy scan range on
the order of 100 eV. The extended X-ray absorption fine structure (EXAFS)
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technique consists of relatively weak and broad wiggles, requires a lower
energy resolution and an energy scan range on the order of >1,000 eV. There-
fore, X-ray polychromatic focusing optics is required to cover the necessary
energy range.

In this chapter, the physical basics of capillary optics have been described,
their efficiency is shown, and application examples for different analytical
methods are presented.

18.2 Physical Basics of Capillary Optics

It is well known that the absolute value of the refraction index for X-rays is
generally lower than 1, which is quite different from the behavior of the corre-
sponding refraction index for visible light. Therefore, at grazing incidence on
the planes between air or vacuum and a solid, total external reflection is real-
ized. Similarly, inside of glass fibers, the effect of internal total reflection leads
to the transport of visible light. The refraction index for X-rays depends on
the wavelength and on the energy of the X-ray photons, so that the following
simplified formula for the critical angle (TR) can be found:

θcr =
0.02

√
ρ

E
, (18.1)

where ρ is the density of the reflecting material in g cm−3 and E is the energy
of the X-ray photons in keV.

The reflection process is influenced by the surface roughness, the latter
giving rise to a diffusely scattered component in the reflected beam. Unlike
the specularly reflected Fresnel component, this part shows a dependence
on the statistics of the roughness, yielding a defined angular distribution.
The mathematical description of the scattering process on rough surfaces and
its consideration for the modeling of capillary optical elements is a relative
difficult problem. The diffuse scattering plays a negative role and leads to
additional intensity losses in optical elements.

Capillary optical elements may be divided into two types: elements based
on single reflections and elements based on multiple reflections.

18.2.1 Optical Elements Based on Single Reflections

Optical elements based on single reflections are monocapillaries of elliptical
or parabolic shape. Using an elliptical capillary, X-rays emitted from a point
source can be focused in a focal spot. In this case, the source must be posi-
tioned in the first focal point of the ellipse and the focal spot appears then
in the second focal point. A parabolic capillary can focus a parallel beam and
collimate divergent radiation emitted by a point source. These optical ele-
ments belong to the class of “imaging” systems. Therefore, the size of a focal
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Fig. 18.1. Scheme of the optical principle by an elliptical (a) and a parabolic (b)
capillary

spot will be determined not only by the accuracy of the form of the optical
element but also by the properties of the source.

Figure 18.1 shows schematically the principle of focusing by means of
elliptical and parabolic capillaries. The main parameters of the ellipse – the
semimajor and semiminor axes – must be optimally fitted for every concrete
case. For focusing, only a part of the ellipsoid is used. In this region, it should
be guaranteed that the reflection angles are always below the critical angle of
total external reflection for the radiation in the energy interval, which has to
be focused by this optical element. If a magnification of the source is required,
that part of the ellipsoid will be used which is positioned closer to the source.
In the case of demagnification, that part of the ellipsoid will be used which is
closer to the image point. By such an arrangement, the necessary asymmetry
of focusing will be guaranteed as required by the principles of geometric optics.

18.2.2 Optical Elements Based on Multiple Reflections

A cylindrical capillary can transport X-rays by means of multiple reflections.
This principle was already applied for X-rays transport in the end of the 1920s
of the last century [1]. The intensity of the radiation at a defined distance
from the source can be increased by such an optical element in comparison to
a pinhole without a capillary. If the capillary is slightly bent (see Fig. 18.2),
radiation will be still transported but the intensity losses are higher than
in the case of a straight capillary. However, the transmission degree may be
acceptable for not too small radii of curvature. By using a capillary, not only
the radiation transport can be realized, but also the direction of radiation
propagation can be changed.

If a parallel beam enters the entrance cross section of a bent capillary,
then it follows from the geometry that only for d < dcr the entire amount of
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Fig. 18.2. Principle of radiation transport in a straight (a) and a bent (b) capillary

Fig. 18.3. An SEM image of the cross section of a lens structure (left) and photo
of polycapillary lens (right)

incoming radiation will be captured and transported. The critical diameter
depends on the critical angle (18.1) and the radius of curvature R as follows:

dcr =
Rθ2cr

2
. (18.2)

This simple formula enables one to optimize the parameters for an efficient
radiation transport at a given energy.

A system of many bent capillaries, which are directed to the source at the
entrance side and to the focal spot at the exit side, is able to concentrate
effectively X-rays. In this way, the gain effect of single capillaries is increased
by many times. Such a system, called a polycapillary lens, was first proposed
in [2]. Although such a system does not represent a lens in a traditional sense,
this name has been used permanently in the international literature.

A polycapillary lens is a monolithic system made of microstructured glass
consisting of a huge number of capillary channels (in some cases several mil-
lions). Figure 18.3 shows a scanning electron microscope (SEM) image of
the cross section of a lens structure and photo of polycapillary lenses as an
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Fig. 18.4. Practical representation of two capillary lens types: (a) focusing lens and
(b) collimating semilens

example. The dimensions of the capillary channels in lenses in use today lie
between 1 and 100 μm.

Figure 18.4 presents schematically the working principle of two types of
polycapillary lenses. In the first case (Fig. 18.4a), a full lens focuses the radi-
ation from a point source into a focal spot of small size. In the second case
(Fig. 18.4b), the so-called semilens transforms a divergent beam into a parallel
beam or focuses a parallel beam into a focal spot.

Capillary lenses have the following main parameters: first focal distance,
length, second focal distance, and capturing angle. The efficiency of focusing
is characterized by the following parameters: focal spot size and intensity gain
in comparison with the direct beam. These parameters depend on the energy
of photons.

The optimization of the lens can be performed starting with the source
size and the energy interval, on the one side, and taking into account the focal
spot size to be reached, on the other side. The optimum inner diameter of the
capillary channels depends also on the energy interval of the radiation. It can
be estimated by means of formula (18.2) if the other geometric parameters of
the lens are fixed.

The relations between the first focal distance and the size of the given
source and between the second focal distance and the required focal spot size
are given by the following formulas

ΔXs = 2θcrf1 +Dc, (18.3)
ΔXf = 2θcrf2 +Dc, (18.4)

where ΔXs is the source size, f1 is the first focal distance, Dc is the inner
diameter of the capillary channels, ΔXf is the focal spot size, and f2 is the
second focal distance. In practice, the inner diameter of capillary channels can
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Table 18.1. Geometrical parameters of the lens 51MLS02

f1 (mm) 47.5 ± 0.3
f2 (mm) 15.3 ± 0.2
L (mm) 101.5
Input lens size (mm) 4.6
Input capillary size (μm) 6.7
Maximum lens size (mm) 6.9
Maximum capillary size (μm) 10
Output lens size (mm) 2.5
Output capillary size (μm) 3.6

Table 18.2. Physical parameters of the lens 51MLS02

E (keV) 3–5 5–7.5 7.5–10 10–15 15–20 20–25 25–30

Focal spot
size
FWHM
(μm)

38 40 41 41 35 31 33

Intensity
gain

2,892 7,078 7,929 8,070 8,502 5,631 1,550

be neglected in most cases relative to the part containing the critical angle
2θcrf1,2. From these formulas, the following important relation between the
main lens parameters is found

ΔXf

ΔXs
=
f2
f1
. (18.5)

The set of formulas (18.1)–(18.5) allows practically to optimize all lens param-
eters taking into account the given energy interval, the source size, and the
required focal spot size.

As an example, experimental results of test measurements of a lens are
presented in Table 18.2 for the geometrical parameters given in Table 18.1.
In this case, the lens is asymmetric; the entrance focal distance is three times
longer than the exit one. Therefore, a focal spot size smaller than the source
size will be expected.

The measurement procedure of the focal spot of an X-ray focusing system
is nontrivial. There are known different methods with advantages and disad-
vantages. Several authors use the method of a knife edge (see, e.g., [3]). This
method provides a good energy resolution and a high spatial resolution. How-
ever, this method is not applicable to high intensities of the collimated beam
and does not yield two-dimensional intensity distributions in the focal plane.

In the present chapter, the method employing a small pinhole was used to
obtain two-dimensional distributions in the focal plane and to avoid detector
problems at high count rates. This pinhole had a conical shape instead of a
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Fig. 18.5. Calculated and measured (pinhole scan) dependence of the focal spot
size on energy for the lens 51MLS02

cylindrical one to take into account the beam convergence especially for lower
photon energies at the exit of the measured capillary.

Table 18.2 shows the measured physical parameters of the given lens – the
focal spot size and the gain factor. A microfocus X-ray tube with a molybde-
num anode was used as source. The anode spot size of the tube is 50 μm. For
detection of X-rays, an SDD detector (manufacturer BRUKER-AXS, MA)
was used. The focal spot size at different energies was measured by scanning
over it with a pinhole of 5 μm in diameter situated in front of the detector
entrance window. The scan with a pinhole enables one to measure the inten-
sity distribution in the focal spot as a function of energy. The intensity gain
factor was also measured using this pinhole and determined as the ratio of
the intensity in the focal point with the lens and without the lens.

Figure 18.5 shows the radiation energy dependence of the focal spot size
as measured and as calculated by (18.4). As considered above, the focal spot
size should rise strongly with decreasing radiation energy. However, the mea-
sured values depend only weakly on energy and below 4 keV they decrease
with decreasing energy. Such a behavior at low energies is shown also by
computer simulations [3]. Near 25 keV, the measured value approaches the
calculated one.

This result can be explained by the fact that, in the propagation of radi-
ation in the capillary channels, the absorption for rays with relative large
incidence angles is higher which leads to a self-collimation of the beam. This
effect is especially related to the low-energy part of the spectrum. Despite a
relatively high critical angle of total reflection at low energies, only photons
moving under small angles relative to the capillary axis have favored condi-
tions for propagation within the capillary channels. A small increase of the
focal spot size in the energy interval 25–30keV in comparison with 20–25keV
is obviously connected with edge effects at the pinhole. The effective size of the
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Fig. 18.6. Intensity distributions of Cu Kα and Sn Kα made by scanning with a
wire of 10 μm in diameter (anode high-voltage Ua = 50 keV)

pinhole increases due to the decrease of radiation absorption at higher photon
energies in the pinhole material. To support this assumption, a scan with a
wire of 10 μm in diameter containing 94% Cu and 6% Sn was carried out (see
Fig. 18.6). This experiment was important to show whether the so-called halo
effect appears or not. In many publications, the existence of a transmission
halo around the main sharp focus of polycapillary lenses is mentioned. This
effect occurs in the high-energy region and deteriorates the spatial resolution
in the analysis of heavy elements /18/.

As seen from the Sn Kα distribution in Fig. 18.6, there is no “halo effect.”
This means that the focal spot is not blurred for radiation energies above
the K absorption edge of Sn (>29.2 keV) and the spatial resolution will not
be deteriorated. This result confirms the assumption made above that in the
pinhole method the edge effect influences the measured value of the focal spot
size. Therefore, in the energy region above 29 keV, the correct size of the focal
spot is not larger than 19 μm.

Figure 18.7 shows the intensity distribution in the focus of the lens in
the energy interval 15–20keV. The measurement was performed by mak-
ing a two-dimensional scan with a pinhole of 5 μm in diameter in the focal
plane of the lens. As seen, the focal spot is relatively symmetric without any
distortions.

In this section, different methods of characterization of polycapillary
lenses were demonstrated. In the high-energy region for the same lens, the
experimentally determined parameters differ in dependence on the measur-
ing procedure used. Therefore, for a correct characterization of the optics, a
combination of different methods is required.
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Fig. 18.7. Two-dimensional intensity distribution in the focal plane of the lens
51MLS02

18.3 Application Examples for Capillary Optics

18.3.1 X-Ray Fluorescence Analysis with Lateral Resolution

Measurement of the Elemental Distribution
at the Sample Surface

As shown in Sect. 18.2.2, a polycapillary lens focuses X-ray efficiently in an
energy interval from several keV to several tens of keV. This corresponds to the
energy interval required for the XRF. Due to the obtainable sizes of focal spots,
polycapillary lenses are very useful for XRF analysis with lateral resolution.
Using such lenses, a high density of the primary excitation radiation in a small
focal spot can be reached at the sample surface. By this way, an intensity of
the fluorescence radiation was obtained that was not only high enough to carry
out explicit analysis of elements in the measured point, but also to determine
the two-dimensional distribution of elements across the sample surface in a
reasonable time.

Many papers are devoted to the realization of micro-XRF using monocap-
illary systems and polycapillary lenses in combination with laboratory and
synchrotron X-ray sources [4–9]. The lateral resolution obtained for monocap-
illaries at a synchrotron source amounts to about 1 μm. Polycapillary lenses
allow one to reach a minimum lateral resolution of about 15 μm. In this case,
the element detection limit amounts to several ppm.
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Fig. 18.8. Microscopic image of a fossil snail

Fig. 18.9. XRF spectrum of the stone sample

Another example for the application of micro-XRF is the analysis of a
stone with an included fossil snail. This stone was found on the coast of the
Baltic Sea on the island Ruegen. The sample shows a strong inhomogeneity
with crystalline inclusions and a rough surface. In Fig. 18.8, an image of the
area of interest taken by an optical microscope is shown. Crystalline blocks,
different inclusions, etc., are clearly observed. The size of the snail amounts to
ca. 3mm in diameter, and it has a darker color than the general background.
The surface of the stone was placed in the focal plane of the lens. Spectra taken
from different points are quite different. Therefore, in a first step, a spectrum
was accumulated from a surface area of about 4×4 mm2 for the determination
of the general elemental composition of the sample. The accumulation time
was 500 s.

Figure 18.9 shows the spectrum obtained in this way. As seen from this
spectrum, the sample contains mainly the elements P, Ca, Mn, Fe, and Sr.
The lines are situated on a background of scattered primary bremsstrahlung.
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Fig. 18.10. Two-dimensional distributions of the elements Ca, Fe, and Sr in the
stone shown in Fig. 18.8

The basic element is Calcium, its line intensity is more than one order of
magnitude higher than the other lines. Two-dimensional distributions of the
main elements Ca, Fe, and Sr were measured at an X-ray tube high voltage
of 40 kV and 700 μA tube current. The accumulation lifetime for every point
was 5 s, the dead time was about 15%, i.e., 0.75 s. For changing the position
from one point to another, 0.4 s was needed. An area of 4.5 × 5 mm2 was
scanned with a step size of 0.05mm. Therefore, a general scanning time of
10 h was required. Figure 18.10 shows the two-dimensional distributions of
the above-mentioned three elements.

As seen from the picture, Ca has a more or less homogeneous distribution,
Fe forms inclusions, and Sr is contained only in the snail, i.e., its distribution
follows the snail’s silhouette.

In [10], the development of a special X-ray source for the application of
micro-XRF in SEMs has been described. As is well known, the sensitivity of
microanalysis excited by an electron beam is lower than that excited by an
X-ray beam. Therefore, a combination of the high spatial resolution of an SEM
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image of the surface morphology with the high elemental detection sensitivity
of micro-XRF is of great interest.

A further interesting solution is the combination of micro-XRF and Raman
spectrometry within one instrument. Here, the micro-XRF gives information
about the elemental composition and the Raman spectrometer delivers data
about the molecular structure of the sample.

The lateral resolution for micro-XRF amounts to about 25 μm and for
Raman spectrometry about 5 μm. The simultaneous analysis with both meth-
ods to determine the distribution of elements and molecules can be carried out
at specific points or by scanning the sample surface. Such an instrument has
been developed within the framework of the European project PRAXIS [11].

Measurement of the Depth Profile of an Elemental Distribution

In micro-XRF, the elemental composition of a small sample volume in a layer
near the surface has been studied. This volume is approximately a cylinder
whose axis corresponds to the axis of the primary beam. The diameter of
this cylinder is determined by the beam cross section and depends only on
the focusing properties of the optical element. The depth of the analyzed
layer will be determined by the emission depth of the secondary fluorescence
radiation and depends on the emission angle and the absorption in the sample
material.

Recently, a 3D micro-XRF arrangement has been realized which is based
on the principle of a selective depth-resolved detection of the secondary flu-
orescence radiation. For this arrangement, a so-called polycapillary conical
collimator (poly-CCC) [12–14] or a polycapillary semilens [15] is used. In this
way, an additional depth resolution of micro-XRF can be reached within the
limits of the emission depth for the secondary fluorescence radiation. These
methods have been realized by using a synchrotron source, because a rather
high intensity is required. However, recently it was shown that, besides the
use of powerful synchrotron sources, a combination of a microfocus X-ray tube
with an efficient polycapillary lens provides enough intensity for the realiza-
tion of a tabletop 3D micro-XRF setup [16, 17] under laboratory conditions.
However, the sensitivity of the laboratory arrangement was found to be one
to two orders of magnitude lower than the synchrotron-based setup.

In [18], another method for the determination of the depth profile of ele-
mental distributions in samples has been proposed. As before, a polycapillary
lens is used for focusing the primary beam from a laboratory X-ray source.
The depth resolution is achieved by the knife-edge method on the detector
side. The sharp edge of an absorber, which is positioned between the sam-
ple and the detector, generates a transition “light–shadow” at the detector
surface. This transition region contains information about the intensity of
fluorescence radiation emitted from different depths of the sample. The inten-
sity distribution in the transition region has been measured by shifting a slit
in front of the detector. In the arrangement described, a depth resolution of
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Fig. 18.11. Microscopic image of the edge of a brass sample and the corresponding
profile measured by the X-ray method

24 μm was achieved with a focal spot size of 40 μm. Using this method, not
only the depth profile of an elemental distribution but also the surface pro-
file of the sample can be determined. Here a depth resolution of 7 μm was
obtained. Figure 18.11 shows the microscopic image of the surface profile of a
brass sample and the corresponding X-ray measurement result. Unlike optical
profile measurements, the procedure described allows one to also observe pro-
files which are covered by surface layers or also boundary profiles of different
materials.

The 3D micro-XRF is a relatively informative method and it will find
applications in different fields, such as in analysis of biomedical materials,
of objects of arts with a layered structure or of multilayered microelectronic
circuits, etc. The depth resolution becomes important, if the layered structure
consisting of different elements is unknown and especially, if this structure is
laterally nonhomogeneous so that the usual quantitative analysis becomes
impossible because an appropriate model is not available.

18.3.2 X-Ray Diffractometry

X-Ray Structure Analysis (Single Crystal Diffractometry)

It is important in X-ray structure analysis that the primary radiation directed
on a sample consisting of an isolated single crystal of small dimensions (typical
100–500 μm) has a high intensity and is well collimated. In the conventional
method, pinholes are used for collimation of the divergent primary beam. In
this case, only a very small part of the radiation intensity emitted by the
source can be used.

The simplest method to increase the efficiency of the source is to use
a cylindrical capillary between the source and the crystal. Dependent upon
the geometry, such an optical element will increase the radiation intensity
at the crystal by a factor of 3–10 due to the radiation transport inside the
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capillary. The time of measurement is correspondingly decreased. This simple
procedure has been shown to be very useful in practice and is applied today
in many diffractometers for a variety of purposes [19]. Due to the radiation
transport through the capillary, an exit beam is formed with the diameter of
the capillary and a divergence of the order of magnitude of the critical angle
of total external reflection.

Microdiffractometry

The principle described above is also useful if a locally high resolution during
the investigation of massive samples is required. The inner diameter of a
capillary can amount to 10 μm. Using such an optical element, irradiation of
a small volume element of the polycrystal or an individually selected single
crystal becomes possible.

A further increase of the irradiation intensity for local analysis can be
achieved by using a capillary of ellipsoidal form. Such an optical element
realizes not only the radiation transport but also its concentration, so that a
higher intensity gain can be reached. For example, in [20], stress analysis with
a spatial resolution of 70 μm has been performed.

Local diffractometric analyses can be carried out by using polycapillary
lenses. In this case, the polycapillary lens focuses the primary radiation from
the source onto the sample surface. In this way, in [21], the method of energy-
dispersive microdiffractometry has been realized. Accordingly, the secondary
radiation has been registered by an energy-dispersive detector. Here, phase
and texture in a selected small surface area can be estimated by the position
and the intensity relations of the Laue diffraction peaks. By scanning the
sample surface, changes in the texture can be measured. Figure 18.12 shows
the two-dimensional intensity distribution of the Laue lines (420) and (521)
of a molybdenum sample. It was observed that an intensity decrease of the
(420) line corresponds to an intensity increase of the (521) line.

Analysis of Polycrystals and Powders

Powder diffractometry has been realized by means of a polycapillary semilens.
The primary radiation beam formed by such a lens is directed onto the massive
sample. Using a Soller slit or a plane secondary monochromator, the diffracted
secondary radiation beam will be separated from the incident beam [22]. By
this way diffractometry is realized in a collimated beam.

Using a focusing polycapillary lens, phase analysis can be carried out.
In this case, a relatively large second focal distance is used. The sample, in
form of a foil or a powder, is held between two X-ray transparent foils and is
positioned directly at the exit of the lens. The diffractogram is registered in
the focal plane of the lens. For this purpose, a single channel detector with a
two-Theta scan [23] or a bent position-sensitive detector can be used. In these
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Fig. 18.12. Two-dimensional intensity distributions of Laue diffraction peaks (420)
and (521) from a molybdenum sample

methods, high intensities are achieved due to the relatively large aperture of
the polycapillary lenses.

At a synchrotron beamline, a method of measurement has been realized,
where the probe volume was imaged by detecting the small angle scattering
of the primary synchrotron beam [24]. To separate the primary beam and the
diffracted beam, a parallel polycapillary structure was positioned between the
sample and a CCD detector.

Real-Time Diffractometry

The principle described in the second part of the last section can also be
used to record diffractograms in real time. In the same way, focusing in a
transmission arrangement is applied and the diffractograms are recorded in
the focal plane of the polycapillary lens. For detection, an X-ray-sensitive
CCD camera was used which can record the diffraction pattern in real time
[25]. Figure 18.13 shows the diffractogram of a zirconium foil which is a single
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Fig. 18.13. Diffractogram of a zirconium foil in form of a single half-frame captured
from a live video sequence

half-frame captured from a live video sequence. The appearance of a texture
is clearly seen.

18.4 Capillary Optics for Synchrotron Radiation

Capillary optics in synchrotron beamlines for focusing the radiation onto
a spot of micron and submicron size employs tapered monocapillaries [26].
Development of new methods of glass treatment makes the fabrication of
elliptical monocapillaries with micrometer spatial resolution possible. Such
monocapillaries can be placed into the preliminary focused beam at the end
of conventional beamline. This provides a fine focusing of an X-ray beam into
a micrometer spot size.

The work deals with the experimental results on the beam focusing and
μXFA, μXANES, application in archeometry at BESSY GmbH (Berlin) [27].
The beam, in the energy range of 3.5–15keV, is monochromatized by a double-
graded-crystal monochromator and focused onto the sample with a spot size
of 150 μm (horizontal) by 700 μm (vertical). The total flux in the spot is in
the range 109–1010 photons s−1 per 100mA. The capillary is placed close to
the focal position of the refocusing mirror of the beamline with a beam cross
section of 400 μm (horizontal) by 800 μm (vertical). The optical scheme of the
experimental setup is shown in Fig. 18.14.

The parameters of the inner elliptical surface of the glass monocapillary
are shown in Table 18.3. A capillary was fabricated by “bubble” technology
from the borosilicate glass [28]. In the first stage of technology, a bubble is
injected into the molten glass. In the second stage, the glass is drawn with a
given pulling factor.
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Fig. 18.14. Optical scheme of the microprobe experimental setup

Table 18.3. The parameters of the elliptical glass capillary

Large
half-axis
(mm)

Small
half-axis

(μm)

Number of
input aperture

(μm)

Number of
output

aperture (μm)

Focal
length
(mm)

Experimental
intensity

gain

Focal
size
(μm)

100 175 350 15 0.8 40–50 ∼5

The final parameters of the ellipse are defined by the diameter of the bubble
and the pulling factor. The form of a capillary was optimized to the parame-
ters of the exit beam on the given beamline. The capillary material contains
very few amounts of heavy elements and does not affect on the fluorescence
spectrum in the above-mentioned energy range.

The microprobe beamline provides an experimental setup for μEXAFS
and μXANES measurements in air or He in the energy range of 3.6–15keV.
The detector system consists of a Si-PIN photodiode for fluorescence measure-
ments, three ion chambers, a scintillation counter, and an energy-dispersive
detector.

A sample stage and detectors are mounted on a two-rotation axis goniome-
ter. Precise X–Y –Z translations provide a 3D scan with 1 μm reproducibility
of the sample position.

Knife-edge tests have been done to measure the size of the focal spot in
transmission. Sharp-edge platinum blades were used for these measurements.
A two-dimensional mapping of a focal spot was performed using a platinum
pinhole of 5 μm in diameter and a scintillation counter. The results of mea-
surements are shown in Fig. 18.15a, b. A flux density gain was measured in the
capillary focal plane using the same pinhole at the energies 5, 10, and 14 keV.
The flux through the pinhole was compared with the direct flux without the
capillary.

Comparative XANES and EXAFS spectra measurements of test objects
consisting of microparticles of Sn, Mn, Fe, and Ge microcrystals were car-
ried out using primary and microfocus beams. The results are completely
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Fig. 18.15. (a) Flux distribution in the focus of a monocapillary measured with a
5 μm Pt pinhole at 12 keV. (b) Knife-edge test at 9 keV. Vertical spot size is 4.5 μm
FWHM and horizontal is 6.5 μm FWHM
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Fig. 18.16. (a) Two-dimensional scan of a Fe microparticle on a test object mea-
sured in the fluorescence mode at 6.4 keV. (b) EXAFS and XANES spectra of the
iron oxide microparticle

identical, verifying the significance of the method. A two-dimensional map of
a Fe microparticle is shown in Fig. 18.16a. An EXAFS (XANES) spectrum of
this particle, measured with a microbeam of 5 μm diameter, is represented in
Fig. 18.16b.

In addition, in the work presented, the investigation of corrosion processes
of amalgam layers on a microscopic scale is shown using μXANES [26]. Sn−Hg
alloys, Hg and SnO2, and possibly SnO could be identified within the corrosion
areas studied.
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18.5 Concluding Remarks

As shown, capillary optics can be used for X-ray diffractometry and X-ray
fluorescence analysis. Efficient beam focusing allows it to realize micro-XRF
and micro-XRD, where the intensity of secondary radiation is high enough
not only for a scan across the sample surface but also for a measurement of
depth profiles. Further development of capillary optics is planned with the
goal of achieving an increased efficiency and a decrease in the focal spot size.
Combinations of sources with a high emission density with capillary optical
elements will find additional applications in the future.
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Reflective Optical Arrays

S. Lagomarsino, I. Bukreeva, A. Surpi, A.G. Michette, S.J. Pfauntsch,
and A.K. Powell

Abstract. In this chapter the prospects of using grazing incidence reflection from
custom built nested mirrors or reflector arrays are discussed. The aim is to provide
a high gain in focused intensity from either laboratory or synchrotron sources. The
calculated performances of such systems are presented, taking into account man-
ufacturing tolerances and surface roughness. These calculations indicate that the
improvement of roughness is of primary importance, and ways of addressing this
during possible manufacturing processes are discussed.

19.1 Introduction

X-ray reflective mirrors are widely used in both synchrotron radiation and
laboratory sources to collimate or focus X-ray beams with high efficiency.
Improvements to fabrication technologies now allow manufacture of long X-
ray mirrors with slope errors less than 1 μrad and root-mean-square (rms)
roughnesses less than 0.1 nm [1–3]. In the Kirkpatrick–Baez geometry, such
mirrors can provide significantly sub-micrometre focal spots. However, these
systems are very expensive and, in general, only large-scale facilities can afford
high precision mirrors. To improve flexibility, adaptive mirrors using benders
to give the required shapes have been developed [1] but alignment, stability
and optimisation of the curvature are critical issues.

If a given spot size is desired, i.e., if a given demagnification factor at a
certain distance from the source is required with high focusing efficiency, the
length of the mirror should not exceed an optimum value [4]. The flux density
of photons in the focal spot can be increased significantly compared to that
from a single surface if a system of confocal mirrors, similar to those used in
astronomy, is employed [5].

Mono- and poly-capillaries [6, 7] and microchannel plate arrays [8, 9] have
also been used for X-ray optics. These work by grazing incidence reflections
along many small diameter channels, up to about 106 for poly-capillaries and
microchannel plates. They can have large apertures and bandpasses, with
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transmission efficiencies of several tens of percent. If there are two reflec-
tions from the same wall of each channel, they can approximately satisfy the
Abbe sine condition [10], thereby reducing coma. If there are more than two
reflections, correspondence between object and image points may be lost. Cur-
rent manufacturing methods, in which optical fibres undergo several stages of
pulling [7, 11], limit channel diameters to ∼0.5 μm, arrays to a few millime-
tres square and focal spots to ∼10 μm. Performances are limited by channel
tilting, curvature errors, waviness, diffraction, uncontrolled substrate bend-
ing and defects, i.e., misplaced channels [12]. In addition, microchannel plates
are primarily made for another purpose, i.e., X-ray detection, so that they
are not optimised for optical performance; for example, the channel wall
roughnesses are not a major concern for X-ray detection. Such optics can
also have very poor point spread functions [13]; in principle, it is possible to
improve their performances by using specific designs – microstructured optical
arrays (MOAs) [14]. These may also allow adaptivity and controllable focal
length [15].

In the following sections, the performances of such optics will be presented,
along with discussions of fabrication routes to compact systems adaptable to
a large range of photon energies and X-ray sources. These systems can be
tailored to be focusing, collimating or condensing devices.

19.2 Nested Mirror Systems

Nested mirror systems use arrays of confocal reflecting surfaces such as shown
in Fig. 19.1. In this example of elliptical mirrors, rays emanating from one
focus F1, common to all the mirrors, converge after reflection to the second
common focus F2. It is worth noting that, in general, the mirrors do not have
to be elliptical; the shape depends on the application.

Mirrors Focus

Substrate
Source

F1 F2

 F  L 
 z 

 x 

 y 

Fig. 19.1. Nest of confocal elliptical mirrors
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19.2.1 Computer Simulations

The proper choices of system configuration and material for the reflecting
surfaces are very important. For optimisation of the relevant parameters and
evaluation of the fabrication tolerances, a computer ray-tracing code allowing
parallel treatment of the optical elements has been developed [16, 17]. This
code gives information about the intensity distribution in the focal spot, the
system efficiency and the gain. Gain is defined as the ratio between the output
and input flux densities, and corresponds to the enhancement in intensity with
respect to a hypothetical aperture of the same size as the focal spot placed in
the focal position. The code has been used to evaluate nested mirror systems
for a synchrotron radiation source and for a laboratory-scale source.

For the synchrotron, a bending magnet source of the European Syn-
chrotron Radiation Facility, namely the optical beamline BM5, was used as
an example. A geometry which focuses the beam in the horizontal plane was
considered, with a horizontal source size of 270 μm, a divergence of 2.4mrad,
a source-focus distance of 40m and a wavelength of 0.1 nm. The focusing sys-
tem (Fig. 19.2) has four nickel mirrors with length of 25mm, height of 300 μm
and wall thicknesses of 37 μm at the entrance and 20 μm at the exit. The sim-
ulations indicate that this system can focus the incident beam into a spot of
≈0.14 μm full width at half maximum (FWHM) at 1 cm from the exit edge of
the system, with a gain of around 980.

For the laboratory-scale microfocus source, a focused electron spot size
of 15 μm, a wavelength of 0.154nm and a source-focus distance of 150mm
were assumed. The optimised system in this case has two symmetrical nickel
mirrors of length 25mm, height 300 μm and wall thickness 100 μm (Fig. 19.3).
This provides focusing into a spot of around 0.8 μm FWHM, 5mm from the
exit edge of the system, and a gain of around 90.

A variety of characteristic distortions in technological processing and
errors that are inevitably introduced during manufacture can both lower the
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Fig. 19.2. Results of optimisation: (left) an optical system for a synchrotron
radiation source and (right) the distribution of intensity in the focal spot
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Fig. 19.3. Results of optimisation: (left) an optical system for a laboratory-scale
microfocus source and (right) the distribution of intensity in the focal spot

reflectivity and broaden the focal spot leading to significant reduction in the
gain. Simulations have therefore been carried out to take into account var-
ious deviations from the ideal design, including slope error, relative shift of
the mirrors and poor wall verticality, i.e., the angular inclination of the walls
with respect to the axis normal to the surface. To minimise deviations which
cause blurring at the scale of the focal spot size, for the synchrotron radia-
tion source, the slope error should be less than 2 μrad, relative shifts of the
mirrors should not exceed 0.16 μm and the wall verticality should be better
than 1.5mrad. For the microfocus source, the fabrication tolerances are not so
tight but are still quite severe. The slope error must be better than 30 μrad,
relative shifts of the mirrors must be smaller than 1 μm and wall verticality
must be better than 6 mrad.

The surface roughness required for efficient mirrors can be estimated from
the amount of power reflected in the specular direction. Using the simple
Debye–Waller model, the total intensity I in the geometrically focused beam
is given approximately by

I = I0 exp

(
−
(

4πσ sin θ
λ

)2
)
, (19.1)

where I0 is the intensity in the absence of roughness, σ is the rms surface
roughness and θ is the grazing incidence angle. To obtain 50% power into the
geometrical image and with θ ∼ 3 mrad, the surface roughness must satisfy
σ < 2 nm for photon energies around 12keV.

19.2.2 Mirror Fabrication Procedures

As discussed in Sect. 19.2.1, the tolerance limits are rather tight, especially
for synchrotron radiation sources. Thus, control of the fabrication process is
critical and advanced procedures are required. Moreover, in addition to the
accuracy requirements in shape and positioning, etc., it is important to have



19 Reflective Optical Arrays 311

Fig. 19.4. (a) A mirror system in SU8 resist fabricated using process steps involving
electron-beam and optical lithography. A bridge aimed at mechanically reinforcing
the structure is visible. (b) A detailed view of the system shown in (a)

Fig. 19.5. (a) A nickel mirror system made using electron-beam and deep X-ray
lithography and electro-deposition. (b) An enlarged view of the mirror system shown
in (a)

long structures in the direction of the optical axis, at least in the hundreds of
micrometres range, to allow significant acceptance of radiation, as suggested
by Fig. 19.1. Thus, if the system is composed of more than two symmetrical
mirrors as, e.g., in Fig. 19.2, the aspect ratio must be high, typically greater
than 10. If only two mirrors are used, as in the case of the system for laboratory
sources shown in Fig. 19.3, large structures and low or moderate aspect ratios
are sufficient.

To satisfy these requirements, several fabrication routes can be followed,
involving one or more of electron-beam lithography (always necessary to
define the shape of the reflecting surface with sufficient precision), optical
lithography, X-ray lithography and electro-galvanic growth of material [17].
Figure 19.4 shows a prototype made directly in SU8 photoresist by optical
lithography using a mask made by electron-beam lithography. A second pro-
totype is shown in Fig. 19.5; this was made in electro-deposited nickel after
electron-beam and X-ray lithography steps.
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In both cases, the mirrors follow the design shape, and the overall struc-
tures are satisfactory. The main problem is the wall roughness which presently
exceeds the acceptable limits. Very recent results on post-fabrication treat-
ment have given interesting indications of possible routes to reduce wall
roughness significantly. This will be discussed in Sect. 19.3.2.

Despite the technological problems related to fabrication issues, such
systems are very promising, with the great advantages of flexibility and com-
pactness. Using modern microfabrication tools, mirrors of virtually any shape
can be manufactured, so that focusing, collimating or condenser systems can
be easily designed for different types of source.

Here, simulations involving just one reflection have been presented, but
systems working with more reflections (see also Sect. 19.3), including whis-
pering galleries [18], can be conceived. Since an entire system has lateral
dimensions of the order of 0.5mm, several systems with different character-
istics can be arranged side by side, allowing easily interchangeable optics.
Another aspect of flexibility is provided by the wide operating energy range
of such reflective optics.

19.3 Microstructured Optical Arrays

MOAs [14,15], as shown schematically in Fig. 19.6, work on the same principles
as poly-capillary and microchannel plate optics. Now, however, the reflecting
channels are made to specific designs and are, for example, etched into thin
silicon (100–200 μm) which can be flexed to provide adaptivity and/or focal
length control. To reduce aberrations such as coma, two reflections are needed
in such systems; since the channel lengths are small (due to the thin silicon),
reflections from two successive components must be used. In Fig. 19.6, the
channel widths are shown as increasing radially outwards, to compensate for
the increased grazing incidence angle. In practice, to date, this has not been
necessary as achievable aspect ratios (i.e., the ratio of channel length to chan-
nel width), means that most X-rays pass straight through without reflecting,

Fig. 19.6. (a) A microstructured optical array, face on, and (b) arrangement of two
MOAs, in which either or both can be flexed to change the position of focus
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Fig. 19.7. An MOA consisting of an arrangement of 1D strips to give a 2D focus

whatever the radial distance. Additionally, in practice, many more channels
would be used compared to the number shown in the schematic diagram; typ-
ically channels would be ∼10 μm wide, with walls of comparable thickness,
over areas of a few square millimetres.

Flexing may be carried out either mechanically or by coating piezo material
on, for example, the spokes shown in Fig. 19.6a. By controlling each piece
of piezo independently, the X-ray beam could be further manipulated, for
example to reduce aberrations in an adaptive or active way.

The two-dimensional focusing capabilities of such arrays could be simu-
lated by making a series of 1D strips, as shown schematically in Fig. 19.7.
As well as being technically less challenging to manufacture each strip could
also be flexed independently. Other arrangements, designed for specific appli-
cations, would also be possible.

19.3.1 Computer Simulations

Modelling the performances of MOAs, even in the simplest way, is challeng-
ing. It requires both finite element analysis (FEA), to determine the effect
of flexing on the channel walls, and ray tracing to characterise the optical
performances. More sophisticated analyses will require wavefront propagation
and studies of the effects of diffraction.

FEA and ray tracing are both complicated for such optics, as the effects
of many channels have to be taken into account. For FEA, this means that
the number of elements to be analysed is very large, leading to problems with
mesh sizes, while ray tracing has to be carried out non-sequentially as at
most two optical surfaces out of many hundreds will be encountered by an
individual array. So far, only rudimentary FEA studies have been carried out,
but many characteristics of the optical performances have been investigated
using the optical design software ZEMAX c©. Recently, ray-tracing analysis
has been carried out using the much more flexible (and user-friendly) “Q”
software developed at the University of Leicester (UK) [19].

As an example, a silicon MOA designed for X-rays of energy 4.5 keV
(Ti Kα) has been modelled using ZEMAX c©. This type of optic will be suit-
able for irradiating cells, in studies related to cancer research, using an X-ray
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Table 19.1. Parameters of the prototype MOA for the Gray Cancer Institute
microprobe

Source size 5 μm
Source to optic distance 160 mm
Diameter of optic 2mm
Separation of optic components 1mm
Length of channels 200 μm
Width of channels 10 μm
Bending radius of first component ∞
Bending radius of second component 100 mm
Focal distance 73mm

Fig. 19.8. Results of ray tracing the MOA for the Gray Cancer Institute microprobe.
The source (left) emitted 4.5× 106 keV photons, of which (right) 8,600 were doubly
reflected and brought to focus. The scale bars are 2 μm

microprobe at the Gray Cancer Institute (UK) [20]. The parameters are shown
in Table 19.1.

The bending radius of the second component (the first was unbent) was
chosen to give a focal spot size of about 2 μm, assuming a 5 μm diameter
source. Although zone plates can give smaller focal spots than this, the inten-
tion was, in the first instance, to aim for something experimentally feasible at
an early stage, while providing a focal spot size useful for studies using the
microprobe. Smaller spot sizes could be achieved by using a smaller bending
radius, or by bending both components. Although this would mean that fewer
X-rays would pass straight through without reflection, the effects of roughness
would be more pronounced and a detailed analysis needs to be carried out to
determine the optimum configuration.

The ray tracing took into account the efficiency of each reflection, which
decreases radially outwards as the grazing incidence angle increases, as well
as the channel wall roughness. Results for zero roughness (Fig. 19.8) indicate
that the configuration of Table 19.1 results in a focusing efficiency of slightly
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under 1% (primarily since most X-rays pass straight through). However, the
focused flux is some two orders of magnitude higher than that which could be
achieved by a state-of-the-art zone plate with a diameter ∼100 μm. A channel
wall roughness of 10nm, the effects of which were modelled using (19.1),
reduces this gain by a factor of about 3, suggesting that a roughness of a few
nanometres is acceptable at energies of a few keV. An additional advantage of
MOAs, over zone plates, is that the focal length is independent of energy, so
that (unless energy-dependent effects are being studied) the bremsstrahlung
as well as the characteristic radiation could be used, enhancing the gain in
useful flux. To date, using zone plates, all studies using the microprobe have
been concerned with cell death [21], rather than the much more important
phenomenon of mutation which occurs at a rate several orders of magnitude
lower; hence the need for increased focused flux.

19.3.2 Manufacture of Microstructured Optical Arrays

Because of the necessity for high aspect ratios, techniques such as the Bosch
process [22] of deep etching in silicon are required to manufacture MOAs. The
Bosch process utilises successive etch/passivate stages to create the channels
while preventing side-wall etching. Until recently, the applications of such
manufacture did not require tight tolerances on wall roughness, and so values
of the order of micrometres were acceptable. MOAs require improvements of
around three orders of magnitude over this, and so new procedures have had
to be devised. By shortening the etch/passivate cycle time, the Scottish Micro-
electronics Centre at the University of Edinburgh has shown that channel wall
roughnesses of less than 20 nm are possible. Subsequent coating with 100nm of
silicon dioxide improved this further to less than about 10 nm [23], which sug-
gests that the ultimate goal of roughnesses of a few nanometres is achievable.

19.4 Conclusions

The nested and array systems presented here show promising capabilities
as future generation X-ray optics. Some technological challenges, including
roughness, appear close to being overcome, while others, e.g., control of surface
shapes for adaptive systems, must still be addressed in detail.

Recent experiments involving coating of nested mirror systems with silica
sol-gel showed very promising wall roughness reduction, and 50% reflectivity
at Cu line from SU8 walls coated with sol-gel.
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20

Reflective Optical Structures
and Imaging Detector Systems

L. Pina

Abstract. New types of grazing incidence X-ray mirror systems based on single
reflections have been studied, including modelling of optical performance, effects
of surface figure errors and micro-roughness, actual performances and astronomical
and laboratory applications. Ray-tracing simulations of multi-foil reflective optics
for focusing radiation from a gas puff plasma source have been studied in detail for
soft X-rays in the wavelength range 3–20 nm. Such sources are debris free because
of the use of noble gases as the working medium. The ray-tracing was performed
for both point and extended sources. The optics consist of two orthogonal stacks
of ellipsoidal mirrors with gold reflecting surfaces forming a double focusing device.
Unlike multilayer optics, grazing incidence optics are efficient at focusing soft X-rays
over a wide wavelength range. Optics designed for collecting solid angle of 0.1sr were
manufactured and tested in the visible and EUV regions. It has been demonstrated
that multi-foil optics are a good candidate for concentrators of EUV radiation in
applications such as lithography.

High resolution imaging screens and detector systems with thin YAG:Ce and
other monocrystal scintillator screens have been designed and tested. Camera sys-
tems based on monocrystal scintillator, optics and CCD detector were built and used
for testing of scintillators. Screens with thicknesses down to 5 μm and a fast, high
resolution, cooled 16 bit CCD camera have been used to achieve resolutions of 1 μm
and comparative studies of sensitivity (for YAG:Ce and fine grain Gadox screen)
were carried out. Scintillator screens and systems with sub-micrometre resolution
have also been studied.

20.1 Introduction

Recent progress in high-intensity microfocused EUV beam generation is pre-
sented in this chapter. Ellipsoidal thin glass foils were used in multifoil optical
systems for focusing the radiation in a 50 to 150 eV energy band from a gas–
puff laser plasma source. A multifoil optical (MFO) condenser was designed
and tested for applications with an Xe laser plasma gas–puff source. A high
intensity EUV beam focal spot was recorded, analyzed, and compared with
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theoretical results from computer ray tracing. Direct EUV lithography using
radiation-induced decomposition and ablation of TEFLON was studied.

EUV sources are considered as the sources for lithography working with the
wavelength of 13.5 nm, i.e., 92 eV. Two working media as a laser target, Xe and
Sn, were used in our particular case to obtain a high efficiency of laser energy
conversion into the radiation in this wavelength range. The EUV sources based
on such media emit radiation in relatively wide wavelength range. The appli-
cations of such sources include proximity X-ray lithography, soft X-ray contact
microscopy, or micromachining of polymers by direct photoetching.

Grazing incidence X-ray optics can be used to collect the radiation in a
wide wavelength range. However, X-rays are reflected only at grazing inci-
dence angles and, thus, only a relatively small collecting angle can be used.
Different solutions can be applied to enlarge the collecting angle such as a
polycapillary [1], nested Wolter type optics [2], or multifoil optics (MFO) [3].
While grazing incidence optics are commonly used in space X-ray telescopes,
they can be also successfully used for laboratory imaging as well as for collect-
ing X-rays from the laboratory sources. The critical angle is relatively large
in the case of EUV radiation. It can be up to 15◦ for gold coated mirrors with
surface microroughness below 1nm and radiation wavelength around 10 nm.
The design, ray-tracing X-ray tests and recently obtained results for the mul-
tifoil condenser for the laser plasma EUV source presented in this chapter
resulted from the cooperation of three laboratories. The gas-puff laser plasma
EUV source [4] is operated at the WAT Institute of Optoelectronics, War-
saw, where EUV experiments were done. Ray-tracing calculations were done
at the Czech Technical University and design was done at Reflex, in Prague,
where the multifoil optics technology was developed. The condenser collects
photons from the source located in the source chamber and directs them onto
a plane in the experimental chamber used for experiments on the interaction
of high-intensity EUV radiation with matter and for lithography.

There were several requirements for the condenser:

• Working energy range E = 80–120 eV
• Focal length f = 440 mm to fit into the existing vacuum chamber
• Source diameter = 100–500 μm
• Focal spot diameter = 500–1,000 μm
• Restriction for the front area in order to fit into the existing vacuum

chamber, aperture size 80mm.

There are two contradictory requirements. First, there is a large field of
view (FOV) and a large solid angle of collection to obtain the best possible
effectivity of the condensing system. Second, there is restriction on the focal
spot size because it is more difficult to control the distortions and imperfec-
tions for larger optics. Wolter type optics and Lobster Eye in the Schmidt [5]
arrangement can be considered. The Wolter optical system is the proven tech-
nology, and it is successfully used in variety of applications. Wolter optics con-
sists of a number of nested axially symmetric hyperbolic/parabolic/ellipsoidal
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mirrors. The actual shape depends on the specific application. However,
manufacturing mirrors with the accuracy required and nesting them precisely
into the optical system is rather difficult and expensive. In the case of a con-
denser, imaging quality is not so important and a Lobster Eye optics can be
sufficient.

20.2 Design

The first concept was based on the use of a Lobster Eye (LE) in the Schmidt
arrangement. The design consists of two orthogonal sets of reflecting mirrors.
However, the simple Schmidt design was shown to be impractical after the
first calculations and simulations, because very short reflecting surfaces had
to be used. Otherwise, it was not possible to meet the required focal spot
size with a given source diameter and to simultaneously utilize the incoming
radiation optimally. Initial calculations suggest using curved mirrors in order
to increase the focusing power of the Lobster Eye. As long as the problem cov-
ers, only the single-point-to-single-point focusing system, the effect of severe
image distortions for off-axis sources can be neglected, because the source will
always effectively be on the optical axis. The system for focusing from point
to point is needed and thus the mirror shape should be elliptical. To opti-
mally cover the FOV of the system in this case, each mirror not only has to
have a different curvature but also has to be in the different distance from its
neighbor, i.e., the mirrors cannot be equally spaced.

Several iterations have been done. The mirror length was changed to have
the mirrors as long as possible in order to reduce the number of them. These
iterations ended up with the final design consisting of 4 cm long, 8 cm wide,
and 300 μm thick ellipsoidal mirrors. Half of the profile is shown in Fig. 20.1.
Note the changing distances between the mirrors, which were calculated to
allow illumination of the entire surface of each of the mirrors. The necessary
number of mirrors is optimized.

The final design can be described as a multifoil, bifacial Kirkpatrick–Baez
system. Term “bifacial” is used to stress that the reflecting mirrors are on

Fig. 20.1. One half of the multifoil (MFO) EUV bifacial Kirkpatrick–Baez
condenser
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Fig. 20.2. Front view of the multifoil (MFO) EUV bifacial Kirkpatrick–Baez con-
denser (left). The ray-tracing simulation of a 0.5 mm size EUV source focus (right).
Vertical and horizontal intensity profiles give a peak FWHM of 0.45 and 0.65 mm,
respectively

both sides of the optical axis unlike the case of the classic KB system, where
the optics are asymmetric.

A number of ray-tracing simulations of the selected design, as well as
of each of the particular designs during the iterative design process were per-
formed. The ray-tracing simulation of the final system design for a flat circular
photon source with diameter of 0.5mm is plotted in Fig. 20.2 together with
the front view of the condenser. Mirrors with varying distances between them
are clearly depicted. The intermirror distance increases for larger mirror off-
axis distances. The gray central cross is part of the optics holding structure.
It additionally shields the central part of the optics, where no reflection is
possible, against the direct beam.

The optics has different magnifications in two perpendicular directions.
This is because the reflection occurs at different distances from the source
for different directions and an asymmetry is thus introduced. If the mirrors
could penetrate each other to form the channels, i.e., if all the mirrors were
at the same distance from the source, no differences in magnification would
be visible.

Simulated peak widths strongly indicated that the proposed condenser
is feasible. Distortions due to the design itself are acceptable. Decay of the
intensity with the distance from the optical axis was also theoretically studied.
An extremely extended uniform source has been simulated in this case. It can
be seen that the FWHM FOV (i.e., the intensity falls to 1/2 at the edges of the
FOV) is 5× 5 cm2, i.e., 13× 13 deg2. This means that although not originally
designed to be an imaging device, this MFO still have some imaging power in
relatively large focal area.

The ratio of the number of photons gathered inside the central peak to the
number of photons blocked by the central support structure characterizes the
MFO compared to the LE design. The ratio of all the photons in the entire
focal cross without the central peak to the photons inside the central peak is
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0.2%. The length of the cross bar is about 10mm. This means that the cross
structure is strongly reduced if compared to standard Schmidt LE because
of the curved and optimized mirrors. While still present, it plays a negligible
role in the experiments described.

The solid angle from which the photons are collected in case of the MFO
condenser and the maximal solid angle which can be reached with an axially
symmetric condenser have also been studied in order to compare the efficiency
of the systems. The simulation indicates that the solid angle which is covered
by the MFO condenser is about 0.09 sr. This number includes correction on
the gaps between the mirrors and shows how many photons are reflected at
least once. The solid angle which can be reached by the nested shells of a
corresponding axially symmetric condenser is about 0.18 sr at maximum. In
fact, this number should be smaller because only a finite length of the mirror
can be used, or, equivalently, only a limited number of shells are feasible.
Therefore, the ratio between the MFO condenser and the ideal condenser
with the same outer dimensions is about 0.5. The realistic ratio including
various technical aspects is somewhere between 0.5 and 0.9.

20.3 MFO

The exact parameters of each of the reflecting mirrors were calculated. Some
problems were encountered during the manufacturing, however (unclear). All
the previously created devices of the comparable size and complexity employed
only flat mirrors, which was not the case of the proposed condenser. Hence,
the technology of shaping the mirrors with the desired quality has had to be
developed.

In the framework of alternative proposals, thermal shaping of glass mirrors
was studied. Thermally shaped mirrors keep their proper shape after the pro-
cess, and the internal stress is minimized. Therefore, the probability of glass
damage and/or cracks is substantially reduced even under extreme conditions,
such as strong vibrations and temperature changes.

Although the technology has promising results, its economy is a great
disadvantage for the condenser. As mentioned earlier, each mirror of the con-
denser has a different shape. If the thermal forming technology is used, a
number of different forms would be required, one for each mirror.

A different approach was developed to avoid this problem. The key features
are as follows:

• A modular concept of multifoil optics with a large number of mirrors is
used to facilitate assembling them into complex optical systems

• Relatively low-cost methods to create many differently shaped mirrors in
one module are used

• The accuracy of shaping is lower compared to the thermal shaping,
however, there is still room for further development
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Finally, the optics using this new technology was successfully manufac-
tured. The module uses glass sheets with thin layers as reflecting optical
elements deposited on the surface and with a metal support structure.

20.4 Experiments

20.4.1 Experiments in VIS Region

First tests were performed using visible light. The optics was illuminated by a
500 μm light source and the focal spot was imaged with a scientific grade CCD
camera. A sample image is shown in Fig. 20.3. The FWHM of the detected
peak is about 0.7× 1.1 mm2. FWHM values are up to about 70% larger than
the simulated ones. This is probably mainly caused by misalignments of the
reflecting surfaces and mirror profile errors.

Broadening would be relatively more apparent if a power spectrum was
displayed. The focal spot enlargement is caused mainly by the optics imperfec-
tions in this case, not by the source size. However, several additional reasons
for the focal spot broadening exist. All of them are due to the measurement
with visible light:

• Effects coming from diffraction on a number of thin reflecting foils, which
does not occur in case of X-rays due to extremely short wavelengths.

• Glass foils work as optical waveguides for visible light multiple reflec-
tions between reflecting surfaces, which cannot be neglected in case of
the nonplanar geometry and shaped surfaces.

According to our experience, any kind of multifoil X-ray optics, which was
already manufactured and tested in both visible light and in X-rays, exhibits
the worse peak blurring when tested with visible light as compared with test-
ing with X-rays. However, if the measurement in visible light is consistent with

Fig. 20.3. Optical test results. The image of the focal spot from the 0.5 mm source
is plotted on the left. Comparison between the simulation for soft X-rays (solid line)
and the profile of the measured focal spot in visible light (dashed line) is on the right.
Broadening of the measured VIS peak relative to the EUV simulation is discussed
in the text
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the desired requirements, one can expect that it will be even more favorable
for X-rays.

20.4.2 Experiments in EUV Region

During the design phase a Gaussian profile for the source with a FWHM
of 0.5mm was assumed. However, the true source size has to be determined
in future experiments. Several methods for characterization of the focal spot
profile have been used. A schematic view of the three different experimental
setups is in Fig. 20.4. The last method used the optical system to create a
pattern on a sample surface by EUV lithography and by then analyzing the
depth of the grooves formed.

First, the focal spot was imaged using the Wolter type X-ray microscope.
The EUV focal spot was positioned on the Sn target. Radiation emitted under
an angle of 60◦ with respect to the condenser optical axis passed through
aluminum filter and was focused by the Wolter optics and detected by a back
illuminated CCD camera. The image obtained is shown in Fig. 20.5. The image
is not corrected for the geometrical inclination or for any possible change of
intensity with the inclination angle.

Second, the profile of the focal spot was mapped for two different gases,
Xe and Kr, using a scanned pinhole inside the source chamber as plotted
in Fig. 20.6. The pinhole was placed in a particular position and the flux
was measured. After measurement of sufficient number of distinct pinhole
positions, the interpolation was used to create the profile. Because of the
nature of the probing process, each point in the resulting image is based on a
completely different set of shots. Thus, an averaging of a large number of shots
exactly as in case of the measurements with Wolter optics was incorporated.
However, the detection was done in the direction parallel to the optical axis
of the condenser.

Fig. 20.4. Experimental arrangements for the intensity measurements in the focal
spot: (a) EUV imaging with the Wolter type microscope, (b) 2D imaging with a use
of YAG:Ce crystal scintillator, (c) scanning with pinhole and AXUV 100 detector
covered by Zr/C filter
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Fig. 20.5. The focal spot obtained by the Wolter X-ray optics after 200 shots. The
FWHM of the peak is 0.6 mm and 0.8 mm, respectively

Fig. 20.6. Results of absolute measurements of EUV intensity distributions in the
focal plane obtained with the use of the calibrated pinhole coupled to the AXUV
100Zr/C detector

The condenser tends to focus a circular source into a slightly asymmetric
one, as seen in Fig. 20.2. Asymmetry of the focal spot was studied and a
simulation for the circular source was compared with the measured data. The
ratio between the small and the large axis for a simulated 0.5mm source is
about 0.67. The measurement in Fig. 20.5 gives the ratio 0.7. This means
that the source either has a symmetric profile or the asymmetry is relatively
large and it can switch the longer semiaxis from one direction to the other
one, which is less probable. However, this assumes that the condenser optical
transfer function resembles the simulated one at least in the shape, if not in
the overall size. The apparent circular source shape is a very probable case,
because an extremely large number of shots had to be used to generate the
focal spot map, and this results in a statistically integrated source shape which
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Fig. 20.7. Isointensity lines plotted from X-ray CCD images obtained at the FWHM
level. Shift from the focal position is indicated above each profile

resembles the circular Gaussian profile, even if the focus shape in case of a
single shot is completely different.

Third, the last measurement was based on the use of a 20 μm YAG:Ce
crystal scintillator plate combined with a CCD camera. This allows for much
faster measurements of the focal spot size change with the distance from the
optimal focal plane. Visible light emitted from the crystal under EUV irra-
diation was registered by a CCD camera, which was mounted outside the
experimental chamber behind a glass window. To avoid possible influence of
the visible light emitted from the EUV source, a 200-nm thick aluminum fil-
ter was placed in front of the crystal. The radiation from the source had to
be decreased substantially and a number of shots had to be performed to
obtain the images. Stronger EUV radiation leads to crystal saturation. This
effect is the subject of further study aimed at exploiting maximum intensity.
The crystal was mounted on a micropositioning stage enabling it to be moved
along the axis of the condenser. Isodensity profiles of a measured focal spot
are plotted in Fig. 20.7. These results were compared with the simulation for
the Gaussian source with FWHM = 0.5 mm. Comparison showed a not negli-
gible difference between simulations and experimental results in focus shape,
but a smaller difference in the focus size. This strongly indicates that the
optical transfer function of the condenser is more complex than expected and
that the imperfections in system manufacturing have to be further studied.
On the other hand, a multifoil bifacial Kirkpatrick–Baez EUV condenser has
considerably better focusing characteristics than does relevant classic Lobster
Eye optics. This MFO system, as designed and tested, has proven to be a good
compromise between true high quality focusing optics with precise solid parts
and LE optics based on flat foils. In spite of higher figure error of elliptically
shaped foil mirrors in a MFO system, the optical characteristics of the system
are quite promising for condenser applications. Other applications should be
possible with an improved figure error.

The fourth and only complementary method is for the focal spot profile
estimation which is useful in lithography applications. The image in Fig. 20.8
shows the material illuminated by EUV radiation from the optics through the
lithographic matrix. The depth of the grooves is proportional to the incoming
beam fluence allowing one to measure the profile of the beam in this way. The
image was processed to obtain the profile.
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Fig. 20.8. TEFLON dry etched with EUV radiation passing through a matrix (left).
The circle shows the FWHM of the spot obtained from the changing height of the
lithographically created pattern. The line profile is on the right

20.4.3 Future Experiments with MFO

There are two sets of topics that should be studied in further experiments.
First, optics themselves should be studied with inclusion of all relevant mea-
surements. This will provide more information needed for further optical
designs and manufacturing. Second, set of experiments should be dedicated to
study differences in focal spot sizes as obtained by pinhole camera mapping
and with a YAG:Ce scintillator. Experiments should be done to image the
source under given conditions with an absolutely calibrated pinhole camera.
Imaging is needed for integration times between 0.2 and 20.0 s.

Imaging the source by the MFO optics rotated along the optical axis by 90◦

should reveal whether the focal spot asymmetry is due to source asymmetry
or due to optics themselves. This test is useful especially if the previous tests
are incomplete or impossible.

Comparison of focal spot size measurements done with the YAG:Ce screen
and with a scanned pinhole show a larger focal spot in the case of the YAG
scintillator. Subsequently, a systematic study confirmed this result which,
however, remained unexplained. Dedicated experiments with scintillator focal
spot enlargement will be necessary to explain the behavior of the scintillator
under the influence of intense EUV radiation. YAG:Ce screen behavior should
also be studied separately in general terms of saturation, superluminiscence,
and light signal propagation in the screen.

20.5 Conclusions

We have studied, designed and manufactured a novel soft X-ray condenser for
EUV radiation based on multifoil optics (MFO) technology. It has a broad-
band response from 50 up to 120 eV with a collecting solid angle of about
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0.1 sr, which is approaching the value attainable by axially symmetric opti-
cal designs. Tests of the optical system were performed with a visible light
source and with an EUV source using several imaging methods. Measured
focal spot sizes and measured focal lengths were compared with theoreti-
cal values obtained from computer modeling. The feasibility of the MFO for
EUV/SXR radiation collection was demonstrated. New design tools and new
manufacturing technologies were developed during the project.

Further experiments have to be completed in order to investigate the opti-
cal properties of the system and scintillator crystal in more details. The high
intensity of focused EUV beams opens new possibilities in various fields of
science and technology. Higher photon fluxes make possible studies of, for
example, scintillation physics on wider group of materials, radiation modifi-
cation of biocompatible materials, and direct molecular decomposition with
applications in lithography.
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CLESSIDRA: Focusing Hard X-Rays
Efficiently with Small Prism Arrays

W. Jark, F. Pérennès, M. Matteucci, and L. De Caro

Abstract. CLESSIDRA is Italian for hourglass, which is a good description of the
appearance of the optical components discussed in this chapter. In these optics,
many small prisms are arranged to form two large prisms, which almost touch each
other at their tips, giving rise to the focusing of X-rays in one direction. From the
optical point of view, CLESSIDRA is a type of Fresnel transmission lens, containing
less absorbing material than normal transmission lenses. Its aperture can thus be
larger. In this contribution experimental data on the focusing properties will be
compared to the predicted characteristics.

21.1 Introduction

The phenomena of refraction and reflection have been exploited over the cen-
turies for redirecting or manipulating light beams. In principle, a light beam
can be focused by both phenomena, i.e., by use of transmission lenses and
by use of curved mirrors. The latter are almost always oriented for normal
incidence of the arriving radiation and they can then be radially symmetric.
The important properties of these objects depend only on a few parameters,
namely on the radius of curvature R of the surfaces on the center axis and
eventually on the refractive index, n, of the optical component. The focal
length f of a concave reflecting surface is then simply (the discussion in this
first chapter follows textbooks on optics [1])

fmirr =
R

2
, (21.1)

while it is
flens =

R

2(n− 1)
(21.2)

for an axially symmetric lens as shown in Fig. 21.1a with two identically
curved surfaces operated in air, for which we assume nair = 1.

The main parameters for transmission lenses are explained in Fig. 21.1a
for the case of a bi-concave lens. The sign convention is such that a positive
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a b c d e

Fig. 21.1. Cross-sectional view of different transmission devices for the focusing of
X-rays with the trajectory along the x-axis. In the symmetric bi-concave parabolic
lens in (a) the radius of curvature on the optical axis of the curved lens surface is R
and α is the local angle of grazing incidence. The lens in (b) is obtained by modeling
the lens surface from (a) with curved prism-like objects of equal base width. It is
more compact in the structure (c). The lens in (d) has external segments of equal
height. These outer segments can be subdivided into smaller identical structures as
shown in E. All drawings have a common scale and identical focal length

radius of curvature R > 0 describes a convex lens surface, and a component
with a positive focal length f > 0 produces a real image downstream of it at
image distances p ≥ f . For f < 0 a virtual source is obtained between the
source and the optical component. Thus, the concave surface in Fig. 21.1a has
R < 0. According to (21.2) focusing by the use of lenses can then be achieved
with the combinations R > 0, n > 1 and R < 0, n < 0.

A single mirror focuses only with a concave surface.
The distance p between the lens/mirror and the plane with the sharpest

image can be calculated using

1
f

=
1
p

+
1
q
, (21.3)

where q is the distance of the lens from the real object, e.g., a radiation
source. For a series of focusing optical components, the resulting focal length
is given by

1
f

=
∑

i

1
fi
. (21.4)

The reflectivity, r, of and the transmission, t, through any surface are given by

r =
(
n− 1
n+ 1

)2

and t = 1− r =
4n

(n+ 1)2
. (21.5)

The spatial resolution, s, obtainable for these systems for a particular wave-
length λ is given as

s = 1.22
λ

2 [NA]
, (21.6)
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where [NA] is the numerical aperture of the system, which is half of the sinus
of the angular extent Φ under which the geometrical aperture A of the optical
component, if operated in air or vacuum, is seen from the focus position, i.e.,

[NA] = sin
Φ
2

=
A

2f
. (21.7)

To achieve this spatial resolution, the Rayleigh criterion [1] requires the trans-
mitted or reflected wavefronts to be distorted by not more than a quarter of
their separation, i.e., by λ/4. This puts the following requirements onto the
permitted displacements, Δν, of small segments in the optical surfaces from
the ideal position:

λ

4
= 2Δvmirr (21.8)

and
λ

4
= (Δvlens,1 + Δvlens,2) (n− 1). (21.9)

A typical refractive index for transparent materials in the visible spectral
range is n ≈ 1.5. Then, according to (21.2), lenses can have a focal length, f ,
and also apertures, A, identical to their radii of curvature, R. The situation is
similar for mirrors, which according to (21.1) can have an even shorter focal
length, f . According to (21.5) the lens surfaces have transmissions of t = 0.96,
while typical reflection coefficients for metal mirrors are of the order of r ≈ 0.9.
Ultimately for both objects, [NA] in (21.7) can be [NA] ≥ 0.5, which permits
in (21.6) s ≈ λ, i.e., spatial resolutions of the order of s ≈ 0.5 μm. To achieve
this performance according to (21.8), the mirror surface needs to be figured
accurately to the perfect shape with an error not exceeding Δvmirr = λ

8 .
On the other hand, in the worst case for additive errors Δvlens,1 = Δvlens,2,
the required tolerance in (21.9) for the lens surfaces is more relaxed with
Δvlens = λ

4 .
These numbers can be easily controlled by interferometry with visible

light [1]. Thus, neither lenses nor mirrors present a particular problem for
their production. These considerations are valid if one wants to achieve the
theoretically best possible spatial resolution. If a lower resolution is acceptable,
a lens can also be made more compact, i.e., segmented, with the strategy of
Fresnel, applied originally to lighthouse lenses, and now more frequently found
in overhead projectors, in which the projection lens can be kept almost flat.

21.2 Historical Development
of X-Ray Transmission Lenses

All the equations presented above are also valid for the X-ray range, for which
transmission lenses were thought to be impossible for a long time. Where did
this idea originate? Actually for X-rays the refractive index for all materials
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is slightly smaller than unity. Consequently, it is more convenient to use the
refractive index decrement from unity δ defined by

n = 1− δ. (21.10)

In addition, one now has to consider the unavoidable beam attenuation in
matter. A sample of thickness d will have a transmission given by

t = exp(− d
L

), (21.11)

where L is the attenuation length of the material. Typical numbers for the
index δ are of the order of 10−5 to 10−6. Then according to (21.5), X-rays
are not reflected appreciably anymore at normal incidence. A mirror must be
used in the total external reflection regime below the critical angle, which is
given by [1]

θcrit =
√

2δ. (21.12)

At this angle the focal length for focusing in the plane of incidence, i.e., in
the plane containing the incident and the reflected beam, is

fmirr =
R sin(θcrit)

2
(21.13)

for a rotationally symmetric mirror. A lens can still be used at normal
incidence for which (21.2) is valid and is now better written as

flens = − R
2δ
. (21.14)

The latter equation shows that the refraction is very small and that focusing is
achieved for δ > 0 by the use of a concave lens (R < 0) as shown in Fig. 21.1a.
Such a lens has a natural limitation for its aperture as the absorption increases
away from the optical axis. Kirkpatrick and Baez [2] discuss this argument just
when synchrotron radiation had been seen for the first time [3]. However, they
intended to use an X-ray tube. Thus, the focal lengths, which they derived for
X-ray lenses, were of the order of f ≈ 100 m, and hence, impractical. Instead,
they introduced for the focusing, what is now known as Kirkpatrick–Baez
mirrors, i.e., a crossed pair of concave mirrors. Was their choice responsible
for the fact that transmission lenses for X-rays were not considered anymore
for a while or was it the unverified idea that the lens surfaces might have to
be too precisely polished with errors of the order of the operating wavelength?
If this latter argument would have been looked at earlier, lens development
would certainly not have been postponed so long. For the lens the surface
perfection requirement is still given by (21.9), and leads, for an X-ray lens in
the worst case, to

Δvlens =
λ

8δ
. (21.15)
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A lens in plexiglass or polymethylmethacrylate (PMMA), which is C5H8O2

with density 1.19 g cm−3, has δ = 4.13 × 10−6 [4] for copper Kα radiation
with λ = 0.154 nm (photon energy, E = 8.05 keV), and has a surprisingly
large tolerance with Δvlens = 5 μm. One can use a stack of lenses in order to
reduce the focal length according to (21.4) and still deal with objects that can
have surface errors larger than the wavelength of visible light with roughly
0.4 μm < λvis < 0.8 μm.

For a mirror one has now

Δvmirr =
λ

8 sin(θcrit)
, (21.16)

which for a hypothetical mirror in plexiglass requires the surface errors to be
smaller than Δvmirr = 7 nm, i.e., ca. λvis/100. Such a small number requires
specialised instruments for tests and a careful and time consuming production
process.

The interesting point in the large tolerance for the surface errors in X-ray
transmission lenses is the fact that these lenses, at these tolerances, do not
even require polishing. Indeed the tolerance is even within reach of standard
workshop tools. Consequently, Suehiro et al. [5] resume the discussion of X-ray
transmission lenses when a larger focal length was practical, e.g., at a rela-
tively great distance from small synchrotron radiation sources. They propose
lightening the lens for reduced absorption with the strategy of Fresnel now
applied to concave lenses, and they propose using a lathe for the lens produc-
tion. Tomie [6] subsequently mentions methods to produce concave Fresnel
lenses, in particular by drilling holes into metal substrates. The feasibility of
this attempt was verified soon after in experiments by Snigirev et al. [7], who
call such objects “compound refractive lenses” (CRL). The latter collabora-
tion then concentrated on the development of rotationally symmetric concave
CRLs [8] as shown in Fig. 21.1a.

However, one does not necessarily have to maintain the classical lens shape
for the focusing objectives. Workshop tools allow one to prepare other forms
with the same tolerances. Combs or LP (long playing record) lenses [9] or
alligator lenses [10, 11] are dented arrays, which appear from the side like a
slightly opened alligator mouth. They approximate a concave lens stepwise
and can easily be prepared on a milling machine [9, 11] as can be a master
die for the rapid stamping of the form into soft and low-absorbing but rapidly
deteriorating lithium [10].

Lithographic methods can easily achieve the tolerance for the X-ray lenses
in the side walls of the masks and of the replicated structures [12]. With this
technique even more freedom for the shape of the objects than workshop tools
is possible. Lithography offers many advantages for the production of X-ray
lenses [13]. First of all, the production can profit from further progress in the
lithography process, which is driven by the microprocessor industry. Second,
lithography for mask production and mask replication is possible in mass
production with constant quality. Lithographically produced X-ray lenses are
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economically feasible and could eventually become disposable objects, when
operated with reduced life time in high heat load beams, as will be found in
future free electron lasers [14].

At this point the question arises whether more unconventional lens shapes,
possible with lithography, can be used for the focusing of X-rays. Up to now
only two attempts have been made in this direction by Jark et al. [15, 17]
and Cederstroem et al. [16]. In both cases, prisms or prism-like objects are
arranged in structures, which have no equivalent in classical or visible light
optics.

21.3 Optimization of X-Ray Lenses
with Reduced Absorption

The following discussion will be limited to parameters and structures, which
are already state of the art in lithography. First of all, shaping in only one
dimension will be assumed. Bi-dimensional focusing requires the use of two
lenses in series orthogonally oriented. Consequently, the lens apertures and
lens depths have to match. Second, we will consider that the chemical devel-
oping process will attack sharp edges and will round them. State of the art
for the minimum radius of curvature of tips is about R ≈ 1 μm [18]. Any
shaped structure needs to have minimum dimensions of the order of 5–10 μm.
It should be noted that this is up to three orders of magnitude larger than the
minimum structure sizes which have already been realized in zone-plates [19]
and which are proposed for high resolution refractive lenses [20].

A lens can focus an incident plane wave if throughout the lens aperture
one has

flens =
y

γ
, (21.17)

where y is the distance from the lens center and γ is the local refraction angle.
As long as the local angle of grazing incidence, α, onto the lens in Fig. 21.1a
is larger than the critical angle, θcrit, of the lens material, the refraction angle
γ in such a thin lens can be derived as

γ =
2δ

tan(α)
. (21.18)

The tan(α) can be substituted with the local variation of the path, Δl, in
material, i.e.,

tan(α) =
Δy
Δx

=
2Δy
Δl

(21.19)

for the bi-concave lens. The refraction angle is given as

γ = δ
Δl
Δy

(21.20)
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and the focal length in (21.17) can be written as

f = y
Δy
Δl

1
δ
. (21.21)

This form for the lens-maker’s equation is now valid generally, even if both
lens surfaces have completely uncorrelated curvatures.

Obviously f is constant throughout the lens aperture when the local
derivative of the material distribution Δl/Δy increases linearly with increas-
ing y. This latter requirement describes a parabolic lens profile, which the
group of Lengeler is exclusively using for their lens stacks [8].

In this case the transmission function is of Gaussian shape [9]

t = exp(− y2

2δfL
). (21.22)

For comparison purposes we will define here an optimum aperture, which is
given by

ACRL,opt = 2
√

2δfL. (21.23)

This geometrical aperture transmits 84% of the flux transmittable through
an unlimited aperture and has an average transmission of about t̄ ≈ 0.75.
The size of a pinhole collecting the photon flux, which is passing a lens of a
given geometrical aperture, was defined by Lengeler et al. [21] as the effective
aperture of an optical system and it is then for the CRL with unlimited
aperture

ACRL,eff =
0.75
0.84

ACRL,opt = 1.786
√

2δfL. (21.24)

According to (21.7), the numerical aperture of this lens will increase with
decreasing focal length, and thus according to (21.6) the diffraction limited
spatial resolution will improve towards shorter focal lengths.

Up to this point, we have used an incident plane wave. In reality we will
always find a finite distance of the lens from a source. According to (21.3)
this will move the image plane away from the focus position. In addition,
an elliptically shaped lens would be required for imaging as was pointed
out by Evans-Lutterodt et al. [22]. However, with a parabolic lens the dif-
ference become significant only far away from the optical axis. Thus, it will
be ignored here.

We see in (21.21) that it is only the curved surface that contributes to the
beam refraction. We could divide the curved lens surfaces in Fig. 21.1a into
small prisms or prism-like objects and remove all other unavoidably absorbing
material as shown, for example, in the object in Fig. 21.1b. This raises the
question whether this strategy can be freely applied or whether some bound-
ary conditions have to be respected for the size of the prisms. In the X-ray
range away from absorption edges we find δ/λ2 = const [4], which, according
to (21.21), makes these lenses chromatic. The related image blurring, when
refractive X-ray lenses were used for microspot production, was avoided by
operating the lenses in sufficiently monochromatized beams.
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21.3.1 Focusing Spatially Incoherent Radiation

In case the incident radiation is completely incoherent, the radiation from two
adjacent prism rows does not interfere and will thus not produce a diffraction
pattern. Nevertheless, the radiation will be diffracted at the borders of each
row. After passing through prisms of height h, the beam will produce a blurred
image in the lens focal plane with a size of approximately

a =
λ

h
f. (21.25)

To make all incoherent images of the same size, the prism height needs to be
constant throughout the lens aperture. This is the case for the lens structure
in Fig. 21.1e, which is equivalent to the lens in Fig. 21.1d. In lens 21.1e the
prism closest to the optical axis focuses into the common focus for γf = h.
With a prism base length in beam direction of d this leads in (21.18) to

γ = δ
Δl
Δy

= δ
d

h
(21.26)

and thus finally to

a =
λ

δ

h

d
. (21.27)

For the plexiglass lens from above with h = d = 10 μm this gives a = 38.5 μm.
This is larger than h. However, it can be reduced by increasing d. In any
case, in external rows the accumulated prism base width is not to exceed the
attenuation length, L, of the material, which, for plexiglass, at 8.05 keV is
L = 1.36 mm [4]. The base, d, of a single prism has thus to fulfill d << L.
As a result, with reasonable numbers for d (<0.2 mm) the prism lens 21.1E
will not be able to produce an image of submicron size if illuminated spatially
incoherently at 8.05 keV photon energy.

It goes beyond the scope of this report to discuss alternative applications
for the prism array in Fig. 21.1e in incoherent light, e.g., in combination with
an X-ray tube.

21.3.2 Focusing Spatially Coherent Radiation

If submicron image size is the goal, one has to use the constructive interference
of the beam passing in adjacent rows to sharpen the image. The incident
beam has to be spatially coherent over more than a single prism height. The
transmitted wavefronts are not to be disturbed beyond the Rayleigh limit
of λ/4. However, the wavefield periodicity allows us to introduce distortions,
which are integer multiples of the wavelength [5]. The question then is whether
the amount of material in the beam direction, which will shift the incident
wave by its wavelength (or by a phase of 2π) or a multiple of it, is compatible
with the capabilities of lithography.
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Fig. 21.2. From left to right are presented for the materials plexiglass (PMMA) as
a solid line and for silicon as a dashed line the following parameters depending on
photon energy: D in (a) is the amount of material that shifts the phase of a passing
wave by 2π according to (21.28). 1.4L/D in (b) is the number of 2π phase shifts,
which occur in a slab with a transmission of t = 0.5 according to (21.32). (δL/λ)1/2

in (c) is the factor in (21.34) by which the optimum aperture of a clessidra lens with
m = 1 can be larger than the optimum aperture of the standard concave lens (CRL)
of parabolic shape in the same material

The phase shift is proportional to δ and to the material thickness d and
amounts to 2π in the length

D =
λ

δ
. (21.28)

For minimum absorption the prisms need to be produced in a light material.
Lithography concentrated mostly on photoresists, like plexiglass used in this
study and on Si. It should be noted that the negative resist SU8 [23] is more
radiation resistant, and has already been used successfully for X-ray lenses [15,
18], as the exposed areas become insoluble to the solvent and they will be
hardened even further when focusing X-ray beams, while plexiglass will be
slowly destroyed. For plexiglass and for silicon D, as required according to
(21.28), is shown in Fig. 21.2a. These numbers are feasible with D > 10 μm
for both materials for photon energies from about 8 keV to beyond 30 keV.
This fixes the dimensions for the prism base width but not yet for the prism
heights. It tells us that with Δl = D in (21.21), for constant focal length
Δy = hy needs to decrease reciprocally with increasing distance y from the
optical axis. This leads to the type of Fresnel lens suggested previously [5,6,21]
and shown in Fig. 21.1b. It was first produced and tested by Aristov et al. [24].
Among other solutions it can be compacted to the form in Fig. 21.1c.

Here we will look onto the other alternative of constant prism height Δy =
h. According to (21.21) in such a lens Δl needs to increase linearly with
distance y from the optical axis. This concept is shown in Fig. 21.1d in a
compacted version of such a lens. So while the first Fresnel lens (Fig. 21.1b, c)
has mostly constant average absorption throughout the lens aperture, in the
lens in Fig. 21.1d the average absorption increases approximately linearly with
increasing y. In the present study the structure in Fig. 21.1d was made more
regular by subdividing the prisms with larger base width into many smaller
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identical prisms, which fulfill separately d = mD, wherem is an integer, which
can be regarded as an order number. This structure is shown in Fig. 21.1e and
received for its appearance the name clessidra, which is the Italian translation
for hour glass [17]. As far as the vertical direction is concerned both structures
(Fig. 21.1d, e) are linear diffraction gratings with special blazing. They will
create line patterns at the diffractive focal distance

fdiff =
h2

mλ
, (21.29)

which does not depend on material properties, like δ.
The refractive focal distance can be derived from (21.17) and (21.18) for

the lens structure in Fig. 21.1e as

fref =
h tan(α)

2δ
. (21.30)

The intensity is then refracted mostly into only one of the diffraction peaks if
both focal lengths are identical, i.e., for

λ = h
2δ

m tan(α)
. (21.31)

For given h, m, and α this allows for only one wavelength λ for the lens
operation, as δ varies approximately with the square of λ. The relative uncer-
tainty in the knowledge of δ produces an identical relative uncertainty for the
correct operation wavelength setting. Achieving optimal alignment can thus
be a lengthy procedure as it also requires finding the optimum wavelength
setting. Away from the correct wavelength setting the refracted intensity will
be distributed in the diffractive focal plane over several peaks.

For this lens we will consider the optimum aperture to have an average
transmission of t̄ ≈ 0.75, as was also used for the CRL. This requires the
average transmission of the last prism row to be approximately t = 0.5. Then,
the number of prisms to be used for the focusing is limited to

N =
1.4L
mD

. (21.32)

This number is shown in Fig. 21.2b for plexiglass and for silicon for m = 1.
The optimum clessidra aperture is then given by

ACle,opt = (2N + 1)h. (21.33)

Then we see from Fig. 21.2b that PMMA has to be favored over silicon
for the focusing at smaller photon energies. By the use of (21.24), (21.28),
(21.29), and (21.32) the aperture in (21.33) can also be written for N >> 1
approximately as

ACle,opt ≈ 2

√
δL

mλ

√
2δfL =

√
δL

mλ
ACRL,opt. (21.34)
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The prefactor
√

δL
mλ is the advantage factor for the clessidra optimum aperture

compared with the same aperture of the CRL. It is shown in Fig. 21.2c for
m = 1. We see that the clessidra design in plexiglass can provide even more
than an order of magnitude larger aperture than the normal concave lens of
parabolic shape in the same material. The advantage in silicon is smaller at
the smaller photon energies but increases towards higher photon energy. A
more detailed comparison of the related behavior in lenses of different shapes
and in more materials is presented in [17]. This report discusses only perfect
prisms and thus a stepwise approximation of the parabolic lens shape. It
can be shown that one can give the structure the correct material gradient
Δl/Δy everywhere by curving identically one or two of the prism side walls
per row [15].

The focal length of a state-of-the-art clessidra lens in plexiglass with
h = 10 μm for λ = 0.154 nm would be f = 650 mm according to (21.29). Its
optimum aperture, according to (21.33), is ACle,opt = 1.04 mm and its effective
aperture is ACle,eff = 0.78 mm. The spatial resolution obtainable with the opti-
mum aperture would be s = 120 nm according to (21.6). By use of (21.4) the
long focal length can be reduced in a stack of several lenses. The combination
of two clessidra lenses is shown in Fig. 21.3a, which can be converted to the
very elegant alternative in Fig. 21.3b as proposed by Cederstroem et al. [16].
Both lenses have the same focal length and approximately also the same aver-
age transmission function. However, the lens of Cederstroem approximates
the parabolic profile now with step heights of Δy = h/2 instead of h and thus
with a smaller variation of the transmission within this height. Finally, the
Cederstroem concept is more flexible as the vertical shift of the prism columns
is not limited only to integer fractions of h [16]. In both cases, the average of
the transmission function falls off linearly towards the lens border, and both
lenses will now have a focal length of f = 325 mm. The optimum and effective
apertures will be Aopt = 0.52 mm and Aeff = 0.39 mm, respectively. In this

a b c d

Fig. 21.3. Possible designs for focal length reduction in prism array lenses. In
(a) two clessidra lenses provide half the focal length of a single lens. The same is
achieved in the lens in (b) proposed by Cederstroem et al. [16] by arranging the
prisms differently and more independently. The lens halves in (c) achieve the same
focal length reduction, but now with a constant average transmission function. The
number of single elements in this lens can be reduced and the structure can be
compacted to the lens in (d)
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lens concept the stacking procedure shortens the focal length and reduces the
aperture by the same factor. Consequently, neither the numerical aperture in
(21.7) nor the spatial resolution in (21.6) is changing. By use of the prism
array lenses presented, an improvement of the spatial resolution at shorter
focal lengths can only be achieved with smaller prism heights. In fact, for a
fixed wavelength, by use of (21.29) and (21.33), the spatial resolution in (21.6)
depends linearly on the prism height, h.

If a more constant transmission function is desired, we can reduce the focal
length by half by making a lower lens half of clessidra overlap with its upper
counterpart as shown in Fig. 21.3c. Then, the average value of the transmission
function is constant. However, in any row some prisms will always cancel their
beam refraction. The number of refracting interfaces could be minimized as
is done in the lens at the right in Fig. 21.3d. The effective aperture is a
maximum in this design if the lens has an average transmission of t̄ ≈ 0.5.
The focal length and the optimum aperture do not change as compared to the
clessidra lens stack in Fig. 21.3a. However, the effective aperture is slightly
reduced to Aeff = 0.26 mm.

21.4 Discussion of Experimental Data

This report will now deal exclusively with the properties of the clessidra lens
from Fig. 21.1e fabricated in plexiglass, which can exceed the corresponding
aperture of a concave lens in the same material according to Fig. 21.2c by
about sixfold for 8.05 keV photon energy. A more general comparison of the
properties of this lens with those of first-order Fresnel lenses and of ideal
parabolic lenses is presented in [17].

21.4.1 Parameters of the Clessidra Lens

The lens production is described in detail in [25]. The mask production and
the mask replication were made at the deep X-ray lithography beamline of
ELETTRA [26]. Out of a number of lenses with different h and m, we chose
for this study the parameter set h = 25.67 μm, α = 35◦, and m = 2, which
leads to a diffractive focal length of fdiff = 2.14 m for λ = 0.154 nm. The
refractive focal length would be identical for δ = 4.2 × 10−6. The lens has
N = 29 prisms in the last row, which is slightly larger than the optimum of
N = 26 according to (21.32). Its geometric aperture is Ageo = 1.51 mm, i.e.,
3.4 times larger than the optimum aperture of the corresponding concave lens
in the same material, and the diffraction limited spatial resolution could be
as high as s = 266 nm. Lenses with the indicated parameters were produced
with consistent performance [17].
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21.4.2 Properties of the Radiation Source

For the lens test one of the problems is the accurate wavelength determination
as discussed above and the other is the beam coherence. Fully coherent X-ray
sources are not yet operational, and thus one will find in a radiation beam
spatially coherent radiation only in a full-width-at-half-maximum (FWHM)
aperture, which is given by [27]

A = 0.44
λq

S
, (21.35)

if S is the FWHM source size.
Experimental stations for the test of optical components are available at

beamline BM05 [28] at the ESRF and at the SYRMEP beamline [29] at ELET-
TRA. The test objects are mounted at BM05 at ca. 55m from a source with
verified FWHM dimensions of (vertical × horizontal) 80 × 270 μm2 [28]. At
SYRMEP the lenses can be mounted at 22.5m from a source with theoretical
FWHM dimensions of 66×330 μm2 for 2.0GeV ring energy. For λ = 0.154 nm
the spatially coherently illuminated area according to (21.35) measures then
(vertically× horizontally) 22× 4.5 μm FWHM at SYRMEP and 45× 13 μm2

FWHM at BM05. As far as the present lens is concerned, with nominally
h = 25.67 μm, one finds the following:

Not even one prism row is spatially coherently illuminated at 8 keV photon
energy. The only exception is in the vertical direction at BM05, where almost
two rows are illuminated spatially coherently. For spatially coherent illumina-
tion of the whole lens, one needs to go further away from the source, even at
smaller sources. So, under the experimental conditions chosen, we expect to
find in the lens image plane mostly an incoherent superposition of the beams
passing through the different prism rows.

21.4.3 Beam Diffraction in the Clessidra Structure

The dependence of the lens performance on the size of the spatially coherently
illuminated area of the lens was tested at BM05 and at SYRMEP by rotating
the lens around its optical axis. With image plane distances of ca. p = 2.2 m,
the demagnified source image of the BM05 source should measure then 3.4×
11.3 μm2 fwhm, which is much larger than the diffraction limit for the lens. For
the cases where the illumination would be considered as spatially incoherent,
the blurred image according to (21.27) would measure at least 13 μm FWHM.
This latter number is thus to be expected for the horizontal source image.
A possibly visible diffraction line structure in the vertical direction should
have a peak separation of about 13 μm. The demagnified source image at
SYRMEP instead should measure 8 × 40 μm2 FWHM and the insufficient
spatial coherence in the vertical direction should widen the corresponding
image size to 13 μm.
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At the latter source the expected large horizontal image size is in agreement
with the experimental finding. However, the measured vertical image size is
always significantly larger than expected. The experimental data from BM05
show more clearly the effect of the changing spatial coherence when the lens
is rotated around its optical axis. For equal diffractive and refractive focal
distances we expect in vertical focusing in the image plane an intense central
peak with width 3.4 μm FWHM surrounded by smaller secondary peaks. If the
diffractive and the refractive focal lengths are different, then several intense
narrow peaks should be observed in a line structure with 13 μm separation
in the diffractive image plane. For horizontal focusing with now insufficient
spatial coherence in the incident beam, we expect to find only a single peak
and no line structure independent of the distance from the lens. Its width is
expected to be about 13 μm FWHM in the refractive image plane. It will be
larger in the diffractive image plane if the latter does not coincide with the
refractive image plane.

The experimental data in Fig. 21.4 mostly confirm these expectations. The
data presented are for a lens with partly curved prisms, and are essentially
identical to those measured for lenses with perfect prisms. To explain the
observed discrepancy between the position of the diffractive and the refrac-
tive images, we need to assume that the refractive index is ca. 1.5% smaller
than predicted [4]. Then, the diffractive and refractive focal lengths would
coincide according to (21.31) for λ = 0.159 nm. The experiment covered only
wavelengths λ < 0.155 nm, at which the refractive focus always lies down-
stream of the diffractive focus. In fact, in the best diffractive image position
at p = 2.21 m for λ = 0.155 nm, the diffraction patterns measured indepen-
dently from both lens halves have the peaks at almost identical positions as
shown in Fig. 21.4a. The line image had a constant width over more than
0.35mm of structure depth and was registered with an X-ray CCD camera
with 0.645 μm pixel size. For the present analysis the signal was integrated
over at least 50 pixels in the direction perpendicular to the focusing direction.
The peak separation is constant with the expected value of 13 μm.

The peak width is around 5 μm FWHM and the peak positions remain
fixed even if we move a smaller sub-aperture of 0.1mm opening vertically
through the lens aperture. Only the prisms close to the optical axis refract the
beam mainly into the central peak, while the outer areas refract more into the
adjacent peaks. When one moves away from the best diffractive image planes,
the resultant intensity distribution becomes more structured with changing
peak separations and peak widths as is presented in Fig. 21.4b. The solid
curve for p = 2.27 m in Fig. 21.4b was registered close to the refractive focus
in (21.30) and its FWHM is significantly larger than expected. In the best
diffractive image position for λ = 0.153 nm at p = 2.24 m in Fig. 21.4c, the
upper lens half (dotted curve) directs the radiation mostly into the first sec-
ondary peak in vertical focusing. This remains so, even after the rotation of
the lens for focusing more spatially incoherent radiation. As expected from
the different source sizes the peak width increases from 5 μm to ca. 13 μm
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Fig. 21.4. Intensity distribution in different image planes for vertical focusing (left
column a, b) with a larger spatially coherently illuminated area and for horizontal
focusing (right column c, d) with a smaller spatially coherently illuminated area.
(a) The intensity distribution in the diffractive image plane at p = 2.21 m for E =
8.0 keV (λ = 0.155 nm). The solid curve is for full illumination of the lens, the
dashed and the dashed-dotted curves are for illumination of only the lower and the
upper halves of the lens, respectively. (c) The intensity distribution in the diffractive
image plane at p = 2.24 m for E = 8.1 keV (λ = 0.153 nm) with a smaller spatially
coherently illuminated area at the lens. The solid curve is for full illumination of the
lens and the dashed curve is for illumination of only the left part of the lens (this
corresponds to the lower half in the left plot). The dotted curve presents the data for
vertical focusing under the same conditions with only the lower lens half illuminated.
(b, d) The intensity distributions in the image planes are shown as dashed lines,
which are 6 cm closer to the lens. The solid line in (b) is measured 6 cm further from
the lens, while in (d) it is only 4 cm further from the lens. Both solid curves are then
closer to the refractive image planes. The plotted signals still contain dark counts
of about 0.5 arbitrary units, while the incident intensity is about 0.6. The intensity
gain would thus be approximately the numbers at the y-axis multiplied by 1.6

FWHM. The peak width for the completely illuminated lens is larger (solid
curve), which indicates a different distance for the best refractive image. This
peak is still structured with 13 μm periodicity, which should not have been
observed for illumination with spatially completely incoherent radiation, for
which we would have expected at this position a single rather wide peak.
As before at other image distances the intensity distributions in Fig. 21.4d
are more complicated and they do not converge towards a value as small as
13 μm for the incoherently created image in the best refractive image position
according to (21.30). As a consequence, obviously, in order to characterize the
focusing properties of the lens more precisely one would have to make the
analysis for coincidence of the diffractive and refractive images.
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21.4.4 Refraction Efficiency in the Clessidra Structure

Since the relevant operating wavelength is difficult to locate, we decided to
test the lens properties by other means. The important properties are the
refraction efficiency, the refraction angle, and the scattering, depending on
the position in the lens and on the position in the single prism rows. The
quantitative results from normalized radiographs, as shown in Fig. 21.5, taken
at 8.5 keV photon energy just downstream of the clessidra lens, confirmed an
average transmission t consistent with the material distribution in the lens
according to Fig. 21.1e [17]. In a structure of perfect prisms the local refraction
efficiency e would be identical to the local transmission.

The refraction efficiency integrated over four prism rows was measured by
scanning a slit of width 100 μm vertically through the lens aperture upstream
of it and registering the intensity in the incoherent image in the best refractive
image plane [17]. These results, poorer than expected, are also presented in
Fig. 21.5 as filled circles.

The refraction in the single rows was investigated by reducing the aperture
to a width of 12 μm. Data for the refraction efficiency, the refraction angle,
and the beam scattering could then be measured by use of a high resolution
X-ray camera. However, the data can be measured much more precisely if the
radiation passing the slit is dispersed in a diffraction crystal mounted down-
stream of the lens. In this configuration a rocking curve could be measured for
any position of the slit. The experiment was performed for a photon energy of
8.5 keV at SYRMEP for which the FWHM rocking curve width including the
diffraction of the incident beam at the aperture was 41 μrad. The expected
beam deflection according to (21.18) is 10.6 μrad per prism. The results are

Fig. 21.5. Transmission, t, and refraction efficiency, e, for the clessidra lens tested
depending on the distance from the optical axis y. The lens transmission, t, measured
right behind the lens with an X-ray CCD camera is presented as a thin line. The
dashed line is the calculated average transmission of the prism rows for the projected
material distribution. The filled circles present the measured refraction efficiency, e,
averaged over four rows. The thick line is the simulation of the averaged refraction
efficiency based on the findings of this study. Note that a transmission of t = 1 is
measured outside the lens for y < −0.75 mm and y > 0.75 mm
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very encouraging. In fact, as long as the small beam does not hit any prism
border the beam is refracted as expected, i.e., the refraction efficiency is identi-
cal to the local transmission and the beam deflection is consistent with (21.18)
and increases with the expected step size between different rows. Even after
the passage through 28 prisms at the lens border, no appreciable scattering,
i.e., no widening of the rocking curve, is observed. The situation changes sig-
nificantly when we approach the prism tips and finally illuminate the prism
borders. Then, the divergence of the transmitted beam increases significantly.
Close to the prism tips some intensity passes even completely unrefracted. The
data presented for the refraction efficiency with the 100 μm slit in Fig. 21.5 as
filled circles and measured data for the 12 μm slit can consistently be explained
(solid curve in Fig. 21.5) when we assume that 0.63 of any prism row height
refracts as expected. This applies to the 16.2 μm forming the thicker part of
the prisms next to the prism base. The remaining 9.5 μm towards the prism
tips are more transparent, but do not refract the beam into the FWHM image
size. Only the single prism in the lens center is assumed to refract perfectly.
The inefficient areas of the prisms then account for the missing efficiency of
almost 50%. Obviously, the zone with the erroneous material gradient next
to the prism tips is more extended than one would expect from the optical
micrograph of the top surface of the lens structure in Fig. 21.6.

That these zones remain dark for the purpose of focusing can also be
made evident by magnifying the lens transmission function locally by use of
an asymmetrically cut crystal [30]. A Si(111) crystal with an asymmetry angle
of 10◦ provided a magnification of 6.8 in the vertical direction for 8.5 keV pho-
ton energy (λ = 0.146 nm) for the pictures in Fig. 21.7. This setup with an
increased rocking curve width of 91 μrad is then less sensitive for the accu-
rate determination of a beam divergence increase. The FWHM of the rocking
curve covers the refraction from about 8.5 prism rows, as the difference in the
refraction angle in adjacent rows is 10.6 μrad. The crystal was rotated with a
step size of 175 μrad, which is almost twice the rocking curve width, and thus
it was centered on refraction in the rows with 17 and with hypothetical 33
prisms, respectively. With the rocking curve centered on the incident beam the
refracted intensity from rows 13–17 (Fig. 21.7b) and 26–29 (Fig. 21.7d) should
not be transmitted appreciably at the crystal. Nevertheless, one observes some
intensity in the corresponding points at the CCD camera, which was obviously
not refracted as expected. In fact, the same points remain consistently dark in

Fig. 21.6. Optical micrograph of the present clessidra lens. The contrast was
adjusted such that the resist surface is particularly revealed
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a b c d e f

Fig. 21.7. Signal (normalized to incident beam) registered with a CCD camera at
300 mm from the lens in different regions of the lens. The pictures are taken down-
stream of an asymmetric analyzer crystal, which is used in magnifying configuration
with ×6.8 magnification applied only to the vertical direction. The pictures cover
0.125 mm in this direction. (a) The first two prisms in the two lens halves adjacent
the central air gap. In (b) and (c) rows 13–17 from the upper lens half and in (d)
and (e) the last four rows 26–29 are shown. In (a), (b), and (d) are obtained with
the maximum of the crystal rocking curve set to the incident beam. In (c) and (e)
the crystal was inclined by 0.175 mrad and by 0.35 mrad with respect to (a), respec-
tively. The grey scale in (f) has always black for a signal of 0, while white is a signal
of 1.2 (scale to the left of the bar) in (a), (c), and (e), and it is 0.2 (scale to the
right of the bar) in (b) and (d)

Fig. 21.8. Radiographs from a clessidra lens well aligned in tilt and roll angle at
different positions in yaw taken with a photon energy of 15 keV in the optical test
setup at BM05 at the ESRF. The pictures are registered with an X-ray CCD camera
at 100 mm from the lens and cover 0.25 mm in the vertical direction. The left picture
has the rays pass tangentially to the lens substrate. The center and the right picture
are rotated off of the best yaw alignment by 3.5◦ and 7◦, respectively. These latter
orientations enable one to see the structure of the resist surface in projection. The
prisms seen towards the right in these radiographs are the farthest from the CCD
camera. Note that the two prisms at the edges of the last row with nominally 29
prisms are detached. One of them can be identified along the diagonal in the right
radiograph

Fig. 21.7c, d, when the crystal rocking curve covers their refraction angle. In
Fig. 21.7a the tips of the first prism in each lens half are particularly apparent
due to phase contrast [31].

The inappropriately refracting zones can also be observed when we illu-
minate the lens with the much higher photon energy of 15 keV. Note: in this
photon energy range the present lens would focus with m = 1 and a focal
length of about f ≈ 8 m. The lens can be rotated in yaw around the vertical
axis such that we should also see the top surface of the prisms in projec-
tion. The related radiographs are shown in Fig. 21.8. The radiation is still
sufficiently spatially coherent in the vertical direction that we expect to see
the prisms and the prism rows mostly because of phase contrast [31]. The
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radiographs from a perfect structure taken in this condition should then show
identical prisms everywhere and division lines between the different prism
rows, which are periodically structured along their length. However, the width
of these lines should be independent of the number of prisms through which
the beam has traversed. In fact this is observed in the center and the right
picture in Fig. 21.8 towards the right, where the radiation passes only a few
prisms. However, to the left, after passing more prisms, the width of the
division line increases until it covers about 1/3 of the prism height.

Obviously, the radiation entering the lens close to the prism tips is accumu-
lating misdeflections along its trajectory until it is deflected out of this region.
Finally, it is not refracted anymore into the image size. There is now complete
consistency among the different experiments. It should be noted that this
explanation is not valid at the lens border. Here we see simply a dark wedge,
which is the expected shadow between the radiation passing unrefracted at
the lens border and the radiation being refracted in an increasing number of
prisms in the last prism row.

21.5 Conclusion

We have shown that prism arrays, which hardly look like focusing objects,
can be used as transmission lenses for the focusing of X-rays. Even though the
focusing in this case requires the passage through many prism surfaces, the
transmission losses caused by surface imperfections are negligible. Instead
the losses have to be assigned to production problems leaving imperfections
in the prism tips, where the etching does not succeed in removing all the
material from the corners, where the prisms touch each other with a shallow
angle of only 35◦. Nevertheless, the average refraction efficiency in Fig. 21.5 is
0.4 for an expected average efficiency of 0.75. Thus, the lens presented has a
refraction efficiency of more than half of that theoretically expected. This lens,
with a geometrical aperture of Ageo = 1.51 mm, refracts approximately the
same photon flux to the focus, which would pass through a perfect aperture
of 1.51 mm× 0.4 = 0.6 mm size.
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Neutron Supermirror Development

Th. Krist, A. Teichert, R. Kovács-Mezei, and L. Rosta

Abstract. Neutron supermirrors are interference systems which reflect at small
glancing angles. They consist of layers with thicknesses of a few nanometres. While
in the 20 years after the such systems were proposed the number of layers was limited
to 100, recent improvements in the control of layer growth and process stability now
allows the production of supermirrors with over 1000 layers. For certain material
combinations such supermirrors can be used to polarize the reflected neutrons.

22.1 Introduction

Supermirrors are aperiodic multilayers of two materials, which enable neutrons
to be reflected at small grazing angles. They are used mainly for the transport
of neutrons through guides or to separate polarization components.

One of the most important properties of a supermirror is its critical angle,
ΘSM

c , the angle up to which it reflects. By convention it is measured in mul-
tiples, m, of the critical angle of natural nickel, ΘNi

c , which has the largest
critical angle of all naturally occurring elements:

ΘSM
c = mΘNi

c . (22.1)

The critical angle is determined by the thickness of the thinnest layers.
The reflectivity of a bilayer is roughly proportional to the fourth power of
its thickness and to the square of the number of layers. Thus, the number
of layers needed to reach the same reflectivity for a given bilayer thickness
increases quadratically with decreasing thickness. From the number of layers
needed for a supermirror with a certain m-number a simple approximation
can be derived. The number of layers is am4, with a = 4.5 for Ni−Ti, and
a = 6.5 for Fe−Si supermirrors.

Since supermirrors were first proposed, it took about 20 years to master
the production of m = 2 mirrors which have a total thickness of 1 μm and a
smallest layer thickness of 7 nm. To increase the m-value two problems had
to be solved: the interface roughness and the stress, both of which tend to
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increase with the number of layers and must, therefore, be kept constant or
reduced. Also the stability of the sputtering machine used to produce the
mirrors has to be sufficient.

The first part of the article describes the improvements of Ni−Ti supermir-
rors for guides in the Budapest laboratories, which were achieved by relating
the crystalline structure of supermirrors to their reflectivity. Furthermore, the
behavior of supermirrors under heat load and irradiation was characterized
and the homogeneity of the coating process improved. This made it possible
to produce Ni−Ti supermirrors with m = 4.

In the second part, from the Berlin laboratory, the polarization of neutrons
is introduced and several methods to prepare polarized neutron beams are
described with the emphasis on polarizing supermirrors. They reflect only
one-spin component and transmit the other one. The main challenge today is
to increase the number of layers, which requires improved interfaces between
the layers and reduced stress in the layers. In the past few years, it has been
possible to increase the number of layers from 150 to 1,000 and the m-value
from m = 2.3 to 3.4.

22.2 Development and Investigation
of Ni/Ti Multilayer Supermirrors for Neutron Guides

22.2.1 Neutron Guides

Neutron guides are used to transport neutrons to the instruments, which may
be situated up to 100m from the source. Mirror reflection is the basis of this
transmission process. Neutron supermirrors, which were proposed and built
by Mezei in the 1970s [1, 2], are nonperiodical multilayer systems. They are
designed so that their angle of total reflection for neutrons is larger than from
a pure material, by exploiting interference effects. As the scattering contrast
for neutrons between Ni and Ti is large, a high reflectivity can be expected
when using them for supermirrors. Therefore, they are most frequently used
in nonpolarizing neutron optics.

Figure 22.1 shows the neutron reflectivity curve of some Ni/Ti super-
mirrors which have different m values. From the preparation viewpoint it is
interesting to know that an m = 2 supermirror has about 100 layers, while an
m = 3 mirror has about 500 layers.

Due to the low primary flux of neutrons, the mirrors used, as well as
the other optical devices, have to be highly efficient. That is, the reflectivity
of the mirrors should be as large as possible. To achieve good reflectivity,
it is extremely important to produce smooth layers. Not only the substrate
roughness should be as low as possible, but the interface roughness as well. The
larger the number of layers the more critical the interface roughness is, since it
can grow layer by layer. This means that developing good quality supermirrors
with a higher critical angle requires appreciable effort. To produce smooth
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Fig. 22.1. Neutron reflectivity curves of Ni/Ti supermirrors produced by
Mirrotron Ltd.

layers by our two DC magnetron sputtering machines – based on the extensive
research of Peter Böni and his group [3, 4] – we use the reactive sputtering
method, with which we could reproducibly prepare high quality mirrors.

A standard neutron guide is constructed from coated glass plates assem-
bled to a rectangular cross section, the dimensions of which are generally
about 150mm high and 50mm wide. However, there is also a need to produce
guides with larger cross sections. With our high capacity sputtering machine
we aimed to develop large surface mirrors.

Neutron guides are mounted with tolerances of less than 10 μm since small
misalignments result in a considerable loss of neutrons after some tens of
meters of guide. In addition, at the neutron facilities one would like to use a
guide for at least 10 years without changing its parts. Therefore, the stability
of the coated substrate under extended irradiation and heat load caused by
irradiation is a very crucial point.

In the framework of the COST P7 2002–2006 project we aimed at improv-
ing the quality and variety of Ni/Ti multilayers by determining the crystalline
structure of the supermirrors produced and their stability.

22.2.2 Relation Between Crystalline Structure
of Layers in a Multilayer Structure and its Reflectivity

The structures of several Ni/Ti supermirrors with m = 3, produced by an
optimized reactive DC sputtering method in various qualities on various sub-
strates were investigated by means of wide angle X-ray diffraction (Philips,
Cu Kα). In the case of a multilayer system reflections of crystalline planes
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can be seen that are nearly parallel to the surface. We characterized the crys-
tal orientation by the ratio of the area under the respective peaks. From the
change in the position of the peaks related to the bulk value, we determined
the lattice distortion. As far as we know, no publication in the literature has
dealt so far with XRD measurements on Ni/Ti supermirrors.

In all samples, both Ni and Ti show polycrystalline structure. Generally
four maxima occur in the spectra, which can be identified as face-centered
cubic (fcc) Ni lattice (Nifcc(200), Nifcc(111)) and hexagonal close-packed (hcp)
Ti lattice (Tihcp(011), Tihcp(002)).

For the best quality mirror – prepared on a smooth substrate – the XRD
spectra only show one Ni and one Ti peak. This means that both materials
crystallize with a preferred orientation with the Ni(200) planes and Ti(011)
planes parallel to the substrate surface.

The medium quality mirror was prepared on a similarly smooth substrate;
however, the quality is not the same. Again a similar orientation is preferred,
but not to the same extent, even though Ni(111) and Ti(002) reflections
appear.

The worst mirror was prepared on a quite rough substrate. We can see that
all four peaks appear with no preferred orientation in this case. Summarizing
we can say that there are two ways of orientation: Ni(200) is connected to
Ti(011), and Ni(111) to Ti(002) [5]. On a rough substrate both orientations are
present and the reflectivity is low (R ∼ 50%). In this case σ ∼ 1.2 nm, where
σ is the rms microroughness measured by X-ray reflectivity. On a smooth
substrate (σ ∼ 0.4 nm) the Ni(200)/Ti(011) orientation is preferred. The more
this orientation is preferred, the better is the quality of the mirror (reflectivity
R > 80%), as can be seen in Fig. 22.2.

In Fig. 22.3 one can see the extent of orientation depending on the reflec-
tivity of supermirrors with m = 3. Circles represent the ratio of the area
under the maxima Ni(200) and Ni(111). Triangles are for the ratio of the area
under the maxima Ti(011) and Ti(002). Where no triangles are shown only
the Ti(011) peak was present. Thus, we can find a relation between the quality
of the mirror and the crystal orientation.

To explain this correspondence TEM pictures were taken (Fig. 22.4). In
the good quality mirror there are smooth parallel layers. In the second, less
good mirror the layers are not parallel at some parts. The size of the deflection
is about 1,000A. The crystalline orientation is likely to be the same in both
cases, but due to the deflection of the layers, the layers are not parallel to
the surface and the reflections from the other lattice planes appear as well in
the XRD spectra. The deflections start from the substrate, and grow almost
straight upward. Their origin might be some inhomogeneity of the substrate
surface on a mesoscale, which does not change the observed roughness.

The Ni(200) lattice spacing is in all cases larger by 0.001–0.003nm than
in the bulk. In accordance with the literature, during sputtering in a reactive
atmosphere, nickel crystals grow such that Ni(200) planes are parallel to the
surface, because gas atoms can be incorporated easily into the lattice in that
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Fig. 22.3. Extent of crystalline orientation in relation to the reflectivity of the
supermirrrors with m = 3

orientation. The increased lattice spacing also shows this incorporation. More-
over, the dilatation of 0.001–0.0015nm in the Ti(011) direction indicates the
diffusion of gas atoms through the Ni/Ti interface. The Ni(111) peak position
is the same as in the bulk. It is related to the presence of small pure Ni phases.
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Fig. 22.4. TEM picture taken on a high and a low quality Ni/Ti supermirror
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Fig. 22.5. (a) Reflectivity curves of a Ni/Ti supermirror before and after extended
storage. (b) Adherence check

22.2.3 Stability of Supermirrors

Extended Storage

We have performed tests on unused supermirrors 4.5 years after their pro-
duction. The reflectivity was found to be the same as at the time they
were produced. The adherence checked by strong tesa tapes also meets the
requirements (Fig. 22.5).

Stability Under Heat Load

We studied the structural changes during heating by X-ray diffraction with
a heatable vacuum chamber as sample holder, to be able to perform in situ
measurements during heating under low pressure. We simulated the same
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over two temperature ranges
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Fig. 22.7. Neutron reflectivity curves of two heated Ni/Ti supermirrors

circumstances as in the real neutron guides, where there is a pressure of about
10−4 bar.

Figure 22.6a shows the change of the XRD spectrum up to 140◦C. The
only change is the sharpening and slight shifting of the Ni(200) maximum.
Figure 22.6b shows the further changes up to 350◦C. In this temperature
region fundamental structural transformations occur.

Based on these results we expect that up to about 140◦C the supermirror
structure will be stable, and its reflectivity does not change. Experiments on
the changes of reflectivity have been made by heat treatment of supermir-
rors at 100, 120, and 135◦C for 50min in a vacuum chamber The reflectivity
does not change after the treatment at 100 and 120◦C. However, after the
135◦C treatment the critical scattering vector may increase and the reflectivity
decreases with 2–3% above m = 1.21 (Fig. 22.7).
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The detailed process of structural changing during heating is as follows:
As described above in good mirrors at room temperature the polycrys-

talline Ni and Ti layers show a preferred orientation of Ni fcc(200)/Tihcp(011)
with some dilatation. When heating to 100 ◦C, peak broadening and further
dilatation can be observed, the extent of which is higher than can be explained
by simple thermal expansion. This process is likely to be due to gas atoms
bound in the Ni layers during the sputtering in reactive atmosphere. They
start to diffuse at the interfaces into the very good getter Ti. Up to 230◦C,
Ti gradually becomes amorphous and/or forms an amorphous compound.

At the same time at 100◦C the Ni(200) peak sharpens and shifts unex-
pectedly toward higher angles. That is, the lattice spacing decreases even
below the bulk value and the crystallite size seems to increase. The reason
for this change is not yet clear: it may be ascribed to a rearrangement of the
Ni lattice due to the diffusion of the gas atoms. By further heating, a slight
thermal expansion occurs. At 140◦C the Ni(111) peak arises. Above 170◦C,
Ni gradually transforms to a yet unidentified compound characterized by a
broad maximum at d ∼ 0.180nm, and partly to NiO.

Stability Under Irradiation

One of the currently used substrates for supermirrors in neutron guides is
Borofloat 33 (13wt% B2O3) glass produced by the company Schott. This
material has the advantages of low surface roughness due to the float technol-
ogy and the absorption of neutrons coming through the multilayers, providing
shielding for the guide system via the following reaction

n + 10B ⇒ α + 7Li + γ (1.47 MeV).

However the effect of this process on the glass and the coating is not yet
clear. It is possible that this process or the energy released may cause damage
if the neutron dose is large enough.

The question is how large is the onset of neutron dose damage that deter-
mines the lifetime of a borofloat guide piece? Recently at the ILL, Grenoble
it was found that at the first part of the out-of-pile guide the coating from
a borofloat substrate pealed off after three years irradiation and at the same
time the glass surface was destroyed. During this period the total incoming
dose is estimated to be 3 × 1016 n cm−2. The other mirrors on normal float
(no B content) or polished Borkron glass (prepared without float-technology)
were found to be stable at the ILL. In Gatchina, and in Budapest, however,
they found no damage at in-pile borofloat guides exposed to similar doses.

This indicates an emerging need for the detailed examination of radiation
damage of guide substrates and coatings. In the framework of COST action
we have performed several irradiation tests in the reactor water in various
neutron channels at the 10MW BNC reactor. The samples were packed in
an Al capsule, and wrapped in Al foil to transmit the cooling effect of the
surrounding water.
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Fig. 22.8. Destruction of the Ni/Ti supermirror coating and the glass surface of
borofloat glass after various irradiation doses larger than 1.5×1017 n cm−2 in channel
11/2

Irradiation of uncoated glass substrates was performed in the 69/3 channel
for 72 h. Borofloat and normal float glass alone were not damaged at a dose of
5×1019 n cm−2 in reactor water. However, the color of borofloat glass changed
to brownish.

Irradiation of NiTi supermirror coatings on several glass substrates was
performed in different channels of the reactor. The dose applied varied between
1017 and 1019 n cm−2. In the channel 11/2 during the irradiation of borofloat
glass with a supermirror coating, we found coating and the glass surface
destruction and discoloration (Fig. 22.8).

However, the noncoated side of the glass remained intact. Float glass with
a supermirror coating remained intact in all cases. We have performed tests in
another channel, channel 17, where a smaller fast neutron flux and less gamma
radiation is expected. Here, as you can see in Fig. 22.9, even the coated side
of the borofloat glass remained intact under a dose of 4× 1018 n cm−2.

Based on these results we can conclude that the borofloat glass without
a metal layer is stable under irradiation. The destruction of coated borofloat
glass under irradiation does not depend on the thermal flux of neutrons accord-
ing our experience. The destroying factor is probably the thermal effect of high
gamma radiation on the metal layer, which causes the glass surface destruction
as well.

By irradiating NiTi coatings on Si substrates, which absorb neutrons only
to a small extent, we can investigate the stability of the supermirror coating
itself. Moreover, in that case we have the opportunity to check the reflectivity
as well. We have applied about 1019 n cm−2 on coated Si wafers and measured
the reflectivity curves before and after irradiation. We found that the reflec-
tivity above m = 1.8 is degraded by about 3%. The slope of the reflectivity
curve above the maximum value, m = 3.2, is somewhat less steep compared
to the curve obtained before irradiation.
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Fig. 22.9. Ni/Ti supermirror coating on a borofloat glass surface after an irradiation
dose larger than 4× 1018 n cm−2 in channel 17

22.2.4 Development of m = 4 Supermirror Technology

Subsequent to the development of the m = 3.65 Ni/Ti neutron supermirror,
the task of realization of the considerably more difficult m = 4 multilayer
system has been taken on.

For this purpose the multilayer system to be sputtered has been extended,
namely instead of the 900 layers for the m = 3.65 mirror, a system of at least
1,600 layers is needed for reaching m = 4, with decreasing layer thickness.
The layer system has been optimized by means of the code for reflectivity
computation (REFLEX) [6].

To achieve high quality mirrors, appropriate substrate is needed. The sub-
strate quality has been assessed by X-ray reflectometry. Finally the Schott
Borofloat glass has been chosen (roughness <0.4 nm, lower density surface
layer <1.5 nm), allowing excellent, reproducible m = 3 coating.

At m = 4, a reflectivity of 72% has been obtained, the expected result
after the 76% obtained for m = 3.65 (see Fig. 22.1). Further experiments
are planned using higher number of layers in order to improve the reflectivity.
Today users (e.g., Spallation National Source, USA) require about 60% reflec-
tivity for m = 4 supermirrors. Thus the quality of the produced supermirror
exceeds the internationally expected quality level.

22.2.5 Increase of Homogeneity Over Large Substrate Sizes

In some new neutron sources there is a need for using large cross-section
guides. For that one has to produce supermirrors on substrates with a width
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larger than the typical 50–100mm, namely 200 or even 300mm. We per-
formed tests to determine whether the coating prepared on substrates with
various widths is of the same quality. The length was in all cases the usual
500mm. Substrates were coated in the same sputtering machine, under the
same conditions and the neutron reflectivity curves were measured. We have
found a larger critical angle for supermirrors deposited on larger substrates.
On the basis of this change we can conclude that the integral thickness of
the deposited layers is 3–4% smaller for substrates of 200 × 500 mm and
7–8% smaller for substrates of 300 × 500 mm, with respect to substrates of
50 × 500 mm size. The cause of this difference in the deposition process is
not yet fully understood. Some electrical charging can be supposed which can
be dependent on the substrate size. It was also concluded that this thickness
variation of the layers does not influence the mirror quality (interface rough-
ness, adherence) because after compensating for the difference in deposition
rate we obtained the same reflectivity for each substrate size.

22.3 Polarizing Supermirrors

22.3.1 Neutron Polarization

In a magnetic field the neutron energy has an additional energy term, the
Zeeman term ±μB [7, 8]. The magnetic moment of the neutron, μ, has the
value 61 neV T−1 and B is the magnetic field, which in Fe, for example, has
a value of 2.2T. The sign refers to the orientation of the neutron spin, which
is either parallel or antiparallel to the magnetic field direction. The spin of
a neutron is antiparallel to its magnetic moment. In ferromagnetic materials
the Zeeman term has the same order of magnitude as the nuclear interaction.

The refractive index, n, of a magnetic material for neutrons including
nuclear and magnetic interactions is given by:

n = 1− λ2N(b± p)/2π (22.2)

with λ, the neutron wavelength and N the atomic density. The magnetic
scattering length, p, is given by

p = 2μmnM/h̄
2N (22.3)

with mn, the neutron mass, M , the magnetization in the material and h̄
Planck’s constant divided by 2π.

This refractive index gives rise to two critical angles for the total reflection
for the two different spin components:

sinΘ± = λ
√

(N(b± p)/π (22.4)

The product N(b± p) is called scattering length density (SLD).
Two quantities are used to characterize how well the spin components of

a neutron beam have been separated. In terms of the number of neutrons in
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the two spin states, n+ and n−, the polarization, P , and the flip ratio, fr, are
defined as:

P = (n+ − n−)/(n+ + n−) (22.5)

fr = n+/n−. (22.6)

The polarization of a sample is determined by using a neutron beam and
a spin analyzer of known polarization. Methods of calibrating spin analyzers
are discussed in [7].

22.3.2 Neutron Polarizers

Nowadays mainly three methods are used to polarize neutrons: by the use
of Heusler alloys, by 3He spin filters and by polarizing supermirrors. Heusler
alloys like Cu2MnAl can simultaneously monochromatize and polarize a neu-
tron beam [9]. The cross section for Bragg reflection for a magnetic field
perpendicular to the scattering plane is given by the square of the sum of the
nuclear and the magnetic atomic structure factor. If both have the same value,
a high polarization can be achieved. In practice polarization values of 95% for
reflected intensities of 90% can be achieved. Heusler alloys are expensive and
not easily available on the market. They are mostly used for neutrons with
wavelengths below 0.2 nm.

3He spin filters exploit the spin-dependent absorption cross section of 3He
atoms for neutrons [10]. The cross section amounts at a neutron wavelength of
0.18nm to 5,333 barn for antiparallel and to 5 barn for parallel spins. The 3He
atoms are kept in a cell with specially prepared walls to reduce polarization
losses during wall reflections and are polarized either by spin exchange or
by metastable optical pumping. The polarization efficiency, P , for neutrons
depends on the polarization, PHe, of the 3He atoms and the so-called opacity,
O, of the gas:

P = tan h(PHeO), (22.7)

with
O = p bar−1 l cm−1λ Å

−1
, (22.8)

with p, the helium pressure in the cell, and l, the flight path of the neutron
in the 3He gas.

The transmission of neutrons through the gas is given by

T = cos h(PHeO)T0 exp(−O), (22.9)

with T0, the absorption of the cell.
Thus, the degree of neutron polarization can be chosen at the expense

of the transmitted intensity. A polarization of 90% at a transmission of
30% of the incoming unpolarized beam is presently a reasonable compro-
mise between maximum transmission and maximum polarization and can be
reliably reached.
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3He spin filters need an expensive infrastructure and permanent mainte-
nance and the technology is still strongly improving. Magnetic field gradients
larger than 10−4 reduce their polarizing efficiency. Their advantages are the
absence of any small angle scattering and any sensitivity to the angles under
which neutrons pass the filter. They enable a very high degree of polarization
to be achieved if a corresponding reduction of the transmitted intensity is
acceptable.

Supermirrors in general were introduced above. Polarizing supermirrors
exploit the fact that ferromagnetic materials have two strongly different scat-
tering length densities (SLD) for the two spin components. After choosing two
materials which exhibit the same SLD for one spin component, the supermir-
ror sequence is calculated from the contrast of the two materials for the other
spin component. Such a system reflects only the second spin component and
transmits the first one. Polarizations up to 98% can be reached for intensities
of 30–40% of the nonpolarized beam.

Historically the first mirrors were made from the material pairs Fe−Ag [2]
and Co−Ti [11]. Nowadays two groups of combinations are used: Fe-SiNx [12]
and Fe89Co11−Si [6] or Co−Ti, FeCo−TiZr [13], and Fe50Co48V2−TiNx [14].

The materials in the first group have an SLD of the spin-down component
close to the SLD of Si. They are used for solid-state devices where the neutrons
travel inside thin Si wafers and one spin state is reflected from the supermirror
coating at the walls of the wafers. The other spin component is not reflected
by the supermirror since there is no or only a very small contrast to Si.

The materials in the second group have an SLD close to or slightly below
zero for the spin-down component. In this case no reflection of the spin-down
neutrons occurs from the supermirror if the neutrons hit the supermirror in
air. However, there are only two kinds of substrates which have the required
small surface roughness and are available at reasonable prices for areas in the
m2 range: glass and Si wafers. From these substrates the spin-down compo-
nent is reflected up to their critical angle. This amounts to m = 0.5 for Si and
m = 0.6 for glass. To maximize the angular and wavelength range where neu-
trons are reflected with good polarization, an antireflecting layer is introduced
between the supermirror and the substrate, this antireflecting layer absorbing
the neutrons before they reach the substrate. Such layers are made from Gd
or Gd alloys or multilayers of Gd and Ti [15].

Polarizing supermirrors are not sensitive to magnetic fields and the tech-
nology is quite mature. However, they show some small angle scattering, in
some cases only if used in small magnetic fields, and they work only in an
angular range on the order of 1◦. They are most useful to polarize neutrons
for wavelengths above 0.2 nm with a small angular divergence.

22.3.3 Increase of the Critical Angle

In order to increase the available angular range of polarizing neutron supermir-
rors and to facilitate the construction of polarizing devices, the critical angle
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of the supermirrors should be as large as possible. To reach higher m-values
the neutron optics group at the Hahn-Meitner-Institut Berlin performed a
detailed study on the development of interface layers and their relation to the
sputter parameters argon pressure, sputter voltage, and sputter rate [16, 17].
The choice of certain sets of these parameters enabled the interface layer thick-
ness to be reduced to about 1 nm, keeping it constant for an arbitrary number
of layers. The results of a second study, which focused on the development
of stress, are reported in another contribution to this chapter. These studies
allowed one to choose the optimum parameters for the sputter process.

Additionally, the computer control system of the sputtering machine was
improved by a new program, which allowed for the measurement and control
of a much larger number of sputter parameters such as plasma potential and
substrate bias during the sputtering process.

As a result of all these improvements it was possible to increase the number
of layers from 150 to 1,000 and the critical angle from m = 2.3 to 3.4.

Figures 22.10 and 22.11 show the reflectivity curves of such mirrors, mea-
sured at the neutron reflectometer V14 at the Hahn-Meitner-Institut Berlin.
The neutron beam had a wavelength of 0.48nm, a divergence of 0.035◦, and
a polarization of 97%. The data points in the figures give the neutron reflec-
tivity for the two spin components, which are calculated by subtracting the
background of 3 × 10−4 of the direct beam and correcting for the polariza-
tion of the incoming beam. Additionally shown are the polarization and the
flip ratio.

The reflectivity for both mirrors decreases to about 90% at m = 2 and in
the second case to 83% at m = 3.3. The average flip ratios are for the first
mirror 50 (polarization 96%) in the interval from m = 1 to 2 and for the
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together with the polarization and the flip ratio
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second mirror 80 (polarization 97.5%) in the interval from m = 1 to 2 and 50
in the interval from m = 2 to 3.3.

In conclusion it can be said that in the past 5 years the critical angle of
polarizing and nonpolarizing supermirrors has been increased considerably,
as has been the reliability of the sputtering machines. This was achieved
by understanding the effects previously limiting the layer numbers to a few
hundred, and finding ways to reduce them by improved sputtering processes.

In the near future, a further increase of the critical angle can be expected.
In the case of nonpolarizing supermirrors this will increase the divergence and
hence the flux of neutrons transmitted through neutron guides and make it
possible to transport shorter wavelengths.

In the case of polarizing supermirrors this will lead to fewer restrictions in
the construction of polarizing and analyzing elements and will enable one to
handle larger beam divergences.
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Stress Reduction in Multilayers Used
for X-Ray and Neutron Optics

Th. Krist, A. Teichert, E. Meltchakov, V. Vidal, E. Zoethout,
S. Müllender, and F. Bijkerk

Abstract. Multilayer systems have important applications in many areas of X-ray
and neutron optics. For some applications the positions of the optical surfaces have
to be controlled with accuracies in the sub-nanometre range. For neutron supermir-
rors with over a thousand layers, stresses above 1000 MPa can occur. In addition to
bending the substrate such stresses can lead to the films peeling from the substrate,
or even to the destruction of the substrate surface, and so must be avoided. After an
introduction to stress, this chapter describes how stresses can be reduced to accept-
able values and discusses two examples – FeCo/Si polarizing neutron supermirrors
and Mo/Si multilayer mirrors for extreme ultraviolet lithography.

23.1 Introduction

Multilayer systems find important applications in many areas of X-ray and
neutron optics. Besides the reflective properties of the multilayer film, the
actual position of the optical surface has to be controlled with unprecedented
accuracy. Often the position of the mirror surface has to be accurate in
the sub-nanometer regime. This puts high demands on the allowable stress
in the multilayer films. After giving an introduction to stress we will show
how the stress can be reduced to acceptable values using the two examples
of FeCo/Si polarizing neutron supermirrors and Mo/Si multilayer mirrors for
extreme ultra violet (EUV) lithography.

In the case of neutron supermirrors with some hundred to some thousand
layers and a total thickness up to 5 μm, values of stress above 1,000MPa
can be reached. Such stress values lead to a bending of the substrate, to the
peeling off of the films from the substrate, or even to the destruction of the
substrate surface. Most high reflectance Mo/Si multilayer mirrors reported so
far have a stress value of −350 up to −450 MPa. They are usually produced
by magnetron sputter deposition [1–3]. These stress values result in a surface
deformation of several nanometers up to tens of nanometers, depending on
the substrate dimensions and the material.
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Relaxation of the film stress deforms the substrate at the film–substrate
interface. The net result of the bending momentum of the film and the sub-
strate determines the resulting deformation. Change of surface curvature can
now be ascribed to the (multilayer) film on top of the substrate without know-
ing the elastic properties of this film. Stress can be divided into two types:
compressive stress, which refers to the situation where the reflecting sur-
face becomes more convex, and tensile stress, which refers to a more concave
reflecting surface.

To reduce the stress to acceptable levels, several schemes can be applied.
First of all the parameters in the deposition process can be optimized. Evap-
oration techniques, however, usually do not allow for enough process latitude
to obtain sufficiently different layer compositions for stress optimization.
Sputtering techniques can use a variation of the working gas pressure, although
here limits are given by changes in surface structure, which lead to increased
interface roughness. The additional use of ions during or after layer depo-
sition offers more freedom. Either one or both of the layers can be treated
with different polishing conditions, resulting in different layer smoothening
and densification. Furthermore, it is known that a larger metal fraction of the
bilayer thickness (Γ ) shifts the stress from compressive to more tensile [1, 2].
Also the thermal stress can be used for compensation of stress by choosing
an appropriate substrate temperature during deposition. Another option is to
compensate stress by a secondary single layer or multilayer film underneath
the high reflectance multilayer [2]. Finally, new materials can be introduced
in thin layers in the multilayer system. In this approach an additional (buffer)
layer is admitted, which is incorporated in the multilayer stack. To have no
or only a negligible effect on the reflectivity, such a layer must be optically
neutral. It should be able to induce an opposite stress and its thickness is cho-
sen in order to compensate the original stress, thus making the total biaxial
stress equal zero. These interlayers can influence the stress dramatically [4],
but other film properties can change as well. So far, most methods show
limitations in terms of the reflectivity achieved, and no experimental demon-
stration of an effective compensation method has been given without loss of
reflectivity.

23.2 Origin, Description, and Measurement of Stress

Multilayer systems develop stress due to several reasons [5]: through defects
in the crystal lattices, columnar instead of layer-by-layer growth, the forma-
tion of new phases at the interfaces or simply by different thermal expansion
coefficients of the two materials.

Stress, σt, arising from the difference in thermal expansion, Δα, between
two materials is given by

σt = YfΔα (Td − Tm), (23.1)
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where Td and Tm are the temperatures of the deposition and the measurement,
respectively. Yf is the biaxial elastic modulus of the film,

Yf = Ef/(1− νf), (23.2)

where Ef is the Young’s modulus and νf is Poisson’s ratio. To control induced
thermal stress, one has to keep the temperature of the substrate stable. In
addition, a stress known as epitaxial may appear when a mismatch exists
in the lattice parameters of the different materials. Although this origin of
stress is typical for techniques of epitactic deposition and exclusively for crys-
talline layers, similar effects may be present in a sputtering process. The
stress related to the interfaces can be induced by the configuration change
of interfaces, for example, phase formation [6]. Deposition stress may result
from a nonequilibrium growth of a film whose density undergoes variation,
due to gas incorporation, formation of voids, etc.

The stress induced in films deposited by the sputtering process is directly
dependent on the mobility of the adatoms [7–9]. For low values of mobility, a
layer is generally of lower density or even porous. Indeed, in the presence of
voids, the stress becomes compressive due to the atomic forces. On the other
hand, for high values of the mobility the adatoms are able to reach lattice sites
and fill the voids. The layer is denser and the stress is normally tensile. The
value of the stress is a function of the mobility of adatoms and passes abruptly
from tensile to compressive for increasing mobility. In turn, the mobility of
adatoms is a function of the deposition conditions, particularly on the working
gas pressure: the lower the pressure, the higher the mobility. Thus, the stress
induced by gas pressure changes is different for different materials (Fig. 23.1).

The total stress in a multilayer results from the stress of each layer in
the multilayer stack and from the interfacial stress within the structure.

Fig. 23.1. Stress variation vs. argon pressure in single layer W (dashed line), single
layer Si (dotted line), and bilayer Si/W (solid line) [5]
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In the case of a periodic binary multilayer consisting of alternatively deposited
materials, h and l, with respective thickness, dh and dl, and assuming that
the interfacial stress (as for instance, in the system Mo/Si and W/Si) is neg-
ligible compared to the stress within the layers, the biaxial total stress, σtotal,
is given by [10]

σtotal = (dhσh + dlσl)/(dh + dl). (23.3)

We suppose here that the different layers are isotropic in the plane of
the layers, the interfaces between the different layers are abrupt, and that the
stress of the first and last layer is negligible taking into consideration the large
number of periods.

A great number of stress measurements in deposited layers are concerned
with the determination of the substrate curvature. When considering small
deviations from an almost flat substrate due to isotropic biaxial stress of a
thin film, Stoney’s equation is best suited to describe stress [11, 12]:

σ = Yf
D2

6d

(
1
R2
− 1
R1

)
, (23.4)

where D is the substrate thickness, R2 and R1 are the radii after and before
the coating, d is the layer thickness. For Si Yf has the value of 180GPa.

According to Finot [13], for circular substrates it is convenient to introduce
a stress parameter, A, defined as

A = σ d
B2

D3
, (23.5)

where B is the substrate diameter.
There are three distinct curvature modes. Ac is defined as the value of the

stress parameter for which the curvature undergoes a transition from axial to
cylindrical symmetry. When A/Ac is lower than 0.2, the Stoney formula can be
used. For a larger A/Ac, i.e., a larger deformation compared to the thickness
of the substrate, the Stoney formula does not work any more. Then, if the
ratio A/Ac is between 1 and 0.2, the deformation remains axially symmetric
but is not spherical any more. Instead, it has an inhomogeneous curve, which
is more important at the edge of the sample. The relation between the force on
the surface and the curve becomes nonlinear. For a ratio A/Ac larger than 1,
the curvature is not axially symmetric any more but becomes cylindrical.

The most often used experimental methods are those that measure the
bending of a substrate. Various techniques and methods can be applied for
this. A scheme of the curvature measurement, which uses a deflected laser
beam, is presented in Fig. 23.2. A swiveling motorized mirror sends the laser
beam to the sample via a lens. The sample reflects the beam and a detector
records the position of the beam after it has again passed through the lens. By
placing the detector and the motorized mirror in the focal plan, a variation
of the position of the laser on the detector allows one to determine the radius
of curvature. The sample can be placed horizontally in a furnace within a
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Fig. 23.2. The curvature measurement by deflection of a laser beam

Fig. 23.3. A Michelson interferometer

vacuum chamber, which enables one to follow the evolution of the stress with
the temperature while the sample is annealing.

A Michelson interferometer can also be used for the determination of the
curvature. The schematic diagram is presented in Fig. 23.3. It is a traditional
Michelson interferometer, which measures the wave front. It consists of a laser;
a beam expander; a divider cube creating the two waves, which interfere;
reference mirrors; the sample support; and the screen associated with the
CCD camera. The return mirrors make it possible to position the sample
horizontally in order to not introduce stress due to the sample fixation. With
this device the two-dimensional surface of the sample plane can be determined
in only one measurement. One can deduce the shape of multilayer optics with
a precision of the order of the wavelength of the laser light.

Curvature measurements can also be performed by using a local probe
microscope such as an atomic force microscope (AFM). A tip with a radius of
curvature of the order of some nanometers comes in intermittent contact with
a surface. A real-time feedback control loop using the piezoelectric transducer
makes it possible to pull the cantilever with constant force and to scan the
sample surface (Fig. 23.4).

This makes possible precise topography measurements of the stress in very
thin layers such as those deposited onto the membranes. However, because of
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Fig. 23.4. Schematic of a membrane and measurement by atomic force microscopy
(AFM)

the geometrical characteristics of the membranes, it becomes impossible to
apply the Stoney formula. Numerical simulations are needed to obtain the
value of the stress.

As a further method not relying on the curvature of a substrate, diffraction
analysis can be applied to the stress measurements in order to calculate the
constraint induced by the multilayer stack deposited on crystalline substrate.
The stress induces a deformation field that modifies the diffraction pattern
from the substrate. One can thus calculate the stress according to the angular
displacement of the diffraction peaks.

23.3 FeCo/Si Polarizing Neutron Supermirrors

We report on two studies of the stress developing in Si/Fe89Co11 multilayer
systems, which are used for polarizing neutron supermirrors (cf. Chap. 22).
The stress was examined as a function of the thickness of the layers [14] and
of the substrate bias voltage.

23.3.1 Experimental

The Si and Fe89Co11 (in the following text: FeCo) multilayers were produced
in a triode sputter machine [15]. The pressure of the working gas Ar was
1.5× 10−3 mbar and the sputter power was 240W. In a first series of experi-
ments the nominal layer thickness of one of the materials in a monochromator
system was kept constant, while the thickness of the other material was var-
ied from 5 to 25 nm. In a second series the bias potential of the substrate was
varied from 30 to 60V for monochromators and supermirrors.

The systems were simultaneously sputtered onto 3-mm-thick float glass
substrates and onto two thin Si substrates with a thickness between 120 and
250 μm.
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After the sputtering the multilayers were characterized by X-ray reflection
with a wavelength of 0.154nm and neutron reflection with a wavelength of
0.47nm. In the case of X-rays, fits to the data using the program Parrat [16]
enabled us to determine average values for the thickness and roughness of the
two individual layers and one extra layer of a mixed material at each interface.

XRD measurements were employed to determine the grain size and the
crystallinity, and finally polarized neutron reflection was used to determine the
quality of the supermirrors. The magnetic measurements were accomplished
on a SQUID magnetometer at 300K.

The bending of the Si substrates was measured on a Dektak 3030 pro-
filometer before and after coating them to calculate the stress using the Stoney
equation (23.4).

23.3.2 Layer Thickness Variation

In the first set of experiments, monochromator systems of ten bilayers with a
capping layer of Si with the same thickness as the other Si layers were used.
Systems with 14 different FeCo layer thicknesses between 4 and 22.5 nm were
produced.

The multilayers were then characterized by X-ray reflection to determine
the layer sequence. As an example, Fig. 23.5 shows an X-ray measurement
and a fit to the data using the program Parrat. The results for the average
layer thicknesses of the two materials and two interface layers from the fit are
dSi = 18.34 nm, (roughness, 0.52nm), dSi-FeCo = 1.23 nm (0.65nm), dFeCo =
7.11 nm (1.56 nm), and dFeCo-Si = 1.69 nm (0.86 nm).

For the complete set of the 14 samples, the average value for the Si
layer thickness from the X-ray measurements was 18.55± 0.36 nm. The aver-
age thickness values for the interface layers were on top of the Si layer

Fig. 23.5. X-ray reflection measurement on a FeCo−Si monochromator together
with a fit using the program Parrat
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1.23± 0.10 nm and on top of the FeCo layer 1.76 ± 0.17 nm. The average
values for the roughness were 0.51 ± 0.03 nm for the Si layer, 0.62± 0.12 nm
for the interface layer on top of the Si, 1.58± 0.17 nm for the FeCo layer, and
0.89± 0.14 nm for the other interface layer.

Figure 23.6 shows the increasing tensile stress in this series. It can be
fitted by a linear function giving the relation between the total stress, σ, in
the multilayer in MPa and the thickness, d, in nm of the n FeCo layers where
the number n is constant:

σ = n0.023d− 463. (23.6)

X-ray diffraction was used to determine crystallinity and – by use of the
Scherrer formula – the grain size of the FeCo layers. Figure 23.7 shows that

Fig. 23.6. Stress values for FeCo−Si monochromators with varying thickness of the
FeCo layer together with a linear fit

Fig. 23.7. Grain size in the FeCo layers depending on the layer thickness
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Fig. 23.8. Stress values for FeCo–Si monochromators with varying thickness of the
Si layer together with a linear fit

the grain size of the FeCo crystallites equals the layer thickness from 4 to
10 nm and then only slowly increases to 12 nm at a layer thickness of 24 nm.

A similar set of samples was produced and characterized with a constant
thickness of the FeCo layer and a variation of the thickness of the Si layer
from 4 to 27 nm.

From the X-ray measurements, the average value for the FeCo layer thick-
ness was 15.1± 0.7 nm. The respective values for the interface layers were on
top of the Si layer 1.54± 0.16 nm and on top of the FeCo layer 1.9± 0.08 nm.
The average values for the roughness were 0.53 ± 0.04 nm for the Si layer,
0.8± 0.29 nm for the interface layer on top of the Si, 1.57± 4 nm for the FeCo
layer, and 1.02± 0.25 nm for the other interface layer.

Figure 23.8 shows the decreasing tensile stress due to the increase of the
Si layer thickness. It can be fitted by a similar linear function as above:

σ = −n0.145d+ 170. (23.7)

The total stress of a multilayer with layer thicknesses in the examined
ranges can be calculated. With the linear fits above the total stress of the
monochromator σM is given by

σM = naFeCodFeCo + naSidSi + C, (23.8)

where dFeCo and dSi are the thickness of the FeCo or Si layer, respectively.
The constants are aFeCo = 2.3 MPa nm−1, aSi = −1.45 MPa nm−1, and C =
−172 MPa. With these data a Γ value can be deduced for any given bilayer
thickness.

23.3.3 Substrate Bias Voltage

In a second study the bias potential of the substrate was varied from 30 to 60V
for three different multilayer systems: monochromators with 25 bilayers with
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Fig. 23.9. Stress dependence on bias voltage in Si–FeCo monochromators with 51
layers, each with a nominal thickness of 15 nm

a nominal thickness of 15 nm and a Si capping layer of the same thickness, and
polarizing supermirrors with 50 and with 330 layers. The self-bias potential
of the substrate is 45± 3 V.

For the Si–FeCo monochromators, the total thickness remains constant
within the error limits. The stress developing in the whole system for the dif-
ferent bias voltages is presented in Fig. 23.9. At 30V the stress is compressive
with −363 ± 65 MPa and at 60V it is tensile with 431 ± 78 MPa. At a bias
voltage of 41 ± 1 V the stress is zero. A linear fit to the experimental data
shows that increasing the bias potential by 1 V results in an increase of the
stress by 19.8MPa for this system.

The influence of the bias voltage on the crystallinity of the FeCo layers
was determined by X-ray diffraction measurements. Figure 23.10 shows the
intensity of the (110) peak of the FeCo crystallites, which crystallize in the
body-centered cubic (bcc) phase as also pure Fe does.

Table 23.1 gives some data derived from the curves in Fig. 23.10. The
integral intensity has the highest value at 30V and decreases with increasing
voltage. Also, the grains in the FeCo layers become smaller. For a bias voltage
below the self-bias value of 45V Ar ions are attracted to the growing film
and due to the additional energy they convey to the film the fraction of the
crystalline area increases. This effect increases for decreasing bias voltage.

Further it can be seen that with increasing bias voltage the lattice param-
eter, dhkl, decreases while the full width at half maximum and the center of
gravity of the curves increase. This means that the lattice constant acquires
values below and above the bulk value, which clearly is the final cause of
stress: for the bulk value the stress is zero.

Additionally, the magnetic properties were measured by SQUID magne-
tometry. Like the stress, the remanence and coercivity were isotropic. The
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Fig. 23.10. XRD measurement of Si–FeCo monochromators on float glass with
different bias voltages (λ = 0.1541 nm)

Table 23.1. Results of the X-ray diffraction measurements on Si–FeCo mono-
chromators

Bias Intensity 2θ FWHM D dhkl

(V) (counts) (deg) (deg) (nm) (nm)

30 860 44.541 0.701 12.25 0.2033
35 575 44.540 0.714 12.03 0.2033
40 621 44.577 0.717 11.98 0.2032
51 486 44.696 0.732 11.74 0.2026
60 170 44.736 0.838 10.25 0.2025

remanence, with values of 50%± 10%, does not depend on the bias voltage,
while the coercivity increases slightly from 8 to 10.5G.

In the next step, supermirrors with 50 and 330 layers were investigated.
The total layer thicknesses for these systems were 620± 100 nm and 2,500±
200 nm.

As for the monochromators, for the supermirrors the stress becomes more
tensile with increasing positive bias voltage. The stress vanishes at 32 ± 2 V
for the supermirrors with 50 layers and at 39± 2 V for those with 330 layers.
The results of the stress measurements for the supermirrors with 50 layers
are given in Fig. 23.11. A change of 1V leads to an additional tensile stress
of 23.5MPa. Here the change is larger than that for the monochromators,
because the total layer thickness of FeCo is larger.

Figure 23.12 shows the reflectivity curves for two polarizing neutron super-
mirrors, which were grown for two different substrate bias potentials of 35 and
60V. As can be seen, the reflectivity for the spin up state is the same within
the error limits. The flip ratio, which is given by the ratio of spin up intensity



382 Th. Krist et al.

Fig. 23.11. Stress values as a function of the bias voltage in Si–FeCo supermirrors
with 50 layers

Fig. 23.12. Reflectivity of polarizing supermirrors with 50 layers, which were grown
with substrate bias values of 35 and 60 V, for neutrons with a wavelength of 0.47 nm
and for both spin components together with the flip ratio
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divided by spin down intensity, is about 30% higher for the supermirror grown
with 35V. It can be concluded that, within the parameter range explored in
this study, the variation in substrate bias influences the growth conditions in
a way which only changes the stress and not the reflectivity.

In conclusion, it can be said that an increase in layer thickness leads to
a linear increase of the tensile stress for FeCo layers and to a linear decrease
of the tensile stress for Si layers. Increase in the bias voltage leads to a linear
increase of the tensile stress in all systems. Its value depends on the particular
system.

These results show that the bias potential is a very convenient parameter
to influence the stress developing in a multilayer. For all systems tested it was
possible to find a bias potential for which the total stress of the system was
close to zero. This makes it possible to grow multilayer systems with a stress
below 50MPa, which is sufficient for the substrates presently used for neutron
supermirrors.

23.4 Stress Mitigation in Mo/Si Multilayers
for EUV Lithography

To accommodate the next generation of integrated circuits, the semiconduc-
tor industry is looking at soft X-rays as the source for lithographic processes.
The so-called extreme ultraviolet (EUV) lithography development programs
use reflecting Mo/Si multilayer optics, because the 13.5 nm wavelength of the
soft X-rays is absorbed in any realistically thick lens optics. Another conse-
quence of the short wavelength is that the exact position of the mirror surface,
the surface figure, has to be controlled accurately. This puts strict demands
not only on the substrate manufacturing, but also on the multilayer induced
substrate deformation as well. In general, all thin films will try to relax the
intrinsic film stress by macroscopic deformation of the substrate. Standard
film stress values of −350 to −450 MPa, reported for Mo/Si systems produced
by magnetron sputtering, induce an intolerable deformation of the surface
figure of EUV optical components. At FOM Rijnhuizen, an extensive stress
mitigation program has been carried out on multilayers produced by e-beam
deposition and medium energy ion polishing. The resulting stress in standard,
high reflectance Mo/Si multilayers is less than −200 MPa. Although e-beam
deposition apparently halves the typical stress values obtained by sputter
deposition, it is still above the allowable limit for the first lithographic sys-
tem, the so-called Alpha Tool. To further reduce stress, the critical parameters
in Mo/Si multilayers, the Mo fraction, the number of periods, and the mul-
tilayer period or d-spacing have been investigated. Different Mo fractions in
e-beam deposited multilayers result in a similar dependency as reported for
magnetron sputtered coatings, although at strongly reduced absolute values.
Variation of the d-spacing has only a small influence on stress. The number
of periods, however, has no influence on the stress value in the range from
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20 to 50 periods. Applying stress mitigation techniques based on adjustment
of the Mo fraction, a high reflectance at near normal incidence at 13.5 nm has
been obtained for multilayers with a stress value of only −33 MPa. This has
been achieved by using Mo and Si only. This stress value is sufficiently low to
enable the first generation of EUVL optics to be prepared.

23.4.1 Experimental

All Mo/Si multilayer films in this paper have been deposited by e-beam depo-
sition and ion polishing in an ultra high vacuum system [17–19]. The base
pressure during deposition is typically 5×10−8 mbar. Growth and polishing of
the Mo and Si layers are monitored in-situ by N-K radiation (3.16 nm) reflec-
tometry. The development of film roughness is mitigated by medium energy Kr
ion treatment. Furthermore, a quartz oscillator is used for additional growth
monitoring. Super polished Si(001) substrates of 0.5mm thickness are used
and have been characterized for their curvature before and after deposition
by interferometry. Film thickness is analyzed ex-situ by grazing incidence
Cu-K radiation (0.154nm). The near normal incidence reflectivity at 13.5 nm
has been measured at the Physikalisch Technische Bundesanstalt (PTB) in
Germany.

23.4.2 Results

The distinct difference of the e-beam deposition method applied here is that
the atoms reach the substrate with low thermal energy. The layers can there-
fore grow differently from layers grown using the higher thermal energy atoms
in the more popular magnetron sputter deposition. To obtain a stress value for
a typical high reflectance Mo/Si multilayer produced by an e-beam, several 50
period multilayers have been produced on curvature characterized Si(001) sub-
strates. These high reflectance multilayers show a stress value of −180 MPa.
This is already an improvement of a factor of two compared to multilayers pro-
duced by magnetron sputtering. Nevertheless, the lower e-beam stress value
still deforms the optical components by several nanometers.

To mitigate the film stress of the Mo/Si multilayer, the parameters of the
polishing step in the e-beam deposition process have been a topic of investi-
gation. Changing the ion treatment of Si, with minimal reduction of optimal
EUVL performance, has only a minor influence on the film stress. This
parameter is therefore not useful for stress mitigation.

Furthermore, different Γ of the multilayer structures, with Γ defined as the
as-deposited Mo fraction of a single multilayer period, is known to influence
film stress. Figure 23.13 is an overview of the stress values at different Γ for
e-beam deposition and magnetron sputter deposition. The results shown in
Fig. 23.13 in the black circles represent e-beam deposited multilayers consist-
ing of 50 periods Mo/Si with a d-spacing of 7 nm and ion treatment of the Si
layers only. Stress values increase nearly linearly with increasing Γ . The zero
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Fig. 23.13. Stress values of different Mo fractions (Γ ) for e-beam deposition (FOM)
and magnetron sputtering by Windt et al. [1] and Mirkarimi et al. [2]. The black
circles have been produced with e-beam and ion treatment of the Si layers, the gray
circle by e-beam and ion treatment of the Si and Mo layers, the squares have been
produced by magnetron sputter deposition

stress crossover occurs at a Γ of about 0.5. This value divides the Γ range into
two: below 0.5 there is a region where the Mo/Si multilayer has a compressive
stress and above 0.5 a region has tensile stress. A similar linear dependency
is observed for magnetron sputtering [1,2], though the zero stress crossover is
at a Γ between 0.65 and 0.7. The difference between e-beam and magnetron
sputter deposition appears to be the constant off-set of the linear dependency
of stress with Γ .

Furthermore, Fig. 23.13 shows a high reflectance multilayer, produced by
e-beam deposition, with both Mo and Si layers ion-treated (gray circle). The
stress value of −550 MPa found for this multilayer is more than twice that
found in the case of Si ion treatment. This result shows that, besides the Mo
fraction (Γ ), ion treatment of Mo has a significant effect on the film stress.
A possible explanation for the observed shift between e-beam and magnetron
sputter deposited multilayers can be found when not only the Si, but also
the Mo layers are treated with ions. This result fits well on the magnetron
sputter deposition curve. Apparently, conditions can be found where the ion
treatment of the Mo and Si mimics the growth of magnetron sputtering. Pol-
ishing seems to provide the Mo layer with sufficient energy to reconstruct to a
similar composition (e.g., smoothness, density, crystal sizes) as in magnetron
sputtering.

The Γ -dependency has been investigated for a d-spacing around 7 nm and
50 periods. Stress values do not a priori have to be the same for different d-
spacings nor for different numbers of periods. Especially in the nanometer
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Fig. 23.14. Stress values at Γ = 0.6 for Mo/Si multilayers produced with e-beam
deposition. The different number of periods (N) does not influence stress whereas
different d-spacing (d) appears to

range, stress values are known to differ for different layer thickness [3].
Figure 23.14 shows the results for different d-spacings and for different num-
bers of periods, in all cases with a Γ of 0.6. The stress is not influenced
by the number of periods, but it is influenced by the d-spacing. A smaller
d-spacing results in a less tensile stress. Keeping in mind that the observed
stress value is a result of the balance between film and substrate deforma-
tion, as defined by Stoney’s equation, films with a similar composition should
show a similar stress value per unit film thickness. The number of periods of
a multilayer should therefore not be of any influence. This is indeed observed
in Fig. 23.14. For different d-spacings, however, the stress values do change.
This indicates a different multilayer composition, or layer thickness dependent
stress relaxation.

The results so far have shown that a wide variety of stress values can be
obtained. The aim is to produce a Mo/Si multilayer that meets the EUVL
requirements, of which reflectance is of paramount importance. Using the
results depicted in Fig. 23.13, the simplest solution would be to produce a
multilayer with a Γ of 0.5, but the reflectance would not meet the require-
ment. Another approach that has been suggested is to deform the substrate
in the opposite direction with a so-called anti-stress layer (ASL) [2]. E-beam
deposited Mo/Si multilayers with Γ larger than 0.5 can serve as an ASL. Addi-
tional benefit of Mo and Si in an ASL is the use of the same deposition tech-
nique as for the high reflectance multilayer part. The ASL needs to compensate
50 periods of −180 MPa stress. Using the results from Fig. 23.13, we find that
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Fig. 23.15. Near normal incidence reflectance of a high reflectance multilayer and a
stress mitigated high reflectance multilayer. The stress mitigation reduced the stress
value to −33MPa at a reflectance of 69% and a wavelength of 13.5 nm

a 50 period Mo/Si multilayer with Γ of 0.6 will compensate that stress. This
combination, however, would require the deposition of two full stacks.

Figure 23.14 confirms that stress is independent of the number of periods,
allowing one to balance the number of periods with the proper Γ to mitigate
a selectable amount of the high reflectance part. An ASL of only 30 periods
of Γ of 0.7 and 7 nm d-spacing has therefore been selected for experimental
verification. Figure 23.15 shows the reflectance as a function of the wavelength
for both a standard high reflectance multilayer and a stress compensated high
reflectance multilayer. The standard high reflectance multilayer reflects 69%
at near normal incidence at 13.5 nm, and has a stress value of −180 MPa.
The stress mitigated high reflectance multilayer has the same high reflectance
(69%), but shows a dramatically reduced stress value of −33 MPa.

We have reported the results on stress mitigation of e-beam deposited
Mo/Si multilayers. Standard, high reflectance multilayers show a stress value
of−180 MPa, about half the stress value of multilayers produced by magnetron
sputter deposition. We found two different regimes when varying the Γ in the
multilayer: if the Mo fraction is below 0.5 the resulting stress is compres-
sive, while for larger Γ the stress is tensile, making possible the design of a
stress compensating multilayer under the high reflectance coating. Following
this approach, we demonstrated the first stress compensated Mo/Si multilayer
with a reflectivity of 69% at 13.5 nm radiation for near-normal incidence. This
reflectivity is identical to a coating without stress compensation. A residual
stress value of −33 MPa has been achieved. This stress value is sufficiently
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low to enable the deposition of EUVL optics for the first generation of EUV
wafer steppers. In this approach, the same material combination is used in
the high reflection and in the stress mitigation part, greatly facilitating the
multilayer fabrication process. It is expected that this technique will enable
the production of stress free multilayer coatings.
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Multilayers with Ultra-Short Periods

M. Jergel, E. Majková, Ch. Borel, Ch. Morawe, and I. Maťko

Abstract. Multilayers with ultra-short periods (less than 2nm) are needed for
particular applications such as mirrors for water-window X-ray microscopy and
gamma-ray telescopes. Due to the extreme requirements on interface quality, man-
ufacture is challenging even when realized with traditional material pairs. In
this chapter, several types of ultra-short period multilayers, prepared by differ-
ent deposition techniques from constituents with different miscibilities, are studied
and compared in terms of the interface quality, structure and thermal stability.
Specular/non-specular X-ray reflectometry, transmission electron microscopy and
X-ray and electron diffraction were employed to obtain an insight into the interface
phenomena. UHV e-beam deposition with optimized in situ substrate heating was
tested successfully as a simpler and cheaper alternative to in situ ion beam polishing
to deposit high quality Cu/Si and Ni/C multilayers. However, true ultra-short peri-
ods could not be achieved. Replacement of elemental by compound layers in Ni/B4C
multilayers using distributed electron cyclotron resonance sputtering allowed multi-
layer periods of less than 2 nm to be produced, with enhanced thermal stability up to
500◦C compared to Ni/C multialyers. Similar excellent interface quality, ultra-short
period and good thermal stability were obtained with Sc/Cr along with negligible
miscibility. In both cases, the multilayer decay is controlled by the formation of
a fine granular phase from amorphous layers. Vertical correlation of the interface
profiles was found to be too weak to be detrimental effect to the specular imag-
ing contrast. The results have direct implications for the targeted optimization of
ultra-short period interference mirrors.

24.1 Introduction

An interference multilayer (ML) mirror is among the most attractive opti-
cal elements developed during the last two decades of the past century [1].
Flexibility in the material choice and the stack parameters result in the appli-
cability in a wide wavelength range. This fact is of special importance when
the refractive index is close to unity and the use of lenses and mirrors is not
as straightforward as in visible optics, i.e. from the ultraviolet (UV) through
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X-ray up to gamma regions. Many practical examples may be found partic-
ularly at synchrotron beam lines, in astronomy, plasma diagnostics, surface
science instrumentation or X-ray diffractometry. Industrial applications are
foreseen in the near future, Mo/Si mirrors for extreme UV (EUV) lithogra-
phy at 13.4 nm being the best example. Here, differently shaped substrates
may be used which is a further advantage of ML mirrors.

MLs are prepared by alternate deposition of two or more elements on
a substrate. An interplay between extrinsic and intrinsic interface rough-
ness induced by the substrate and growth process, respectively, controls the
interface morphology while thermodynamic characteristics of the forming lay-
ers determine interface reactions such as mixing, interdiffusion or compound
formation. Compositionally sharp and topologically smooth interfaces with
good optical contrast are required for high reflectivity. Atomic-scale surface
or interface roughness causes scattering losses and lowers the reflectivity but
more importantly, it produces non-specular (diffuse) scattering. This scat-
tering concentrated around the ML Bragg reflections reduces the imaging
contrast when it falls into the field of view. From this point of view, interdif-
fusion and chemical reactions at the interfaces are less detrimental to the
quality of a ML mirror than is the roughness itself, because diffuse but
smooth interfaces only decrease the reflectivity [2, 3]. Moreover, these reflec-
tivity losses may be compensated for if a large enough number of interfaces
are penetrated. Furthermore, a ML with steep concentration gradients at the
interfaces is inherently unstable and may experience interface degradation
under high radiation loads and/or high temperatures to which ML mirrors
are often exposed (e.g. synchrotron beam lines, intense plasma source diag-
nostics). Consequently, the specular reflectivity drops irreversibly. Therefore,
interface quality must be preserved under both of these conditions.

Amorphous layers are generally preferred in ML mirrors since poly-
crystalline grains may lead to rough interfaces. Another adverse effect of
polycrystallinity is grain boundary diffusion which is usually very fast and may
result in discontinuous layers. Grain boundary diffusion can be avoided and
atomically flat interfaces achieved in epitaxial superlattices which were tested
for mirror applications. In particular, Al-based metallic superlattices with
ultra-short periods (less than 1.5 nm) were prepared by atomic layer epitaxy
(ALE) and molecular beam epitaxy (MBE) [4]. Such structures would make
further progress in mirror performance possible when amorphous MLs have
approached their inherent limits. The main problem is the severe restriction
in selecting suitable material pairs which leads in turn to compromising the
optical criteria. Compatibility of ALE and MBE techniques with pre-figured
substrates must also be addressed. Interdiffusion is prevented in immiscible
combinations of materials. If such materials do not satisfy the optical crite-
ria at given wavelengths, interdiffusion of an optically suitable but miscible
couple can be suppressed using a pair of materials in thermodynamic equilib-
rium or using compound layers instead of elemental ones [5–8]. Incorporation
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of thin diffusion barriers below 1nm (e.g. C, B4C, Ru) is an alternative
approach [9].

Minimization of optical aberrations by maximizing the angle of incidence
is general effort. While in the EUV region normal-incidence geometry does not
put strong requirements on the ML period, for soft X-rays, shorter periods
are needed which go down below 2 nm in extreme cases (ultra-short periods).
Such mirrors are needed for the so-called water window (2.33–4.36nm). The
water window is located between the K absorption edges of oxygen and carbon
where the absorption coefficient of water is very low while at the same time
organic or biological materials, which contain carbon, are absorbing. Conse-
quently, living cells can be observed in vivo in their natural environment [10].
Several material combinations optically convenient for the water window were
studied, e.g. V/Al2O3 [11], Ni/C/Ti/C [12], W/Sc and Cr/C [13]. Another
application example of ultra-short period MLs is coatings in hard X-ray tele-
scopes working above 50 keV, e.g. W/Si and Pt/C [14]. Here, the angle of
incidence is inherently grazing even for ultra-short periods.

The Debye–Waller attenuation factor for X-ray reflectivity (XRR) drops
down rapidly with reduction of the ML period if the interface width is not
reduced in the same way. Therefore, the interface quality becomes inher-
ently crucial for the layer thicknesses below 1 nm. For example, the interface
width of 0.1 nm (rms) reduces the reflectivity by ≈50% for the period of 1 nm
(the value of the Debye–Waller factor). Actually, the ability of a material
pair to yield MLs with minimum interface roughness rather than with high
X-ray optical contrast is important for ultra-short period mirrors [15]. The
materials must also provide continuous layers, the critical thickness being
mostly 0.5–1nm. No less important is the uniformity of the ML stack. It was
shown [16] that period fluctuations should not exceed ≈1/N (N is the number
of periods) which gives fluctuations less than 0.0025nm for a period of 1 nm
and N = 450. Thermal stability is also more critical here than in conven-
tional MLs. Hence, the preparation of ultra-short period MLs is challenging
for thin film technology and for materials science in general. The deposition
process requires tight control of the parameters, stability and fast switching
between the materials. A detailed interface characterization in situ provides
a necessary feedback.

In this contribution, several types of ultra-short period MLs with differ-
ent miscibilities of the constituents were fabricated by different techniques to
study and to compare them in terms of the interface quality and thermal
stability. Specular/non-specular X-ray reflectometry, transmission electron
microscopy and X-ray and electron diffraction were employed for the analysis.
An insight into interface phenomena is a prerequisite for a proper choice of
material pairs which are compatible with ultra-short periods and subsequently
for a knowledge-based and targeted optimization of fabrication conditions
resulting in high-performance interference mirrors.
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24.2 Sample Choice and Preparation

Because of lower absorption far above the K absorption edges, Cu and Ni are
promising refractory metals to replace W or Pt in ultra-short period grazing-
incidence X-ray mirrors working close to 100 keV. When combining them with
a low-absorption spacer material, optical constants of such pairs fulfil well
criteria worked out for material choice which guarantees high XRR of MLs [1].

Long-term room temperature (RT) stability and narrow interfaces below
0.3 nm were reported for dc-sputtered Cu/Si MLs with the period down to
2 nm [14, 17]. However, a rather large solubility and diffusivity of Cu in Si of
75% and 1.6 × 10−10 cm2 s−1, respectively, may pose a problem at elevated
temperatures regardless of the deposition technique, especially for ultra-short
periods. As a part of our work, we studied this in detail in the MLs prepared
by electron-beam evaporation in ultra-high vacuum (UHV).

Ni/C MLs were studied more frequently, e.g. in connection with the devel-
opment of Göbel mirrors for laboratory X-ray sources or normal-incidence
mirrors working at C–K edge. Carbon-based MLs are known to have a good
thermal stability. Ni/C mirrors were found to be stable up to 300◦C [18, 19]
but the interface width in the as-deposited state proved to be larger than that
in Cu/Si MLs. Therefore, Ni/C mirrors with periods down to 3 nm are rather
exceptional. Common Ni/C mirrors were prepared mainly by rf/dc sputter-
ing [20–23] or by pulsed laser deposition (PLD) [24–26]. Energetic adatoms in
these techniques result in relatively smooth interfaces. On the other hand,
PLD is known to produce mixing and interdiffusion which may broaden
interfaces and deteriorate reflectivity. Electron-beam UHV evaporation is less
prone to these effects but when used for Ni/C mirrors, an in situ ion-beam
etching of Ni layers had to be applied to reduce the geometrical interface
roughness [27, 28]. Energy dissipation from hot spots created by the ions
impinging under a particular angle smoothens the deposited surface. As a
cheaper and simpler alternative to ion-beam etching, we tested UHV electron-
beam evaporation with in situ substrate heating to prepare ultra-short period
Ni/C MLs. A larger surface mobility of adatoms is expected to heal the inter-
face roughness and to yield thin layers, but the substrate temperature has to
be optimized to avoid an enhanced constituent mixing. A low solubility of C
in Ni (0.55% at 1,300◦C) and practically zero solubility of Ni in C render the
Ni/C couple very suitable for such a technique. Moreover, bulk Ni carbides
are formed far above 1,000◦C and are therefore no problem.

Cu/Si and Ni/C samples were deposited in a UMS 500 Balzers apparatus
in a vacuum of 10−7 Pa onto silicon wafers with a native oxide layer. Typically,
10–15 periods of 1.5–3.2 nm were deposited starting with Si (Ni) which also
served as a cover layer. Different deposition temperatures up to 160◦C were
tested for both couples to optimize the ML stack. Vacuum furnace annealing
at 10−4 Pa was applied to test the thermal stability.

Thermal stability of MLs can be improved by using compound layers fol-
lowing a simple argument that compound decomposition is required before
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the formation of new mixed phases [29]. Recently, thin B4C interlayers were
applied as diffusion barriers for Mo/Si and Sc/Si systems [30, 31]. We tested
the merit of spacer compound layers by application of B4C instead of C in
combination with Ni. For compound layers, sputtering is necessary. A sput-
ter deposition technique based on distributed electron cyclotron resonance
(DECR) was used to prepare Ni/B4C MLs. The advantages of this method
were discussed elsewhere [32]. A low argon gas pressure of 10−1 Pa results
in smooth interfaces, so that a large number of periods was needed to uti-
lize X-ray diffuse scattering for interface characterization. In particular, 400
periods of 1.59nm were coated on a Si wafer starting with B4C, the spacer
material being used also for the top protective layer of the double period
thickness. A rapid thermal annealing (RTA) in pure nitrogen in addition to
the long-term vacuum annealing was employed to study the decay of the ML
structure in detail.

For nanometre-scale period MLs, it is useful to utilize mutually immiscible
materials to reduce the mixing at interfaces. The Sc/Cr couple with a positive
heat of formation has been proposed several times for microscopy in the water
window [33–36] but the growth process and interface properties are not well
understood yet. A low solubility and mixing cannot be excluded since the heat
of formation, although being positive, is rather small (1 kJ mol−1). Moreover,
ultra-short period immiscible MLs are prone to degradation to granular sys-
tems under a thermal load via crystallization and grain boundary diffusion.
We inspected the interface quality and thermal stability of Sc/Cr mirrors pre-
pared by ion-beam sputtering of the ECR type operating at the lowest Ar
gas pressure of 10−3 Pa. These mirrors were prepared at Tohoku University,
Sendai. The details of the deposition may be found elsewhere [37]. Up to 250
periods of 1.3–1.75nm were deposited onto Si wafers starting with Sc. The
thermal treatment was done in a vacuum of 10−4 Pa.

24.3 Sample Measurements and Characterization

The specular XRR and grazing-incidence X-ray diffuse scattering (GIXDS)
coming from rough interfaces were measured on a high-resolution STOE
diffractometer equipped with a GaAs double crystal monochromator located
in the primary beam and providing CuKα1 radiation at the output. A point
scintillation detector was used to perform different types of scans: different
cuts throughout the reciprocal space. The reciprocal space maps (RSMs)
were measured on a home-built diffractometer with a linear position-sensitive
detector, which provided a resolution element in the reciprocal space of
2.10−4 × 2.10−4 nm−2, and on a Bruker D8 Discover Super Speed diffrac-
tometer equipped with a Göbel mirror. A rotating anode TXS generator
provided enough intensity (109 photons s−1 in the primary beam) to mea-
sure RSM with a point scintillation detector within a reasonable time.
Finally, atomic structure of the layers was examined by X-ray diffraction on
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a Bragg–Brentano powder diffractometer equipped with a focusing graphite
monochromator in the diffracted beam. CuKα radiation was used for all X-ray
measurements.

For particular samples, transmission electron microscopy (TEM), high-
resolution TEM (HR TEM) and electron diffraction were utilized to complete
the X-ray studies. A JEOL 200 CX microscope (200 kV, point-to-point resolu-
tion of 0.34 nm) was used for TEM and JEOL 2010 (200 kV) and 3010 (300 kV)
microscopes integrated with energy-dispersive X-ray analysis, both point-to-
point resolution of 0.17nm, were used for HR TEM and electron diffraction.
The samples were observed in cross section. A standard sample thinning by
a 5-keV Ar ion beam was followed by a 300-eV Ar ion-beam treatment to
reduce the damaged surface layer for HR TEM observations.

The specular XRR provides the basic parameters of the ML stack in terms
of the layer thicknesses t, layer densities ρ and effective interface roughness
(total interface width) σeff . The last parameter includes both compositional
grading and morphological imperfections. The GIXDS, being produced solely
by genuine (geometrical) interface roughness, is fully controlled by the mor-
phology of particular interfaces. The specular XRR was evaluated by the
optical recursive approach [38] supposing error function interface profiles
while the GIXDS was calculated by the distorted-wave Born approximation
(DWBA) [39]. For amorphous and polycrystalline layers found in the MLs
under study, randomly rough interfaces are typical. Therefore, we adopted a
statistical interface description based on cross-correlation functions between
particular interfaces which can be divided into lateral and vertical parts.
The lateral correlation function is not known a priori, different types being
proposed. A correlation function [40]

C(r) = σ2 exp

[
−
(
r

ξ

)2H
]

(24.1)

was convenient for all interfaces in Cu/Si MLs and Ni-based MLs. Here, r
is the length along an interface, σ is the root-mean-square (rms) geometrical
interface roughness, ξ is its lateral correlation length and H is the Hurst
parameter which is connected with the fractal interface dimension as D =
3−H . Generally, the Fourier transform of the correlation function provides the
power spectral density (PSD). The Fourier integral for the correlation function
given by (24.1) can be calculated only numerically providing no analytical
expression for PSD. Another type of a so-called K correlation function was
applicable for Sc/Cr ML. In this case, the GIXDS calculation could utilize the
corresponding PSD which reads

PSD(Qx) =
4πHσ2ξ2

(1 +Q2
xξ

2)1+H
. (24.2)

Here, Qx is the lateral wave vector transfer which takes place on a particular
Fourier component of the interface roughness. An exponential decay of the
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vertical correlation (replication) of the interface profiles controlled by a single
vertical correlation length Lvert

C(z) = exp
(
− z

Lvert

)
(24.3)

was convenient for the interval of the roughness frequencies covered by the
GIXDS measurements in all cases. Here, z means vertical distance between
particular interfaces.

The following strategy was used for data evaluation. Layer thicknesses
t and effective interface roughness σeff were first extracted from the XRR
fit, being rather independent parameters. The precision of determination of
both parameters is ±0.1 nm or better. Alternatively, layer densities ρ were
set as free parameters to adjust the XRR fit around the critical angle. All
these parameters were further fixed in the GIXDS simulations to obtain σ, ξ
and Lvert values which do not affect the XRR in the first-order DWBA. The
precision of the correlation lengths is generally within ±25%. The RSMs were
measured to get a qualitative overview of different GIXDS features coming
from the interface correlations while particular cuts provided quantitative
parameters. As a rule, several particular cuts were measured and fitted for
each sample to avoid fit ambiguity as much as possible. Finally, the H value,
influencing mainly a small region around the specular reflection, was refined
separately. This parameter may reach values between zero and unity but the
simulation is rather insensitive to values larger than 0.5.

24.4 Results and Discussion

The Cu/Si couple provided very regular UHV-evaporated ML stacks with
amorphous or microcrystalline layers at different deposition temperatures,
the interface roughness σ and mixing quantified as σeff − σ being minimized
at 80◦C. Examples of the XRR and GIXDS simulations are shown in Fig. 24.1
with the simulation parameters gathered in Table 24.1.

An asymmetry between the roughness of Cu/Si and Si/Cu interfaces
shows that Cu layers are created rougher while the mixing is comparable.
The interface widths σeff are effectively independent of the ML period down
to ≈2 nm. Below ≈2 nm, the ML Bragg peak in the XRR curve is poorly
resolved above the background while Kiessig fringes are still visible. This
indicates that mixing at the interfaces destroys the ML stack. The vertical
correlation length Lvert is comparable to the total ML thickness, giving rise to
a pronounced resonant diffuse scattering around the Bragg peaks. A quickly
saturating reflectivity drop at RT, which reached ≈25% on the first Bragg
peak 2 weeks after the deposition, was observed. A severe suppression of the
ML Bragg peaks due to a strong mixing and interdiffusion was induced by
an annealing at 100◦C for 1 h while the ML collapsed upon annealing at
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Fig. 24.1. The specular XRR (a) and rocking curve (b) simulations for the Cu/Si
ML deposited at 80◦C with the simulation parameters indicated in Table 24.1. The
latter curve was measured by a sample scan with the detector fixed at the first Bragg
maximum. Qz and Qx stand for the vertical and lateral (along the surface) compo-
nents of the scattering vector (wave vector transfer), respectively (dots – measured
points and line – simulation)

Table 24.1. The XRR and GIXDS simulation parameters of Cu/Si MLs (10 periods)
for the deposition temperatures indicated

Simulation parameter RT 80◦C 80◦C

tCu (nm) 1.22 1.27 0.65
tSi (nm) 2.25 1.9 0.98
Λ (nm) 3.47 3.17 1.63
σeff Si-on-Cu (nm) 0.7 0.5 0.7
σeff Cu-on-Si (nm) 0.6 0.45 0.6
σSi-on-Cu (nm) 0.4 0.3 –
σCu-on-Si (nm) 0.35 0.25 –
ξ (nm) 10 10 –
Lvert (nm) 30 30 –
H 0.2 0.3 –

For Λ < 2 nm, the GIXDS around the first Bragg peak was too low above the back-
ground to be simulated reliably. Bulk densities were used for the simulations t layer
thickness, Λ ML period, σeff interface width, σ geometrical interface roughness,
ξ lateral correlation length, Lvert vertical correlation length, H Hurst parameter

200◦C/1 h. Here, an onset of η′ (Cu, Si) tetragonal phase formation (JCPD–
ICDD data set file no. 23-0224) was revealed by X-ray diffraction, starting
presumably in the mixed regions. Fast grain boundary diffusion of Cu into Si
layers mediated by this interface phase then accelerated the ML degradation.
Nevertheless, interdiffusion with the substrate was not developed yet after the
280◦C/1 h annealing as suggested by the presence of the Kiessig fringes in the
XRR curve.
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Table 24.2. The XRR and GIXDS simulation parameters of a Ni/C ML (10 periods)
deposited at 80◦C

Simulation
parameter

As-deposited 100◦C 150◦C 200◦C 250◦C 300◦C

tNi (nm) 1.26 1.26 1.28 1.32 1.33 1.34
tC (nm) 1.89 1.89 1.92 1.98 1.99 2.01
Λ (nm) 3.15 3.15 3.2 3.3 3.32 3.35
ρNi (g cm−3) 8.9 8.9 8.9 8.5 8.5 8.0
ρC (g cm−3) 2.2 2.2 2.1 2.0 2.0 1.8
σeff C-on-Ni (nm) 0.65 0.65 0.7 0.75 1.1 1.6
σeff Ni-on-C (nm) 0.45 0.45 0.5 0.55 0.7 1.2
σC-on-Ni (nm) 0.35 – – – 0.5 0.8
σNi-on-C (nm) 0.25 – – – 0.3 0.4
ξ (nm) 5 – – – 8 10
Lvert (nm) 10 – – – 3 1
H 0.25 – – – 0.18 0.25

Four-hour annealings at the temperatures indicated were successively applied to the
same sample. The GIXDS was not measured in the temperature region where the
XRR did not change qualitatively

The quality of the ML stack proved to be more sensitive to the UHV
deposition temperature for the Ni/C couple where a well-resolved ML Bragg
peak in the XRR was observed only around 80◦C. A comparison with Cu/Si
MLs of similar periods shows slightly rougher and more mixed metalloid-on-
metal interfaces and shorter correlation lengths after deposition (Table 24.2).
HR TEM revealed that Ni layers contained grains with locally well-ordered
regions inside (Fig. 24.2a) which control the interface morphology. The inter-
face width obtained from the XRR reaches the value of 1 nm for the ML
period below 3nm suggesting agglomeration effects in Ni. This observation
compares well with a percolation threshold around 2 nm found in sputtered
samples [41] at which Ni forms coalescent layers. The interface correlation
lengths indicated by the GIXDS are much shorter in Ni/C than in Cu/Si MLs
while fractal behaviour (H < 1) is observed in all cases. Such a behaviour
was reported for Ni/C MLs previously from post-deposition atomic force
microscopy measurements [23].

A step-like vacuum annealing from 100◦C up to 350◦C with 50◦C steps
and with a duration of 4 h at each step was applied to the sample with the
nominal ML period of 3 nm. After each annealing, the sample was cooled down
in vacuum and measured at RT. The XRR and GIXDS simulation parameters
are also shown in Table 24.2. An increase of the σ and σeff−σ values indicates
an advanced interface roughening and interdiffusion, respectively, before the
ML breakdown at 350◦C.

Cross-sectional HR TEM images of the collapsed ML showed well-
developed grains embedded in a disordered matrix (Fig. 24.2b). The grains
are composed of Ni of face-centred cubic (fcc) symmetry according to
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(a) (b)

Fig. 24.2. Cross-sectional HR TEM images of the as-deposited (a) and collapsed
(b) Ni/C ML whose XRR and GIXDS simulation parameters are given in Table 24.2.
Black bars at the bottom correspond to 10 nm (a) and 20 nm (b)

energy-dispersive X-ray and electron diffraction analyses while the matrix
is formed by C and a small fraction of fine granular fcc Ni. Obviously, the
annealing stimulates the growth and coalescence of the original Ni grains
found in the as-deposited state, which governs also interface morphology as
reflected in an increase of the lateral correlation length and a decrease of the
vertical correlation of the interface roughness (decay of interface conformity).
As soon as Ni grains are well developed and the ML becomes discontinuous,
diffusion of C along Ni grain boundaries may also contribute to the ML break-
down. A complete diffusion of C into Ni layers was reported in the past [21].
The observed thermal stability is comparable to sputtered and PLD Ni/C
mirrors [18, 19, 25].

It is worth noting that the ML period steadily increases and C layer den-
sities decrease when increasing the temperature above 100◦C. Similar effects
were reported in sputtered Ni/C MLs with larger periods [21, 42] and were
attributed to a transformation of the amorphous into the graphitic-like struc-
ture. Although we were not able to trace this effect directly by HR TEM or
X-ray diffraction due to very thin C layers, the observed growth and coales-
cence of Ni grains connected with a long-distance collective diffusion of Ni
atoms across C regions may induce graphitization. It was shown that such
a metal-driven graphitization is preferred to carbide formation when C is in
excess [43] which explains also the absence of carbide formation in the tem-
perature range applied. Once initiated, the graphitization due to Ni diffusion
proceeds even at RT as evidenced by ≈8% increase of the ML period which
was observed on the sample annealed at 300◦C after a 16-month RT storage.
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Table 24.3. The XRR simulation parameters of the as-deposited Ni/B4C ML (400
periods)

tNi tB4C Λ σeff Ni-on-B4C σeff B4C-on-Ni

(nm) (nm) (nm) (nm) (nm)

0.78 0.81 1.59 0.28 0.26

Ni/B4C MLs prepared by DECR do not suffer from agglomeration effects
in Ni as a ML with a period below 2 nm and an extremely small interface
width below 0.3 nm could be deposited (Table 24.3). Obviously, much higher
adatom mobilities with DECR sputtering than with UHV deposition have
a healing effect on the geometrical interface roughness and layer continuity
at small thicknesses which goes along with the amorphous character of the
layers as confirmed by X-ray and electron diffraction. On the other hand,
the presence of compound layers does not favour mixing effects. Significantly,
substitution of C by B4C has no detrimental effect on the theoretical optical
contrast. Due to very smooth interfaces, a large number of periods (N = 400)
was necessary to visualize GIXDS effects in RSM. Only the GIXDS around
the first ML Bragg maximum is visible (Fig. 24.3a) as the second maximum
emerges directly from the instrumental background and the higher orders
cannot be seen at all. This fact is a consequence of the ultra-short ML period
when the measurements of RSM are especially instructive. A concentration
of GIXDS in the form of a sheet around the Bragg peak (resonant diffuse
scattering) is a clear sign of a partial vertical correlation of the interface
roughness while its distinct asymmetry is exceptional. HR TEM revealed that
the interfaces are wavy and partly copy each other.

The as-deposited Ni/B4C ML was first exposed to several isothermal
annealings at 300◦C up to 8 h of total time with no significant changes of
XRR but a slight improvement of the peak reflectivity on the first Bragg
maximum. Contrarily, an additional annealing at 400◦C for 2 h destroyed the
ML completely and the Bragg peak disappeared. Therefore, an intermediate
350◦C/2 h annealing, which brought about a decrease of the peak reflectiv-
ity by ≈1 order of magnitude, was done independently. Such a pre-annealed
sample was then processed by a series of 5- or 10-min RTAs with a step-like
increase of temperature up to 520◦C which resulted in a further severe reduc-
tion of the peak reflectivity and a reduction of the ML period from 1.59 to
1.54nm, the first Bragg maximum being still well resolved. This reduction
may be attributed to the annealing-out of the excess free volume typical for
amorphous structure. HR TEM inspection showed that the layered structure
without mixed regions but with many topological defects was still preserved.
The RSM (Fig. 24.3b) exhibits substantial changes in comparison with the as-
deposited state. Though it was not possible to simulate RSM with common
correlation functions presented in the previous section, a qualitative change
due to the annealing could be simulated when doubling the lateral correlation
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(a)

(b)

Fig. 24.3. Reciprocal space maps of the (a) as-deposited and (b) annealed up
to 520◦C Ni/B4C ML around the first Bragg peak. In the first map, the shadow
of a beam stopper protecting a position-sensitive detector hides the XRR whose
simulation parameters are shown in Table 24.3. The second map was measured with
a point detector. The labels denote the logarithms of the extreme values of the
intensity

length from 10 to 20 nm. This increase cannot be attributed to the grain
growth as in the case of Ni/C couple as no crystallization inside the ML
was observed. However, large re-crystallized regions in the substrate at the
interface with the ML, presumably Ni silicide grains, could be seen locally
by TEM. After the ML breakdown, the original layered structure was trans-
formed into an inhomogeneous amorphous-like structure with only one diffuse
ring in electron diffraction pattern. This collapsed ML still keeps a sharp
interface with the substrate. HR TEM revealed a rare occurrence of crys-
tallographically ordered regions, probably (111) planes of fcc Ni. This fact
suggests that Ni diffusion controls the ML breakdown as in Ni/C couple but
the mechanism of decay of the compound layers is unclear in the absence of a
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Table 24.4. The XRR and GIXDS simulation parameters of the as-deposited Sc/Cr
ML (250 periods)

tSc(nm) tCr(nm) Λ(nm) σCr-on-Sc(nm) σSc-on-Cr(nm) ξ(nm) Lvert(nm) H

0.83 0.93 1.76 0.28 0.25 7 35 1

crystalline phase formation. Nevertheless, any deviation from the compound
stoichiometry, which is common in extremely thin layers, may affect thermal
stability of Ni/B4C mirror adversely.

Ultra-short periods could be achieved and many periods (N = 250) were
deposited also for the Sc/Cr couple using ECR ion source. Similarly as for
Ni/B4C, only the region around the first Bragg maximum could be used for
GIXDS analysis due to the ultra-short ML periods (Table 24.4). The presence
of the resonant diffuse scattering sheet in RSM (Fig. 24.4a) suggests here as
well a partial vertical correlation of the interface roughness. In contrast to
previous cases, where the lateral correlation function according to (24.1) was
used, PSD given by (24.2) proved to be convenient to simulate GIXDS for
Sc/Cr MLs (Table 24.4; Fig. 24.4b). Different cuts throughout the calculated
RSM gave a good quantitative agreement with particular scans measured sep-
arately. The vertical correlation length represents only ≈8% of the total ML
thickness. The σeff and σ values are practically identical with a slight asym-
metry between Sc/Cr and Cr/Sc interfaces, showing no mixing as expected
because of the negligible miscibility of the elements. No mixing and a high reg-
ularity of the ML stack were confirmed by HR TEM and TEM, respectively.
Electron diffraction showed only one ring typical for an amorphous struc-
ture but narrower than that for Ni/B4C which implies a higher short-range
ordering.

Thermal stability tests were performed on a ML with a period of 1.25nm
repeated 150 times. The sample was first exposed to several isothermal anneal-
ings at 280◦C up to 33 h of total time which brought about a decrease of the
peak reflectivity on the first Bragg maximum by ≈25%. This decrease was
connected with an increase of the initial interface roughness of 0.28 nm to the
final value of 0.30nm for Cr-on-Sc interfaces while a similar increase from
0.26 to 0.29nm was observed for Sc-on-Cr interfaces. Simultaneously, the ML
period increased to 1.28nm which may be ascribed to a structural ordering
inside the layers. A further 450◦C/4 h annealing decreased the peak reflec-
tivity by one order of magnitude and a subsequent 650◦C/4 h one destroyed
the layered structure completely, as reflected in the disappearance of the ML
Bragg maxima. No crystalline phase could be detected by X-ray diffraction.
Presumably, a fine granular structure typical for immiscible components was
formed.
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(a)

(b)

Fig. 24.4. Measured (a) and simulated (b) reciprocal space maps of the Sc/Cr ML
around the first Bragg peak. The simulation parameters are shown in Table 24.4.
The labels denote the logarithms of the extreme values of the intensity

24.5 Conclusions and Outlook

The ability to form thermally stable ultra-short period MLs was tested for
material couples of different compositions and miscibilities. Such periods are
inherently required for high-quality imaging in the water window or for very
hard X-rays and put strong requirements on the interface quality.

The Cu/Si couple is attractive for very hard X-rays because it is low
absorbing and forms very regular ML stacks easily down to small periods. On
the other hand, it is a miscible pair of materials. We found a limit of ≈2 nm for
the ML period which still yields a well-resolved ML Bragg peak in the XRR
curve for UHV-deposited MLs and which compares well with dc-sputtered
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ones prepared previously. Thermal stability restricts their use to below 100◦C
and therefore does not qualify this material pair to be used for ML mirrors
working in high heat load conditions.

Ni/C mirrors were studied mostly for applications below the C–K edge
(284 eV) or for hard X-rays of several keV (e.g. Göbel mirrors). A shift to ultra-
short periods would render them useful for applications close to 100 keV with a
low-absorption coefficient. A better thermal stability than for the Cu/Si couple
may also be expected due to a low mutual solubility of Ni and C. We found
a minimum limit of ≈2.5 nm for the ML period imposed by agglomeration
effects in polycrystalline Ni layers. Such a ML is stable up to 300◦C, the
breakdown being controlled by the growth and coalescence of Ni grains and
Ni-induced graphitization of C. The thermal stability is comparable to that
of Ni/C MLs with larger periods studied previously, which suggests that it
is independent of the ML period when continuous layers are formed. Vertical
correlation of the interface roughness is much weaker than for Cu/Si MLs with
positive implications for their use when a good specular imaging contrast is
required.

From the technological point of view, UHV deposition with an in situ
substrate heating proved to be a cost-effective promising alternative to in
situ ion-beam etching for Cu/Si and Ni/C couples. Nevertheless, ultra-short
periods down to 2 nm or less are not accessible with them.

An ultra-short ML period far below 2nm could be achieved by a sub-
stitution of C by B4C in Ni/C MLs and application of DECR sputtering
for deposition of Ni/B4C MLs. A high adatom energy allows formation of
extremely smooth amorphous layers which are continuous at very small thick-
nesses. The presence of compound layers enhances thermal stability to 350◦C
on a long-term annealing and above 500◦C on RTA. The amorphous character
of the layers plays also some role as it excludes fast grain boundary diffusion.
The mirror collapses by Ni diffusion and decomposition of B4C layers without
formation of a well-developed crystalline phase.

The Sc/Cr couple is also able to provide MLs with an ultra-short period
far below 2nm using ECR sputtering. The MLs have excellent quality and
good thermal stability up to 500◦C as expected for the elements with neg-
ligible miscibility. The vertical correlation length of the interface roughness
constitutes less than 10% of the total ML thickness, so that its detrimen-
tal effect on the specular imaging contrast is minimized. The ML breakdown
is presumably controlled by the formation of fine granular phase typical for
immiscible elements.

For the future, new material combinations suitable for ultra-short period
ML mirrors aimed at specific applications have to be tested in detail in a
way similar to that demonstrated in this work. In particular, material pairs
yielding structures with minimum interface roughness have to be searched
for. It has to be stressed that even traditional material pairs represent new
challenges for technology when MLs with layer thicknesses below 1 nm and
several hundred periods have to be deposited. At present, an optimization of
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the reflectivity in UHV electron-beam evaporated ML stacks is done in situ by
ion milling and partial material removal after deposition of each layer. In this
way the layers, which have been deposited thicker than nominal values, are
thinned to optimum thicknesses with in situ control. For the mirrors deposited
by sputtering, a high quality of the ML stack is achieved by employing stable
sputtering parameters and a precise control of the motion of the sample with
respect to the targets. ECR sputtering with the inert gas pressure far below
the thermalization threshold proves to be superior to other techniques in terms
of yielding extremely smooth interfaces. To fabricate regular ML stacks with
ultra-short periods, further progress is expected by making a still tighter con-
trol of the deposition process including an in situ monitoring with a resolution
below 10−1 nm to provide feedback for subsequent correction procedures.

Thermal stability requirements are also more critical with ultra-short peri-
ods below 2 nm, particularly in view of the advent of free electron laser (FEL)
sources whose brilliance is several orders of magnitude higher than that at
present synchrotron beam lines. To set and manipulate thermal stability lim-
its of ultra-short period mirrors working with femtosecond intense pulses, ML
response to short-time power loads far below a second and with the ramp
edge of several 100 K s−1 must be studied. Here, advanced time-resolved in
situ diagnostics of the processes at the interfaces, like in situ ellipsometry with
several ms read-out, must be applied.

Though much knowledge has already been gained, the research and devel-
opment of ultra-short period ML mirrors with the individual layer thicknesses
on the sub-nanometre scale is still open to new creative ideas. The design and
the production of mirrors with atomic level control will shift frontiers not only
in the ML optics but also in nanotechnology as a whole.

Acknowledgements

The authors are grateful to M. Yamamoto from IMRAM Tohoku University,
Sendai, for providing Sc/Cr ML samples and to V. Holý from Charles Uni-
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Specially Designed Multilayers

J.I. Larruquert, A.G. Michette, Ch. Morawe, Ch. Borel, and B. Vidal

Abstract. Periodic multilayers, utilising Bragg reflection at single angle or wave-
length, are established as efficient reflectors from the hard X-ray down to the extreme
ultraviolet (XUV) region of the electromagnetic spectrum. More recently, both lat-
erally and depth-graded multilayers have been designed and fabricated; they allow
either reflection of divergent beams or over a broad angular or wavelength range,
or a combination of both. Recent developments in aperiodic structures, along with
advances in ultra-short period and transmission mutilayers, are discussed in this
chapter. Modelling methods to provide designs for specific purposes are described,
as are advances in manufacturing techniques and quality control. In addition to peak
reflectivity at a specific wavelength or angle, high integrated reflectivity over a given
wavelength or angular range is considered, along with flat reflectivity profiles. Impor-
tant potential applications of flat response mirrors are X-ray micro-spectroscopy,
X-ray diffraction, XUV polarimetry, and any other technique requiring both high
reflectivity and broad bandwidth.

25.1 Introduction

Periodic multilayers, utilizing Bragg reflection at single angles or wavelengths,
are established as efficient reflectors from the hard X-ray to the extreme
ultraviolet (XUV) region of the electromagnetic spectrum. Recently, laterally
graded multilayers allowing reflection of divergent beams and depth-graded
multilayers providing broad angular or wavelength ranges have been designed
and made; combinations having both types grading have also been considered.
Recent developments in such aperiodic structures, along with advances in
ultra-short period and transmission multilayers, are discussed in this chapter.
Modeling methods to provide designs for specific applications are described,
but manufacturing techniques and quality control are not discussed explicitly,
as these are similar to those used for conventional multilayers. In addition to
peak reflectivity at a specific wavelength or angle, high integrated reflectiv-
ity over a given wavelength or angular range is considered, along with flat
reflectivity profiles.
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Important potential applications of flat response mirrors include X-ray
microspectroscopy, X-ray diffraction, XUV polarimetry, and any other tech-
nique requiring both high reflectivity and broad bandwidth. Importantly, in
the recent years, the use of multilayer-based X-ray optics at third-generation
synchrotron sources has seen a considerable growth [1,2]. The principal appli-
cations are focusing or collimating optics and broadband monochromators.

25.1.1 Periodic Multilayers

For many years, the only effective way of manipulating X-ray beams was
through the phenomenon of “total” external reflection. For this, the graz-
ing angle of incidence must be less than the critical angle which, for most
materials, is less than about 1◦ for X-rays. Such small grazing angles result
in several major disadvantages including aberrations and small effective
apertures. However, at low energies, single surface reflectors could be used,
while at high energies crystal optics were (and still are) employed.

The problem was in the intermediate energy range; it was this gap that
periodic multilayer mirrors were initially designed to fill. Such coatings can, in
principle, be deposited on substrates of any form and can be used as reflectors
for energies of ∼0.01–10 keV at incidence angles ranging up to, in some cases,
normal incidence. Periodic multilayers have a typical energy resolution of
1–10% which is about two orders of magnitude larger than possible with per-
fect crystals, leading to a significant gain in flux. At the same time, they allow
for larger effective apertures than grazing incidence mirrors, making them con-
siderably shorter and easier to handle. When properly prepared, they conserve
the properties, such as coherence, of the X-ray beam, and they can be tailored
to specific applications using the refraction-corrected Bragg equation

mλ = 2d
√
n2 − cos2 θ. (25.1)

Here, m is the diffraction order, λ is the (vacuum) wavelength, d is the mul-
tilayer period, n is the average refractive index in the multilayer stack, and
θ is the glancing angle at the multilayer surface. However, periodic multilay-
ers work only within specific wavelength or angular ranges, where (25.1) is
approximately satisfied, which limits their applicability. Such restrictions can
be alleviated by using optimized designs.

25.2 Optimized Multilayers

In any geometry where the X-ray beam is incident over a range of glancing
angles, the multilayer structure has to be deposited with a lateral thick-
ness gradient to fulfill the Bragg condition (25.1) along the full length of
the mirror [3]. Similarly, whenever broader reflectivity profiles are required,
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depth-graded or nonperiodic layered structures have to be deposited [4]. Non-
periodic and laterally graded multilayers can be combined into single devices
providing fixed focus optics over broad energy intervals [5]; such optics have
wide applicability in, e.g., microspectroscopy and diffraction experiments.

25.2.1 Laterally Graded Multilayers

Most multilayer-based synchrotron optics, including focusing and collimating
devices using curved multilayers and flat monochromators [6], require lateral
thickness gradients to fulfill the Bragg condition for fixed photon energy along
the full beam footprint. Depending on the geometry, different lateral gradients
have to be applied; three commonly used geometries are elliptical, parabolic,
and flat. For an elliptical surface,

sin2 θ =
b2

pq
, (25.2)

where θ is the glancing angle, b is the semiminor axis of the ellipse, and p and
q are the object and image distances. For a parabolic profile,

sin2 θ =
f

2p
, (25.3)

where f/2 is the distance from the focus of the parabola to its apex, and for
a flat surface,

sin2 θ =
s2

p2
, (25.4)

where s is the perpendicular distance from the surface to the source point.
To obtain the corresponding bilayer lateral thickness gradients, the angles

for the appropriate surface must be used in (25.1). Strictly speaking, the local
angle of incidence varies also with depth, but this effect is typically negligible
compared to the widths of the multilayer Bragg peaks.

In practice, lateral thickness gradients are obtained by differential coating
techniques. In a static setup, masks modify the particle fluxes while dynamic
approaches use moving masks or the relative motion between source and
substrate. In the sputter deposition system at the European Synchrotron
Radiation Facility (ESRF), for example, the substrate remains fixed while
the sources are scanned with variable speeds [1].

Figure 25.1 illustrates the case of a laterally graded parabolic W/B4C
multilayer collimator [1]. Here, both W and B4C layer thicknesses were varied
individually to optimize the peak reflectivity along the total length of the
optic. The agreement between theory and experiment is remarkable. For the
multilayer to be efficient, the required accuracy of the thickness profile must
be considerably better than the width of the multilayer Bragg peak. With the
present ESRF equipment, relative errors of <0.5% RMS can be achieved.
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25.2.2 Depth-Graded Multilayers

One way of increasing the bandwidth of a multilayer is simply to reduce the
number of reflecting bilayers. For hard X-rays, this approach is penalized
by the rapidly decreasing reflectivity. A more efficient option is to vary the
d-spacing in such a way that X-rays of different energies, or incident at dif-
ferent angles, are reflected from different depths within the total stack. This
concept of depth grading was first introduced in the design of supermirrors
for neutron optics [7], but for X-rays, the stronger absorption complicates the
design. However, different mathematical models have been developed, lead-
ing to nonperiodic layered structures [8–10]. These typically involve starting
with a periodic structure, or some other analytically derived layer thickness
distribution, and then randomly changing the position of a randomly selected
boundary between two layers in at attempt to improve some “merit function”
(MF). If, for example, the requirement is for a flat reflectivity response over a
given angular range at a fixed wavelength, then an appropriate MF would be

MF =
N∑

i=1

[R(θi)−R0]2, (25.5)
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Fig. 25.2. (a) Specular reflectivity of an aperiodic Ni/B4C multilayer as a func-
tion of the incidence angle at an X-ray energy of 8.048 keV. Circles indicate the
experimental data points; the line is a simulation based on the bilayer structure
of (b)

where R(θi) is the reflectivity at a selected angle from N sample points and R0

is the target reflectivity. The reflectivities are calculated using the standard
Parrat recursive formalism [11].

Figure 25.2a shows the reflectivity spectrum of such a multilayer, designed
and made at the ESRF [4]. It was designed to provide a flat reflectivity profile
over an angular bandwidth of about 20% at 8 keV. It consists of 43 Ni/B4C
bilayers of variable thickness as indicated in Fig. 25.2b. Numerical fits to the
data indicate that the residual undulations on the flat plateau are mainly
caused by oxide formation on top of the sample. It is mandatory that all key
parameters of the sample structure (thickness, density, interdiffusion, oxida-
tion) have to be known in advance, since they enter directly into the design
algorithm.

Such mirrors can also be designed for lower energies at larger grazing
incidence angles. An example of the performance of a W/Si mirror designed to
act as a spectral filter on a titanium Kα (4.5 keV) X-ray source, for applications
in radiobiology, is shown in Fig. 25.3. The mirror was designed and made in
collaboration with Tongji University, Shanghai, and the measurements were
done at the Gray Cancer Institute, UK.

Similar depth-graded multilayers can be designed to work over a range
of energies at fixed incidence angle. A simple example of this would be to
arrange a series of periodic mirrors, one on top of the other, such that each
reflects a specific energy with the upper mirrors being relatively transparent
to the radiation reflected from the lower mirrors. An example of the stack
structure of such a mirror [12–16], consisting of 20 W/Si bilayers, and the
corresponding reflectivities are shown in Fig. 25.4. The calculated reflectivity
at a grazing incidence angle of 0.6◦ is over 40% in the energy range 6–9 keV.
The first six bilayers (zone 1) define the shape of the calculated reflectivity
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Fig. 25.3. Reflectivity of a broad angular range multilayer designed for an energy
of 4.5 keV. The thin curve is the design reflectivity (with the aim of a flat response of
20%) and the thick curve is a fit to the measured points with an interlayer roughness
of 0.4 nm

Fig. 25.4. Layer thickness distribution of a five-zone depth-graded multilayer (left)
and the corresponding reflectivities (right); the measured reflectivities are indicated
by the line with error bars. The overall reflectivity takes into account absorption in
the upper layers, and the sudden drop at an energy of just over 10 keV is due to the
tungsten Lβ absorption edge

curve for energies up to 9.5 keV. The layers of zones 2–5 are primarily respon-
sible for the reflectivity at 9–10keV. In the 6–9 keV range, the reflectivity
curve is flat with some small oscillations which can be attributed to the mix-
ing of second-order reflectivity between zone 1 and the deeper layers of the
mirror. The decrease in the total reflectivity at energies higher than 9 keV is
mainly due to absorption in the tungsten layers and to the effects of rough-
ness, which increase exponentially with the square of the photon energy. The
experimental reflectivity is higher than the calculated values, especially for the
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Fig. 25.5. A depth-graded Mo/Si multilayer designed for a flat reflectivity profile
in the wavelength range 15–17 nm at the Brewster angle. The left-hand plot shows
the layer thickness distribution and the right-hand graph shows the calculated (line)
and measured reflectivities

“total” reflectivity part of the spectrum (below 5 keV) and at energies greater
than 8 keV. These differences are partially due to a ±0.01◦ systematic shift in
the experimental angle corresponding to the goniometer angular precision.

A more flexible approach allows each layer thickness to be varied in the
optimization. An appropriate MF is then

MFE =
N∑

i=1

[R(Ei)−R0]2 or MFλ =
N∑

i=1

[R(λi)−R0]2, (25.6)

where R(Ei) and R(λi) are the reflectivities at selected energies and wave-
lengths, respectively, from N sample points, and R0 is the target reflectivity.
Here, examples of mirrors designed for extreme ultraviolet (EUV) radiation,
where wavelength is the more usual variable, are considered [17–22].

Figure 25.5 shows the parameters and performance of a depth-graded
Mo/Si multilayer designed for a reflectivity of 50%, in the wavelength range
15–17nm, at the Brewster angle which, since the refractive indices are very
close to unity, is very close to 45◦. The lower measured reflectivities may be
attributed to interlayer roughness or diffusion with a length scale of about
1 nm. The performance of a similar mirror, designed for a wider wavelength
range, is shown for comparison in Fig. 25.6; because of the wider wavelength
range, the measured performance is compromised compared to that of the
mirror of Fig. 25.5. The mirrors were designed and made in collaboration
with Tongji University, Shanghai, and the measurements were carried out at
the BESSY synchrotron.

Since these mirrors were designed to work at the Brewster angle, they also
act as polarizing elements. The plotted reflectivities are for the s-component
of polarization, Rs. Figure 25.6 also shows the design and measured polarizing
capabilities, P , of the two mirrors, where

P =
Rs −Rp

Rs +Rp
. (25.7)
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Fig. 25.6. Calculated and measured reflectivities (left) of a Mo/Si multilayer
designed for a reflectivity of 35% in the wavelength range 14–18 nm. The right-
hand plot shows the calculated (light curve) and measured (open circles) polarizing
capabilities of this mirror as well as those of the mirror of Fig. 25.5

Similar multilayers can also be made on transmissive substrates. When
used in conjunction with reflective multilayers, in a polarizer/analyzer arrange-
ment, these allow polarization analysis to be carried out over an extended
wavelength range without having to change the optics [22].

25.2.3 Doubly Graded Multilayers

The concepts of laterally and depth-graded multilayers may be combined into
single structures; such a device would be capable of broadband focusing with
fixed focal distance [23]. Rewriting the Bragg equation (25.1) leads to the
energy dispersion relation for a multilayer

E =
hc

2d
√
n2 − cos2 θ

, (25.8)

where E is the X-ray energy. The angular dependence can be interpreted in
terms of the focal distance at each point on the mirror and θ can be substituted
by the appropriate expression from (25.2) to (25.4).

The concept is similar to that of DuMond diagrams [24] and can be illus-
trated by plotting the dispersion of the energy E of the reflected photons
against the focal distance q along the optics. The example in Fig. 25.7 shows
the case of two elliptically shaped Ru/B4C multilayer mirrors. Periodic mul-
tilayers without lateral gradient are characterized by the curved thick solid
lines. Such structures reflect X-rays only in a narrow “intersection volume”
in (E, q) space, defined by the intrinsic multilayer line width, which is typ-
ically a few percent. With a lateral period thickness gradient, the energy
response becomes constant (thick horizontal solid line in Figure 25.7). In prac-
tice, this has the advantage that the multilayer reflects at the same energy
over the whole mirror length. An aperiodic multilayer without lateral gradient
widens the energy bandpass and therefore opens the dispersion area, thereby
increasing the intersection zone in (E, q) space. The most attractive solution,
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Fig. 25.7. Energy dispersion of different Ru/B4C multilayers, with periods of
6.7 nm, showing the reflected energy bands against the distance q from the focal
spot along the multilayer surface. Thick solid lines represent the periodic multilayers
either with or without lateral thickness gradient. A purely depth-graded multilayer
covers the area limited by the thin curves. A combination of both is indicated by
the zone between the straight lines. The lighter shaded areas show the responses of
two Ru/B4C Kirkpatrick–Baez mirrors

however, is a combination of lateral and depth gradient. It provides a broad
and constant energy bandwidth over its whole length.

As described in Sect. 25.2.2, the spectral response of a nonperiodic mul-
tilayer can be designed locally. The overall intensity spectrum Iq of a curved
focusing device, however, depends on the additional lateral gradient and on
the geometrical influence of the curved mirror. The local reflectivity profile
along the mirror can be calculated based on the knowledge of both lateral and
depth gradients. In addition, the local intensity dIq/dαq as a function of the
angular acceptance dαq has to be taken into account (see inset in Fig. 25.8).
In the given configuration, the X-ray source can be considered to be isotropic
over the angular range used. In the case of an elliptical profile, and at a given
incidence angle θ, the local intensity contribution dIq in the focus coming
from a given angular range, dαq, is proportional to the angle, dαp, seen from
the source. Since, at the reflection point of the beam,

qdαq = pdαp, (25.9)

the local intensity is

dIq(θ)
dαq(θ)

≈ dαp(θ)
dαq(θ)

=
q(θ)
p(θ)

=M(θ), (25.10)

where M is the demagnification. Using (25.2), the local intensity can now be
directly expressed as a function of θ. This approach is valid when the detector
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integrates over the whole focal spot. The results for the two Ru/B4C mirrors
of Fig. 25.7 are shown in Fig. 25.8. Only the relevant branch, with p > q, is
shown. The minimum possible grazing angle occurs at the vertex of the ellipse
where p = q and where the local intensity is normalized to unity. Very similar
results can be obtained for parabolic mirrors [5]. The total spectral response
can be obtained by integrating the local reflectivity spectra multiplied by
(25.10) over the full length of the optics.

Fig. 25.8. Relative intensity after reflection from two elliptically shaped mirrors as
a function of the incidence angle θ. The curves were calculated using (25.10) and
correspond to the branch p > q of the ellipse showing both multilayer mirrors. The
illuminated (active) angular zone and the smallest angles of incidence (for p = q)
are indicated by dotted lines
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Fig. 25.9. Gray scale images of the experimental (left) and simulated (right) X-
ray reflectivity data of multilayer 170, plotted as functions of focal distance q and
photon energy E
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Figure 25.9 (left image) shows a two-dimensional plot in (E, q) space
based on the experimental data set of the multilayer 170 (see Fig. 25.8) and
the corresponding simulation (right image). The area in (E, q) space selected
here is indicated by the dotted rectangle in Fig. 25.7. The plots show broad
horizontal bands of high reflectivity and confirm the more general theoretical
approach described above. The intensity fluctuations of the experimental data
of Fig. 25.7 are caused by subtle deviations from the ideal layer structure. In
the main features, however, there is a good agreement.

25.3 Multilayers with Strongly Absorbing Materials

In the discussions of the previous sections, although absorption had to be
taken into account in determining the multilayer properties, at the wave-
lengths considered, it is sufficiently low that reasonable performances can
still be obtained. However, reflective multilayer coatings for the wavelength
range 50–105nm, in the EUV region of the electromagnetic spectrum, have
not previously been developed because all conventional materials are strongly
absorbing. Due to this strong absorption, radiation would be mostly absorbed
in the few outermost layers of a multilayer; only single layer coatings are
useable. A new concept, sub-quarter-wave multilayers (SQWMs), has been
recently developed; with this, a reflectivity enhancement is obtained over that
of a single layer even when the materials are strongly absorbing. For wave-
lengths shorter than ∼50 nm, the intrinsic absorption decreases but remains
moderately high. Thus, reflective coatings based on two-material multilayers
are feasible, but even so SQWMs may provide valuable reflectivity increases.
According to this new multilayer concept, enhancements in reflectivity can
be obtained by the superposition of thin films of two or more materials when
certain material selection rules are satisfied. The main results on SQWMs
are summarized in the following sections. Section 25.3.1 highlights the main
steps in the derivation to obtain the new multilayers. Section 25.3.2 exhibits
a few examples of multilayers involving materials with a strong absorption.
Section 25.3.3 demonstrates that the new multilayers can also be applicable
in spectral regions of moderate absorption where standard two-material mul-
tilayers are already possible. Finally, Sect. 25.4 summarizes new algorithms
for multilayer optimization.

25.3.1 Sub-Quarter-Wave Multilayers

A general multilayer coating can be considered to consist of m thin films of
different absorbing materials on an opaque substrate. Figure 25.10 shows a
diagram of such a general multilayer. The complex refractive indices of the
films and substrate are referred to as ñi, i = 1, 2, . . . ,m + 1, starting with
the outermost film; ñ0 is the refractive index of the incidence medium. Since
the materials absorb radiation, all the ñi are complex numbers, and in the
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Fig. 25.10. Incident and reflected rays on a general multilayer

most general case, they may all be different. The reflectivity of the multilayer
can be obtained through recurrent calculation [11] starting at the innermost
interface. The aim is to obtain the material selection rules linking the ñi to
allow the design of multilayers that provide a reflectivity enhancement through
every single layer. However, the exact equations that determine the general
trends of the reflectivity in terms of the refractive indices are difficult to
handle. An appropriate approximation, which provides manageable equations,
is based on the assumption that all the materials in the multilayer have close
refractive indices, although the applications of SQWMs, as will be shown in
Sect. 25.3.2, are not restricted to such materials.

The refractive index differences of the materials across the i, i+1 interface
are represented as Δñi = ñi+1 − ñi, i = 1, 2, . . . ,m, with Δñi = Δni + iΔki.
The above assumption implies that |Δñi| � |ñi|. The multilayer reflectivity
is then developed to first order in Δñi. The first-order expansion is a good
description when the materials in the multilayer are assumed to absorb radi-
ation strongly and/or when the refractive index changes |Δñi| are small, so
that multiple reflections can be neglected.

Using this technique, the following conditions were obtained for the
refractive indices of the materials to provide an m-dimensional reflectivity
maximum with m sub-quarter-wave films on an opaque substrate [25,26]. For
the outermost layer (i = 1), and for s-polarized radiation,

Im

[
F ∗0
(
1− F 2

0

)
Δñ1

cos θ1

]
< 0, (25.11)

while for p-polarized radiation

Im
[
F ∗0
(
1− F 2

0

)
Δñ1 cos θ1

(
1− ñ

2
0 sin2 θ0
ñ2

1 cos2 θ1

)]
< 0, (25.12)
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where F0 is the Fresnel reflection coefficient of the outermost interface and θi
is the propagation angle in the ith layer. For the inner layers (i = 2, 3, . . . , m)

Im
[

Δñi

Δñi−1

]
< 0, (25.13)

the latter equation being valid for both polarizations. For normal incidence
and for radiation incident in a vacuum, the material selection rules become,
for the outermost layer,

Δn1

(
1 + n2

1 + k2
1

)
k1 + Δk1

(
1− n2

1 − k2
1

)
n1 > 0, (25.14)

and for the inner layers

Δni−1Δki < ΔniΔki−1. (25.15)

If a set of m + 1 materials satisfy these conditions, then an SQWM can be
designed with a reflectivity enhanced by each added layer. Condition (25.13)
can be easily interpreted through a graphical representation. If the complex
refractive indices are plotted in the n–k plane, the condition is satisfied if the
switch from material i to i + 1 is by clockwise rotation; an example of this
thumb rule is given in Sect. 25.3.2. Even if (25.11)/(25.12) and (25.13) are
not satisfied for some trial materials arranged in a certain sequence, the same
refractive indices in a different sequence may provide a solution. In addition,
a set of materials may not satisfy (25.13), but a subset may.

The highest possible reflectivity is obtained when using the most extreme
available refractive indices, as will be shown in Sects. 25.3.2 and 25.3.3. From a
theoretical point of view, more materials in the multilayer (satisfying (25.13))
will provide a higher calculated reflectivity. For L different materials, with
refractive indices ñ1 to ñL, after making use of all the available materials,
completing a full period, the procedure can be repeated for more periods so
long as the reflectivity enhancement continues. In this sense, these mirrors are
similar to standard two-material multilayers:

• In the standard case, one full period is completed after two layers; whereas
in SQWMs, it is completed after L layers.

• In the standard case, the refractive index oscillates between two values; in
SQWMs, it rotates in the correct sequence among all the materials.

• The integrated optical path through one full period is λ/2 in both cases.

This shows that SQWMs represent a generalization of standard two-material
multilayers to any number of materials. An SQWM with just one material and
only one period can be modeled step by step by removing one material at a
time (and correspondingly reducing the reflectivity) until a single layer coating
remains.
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The reflectivity enhancement obtained with SQWMs is a result of the more
interfaces per constant optical path than in standard multilayers. These extra
interfaces provide extra contributions to the reflectivity coming from radiation
that has propagated a short distance and hence has been absorbed less. The
phase shift in the reflection at any interface between two contiguous materials,
that are selected as described above, supplements the otherwise insufficient
phase shift after propagation through sub-quarter-wave layers; the superposi-
tion of the different contributions results in the higher reflectivity. Absorption
is intrinsic to the benefit of SQWMs: if there was a material in nature with no
absorption, then 100% reflectivity would be theoretically feasible with a two-
material multilayer [27] and obviously no further enhancement would then be
possible.

The optimum film thicknesses that provide an m-dimensional reflectivity
maximum space for an m-layer multilayer are given when the first derivative
of the reflectivity with respect to all film thicknesses is zero. The second
derivative must satisfy the conditions for the extreme value to be a maximum,
to discard minima or saddle points. If

x0
max,L =

(
x0

max,1, x
0
max,2, . . . , x

0
max,m

)
(25.16)

is the point at which the first-order expansion of the first derivative of
reflectivity has an extreme value, then the optimum film thicknesses are
given by

x0
max,L = − λ

4π
ϕz, i = 1, 2, . . . ,m, (25.17)

where ϕz is the phase of complex number z

z = F ∗0
(
1− F 2

0

)
ñiFi cos θi, i = 1, (25.18)

z =
ñiFi cos θi

ñi−1Fi−1 cos θi−1
, i = 2, 3, . . . ,m, (25.19)

and Fi is the Fresnel reflection coefficient at the i, i + 1 interface. In the
first-order expansion, each optimum layer thickness depends only on the
parameters of the specific interface and not on those of other interfaces.
The phases in (25.17) are multivalued functions; phases differing from a cer-
tain solution by an integer multiple of 2π are also solutions. However, only
those satisfying the condition on the second derivative will be maxima. To
minimize absorption, the maximum obtained with the thinnest possible layer
is needed, so that the smallest solution for ϕz is that required. When mate-
rials satisfy the material selection rule (25.13), the condition on the second
derivative is automatically satisfied for the thinnest solution of (25.17). A trial
material that gives a reflectivity maximum with a smallest phase value larger
than π is not suitable for SQWM.
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25.3.2 Applications of SQWM with Strongly
Absorbing Materials

As an example, the design of an SQWM with the highest possible reflectiv-
ity at the OII 83.4 nm spectral line is considered. This line is of interest for
atmospheric physics [28], but observations at this and nearby wavelengths are
sometimes difficult due to the low intensity of the sources. Hence, enhanced
reflectivities would be of great benefit, compared to thin films of SiC which is
among the materials with the largest reflectivity at 83.4 nm.

Figure 25.11 shows the refractive indices of five materials selected, using
the formalism described in Sect. 25.3.1, from those with the most extreme
optical constants at 83.4 nm. The arrows indicate the sequence, according to
(25.13), in which the materials have to be deposited from the outermost to the
innermost layer to obtain reflectivity enhancements. The calculated reflectiv-
ities as functions of wavelength for multilayers consisting of one to six layers
are shown in Fig. 25.12. It can be seen that a reflectivity increase is obtained
every time a new material is added. However, due to the high absorption
of all the materials at 83.4 nm, the reflectivity saturates after a few layers,
and no further increase is obtained by adding more layers beyond (outer-
most) SiC/B4C/C/Al2O3/MgF2/SiC (innermost). Note that aluminum, even
though it has adequate optical constants, was not used in this example, but it
will be considered in others. It is noteworthy that the increase in reflectivity,
although optimized at 83.4 nm, extends over a wide spectral range. Similarly,
for a multilayer optimized at normal incidence, a reflectivity increase over
that of a single layer is obtained for a wide range of incidence angles. The
slow dependences of multilayer reflectivity with wavelength and angle mean
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Fig. 25.11. Representation in the complex plane of the refractive indices of five
materials at 83.4 nm. The arrows point to the material of the underlying film
(after [26])



422 J.I. Larruquert et al.

50 60 70 80 90 100 110 120 130
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

SiC/B4 C/C/Al2 O3 / MgF2 / SiC

SiC/ B 4C/C/Al2O3/MgF2

SiC/B4C/C /MgF2

SiC/B4C / C

SiC/C
SiC

R
ef

le
ct

iv
ity

Wavelength [nm]

Fig. 25.12. Calculated reflectivities of an opaque layer of ion-beam deposited SiC,
and of multilayers optimized at 83.4 nm (indicated by the dotted vertical line). In
each case, the first named material is the outermost layer (after [25])

that there is a high tolerance for layer thicknesses and for errors in the optical
constants of materials. An approximate value of the layer thicknesses is given
by in the derivation of SQWM theory, it was assumed that the refractive
indices all have close values. However, the current example shows that, even
when the refractive index differences are large, the material selection rules are
still a helpful tool for giving a reasonable film thickness estimates.

Experimental demonstrations of SQWMs optimized at a wavelength of
92 nm have been performed [29, 30]. Multilayers were designed and prepared
between two and four layers of different materials. The multilayers show
increased reflectivities in the 50–200nm spectral range.

25.3.3 Extension of the Mechanism of Reflectivity Enhancement
to Moderately Absorbing Materials

Multilayer coatings have been developed over the last decades with increas-
ing reflectivities for radiation at wavelengths below ∼50 nm. However, the
largest theoretical reflectivities of such multilayers are still limited because
all materials absorb radiation in these spectral regions. Although there has
been some work on using more than two materials [31–33], most XUV mul-
tilayers have been made so far by alternating layers of two materials with
optimized thickness of each layer to provide the highest possible reflectiv-
ities at a desired wavelength (angle), or range of wavelengths (angles), as
described in Sect. 25.1. Multilayer coatings with just two different materials
will be referred to here as standard multilayers.
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For moderately absorbing materials, with k/n < ∼0.2 which is the case
for most materials at wavelengths below ∼50 nm, the first-order expansion
of Sect. 25.3.1 that allows multiple reflections to be neglected is no longer
valid. However, the ideas of SQWMs may still be applied with some modifica-
tions. For standard multilayers, the smallest contributions to the reflectivity
are from radiation reflected at the innermost interfaces and mainly arise from
the reflection at a single interface. The contributions of reflections from more
than one inner interface provide only small corrections to the smallest contri-
bution. Thus, a first-order expansion of the reflectivity accurately describes
the contributions of the innermost interfaces. This means that a reflectiv-
ity enhancement may be obtained by replacing the innermost bilayers of a
standard multilayer with an SQWM structure using the material selection
rule determined in Sect. 25.3.1. In practice, further reflectivity enhancement
is obtained by replacing all bilayers of a standard multilayer with SQWM
structures.

As an example, consider SQWMs with high reflectivity at the HeII 30.4 nm
line [34], compared to the several multilayer coatings which have been designed
and made with various two-material combinations, such as C/Si [35], Ir/Si
[36], and Al/Nb [37]. These have theoretical normal-incidence reflectivities
of ∼0.30 at 30.4 nm and measured values of ∼0.25 (for C/Si). A higher normal
reflectivity is obviously desirable for, e.g., astrophysics applications.

A reflectivity enhancement can be obtained with a multimaterial SQWM.
The material selection is performed by plotting the refractive indices of
all materials available at the desired wavelength, followed by selecting all
the materials with the most extreme refractive indices which define a polygon
that encloses all the other materials. The multilayer with the optimum film
thicknesses including all the materials of the polygon boundary will provide a
reflectivity that is higher than that which can be obtained with a multilayer
designed with just some of these materials. Selecting a set of materials inside
the polygon will result in a lower reflectivity, regardless of the number of
materials. It should be noted that the optimum layer thicknesses of SQWMs
with moderately absorbing materials are not given accurately by (25.16), and
so they have to be obtained as part of the optimization process.

The optical constants of many materials at 30.4 nm are shown in Fig. 25.13.
The candidate materials for the multilayer with the largest reflectivity are
those with the most extreme values, i.e., on the boundary of the polygon, in
a sequence given, from the outermost to the innermost layer, by clockwise
rotation in the n–k plane. The calculated normal-incidence reflectivities of
optimized SQWMs for various material combinations are given in Table 25.1.
In the calculations, the interfaces were assumed to be smooth and abrupt,
with no material diffusion. The number of periods was limited to 25, because
the reflectivity enhancement with more periods was negligible.

A significant reflectivity enhancement, by a factor of 1.13, is obtained
when the number of materials increases from two to three. Adding further
materials, up to a total of six, results in further noticeable enhancement.
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Fig. 25.13. The optical constants for many materials at 30.4 nm (after [34]). The
optical constant data were obtained from the web site of the Center for X-Ray Optics
(Lawrence Berkeley National Laboratory) [38]

Table 25.1. Calculated normal-incidence reflectivities of SQWMs optimized for
30.4 nm. The multilayers contain 25 periods. The material sequences are from the
outermost layer (after [34])

Materials in the period Reflectivity

Al/Os 0.446
Al/B4C/Mo 0.504
Al/B/Os/Mo 0.517
Al/B/Os/Mo/W 0.526
Al/Si/B/Os/Mo/W 0.532
Al/Si/B/Os/Mo/W/Ge 0.533
Al/Si/B/Os/Au/Mo/W/Ge 0.534
Al/Si/B/B4C/Os/Au/Mo/W/Ge 0.535
Al/Si/B/B4C/Os/Au/Mo/Hf/W/Ge 0.536

In each case the combination of materials providing the largest

Thereafter, the increases become smaller; for ten materials in each period
the total increase, over two materials, is 20%. The highest reflectivities are
obtained when aluminum is the outermost material, and so the calculation
should incorporate the effect of the thin oxide film that readily grows on
aluminum in contact with the atmosphere. This was not taken into account
in this example, since the purpose is to show the benefit of multimaterial
SQWMs compared to standard two-material multilayers.

In this and other examples investigated, it was found that the increase in
the number of materials does not necessarily affect the spectral bandwidth.
The intrinsic bandwidth depends more on the specific optical constants of the
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materials in the multilayer than on the number of materials. A similar result
was obtained for the angular bandwidths of SQWMs.

A similar analysis has been used to design multilayers with enhanced
reflectivities at 13.4 nm [39], the wavelength of interest for the future EUV
lithography. The polygon boundary in the n–k plane is now defined by the
materials Ru, Rh, Pd, Ag, Ni, CsI, Ce, Si, Sr, Nb and Mo; multilayers
have been designed using combinations of these materials with ruthenium
or rhodium as the outermost layer. The calculated reflectivities of optimized
normal-incidence SQWMs are shown in Table 25.2 for the best combinations
of between two and 11 materials. In these calculations, the number of periods
was limited to 50 since the enhancement with more periods was negligible.
The reflectivity enhancement increase is significant up to about four materi-
als; a further small increase is obtained for multilayers with 5–9 materials and
a marginal increase with ten and 11 materials.

The enhancement, 5% over a standard Si/Mo multilayer, is smaller at
13.4 nm than at 30.4 nm, due to the higher transparency of the materials so
that more layers contribute to the reflectivity. The extra interfaces of SQWMs
close to the outer surface (compared to standard multilayers) provide con-
tributions to the reflectivity from radiation that has propagated a shorter
distance and has been less strongly absorbed. Thus, the benefit of having
extra interfaces closer to the outer surface is less important when more periods
contribute.

Due to the large number of reflectors in an EUV projection lithography
system (∼9), a small reflectivity increase of each individual mirror may still

Table 25.2. Calculated normal-incidence reflectivities R and R9, and R9 integrated
over the bandwidth, of multilayers optimized for 13.4 nm. The multilayers contain
50 periods with an opaque substrate of the same material as that of the outermost
(left) layer (after [39])

Materials in the period R R9 ∫R9

(×10−2 nm)

Si/Mo 0.7495 0.0746 2.412
Mo/Si 0.7628 0.0874 2.814
Rh/Si/Mo 0.7602 0.0848 2.585
Rh/Si/Sr/Mo 0.7795 0.1062 2.986
Ru/Si/Mo 0.7661 0.0909 3.014
Ru/Si/Sr/Mo 0.7846 0.1127 3.443
Ru/Rh/Si/Sr/Mo 0.7852 0.1135 3.358
Ru/Rh/Ce/Si/Sr/Mo 0.7858 0.1142 3.298
Ru/Rh/Ce/Si/Sr/Nb/Mo 0.7863 0.1149 3.317
Ru/Rh/Ag/Ce/Si/Sr/Nb/Mo 0.7867 0.1154 3.1486
Ru/Rh/Ag/CsI/Ce/Si/Sr/Nb/Mo 0.786912 0.11570 3.0692
Ru/Rh/Ag/Ni/CsI/Ce/Si/Sr/Nb/Mo 0.786921 0.11571 3.0639
Ru/Rh/Pd/Ag/Ni/CsI/Ce/Si/Sr/Nb/Mo 0.786929 0.11572 3.0632



426 J.I. Larruquert et al.

provide a significant throughput enhancement. The reflectivity after nine
reflections at the target wavelength and integrated within the reflectance
band are also shown in Table 25.2. At the design wavelength, the overall
enhancement is 55% (51%) for 11 (4) materials, but note that the inte-
grated reflectivity decreases for more than four materials, due to decreased
bandwidth.

There are, of course, important practical considerations that must be taken
into account when manufacturing such multilayers; one, as mentioned previ-
ously, is the stability of the multilayer in the environment of use. The material
selection rules discussed in Sect. 25.3.1 can also be used to specify suitable
capping layers [39]. Increasing the number of materials results in more difficult
preparation of multilayers; in practice, it may be difficult to implement mul-
tilayers with more than about four materials. Also, some selected materials
may not be compatible with one another, and so before preparing SQWMs the
stability and suitability of the materials to be deposited as thin and smooth
films must be assessed.

25.4 New Layer-by-Layer Multilayer Design Methods

The design of a multilayer coating with the highest possible reflectivity at
a given wavelength is simple when a pair of absorption-free materials with
different refractive indices is available. In this case, the multilayer just has a
sufficiently large number of quarter-wave layers of the two materials. However,
when either or both materials absorb radiation, the largest reflectivity is not
given by the quarter-wave layer design [27]. Now, an optimized multilayer
will have decreasing (increasing) thicknesses for the more (less) absorbing
material from the innermost to the outermost layer. This complicates the
calculation of the layer thicknesses, more so when optimizing SQWMs with
three or more materials. The recipe of (25.17) still provides an estimate of the
optimum thicknesses; in this section, algorithms that provide the exact values
are described.

For s- or p-polarized radiation, or for normal incidence with any polar-
ization, the layer thicknesses of the multilayer with the largest reflectivity at
a given wavelength can be optimized sequentially from the innermost to the
outermost layer. Thus, it is not necessary to perform a new optimization of
the entire stack when new layers are added on top of an optimized system [40];
a mathematical description of this is given in [41]. For standard two-material
multilayers, a common optimization algorithm starts with the three inner-
most layers and optimizes their thicknesses for maximum reflectivity. In the
following step, the next two layers are added and the three outer layers are
optimized. The process is continued by adding more periods until the multi-
layer is completed [27]. The three outer layers are used at every step since the
outermost interface after the addition of the jth layer pair becomes an internal
interface when the layer pair j+1 is added. The multilayer calculation is then
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transformed from one optimization problem with 2N parameters, where N
is the number of periods, into N optimizations with three parameters. When
M ≥ 2 different materials are used in each period, the calculation results in
N optimizations with M + 1 parameters each.

Another layer-by-layer multilayer design method was developed by
Yamamoto and Namioka [42]. This is based on the smooth connection of
the reflectivity as a function of the layer thickness at the switching point from
one material to the other. With this method, the multilayer design process is
transformed into 2N optimizations with one parameter, resulting in a much
faster algorithm. However, some derivations of the method, which is based
on a graphical representation, were qualitative, and no explicit function to be
optimized was provided.

To improve these algorithms, a new mathematically rigorous layer-by-layer
multilayer design method has been developed [41,43]. This provides the opti-
mum layer thicknesses, regardless of the number of different materials used.
The following summarizes the main details of the design of a multilayer coat-
ing consisting of m thin films of various absorbing materials deposited on an
opaque substrate, assuming that the interfaces are abrupt and smooth. Let
ñi be the refractive indices of the films and substrate (i = m+ 1), the outer-
most film corresponding to i = 1. In the most general case, all the ñi may be
different. The algorithm searches for an m-dimensional reflectance maximum
in thickness space. At this maximum, the first derivative of the multilayer
reflectivity with respect to every film thickness must be zero; this condition
provides the layer thicknesses xi and results in [43], for i = 1,

Re
(
r∗0
∂r0
∂x1

)
= R0 · Re

(
1
r0

∂r0
∂x1

)
= 0 (25.20)

and, for i = 2 to m,

Im

⎛
⎝ ∂ri−1/∂xi

∂ri−2
∂xi−1

/
∂ri−2
∂ri−1

⎞
⎠ = − λ

4π
Re
(

∂ri−1/∂xi

ñi−1ri−1 cos θi−1

)
= 0. (25.21)

In these equations, ri is the (amplitude) reflectivity of the ith layer, θi is the
propagation angle through the layer, and R0 is the multilayer reflectivity.

25.4.1 Two Algorithms for Multilayer Optimization

Two different approaches starting with (25.20) and (25.21) have been used
to develop two equivalent algorithms. Here, the main details of the two algo-
rithms will be described; a rigorous development of the algorithms can be
found elsewhere [41, 43].

In the first approach, the conditions on the first derivative given by (25.20)
and (25.21) result in

Im(ui) = 0, (25.22)
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for all i. In (25.22),

ui =
ñi cos θi

ñi−1 cos θi−1

(
1− F 2

i−1

)
ri expβi

(Fi−1 + ri expβi) (1 + Fi−1ri expβi)
, (25.23)

where
βi =

4π
λ

iñixi cos θi (25.24)

and Fi is the Fresnel reflection coefficient at the i, i+ 1 interface. Here, ri is
the amplitude reflectivity of the submultilayer including interfaces from i to
m+ 1. Equation (25.22) is important to the algorithm because it is the basis
of the calculation of every layer thickness. Since Im(ui) only depends on the
layer thickness of the ith to mth layers, the optimization can be performed
iteratively starting with the innermost layer. To select the solutions of (25.22)
that correspond to reflectivity maxima (rather than minima or saddle points),
the conditions on the second reflectivity derivative are used, expressed by

∂

∂xi
Im(ui)

i−1∏
j=1

Re(uj) > 0, (25.25)

for all i. A drawback of these conditions is that they cannot be expressed in a
recurrent form, such as (25.24), because of the presence of the terms Re(uj).
All conditions given by (25.25) depend on these terms which, however, will
not be known until the multilayer design is completed.

A search on the sign of Re(ui), through several examples of multilayers
with two or more materials in different wavelength ranges, shows that the
conditions

Im(ui) = 0,
∂Im(ui)
∂xi

> 0⇒ Re(ui) > 0 (25.26)

are always satisfied for all m. This is important since it means that every
solution selected by the positive sign of ∂ Im(ui)/∂xi ultimately results in a
maximum reflectivity, enabling a recurrent design starting with the innermost
layer. The multilayer design is performed in the following steps:

• Search for the thinnest xm satisfying Im(um) = 0 and ∂ Im(ui)/∂xi > 0.
• Proceed iteratively from the innermost to the outermost layer.
• Check a posteriori that Re(ui) > 0 for all i.

An infinity of thicknesses satisfying Im(ui) = 0 can be found, with alternating
signs of ∂ Im(ui)/∂xi. The thinnest solutions satisfying ∂ Im(ui)/∂xi > 0
should be selected to maximize the reflectivity.

In the second algorithm, a new function inreflectance, �, whose maxi-
mum provides the layer thicknesses of the optimum multilayer, is defined
from (25.20) and (25.21):

�i−1 =
∣∣∣r(ñi−1 cos θi−1)−1

i−1

∣∣∣ . (25.27)
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This function involves, instead of the simple reflectivity modulus, the modu-
lus raised to the power of inverse of the complex refractive index of the next
(outer) layer, including an inclination term. Thus inreflectance is not defined
for the outermost layer. Maximizing the inreflectance at every internal layer,
proceeding sequentially outward, results in a multilayer with the largest reflec-
tivity. At a given layer in the multilayer, inreflectance and reflectivity differ
when the next (outer) material absorbs radiation, i.e., when the exponent in
(25.27) is complex, but are equivalent, for optimization purposes, when the
next outer layer is transparent. The outermost layer of the multilayer is intrin-
sically different to the internal layers, and is optimized through reflectivity, not
inreflectance. All inreflectance maxima are found at larger layer thicknesses
than that for the reflectivity maxima when the next outer material absorbs
radiation.

The reflectivity and inreflectance for the normal-incidence multilayer of
Fig. 25.12, optimized for 83.4 nm, are compared in Fig. 25.14 as functions of
thickness of the growing multilayer [26]. The discontinuities at layer bound-
aries are due to the change of the top medium from which radiation penetrates
to the optimizing layer. In the case of (amplitude) reflectivity, there is a sudden
change from ri+1 as the ith layer is completed to (Fi+2 + ri+1)/(1+Fi+2ri+1)
at the start of layer i+ 1. The shapes of the two functions are clearly differ-
ent; for a growing layer, inreflectance increases to a maximum at the optimum
thickness, whereas reflectance is not only decreasing at the inreflectance max-
imum, but also it is already decreasing at the start of the growth of Al2O3,
C, and B4C layers. SiC is an exception as it is the outermost layer and
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parison of inreflectance (full lines) and reflectivity (dashed lines) as a function of
thickness for a SiC/MgF2/Al2O3/C/B4C/SiC multilayer optimized for the largest
normal-incidence reflectivity at 83.4 nm
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hence the optimum thickness is given by the maximum reflectivity, which
in this case is coincident with the maximum inreflectance because the inci-
dence medium (vacuum) does not absorb radiation. This discussion clearly
shows that inreflectance is a better measure of when the optimum thickness
has been reached.

The first derivative of inreflectance is connected to the ui functions of the
first algorithm that were defined in (25.22)–(25.24) through

∂

∂xi

∣∣∣r(ñi−1 cos θi−1)
−1

i−1

∣∣∣ = −4π
λ

∣∣∣r(ñi−1 cos θi−1)
−1

i−1

∣∣∣ Im(ui), (25.28)

for i = 1 to m− 1, and

∂|rm−1|
∂xm

= −4π
λ
|rm−1|Im(um), (25.29)

for i = m. This demonstrates that the two algorithms are equivalent. They
result in extremely fast multilayer optimization, with computing time roughly
proportional to the number of layers, regardless of the number of different
materials.

25.4.2 Layer-by-Layer Design of Multilayers with Barrier Layers

The layer-by-layer multilayer design methods described in Sect. 25.4.1 can
be supplemented by adding the possibility of alternating fixed thickness lay-
ers along with layers whose thicknesses are optimized for high reflectivity
at a given wavelength [43, 44]. This allows the design of multilayers with
barrier layers to prevent diffusion and/or reaction between the multilayer
constituents, or when intermixed zones develop at multilayer interfaces, or
when capping layers are used. Modifications of the algorithms presented in
Sect. 25.4.1 have been developed to enable the design of such multilayers
with any number of layers of any optical constants. The optimization can
be performed for either normal or nonnormal incidence and for either s- or
p-polarized radiation. Here, only a few details of the extension of the first
algorithm are summarized.

In the description below, it is assumed that the layers from the outermost
(1) to j1− 1 have fixed thicknesses and that layer j1 is the outermost layer to
be optimized. Then, layers j1 + 1 to j2 − 1 have fixed thicknesses and layer
j2 (j2 > j1) is the second layer to be optimized; and so on. If h is the function
that provides the subset of layers whose thicknesses have to be optimized,
then h(1) = j1, h(2) = j2, etc. If m is the number of layers that have to be
optimized out of theM total number of layers, then h(m) < M when there are
fixed layers between the innermost layer to be optimized and the substrate;
otherwise, h(m) =M .

A similar mathematical derivation to that of Sect. 25.4.1 in which the
derivative of reflectivity with respect to every nonfixed (free) film thickness,
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layers h(1), h(2), . . . , h(m), is set to zero results in a generalization of the ui

functions that were defined in (25.22)–(25.24):

Ui =
h(i)∏

j=h(i−1)+1

uj. (25.30)

There is one U function per free layer. Every U function involves not only the
free layer, but also the upper fixed layers that are below the next outermost
layer to be optimized. Equation (25.22) now becomes, for i = m,

Im(Ui) = 0 (25.31)

and the two conditions generalized from those of (25.26) are

Im(Ui) = 0,
∂Im(Ui)
∂xi

> 0. (25.32)

Equation (25.32) summarizes the optimization method for multilayers with
fixed thickness layers along with those to be optimized. The design is per-
formed in the following steps:

• Calculate the reflectivity of the fixed innermost layers, if any.
• Search for the thinnest xm (the thickness of the innermost layer to be

optimized) satisfying (25.32), using (25.30). This involves calculations with
h(m), the layer to be optimized, along with the block of fixed layers from
h(m− 1) + 1 to h(m)− 1.

• Proceed iteratively from the innermost (i = m) to the outermost (i = 1)
layers to be optimized. Every layer optimization involves all the fixed layers
on top of it that are below the next outer layer to be optimized. The
outermost layer to be optimized involves all the upper (capping) fixed
layers (1 to h(1)− 1).

• Check a posteriori that Re(Ui) > 0 for i = 1 to m.

As for multilayers without fixed layers, an infinity of thicknesses satisfy-
ing Im(Ui) = 0 can be found, with alternating signs of ∂Im(Ui)/∂xi. The
thinnest solution satisfying ∂Im(Ui)/∂xi > 0 must be selected to maximize
the reflectivity.

This algorithm has been applied to the optimization of multilayers for
EUV lithography at ∼13.4 nm [44]. The performance of the algorithm was
demonstrated by optimizing Si/Mo multilayers with:

• Intermixed zones of MoSi2 that were taken into account in the optimiza-
tion, resulting in a slight reflectivity increase compared to designs ignoring
the intermixing zones

• B4C barrier layers; when the barrier layers are taken into account, reflec-
tivities are slightly higher than for simpler designs

• A range of barrier layer materials, including the use of different materials
at the Si-on-Mo and Mo-on-Si interfaces, which could result in a reflectivity
increase.
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25.4.3 Multilayers with Continuous Refractive Index Variation

The algorithms described in Sects. 25.4.1 and 25.4.2 may readily be extended
to the design of a multilayer coating in which the refractive index varies con-
tinuously in depth. In this case, an inhomogeneous coating with a refractive
index profile can be optimized, in principle, at every thickness element to
obtain the largest possible reflectivity at a given wavelength. In practice, sev-
eral difficulties may arise. First, materials with suitable continuously varying
refractive indices must be available. Second, the long series of ultrathin lay-
ers, each with the correct refractive index, may be complicated to deposit;
the stability of the structure may also be an issue. Further, there is a physi-
cal limit to ultrathin layers determined by the atomic/molecular scale of the
materials. On the plus side, inhomogeneous coatings may sometimes be pro-
duced naturally when materials react or diffuse across interfaces, and a good
understanding of the optimization of such processes may allow advantage to
be taken of these usually undesirable effects.

In the design of such multilayers, the complex refractive index is assumed
to take values within a given continuous domain and in a given sequence. The
coating design is generated through a series of layer elements with small refrac-
tive index contrast across interfaces; the thickness of the element is calculated
in terms of the refractive index increment at the interface. The coating is opti-
mized element by element starting from the substrate. When the refractive
index varies both continuously and smoothly, the thickness element is first
order in the refractive index increment. A convenient way to calculate the
refractive index profile in depth is to express the available domain of the
refractive index ñ(t) as a function of a real parameter t defined within a cer-
tain range. With this notation, the elemental thickness corresponding to the
range t to t+ Δt is [45]

Δx(t) =
λ

4π

Im
{

˙̃n2

2ñ2 [2v(r) − v2(r)] + ¨̃n
ñv(r)

}
Re
[ ˙̃n ( 1

r − r
)] Δt, (25.33)

where ˙̃n(t) and ¨̃n(t) are, respectively, the first and second derivatives of the
refractive index with respect to t, and

v(r) =
1
r

+ 2 + r. (25.34)

To determine whether the reflectivity has a maximum at each thickness
element, rather than a minimum or saddle point,

Re
[
Δñi

(
1
ri
− ri

)]
> 0 (25.35)

must be satisfied; this is valid when the refractive index varies continuously
and smoothly. However, (25.35) has a larger field of application since it was
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derived only under the condition that the refractive index increments must be
small. It can thus be used to select the materials and their sequence in a coat-
ing to obtain the largest possible reflectivity. The simpler material selection
rule defined in Sect. 25.3.1 has, in a few cases, failed to discriminate whether a
given set of materials deposited in a given sequence will provide a reflectivity
enhancement [34,46]; these failures always occurred when the expression given
by (25.13) was positive but close to zero, i.e., when the three refractive indices
involved lie close to a straight line. Condition (25.35) may be more accurate
than (25.13) since fewer assumptions were made in deriving it, but it depends
on the reflectivity of the inner part of the coating and on the thickness of the
specific layer, which reduces its applicability.

As an example, consider an arbitrary refractive index function for λ =
13.4 nm incident in a vacuum given by [45]

ñ(t) = ñc + ρ exp(it) (25.36)

with ñc = 0.9756+0.0304i, ρ = 0.0281, the innermost element has t = 0, and
t takes increasingly positive values for each added element. The substrate is
assumed to be opaque with a refractive index equal to that of the innermost
element, ñ0 = ñ(t = 0) = ñc + ρ. The refractive index has values within a
circumference of radius ρ centered at ñc and t represents the angle in radians,
covering the range 0–2π×40 in the coating. There is a correspondence between
a 2π increment in t and the period of a multilayer: for a few discrete refractive
indices (usually 2), a period has one layer of each material. Hence, the given
range of t covers an optical path equivalent to that of a multilayer with 40
periods. Figure 25.15 shows Δx/Δt for the optimized coating as a function
of t, calculated using. In this calculation, the parameter increment was Δt =
0.00436 rad (0.25◦).
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25.4.4 Multilayer Design for Nonnormal Incidence
and Partially Polarized Radiation

The most general case of multilayer optimization for the largest reflectivity
at a given wavelength when radiation is partially polarized (or even lin-
early polarized in an arbitrary direction) has been specifically addressed only
recently [47]. The equations that provide the condition for maximum reflec-
tivity in this general case are not amenable to the simplifications that may be
performed when the radiation is s- or p-polarized. Such simplification is essen-
tial to demonstrate sequential optimization, which implies that multilayer
optimization for partially polarized radiation may not be sequential.

The importance of nonsequential optimization for a specific combination of
materials has been demonstrated [47]. It has also been shown that more than
one maximum may be found within optical path differences smaller than λ/2,
contrary to what is observed for multilayers optimized for s- or p-polarization.

However, most complex refractive index combinations result in negligible
differences between the exact nonsequential optimization and an approximate
solution obtained through sequential optimization. Empirically, it appears
that the failure of the optimization is a more likely when the materials have
large differences in both real and imaginary parts of the refractive index, and
the larger real refractive index material has a low extinction coefficient.

25.5 Conclusions

This chapter has demonstrated a range of techniques for designing optimized
multilayers, in terms of both lateral and depth grading, to provide enhanced
performances compared to standard periodic or quasiperiodic systems. Advan-
tages include the flexibility of such optics which makes them very attractive
for various applications on third-generation synchrotron sources. The ability
to adapt layered structures to a given beam divergence or energy spectrum
allows for the design of very efficient devices. One fundamental problem in
the design is how to impose a lateral thickness gradient on a nonperiodic
structure without deteriorating the reflectivity spectra away from the point
of reference. A more complex formulation of the merit function including the
total length of the mirror will be required. A further advantage is the possi-
bility to perform broadband polarization analysis without having to change
optical components, important in studies of magnetic and structural proper-
ties of materials [48]. Additionally, the ability to make multilayers that are
efficient at longer wavelengths where materials are absorbing will widen the
range of applications.
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Diffractive-Refractive Optics:
X-ray Crystal Monochromators
with Profiled Diffracting Surfaces

J. Hrdý and J. Hrdá

Abstract. X-ray refractive lenses are now well known and have been used suc-
cessfully for focusing synchrotron radiation. However, refraction also occurs during
Bragg and Laue diffraction from perfect crystals. This phenomenon is studied in
detail in this chapter, and a possible application for X-ray monochromators with pro-
filed diffracting surfaces is described. It is shown that by machining the diffracting
crystal surface into a suitable shape it is possible to create a sagittally or meridionally
focusing monochromator, as well as monochromators for filtering higher harmonics
or the p polarization component over a broad range of wavelengths.

26.1 Introduction

Perfect single crystals are important hard X-ray optical elements – X-ray
monochromators. These elements are based on Bragg or Laue diffraction. If
a polychromatic parallel beam impinges on a single crystal under a so-called
Bragg angle θB (Fig. 26.1), then the diffracted beam has a wavelength, λ,
given by the well-known Bragg law (see, e.g., [1])

2d sin θB = kλ. (26.1)

Here d is the relevant lattice plane spacing and k is an integer (k = 1, 2, . . .).
It means that besides the fundamental harmonic (k = 1), higher harmonics

(k = 2, 3, . . .) may be diffracted under the same angle θ. The diffraction of
X-rays on perfect crystals is described by the dynamical theory of diffraction
(see, e.g., [2] or [3]). From this theory it follows that a monochromatic beam
is diffracted in a finite angular region, ω, and the center of this angular region
is larger than the Bragg angle by Δθ as calculated from (26.1). This means
that the Bragg law (26.1) does not hold exactly. The values ω and Δθ are
of the order of arc seconds. This small deviation from the Bragg law is a
manifestation of refraction. For the symmetrical Bragg diffraction (the surface
of crystal is parallel to diffracting crystallographic planes) the angle between
the incident beam and the diffracting planes, θ0, and the angle between the
diffracted beam and diffracting planes, θh, are equal and the crystal behaves
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Fig. 26.1. Symmetric Bragg diffraction on a crystal with a lattice plane spacing d

like a mirror. Thus, from the X-ray optics point of view the refraction is not
too interesting.

The situation is different if the crystal surface is not parallel with the
diffracting crystallographic planes. In this case the crystal does not behave
exactly as a mirror any more. The incident and diffracted beams are not sym-
metrical with respect to the surface normal (which is trivial) but they are also
not symmetrical with respect to the normal to the diffracting crystallographic
planes. There are two limiting cases. The asymmetric diffraction corresponds
to the situation when the surface normal lies in the plane of diffraction, i.e.,
the plane determined by the incident beam and the normal to the diffracting
planes. In this case we will call the crystal asymmetric crystal. The diffracted
beam lies in the plane of diffraction; thus the diffraction is still coplanar.
The inclined diffraction occurs when the plane determined by the surface nor-
mal and the normal to the diffracting planes is perpendicular to the plane
of diffraction. Here we will call the crystal inclined crystal. As will be shown
later, the diffraction is noncoplanar. The general asymmetric diffraction is the
combination of the asymmetric and the inclined diffraction.

26.1.1 Asymmetric Diffraction

For the asymmetric diffraction the values ω0 and Δθ0 for an incident beam and
the values ωh and Δθh for a diffracted beam are not identical and are different
from the values ωs and Δθs for the symmetric diffraction. The following set
of relations holds [4]:

ω0 = ωsb
−1/2,

ωs = (2reλ2P |Fhr|e−M )/πV sin 2θB,
Δθ0 = (1/2)(1 + 1/b)Δθs,

Δθs = reλ2F0r/πV sin 2θB,

ωh = ωs(b)1/2, (26.2)
Δθh = (1/2)(1 + b)Δθs,
θ0 = θB + Δθ0,
θh = θB + Δθh,
b = sin(θB − α)/ sin(θB + α).
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Here V is the unit-cell volume, re = e2/mc2 (classical electron radius), Fhr is
the real part of the structure factor Fh (h stands here for Müller indices hkl),
P is the polarization factor, and e−M is the temperature factor. The index
s stands for the symmetrical diffraction. The angle α is the angle between
the diffracting planes and the surface and is taken as positive for grazing
incidence. The asymmetry index, b, is defined according to Matsushita and
Hashizume [4]. The typical values of Δθs and ωs are from fractions to tens of
angular seconds. The angle θB is the Bragg angle calculated from the Bragg
law (1). For the cross sections CS0 And CSh of the incident and the diffracted
beams the following holds:

CSh = CS0/b (26.3)

and together with (26.2),

ωhCSh = ω0CS0. (26.4)

The consequence of the above relations may be demonstrated with the help
of the DuMond graph (Fig. 26.2a). The real situation is shown in Fig. 26.2b.
Let us suppose that a parallel and polychromatic beam is impinging on an
asymmetrically cut (= asymmetric) crystal with some angle, θ, between the
beam and the lattice planes. The deviation from a mirror-like behavior may be
described by the quantities δ and Δδ. It obviously holds (for one harmonic):

δ(α) = Δθ0 −Δθh,
Δδ(α) = |ω0 − ωh|.

(26.5)

The deviation δ and the spread Δδ, which may be changed by changing α
resembles the refraction of light on a prism. The only difference is that the

Fig. 26.2. (a) DuMond diagram of an asymmetric Bragg diffraction showing that as
compared with a symmetric diffraction the diffracted beam is deviated and spread.
Figure 26.2b shows the asymmetric Bragg diffraction of a polychromatic pencil beam
in real space
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prism accepts a broad range of wavelengths, whereas the crystal accepts only
narrow wavelength interval ω0(dλ/dθ) and thus the interval Δδ is narrow.
Nevertheless, it exhibits a wavelength dispersion, as in the case of a prism.
One may deduce that this refraction effect (δ, Δδ) may play an important role
when the surface of crystal is curved (not bent), as in the case of refraction
lenses in classical optics. The asymmetric diffraction with flat crystals is used
to either compress or to extend the diffracted beam. This will be treated
elsewhere in this book. (see the Chap. 29)

26.1.2 Inclined Diffraction

The inclined Bragg diffraction is a noncoplanar diffraction. The behavior of
the diffracted beam may be seen in Fig. 26.3a, which shows the wave vectors
and the dispersion surfaces in reciprocal space [5,6]. The points P0,1 and P0,2

are the origins of the impinging vectors, directed into the origin, O, of the
reciprocal space, points Ph,1 and Ph,2 are the origins of diffracted vectors for
symmetric Bragg diffraction (β = 0). The points Ph,1,β and Ph,2,β are the
origins of diffracted vectors for the inclined diffraction. The indices 1 and
2 represent the limiting beams within the diffraction region, ω. It is seen
that if the impinging monochromatic and parallel beam is scanned through
the diffraction region, ω0(ω0 = ωs), then the diffracted beam is deviated
from the plane of diffraction, and this deviation grows during the scan. The
consequence of this is demonstrated in Fig. 26.3b. It shows that if a parallel
and polychromatic beam impinges on an inclined crystal with an inclination
angle β, then the diffracted beam is deviated from the plane of diffraction in
a sagittal direction (perpendicular to the plane of diffraction) and the beam

Fig. 26.3. Wave vectors in reciprocal space for an inclined diffraction (a). Inclined
diffraction in a real space (b)
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is sagittally spread. The deviation, δ, of the central beam from the plane of
diffraction is

δ = K tanβ (26.6)

where
K = (2reF0/πV )dhklλ. (26.7)

For Si crystals K = 1.256 × 10−3dhkl (nm) λ (nm). The inclined crystal
monochromators based on the inclined diffraction are used to decrease the
impinging radiation power density of synchrotron radiation. Here the devia-
tion and the spread of the diffracted beam is the manifestation of refraction.
As in the asymmetric diffraction, here the beam spread is also limited by
the wavelength acceptance of a crystal for a given incidence angle. From the
above it is clear that, as in the asymmetric case, interesting applications may
be expected if the diffracting surface is machined into a suitable shape.

The refraction effect exists also in general asymmetric diffraction (the com-
bination of asymmetric and inclined diffraction) and in Laue diffraction. These
will be discussed later.

X-ray refractive lenses are now commonly known and are successfully used
for focusing synchrotron radiation [7]. The aim of our work was to study the
diffraction on crystals with curved diffracting surface and to investigate the
possible applications of effects based on refraction described earlier.

The idea of a crystal monochromator with a curved (not bent) diffracting
surface is not new. The Johansson spectrometer [8, 9] is a Bragg crystal with
a circular profile machined into the working surface of the crystal. The crystal
is then bent. Such a crystal focuses the monochromatic radiation on the Row-
land circle. Spieker [10], designed a channel-cut crystal monochromator with
profiled working surfaces such that the position of the exit beam remains fixed
when tuning the wavelength. These two methods are based only on geometry;
the refraction effect is completely neglected.

26.2 Bragg Diffraction on a Transverse Groove
(Meridional Focusing)

From what was explained in section 26.1.1 and from Fig. 26.2b it may
be deduced that the radiation diffracted on properly designed transverse
groove may be meridionally focused. This is demonstrated in Fig. 26.4a. The
diffracted beam 1 is deviated to the right due to the asymmetric diffraction and
it is spread. The beam 3 is also spread and is deviated in the opposite direction,
i.e., to the left. The beam 2, which is diffracted from the bottom of the groove
where the diffraction is symmetrical, is neither deviated nor spread. The prob-
lem is to find the function g(x) describing the shape of the groove, such that
the centers of all diffracted beams (i.e., centers of the fans) will be concentrated
into one point, the focus. Substituting (26.2) into (26.5) we obtain

δ = 2Δθs tan θB tanα/(tan2 θB − tan2 α). (26.8)
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Fig. 26.4. Bragg diffraction on a transverse groove machined into a symmetric
crystal (a). The diffracted beam is convergent. Figure 26.4b shows image of an
X-ray beam diffracted on a crystal with a transverse groove

Let the profile of the groove be described by a function y = g(x) (see
Fig. 26.4a). Let us suppose that the impinging radiation is parallel. In order
that the beam impinging on the surface of the groove at a certain point,
A(x, y), be diffracted to the focus, the deviation, δ, must be [11]

δ = [−x sin(θB + Δθ0) + y cos(θB + Δθ0)]/f, (26.9)

where f is the focal distance.
Taking into account that tanα = −g′(x) (g′ = dg/dx) and neglecting Δθ0

in (26.9), then (26.8) and (26.9) gives the differential equation [11]

[x sin θB − g(x) cos θB]/f = 2Δθs tan θBg′(x)/{ tan2 θB − [g′(x)]2}, (26.10)

which describes approximately the shape of the transverse groove. In [12] this
equation was further modified to include the finite divergence of the impinging
radiation.

The shape of the groove obviously depends on the wavelength, λ, the
focusing distance, f , and the source–crystal distance, S. In order that such
a focusing monochromator could be used for a broad wavelength region, it is
necessary to produce either several parallel grooves for various λs or only one
groove whose shape changes along the groove axis. The focusing conditions
could be then adjusted by a translation of the crystal.

We have demonstrated this kind of focusing by an experiment performed
in ESRF at the BM5 beamline [12]. The transverse groove, machined into
a Si(111) crystal, was calculated for λ = 0.15 nm, S = 40 m, and f = 2 m.
Figure 26.4b shows the image of the diffracted radiation at the distance of 2m
from the crystal. The figure shows, in the upper and lower parts, the image
of the radiation diffracted from the flat part of the crystal and between them
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there is the image of the radiation which is diffracted on the groove and is
concentrated into a narrow bright line. The width of the groove was about
2.5mm.

Because of the spread, Δδ, of the diffracted beam the focus cannot be
sharp. Even without any refraction effect the diffracted radiation would be
concentrated at the right side of the groove because of the asymmetric diffrac-
tion. It makes sense to compare the peak intensity in the focal plane after
diffraction from the groove and from a flat asymmetric crystal with the
asymmetry corresponding to the right side of the groove. The ray-tracing
simulation of the experiment showed that the groove would give about 3.3
times higher intensity in the peak at the focal plane than an asymmetric
concentrator.

26.3 Harmonics Free Channel-Cut Crystal
Monochromator with Profiled Surface

Another application of diffraction on the meridionally profiled (curved) sur-
face may be a channel-cut crystal monochromator which suppresses higher
harmonics in the broad region of the Bragg angles. Let us suppose that the
first diffracting surface (the first wall of the channel) is flat and symmetrically
cut (its surface is parallel with diffracting crystallographic planes). If the sec-
ond wall is also flat but asymmetrically cut, then Δθh and ωh for the first
wall (Δθh = Δθs and ωh = ωs) is not equal to Δθ0 and ω0 for the second
wall, and only a part (or none) of the radiation diffracted from the first wall
is diffracted from the second wall: i.e., diffraction is detuned. This depends
on the degree of overlap of the corresponding Darwin–Prins (DP) curves. The
values Δω and ω decrease with the order of diffraction k. This means that for
a certain asymmetry of the second wall, the DP curves for higher harmonics
do not overlap any more but the overlapping of DP curves for the fundamen-
tal harmonic is still sufficient. The radiation diffracted from the channel-cut
crystal is then practically free of higher harmonics. This way of obtaining
harmonics rejection, which is valid for one λ and its close neighborhood was
suggested by Matsushita and Hashizume [4]. The mathematical description of
this situation is following:

(P |F (k)
hr |e−M(k))/|F0r| = (1/2)|1/b1/2 − 1| (26.11)

where b corresponds to the second surface and k (>1) stands for the order of
diffraction.

As the left part of (26.11) is independent of θ, b must also be independent
of θ. This implies that α must change with θ, which means that the second
wall must be curved in order that the channel-cut crystal monochromator
rejects higher harmonics in the whole region of θ or λ [13].
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Fig. 26.5. Harmonics-free channel-cut crystal monochromator: the derivation of the
shape of the second diffracting surface (a). The second diffracting surface may be
convex (b) or concave (c)

The equation for b (see (26.2)) may by rewritten as follows:

tanα = [(1 − b)/(1 + b)] tan θ = B tan θ. (26.12)

Let us introduce the axes of the coordinates with the origin on the first
wall, such that the X-ray beam is impinging at the origin on the first wall
(Fig. 26.5a). The axis of rotation of the monochromator also passes through
the origin. Let the profile of the second wall be described by the function f(x).
Then (26.12) may be rewritten in the following form:

df(x)/dx = Bf(x)/x. (26.13)

The angle α is here taken as negative. Thus b > 1 and B < 0. The solution of
this differential equation is

f(x) = CxB (26.14)

where B is negative and the second wall of the crystal is convex.
It is obvious, that by a similar consideration as above, the second wall of

the channel-cut crystal may be cut so that the angle, α, is positive [14]. In this
case the DP acceptance curve for the diffraction on the second wall is shifted
toward higher angles, θ. The condition when the DP curves just touch each
other is the same as in the previous case, however, |1/b1/2 − 1| = 1/b1/2 − 1,
because b < 1. This leads to (26.14) where B is positive and the second wall is
concave. Both kinds of channel-cut crystal monochromators are schematically
shown in Fig. 26.5b, c.

It is obvious that the monochromator with a convex wall concentrates the
diffracted beam but slightly increases its divergence, as follows from para-
graph 26.2 (or section 26.2 or 26.2). The monochromator with concave beam
creates a broad beam and slightly decreases its divergence or may even cre-
ate a slightly convergent beam if the impinging beam is almost parallel, as
it is in the case of synchrotron radiation. This has been discussed in detail
in [14]. Obviously, the harmonics rejection here is the consequence of the
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dependence of refraction on α and the order of diffraction. The harmonics-
free channel-cut crystal monochromator discussed above has not yet been
tested experimentally.

The width of Darwin–Prins function for the π polarization is cos 2θ times
smaller than for the σ polarization component. As was shown by Hart and
Rodrigues [15], a double crystal monochromator in a nondispersive (+,−) set-
ting which is detuned may reject the π polarization component similarly as
it rejects higher harmonics [16, 17]. Only the degree of detuning is different.
It is obvious that there should exist a channel-cut crystal monochromator
with a suitably curved diffracting surface such that it rejects π polariza-
tion components for a broad region of θ. This will be treated in detail
elsewhere [18].

26.4 Bragg Diffraction on a Longitudinal Groove
(Sagittal Focusing)

In section 26.1.2 it was shown that in the case of an inclined diffraction the
diffracted beam is deviated sagittally (perpendicularly to the plane of diffrac-
tion). Let us suppose that a longitudinal groove is produced in the diffracting
surface of a crystal, as shown in Fig. 26.6a. The opposite walls of the groove
deviate the beam in opposite directions. It is clear, that a properly designed
shape of the groove may sagittally concentrate the diffracted beam at cer-
tain distance, f , from the crystal. The geometry of the diffraction is shown in
Fig. 26.6b. For the determination of the shape of the groove we will suppose

Fig. 26.6. Bragg diffraction on a crystal with a longitudinal groove (a). The diffrac-
ted beam is convergent. Geometry of the sagittal focusing due to the longitudinal
groove (top view) (b)
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that the distance of the grooved crystal monochromator from a point source
is S and the focal length is f . Let the shape of the groove be described by a
function y(x). For the groove to act as a lens, it is necessary that the beam
impinging on the crystal (groove) at a distance x from the longitudinal axis
of the groove, be deviated by an angle

δ ∼= tan δ ∼= [x(S + f)/S]/f = xR/f. (26.15)

Equation (26.6) may be rewritten in the following way:

tan δ = K(dy/dx). (26.16)

Equations (26.15) and (26.16) give a differential equation with the solution [6]

y = (R/2Kf)x2 + constant. (26.17)

The meaning of the above result is that the longitudinal parabolic groove
focuses the radiation and thus acts as a sagittally focusing lens. For syn-
chrotron radiation two crystals in a parallel, nondispersive (+,−) orientation
are commonly used. The parabolic longitudinal groove may be then produced
in both crystals. If only one crystal or more crystals in a nondispersive posi-
tion are used, then the advantage of the sagittal focusing is deteriorated by
two effects. The first one is shown in Fig. 26.7a. The vertical size of the beam
increases after each diffraction. This depends on the depth of the groove. The
second effect is the sagittal spread of the deviated beam which prevents the
focus from being sharp.

Both effects mentioned above (aberrations) may be canceled by using a
dispersive arrangement of crystals. From Fig. 26.7b it is clearly seen that
the vertical broadening which appears after diffraction from first two crys-
tals is completely canceled after diffraction on the following two crystals. The
dispersion arrangement also cancels the sagittal spread seen in Fig. 26.3b.

Fig. 26.7. A longitudinal groove broadens the diffracted beam vertically (a).
Dispersive four crystal arrangement with longitudinal grooves cancels the vertical
broadening of a diffracted beam originating from the first two crystals (b)
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The nature of the sagittal spread is shown in Fig. 26.3a. When the imping-
ing (monochromatic) beam spans the diffraction region, ω0, from smaller to
higher θ, then the sagittal deviation grows. For example the beam correspond-
ing to a smaller θ at the beginning of the diffraction region leaves the crystal
with minimal sagittal deviation. Let us suppose that there is another crys-
tal adjusted in dispersion position with respect to the first crystal. This beam
impinges on the second crystal at the end of the diffraction region correspond-
ing to a higher θ and the sagittal deviation is maximal. The resulting deviation
after diffraction on both crystals is 2δ for any beam impinging on the crys-
tals within the region ω0. The angle δ is the average deviation as shown in
Fig. 26.3b. This holds for any θ within the region ω. This very important result
shows that the (−,+,+,−) arrangement, shown in Fig. 26.7b, is ideal [19].
The second and the third crystals cancel the aberrations discussed above and
the first and fourth crystals keep the direction of impinging and exit beams
the same, which is important for synchrotron radiation. The position of the
exit beam remains independent of θ. Moreover, the dispersion arrangement is
the high resolution one. This arrangement should provide practically point-to-
point focusing, which means that we may expect a sharp focus. The practical
expressions important for the design of the parabolic groove are following

y(mm) = a(mm−1)(x(mm))2, (26.18)
a = (S + f)/2NKfS, (26.19)

where f (mm) is the focusing distance, S (mm) is the monochromator-source
distance and N is the number of diffraction events on the grooves. For the
four crystal arrangement shown in Fig. 26.7b, N = 4 provided that the beam
is diffracted only once on each crystal. The focusing distance f may be
determined from

f = S/(2aNKS − 1). (26.20)

The parabolic groove may also be cut into an asymmetrically cut crystal.
This is treated in detail by Hrdý [20]. It was shown there that for this case
all the above formulae may be used. Only K must be replaced by

K ′ = K [(2 + b+ 1/b)/4 cosα]. (26.21)

The difference between the function of the symmetrically and asymmetri-
cally cut grooved crystals may be seen in Fig. 26.8. It shows a dependence of
the focusing distance, f , on the Bragg angle θ for a four-crystal (+,−,−,+)
monochromator with the same crystals and grooves. Crystals cut symmetri-
cally is compared with asymmetric crystals with α = 12.38◦. The monochro-
mator with the asymmetric crystals gives a shorter focusing distance. In the
angular region around θ = 22◦ the focusing distance is almost constant and
for the highly asymmetric case, close to θ = α, the focusing distance is very
small. The above expressions enable one to be able to design the crystals, the
grooves and the asymmetry angle to meet the experimental requirements.
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Fig. 26.8. The dependence of the sagittal focusing distance, f , on a Bragg angle, θ,
for a symmetric (α = 0) and an asymmetric Bragg diffraction

As was shown earlier, the ideal shape of the longitudinal groove is a
parabolic groove. Our first experiment [19], which successfully demonstrated
the sagittal focusing, used two channel-cut crystals with the parabolic grooves
cut into each diffracting surface (Fig. 26.9a). To produce the grooves a precise
diamond tool with a parabolic profile was ordered. As the tool was expensive,
we later chose another approach [21]. We drilled a circular hole into a Si sin-
gle crystal either parallel to diffracting planes (to simulate the symmetrical
diffraction) or under some angle, α, to simulate an asymmetric diffraction.
The X-ray beam is then diffracted twice inside the hole. The diameter D of
the hole is given by

D = 1/a, (26.22)

where a is the parameter of the parabola (26.18). The circular hole is then
a good approximation of the parabolic groove if the sagittal beam size is
small. One such crystal with three holes of different diameters, for three dif-
ferent λs, drilled in a Si crystal and used for an experiment at APS is shown
in Fig. 26.9b. The more sophisticated design of the asymmetric channel-cut
crystal with circular grooves is shown in Fig. 26.9c. This crystal monochro-
mator was designed such that it accepts a relatively large sagittal extent of a
synchrotron radiation beam (BM5 beamline at ESRF) and creates a focus at
the distance of 20m. Finally we produced asymmetric crystals with parabolic
holes (Fig. 26.9d) but the experiment has not been done so far. The crystals
with a parabolic hole seem to be the ideal solution because it is compact and
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Fig. 26.9. Various realizations of sagittally focusing monochromator crystals. Two
such crystals in a dispersive arrangement were used. A channel-cut crystal with
parabolic grooves is shown in Fig. 26.9a. Figure 26.9b shows a symmetric crystal
with three cylindrical holes for three different wavelengths. Diffraction occurs twice
inside the hole. The more sophisticated asymmetric crystal with cylindrical holes of
large diameter, D, is shown in Fig. 26.9c. An asymmetric crystal with a parabolic
hole is shown in Fig. 26.9d

practically aberration free even though the crystal production is rather labo-
rious. A disadvantage of the crystal with holes is that they cannot be detuned
to reject harmonics. In fact, however, this is not a problem. Higher harmonics
are practically not focused because of low refraction. It means that in the
focus the fundamental harmonic is concentrated whereas higher harmonics
are located mostly out of the focus.

To simulate the focusing described above, a ray-tracing program had to be
developed which included the refraction effect during Bragg diffraction [22].
This program, although being based on some simplifications like rectangular
shape of DP curves, proved to be very useful when discussing the influence of
misalignments and shape imperfections of crystals. Later on, another program
based on precise dynamical theory was developed by another group [23] and
was used to study the aberration of the (−,+,+,−) arrangement with four
longitudinal parabolic grooves [24]. This showed that the system is practically
aberration free. In spite of this, the size of the focus in our experiments was
always somewhat larger than the theoretical one. This is due to the quality of
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the groove. First, the circular shape introduces some aberration. Second, it is
difficult to produce an exact shape into the Si crystal, because after machining
the surface must be etched and mechano-chemically polished. This is done by
hand, and to keep the exact groove profile with high precision is very difficult.

The focusing distance in the (−,+,+,−) arrangement depends on the
parameter a of the parabola and the wavelength, λ. For example in the first
experiment at NSLS [19] the width of the groove in the Si channel-cut crystals
was 2 mm, the depth was slightly more than 1 mm and the energy E = 15 keV.
The focusing distance was 4.5m and the beam, whose size at the focusing dis-
tance would be 2.7mm without focusing, was squeezed to a spot of 0.29mm
despite the relatively bad quality of the groove surface. The experiment at the
5ID beamline at APS [25] with a hole diameters of 7.2mm for 8.048keV and
4.4mm for 13 keV, the focusing distance of 20m, the crystals–source distance
of 55m, and Si(111) symmetrical diffraction gave the focus size of 417 μm,
which is 110 μm larger than the size of the demagnified image of the source.
Finally, in the experiment performed at the BM5 beamline at ESRF [26], we
used an asymmetric Si(111) channel-cut crystal of a very special design with
hole diameters of 22mm such that the size of the crystals could be reason-
ably small (Fig. 26.9c). The source-to-crystals distance was 40m, the focusing
distance was about 20m, and the energy about 8 keV. The crystals accepted
6mm of the horizontal size of the beam and created the focus of the size of
0.4mm. Figure 26.10 shows the focused beam. The focal spot is clearly seen
against the broad background of higher harmonics which are practically not
focused because of low refraction. The width of the unfocused radiation at the
focusing distance was 8.8mm. The size of the image of the demagnified source
at the focal distance was 0.12mm. In the last two experiments mentioned, the
diffracting surfaces were mechano-chemically polished.

It is seen that for the long focusing distances the size of the demagnified
image of the source is also large. There are three ways by which one can
decrease the focusing distances. The first one is to use strongly asymmetric
diffraction as is shown in Fig. 26.8. This is possible only for a narrow wave-
length region. The second way is to use a multiple diffraction arrangement,

Fig. 26.10. Sagittally focused first harmonics on the background of higher harmon-
ics which are practically not focused. The image was taken at 20m from the crystal
shown in Fig. 26.9c. The width of the image of the higher harmonics is about 9mm
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Fig. 26.11. Multiple crystal arrangements to decrease the focusing distance

Fig. 26.12. “Toothed” profile of a longitudinal groove to reduce the size of a crystal
and the vertical broadening of a diffracted beam

for example (−,+,−,+,+,−,+,−) (Fig. 26.11a). When using channel-cut
crystals with four reflections on each crystal, because the vertical size of the
beam grows after each reflection, the required size of the crystal might be
larger than is technically feasible. To avoid this, several (even number) of
channel cut crystals may be arranged in a dispersive position to create the
arrangement (−,+,+,−,−,+,+,−, . . .) (Fig. 26.11b). The alignment of such
a crystal arrangement would obviously be complicated. The third possibility
is to use a very narrow groove (large a) which leads to a very low angular
acceptance. From the above it is seen that the microfocusing by this method
is principally possible but with the present technology of growing Si crystals
and preparing their perfect curved surfaces it is difficult. By this method,
however, it is very easy to concentrate the diffracted radiation sagittally at
long focusing distances, because a large change of β results in a small change
of the sagittal deviation, δ. It means that the precision of the parabolic groove
(or the hole) does not have to be extremely high. As compared with the clas-
sical method, i.e., two crystals with the second crystal sagittally bent [27],
the diffractive–refractive optics is compact, first two reflecting surfaces may
be easily cooled as a whole when using a channel-cut crystals or crystals with
holes. However, the tunability range is smaller and the acceptance is also
smaller with presently available Si crystal sizes. On the other hand, the focus
should be sharper because of the negligible aberration. Theoretically, the hor-
izontal (sagittal) acceptance may be large but if the parabola describing the
shape of the groove is narrow (large a) then the height of the crystal needed
may be too large. This problem may be solved by a more complicated profile
of the groove, as shown in Fig. 26.12. The tunability range may be increased
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by producing several holes or grooves with different sizes and different asym-
metry angles in each crystal. Switching between different wavelength regions
may be accompanied by switching between different grooves or holes. Another
possibility may be to produce grooves or holes with variable parameters along
their axes (e.g., a conical groove or hole). The change of wavelength may then
be accomplished simply by shifting the crystals along the axis of the groove.

So far focusing only in one direction has been described. As suggested
in [11] it should in principle be possible in a (−,+,+,−) arrangement to
produce longitudinal grooves, for example, in the second and the third crystals
and transverse grooves in the fourth crystal. This should concentrate the beam
in both directions. Another possibility may be to produce a properly designed
depression in the surface of one crystal. Neither of the methods has been
tested experimentally.

26.5 Laue Diffraction on a Profiled Surface
(Sagittal Focusing)

A logical continuation of the work described above is the study of the possible
application of the refraction effect occurring during Laue diffraction. Recently,
the sagittal deviation of a beam diffracted from a sagittally inclined surface
was studied for Laue asymmetric diffraction [28,29]. In this work the sagittal
deviation of the beam diffracted from a flat asymmetric Laue crystal with
a sagittally inclined wedge was observed experimentally. The simple theory
presented in [28] gives the formula for the sagittal deviation, δ, of the beam
(Fig. 26.13):

δ = (|PN|λ) tanβ = (|LP| [cos θ/cos(θ + α)]λ) tan β, (26.23)

where

|LP| = [reλ/(2πV cos θB)][F0r − ρ|Fhr| exp(−M)]. (26.24)

Fig. 26.13. Laue diffraction: diffracted and forward diffracted beam; both are sagit-
taly deviated
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Here re is again the classical electron radius, V is the volume of the unit
cell, θB is the Bragg angle, ρ is the polarization factor, and F0r and Fhr are
the real parts of the structure factors of the corresponding reflections (see, for
example, [2]). The angle α is the deviation of the entrance surface from that in
the symmetrical Laue case and β is the inclination angle. Here, it is assumed
that in the vicinity of the Laue point the Ewald spheres may be replaced by
planes.

As was suggested in [28] the effect of sagittal deviation discussed above
may be utilized to sagittally focus the synchrotron radiation by a Laue crystal
with a parabolic profile of one or both diffracting surfaces. Equation (26.23)
is analogous to the formula (26.6). As in the Bragg case, this leads directly
to a parabolic shape y = ax2 of the diffracting surface. The parabolic surface
may be approximated by a circular hole with the diameter D, where D = 1/a.
Obviously, (26.23) could be applied to the design of a sagittally focusing Laue
crystal with the profiled diffracting surface (parabolic or circular) if K from
(26.19) is replaced by (|LP|[cos θ/cos(θ + α)]λ). This is valid only if the exit
surface is profiled and for the diffracted, not a forward diffracted, beam (see
Fig. 26.13). The sagittal deviation of the forward diffracted beam is much
smaller. The equally profiled entrance surface influences the sagittal deviation
of the diffracted beam much less if the geometry is as shown in Fig. 26.13.
This is discussed in detail in [30]. To understand the meaning of |LP| and
|PN| in reciprocal space see [28].

For the experiment we used an asymmetric Si Laue crystal shown in
Fig. 26.14. The diffracting part is the space between two cylindrical holes
with the diameter D = 1/a = 8 mm. (The circle with the diameter D = 1/a
is a good approximation of parabola y = ax2 for small x). The walls of the
holes represent a sagittal tilt. The (111) diffracting crystallographic planes
are deviated from the holes axes by 7.95◦, so that α = 82.05◦. Both the

Fig. 26.14. Asymmetric Laue crystal with profiled entrance and exit surface. The
working area is the space between the two circular holes
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entrance and the exit diffraction surfaces were mechano-chemically polished.
The experiment was performed at the BM05 beamline at ESRF (MI751).

After the Laue crystal we used a Bragg Si(111) symmetric crystal to redi-
rect the Laue diffracted beam into a horizontal direction. To limit the presence
of higher harmonics in the beam and to avoid the problem with energy deter-
mination, we used a primary monochromator which was set to 15.35KeV
(θ = 7.4◦) and was detuned. There were two beams which were diffracted
from the crystal. The forward diffracted beam was not used, because the
refraction effect is small (the refraction effect is stronger for beams forming
a smaller angle with a surface). The diffracted beam which was used formed
the angle of 0.55◦ with the crystal exit surface and deviated from the hori-
zontal plane by the angle 2θ = 14.8◦. Even if we had used a white beam, this
combination of the Laue and Bragg crystals would have allowed us to reject
higher harmonics, the angular distributions of harmonics for Bragg and Laue
diffraction being different. The beam size was delimited by a slit 3 × 3 mm
located before the Laue crystal. The crystals–source distance was 35m.

Figure 26.15a shows the image of the diffracted beam just after the Bragg
crystal. The horizontal (sagittal) dimension of the spot, i.e., the distance
between the border beams A and B is 3.22mm. The shape of the spot
is a narrow “smile” because of the circular profile of the diffracting sur-
faces and the asymmetric diffraction. The image taken at 20m from the
crystal (Fig. 26.15b) is more complicated: it has the shape of a horseshoe.
The border beams A and B are sagitally deviated such that their distance
is 1.720mm. Without focusing, the distance between both beams would be
3.22× (55/35) = 5 mm (the crystals–source distance is 35m and the detector–
source distance is 55m). Together with the sagittal deviation, the beams are
also sagittaly spread (see the dimensions a and b). This situation is analogous

Fig. 26.15. The image of the Laue diffracted beam from the crystal shown in
Fig. 26.14. Figure 26.15a shows the image taken close to the crystal, Fig. 26.15b is
the image taken 20 m from the crystal
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to the Bragg diffractive–refractive optics if only one crystal is used. The higher
the deviation is, the higher is the spread. The consequence of this is that one
crystal, or more crystals in a nondispersive arrangement, cannot create a sharp
focus. In the Bragg case only two or more crystals in the dispersive arrange-
ment completely cancel the sagittal spread so that the focus may be sharp [19].
We suppose that the same holds for the Laue diffractive–refractive optics.

From the distances between the beams A and B near the crystals and at
20m from the crystals we can deduce that the diffracted radiation is conver-
gent and the focusing distance is about +43 m, which is, however, different
from the theoretical prediction. This indicates that further theoretical and
experimental work is necessary.

The experiment described above shows that the idea of diffractive–
refractive optics developed for Bragg diffraction in the past can be extended
also to Laue diffraction. It was shown that the asymmetric Laue crystal with
profiled diffracting surfaces may concentrate the diffracted beam and thus
increase the intensity in the diffraction spot.

To improve the quality of the focus, i.e., to cancel the sagittal and vertical
spreads, two Laue crystals with profiled surfaces in dispersive setting should
be used (see the analogy with the Bragg diffractive–refractive optics). The
experimental test of this idea is under preparation.

Such sagittal focusing might in some cases serve as an alternative to
the sagittal focusing by a sagittally bent asymmetric Laue monochromator
described by Zhong et al. [31, 32].

26.6 Conclusion

Practically all existing X-ray crystal monochromators are produced with a flat
diffracting surface. Such crystals may be bent to focus diffracted radiation.
In this chapter it is shown that if the diffracting surface is machined into a
suitable shape, the diffracted monochromatic beam may gain some additional
useful properties. It may be sagittally or meridionally focused or either higher
harmonics or the π polarization component may be filtered over a broad range
of Bragg angles. It is shown that these properties are the result of refraction.
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12. J. Hrdý, E. Ziegler, N. Artemiev, F. Franc, J. Hrdá, Th. Bigault, A. Freund, J.
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Neutron Multiple Reflections Excited
in Cylindrically Bent Perfect Crystals
and Their Possible use for High-Resolution

Neutron Scattering

P. Mikula, M. Vrána, and V. Wagner

Abstract. Bent prefect crystals can give many strong multiple-reflection processes
through utilising two sets of lattice planes which are mutually in the dispersive set-
ting. They provide doubly reflected beams with a very narrow bandwidths and high
collimation. Such strong multiple-reflection processes realized in cylindrically bent
perfect crystals have been proven to be suitable for ultra high-resolution monochro-
mating. Calculations indicate that the multiple-reflection effects could easily be
identified. Some examples of powder diffraction and high resolution radiography
are also presented.

27.1 Introduction

In many cases new samples and necessity of measurement of finer effects
require a substantial increase of angular and/or energy resolution of conven-
tional diffractometers operating in a conventional performance mode. In such a
case, a convenient monochromator plays a key role. Bent perfect crystal (BPC)
slabs as neutron monochromators have been proved as an excellent alterna-
tive of conventional mosaic crystals. They provide a way how to increase
luminosity and angular/energy resolution of some scattering devices installed
usually at steady state sources [1, 2]. An increase of the luminosity is car-
ried out by focusing in real space, while a higher resolution can be achieved
by focusing in momentum space and rather small effective mosaicity of the
BPCs. However, in the case of TOF scattering devices, the BPC elements
practically have not been used and with respect to the TOF techniques the
Bragg diffraction optics is far from being fully explored. We have already
demonstrated that Si BPCs in fully asymmetric diffraction geometry and
in combination with a linear position sensitive detector could be very effi-
cient analyzers for high-resolution TOF spectrometry [3, 4]. New possibilities
of more effective use of neutron scattering devices have recently opened an
employment of sandwich type BPC monochromators/analyzers. They pro-
vide, e.g., multiple wavelength monochromatized beams [5] and a larger range
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of curvatures permitting an easier luminosity and resolution optimization of
some dedicated instruments [6, 7]. Together with construction of new pow-
erful neutron sources, new scattering instruments with improved resolution
properties are designed. One of the candidates of monochromators for very
high resolution neutron diffractometers and spectrometers appear so-called
dispersive monochromators based on a dispersive double diffraction process.
It can be realized by means of two independent crystals [8, 9] or by excit-
ing a strong multiple reflection effect inside one elastically deformed perfect
crystals [10, 11].

27.2 Multiple Bragg Reflections
in Elastically Bent Perfect Crystals

The effects of multiple Bragg reflections (MBR) in a single crystal can be
observed when more than one set of planes are simultaneously operative for a
given wavelength, i.e., when more than two reciprocal lattice points are at the
Ewald sphere. MBR-effects can result in an increase of the intensity of a weak
primary reflection (Umweganregung). The extreme case of this is the simu-
lation of forbidden primary reflection. For X-rays, the positive MBR-peaks
were first observed by Renninger [10] and Moon and Shull for neutrons in
mosaic crystals [11]. However, it has been found that strong MBR-effects can
be excited also in BPC elements [12–16]. In the simplest case of the MBR-
effect, a particular weak or forbidden primary reflection is strengthened by a
successive cooperation of the two allowed reflections (secondary and tertiary).
All these reflections are defined by the scattering vectors g1, g2, and g3,
respectively. Then, the doubly reflected beam has the same direction as the
one that could have been reflected by the particular primary set of planes (see
Fig. 27.1). Scattering vectors g2 and g3 are in relation to g1 as g1 = g2 + g3.

Fig. 27.1. Schematic diagram of a two-step multiple Bragg reflection simulating
a weak or forbidden reflection. The numbers 1, 2, and 3 represent the primary,
secondary and tertiary reflection planes, respectively
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It follows from the crystal symmetry that when a secondary reflection ful-
fils the Bragg condition simultaneously with the primary one, there exists
automatically a tertiary reflection defined by g3 = g1 – g2. In cases when an
MBR – monochromator would be envisaged for a practical employment the
choice of a suitable elastic deformation and the chosen diffraction geometry
pay very important role in order to minimize the primary reflection as well as
the higher order contributions which accompany the MBR-effect. It is known
that the integrated reflectivity of a deformed crystal is a function of the scalar
product (g ·u) [17,18] which may be zero for the primary and its higher order
reflections, i.e., (g1 · u) = 0 and the corresponding integrated reflectivity is
independent of the deformation represented by the displacement u [18]. This
is also valid in our case of cylindrical bending and symmetric transmission
geometry. On the other hand (g2 · u) = −(g3 · u) need not be zero and the
deformation can bring about a large increase of the MBR-effect keeping the
integrated reflectivity related to the higher order reflections constant.

It was already experimentally proved that due to the fact that the second
and third system of reflection planes are mutually in the dispersive setting, the
doubly reflected beam has a narrow bandwidth Δλ/λ in the range 10−4–10−3

and collimation of the orders of minutes of arc [15]. Furthermore, it was also
pointed out that the MBR-effect could possibly be used for an ultrahigh res-
olution monochromatization [16]. Such MBR-effect is in fact a result of the
dispersive double-reflection process realized in one crystal.

For investigation of MBR-effects usually two methods are usually used:

(a) Method of azimuthal rotation of the crystal lattice around the scattering
vector g1 of the primary reflection for a fixed wavelength [12–14].

(b) Method of θ − 2θD scan in the white beam for a fixed azimuthal angle.

In the present case we preferred just the latter method of θ − 2θD scan
when setting the cylindrically bent perfect Si-crystal slabs for diffraction in
symmetric transmission geometry. Three Si-slabs of different cuts were used
(see Fig. 27.2). All three slabs then permit simulation of forbidden primary
reflections 222 or 002.

Fig. 27.2. Schematic diagram displaying the cuts of the used crystal slabs
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Fig. 27.3. Coordinate system describing the MBR reflection occurring with the
primary reflection

27.3 Calculation

From the geometry shown in Fig. 27.3 it is possible to derive the following
relations

nαβγ g1 = |g1| sin θ
nαβγ ghkl = |ghkl| sinψ
nαβγ b = |b| cos θ,

(27.1)

where |nαβγ| = 1 from the definition and

sinψ = (d1/dhkl) sin θ (27.2)

is given from the Bragg condition (d is the lattice spacing). Then, for crystal
slabs used in our experiment we could derive the relations providing Bragg
angles θ of the primary reflection where secondary reflection represented by
the Miller indices h, k, l can participate in the MBR-process.

1. For the crystal slab with the largest surface parallel to (110) and the longest
edge parallel to [111]

tan θ = (3/2)1/2(−h+ k)/[(h2 + k2 + l2)/m− h− k − l]. (27.3)

2. For the crystal slab with the largest surface parallel to (112) and the longest
edge parallel to [111]

tan θ = (1/2)1/2(−h− k + 2l)/[(h2 + k2 + l2)/m− h− k − l]. (27.4)

3. For the crystal slab with the largest surface parallel to (110) and the longest
edge parallel to [001]

tan θ = (1/2)1/2(−h+ k)/[(h2 + k2 + l2)/m− l]. (27.5)
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The parameter m in the relations (27.3)–(27.5) means the order of the
primary reflection.

Using the formulae (27.3)–(27.5), in the range of θ − 2θD scans one can
easily identify a lot of secondary and tertiary reflections participating in
MBR-process with respect to a chosen primary reflection. However, when
setting the crystal in the polychromatic incident beam, similarly to a sin-
gle reflection case, the presence of higher (or lower) orders can be found.
For example, if in our case we are interested in MBR studies with respect
to a forbidden primary Si(222) reflection, in many cases one can also find
an accompanied MBR-effect with respect to the primary reflections Si(111),
Si(333), Si(444) etc., simultaneously. In practice, all undesirable higher (or
lower) order contributions can be eliminated, e.g., by a neutron wavelength
selector. Sometimes, the wavelength distribution of neutrons passing through
the neutron guide can be favorable, when undesirable higher order contribu-
tions could be automatically eliminated, because their corresponding shorter
wavelength neutrons are not present in the spectrum. Therefore, in our case
we omitted all MBR-contributions corresponding to the neutron wavelengths
smaller than 0.08nm. Furthermore, one should consider that the reflection
probability related to individual secondary and tertiary reflections is rather
small for shorter neutron wavelengths [19, 20]. Contrary to the mosaic crys-
tals, in our case of bent crystals for a detailed estimation of the individual
MBR-contributions the value of |g2,3 ·u|/(|u| · |g2,3|) plays also an important
role [18].

27.4 Search for Strong Multiple Bragg Reflection Effects

The experimental search of the MBR-effects appearing at different wave-
lengths was done on the two axis POLDI diffractometer installed at the end
of the thermal neutron guide in GKSS Geesthacht. The Si-slab was situated
in the white beam in the place of the monochromator. Having at a disposal
three cylindrically bent Si-crystal slabs of different cut, after setting them for
symmetric transmission, we carried out θ − 2θD scans in the θ-range from
7◦ to 60◦ (for one azimuthal position) with the largest surface of the crystal
perpendicular to the primary scattering plane. In such a case the deformation
brought about by bending had no influence on the reflectivity of the primary
reflection but a strong effect on the secondary and tertiary reflections partici-
pating in MBR-process. Figures 27.4–27.6 display parts of the individual scans
where the MBR-effects were strongly excited. For the sake of comparison, the
scans with a flat nonbent crystal as well as the background are also intro-
duced in Fig. 27.4. It should be pointed out that the individual crystal slabs
are of different thickness whose parameter is also very important for a final
estimation of the reflectivity power of the MBR-monochromator. Simply, it
can be said that the intensity of the MBR-effect is linearly proportional to the
crystal thickness. Then, of course, the divergenceΔθ and the Δλ spread of the
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diffracted beam correspondingly increase. It should be pointed out that before
some practical use of the MBR- monochromator, an optimization procedure
of the curvature with respect to the individual MBR-effects should be carried
out. On the basis of the relations (27.3)–(27.5), we could easily determine the
secondary and tertiary planes contributing to the observed MBR-effects as
well as the corresponding Bragg angles θ. Table 27.1 shows the results corres-
ponding to the first four strongest peaks from the Fig. 27.4 which are related

Table 27.1. Calculated reflections and the Bragg angles of the strongest peaks

Peak N. Primary, secondary, θ/deg Peak N. Primary, secondary, θ/deg
tertiary reflections tertiary reflections

1 111/513/602 11.536 2 111/133/224 13.763
1 111/062/153 11.536 2 111/151/040 13.763
1 111/533/624 11.536 2 111/400/511 13.763
1 111/264/353 11.536 2 111/224/313 13.763
1 111/313/404 11.536 3 111/153/242 14.705
1 111/044/133 11.536 3 111/422/513 14.705
1 111/373/462 11.536 4 222/311/513 29.956
1 111/642/733 11.536 4 222/313/511 29.956
1 111/133/022 11.536 4 222/151/133 29.956
1 111/202/313 11.536 4 222/153/131 29.956

Fig. 27.4. Part of θ − 2θD scan with the crystal slab (the largest face parallel to
(110)) set for (hhh)1 reflections in the symmetric transmission geometry
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Fig. 27.5. θ− 2θD scan with the crystal slab (the largest face parallel to (112)) set
for (hhh)1 reflections in the symmetric transmission geometry

to the allowed Si(111) or forbidden Si(222) reflections. The wavelength λ is
then determined simply by Bragg equation applied on the primary reflection.
It can be seen from Table 27.1 that the MBR-peak observed at θ = 11.536◦

for λ = 0.125 nm is in fact an additional “strengthening” of the intensity of
Si(111) primary reflection by ten simultaneous multiple reflections. Similarly,
the calculation can be carried out for other peaks observed at different cuts
of crystal slabs. It can be seen from Figs. 27.4–27.6 that the density of the
MBR-peaks is higher for smaller Bragg angles, i.e., for shorter neutron wave-
lengths because the density of reciprocal lattice points on the Ewald sphere
increases with 1/λ. It is clear that the calculations can provide only angular
positions of possible MBR-effects on the θ − 2θ scan. However, the height of
the MBR-signal depends on several parameters. First of all, it is the value
of crystal curvature. Then, taking into account the importance of the value
of |g2,3 · u|/(|u| · |g2,3|), the diffraction geometry (symmetric transmission,
symmetric reflection, or asymmetric alternatives) plays also an important role.
Furthermore, one can expect a linear dependence of the signal on the thickness
of the crystal slab. Due to these facts, for finding the optimum parameters
of the MBR-monochromator and the performance of the scattering device,
Monte Carlo simulations would be desirable [21].
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Fig. 27.6. θ− 2θD scan with the crystal slab (the largest face parallel to (110)) set
for (001)1 reflections in the symmetric transmission geometry

27.5 Powder Diffraction Experimental Test

For the first experimental powder test we chose the effect observed at θ =
29.956◦ which is related to the simulation of the forbidden 222 reflection by
a cooperative action of 153/131 and 311/513 (secondary/tertiary) reflections
at λ = 0.156 nm (see Fig. 27.4). The powder diffraction test carried out with
a solid α-Fe polycrystalline standard sample of the diameter of Φ = 2 mm
(see Fig. 27.7) displays several diffraction profiles that clearly prove the appli-
cability of the MBR-monochromator for high-resolution diffraction studies.
FWHM of the diffraction profiles are, however, determined by the spatial
resolution of the used PSD (1.5mm) and the width of the sample (Φ = 2 mm).
Therefore, it can be considered as an upper limit. Then, this performance we
used for investigation of Fe-reflections in an induction hardened S45C steel rod
(Φ = 20 mm) having different phase composition at different distances from
the rod axis [22]. The gauge volume was determined by 2 mm wide slits in the
incident as well as diffracted beam. Figure 27.8 displays the diffraction profile
obtained at the distance 8mm from the axis. Similarly, Fig. 27.9 displays the
diffraction profile obtained at the distance 6mm from the axis. Thanks to the
used high-resolution monochromatic beam, after a fitting procedure we could
reliably determined contributions of the individual phases.
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Fig. 27.7. Examples of the α-Fe profiles taken with the MBR-monochromator

Fig. 27.8. Induction-hardened S45C steel diffraction profile taken at 2mm under
the surface with the fitted profiles related to the perlitic, ferritic and martensitic
phases

27.6 Neutron Radiography Experimental Test

Using MBR-effect observed with the crystal slab having the main face par-
allel to the planes (112) (see Fig. 27.5) at θ = 48.526◦ and λ = 0.235 nm
we have carried another test of a possible application in the field of neutron
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Fig. 27.9. Induction-hardened S45C steel diffraction profile taken at 4mm under
the surface with the fitted profiles related to the ferritic and martensitic phases

Fig. 27.10. The radiography image (right) of the screw of a steel sample (left)
which is usually used in a tension/compression rig for tensile tests in mechanical
engineering

radiography. The idea consists in a fact that thanks to the excellent property
of the MBR-beam (high collimation and high monochromaticity) the imaging
plate does not need to be necessarily in a close contact with the irradiated
object but at some distance up to 1m. Moreover, in this case, the cross section
of the MBR-beam is several cm2 which is useful for 1:1 image. Figure 27.10
displays the radiography image of a screw taken by the image plate situated
at the distance of 70 cm from the sample. As can be seen from Fig. 27.10, the
obtained image really confirms very good collimation and spatial resolution
of the beam; however, in this case it is only in the horizontal plane. In the
vertical plane the collimation is still rather high, because all planes partic-
ipated in the MBR-process are perpendicular to the horizontal (scattering)
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Fig. 27.11. The radiography image (right) and the photo of the steel office
staples (left)

plane. Then the dispersive arrangement between the secondary and tertiary
lattice planes has much weaker influence on the collimation and monochro-
maticity in the vertical plane. Similarly Fig. 27.11 displays the radiography
image of the office staples also taken at the distance of 70 cm. In this case a
new remarkable effect was observed. If we take into account that the thickness
of the office staples is only a few tenths of millimeter, the obtained image is
not based on absorption, but thanks to a high-beam monochromaticity, on
the refraction principle occurring at the edges between the individual needles.
This new radiography method can be considered as a complementary one to
the so-called phase contrast radiography [23–25]. It is clear that much atten-
tion should be paid in developing this new radiography technique. First of
all, other MBR-planes should be tested in order to achieve high collimation
and monochromaticity of the neutron beam in both horizontal and verti-
cal directions. Then, the MBR-effects should be studied on the cold neutron
source at longer neutron wavelengths where much stronger refraction effects
are expected.
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Volume Modulated Diffraction X-Ray Optics

A. Erko, A. Firsov, D.V. Roshchoupkin, and I. Schelokov

Abstract. Systematic experimental and theoretical investigations of different types
of Bragg-Fresnel gratings, both static and dynamic, are discussed. Static gratings
are produced by etching in a multilayer or by evaporating gold or nickel masks on the
surfaces of symmetric or asymmetric Si [111] crystals. These have been used to obtain
X-ray diffraction at different energies. The properties of both sagittal and meridional
diffraction gratings are discussed. Dynamic diffraction gratings are produced by
propagating a surface acoustic wave along a piezoelectric crystal. Experimental data
are compared with the theoretical calculations.

28.1 Introduction

Experimental and theoretical data point to a new application of nanometer
radiation in diagnostics, transmission and processing of information: X-ray
electronics as a branch of the general science of electromagnetic radiation
control. This application is based on the development of powerful radia-
tion sources in the nanometer range, synchrotrons, storage rings and X-ray
lasers in the future, and on the methods of microelectronics technology that
enable fabrication of structures of X-Ray electronic devices with submicron
or nanometer element sizes, i.e. micro-photonic devices. As in other fields of
engineering associated with receiving, transmission, processing and storage of
information, the evolution of micro-photonics is primarily due to the devel-
opment of elements and methods to control X-Ray beams, their focusing,
modulation, etc.

Conventionally the elements of X-ray optics can be divided into the
following groups:

– Passive elements designed for deviation or focusing of beams, analogous
to optical lenses, mirrors, static beam splitters

– Dispersive elements for spectral devices, monochromators
– Active elements for beam scanning, controlled adaptive optics
– Elements for transforming information of electric, acoustic, optical signals

into X-Ray beam modulation
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Since the wavelength of nanometer X-Ray radiation is several orders of
magnitude less than that of optical radiation, it is possible to investigate
radiation that is close to fundamental absorption edges of substances (K, L,
M, etc. atom electron shells). The spatial resolution of X-ray nano-photonics
systems reaches 0.1 nm [1], which makes possible active elements with a capac-
ity up to 10 Tbit cm−2, exceeding by four orders of magnitude potential of
optical recording. A signal modulation frequency may amount to 1010 Hz.
X-Ray channel energy losses by diffractive beam divergence are six orders
less than those of optical systems, which is promising for long-range space
communication.

For the fabrication of planar submicron structures with sizes on the order of
X-Ray wavelengths, the deposition and growth of thin films of different mate-
rials have enabled fabrication of diffraction optical elements in the nanometer
range. Optics for X-ray beams means creating effective focusing elements with
the structure of three-dimensional Fresnel zones: combined microstructure X-
Ray optics [2] or Bragg–Fresnel optics [3]. Multilayer mirrors and crystals
provide the basis for such elements and are the primary elements of micro-
photonics, since they enable transformation of electrical, optical or acoustic
signals into X-ray beam modulation [4].

In this chapter we report on systematic theoretical and experimental inves-
tigations of volume (Bragg–Fresnel) gratings: (a) static, made with etching
technology including a metallic structure on the surface of multilayers and
crystals, and (b) dynamic, produced by surface and volume acoustic waves.
A Bragg–Fresnel grating is a basic optical element for the construction of a
variety of X-ray optical devices including fast X-ray modulators. Understand-
ing its properties is essential for effectively designing high resolution, focusing
dispersive X-ray optics.

28.2 Static Volume Grating Properties

One can consider two types of volume gratings: gratings etched into a
multilayer/crystal mirror, called etched gratings, and those made by evapora-
tion (sputtering) metals on the surface of a crystal or multilayer mirror, called
surface gratings. Such gratings are the basic type of Bragg–Fresnel optics [5].
Once the properties of these elements are known, it will be possible to predict
the major properties of more complicated structures, such as Bragg–Fresnel
lenses and X-Ray holograms [6, 7].

This chapter describes the important points in the computer simulation
and the testing of the particular case of lamellar gratings with a rectangular
groove profile.

The gratings are investigated in two different experimental geometries:
sagittal diffraction and meridional diffraction. The definitions of a sagittal
and of a meridional grating are given in Figs. 28.1 and 28.3.
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Fig. 28.1. Definitions for a sagittal grating

28.2.1 Sagittal Bragg–Fresnel Gratings

In sagittal geometry, the grating grooves are aligned parallel to the opti-
cal plane, as defined by the ingoing and outgoing X-ray beams. In this case
diffraction takes place perpendicular to the optical plane. In meridional geom-
etry, the grating grooves are aligned perpendicular to the optical plane and
diffraction takes place in the optical plane.

Surface Sagittal Grating

The simplest type of a Bragg–Fresnel grating consists of a surface of a Bragg
reflector – crystal or multilayer – covered with a phase shifting metal mask,
made, for example, of gold stripes. The definition of a sagittal grating geom-
etry is given in Fig. 28.1. For these gratings the groove direction is parallel
to the beam direction. ΘB corresponds to the Bragg angle on the crystal sub-
strate. ΔΘm and ΔΘ−m correspond to the directions of positive and negative
diffraction orders in the sagittal (horizontal) plane.

The properties of sagittal Bragg–Fresnel surface gratings are very similar
to those of transmission diffraction gratings. To produce an optimum phase-
shift, Φopt, between adjacent grooves for a transmission grating at normal
incidence, i.e. to ensure the maximum diffraction efficiency, a structure with
optimal thickness, topt, is required.

The maximum diffraction efficiency of a sagittal grating is limited to the
value of 0.4 for completely transparent phase material, i.e. with an absorption
constant β = 0. The Bragg reflector, in the case of a sagittal grating, serves
only as an energy-selective mirror reflecting a monochromatic X-ray beam.

One example would be a gold mask grating on the surface of a Si(111)
single crystal reflector. The optical constants for a gold layer at the energy
of 8,500 eV are refraction constant δau = 4.2 × 10−5, absorption constant
βau = 4×10−6. In this particular case for a grating with a groove width equal
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to the free space between grooves, the relative integral diffraction efficiency of
a corresponding transmission grating should be of the order of 31% with an
optimal groove thickness of 1,650nm. Taking into account the Bragg angle of a
Si(111) reflection at 8,500 eV (λ = 0.146 nm, ΘB = 13.43◦), one can determine
that the optimal groove thickness for the sagittal Bragg–Fresnel coated grating
is 192 nm. For the multilayer reflector with the period of 3.0 nm, the value of
Bragg angle will be reduced to ΘB = 1.396◦ at the same wavelength. The opti-
mal groove thickness in this case will be as small as 20.1 nm. Therefore, with
a grazing incidence beam it is possible to achieve the theoretical maximum
diffraction efficiency for a grating using a considerably reduced mask thick-
ness. For a reflection sagittal grating (RGS) the optimum thickness of material
is defined by the equation

topt(RGS) =
Φoptλ sin ΘB

4πδ
. (28.1)

The X-ray beam is transmitted twice through the thickness topt at the angle
ΘB. In comparison with a transmission grating at normal incidence, topt is
reduced by a factor of 0.5 sinΘB.

The difference in the optimal thickness for transmission gratings and reflec-
tion sagittal grating is largest for high energies. For the calculations, a Si(111)
crystal with a lattice period of 0.31nm is used and a multilayer mirror with
a period of 3 nm as the reflector. According to (28.1), for an aspect ratio of
about 1:1 (layer thickness equal to a groove width) the minimum zone width
of the Bragg–Fresnel grating at 30 keV can be as small as 0.2 μm. The grating
can be easily fabricated for photon energies as high as 100–200keV, which is
a great problem for conventional transmission gratings due to the very high
material thickness (aspect ratio) required.

The angular dispersion of the diffraction orders relative to zero reflection
can be written in the small angle approximation:

ΔΘm = arcsin
(
λm

d

)
, (28.2)

where ΔΘm is the diffraction angle for the mth diffraction order.
The experimental measurements were done using synchrotron radiation [8]

and the results are shown in Fig. 28.2. A gold mask on the surface of a Si(111)
crystal was fabricated by electron-beam lithography and lift-off technology.
The mask period was 2 μm (1×1 μm2) with a thickness of 192nm. A detector
scan was done in the horizontal plane (Fig. 28.1), which corresponds to the
sagittal diffraction plane. The theoretical position and efficiencies of the mth
diffraction orders (∗) are calculated using (28.2).

The results of the measurements demonstrate the validity of the theoretical
estimate of the optimal thickness of the phase-shifting material.
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Fig. 28.2. The diffraction spectra of a surface sagittal grating made with a gold
thickness of 192 nm and period of 2 μm

Etched Multilayer Sagittal Grating

This type of a grating is made by etching the groove profile into a multilayer
or crystal substrate. For the calculations of diffraction efficiency of this grating
an average refraction index, δ̄, of the diffraction structure can be used. This
index is defined by the material and structural properties of a Bragg reflector,
and the depth of profile must be equal to the X-ray penetration depth in the
multilayer, the so-called extinction depth.

In this case ordinary diffraction on a thin grating takes place, yielding
many diffraction orders simultaneously in the detector (2θ) scan mode similar
to Fig. 28.2. Combining (28.1) for the optimal depth of profile with the average
value of the multilayer refractive index

δ =
δ1d1 + δ2d22

d
(28.3)

leads to the optimal depth of grating profile for a multilayer sagittal grating
(MLSG) as [9]

topt(MLSG) =
Φoptλ

2

8π(δ1d1 + δ2d2)
, (28.4)

where δi are the optical refraction indices of the multilayer materials, di are the
corresponding thicknesses of the materials (d = d1 +d2), λ is the wavelength.
For the particular case of a W/Si mirror with a 3.16 nm multilayer period
(dw = 1.0 nm and dSi = 2.16 nm) one will have topt = 47.3 nm or ∼16 bilayers.
The optical constants at the wavelength 0.154nm are the following: for tung-
sten, δW = 4.57× 10−5 and βW = 4× 10−6 and for silicon, δSi = 7.56× 10−6
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and βSi = 1.7 × 10−7. The efficiency of the grating can be calculated by the
Kirz formula corresponding to an amplitude phase grating with

χ =
β1d1 + β2d2
δ1d1 + δ2d2

· · · . (28.5)

For the given materials of a Si/W multilayer mirror, χ = 0.22 and eeff = 0.8,
one will have E1 ∼ 0.26, which is in good agreement with the numerical com-
putation and experimental measurements [10]. Therefore, a sagittal multilayer
etched grating has the properties of a classical amplitude–phase transmission
grating with corresponding optical parameters.

The same value of an optimal etching profile for a maximum absolute
order efficiency has been calculated using the differential method, developed
in [11]. For a sagittal grating the measured peak efficiency is in agreement with
calculations using (28.4). The value of the ‘resonance phase’ depends on the
mean value of the refractive index of a multilayer structure and corresponds
roughly to the extinction depth.

Etched Crystal Sagittal Grating (ECSG)

The optimal depth of the profile for a crystal sagittal Bragg–Fresnel grating
also corresponds to the extinction depth of a crystal material and is equal
to [12]

topt(ECSG) =
λ sin ΘB

2|χ0| , (28.6)

where χ0 is the 0th order Fourier coefficient of crystal polarization. In the
case of a crystal one can obtain diffraction from different crystallographic
orientations with the corresponding grating period, dhkl,

dhkl =
a√

h2 + k2 + l2
, (28.7)

where a is the lattice parameter of the crystal, equal to 0.543nm for Si, for
example.

Finally for a particular crystal orientation one can calculate the depth of
the profile using the simple equation

topt(ECSG) =
λ2
√
h2 + k2 + l2

4 a|χ0| · · · . (28.8)

As an example, the value of χ0 for a Si crystal is equal to 1.5×10−5 at the
energy of 8 keV. Therefore, at this energy an optimum depth of profile is equal
to 1.26 μm for the Si(111) reflection. A more detailed theory of the Bragg–
Fresnel sagittal diffraction and focusing has been developed by Kohn [13].
Sagittal etched crystal lenses have been used in the works of Snigirev et al.
for diffraction focusing of synchrotron radiation [14–16].
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Fig. 28.3. Definitions for a meridional grating (left) and micro-photograph of the
grating in a scanning electron microscope (right)

28.2.2 Meridional Bragg–Fresnel Gratings

Surface Meridional Grating

The definitions for the meridional grating geometry are given in Fig. 28.3. The
grating grooves are perpendicular to the beam direction. The ΘB corresponds
to the Bragg angle on the crystal substrate. ΔΘm and ΔΘ−m correspond
to the directions of positive and negative diffraction orders in the meridional
(here, vertical) plane.

The diffraction properties of a meridional grating on a multilayer mirror or
crystal surface can be described to a first approximation using the conventional
grating equation. The basic grating equation may be written as

λm = d[cosΘi − cos(Θi + ΔΘm)], (28.9)

with the grazing incidence angle Θi, which, in general, is not equal to the
Bragg angle, and ΔΘm is the angular dispersion.

A detector scan is made in the vertical optical plane, which corresponds
to the meridional diffraction plane (Fig. 28.3).

In the case of a meridional grating, the angular dispersion in themth order
can be defined using the formula

ΔΘm = arcsin
(

cosΘi +
λm

d

)
− 90◦ + Θi · · · . (28.10)

The difference between the values of positive and negative orders is impor-
tant for small grazing angles, Θi. The value of the angle of negative diffraction
orders is limited by the grazing angle of incidence of the incoming beam. The
efficiency of the different diffraction orders for a meridional grating with a
crystal (multilayer) substrate cannot, in general, be calculated by the same
equations as applicable for a sagittal (transmission) grating. These formulas
are valid only for meridional gratings on a non-dispersive mirror substrate,
for example, for a total external reflection mirror. A crystalline or multilayer
substrate has an angular selectivity according to the Bragg law. Such a mirror
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Fig. 28.4. X-ray diffraction on a meridional surface grating with the thickness t.
Bragg diffraction inside the crystal rejects all diffraction orders that do not fulfill
the Bragg condition (left). Two-dimensional intensity distribution for the meridional
Bragg–Fresnel grating on the Si(111) crystal with a grating period of 2 μm (right)

can reflect a monochromatic beam only in the limited angular interval inside
the so-called rocking curve.

The diffraction on a meridional Bragg–Fresnel grating can be divided into
three steps (Fig. 28.4). First, the incoming beam is diffracted on the surface
transmission grating and penetrates into the crystal. If the angular dispersion
of the grating, ΔΘm, is larger than the intrinsic rocking curve of the crystal,
only the zero order, corresponding to the Bragg condition, is reflected by the
crystal. The intensities of the diffraction orders outside the Bragg peak will be
rejected and absorbed in the substrate. Second, the reflected zero order beam
is diffracted a second time on the surface transmission grating. Finally, the
crystal substrate does not limit the angular spectrum of the outgoing beam
but limits the angular acceptance of the Bragg–Fresnel grating.

The definitions for meridional grating measurements are given in Fig. 28.4.
The Θi corresponds to the grazing incidence angle on the crystal substrate, Θd

corresponds to the direction on the detector and ΔΘm and ΔΘ−m correspond
to the directions of positive and negative diffraction orders in the meridional
(here, vertical) plane.

The first diffraction process on a surface grating leads to a loss of output
intensity. The accepted angular spectrum of the input beam is limited by the
crystal rocking curve. The second diffraction on the surface grating produces
the higher diffraction orders measured in the experiment.

If the grazing incidence angle corresponds to the Bragg condition of the
crystal, then only the zero order of the primary diffracted beam will be
diffracted a second time on a surface grating after reflection on the crystal
substrate. The total efficiency of the diffraction orders on a Bragg–Fresnel
grating can be written as

Em =
1

4m2π2

{
(1 + exp(−2χΦopt))2−
−4 cos2(Φopt) exp(−2χΦopt)

}
· · · . (28.11)
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The maximum diffraction efficiency of a meridional grating is limited
according to (28.11) to the value of 0.1 as compared to 0.4 for a sagittal
Bragg–Fresnel grating. Consequently, the diffraction efficiency of an ampli-
tude (absorbing) meridional grating is limited to 0.025 as compared to 0.1 for
a sagittal Bragg–Fresnel grating. The value of the optimal phase-shift for a
meridional grating is less than that for a sagittal grating (28.11). The opti-
mal phase-shift for a gold mask at 8,500 eV is equal to 2.89 rad for a sagittal
grating and 1.48 rad for a meridional one. The optimal mask thickness has in
both cases almost the same value because of the factor of 2 in the equation
for the optimal thickness of a meridional Bragg–Fresnel grating (MBFG):

topt(MBFG) =
Φoptλ sin ΘB

2πδ
. (28.12)

The optimal value of a phase-shift in a gold mask of 1.48 rad yields the
theoretical maximum grating efficiency of 7.7%. Taking into account the cor-
responding Bragg angle of 13.43◦ for the Si(111) reflection together with
the optical parameters of gold, one obtains the value of optimal thickness
of 190 nm.

The validity of the concept of the three step diffraction process on a merid-
ional surface grating was verified by the experimental measurements of a
meridional grating with a period of 2 μm. The same gold mask on the surface
of a Si(111) crystal, as used in the case of the sagittal grating, was used for
the meridional grating tests. A two-dimensional angular scan by the sample
and detector was done in the vertical (optical) plane at each point around the
Bragg angle. The result is represented in Fig. 28.4. The crystal analyzer was
used instead of a slit to improve the angular resolution [17].

The diffraction angles were measured by a detector scan for each value of
grazing incidence angle around the Bragg maxima of the crystal. In accordance
with Fig. 28.4, the crystal does not reflect the X-ray beam at angles that do
not correspond to the Bragg condition. The secondary resonances, appearing
when −1st and +1st diffraction orders fulfill the Bragg condition, are shown
in Fig. 28.4 (E−11 and E+11). At these angles in the detector plane one can
measure the same angular spectrum as at the exact Bragg condition for the
primary beam.

According to (28.10) and (28.12), it is possible to increase the angular
dispersion of a diffraction grating and decrease the optimal grating thickness
by using a small grazing angle for the primary beam. Conventional crystals
such as Si or Ge provide Bragg angles on the order of 10◦–15◦ in the energy
range around 10 keV. Smaller reflection grazing angles can be realized using
asymmetrical crystals with a high asymmetry parameter or multilayer mirrors
with nanometer-scale periods [17].

28.2.3 Etched Meridional Gratings

The properties of etched meridional Bragg–Fresnel gratings are more compli-
cated than those for the sagittal case. The diffraction process on a meridional
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grating can, in general, no longer be described as the superposition of two inde-
pendent diffraction structures but instead by a complex volume interference
phenomena.

Several methods have been developed for the meridional grating cal-
culations. A description in the kinematic approximation, which neglects
interactions between incident and diffracted beams, was used by several
authors [18]. In the calculations [19], rigorous theory based on Maxwell’s
equations which take into account this interaction (dynamical theory) was
used. Computations can be done using a differential method and modal the-
ory [20]. In the modal theory, the solution is sought for the whole structure.
Therefore, structures with any number of layers can be calculated at the same
time. In addition, using this method, one can quickly compute the dispersive
curves in reciprocal space and the Bragg angle scanning of the diffracted
orders. However, this method is valid only for a lamellar grating. It is not
applicable, for example, for a sawtooth profile grating. In the present chapter,
the differential technique, developed in [21], is used for multilayer merid-
ional Bragg–Fresnel grating calculations. These calculations are carried out
layer-by-layer, making the method suitable for any kind of profile. Lamel-
lar gratings have been studied by several authors both theoretically and
experimentally [22–25].

The nature of diffraction on a three-dimensional grating/multilayer struc-
ture strongly depends on the optical properties of the materials and the
characteristic size of a grating period with the ‘lattice parameter’ a1 and
a multilayer period with the ‘lattice parameter’ a2. As a consequence, two
different approximations can be used for different limiting conditions.

Multilayer Etched Meridional Grating

In the first approximation, the ‘double dispersion’ phenomena of multilayer
gratings can be described as a combination of Bragg diffraction on reflecting
layers and surface diffraction on a planar grating. In this simplest case, Bragg
diffraction limits the output energy and the angular spectra of the reflected
beam, and the planar grating produces an additional angular dispersion. The
measurements of meridional gratings with a ‘large’ period, which exceeds cri-
teria described later, show a simple combination of grating and multilayer, as
if they were used separately, one after other, similar to a surface grating. The
detector scan spectrum at the fixed Bragg angle, ΘB, shows several diffraction
peaks from the surface grating inside the broad Bragg peak of the multilayer
mirror. The property of the ‘short’ period, etched volume grating is not the
simple ‘overlapping’ of the two independent structures. Instead, one must refer
to the theory of crystal diffraction. The characteristics of a volume grating
can be demonstrated by the dependence of the absolute efficiency of the +1
order on the depth of the grating profile with a lamellar grating period being
taken as the variable parameter. These curves are shown in Fig. 28.5. For
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Fig. 28.5. Maximum efficiency of the +1 diffraction order vs. the number of etched
periods. The W/Si multilayer mirror is performed with 100 bilayers with a period
of 3 nm

the calculations, the same multilayer parameters as used for calculations of a
surface grating were taken by using (28.8).

According to the differential method for relatively large grating periods (in
the range of 200–20 μm), one can observe a peak of efficiency that corresponds
to an appropriate phase condition for both sagittal and meridional gratings.
The value for the optimal depth, obtained using the differential method, agrees
very well with the optimal depth calculated by the analytical formula (28.4)
for a sagittal grating.

The value of the ‘resonance phase’ depends on the mean value of the refrac-
tive index of a multilayer structure, δ, and corresponds to the extinction depth
in a multilayer. Properties of such gratings are the same as for conventional
reflection phase gratings, except for the Bragg selectivity. For short period
gratings, i.e. with lateral periods of less than 10 μm, the behavior is different.
The aforementioned W/Si multilayer with the spacing of 3 nm is an example.
According to the differential model the ‘phase peak’ of efficiency is shifted into
the depth of the multilayer, and the +1 order intensity continuously increases
with the increasing depth of the grating profile (Fig. 28.5). This phenomenon
cannot be explained without involving volume diffraction effects.

Let us describe a multilayer grating as a two-dimensional crystal with two
different translation vectors, a1 in the direction along a surface (X) and a2
in the depth of a multilayer (crystal) (Z). Such a macro-crystal has two main
crystallographic directions along the z and x axes. The multilayer crystal
structure is shown schematically in Fig. 28.6. As in a natural crystal with
two different lattice parameters, one can define crystallographic directions
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Fig. 28.6. Schematic representation of a ‘multilayer crystal’

corresponding to different translation vectors of the lattice with an absolute
value of ha1 and ka2.

Using crystallographic indexes one can define diffraction parameters dh,k

for a short period grating (a2 ∼= a1) as

dh,k =
a1a2√

(ha1)2 + (ka2)2
. (28.13)

For a long period grating (a2 << a1) an effective diffraction occurs only
between waves diffracted from the top and the bottom of the grooves. A phase
shift between these waves depends only on the different optical paths in the
multilayer groove and vacuum. Multilayer mirrors act like a monochromatic
reflector with the phase reflecting grating on the top. The properties are the
same as for a sagittal grating with a period of dh,k ≈ a1. Looking at the
efficiency dependence vs. the depth of the etched profile (Fig. 28.5), one can
see an increase in the absolute reflectivity up to 0.3, which corresponds to the
phase maximum (π phase shift) between diffracted waves. Diffraction orders
are located inside of a multilayer Bragg peak and cannot be observed without
zero order diffraction.

One can define these two limiting cases even more precisely taking into
account the extinction depth of a multilayer or crystal structure (28.11). As
already mentioned, for a sagittal grating the depth of profile is optimal if it
is equal to the value of extinction depth, tzext. Extending the definitions, one
can introduce an extinction depth value for the grating along the X direction,
which could be defined as

txext ≈
tzext

sin(ΘB)
· · · . (28.14)

The volume properties of a meridional etched grating become essential if the
period of a lateral grating is less than txext. For example, a W/Si multilayer
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with a period of 3 nm and γ = 0.3 has an extinction depth on the order of
50 nm at 0.154nm wavelength. The corresponding ‘volume effect’ parameter
has a value of txext ∼ 1.95 μm. The same parameter for a Si(111) single crystal
reflection is equal to txext ∼ 5.3 μm.

The meridional multilayer grating properties have been experimentally
measured on lamellar multilayer grating samples having a variable grating
period and etching depth. All experimental measurements were performed in
the two-dimensional (Θi −Θd) scan mode at the energy of 8 keV (Fig. 28.3).
In this mode, the diffracted field was scanned with the detector slit at the
angle Θd for each incident angle, Θi, in order to record the intensity of all
‘n’ orders.

The diffracted efficiency distribution in three dimensions vs. incident Θi

as well as the diffracted 2Θi angle was measured and plotted. As an example,
Fig. 28.7 represents the results of the grating measurements in the detector
scan mode for the 230nm profile depth and 4 μm grating period. The angle
of incidence was in the range of 1.5◦–1.65◦. For each incident angle, Θi, the
diffracted field was scanned with the detector slit in the same range. Using
such a method, diffraction orders −2, −1, 0, +1, +2 can easily be resolved
(see Fig. 28.7).

As can be seen from this plot, the maximum intensity for the minus first
diffraction order corresponds to the minimum of the zero order. A similar
result was described by Neviere [26] for another type of multilayer grating,
one coated on large period blaze echelette grating. In that paper, the structure

Fig. 28.7. Θi − Θd plot in the detector scan mode for the meridional multilayer
grating with a profile depth of 230 nm
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of the multilayer grating was totally different from our structure, which is a
short period lamellar grating etched in a multilayer.

To measure the depth dependence of the diffraction efficiency, seven points
on the grating with a variable profile have been tested experimentally.

28.3 Dynamic Diffraction Gratings
based on Surface Acoustic Waves

This chapter presents the application of a surface acoustic wave (SAW) of
the Rayleigh type as a diffraction grating for X-ray radiation. Propagation
of SAWs in the crystal leads to the sinusoidal modulation of a crystal lattice
and sinusoidal modulation of a crystal surface. Since the phase velocity of the
SAW (2,000–4,000 m s−1) is much lower than the speed of the X-rays, the
acoustic deformation can be considered as quasi-static and characterized by
its wavelength and amplitude. However, the use of an ultrasonic super-lattice
in the X-ray wavelength range has some limitations. First, it is necessary to
apply acoustic waves with a very short wavelength (Λ ∼ 1–10 μm) in order to
produce a large angular dispersion between diffraction satellites [27–32]. This
requirement is related to the large Bragg angles, ΘB, for the real piezoelectric
crystals such as quartz, LiNbO3, LiTaO3, La3Ga5SiO14, La3Ga5.5Ta0.5O14,
which lie between 3◦ and 40◦. Therefore, it is attractive to use a multilayer
X-ray mirror under the Bragg angle on the order of 1◦ [33–36] or in a total
external reflection mode (αi ∼ 0.1◦–0.3◦) [37, 38], where the SAW with a
wavelength of Λ = 10–40 μm produces considerable angular dispersion with
X-rays. Total external reflection is interesting for two other reasons. First, a
high reflectivity, typically 90%, is possible. Second is the high efficiency of
scattering by the surface acoustic waves, the amplitude of which is nearly
comparable to the depth of the penetration of the evanescent X-ray wave of
the order of 10nm.

It is also possible to control both the wavelength and the amplitude of a
dynamic SAW grating by changing the amplitude of the input high-frequency
electric signal and the excitation frequency. These possibilities can be used
to optimize the space–time modulation based on X-ray diffraction by surface
acoustic waves [39, 40].

28.3.1 The SAW Device

Figure 28.8a, b show the SAW device based on a piezoelectric crystal. To excite
a Rayleigh SAW, an interdigital transducer (IDT) is deposited on the crystal
surface by photolithography or e-beam lithography. An IDT transforms the
high-frequency signal into acoustic oscillations of the crystal lattice, which
propagate along the crystal surface. The SAW amplitude on the crystal sur-
face can be changed linearly from zero to several angstroms by varying the
amplitude of the high-frequency electrical voltage supplied by a high-frequency
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(a) (b)

Fig. 28.8. (a) SAW device. (b) SAW propagation in the YZ-cut of a LiNbO3 crystal.
Λ = 30 μm

generator to the IDT. Figure 28.8b presents the scanning electron microscopy
image of the SAW propagation in the YZ-cut of a LiNbO3 crystal with the
velocity of V = 3,488 m s−1. The SAW with wavelength Λ = 30 μm was
excited at the resonance excitation frequency f = 116.3 MHz. It is seen that
SAW behaves like a strongly periodic sinusoidal diffraction grating.

SAW propagation causes a sinusoidal deformation of the crystal lattice
and crystal surface in the first approximation. A Rayleigh SAW is actually
elliptically polarized, but in the case of a symmetric reflection geometry, in-
plane displacements of the crystal lattice do not influence diffraction. The
deformation involved in the diffraction process can be written as

h = h0u1 sin(Kx), (28.15)

where K = 2π/Λ is the SAW wave vector and h0 is the SAW amplitude on
the crystal surface, which can be controlled by varying the input signal on
the IDT.

28.3.2 Total External Reflection Mirror Modulated by SAW

The diffraction of light by ultrasound has been investigated theoretically
[41,42] and experimentally [43–45]. Theoretical curves (see Figs. 28.10–28.12)
show excellent agreement with experimental results. A detailed description of
the diffraction theory on a surface grating can be found in [38].

Figure 28.9 depicts a double-crystal X-ray diffractometer used to study
X-ray diffraction on the surface of the YZ-cut of a LiNbO3 crystal mod-
ulated by surface acoustic waves under total external reflection. An X-ray
tube with a rotating copper anode (Cu Kα radiation, λ = 0.154 nm, run-
ning at 40 kV and 60mA) was used as the source of X-ray radiation. A plane
X-ray wave behind a double Si(111) crystal-monochromator was collimated
by a 10 μm slit. For diffraction studies under total external reflection, the
crystal surface was treated by chemical dynamic polishing so that the rough-
ness does not exceed 1 nm. This treatment is very important because the
roughness decreases the value of the critical angle. An IDT with an 8 μm fin-
ger width that corresponds to a Λ = 32 μm SAW was deposited on the surface
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Fig. 28.9. Diagram of the double-crystal X-ray diffractometer

of the sample so that the SAW propagates along the Z axis with a velocity
V = 3.488 km s−1. The resonance frequency of the IDT was f0 = 109 MHz.
For the experiment described here the collimated plane X-ray wave falls on
the crystal surface modulated by the surface acoustic wave at the incident
angle Θi = 0.22◦, slightly below the experimentally measured critical angle of
the YZ-cut of a LiNbO3 crystal, αc = 0.30◦. The X-ray plane wave diffracts on
the ultrasonic superlattice so that the angular position of diffraction satellites
can be determined from the grating equation:

k cosΘm = k cosΘi +mK, (28.16)

where k = 2π/λ, K = 2π/Λ and m is the diffraction order.
According to (28.16), the X-ray radiation is expected to diffract on the

crystal surface modulated by the SAW so that the angular divergence should
be 0.090◦ and 0.063◦ for m = 0 andm = +1 (−1), respectively. The diffracted
X-ray radiation is recorded by a scintillation detector behind a 10 μm slit. In
all results, the diffracted X-ray intensity was normalized to the intensity of
the incident beam.

Figure 28.10 shows the experimental (a) and calculated (b) curves of the
diffracted X-ray radiation intensity, I, as a function of the detector scanning
angle, ΔΘd, obtained at the X-ray incident angle ΔΘi = 0.22◦. The reso-
nance excitation frequency of the SAW was f0 = 109 MHz and values of the
amplitude of the input sinusoidal signal on the IDT ranged from U = 2–17 V.
The sinusoidal amplitude of the SAW, h, is a linear function of the amplitude
of the input signal on the IDT. In the calculated curves, h is assumed to be
between 0.2 and 1.7nm. In Fig. 28.10, diffraction satellites are observed at the
angles ΔΘ1 = 0.090◦ and ΔΘ−1 = 0.063◦ from the intense reflected beam.
These values are in a good agreement with those calculated from expression
(28.15) for the −1 and +1 diffraction orders. The maximum intensity of the
m = −1 diffraction order makes up 10.5% of the intensity of the incident
X-ray beam for an amplitude of the input signal on the IDT U = 17 V. The
great difference in the diffraction order intensities (E−1 > E1) and angular
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(a) (b)

Fig. 28.10. Experimental (a) and calculated (b) diffracted X-ray intensity I as a
function of the detector scanning angle ΔΘd, obtained at the X-ray incident angle
Θi = 0.22◦, resonance excitation frequency of the SAW, f0 = 109 MHz and at different
amplitudes of the SAW: U = 2–17V

(a) (b)

Fig. 28.11. Experimental (a) and calculated (b) diffracted X-ray radiation intensity,
I , as a function of the detector scanning angle, ΔΘd, obtained at the resonance
excitation frequency of the SAW f0 = 109 MHz, amplitude of the input signal on
the IDT U = 17 V and at different values of the incident angle Θi = 0.15◦–0.37◦

divergences between the diffraction orders (ΔΘ−1 < ΔΘ1) is a consequence of
the small X-ray incident angle ΔΘi = 0.22◦. It is observed that the linewidth
is larger for the m = +1 peak, which is closer to the surface. This is an effect
of the divergence of the incident beam and can be understood by calculating
dΘm/dΘi from (28.16).

Figure 28.11 shows the experimental (a) and calculated (b) diffracted
X-ray radiation intensity, I, as a function of the detector scanning angle, ΔΘd,
obtained at the resonance excitation frequency of the SAW, f0 = 109 MHz,
with an amplitude of the input signal on the IDT, U = 17 V, and at differ-
ent values of the X-ray incident angle, ΔΘi = 0.15◦–0.37◦. In the calculated
dependence, the sinusoidal amplitude, h, is assumed to be 1.7 nm. Figure 28.12
represents the experimental dependence and theoretical curves (full lines) of
the diffracted X-ray intensity, I, as a function of the incident angle, ΔΘi,
obtained at the resonance excitation frequency of the SAW, f0 = 109 Hz, and
at an amplitude of the input signal on the IDT, U = 17 V. These dependencies
(Figs. 28.11 and 28.12) demonstrate that the m = +1 (−1) diffraction order
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Fig. 28.12. Diffracted X-ray intensity I as a function of the incident angle obtained
at the resonance excitation frequency of the SAW, f0 = 109 MHz, and at an ampli-
tude of the input signal on the IDT U = 17 V. The full line shows the calculated
values

Fig. 28.13. Formation of the reflecting pseudo-lattices

has a maximum intensity at an incident angle of the X-ray beam of Θi = 0.22◦

and 0.28◦, respectively.

28.3.3 Multilayer Mirror Modulated by SAW

The main restriction of the total external reflection technique is the generally
low efficiency of the diffraction satellites (around 20%) [38]. By using an X-ray
mirror this efficiency can be increased.

The next considerations help to predict which incident angle is likely to
favor a given diffraction order. Because of the presence of the acoustic wave,
the incident angle on the surface varies between ω−ϕ and ω+ϕ (Fig. 28.13).
Therefore, a strong Bragg reflection occurs if the incident angle, Θ, fulfills the
inequality

ΘB − ϕ < ω < ΘB + ϕ · · · . (28.17)

This situation is indeed possible, since at an incident angle corresponding
to (28.17), some parts of the acoustic wave form a new family of reflecting
pseudo-planes, for which the Bragg condition is fulfilled (Fig. 28.13)

ω + ϕ = ΘB. (28.18)
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The multilayer interference X-ray mirror modulated by SAW thus acts
as a diffraction grating, reflecting the maximum intensity in the direction
determined by the angle β (Fig. 28.13):

β = ω + 2ϕ · · · . (28.19)

The incident angle, ω, giving a maximum intensity in the mth diffraction
order, can be determined from (28.15).

Solving (28.18) and (28.15), we obtain

cosω − cos(2ΘB − ω) = mλ/Λ (28.20)

or, for small incident angles,

ω ≈ ΘB −mλ/2ΛΘB, (28.21)

which is in a good agreement with experimental results. Note that (28.20)
is similar to the equation that gives the position of the peaks of maximum
intensity on the rocking curve.

The propagation of an X-ray wave in a multilayer interference X-ray mirror
modulated by surface acoustic waves can be investigated using the dynamic
diffraction theory in distorted crystals presented in [46–48]. In this case, the
multilayer acts as an artificial crystal. The deformation field in the crystal
(as in the theory of elasticity) is described by the vector �u, representing the
displacement of the atoms from the equilibrium position in the perfect crystal.
This displacement must satisfy some limitations, the same as in the case of
elastic wave propagation in a crystal. The next expression can be used to
describe the polarizability of the distorted crystal [49–51]

χ(�r) = χ∗(�r − �u(�r)), (28.22)

where χ∗ is the polarizability of the perfect crystal and �r is the radius-
vector [52–54].

The X-ray wave field in the crystal can be written as a sum of modulated
waves:

�E(�r) = exp
{
−i�k0�r

}∑
h

�Eh(�r) exp
{
−i�h�r

}
, (28.23)

where �k0 is the wave vector of the incident wave and �h is the vector of the
reciprocal lattice.

The distribution of the X-ray wave field in the crystal in the case of two
strong waves is described by the following fundamental equations:⎧⎪⎪⎨

⎪⎪⎩
− 2i
k0

∂E0
∂s0

= χ00E0 + χ0h exp
(
i�h�u
)
Eh,

− 2i
k0

∂Eh

∂sh
= (χ00 − α)Eh + χh0 exp

(
i�h�u
)
E0,

where χ∗hh′ =
1
V

∫
V

χ∗(�r) exp
{
i
(
�h′ − �h

)
�r
}

d�r

(28.24)
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Fig. 28.14. Coordinate system for the calculation of the wave field in the multilayer

Fig. 28.15. Coordinate systems for the determination of the boundary conditions

are the Fourier coefficients of the polarizability; �s0 and �sh are the unit vec-
tors along the refracted and diffracted waves (Fig. 28.14), α =

(
k2
h − k2

0

)/
k2
0 ;

and V is the volume of the unit cell. It is necessary to take into account
some boundary conditions: the continuity of the wave on the surface gives
(Fig. 28.15):

�Ei (�re) exp
(
−i�ki�re

)
+ �Ed (�re) exp

(
−i�kd�re

)
= �E0 (�re) exp

(
−i�k0�re

)
+ �E (�re) exp

(
−i�kh�re

)
,

(28.25)

where indices i,d and 0,h correspond to the incident and the diffracted waves
in the vacuum and in the crystal, respectively and �re is the radius-vector of
the input surface. In (28.25) it is also assumed that the incident angle is large
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enough to neglect the reflection. The following two equations are obtained
from (28.25): ⎧⎨

⎩
�E0 (�re) = �Ei (�re) exp

(
−i
(
�ki − �k0

)
�re

)
�Ed (�re) = �Eh (�re) exp

(
i
(
�kd − �kh

)
�re

)
.

(28.26)

These relations describe the phase shifts that occur on the two inter-
faces: vacuum-crystal and crystal-vacuum. In the case of a non-plane interface,
this phase shift changes from one surface element to another and cannot be
neglected in the case of a multilayer mirror modulated by SAW.

The calculations of the real diffraction pattern are carried out using the
method described in [38]. Thus, we suppose that all the surface elements
on which the plane wave, �Ed, falls act as secondary sources of spherical
waves:

E(p) = − i
2λ

∫
S

Ed exp
(
−�kd�re

)eikr

r

{
cos
(
�n∧, �kd

)
−

− cos
(
�n∧, �r
)
}

dS. (28.27)

Using (28.22) and taking into account that we investigate the diffracted
wave in the far field region (1/r ≈ const)

E(p) = − i cos α
λ

∫
S

Eh exp
(
−i�kh�re

)
eikr

r dS

= const
∫
S

Eh exp {−i [(khx − k cosα)x+ (khz − k sinα) z]}dS, (28.28)

where β is the diffraction angle, k = 2π/λ, z = h sinKx the amplitude of
the modulated surface, h the SAW amplitude, K = 2π/Λ, S the modulated
surface. The exponential term describes the phase shift due to the refraction
on the crystal–vacuum interface.

The following equation is used to calculate the diffracted X-ray intensity

I = E(p)E∗(p) · · · . (28.29)

In the calculated intensities, the sinusoidal amplitude, h, of the SAW is
assumed to be 1.4 nm. Theoretical curves (see Figs. 28.18 and 28.19) show
good agreement with experiments.

The multilayer mirror was deposited on the YZ-cut of a LiNbO3 crystal
treated initially by chemical dynamic polishing to decrease the roughness to
0.5 nm. The W/C multilayer was produced by magnetron sputtering. It is
made of 60 bilayers of 5.3 nm each. The Bragg angle of this multilayer is
ΘB = 0.83◦.

An IDT for the SAW excitation with a 4 μm finger width corresponding
to Λ = 16 μm SAW wavelength was also deposited on the free surface of the
LiNbO3 crystal. The SAW propagates along the Z axis with a velocity V =
3.488 km s−1. The resonance excitation frequency of the IDT is f0 = 218 MHz.



492 A. Erko et al.

Fig. 28.16. Diffracted intensity as a function of the detector scanning angle ΔΘd

obtained at the Bragg incident angle for different amplitudes of the input signal on
the IDT

The diffracted X-ray intensity is recorded by a scintillation detector with
a 10 μm input slit.

Figure 28.16 shows the experimental curves of the diffracted X-ray radi-
ation intensity, I, as a function of the detector scanning angle, ΔΘ, where
ΔΘB = 0.823◦ and for different values of the amplitude of the input sinu-
soidal signal on the IDT in the range of 1–17V. The diffraction satellites are
observed at the angular deviations ΔΘ+1 = 0.039◦ and ΔΘ−1 = 0.038◦ from
the intense reflected beam. These values can be precisely predicted from the
grating equation.

The intensities of the m = +1, −1 satellites increase and the zero order
satellite decrease with the SAW amplitude. The maximum intensities of these
diffraction orders make up 7% of the intensity of the diffracted beam with-
out SAW excitation. The difference in the angular deviations between the
diffraction orders ΔΘ+1 > ΔΘ−1 is in agreement with (28.10).

Figure 28.17 presents rocking curves obtained with the detector placed in
the Bragg position ΔΘB = 0.823◦, and for different amplitudes of the input
signal on the IDT. The satellite intensities increase rapidly with the SAW
amplitude while the zero order peak decreases. In the case of U = 17 V, the
intensities of the +1, −1 satellites become higher than the zero order intensity.
At this voltage, the intensity in the +1 and −1 satellites reaches 68% of the
Bragg peak without SAW excitation.

Figure 28.18 shows the (a) experimental measurements and (b) calcula-
tions based on the model developed below for the diffracted X-ray intensity,
E, as a function of the detector scanning angle, ΔΘd, for different incident
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Fig. 28.17. Rocking curves with the detector in the Bragg position for different
amplitudes of the input signal on the IDT

(a) (b)

Fig. 28.18. Experimental (a) and calculated (b) diffracted intensity as a function
of the detector scanning angle ΔΘ obtained for U = 17 V (h = 1.4 nm) and for
various incident angles Θ between 0.792◦ and 0.872◦

angles. The m = ±1 diffraction orders reach a maximum intensity ∼58% for
an incident angle of Θi = 0.808◦ and 0.848◦, respectively.

The same phenomena take place for the ±2 order satellites: the maximum
intensity ∼22% was obtained for an incident angles Θi = 0.792◦ and 0.872◦.
This means that, to obtain the maximum energy diffracted towards a precise
satellite, it is necessary to lightly shift the incident angle away from the exact
Bragg angle of the multilayer.

In Fig. 28.19 are shown the experimental and calculated maximal intensi-
ties of the ±1 and 0 order peaks for various incident angles, Θi. The maximum
intensity in the diffraction orders corresponds to the minimum intensity of the
zero order, as was demonstrated previously for the volume gratings, etched in
a multilayer mirror (Fig. 28.7).
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Fig. 28.19. Maximum diffracted intensity of the +1, 0, −1 peaks as a function of
incident angle Θi, f0 = 218 MHz, U = 17V. The solid line shows calculated values

28.3.4 Crystals Modulated by SAW

In contrast to acoustically modulated multilayer mirrors, a crystal, modulated
by SAW, acts much more effectively because, for the crystal, the value of
the SAW amplitude can exceed the interplanar spacing. The same diffraction
efficiency can be obtained with much lower acoustic amplitude than required
for an X-ray mirror. In this section the X-ray diffraction by langasite (LGS)
crystal, (La3Ga5SiO14), excited by SAW is presented.

Figure 28.20 shows the calculated amplitude of the crystal lattice dis-
placements in LGS caused by SAW propagation vs. crystal depth. The
calculation [55] is based on the elastic and piezoelectric properties of the
LGS [56]. It is seen that the SAW penetration depth inside the crystal is
approximately one SAW wavelength (see component u1 normal to the crystal
surface). The longitudinal component, u2, is parallel to the direction of the
SAW propagation. The presence of the transverse displacement component,
u3, suggests that the propagation direction of the acoustic energy flow does
not coincide with the SAW wave vector direction.

X-ray diffraction on acoustically modulated atomic planes gives rise to
diffraction satellites on both sides of the Bragg peak. In case of symmet-
ric Bragg reflections, the angular position of diffraction satellites can be
determined from the grating (28.15).

The angle between adjacent satellites measured on a rocking curve can be
deduced from (28.15)

δΘmRC = mλ/2Λ sinΘB = md/Λ, (28.30)

where d is the interplanar spacing.
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Fig. 28.20. Calculated SAW amplitudes vs. crystal depth: normal (u1), longitudinal
(u2) and transverse components (u3)

LGS is a piezoelectric crystal of space group symmetry 32. The crystal
lattice is similar to that of quartz with the parameters a = 0.817 nm and
c = 0.5095 nm [57].

An X-cut, (110) atomic planes parallel to the crystal surface, of LGS was
used for this experiment. To excite a Rayleigh SAW, IDT was deposited on
the crystal surface by photolithography. At the resonance excitation frequency,
f0 = 192.5 MHz, the SAW wavelength was λ = 12 μm and the propagation
velocity was V = 2,310 ms−1.

Rocking curves were measured at various SAW amplitudes. The X-ray
energy was 11keV. The interplanar spacing for the (110) reflection in LGS is
d = 0.4087 nm. In the kinematic approximation the X-ray penetration depth
inside the crystal depends on the absorption in LGS as a function of energy
given by

μ−1
z (E) = sin(ΘB(E))/2μl(E), (28.31)

where μl is the linear absorption coefficient and ΘB is the Bragg incident
angle. This dependence is shown in Fig. 28.21. The K-edge of Ga at 10.47 keV
causes a drastic change in the absorption coefficient. At the energy of 11 keV,
the X-ray penetration depth reaches only μ−1

z = 0.48 μm, which is much less
than the SAW penetration depth inside the crystal (μ−1

z /μ
−1
SAW < 1).

Figure 28.22 shows selected rocking curves for LGS (reflection (110))
excited by a Λ = 12 μm SAW at 11 keV measured at various input volt-
ages (U) supplied to the IDT. The Bragg incident angle is ΘB = 7.92◦. The
FWHM of the Bragg peak without SAW excitation is 3.2 arcsec (Fig. 28.22a).

Figure 28.22 shows that the number of diffraction satellites observed on
the rocking curve increases with the amplitude of the input signal supplied to
the IDT, i.e. with the SAW amplitude.
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Fig. 28.21. X-ray penetration depth in an LGS crystal for (110) reflection vs.
energy. The black circle shows the energy 11 keV

(a) (b)

(c) (d)

Fig. 28.22. Rocking curves measured for different amplitudes of the input signal
supplied to the IDT: (a) U = 0V, (b) U = 8.5 V, (c) U = 14V, (d) U = 18 V
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Fig. 28.23. Intensities of the diffraction satellites (m = 0, 1, 2, 3) vs. amplitude of
the input signal supplied to the IDT. Black circles, squares, triangles and diamonds:
experimental data. Solid lines: calculated data. E = 11 keV; Λ = 12 μm; (110)
reflection

The angular divergence between two neighboring diffraction satellites,
δΘmRC, is 6.8 arcsec, which agrees quite well with the value 6.9 arcsec
calculated from (28.30).

Intensities of selected diffraction satellites (m = 0, 1, 2, 3) as a function of
the input voltage on the IDT are shown in Fig. 28.23. The intensity of the
diffraction satellites, except for satellite m = 0, develops as soon as the acous-
tic amplitude reaches a threshold value, which increases with the diffraction
order. After rapidly reaching a maximum, the satellite intensity decreases
smoothly and oscillates.

It can be seen (Fig. 28.22b) that the intensity of the m = 0 diffraction
satellite is equal to zero for U = 8.5 V. For this specific SAW amplitude, the
phase shift of the X-ray radiation diffracting into the zero satellite from the
SAW minima and maxima regions (where the atomic planes are still parallel
to the surface) is equal to π. This phenomenon can be observed only if the
acoustic wave field probed by X-rays is very homogenous in amplitude. This
is, therefore, only possible if the X-ray absorption is strong enough to avoid
any interaction with deep regions of the crystal where the acoustic ampli-
tude is strongly damped. In the case of LiNbO3, the absorption is never high
enough to achieve the complete extinction of a satellite except in the case of
an asymmetric reflection for which the incident angle can be very small [29].

For U = 14 V, the extinction of the m = +1(−1) diffraction satellites
is observed and can also be explained by the π-phase shift between crystal
regions diffracting towards this satellite (Fig. 28.22c). The maximum value of
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the input signal amplitude is U = 18 V. At this amplitude, the intensity of the
m = +2(−2) diffraction satellite decreases, although no complete extinction
of these satellites occurs (Fig. 28.22d).

As calculated in [29], the intensity of the mth diffraction satellite is
proportional to

Im ∝
∣∣∣∣∣∣
∞∫
0

exp(−μzz)Jm (h0qzu1 (z)) dz

∣∣∣∣∣∣
2

, (28.32)

where Jm is the mth order Bessel function. Figure 28.23 shows diffraction
satellite intensities (solid lines) vs. SAW amplitude calculated by (28.32).
There is good agreement between experimental results and calculations show-
ing that numerical calculations of u1 based on the elastic and piezoelectric
tensors of the langasite crystal and on the Rayleigh wave characteristics are
correct. These results are much better than those for the case of SAW propaga-
tion in a LiNbO3 crystal where kinematic simulations were useless especially
at low acoustic amplitudes and for 0 and 1 order satellites [29]. This dif-
ference can be explained by the fact that for the X-ray penetration depth,
being so small in a langasite crystal at 11 keV, the X-rays interact only with
strongly distorted regions of the crystal. If this was not the case, dynami-
cal theory should be necessary to take into account the contribution to the
diffracted intensity coming from deep non-distorted (i.e. perfect) regions of
the crystal [31].
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High Resolution 1D and 2D Crystal Optics
Based on Asymmetric Diffractors

D. Korytár, C. Ferrari, P. Mikuĺık, F. Germini, P. Vagovič,
and T. Baumbach

Abstract. The development of high resolution X-ray measurements and imaging
in real and reciprocal space is related to the improvement of the optical elements
available for use. Crystal diffractive optics still give the highest resolution in recip-
rocal space and in energy, and progress has also been made in improving resolution
in real space. In this chapter a short introduction to the dynamical theory behind
crystal diffractors and their coupling is given and modern one- and two-dimensional
elements based on symmetric, asymmetric and inclined diffractions are introduced.
The design, the modeling of the output parameters and the experimental results
are presented for a special 2-bounce V-shaped monochromator, for a monolithic
4-bounce monochromator and for a monolithic 2D beam de/magnifier.

29.1 Introduction

The optical scheme of a high-resolution X-ray diffractometer (HRXRD)
includes an X-ray source (laboratory or synchrotron), beam conditioning
optics, sample, analyzer, and detector. A compromise must be found between
high intensity on one side and high resolution in real and reciprocal space
or high energy resolution on the other side. The best resolution in reciprocal
space is achieved with crystal X-ray optics based mainly on Bragg diffraction
from perfect crystals such as silicon and germanium. Si(111) double crystal
monochromators for synchrotron and Ge (220/440) Bartels type monochroma-
tors for laboratory sources are typical examples. High resolution in reciprocal
space is given by the small widths of Bragg diffraction peaks of these crys-
tals, approaching theoretical values in the arcsec range as given by dynamical
theory of X-ray diffraction. The full width at half maximum of these peaks
can be further decreased using asymmetric diffraction in a grazing incidence
setting. This setting is also known as a one-dimensional (1D) beam expander
in real space. Combining two asymmetric diffractors with mutually perpen-
dicular scattering planes a two-dimensional (2D) image magnification can be
obtained.
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This chapter gives a short introduction to modern 1D and 2D crystal optics
for high-resolution diffractometry and imaging which are based on asymmetric
diffractors. It describes channel-cut monochromators and monolithic 2D beam
de/magnifiers, the theoretical background used in their design, the modeling
of their parameters using the DuMond diagrams and the spectral functions,
and beam tracing, as well as the experimental results obtained mainly with
monolithic devices.

29.2 Scattering Geometries and Crystal Diffractors

There are various scattering geometries used for the X-ray diffraction char-
acterization of crystals and thin layers. In the elastic scattering process the
incident monochromatic plane wave with wavevector K0 is elastically scat-
tered into a wave with the wavevector K, where |K0| = |K| = K = 2π/λ, and
λ is the wavelength. This process is characterized by the scattering vector (or
wavevector transfer) Q = K−K0.

In a crystal or in a crystal diffractor, which is the physical part of a crystal
characterized by the reciprocal lattice vector Hhkl and the in-crystal surface
normal n, which is used to diffract the incident X-ray beam with wavevec-
tor K0, (see Fig. 29.1), most of the scattered intensity is located in a small
region surrounding the reciprocal lattice point, H . Such lattice points are
characterized by corresponding lattice vectors H = Hhkl = OH, where
|Hhkl| = 2π/dhkl and dhkl is the interplanar distance of the lattice planes
(hkl). The structure factor, Fhkl, determines the amplitude of the scattered
wave. The purpose of reciprocal space mapping is to determine the scattered

(a) (b)

Fig. 29.1. A flat crystal X-ray diffractor in real (a) and reciprocal (b) space
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intensity in reciprocal space. The kinematical theory of X-ray diffraction in
an infinite crystal leads to the Bragg law in the vectorial form

KH −K0 = H (29.1)

and implies the concept of Ewald sphere [1]. The scalar Bragg law has the form

2dhkl sin θB = λ, (29.2)

where θB is the Bragg angle between the incident or the diffracted beam and
diffracting planes.

If n is the in-crystal surface normal, the plane of incidence (K0,n) is gen-
erally not parallel to the dispersion plane (n, H), and we have a noncoplanar
geometry. In the coplanar geometry, where the plane of incidence is paral-
lel to the dispersion plane, the reciprocal space maps of scattered intensity
are functions of Q while in the noncoplanar case this intensity depends on
both vectors K0 and KH independently [7]. In the semiinfinite crystal, due
to the presence of the vacuum-crystal interface, there is additional scatter-
ing from this interface which modifies the vacuum waves K0 and KH into the
in-crystal (refracted) waves k0 and kH. The requirement of momentum conser-
vation leads to the continuity of the tangential component of the wavevectors
(the in-crystal and vacuum wavevectors differ only by a component along the
surface normal n)

k0 = K0 + κn (29.3)
kH = KH + κHn = K0 + H + κHn. (29.4)

The quantities κ and κH have a magnitude of about ∼K|χ0|/2, where χ0

is expressed generally by (29.10) (see below). Using (29.3) and (29.4) the
wavevector of the diffracted wave in vacuum can be expressed as

KH = K0 +H′, where H′ = H+ΔH, ΔH = ΔH n, where ΔH = κ−κH .
The additional momentum transfer, ΔH , at the vacuum-crystal interface can
be expressed as

ΔH = K
(
−γH ±

√
γ2

H − αH

)
, (29.5)

where γH =
(K0 + H) · n

K
= γ0 +

(H · n)
K

, γ0 =
K0·n
K

(29.6)

are the directional cosines of the vector K0 + H and K0, respectively, with
respect to the inward crystal surface normal, n, and

αH =
2K0 ·H + H2

K2
. (29.7)

This dimensionless parameter is a function of the magnitude and the direction
of K0 relative to H. The direction cosine of the diffracted beam KH is

γ′H =
KH · n
K

= ±
√
γ2

H − αH . (29.8)
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The general expressions above can be simplified for special cases such as
symmetrical, asymmetrical, symmetrical inclined, and asymmetrical inclined
cases. Two additional important cases, which are not covered by the usual
approaches, are for a Bragg angle close to 90◦ and for an extreme asymmetry
with the angle of incidence close to the critical angle. These are described
in [18].

29.3 Basic Results of Dynamical Theory

Historically, several approaches have been taken to solve the problem of the
scattering of an incident X-ray wave by a crystal. One of them is to solve
Maxwell’s equations for a plane monochromatic electromagnetic radiation
wave E(r, t) = Ei exp[i(K0r − ωt)] scattered by a medium with an elec-
tric susceptibility χ(r). The susceptibility is a continuous function with the
periodicity of the crystal lattice

χ(r) = ΣχH exp(iHr), (29.9)

where
χH = −reFH

πV
λ2 (29.10)

are its Fourier components (generally complex), re is the classical radius of
electron, FH the structure factor of the crystal unit cell and V is the volume
of the unit cell. The solution gives a Bloch wave

D(r) =
∑
H

DHeikHr (29.11)

inside the crystal, composed of an infinite number of plane waves kH = k0+H.
The amplitudes of the electric induction vectors DH obey the system of
fundamental equations of the dynamical theory

k2
H −K2

K2
DH =

∑
H′
χH−H′DH′ (29.12)

from which it comes that the only significantly excited component waves
are those for which kH ∼ K|1 + χ0|/2, which is called the excitation con-
dition. Single-, two-, three- and multiple- beam diffraction can occur. We will
concentrate on two-beam cases.

For the two-beam case, the condition for the existence of a nonzero solution
(determinant of the system of linear equations (29.12) equal to zero) leads to
the dispersion equation in the form [9](

k2
0χp −K2

) (
k2

Hχp −K2
)

= C2k2
0k

2
HχHχH̄, (29.13)
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where χp = 1 − χ0, and C depends on polarization (Cσ = 1 and Cπ =
(k0 · kH)/(k0kH). This is generally an equation of the fourth degree in ΔH

with four solutions for in-crystal wavevectors as depicted in Fig. 29.1b).
A number of approximations were used for various simplified cases [1].

For the classical two-beam case there are two waves, k0 and kH, inside the
crystal for each polarization and two fundamental equations (above) for the
unknowns D0 and DH .

For the Bragg case for a semiinfinite crystal where the diffracted beam
is directed back into the vacuum semispace, the amplitude, and wavevec-
tor boundary conditions of continuity at the interface [1, 9] lead to the full
determination of the radiation fields, DH, and of their intensities |DH |2 and
reflectivities

R = |bH |−1 |DH(z0)|2
/
|Di|2, (29.14)

where bH =
γ0
γH

(29.15)

is the asymmetry factor. The reflectivity, R, corresponding to a measurable
dependence of the scattered intensity on the angular setting, the rocking curve,
can be written in the form

R =
∣∣∣−y ±√y2 − 1

∣∣∣2 , where y =
αb+ χ0(1− b)
2 |CχH |

√|b| , (29.16)

where α =
2λ

dH(T )

[
λ

2dH(T )
− sin θ

]
(29.17)

is a temperature dependent deviation parameter [18]. The full width at half
maximum, w, of the rocking curve is

w = 2C |χH |
√|b|

sin(2θB)
. (29.18)

An example of the simultaneous measurement of the reflected and the
diffracted beams at grazing incidence is shown in Fig. 29.4.

29.4 Penetration and Information Depths

The effective absorption coefficient, μe, is given by the imaginary parts of the
wavevectors, Ki

0 = Ki
h as

μe = −4πγ0K i
0 = μ0 + 2πγ0

Im(η +
√
η2 − 1)

Λ0
, (29.19)

where μ0 = 2πK |χ0| , η is the reduced deviation parameter from the exact
Bragg angle, and 1/Λ0 is the extinction distance [1]. The penetration depth is
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(a) (b)

Fig. 29.2. Penetration and information depths vs. the angle of incidence relative to
the surface. CuKα1 radiation, Ge(220) asymmetric coplanar diffractor with the angle
of asymmetry 22.3◦. (a) grazing incidence setting, (b) grazing emergence setting

the distance from the surface of the crystal for which the attenuation factor
is 1/e, from which one obtains exp(−μe ze

γ0
) = e−1, where ze = γ0/μe. The

information depth is given by the attenuation coefficients of both the incident
and diffracted beams and is given by 1/zid = 1/ze0 + 1/zeH . Figure 29.2 shows
an example of the angular dependence of the penetration and information
depths.

The penetration and information depths are important not only for the
depth structural studies but also for the elements of crystal optics, namely
because of their influence on the spatial resolution of crystal imaging optics.
In addition, the temporal evolution of the X-ray beam pulses are affected by
the dwell time of the beam in the crystal, which is important for the optics
for the forthcoming generation of X-ray sources – free electron lasers.

29.5 Multiple Successive Diffractors in Coplanar
and Noncoplanar Arrangements

By combining multiple diffractors successively, the incident beam can be
diffracted successively several times and its size and its angular and spec-
tral parameters can be modified accordingly. To have the maximum intensity
throughput through the system, the wavevector corresponding to the middle of
the reflection range should be considered for every successive diffractor using
the real part of the wavevectors as done in [11]. If we denote the incident beam
at the first diffractor by (HI,nI) as KI

0 and the diffracted beam by KI
H, the

last one being incident on the second diffractor (HII,nII) and diffracted by
KII

H, etc., we can write a recurrent system of equations for the successively
diffracted beams.
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KI
H = KI

0 + HI +
(
κI

0 − κI
H

)
nI

KII
H = KI

H + HII +
(
κII

0 − κII
H

)
nII

KIII
H = KII

H + HIII +
(
κIII

0 − κIII
H

)
nIII

...
Kf

H = Kf−1
H + Hf +

(
κf

0 − κf
H

)
nf

(29.20)

Multiplying the above equations for the middle of the reflection range by the
corresponding lattice vectors, Hi, we can obtain a system of linear equations
for the coordinates of the unknown incident wavevectors, K0 = KI

0 being
able to diffract successively through the number of f spatially distributed
diffractors:
K0 ·HI = −2K2 sin2 θIB − κI

0(nI ·HI)

K0 ·HII = −2K2 sin2 θIIB −HI ·HII − (κI
0 − κI

h

)
(nI ·HII)− κII

0 (nII ·HII)

K0 ·HIII = −2K2 sin2 θIIIB −HI ·HIII −HII ·HIII − (κI
0 − κI

h

)
(nI ·HIII)−

− (κII
0 − κII

h

)
(nII ·HIII)− κIII

0 (nIII ·HIII) etc.
(29.21)

According to the value of the determinant of the system of linear equa-
tions (29.21) corresponding to the spatial arrangement of the diffractors
we can obtain 0, 1, 2, or an infinite number of solutions. For example, a
coplanar arrangement of diffractors implies an additional condition causing a
degenerate system to give an infinite number of solutions.

Having the incident beam pass through the system of several (f) diffractors
it is important to know the spectral and angular composition of the outgoing
beam. This depends not only on the halfwidths of the individual diffractors
but also on their spatial arrangement. Basically, a coplanar arrangement of
diffractors can be in a dispersive (n, m) setting or in a nondispersive (n,−n)
setting. Simple DuMond diagrams (wavelength vs. angle dependence of the
rocking curves widths) or the spectral functions (wavelength vs. angle depen-
dence of the intensity transmitted through the system) are very useful for the
calculation of the degree of monochromatization and collimation.

In noncoplanar arrangements of diffractors we have one special case when
successive diffractors have mutually perpendicular scattering planes (σ − π
geometry). In the kinematical approximation the condition for this geometry is

cosφI,II + sin θIB sin θIIB = 0, (29.22)

where φI,II is the angle between diffracting planes [10].

29.6 Coupling of Multiple Successive Diffractors

Multiple successive diffractors can be prepared in one crystal block – a
monolithic system of diffractors with the tightest possible coupling. They
are especially advantageous because of their compact and monolithic design,
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Fig. 29.3. Monolithic tiltable four-bounce monochromator, with a lamella-based
hinge system for the adjustment of the diffraction vector H2–H1 by the rotation
angle, δ

offering an extremely precise and stable wavelength, small dimensions, and a
high thermomechanical stability. In a polylithic system when the diffractors
are adjusted by independent goniometers we have a weak elastic link. In terms
of the total reflectivity, this parameter is a product of the reflectivities of the
individual diffractors (e.g., R12 = R2(HII, K1

H). R1(HI, K0) for a two-crystal
arrangement).

There are another ways to couple successive diffractors, with the possibility
of adjustment, e.g., by using elastic springs (Fig. 29.3) [4, 5].

Mathematically, the coupling and the adjustment are represented by
processing the diffraction vectors Hi with matrix transformations without
changing the length of Hi (pure rotation, mirror reflection, addition of a lattice
vector) or changing it (adding a lattice vector, change of the lattice parameter
by means of temperature or composition). A crystal diffractive–refractive 1D
optics of this kind (multiple bounce) is represented by symmetric or asymmet-
ric channel-cut monochromators and their combinations for which ΣHi = 0.
This condition has an important consequence, namely that the incident and
outgoing beams are parallel. Such optics, either 1D or 2D, are called in-line
X-ray optics.

Depending on the geometry, the outgoing beam can be linearly shifted
relative to the incident beam. Due to refraction a small angular shift in the
arcsec range is also possible. The in-line optical configuration with the beams
arranged in one plane is important in synchrotron experiments because of
the simpler instrumentation and in laboratory diffractometers because of the
easier change of the optical elements without tedious readjustments.

Several types of in-line as well as non-in-line monochromators are presented
in the following section. Namely, V-channel monochromators, monolithic
Bartels-like monochromators, and a 2D beam compressor/expander.
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29.7 Coplanar 1D Crystal Optics

Single flat crystal diffractors are sometimes used as analyzers or as reference
crystals for testing purposes. Single and two-bounce diffractors with specially
shaped surfaces have been used to focus synchrotron radiation [8]. In the next
part we will concentrate on multiply bounced diffractors.

29.7.1 V-Shape 2-Bounce Channel-Cut Monochromators

A standard two-bounce V-channel Ge (220) monochromator with a final asym-
metry factor b = bI · bII = 0.2 (compression/expansion factor M = 1/b = 5)
is used in combination with graded multilayer optics either to compress the
beam (beam passing under Bragg condition from left to right in Fig. 29.4a, b)
or to increase its intensity or cross section in the opposite direction in high-
resolution diffractometers. Starting from the theoretical work of Servidori [17]
we have designed and tested a new monochromator [6] in the beam expanding
mode. Compared to the standard symmetrical channel-cut monochromator
an intensity gain of 8.5 has been obtained at the expense of an output beam
expansion by a factor of 4.5 in the scattering plane.

(a) (b)

(c) (d)

Fig. 29.4. (a) Standard V-5 channel-cut monochromator for CuKα1 radiation.
(b) New, tested V-shaped monochromator with unequal asymmetry factors. (c)
The asymmetry angle could be obtained precisely by recording simultaneously the
reflected and doubly diffracted X-ray beam at grazing incidence. (d) Intensity gain
compared to symmetrical channel cut monochromator
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29.7.2 Monolithic 4-Bounce Monochromator for CoKα1 Radiation

For the first time this Ge (220), (−2–20), (−440), (4–40) monochromator for
the CoKα1 radiation was considered in [3] and theoretically described in [15],
where its suitability for a wavelength standard was also proposed. Its main
advantage is the extremely stable wavelength and small dimensions. In the
design presented in Fig.29.5 the energy bandpass is ΔE

E = 6.2 × 10−5 and
the divergence in the scattering plane ΔΘ = 16.9 arcsec. The limited preci-
sion of the wavelength calibration (∼1 meV) at a synchrotron source and the
spread of the literature values of the germanium lattice parameter used in
the design of the geometry of the monochromator lead to an energy shift of
monochromator bandpass relative to the Lorentzian peak of the CoKα1 emis-
sion line in Fig. 29.5c. To minimize this shift a monochromator temperature
control is suggested.

(a) (b)

(c) (d)

Fig. 29.5. (a) Monolithic Bartels-like germanium (220), (−2–20), (−440), (4–40)
four-bounce monochromator for CoKα1 radiation, (b) its spectral function, (c)
Lorentz profile of natural emission line with the calculated monochromator band-
pass, (d) synchrotron radiation intensity transmitted through the system for various
photon energies around E0 = 6,930.32 eV corresponding to the maximum of CoKα1

emission line
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29.8 Noncoplanar 2D Crystal Optics

The possibility of obtaining 2D image magnification using asymmetric diffrac-
tors was first demonstrated by Boettinger et al. [2] by their polylithic system.
Spatial resolution and phase contrast effects have been treated in [19] and [16].
In a tomographic arrangement a volume resolution of 350nm was achieved
using a similar polylithic magnifier [20]. On the other hand, using a polylithic
2D beam compressor based on two independent (n,−n) couples of asymmet-
ric Bragg diffractors, adjusted to have perpendicular planes of diffraction, an
X-ray microbeam of the size less than 7.6 × 5.7 μm2 was obtained and used
to measure the strain distribution around the silicon dioxide edge on a silicon
substrate [14, 21].

A monolithic 2D magnifier/demagnifier, designed according to the proce-
dure presented in Sect. 29.5 and based on Si {311} diffractors, was recently
successfully tested in its beam expanding and in beam compressing modes
at ESRF [12, 13], see Fig. 29.6. In comparison with the X-ray magnifier, the
exposition time on the same film and with nearly the same incident beam
intensity decreased from 90min to 30–120 s when testing the device in the
beam compressing mode. This demonstrates a real 2D beam compression and
concentration in this kind of X-ray optical element, which can open the way
to a broader utilization of the device in beam conditioning optics.

29.9 Conclusions

The theoretical basis for 1D and 2D crystal, flat Bragg X-ray optics has been
outlined. While 1D optics are important for reciprocal space mapping, the
2D optics are suitable for real space imaging. Special attention was given

Fig. 29.6. Monolithic 2D X-ray beam compressor (for a beam passing from right to
left in (c) and magnifier (from left to right) based on (113,−311, and 224) noncopla-
nar diffractors. (a) More than 400 parallel X-ray microbeams formed by the X-ray
compressor from a wire mesh (b) put into the incident beam. The microbeam size is
7.6×9.9 μm (H×V ), their separation 3.3 μm horizontally and 4.3 μm vertically. (d)
Microscopic Cu #300 mesh grid (upper grid) and its X-ray magnified image (lower
grid). X-ray magnification 15 times at 9.6 keV. Grid diameter 2.3 mm, 32 μm wide
stripes and 64 μm square windows (with courtesy of Institute of Physics Publishing)
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to asymmetrical diffractors and to their coplanar and noncoplanar spatial
arrangements. Some results of tests on selected V-channel monochromators
and monolithic 2D beam de/magnifiers have been presented and ways to
couple the individual elements have been proposed.
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30

Thermal Effects under Synchrotron
Radiation Power Absorption

V. Áč, P. Perichta, D. Korytár, and P. Mikuĺık

Abstract. Analyses of the effects of silicon crystal beam heating under static and
dynamic synchrotron radiation (power loads are presented. This research is related
to monochromator design and crystal optics in general. The aim of work is to analyze
the conditions for insertion of the crystal X-ray optics into the high flux primary
beam of the synchrotron. Suggestions for the optimization of the target geometry
and cooling system arrangement are given.

30.1 Introduction

This chapter is devoted to the analysis of the effects of silicon crystal beam
heating under static and dynamic synchrotron radiation (SR) power loads.
Finite element (FE) simulations of the monocrystalline silicon target for sur-
face and bulk temperature profiles and mechanical deformations are presented.
The limitation of heat loads and the cooling geometry from the standpoint
of diffraction properties are analyzed. The work is related to monochromator
design and crystal optics in general [1] (see also Chap. 29). The aim of this
work is to analyze the conditions for inserting the crystal X-ray optics into the
high flux synchrotron primary beam. An optimal cooling system is needed.
Hints for the optimization of the target geometry are given. Results presented
here are a continuation of previous work [2, 3].

For the simulations, a regular 3D-mesh for the target geometry was
implemented in the finite element model. The material is parameterized by
anisotropic silicon mechanical properties. Our computation tool, in contrast
to other known and often used tools, is optimized especially for SR crystal
optics. The computation algorithm is adapted for 3D analyses of the temper-
ature profile and an estimation of mechanical deformation for the resulting
temperature field. The FE analyze of mechanical deformations is based on the
balance of external mechanical forces and internal tensions and employs an
interactive algorithm for fast computation convergence.
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30.2 A Heat Transfer and Material Stress FE Model

The FE model used here consists of the integration of all thermal effects
resulting from the absorption of radiation for real materials. These are the
bulk heat absorption profile and effects related to the temperature field and
the resulting mechanical deformations, which consequently affect the intensity
distribution in the scattered beam.

30.2.1 Radiation Heat Absorption in the Matter

In spite of the different material dependencies for the description of the
absorption of visible light and X-rays, the mathematical description for both
follows an exponential decay law. The intensity, I, of X-ray photons trans-
mitted through a thin foil of material for an incident intensity, I0, follows the
exponential attenuation

I = I0 exp(−μz), (30.1)

where μ is the attenuation coefficient and z is the depth in the material. X-ray
absorption depends on the energy of the X-ray photons and diminishes with
increasing X-ray photon energy, Ep [4]. The heat absorption decreases nearly
proportional to the cube of the energy

(
μ ≈ 1

/
E3

p

)
except at absorption edges.

The absorbed power density, q, is given by the formula

q = −EP
dI
dz

= EPμ exp(−μz). (30.2)

The real absorbed heat profile can be different due to real conditions such
as beam divergence and a variation of target material properties, for example.

30.2.2 Heat Transfer and Temperature Field

The heat transfer in anisotropic body is described by the universal heat
transfer equation

∇ · q +Q = ρc
∂T

∂t
and q = −Λ · ∇T, (30.3)

where q is the vector of the heat flow density, ρ is the material density, Q is
the inner heat generation rate per unit volume, c is the heat capacity, Λ is
the thermal conductivity tensor, T is temperature, and t is the time. Various
boundary conditions can be specified to approximate real conditions:

• Constant temperature Ts = T (x, y, z, t) on defined target surface
• Heat convection qC = −hC∇T (hC is the convection coefficient)
• Energy surface radiation qsr = |qsr| = μa qr − σμe T

4 (σ is the Stefan–
Boltzmann constant, μe is the surface emission coefficient, μa is the surface
absorption coefficient, and qr is surface density of incoming heat flow)
through the specified surface.
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Generally, all parameters (ρ, c, Λ, h, μe, μa) are dependent upon the
local temperature, T . For computations of static mechanical deformations,
it is necessary to specify the initial scalar temperature field T0(x, y, z, t) =
T (x, y, z, 0). At computation of transient effects (for t> 0), the most important
parameter is the thermal diffusivity αT with dimension (m2 s−1)

αT =
Λ
ρc
. (30.4)

The αT determines the dynamics of the heat transfer in the matter and Λ is the
local scalar thermal conductivity. The static distribution of the temperature
field is found by solution of (30.3) for ∂T

∂t = 0 and dQ
dt = 0.

30.2.3 Mechanical Deformations

The local internal material stress is caused by thermal expansion (strain), εT.
It depends on local temperature difference ΔT = T − T0, where T0 is the
initial temperature [5]. Then

εT = αΔT, (30.5)

where α is a linear thermal expansion coefficient. The mechanical depression
εm caused only by internal stresses can be expressed as

εm =
3∑

k=1

3∑
l=1

Sijklσkl, (30.6)

where Sijkl is the compliance tensor (inverse matrix of the second order stiff-
ness tensor Cijkl) and σkl is an internal stress. By superposing these two
mechanisms, we obtain an expression for the total mechanical strain ε. Then

ε = εT + εm = α(T − TC) +
3∑

k=1

3∑
l=1

Sijklσkl. (30.7)

The balance criterion for FE analysis is formulated by the equivalence of
internal thermal stresses for each neighbouring material element position

σkl+ = −σkl−. (30.8)

The finite element method yields the displacement field, which minimizes the
total potential energy Π ,

Π =
∫

V

1
2
εTσ dV −

∫
V

εmpV dV−
∫

S

εmpS dS, (30.9)

where pV is the local body stress and pS is the local surface stress.
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30.2.4 Material Parameters

The most frequently used material for crystal X-ray optics is monocrystalline
silicon. The surface orientation of monochromator crystals is typically (100),
(110), and (111). A possible solution for improving the monochromator (or
target) cooling efficiency is the use of isotopically pure 28Si, which has a
higher thermal conductivity than natural Si. The basic thermomechanical
parameters of monocrystalline silicon are described in Table 30.1. The thermal
conductivity temperature dependence λ(T ) of natural silicon and of 28Si [6]
and the temperature dependence of linear thermal expansion coefficients α(T )
for monocrystalline silicon and CVD (Chemical Vapour Deposited) diamond
are shown in Fig. 30.1. The anisotropic thermomechanical properties of sili-
con (Young’s modulus, Poisson’s ratio, surface and bulk shear modulus) are
published in [7] and [8].

Despite better thermomechanical properties of diamond or isotopic pure
silicon, the most interesting material for X-ray optics is still natural monocrys-
talline silicon because of its availability and cost. Diamond crystals are
needed mainly for splitting white beam synchrotron radiation for subsequent
monochromatization at several beamlines. Thus, at present great effort is
being devoted to improve the homogeneity of large artificial diamond crystals.

30.3 Simulation of Monochromator Designs

In this section, we present simulations of perfect crystalline silicon targets
with different shapes and under different heat conditions (incident radiation).
The optimal target cooling system is investigated.

30.3.1 Silicon Target and Simulation Conditions

Let us study a typical cooled monochromator: a monocrystalline silicon target
with block geometry as shown in Fig. 30.2 and with variable target body
thickness h. The cooled back side (with cooling temperature Tc = 293 K)
can have various geometries: a flat surface or a channeled surface (cooling
channels). The X-ray beam is centered on the target with an incident angle
θ = 5.14◦ and the beam spot is elliptical, 30 × 10 mm2. The beam power
density (0.23 W mm−2) is defined to be homogenous in the whole irradiated
surface area. The photon energy for surface absorption is Ep = 100 eV, with an
attenuation coefficient μ ≈ 105 m2 kg−1 and penetration depth in micrometer
range. The photon energy for bulk absorption is Ep = 10 keV with μ ≈ 3 ×
102 m2 kg−1 and penetration depth in millimeter range.
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Fig. 30.1. The thermal conductivity (a) of natural and isotopically pure silicon
28Si [6], CVD diamond and copper [9], and linear thermal expansion coefficient (b)
for natural monocrystaline silicon [8] and CVD diamond [9]

Fig. 30.2. The geometry of a silicon target and beam power parameters; the cooled
back side wall is with or without cooling channels. Channel width is 1mm and
channel depth (not included in h) is 2mm

30.3.2 Temperature Field and Surface Mechanical Deformations

The surface temperature, bulk temperature profile, surface deformation, and
surface angle gradient for the channeled target with a body thickness h =
2 mm and bulk absorption of the beam energy (photon energy, Ep = 10 keV)
are shown in Fig. 30.3. The reproduction of the channeled cooled surface
(the back side of the target) is shown on the surface temperature and the
mechanical deformations profile, respectively. This effect is smaller for higher
target body thickness. The bulk heat absorption causes the asymmetry of
temperature profile in the x-axis direction.

30.3.3 Dependence of Surface Mechanical Deformations
on the Target Cooling Geometry

The mechanical deformations are investigated in terms of the surface slope
angle, which is the most important parameter for diffraction and reflection
properties of the crystal. The results for three target body thicknesses and
flat and channeled cooling surface geometry are shown in Fig. 30.4. These
results confirm the increase of the cooling effectivity with decreasing target
body thickness.
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Fig. 30.3. Calculated surface temperature profile (a), bulk temperature profile (b),
surface deformation (c), and surface slope gradient (d) for a slotted target with
thickness h = 2mm and bulk absorption of beam energy at Ep = 10keV

Fig. 30.4. The cross section of surface slope gradient in the middle of the target
for target body thicknesses h = 1.5, 3, and 5mm; surface heat absorption for flat
cooling surface (a) and for channeled cooling surface (b); surface overheating (c)
and surface slope gradient (d) vs. cooling temperature for flat cooling surface and
various target body thicknesses h
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30.3.4 Cooling Temperature

Decreasing the cooling temperature is the best way to reduce mechanical
deformations caused by absorption of radiation heat. The increase of the
thermal conductivity of silicon (Fig. 30.1) together with the decreasing ther-
mal expansion coefficient as the cooling temperature is decreased makes it
possible to significantly reduce the surface deformations. These results are
documented in Fig. 30.4c, d. The cooling by liquid nitrogen (LN2) (78 K)
can reduce the surface overheating and surface deformation by more than one
order of magnitude in comparison to these effects using room temperature
cooling.

30.3.5 Cooling Channels Variations

In this section, we will show how it is possible to reduce variations of the sur-
face temperature and deformation due to the reproduction of the channel
arrangement by optimization of cooling channels geometry. Two possible
locations of rectangular cooling channels are seen in Fig. 30.5. The cooling
channels are built in the silicon target (a) or in a cooler block (b), respectively.
Usually, the cooler block is made from a high thermally conductive mate-
rial (copper). Simulations in Fig. 30.5 show higher effectivity of the cooling
channels made in copper block.

This fact is caused by the higher thermal conductivity in the bulk of
the copper cooler together with its larger surface of the cooling channels in
comparison to that in the silicon target. In addition, “print-through” of the
channel geometry to the optical surface is reduced.

Fig. 30.5. Cooling channels variations and corresponding simulations of surface
deformation (at photon energy, Ep = 100 eV) for cooling channels in the silicon
target (a) and cooling channels in the copper cooler block (b)
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30.3.6 Cooling Block Arrangement

The next example is devoted to the revision of cooling block efficiency. Two
variations of the cooling block arrangement shown in Fig. 30.6 have been inves-
tigated. From mechanical point of view, the lateral side coolers are optimal for
a higher target body thickness. Back side cooling is optimal for a smaller target
body thickness. The simulation results for block Si target (220×120×40 mm3)
and rectangular beam spot (5×35 mm2, Ep = 100 eV, 0.43 W mm−2) shown
in Fig. 30.6c, d confirm the comparable effectiveness of lateral side coolers
compared to back side coolers if the target body thickness is comparable with
lateral target size. The benefit of back side cooling is seen at smaller target

Fig. 30.6. The cooling block arrangement with (a) lateral side coolers, (b) back
side cooler and simulations of surface deformations (c), and surface temperature
(e) for lateral side cooling and (d, f) for back side cooling. The silicon target body
thickness h = 40 mm. The indium foil thermally connects the silicon target to the
copper cooling block
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Fig. 30.7. Temperature and size dependence of the heat dissipation time constant
τd for monocrystalline silicon (a), and (b) shows the time dependence of the Si
surface temperature under the load of a sequence of six pulses for a target body
thickness h = 3mm

body thickness. The significant effect is seen in a reduction of the surface
deformation, which is the aim of the cooling system optimization. The min-
imum size of the target body thickness is given by the penetration depth
of the X-ray beam, which depends upon its photon energy and the surface
incident angle.

30.3.7 Dynamic Thermal Properties of Silicon

The dynamic thermal properties are significant in case of pulsed irradiation
of the surface. The transient heat properties of the material are characterized
by the heat dissipation time constant, τd, defined by the thermal diffusivity,
αT, and the target size. The typical temperature and target size dependences
of τd for monocrystalline silicon are shown in Fig. 30.7a. The time constant
resulting from the solution of (30.3) with respect to (30.4) characterizes the
dynamics of heat dissipation in the material after a pulsed heat load. The
typical time dependence of the temperature at the start of the pulse load
process (six pulses) is shown in Fig. 30.7b. The swing of surface temperature is
dependent on the heat pulse frequency. The maximum of temperature under
a long time periodic load goes to saturation. It is possible to minimize the
temperature swing for Si target with the thickness in the millimeter range for
pulse frequencies higher than 100Hz.

30.4 X-Ray Diffraction Spot Deformation

In synchrotron beamlines, a crystal used as the first monochromator is subject
to a white radiation. Monochromatization by Bragg reflection leads to a high
heat load on the surface of the crystal. Heat conduction in the bulk and
cooling at the bottom leads to a stationary distribution of crystal parameters.
This is mainly the case for a Bragg reflecting crystal. The heated crystal
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exhibits deformations as shown in previous sections. Limiting ourselves to
cooled monochromators, we will further focus only on diffraction in Bragg
(reflection) geometry for semi-infinite crystals.

Let us first make a qualitative discussion about the expected diffrac-
tion image. It will be similar to X-ray topography images. This leads to the
following:

1. Surface waviness follows the height profile. Surface roughness does not
play a role in X-ray diffraction. Ray-tracing the scattered rays are inco-
herent. A surface elevation would shift the diffracted spot on the detec-
tor, which is negligible for micrometer pixel sizes and sub-micrometer
elevations.

2. Crystal lattice waviness is equivalent to lattice misorientation. The angle
of incidence of the Bragg maximum is shifted by the surface slope angle pro-
jection, αx, which is given by the tangent to the crystal lattice plane (or
the diffraction vector angle) as projected into the scattering plane. The
direction of the diffracted beam (angle of αf) will slightly change as well.

3. Crystal lattice deformation. This locally changes the Bragg angle θB. From
the differential form of the Bragg law

ΔθB = −(Δa/a) tan θB, (30.10)

where a is the crystal lattice constant.

In summary, the angle of incidence (αi) of the Bragg peak maximum changes
locally by

Δαi = αx − (Δa/a) tan θB. (30.11)

Qualitatively, this value influences the diffracted intensity via rocking curve
shift.

As an example, let us take a cooled Si (111) monochromator at 8 keV. The
Bragg angle is 14.2◦, the Bragg extinction length is 1.5 μm, and the Darwin
curve fwhm is 7 arcsec (σ-polarization). The latter corresponds to 34 μrad or
Δa/a = 10−4, which are smaller than values calculated in the previous section.
Thus, for a temperature change of a few degrees Kelvin, the diffraction image
is kept almost unchanged. For lower energy and higher Bragg angles, the
requirements are less strict.

Furthermore, real beam homogeneity is driven by its (a) divergence and (b)
its wavelength spread. These are the effects that smooth the diffracted image.
For example, a divergence of 10 arcsec is higher than the Bragg curve fwhm.

The diffraction image from a monochromator is simulated by usual ray-
tracing methods. In brief, for perfect crystals, the usual dynamical diffraction
is used, while for deformed crystals the Takagi-Taupin or (semi) kinematic
approximation are adequate. For heated monochromators, there is a deforma-
tion gradient from the surface to the bulk. Qualitatively, the limit between
dynamical theory for perfect and deformed crystals is the angular shift of the
Bragg peak on the surface within a Borrmann fan. For a perfect crystal, it
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should be smaller than the Bragg peak width. Otherwise, for a large deforma-
tion on a micrometer scale, the use of the Takagi-Taupin approach for reflected
wave intensity would be required.

Diffraction spot simulations by ray-tracing verify these qualitative conclu-
sions. For a temperature field with a variation of several degrees, the diffracted
image is homogeneous. The acceptable surface deformation limit in terms of
the diffraction spot damage follows from (30.11) and depends not only on
target surface deformation but also on beam divergence.
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Absorption coefficient, 391, 505

Anti-stress layer, 386

Aperiodic multilayer, 411

Asymmetric Laue crystal, 455

Atomic force microscope, 376

Atomic layer epitaxy, 390

Autocollimating telescope (ACT), 193

Ballistic guide, principle of, 126

Beam intensity distribution, methods
for measuring, 43

Beam knife-edge measurements, 231

Beam transport system, 86

Bent perfect crystal, 118

Bi-concave lens, 336

focal length, 337

refraction angle, 336

transmission function, 337

Bias voltage, stress dependence on, 380

Bragg diffraction, 440

asymmetric, DuMond diagram of, 441

inclined, 442

on longitudinal groove crystal surface,
447

on transverse groove, 443, 444

refraction effect, 451

symmetric, 440, 442

symmetric and asymmetric difference,
449, 450

Bragg reflector, 473

in sagittal grating, 473

monochromatization by, 522

Bragg–Fresnel grating, 472, 473, 476
meridional grating, 477
sagittal grating, 473

Braggs law, 235
Brewster angle, 413
Broadband polarizers, 2

Calibrated reference mirror, 185
Capillary optics, 4, 128

on multiple reflections, 289
on single reflections, 288
radiation transport principle, 290
for synchrotron radiation, 302
micro-XRF applications, 296
optical profile measurements, 299
physical basics of, 288
two-dimensional distributions, 297

Channel-cut crystal monochromator,
445

harmonics-free, 446
with circular grooves, 450

Chemical vapor deposition (CVD), 516,
518

Chromatic optics, 132
Circular polarization, definition of, 30
Clessidra lens, 342

diffractive and the refractive images,
344

focal length of, 341
geometric aperture, 342

Coating design, 432
Coherent radiation, phase space volume

for, 93
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Coherent synchrotron radiation (CSR),
69

Cold source metal canister, 114

Common correlation functions, 399

Compound refractive lenses (CRLs),
119, 335

advantages and drawbacks of, 120

MgF2 biconcave lenses, 119, 120

parabolic, 260, 274

Computer controlled polishing (CCP),
201

Concave beam, 446

Coplanar 1D crystal optics, 509

Critical angle, for total reflection, 95,

Crystal focusing, 117

Crystal monochromator, 93, 100

bandwidth of, 100

in synchrotron radiation beamline, 93

Crystal optics, 33

Crystal slabs, 461

cuts of, 461

diffraction of, 461

MBR-effect with, 467

reflections of, 460

Curvature measurement, techniques for,
374

Darwin–Prins (DP), 33, 445

curves, 445

formalism, 33

Debye–Waller model, 310

Distributed electron cyclotron resonance
(DECR), 393

DECR sputtering, 399

Depth-graded multilayers, 410

flat reflectivity, 413

layer thickness distribution, 412

Detector gas absorption efficiency, 45

Diffraction gratings, 26

error estimation, 209

structure and use of, 207

variable line spacing (VLS) grating,
208

Diffractive optics, 62

Diffuse scattering, 120, 121

at interfaces, 121

polish finish, 120

Direct front coupling diffraction
phenomena, 104

from dielectric corner, 105
in dielectric FC waveguide, 106

Double focusing monochromator, 117
Downhill annealing, 241
Dynamical theory, 504

Effective aperture, 95
defined as, 95
exponentially decaying transmission

function, 96
Effective footprint size (leff), 96
Elastic emission machining (EEM), 263
Electromagnetic modes, 93
Electromagnetic spectrum, 407, 417
Electron diffraction, 399, 401
Electron storage rings, 157
Electron-beam, 392

lithography, 474
UHV evaporation, 392

Elliptical toroid, construction of, 23
Elliptically shaped mirrors reflection,

416
Energy Recovery Linac Prototype

(ERLP), 70, 86, 201
Epithermal neutrons, 53
Etched gratings, 472

efficiency of, 476
groove profile, 475

Extreme ultraviolet (EUV) lithography,
320, 371

field of view, 320
gas-puff laser plasma, 320
in microprocessor industry, 335
intensity distribution, 326
ray-tracing simulation of, 322
stress mitigation, 383
TEFLON dry etching with, 328

use of plexiglass, 339
X-ray lenses production, 335

Ewald sphere concept, 503

Figure of merit (FOM), 240
description, 240
parameters, 241

Film roughness, 384
Film stress, 372
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Finite element analysis, 313, 513, 514

heat transfer and temperature field,
514

mechanical deformations, analyses,
513, 515

monocrystalline silicon, simulation of,
513

radiation heat absorption, in matter,
514

Flat response mirrors, applications of,
408

Focal spot profile estimation, 327

Focal spot, EUV beam, 319

by Wolter X-ray optics, 326

characterization in EUV region, 325

Focusing honeycomb collimators, 116

Focusing monochromators, 117

applications, 132

focal spot, 117

Focusing neutron optics, 113, 122, 131,
132

applications of, 132

collimating focusing, 115

crystal focusing, 117

diffractive optics, 129

figure of merit for, 131

modeling programs, 131

principles, 113

refractive optics, 118

Focusing techniques, 133, see also
Focusing neutron optics

Fourier coefficient, of crystal
polarization, 476

Fourier optics technique, 39, 76

Fourier transform lens, 182

focal position of, 184

interference pattern, 182

laser beam pairs, tilt induced in, 183

Fourier transform spectrometer, 87

Free electron laser (FEL), 69, 201, 404

Frequency-domain electric field, 73, 118

Fresnel diffraction, 10

Fresnel equations, recursive application
of, 31

Fresnel Kirchoff equation, for
propagating the field, 70

Fresnel lens, 342

Fresnel reflection coefficient, 419

Fresnel zone plates, 4, 129, 472
vs. KB mirror systems, 269
capillaries in, 265
consists of, 266
coupled-wave theory for, 141
diameter limitation, 130, 268
diffraction efficiency ηm(t), 140
diffraction properties, 157
fabrication process, 170
first-order diffraction of, 141
focusing efficiency, 270
for hard X-ray applications, 267
for soft and hard X-rays, 259
high-order diffraction of, 154
interdiffusion and roughness
line-to-space ratio influence on, 15
lithographic techniques, 268
micro-electro-mechanical systems

(MEMS) technology, 268
micromechanical motion system, 271
nickel zone structures, 155
of m-th diffraction order, 140
phase zone plates, 129
resolving power of, 154, 164, 168
Rayleigh resolution of, 267
spatial resolution of, 137, 267
stacking technique, 270
tilted zone and layers, 168

FTL, see Fourier transform lens

Gamma-ray telescopes, 389
Genetic algorithms (GA), 241
Geometric aperture (Ageo), 96
Geometrical optics approximation, 64
Glancing angle, 408
Goebel mirror, 131
Grain boundary diffusion, 396
Grain size in FeCo layers, 378
Graphitization, 398
Gray Cancer Institute microprobe, 314
Grazing incidence X-ray optics, 320
Grid point distribution, 76

Halo effect, 294
Hartmann wavefront measurement, 226

ALS beamline, 226
normalized beam intensity profiles,

227
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High-gain harmonic generation
(HGHG), 71

Huygens–Fresnel principle, 74

Imaging systems, method for
determining focus position, 28

In-line X-ray optics, 508

Inclined diffraction, wave vectors in
reciprocal space for, 442

Induction-hardened S45C steel,
diffraction profiles, 467, 468

Ion beam finishing (IBF), 201

Isothermal annealings, 399

K correlation function, 394

Kinematical theory, 503

Kirchhoff integral theorem, 73

Kirkpatrick–Baez (KB) systems,
reflective optics, 255

elliptical surfaces, 263

geometrical characteristics, 262

grazing incidence optic, 262

refractive index, 260

Kirz formula, 476

Langasite (LGS), 494

as piezoelectric crystal, 495

Laue diffraction, 301

image of, 456

sagittal deviation, 454

with profiled surfaces, 457
Lens-based X-ray microscopy, 256

classification, 256

optical schematic of, 257

Levenberg–Marquardt method, 60, 65

Lift-off technology, 474

Line for ultimate characterizations by
imaging and absorption (LUCIA),
229

Line-to-space ratio, 151

influence on diffraction efficiencies,
151

of laminar zone structures, 141

of transmission grating, 144

Lobster Eye (LE), 127

in Schmidt arrangement, 321

optics, 127

Long Trace Profiler (LTP), 3, 193, 208
calibrated reference mirror, 185
design modifications, 185

digital CCD camera, 187
environmental control enclosure,

186
Wollaston prism arrangement, 188
calibration setup, 189
optical setup of, 189
source and detector, 188
split retro reflector, 190

features, 181
optics head, 182
source of error, 183

misalignment of optics head, 184
refractive index changes, 183

systematic errors, 184
thermal instability, 183

Magnetron sputtering, 384
Maxwell–Boltzmann distribution, 54
Maxwellian distribution, 62
MBE, see Molecular beam epitaxy
MBR, see Multiple Bragg reflections
MBR-monochromator, diffraction

profiles of, 466, 467
Media-Lario technologies, 237, 239, 240,

245
Metrology, 3

“footprint” measurement, 204
computer controlled scanning, 203
demonstration components, 202
ion source parameters, 204
van Citter deconvolution, 204

Michelson interferometer, for measuring
wave front, 375

Microcrystalline layers, 395
Microdiffractometry, 300
Microphotonics, elements of, 472
Microstructured optical array (MOA),

312
finite element analysis (FEA), 313
manufacture of, 315
ray tracing method, 314

Mirrors
surface roughness of, 31

Molecular beam epitaxy, 390
Monochromatic waves, propagation of,

81
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Monochromator designs, simulation of,
516

block arrangement, 521
channels variations, 520
cooling temperature effects, 520
mechanical deformation, dependence

of, 518
silicon properties, 522
silicon target, 516
temperature field and mechanical

deformation, 518
Monochromator FeCo-Si, 377

stress values for, 378, 379
Monocrystalline silicon, 513

finite element (FE) simulations of,
513

thermomechanical parameters of, 517
Monolithic system, of diffractors, 507
Multichannel supermirror, 59
Multifoil optical (MFO) condenser, 319

design and testing for, 319
in EUV region, 325
in visible and X-ray region, 324

EUV bifacial Kirkpatrick–Baez
condenser, 321, 327

focal spot size determination, 328
glass mirror, thermal shaping of, 323
reflecting mirror parameter of, 323
solid angle, 323
source imaging by, 328

Multilayer Laue lens (MLL), 270
Multilayer systems, 234, 372, 389

as-deposited, XRR and GIXDS
simulation parameters, 396, 398,
399, 401

bandwidth of, 410
biaxial elastic modulus, 373
coatings, depositon, 237, 385, 422
energy dispersion of, 415
laterally graded, 409
layer thickness distribution, 412
layer thicknesses for FeCo, 377
layer-by-layer design methods, 426

with barrier layers, 430
nonperiodic, 415
optimization algorithm, 427
optimization method with fixed

thickness layers, 431
partially polarized radiation, 434

polarization analysis, 414
reciprocal space maps of Sc/Cr, 402
reflectivities measurement, 414
reflectivity and inreflectance for

comparison of, 429
reflectivity of broad angular range,

412
reflectivity spectrum, 411
stress developing in FeCo/Si, 376
stress measurement, 374
stress mitigation, 383, 387
stress variation vs. argon pressure in,

373
sub-quarter-wave, 417
thermal stability, 401
with continuous refractive index

variation, 432
with strongly absorbing materials,

417
with ultra-short periods, 389

Multiple Bragg reflections, 460
effects of, 463
in elastically bent perfect crystals,

460
investigation methods for, 461
reflection with primary reflection, 462
schematic diagram of, 460

Nanometer beams, 91
Nanometer optical component measur-

ing machine (NOM), 3, 176, 193,
213

45◦-pentaprism design, 194
autocollimator, 193
improved measurement techniques,

193
thermal stability, 195

Nanometer radiation, 202, 471
wavelength of, 472

Nested mirror systems, 308
computer simulations, 309, 310
laboratory-scale microfocus and

bending magnet sources, 309
mirror fabrication process, 310–312
surface roughness, 310

Neutron beam, 43, 49, 51
beam divergence, 114, 123

focusing guides, 123
extraction guide system, 51
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extraction system, 49

focusing parameters affecting, 115

optical index for, 118

phase-space mapping, 43

polarization of, 356

scattering, 115

Neutron focusing optics, see Focusing
neutron optics

Neutron optical components, quality
assessment of, 43

Neutron radiography experimental
test, 467

Neutron spectrometers, 113

focal lengths of, 113

refractive lens on, 119

Neutron supermirrors, 125

behavior, 356

for neutrons transport, 355

guides, implementation of, 125

Ni/Ti supermirrors, 356

origin, 355

polarization of, 356

reflectivity of, 122

critical angle, increase of, 367

neutron polarization, 365

neutron polarizers, 366

Névot–Croce formalism, 31, 235

crystalline structure of layers,
relation, 357

curves reflection, 360

for neutron guides, 356

neutron reflectivity curves, 357

stability

under heat load, 360–362

under irradiation, 362–364

Nickel zone structures, 151

first-order diffraction efficiencies, 151

high-order diffraction efficiencies, 155

Noncoplanar 2D crystal optics, 16, 511

Noncoplanar diffraction, 442

Numerical aperture (NA), 267, 272

calculation of, 333

On-axis Strehl factor, 176

Opaque layer, calculated reflectivities,
422

Optical constants, 424

Parabolic capillary, optical principle of,
289

Parabolic multichannel guides, 64
Particle swarm optimization techniques,

61

Penetration depth, 505
Phase space mapping, of neutron beam,

4
Phase-shifting point diffraction

interferometer (PSPDI), 220
Photon optical systems, modeling of, 69

Pinhole camera imaging, 43
advantage of, 44

energy resolved method for, 49
Plane grating monochromator (PGM),

10, 37

PLD, see Pulsed laser deposition
Poissons ratio, 373

Polarized radiation, 418
Polarizing neutron supermirror, stress

developing in FeCo/Si, 376
Polycapillary lenses, 291

for XRF analysis, 295
types of, 291

Polylithic system, of diffractors, 508
Powder diffractometry, 81, 300, 466

Power spectral density (PSD), 394
PPM, see Pythonic program for

multilayers

Prism array lenses, focal length
reduction designs for, 341

Pulsed laser deposition, 392
Pythonic program for multilayers, 242

vs. TEM images, 244–246
vs. d-Spacing, 246, 248

multilayer stack structure, 242, 244
thickness distribution, 246

Radiation transport principle, 290
Radiography image, 468

of screw, 468
of steel office staples, 469

Rapid thermal annealing (RTA), 393
Rayleigh resolution, 168, 170, 267

Raytrace simulation, 57
for modeling of neutron optics

components, 57
of neutrons, 64
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Raytracing program (RAY), 9, 10, 451

code for calculating angle of
asymmetry in crystals, 35

treatment of light sources, 15

RBC, see Resonance beam coupling

Real-time diffractometry, 301

Reciprocal space maps (RSMs), 393,
400, 502, 503

Reflective optics, 64

quality of, 175

surface errors of, 175

capillaries, 264, 265

Kirkpatrick–Baez systems, 260

Reflectivity enhancement mechanism,
422

Refractive focal distance, 340

Refractive indices of complex plane, 421

Refractive lenses, 271

as conventional lens, 272

description of, 271

holographic/kinoform optical
elements, 276

microelectronics planar fabrication
technology, 274

planar lens technology, 275

Refractive optics

definition of, 255

elements for, optical index and
absorption of, 119

focusing guides

tapered, elliptic, and parabolic, 124,
125

types of, 123

magnetic lenses, 121

neutron optical indices, 118

solid-state lenses, 118

Resonance beam coupling

FWHM spatial acceptances and, 97

guided mode, 95

between horizontal interfaces, 96

in guiding layer, 94, 95

with lateral waves, 108

with nonuniform plane waves, 108

in three layer WG, 92

limiting case for, 95

RESTRAX Code, 58

sampling strategy for, 59

Round-Robin mirrors
consistency in results, 218
description and use, 214
measurement procedures, 214
residual error concordance, 217

Sagittal deviation, 449
Sagittal focusing, 447
Sagittally focusing monochromator

crystals, 451
SANS spectrometers, see Small angle

neutron scattering spectrometers
SAW, see Surface acoustic wave
Scalar wave equation, 142

complex amplitudes Am(z), 145
in two-dimensional inhomogeneous

medium, 142
matrix solution of, 148
solution of modulated, 148

Scanning microscopes, 257, 259
Scanning pentaprism, 184
Scanning transmission X-ray

microscopes (STXRM), 259
Scattering length density (SLD), 365
Scattering vector, 502
Schmidt design

ray-tracing simulations of, 322
Self-amplified spontaneous emission

(SASE), 71, 321
Shack–Hartmann long trace profiler

(SH-LTP), 219, 220
design and principle of, 222, 223
plane reference mirror, 223
stitching measurements, 224, 225
toroidal mirror, 223

Shack–Hartmann wavefront sensing
technique, 221

SHADOW–XOP program, 9
Shearing interferometer (SI), 220
Single crystal diffractometry, 299
Slope measurement, principle of, 177
Solid-state lenses

base elements, 122
magnetic lenses, 121
neutron optical indices, 118
reflective optics systems, 122

Soller collimators, 59, 115
collimating channels, 115
principle of, 116
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Spatially coherent radiation, 338
focusing, 338

line patterns, 340
transmission function, 342

lens performance dependence on, 343
parameter dependence on, 339
transmitted wavefronts, 338

Spatially incoherent radiation, 338
diffraction pattern, 338
refractive image position, 345

Spectral filter, 411
Spontaneous synchrotron emission, 71
SQUID magnetometer, 377, 380
Stokes vector, 12, 33
Sub-quarter-wave multilayers

(SQWMs), 417
angular bandwidths of, 425
applications of, 421
normal-incidence reflectivities of, 424
optimum layer thicknesses of, 423

Supermirror transmission polarizers, 64
Surface acoustic wave (SAW), 484

crystals modulation by, 494
interdigital transducer (IDT), 484
multilayer mirror modulation by, 488
propagation of, 484
total external reflection mirror

modulation by, 485
Surface roughness

Debye–Waller model, 310
mathematical description of, 288

Symmetric transmission geometry,
reflections, 464–466

Synchrotron radiation (SR), 449, 476,
513

calculation of X-ray optical setups on
electron storage rings for, 35

design tool for, 9
flux distribution, 303
instrumentation, 213
knife-edge testing, 303, 304
microprobe beamline, 303
wavefronts, propagation of, 73

TEM, see Transmission electron
microscopy

Tensile stress, 372, 373
Thermal energy, 384
Thermal expansion, 372

Thermal load, 393
Thermal stability, 391, 401
Thermal stress, 372
Thermodynamic equilibrium, 390
Thin films, 383, 391, 417

waveguide, 265
Thin microwire, 158
Three-axis spectrometers (TASs), 58
Topography measurements, 198

3D-data matrix generation, 198
accuracy criterion, 199

Toroidal mirrors, 128
Total external reflection (TR), 287

capillary optics, 287
critical angle, 288

Transmission electron microscopy
(TEM), 389, 391, 394

Transmission grating
material distribution of, 144
modulated region of, 145
periodically changing permittivity of,

143
Transmission lenses, 333

cross-sectional view of, 332
historical development of X-ray, 333
main parameters for, 331
numerical aperture, 333
spatial resolution, 332, 333
surface errors in X-ray, 335
use of, 331

Transmission X-ray microscope
(TXRM), full-field, 256

vs. scanning microscope, 258
phase contrast in, 259

Transverse grooves, 454

Ultra-high vacuum (UHV), electron
beam evaporation in, 392

Ultrasonic super-lattice, use in X-ray
wavelength, 484

Vacuum furnace annealing, 392
Varied line spacing (VLS) gratings, 12,

27
Volume gratings, 472

characteristics of, 480
types of, 472

Water window, 391
Wave vector transfer, 502
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Waveguide Front coupling
intensity distribution, 107
interference, 108
normalized integrated power, 108
spatial spectral amplitude, 106
wave field, 106, 107
incoming radiation, 92
with prereflection, 92

absorption losses, 103
plane wave incoming radiation, 101
spatially coherent illumination, 102,

103
spatially incoherent radiation, 102

Wavefront propagation, 10
codes for, 10
principle of, 76
simulation of, 70
test cases for, 82

Wavelength spectrum, of neutrons, 114
WG, see X-ray waveguides
Wide-band multilayers, 235
Wollaston prism, cut angle of, 187

X-rays, 94, 389, 391, 522
microscopy, 389

history of, 256

lens-based, 256
soft and hard, 259

nano-photonics, spatial resolution of,
472

planar waveguide, 265
Bragg and Laue diffraction, 439,

456
“at wavelength” metrology, 220
applications, 219

waveguides, 2, 91
achromatic, 91
angular acceptances of, 97, 98
applications, 92
as coherence filter, 93
for X-ray microbeam production, 91
front coupling (FC), 92
resonance beam coupling, 93

X-ray absorption fine structure (XAFS),
classification of, 287

XUV polarimetry, 408

YAG:Ce crystal scintillator plate, use
of, 327

Youngs modulus, 373
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