
A Dynamic View Materialization Scheme for Sequences
of Query and Update Statements

Wugang Xu1, Dimitri Theodoratos1, Calisto Zuzarte2,
Xiaoying Wu1, and Vincent Oria1,�

1 New Jersey Institute of Technology
wx2@njit.edu, dth@cs.njit.edu, xw43@njit.edu, oria@njit.edu

2 IBM Canada Ltd.
calisto@ca.ibm.com

Abstract. In a data warehouse design context, a set of views is selected for ma-
terialization in order to improve the overall performance of a given workload.
Typically, the workload is a set of queries and updates. In many applications,
the workload statements come in a fixed order. This scenario provides additional
opportunities for optimization. Further, it modifies the view selection problem
to one where views are materialized dynamically during the workload statement
execution and dropped later to free space and prevent unnecessary maintenance
overhead. We address the problem of dynamically selecting and dropping views
when the input is a sequence of statements in order to minimize their overall ex-
ecution cost under a space constraint. We model the problem as a shortest path
problem in directed acyclic graphs. We then provide a heuristic algorithm that
combines the process of finding the candidate set of views and the process of
deciding when to create and drop materialized views during the execution of the
statements in the workload. Our experimental results show that our approach per-
forms better than previous static and dynamic approaches.

1 Introduction

Data warehousing applications materialize views to improve the performance of work-
loads of queries and updates. The queries are rewritten and answered using the materi-
alized views [10]. A central issue in this context is the selection of views to materialize
in order to optimize a cost function while satisfying a number of constraints [14,2].
The cost function usually reflects the execution cost of the workload statements that
is, the cost of evaluating the workload queries using possibly the materialized views
and the cost of applying the workload updates to the affected base relations and mate-
rialized views. The constraints usually express a restriction on the space available for
view materialization [11], or a restriction on the maintenance cost of the materialized
views [9], or both [13]. Usually the views are materialized before the execution of the
first statement and remain materialized until the last statement is executed. This is the
static view selection problem which has been studied extensively during the last decade
[11,15,9]. Currently most of the commercial DBMSs (e.g. IBM DB2, MS SQL Server,

� Research partially supported by a grant from the Army Research Laboratory.

I.Y. Song, J. Eder, and T.M. Nguyen (Eds.): DaWaK 2007, LNCS 4654, pp. 55–65, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

56 W. Xu et al.

Oracle) provide tools that recommend a set of views to materialize for a given workload
of statements based on a static view materialization scheme [18,1,6].

If a materialized view can be created and dropped later during the execution of the
workload, we face a dynamic version of the view selection problem. A dynamic view
selection problem is more complex than its static counterpart. However, it is also more
flexible and can bring more benefit since a materialized view can be dropped to free
useful space and to prevent maintenance overhead. When there is no space constraint
and there are only queries in the workload, the two view materialization schemes are
the same: any view that can bring benefit to a query in the workload is materialized
before the execution of the queries and never dropped.

Although in most view selection problems the workload is considered to be unknown
or a set of statements without order, there are many applications where the workload
forms a sequence of statements. This means that the statements in the workload are
executed in a specific order. For example, in a typical data warehousing application,
some routine queries are given during the day time of every weekday for daily reports;
some analytical queries are given during the weekend for weekly reports; during the
night the data warehouse is updated in response to update statements collected during
the day. This is, for instance, a case where the workload is a sequence of queries and
updates. Such a scenario is shown in Figure 1. The information on the order of the
statements in the workload is important in selecting materialized views.

UpdatesQueries Queries

Qt1 , Qt2 , ..., QtnQm1 , Qm2 , ..., Qmn Um1 , Um2 , ..., Umn

Fig. 1. A workload as a sequence

S3S1

(+V1, +V2)
{V1, V2}

(+V3, −V1)

S2

{V1, V3}
(−V1)

{V3}

Fig. 2. Output of the problem

The solution to the view selection problem when the input is a sequence of statements
can be described using a sequence of create view and drop view commands before the
execution of every statement. An alternative representation determines the views that
are materialized during the execution of every statement. Figure 2 shows these two
representations. +Vi (−Vi) denotes the materialization (de-materialization) of view Vi.

In this paper we address the dynamic view selection problem when the workload
is a sequence of query and update statements. This problem is more complex than the
static one because we not only need to decide about which views to materialize, but
also when to materialize and drop them with respect to the workload statements. Our
main contributions are as follows:

1. We exploit the problem as a shortest path problem in a directed acyclic graph (DAG)
[4]. Unlike that approach, our approach generate the DAG in a dynamic way. There-
fore, it is autonomous in the sense that it does not rely on external modules for
constructing the DAG.

2. In order to construct the nodes in the DAG, we extract “maximal” common subex-
pressions of queries and/or views. We also produce rewritings of the queries using

A Dynamic View Materialization Scheme 57

these common subexpressions thus avoiding the application of expensive processes
that match queries to views.

3. We suggest a heuristic approach that controls the generation of nodes for the DAG
based on nodes generated in previous steps.

4. We have implemented our approach and conducted an extensive experimental eval-
uation. Our results show that our approach performs better than previous static and
dynamic approaches.

The next section reviews related work. In Section 3, we formally defined the prob-
lem. In Section 4, we present its modeling as a shortest path problem and provide an
optimal solution. In Section 5, we show our heuristic approach for the case where no
update statements are presented in the workload and in Section 6, we discuss how it
can be extended to include also update statements. We present our experiment results
in Section 7 and conclude in Section 8.

2 Related Work

In order to solve a view selection problem, one has to determine a search space of can-
didate views from which a solution view set is selected [16]. The most useful candidate
views are the common subexpressions on queries since they can be used to answer more
than one query. Common subexpression for pure group-by queries can be determined
in a straightforward way [11]. In [8] this class of queries is extended to comprise, in
addition, selection and join operations and nesting. In [5] the authors elaborate on how
to common subexpressions of select-project-join queries without self-join can be found.
This results are extended in [16] to consider also self-joins. Currently, most major com-
mercial DBMSs provide utilities for constructing common subexpressions for queries
[3,17]. More importantly, they provide utilities to estimate the cost of evaluating queries
using materialized views. The What-If utility in Microsoft SQL Server [1] and the EX-
PLAIN utility in IBM DB2 [19] are two such examples.

One version of the dynamic view selection problem has been addressed in the past in
[7] and [12]. Kotidis et al. [12] show that using a dynamic view management scheme,
the solution outperforms the optimal solution of the static scheme. Both approaches
focus on decomposing and storing the results of previous queries in order to increase
the opportunity of answering subsequent queries partially or completely using these
stored results. However, both approaches are different to ours since they assume that
the workload of statements is unknown. Therefore, they focus on predicting what views
to store in and what views to delete from the cache.

Agrawal et al. [4] consider a problem similar to ours. They model the problem as a
shortest path problem for a DAG. However, their approach assumes that the candidate
view set from which views are selected for materialization is given. This assumption
is problematic in practice because there are too many views to consider. In contrast,
our approach assumes that the input to the problem is a sequence of queries and update
statements from which it constructs candidate views by identifying common subexpres-
sions among the statements of the sequence.

58 W. Xu et al.

3 Problem Specification

We assume a sequence S = (S1, S2, ..., Sn) of query and update statements is provided
as input. The statements in the sequence are to be executed in the order they appear
in the sequence. If no views are materialized, the total execution cost of S includes
(a) the cost of evaluating all the queries in S over the base relations, and (b) the cost
of updating the base relations in response to the updates in S. Let’s now assume that
we create and materialize a view just before the execution of statement Si and drop it
before the execution of statement Sj . Then, the total execution cost includes (a) the cost
of evaluating the queries in (S1, ..., Si−1) and in (Sj , ..., Sn) over the base relations,
(b) the cost of materializing view V (i.e., the cost of computing and storing V), (c)
the cost of evaluating all queries in (Si,..., Sj−1) using the materialized view V (V is
used only if it provides some benefit), (d) the cost of updating view V in response to the
changes of the base relations resulting by the update statements in (Si,..., Sj−1), and (e)
the cost of updating the base relations in response to the updates in S. We ignore here
for simplicity the cost of dropping the materialized view V . The total execution cost of
S when multiple materialized views are created and dropped on different positions of
sequence S is defined in a similar way. Since the cost of updating the base relations in
response to updates in S is fixed, we consider it an overhead cost, and we ignore it in
the following.

The problem we are addressing in this paper can be now formulated as follows. Given
a sequence of n queries and updates (S1, S2, ..., Sn) and a space constraint B, find a
sequence (O1, O2, ..., On) of sets of “create view” and “drop view” statements such
that (a) the total execution cost of S is minimized and, (b) the space used to materialize
views during the execution of S does not exceed B. Each create view statement contains
also the definition of the view to be created. The set Oi of create view and drop view
statements is executed before the execution of the statement Si

The output of this dynamic view selection problem can also be described by a se-
quence of sets of views C = (C1, C2, ..., Cn). Each set Ci contains the views that have
been created and not dropped before the evaluation of the statement Si. We call C a
solution to the problem. Further, if the views to be materialized can only be selected
from a set of candidate views V , we call C a solution to problem for the view set V .

4 Modeling the Dynamic View Selection Problem

In this section, we show how the dynamic view selection problem for a sequence of
query and update statements can be modeled as a shortest path problem on a directed
acyclic graph. We follow the approach introduced by [4]. That approach assumes that
the set of candidate views (i.e. the pool from which we can choose view to material-
ize) is given. Our approach is different. As we show later in this section, the candidate
views are dynamically constructed from the workload statement by considering com-
mon subexpressions among them.

We show below how [4] models the problem assuming that a candidate set of views
V is given and contains only one view V . Then, there are only two options for each
statement Si in the workload: either the view V is materialized or not. Those two op-
tions are represented as C0

i = {} and C1
i = {V } respectively in a solution where Ci is

A Dynamic View Materialization Scheme 59

the set of views that are materialized before the execution of Si. We can now construct
a directed acyclic graph (DAG) as follows:

1. For each statement Si in the workload, create two nodes N0
i and N1

i which represent
the execution of statement Si without and with the materialized view V respectively.
Create also two virtual nodes N0 and Nn+1 which represent the state before and
after the execution of the workload respectively. Label the node N0

i by the empty set
{} and the node N1

i by the set {V }.
2. Add an edge from each node of Si to each node of Si+1 to represent the change in

the set of materialized views. If both the source node and the target node are labeled
by the same set, then label the edge by a empty sequence “()”. If the source node is
labeled by {} and the target node is labeled by {V }, then label the edge by a sequence
(+V) to represent the operation “create materialized view V ”. If the source node is
labeled by {V } and the target node is labeled by {}, then label the edge by (−V) to
represent the operation “drop materialized view V ”.

3. Compute the cost of each edge from a node of Si to a node of Si+1 as the sum of: (a)
the cost of materializing V , if a (+V) labels the edge, (b) the cost of dropping V , if
(−V) labels the edge, and (c) the cost of executing the statement Si+1 using the set
of views that label the target node of the edge.

Figure 3 shows the DAG constructed the way described above. Each path from the
node N0 to the node Nn+1 represents a possible execution option for the workload.
The shortest path among them represents the optimal solution for the dynamic view
selection problem. The labels of the edges in the path denote the solution represented
as a sequence of “create view” and “drop view operations”. The labels of nodes in the
path denote the solution represented as a sequence of sets of materialized views.

Nn+1

{} {} {}

{} {}

{V } {V } {V }

(+V)

() ()

()

()
(+V) (+V)

()

(−V) (−V)
(−V)

()

S1 S2 Sn

N0

N0
1 N0

2 N0
n

N1
1 N1

2 N1
n

Fig. 3. Directed acyclic graph for candidate view set {V }

For a candidate set V of m views, we can construct a DAG in a similar way. Instead of
having two nodes for each statement in the workload, we create 2m nodes, one for each
subset of V . Again, the shortest path represents the optimal solution for the dynamic
view selection problem.

The shortest path problem for a DAG can be solved by well known algorithms in
linear time on the number of edges of the DAG. Therefore the complexity of the process

60 W. Xu et al.

is O(n · 22m) where m is the number of candidate views and n is the number of
statements in the workload. To compute the cost of each edge, an optimizer can be
used to assess the cost of executing the target statement using the corresponding set of
materialized views. This is too expensive even for a small number of candidate views.
In practice, the set of candidate views is expected to be of substantial size. The dynamic
view selection problem is shown to be NP-hard [4]. Therefore, a heuristic approach
must be employed to efficiently solve this problem.

In practice, we cannot assume that the set of candidate views is given. It has to
be constructed. Tools that suggest candidate views for a static view selection problem
[4] are not appropriate for determining candidate views for a dynamic view selection
problem. Our approach constructs candidate views which are common subexpressions
of queries in the workload and of views. More specifically, we consider subexpressions
of two queries which represent the maximum commonalities of these two queries as
these are defined in [16]. An additional advantage of this approach is that the rewritings
of the queries using the common subexpressions are computed along with the common
subexpressions. These rewritings can be fed to the query optimizer to compute the cost
of executing the queries using the materialization of the common subexpressions. If a
view V is defined as a common subexpression of a set of queries Q, we call each query
Q ∈ Q a parent of the V . Every Q ∈ Q can be answered using V . We consider only
rewritings of a query Q using its common subexpression with other queries and views.
A major advantage of this approach is that we do not have to check whether a query
matches a view (i.e., check if there is a rewriting of the query using the view) which
is in general an expensive process. In the following, we ignore a rewriting of a query
using a common subexpression if the cost of evaluating this rewriting is not less than
the cost of evaluating the query over base relations.

To solve the dynamic view selection problem, we can generate different views that are
common subexpressions of subsets of the queries in the workload.Finding the solution for
this problem using the shortest path algorithm is expensive because of the large number
of candidate views and the large number of nodes in the DAG. In the next section, we
introduce a heuristic approach that combines the process of generating candidate views
with the process of selecting views for a solution of the view selection problem.

5 A Heuristic Approach

For the heuristic approach, we start by considering that there are only queries in the
workload. In the next section, we discuss how our method can be extended to the case
where there are also update statements in the workload.

Our heuristic approach uses two solution merging functions Merge1 and Merge2.
Each function takes as input two solutions to the dynamic view selection problem, each
one for a specific set of candidate views, and outputs a new solution.

Consider two solutions l1 = (C1
1 , C1

2 , ..., C1
n) and l2 = (C2

1 , C2
2 , ..., C2

n), for the
candidate view sets V1 and V2 respectively. Function Merge1 is analogous to function
UnionPair [4]. It first creates a DAG as follows: for each statement Si in the workload,
it creates two nodes, one labeled by C1

i , the other labeled by C2
i . If the new view set

A Dynamic View Materialization Scheme 61

Function 1. Merge2
Input: solution l1, solution l2, space constraint B
Output: solution l
1: Create a list of solutions L which initially contains l1 and l2
2: for each view V1 in l1 and each view V2 in l2 do
3: Find the set of common subexpressions V12 of V1 and V2

4: for each view V ∈ V12 do
5: Find the solution for the candidate view set {V } and add it into L
6: end for
7: end for
8: Find the solution l from L with the lowest execution cost and remove it from L
9: for all solutions in L do

10: Find the solution l′ with the lowest execution cost and remove it from L
11: l = Merge1(l, l′)
12: end for
13: Return the solution l

Ci = C1
i ∪ C2

i satisfies the space constraint B, it also creates another node labeled by
Ci. In addition it creates two virtual nodes representing the starting and ending states.
Finally it creates edges as explained earlier from nodes of query Si to nodes of query
Si+1. Once the DAG is constructed, it returns the solution corresponding to the shortest
path in the DAG.

Function Merge1 does not add new views to the set of candidate views. Instead, for
each statement, it might add one more alternative which is the union of two view sets.
In contrast, function Merge2 shown in the previous page introduces new views into the
set of candidate views.

Our heuristic approach for the dynamic view selection problem is implemented by
Algorithm 2 shown above. Algorithm 2 first generates an initial set of candidate views
which are common subexpressions of each pair of queries. For each view, it finds a so-
lution. Then, it uses Function Merge2 to introduce new views into the set of candidate
views.

Algorithm 2. A heuristic algorithm for the dynamic view selection problem
Input: list of queries S , space constraint B
Output: solution l
1: Create a set of solutions L which is initially empty
2: for each pair of queries Si and Sj ∈ S do
3: Find the set of common subexpressions Vij of Si and Sj

4: Find the solution for each view set V = {V } where V ∈ Vij and add it into L
5: end for
6: Find the solution l from L with the lowest execution cost and remove it
7: for all solutions in L do
8: Find the solution l′ lowest execution cost and remove it from L
9: l = Merge2(l, l′)

10: end for
11: Return the solution l

62 W. Xu et al.

6 Considering Update Statements in the Sequence

In general, an update statement that involves updating more than one base relations can
be modeled by a sequence of update statements each of which updates one base relation.
For the updates we follow an incremental view maintenance strategy.

Let us assume that a view V contains an occurrence of the base relation R, and an
update statement U in the workload updates R. Then, if V is materialized when U is
executed, V has to be updated. This incurs a maintenance cost. An optimizer can assess
the cost for maintaining U . Roughly speaking, we define the unaffected part of a view V
with respect to an update U to be the set of subexpressions of V resulting by removing
R from V . If an expression of the unaffected part of a view is materialized or if it can
be rewritten using another materialized view, the maintenance cost of V can be greatly
reduced. For example, the unaffected part of a view V = R �� σA>10(S) �� σC=0(T)
with respect to R is the view V ′ = σA>10(S) �� σC=0(T). View V can be maintained
in response to changes in R either incrementally or through re-computation much more
efficiently if V ′ is materialized.

If there are update statements in the sequence, we still start the heuristic approach
with a set of candidate views which are common subexpressions of pairs of queries in
the workload sequence. Then, for each view and each update statement, we add to the
candidate set of views the unaffected parts of the view with respect to the updates. If
two update statements update the same base relation, only one is used to generate the
unaffected parts of a view. Finally we apply the heuristic algorithm using the new set
of views as a candidate view set.

7 Experimental Evaluation

We implemented the heuristic algorithm for the dynamic view selection problem for a
sequence of query and update statements. In order to examine the effectiveness of our
algorithm, we also implemented a static view selection algorithm similar to the one pre-
sented in [18]. Further, we implemented the greedy heuristic algorithm GREEDY −
SEQ presented in [4]. We provide as input to GREEDY − SEQ a set of candidate
views recommended by the static view selection algorithm. We consider select-project-
join queries. We compute “maximal” common subexpressions of two queries using the
concept of closest common derivator as is defined in [16]. In order to deal with update
statements, we take into account the unaffected parts of the views with respect to the
update statements. We use a cost model that assesses the cost of a query (or an update
statement) when this is rewritten completely or partially using one or more materialized
views.

We measure the performance of each approach as a percentage using the percent-
age of the total execution cost of a workload using the set of materialized view suggest
by the approach to the execution cost of the same workload without using any view.
For each experiment, we consider three schemes, Static (the static view selection ap-
proach), Dynamic (the view selection approach presented in this paper), GREEDY -
SEQ (the algorithm in [4] fed with the result of Static).

First, we study the effect of the space constraint on the three algorithms. We consider
two workloads W1 and W2 each of which consists of 25 queries (no updates). The

A Dynamic View Materialization Scheme 63

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
C

os
t (

as
 a

 %
 o

f t
he

 to
ta

l e
xe

cu
tio

n
co

st
 w

ith
ou

t v
ie

w
s)

Space Constraint (in multiples of the sum of the sizes of the base relations)

Static
GREEDY-SEQ

Dynamic

Fig. 4. Performance vs. space constraint,
workload W1

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
C

os
t (

as
 a

 %
 o

f t
he

 to
ta

l e
xe

cu
tio

n
co

st
 w

ith
ou

t v
ie

w
s)

Space Constraint (in multiples of the sum of the sizes of the base relations)

Static
GREEDY-SEQ

Dynamic

Fig. 5. Performance vs. space constraint,
workload W2

queries in W1 have more overlapping than that of W2. The space constraint varies from
1 to 10 times the total size of the base relations. The results are shown in Figures 4 and
5 for W1 and W2 respectively. When the space constraint is restrictive, the dynamic
view selection schemes have better performance than the static one. This superiority is
the result of the capacity of these approaches for creating and dropping materialized
views dynamically. As expected, when the space constraint relaxes, all view selection
schemes generate similar results. Among the two dynamic view selection approaches,
Dynamic performs better than the GREEDY − SEQ algorithm. This shows that
a statically selected view set is not appropriate for a dynamic view selection scheme.
Our approach does not suffer from this shortcoming since its set of candidate views is
constructed dynamically.

Then, we consider the effect of update statements on the three approaches. We con-
sider two series of workloads WS1 and WS2, each workload contains the same 25
queries. However we vary the number of update statements in each workload from 1
to 10. Each update statement updates 30% tuples of base relation chosen randomly. In

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
C

os
t (

as
 a

 %
 o

f t
he

 to
ta

l e
xe

cu
tio

n
co

st
 w

ith
ou

t v
ie

w
s)

Number of update statements

Static
GREEDY-SEQ

Dynamic

Fig. 6. Performance vs. number of update
statements (workload Ws1)

 24

 26

 28

 30

 32

 34

 36

 38

 40

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
C

os
t (

as
 a

 %
 o

f t
he

 to
ta

l e
xe

cu
tio

n
co

st
 w

ith
ou

t v
ie

w
s)

Number of update statements

Static
GREEDY-SEQ

Dynamic

Fig. 7. Performance vs. space constraint
(workload Ws1p)

64 W. Xu et al.

the workloads of WS1, all the update statements follow all the queries. In the work-
loads of WS2, the update statements are interleaved randomly with the queries. The
space constraint is fixed to 10 times the total size of the base relations. The results are
shown in Figures 6 and 7 respectively. In all cases, when the number of update state-
ments in the workload increases, the dynamic view selection approaches perform better
compared to the static one. This is expected since the dynamic algorithms can drop ma-
terialized views before the evaluation of update statements and save the maintenance
time of these views. The static view selection scheme does not depend on the order
of query and update statements in the workload. Thus, for both workload series, the
static view selection scheme performs the same. The dynamic view selection scheme
depends on the order of query and update statements in the workload. When the up-
date statements follow the queries, the dynamic view selection schemes perform better.
The reason is that materialized views that are needed for queries are dropped after the
queries are executed and therefore do not contribute to the maintenance cost. In any
case, the Dynamic outperforms the GREEDY − SEQ.

8 Conclusion

We addressed the problem of dynamically creating and dropping materialized views
when the workload is a sequence of query and update statements. We modeled it as
a shortest path problem in DAGs where the nodes of the DAG are dynamically con-
structed by exploiting common subexpressions among the query and update statements
in the workload. We designed a heuristic algorithm that combines the process of finding
the candidate set of views and the process of deciding when to create and drop materi-
alized views during the execution of the statements in the workload. An experimental
evaluation of our approach showed that it performs better than previous static and dy-
namic ones. We are currently working towards studying alternative algorithms and we
are also addressing a similar problem where the input query and update statements form
a partial order.

References

1. Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A., Narasayya, V., Syamala, M.: Database
Tuning Advisor for Microsoft SQL Server 2005. In: Proc. of 30th Int. Conf. on VLDB (2004)

2. Yu, S., Atluri, V., Adam, N.R.: Selective View Materialization in a Spatial Data Warehouse.
In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, Springer, Heidelberg
(2005)

3. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated Selection of Materialized Views
and Indexes in SQL Databases. In: Proc. of 26th VLDB (2000)

4. Agrawal, S., Chu, E., Narasayya, V.R.: Automatic physical design tuning: workload as a
sequence. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (2006)

5. Chen, F.-C.F., Dunham, M.H.: Common Subexpression Processing in Multiple-Query Pro-
cessing. IEEE Trans. Knowl. Data Eng. 10(3) (1998)

6. Dageville, B., Das, D., Dias, K., Yagoub, K., Zaı̈t, M., Ziauddin, M.: Automatic SQL Tuning
in Oracle 10g. In: Proc. of VLDB (2004)

A Dynamic View Materialization Scheme 65

7. Deshpande, P., Ramasamy, K., Shukla, A., Naughton, J.F.: Caching Multidimensional
Queries Using Chunks. In: Proc. ACM SIGMOD (1998)

8. Golfarelli, M., Rizzi, S.: View materialization for nested GPSJ queries. In: Proc. Int. Work-
shop on Design and Management of Data Warehouses (2000)

9. Gupta, H., Mumick, I.S.: Selection of Views to Materialize Under a Maintenance Cost Con-
straint. In: Proc. 7th Int. Conf. on Database Theory (1999)

10. Halevy, A.Y.: Answering Queries Using Views: A survey. The International Journal on Very
Large Data Bases 10(4), 270–294 (2001)

11. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data (1996)

12. Kotidis, Y., Roussopoulos, N.: DynaMat: A Dynamic View Management System for Data
Warehouses. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (1999)

13. Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized View Selection and Main-
tenance Using Multi-Query Optimization. In: Proc. ACM SIGMOD (2001)

14. Theodoratos, D., Ligoudistianos, S., Sellis, T.K.: View selection for designing the global data
warehouse. Data Knowl. Eng. 39(3) (2001)

15. Theodoratos, D., Sellis, T.K.: Data Warehouse Configuration. In: Proc. 23rd Int. Conf. on
Very Large Data Bases (1997)

16. Theodoratos, D., Xu, W.: Constructing Search Spaces for Materialized View Selection. In:
Proc. ACM 7th Int. Workshop on Data Warehousing and OLAP (2004)

17. Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H., Urata, M.: Answering Complex
SQL Queries Using Automatic Summary Tables. In: Proc. ACM SIGMOD, ACM Press,
New York (2000)

18. Zilio, D., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-Arellano, C., Fadden, S.:
DB2 Design Advisor: Integrated Automatic Physical Database Design. In: Proc. VLDB
(2004)

19. Zilio, D., Zuzarte, C., Lightstone, S., Ma, W., Lohman, G., Cochrane, R., Pirahesh, H., Colby,
L., Gryz, J., Alton, E., Liang, D., Valentin, G.: Recommending Materialized Views and In-
dexes with IBM DB2 Design Advisor. In: Proc. Int. Conf. on Autonomic Computing (2004)

	A Dynamic View Materialization Scheme for Sequences of Query and Update Statements
	Introduction
	Related Work
	Problem Specification
	Modeling the Dynamic View Selection Problem
	A Heuristic Approach
	Considering Update Statements in the Sequence
	Experimental Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

