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Abstract. It is well known that Keystroke Dynamics can be used as a
biometric to authenticate users. But most work to date use fixed strings,
such as userid or password. In this paper, we study the feasibility of us-
ing Keystroke Dynamics as a biometric in a more general setting, where
users go about their normal daily activities of emailing, web surfing,
and so on. We design two classifiers that appropriate for one-time and
continuous authentication. We also propose a new Goodness Measure
to compute the quality of a word used for Keystroke Dynamics. From
our experiments we find that, surprisingly, non-English words are better
suited for identification than English words.
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1 Introduction

Keystroke Dynamics is increasingly being used as a biometric for user authen-
tication, no doubt because keyboards are common input devices, being readily
found on computers, telephones, ATM machines, etc. By Keystroke Dynamics we
mean the temporal typing pattern (the way you type), rather than the content
typed (what you type). Most of the research into Keystroke Dynamics, however,
is done on fixed-text input, otherwise called password hardening [3,4,6,10], rather
than on free text. Typically, keystroke authentication is performed during user-
login on a pre-determined string, such as the userid or password. This seems to
us to be somewhat limiting, considering that most people continue to use the
keyboard well beyond user-login. It would certainly be more useful if Keystroke
Dynamics can handle free text as well as fixed text.

In our literature search, we note that S.J. Shepherd [1] was perhaps the first
to explore using Keystroke Dynamics for continuous authentication, using the
rate of typing. The system authenticated the user based only on the mean and
standard deviation of the Held Times and the Interkey Times, irrespective of
the key being pressed. Although it worked for a user population of four, the
accuracy of the system is likely decrease as the number of users increase. There
is no guarantee that these features are sufficiently discriminative. Indeed, our
experiments conducted with a larger pool of 22 users confirm this.

Recent works of Villani et al., Rao et al., and Leggett et al. [7,8,9], conducted
studies on keystroke verification on fixed text as well as free text. The users were
asked to type a pre-determined text of a few hundered keystrokes (much longer
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than the usual userid and password), and a text of a few hundred keystrokes of
their own choice in the keystroke capture application. This data is then used for
training and testing of their verification systems. The general conclusion from
their studies is that Keystroke Dynamics works better on fixed text than on free
text. We remark that these researchers all used Held Times and Interkey Times
(of up to three consecutive keystrokes) as features, and did not consider the ac-
tual words being typed. We believe this is the cause of their poor performance.
Our work in this paper suggests that Held Times and Interkey Times do indeed
depend on the words typed. That is, the timings for ‘THE’ is different for ‘FOR’.
By using word-specific Held and Interkey Times, we are able to achieve greater ac-
curacy. In other words, we are using fixed strings within free text for the purpose
of discrimination. We show that many fixed strings qualify as good candidates,
and this allows us to verify the user as soon as any of these strings are typed.

Can a sample of keystroke data identify a user without any constraints on
language or application? In other words, we wish to identify a person without
any constraint on what he or she types. The person is not required to input a
pre-determined text. Can Keystroke Dynamics still be used in such a general
setting? In this paper, we attempt to answer this question. The answer will
help in the design of continuous authentication systems [5], in which the system
continuously checks for the presence of the authorized user after initial login.
In such a scenario, it is impractical to demand the user to repeatedly type her
userid or any other pre-determined text. Instead, the system has to utilize the
typing patterns present in free text for authentication.

Perhaps the work closest to ours is that of Gunetti and Picardi [12], in which
clever features were devised (along with suitable distance metrics) for free-text
authentication. More precisely, Gunetti and Picardi avoided using the usual di-
graph and trigraph latencies directly as features. Instead, they used the laten-
cies only to determine the relative ordering of different digraphs, and devised
a distance metric to measure the difference between two orderings of digraphs,
without regard to the absolute timings. The authors reported a False Accept
Rate (FAR) of 0.0456% at a False Reject Rate (FRR)1 of 4.0%, which, although
worse than their fixed-text system, is state of the art for free-text systems.

We begin by analyzing the keystrokes of users as they go about their normal
daily activities of emailing, web surfing, etc. We then look for patterns that can
be used as a biometric. Such a pattern has to be discriminative, and at the same
time common (universal) across all users (because the pattern cannot be used on
people who do not type it). Also, for practical purposes, we should not have to
wait too long for such a pattern to appear. The pattern should be readily avail-
able. We discover that, indeed, discriminative, universal and available patterns
do exist even when the typing is unconstrained. Moreover, non-English words
are better suited for this task. As far as we can tell, we are the first to investigate
the problem of Keystroke Dynamics in a general setting. Our paper makes the
following contributions:

1 In the keystroke dynamics literature, FRR and FAR are also known as the False
Alarm Rate and the Imposter Pass Rate, respectively.
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1. We propose a new Goodness Measure to assess a keystroke pattern based on
its discriminability, universality, and availability.

2. We show that Keystroke Dynamics can be used as a biometric even in a
general setting.

3. We show that, surprisingly, some non-English words have a higher Goodness
Measure than English words.

4. We propose two classifiers that are suitable for one-time and continuous
keystroke authentication.

2 Basic Concepts

In this section we explain the basic terminology used in this paper. Fig. 1 shows a
typical keystroke stream, collected from a user. Each arrow indicates a keyevent
- the down facing arrow indicates a key being depressed, the upward facing arrow
indicates the key being released. A pair of keyevents, a press and a release of the
same key, form a keystroke.

HtH

H H E E L L L L

)E,H(tI

O O

Held time

Inter key time

Time

Fig. 1. Typical keystroke data. Each upward and downward pointing arrow indicates
a keyevent.

2.1 Definitions

Held Time (Ht).We define Held Time as the time (in milliseconds) between a
key press and a key release of the same key. Fig. 1 shows how the Held Time of
the key ‘H’ is determined. Note that Held Time is strictly greater than zero.
Interkey Time (It). This is defined as the time in milliseconds between two
consecutive keystrokes. In Fig. 1, It(H,E) is the time between the key release of
‘H’ and key press of ‘E’. Interkey Times can be negative, i.e. the second key is
depressed before the first key is released.
Sequence. We define Sequence as a list of consecutive keystrokes. For example
‘HELLO’ in the Fig. 1 is a Sequence. A Sequence can be of any length, the
minimum being two. In this example, the Sequence is a valid English word, but
this need not be the case. Thus, ‘HEL’, ’LLO’ are also valid Sequences from the
same keystroke stream in Fig. 1.
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Feature Vector (Ft). This is a vector of the Held Times followed by the Interkey
Times of a Sequence. For the Sequence ‘THE’, its feature vector is:

Ft(THE) =
[
Ht(T) Ht(H) Ht(E) It(T,H) It(H,E)

]� (1)

For a Sequence of length n, the length of the feature vector will be 2n − 1.

2.2 Histogram (Histseq)

From the samples of the Sequence appearing in the keystroke data, we estimate
the probability density function (pdf) for each element in the feature vector Ft.
This information is stored as a normalized histogram for the Sequence, which in
turn will be used for classification.

We choose to represent the pdf as a histogram rather than as the parameters
of a multidimensional Gaussian pdf because we observe that the data are rarely
normally distributed. It is well known that a histogram with a fixed bin size is
able to represent any pdf more accurately than a single Gaussian distribution.

Given two pdfs hi, hj , how similar are they? This may be measured using the
Bhattacharyya distance or the Kullback-Leibler divergence [11]. We prefer the
Bhattacharyya distance [11] because of its symmetry:

DistB(hi, hj) =
∫ √

hi(x)hj(x)dx (2)

This distance is always between 0 and 1, with 1 meaning that the two pdfs
overlap perfectly, and 0 meaning that the pdfs do not overlap at all. Since our
pdfs are discretized as histograms, the actual computation of Equation (2) is
performed by first multiplying the corresponding bins of the two histograms,
taking the positive square root of the products, and then summing over all the
bins. We will use the Bhattacharyya distance in Classifier B (see Section 2.3).

2.3 Classifier

Classifier A is designed to identify a person from a single instance of a Sequence
appearing in the keystroke data. The identity of the person is given by

arg max
person

P (person | seq) (3)

where,
P (person | seq) =

∏

f∈Ft

P (Histperson
seq | f) (4)

Here we are making the Näıve Bayes assumption, i.e. the elements of the Feature
Vector Ft are statistically independent. Classifier A is useful for applications
where authentication is required immediately without any delay; for example, in
a login module that prompts the user to type a system-generated string (such a
string is different each time, to guard against replay attacks).
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Classifier B is designed to identify a person from multiple instances of the
same Sequence appearing in the keystroke data. Here we first build a histogram
(Histin) from the input keystroke stream and then compare it with the learned
histogram (Histseq) using the Bhattacharyya distance. The identity of the per-
son is given by

arg max
person

DistB(Histseq , Histin) (5)

Again, we make the Näıve Bayes assumption. Classifier B is useful for applica-
tions which can afford to wait and collect enough keystrokes (thereby accumu-
lating more evidence) before authentication.

3 Experiments

All our experiments are based on keystroke data collected from 22 users over a
period of two weeks. The users are staff or students from our department, with
different typing abilities. Some are trained typists, in that they had undergone
typing classes and could type without looking at the keyboard. Others are un-
trained typists, but are still familiar with the keyboard as they have used it for
many years. The users are of Chinese, Indian or European origin, and all are
fluent in English.

Unlike most other studies, the data we collected were not controlled by any
means. Keystrokes were logged as users went about their daily work of using
email, surfing the web, creating documents, and so on. The collected data from
individual users ranged from 30,000 keyevents to 2 million keyevents. In total
9.5 million keyevents were recorded. The PCs used belonged to each individual
user, that is, they were not shared machines nor public access computers. Most
PCs had keyboards with the DellTM US layout, although a few users used their
own non-Dell laptops. Each user used the same keyboard throughout the data
collection, and thus the problem of different keyboards affecting their typing
speed did not arise.

To collect keystrokes, we wrote a data collector program in Visual C. This
was basically a System Wide Keyboard and Mouse hook, which collects keyboard
and mouse events regardless of the application. The data collector was installed
in the user’s machine running Microsoft Windows XPTM . When activated the
program collects all the keyevents and the mouseevents along with the timestamp
and name of the application receiving the event. To protect the privacy of the
users, each userid and machine id were hashed to a unique number. Also, a
shortcut key was provided so that the user can switch it off while typing sensitive
information such as passwords or pin numbers.

Table 1. The ten most frequently used English words, in descending order of frequency

THE, OF, AND, A, TO, IN, IS, YOU, THAT, IT
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3.1 Results I - For Sequences That Are English Words

Classifier A and Classifier B were run on selected Sequences from the keystroke
data that are English words. The words are selected from a Corpus [2] of most
frequently appearing English words, see Table 1. The user data was split into
10 bins and 10-fold-cross-validation was conducted with both classifiers. The
presented results are the mean and the standard deviation of the classification
accuracy from the cross-validation. Accuracy is computed as a number (proba-
bility) between 0 and 1.

From Tables 2 and 3 it is evident that the Classifier B outperforms Clas-
sifier A. But we should note that Classifier A uses only one instance of the
Sequence for identification, whereas Classifier B uses multiple instances for a
combined result. Classifier A will be suitable for applications like Continuous
Authentication [5] which needs to authenticate a user immediately upon receiv-
ing a biometric sample. Note that Table 2 shows the accuracy for identification
tasks (multiclass classification) rather than for verification (two-class classifica-
tion with a claimed identity). We can in principle get even better performance
for verification by choosing a sequence that works best for each person, i.e., since
we know the identity of the person being verified, we can sacrifice universality
for discriminability.

Table 2. Performance of Classifier A - English Words

Sequence Mean of Accuracy Std. dev. of Accuracy

FOR 0.0598 0.1224
TO 0.0838 0.1841
THE 0.0562 0.1504
YOU 0.0512 0.0733
IS 0.0538 0.0432
IN 0.0573 0.0669
AND 0.0878 0.2682
OF 0.0991 0.2809

Classifier B can be aptly called a post-login identifier, as it needs significant
amount of keystroke data to identify the person. The identification accuracy is
very high, but the price to pay is the large number of samples required. Although
it might not be suitable for Continuous Verification, it can used as a forensic
tool to identify the person after data collection. In our experiments, we also
observed that the accuracy of Classifier B increases with the number of samples.
We surmise that this is due to better estimation of the histogram.

3.2 Results II - For Non-English Sequences

In order to perform keystroke identification in a general setting, we cannot de-
pend only on English words. Almost all users, even native English speakers,
type abbreviated words every so often. For example, ‘tmr’ is frequently used to
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Table 3. Performance of Classifier B - English Words

Sequence Mean of Accuracy Std. dev. of Accuracy

FOR 0.7955 0.2319
TO 0.9455 0.1184
THE 0.8409 0.2443
YOU 0.7364 0.2985
IS 0.9591 0.0796
IN 1.0000 0.0000
AND 0.8318 0.2191
OF 0.8000 0.1927

mean ‘tomorrow’. In this age of short text messaging, such abbreviations are
increasingly common. In fact, by regarding such words as coming from a foreign
language, it is clear that our approach can be applied to other languages as well.

Running Classifier B on non-English Sequences produces Table 4. Generally
the accuracies for non-English Sequences are higher than that for English words.
Although the corpus listed ‘THE’ as the most frequently used word in English,
it was no longer the case when non-English Sequences are considered.

4 Goodness Measure

Given that we are allowing non-English text, we can no longer rely on the Corpus
to guide us in selecting useful sequences. How then do we select a Sequence for
identification? We will need to look for them from the training data. According to
Jain [13], a good biometric ought to satisfy seven criteria: Universality, Unique-
ness, Permanance, Collectability, Performance, Acceptability, Circumvention. Of
these, we only need to consider the first two, because the others have to do with
technology, or user perception. Universality (commonality) means the biomet-
ric should be measurable across all users. Uniqueness (individuality) has to do
with its discriminative power. From these two criteria, we derive a new Goodness
Measure to measure the quality of a Sequence based on the criteria of accuracy,
availablity and universality. First, a few definitions.

1. Universality (U). A Sequence is not useful for identification unless it is
commonly used by users. For English text, the Corpus lists ‘THE’ as fre-
quently occuring because every person uses it. We define universality as,

U =
No. of Users having this Sequence in their keystrokes

Total No. of users
(6)

2. Accuracy (A). The classification accuracy of the Sequence. Note that 0 ≤
A ≤ 1. Accuracy is a measure of how discriminative a Sequence is, i.e. its
uniqueness.
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3. Expectancy (E). Unlike other kinds of biometrics, keystroke dynamics re-
quires the system to wait until the user enters the required text. A particular
string may be Universal, but the user may not type it frequently, thus keep-
ing the system waiting for a long time. To capture this notion, we define
the Expectancy of a Sequence to be the average number of keystrokes until
an instance of the Sequence appears in the text. Intuitively, this measures
how readily available the Sequence is. At best, the Sequence could appear
on every keystroke (E=1); at worst, it might never appear in the text (E
= ∞). For example, in the keystroke stream, ‘TO BE OR NOT TO BE’,
E(’TO’) = 18

2 = 9 and E(’THE’) = ∞.

With the above definitions, we can now define Goodness Measure of a Sequence,
Gm as follows:

Gm =

{
0 if E = ∞
U×A

E otherwise
(7)

Ideally, if all the factors are at their best (A=1,E=1,U=1), Gm will equal 1.
In the Worst case (A=0 or E=∞ or U=0), Gm will equal 0. When E = 1,
Equation (7) reduces to the special case,

Gm = U × A (8)

which may be interpreted as the Goodness Measure for a fixed-text keystroke
identification system. Thus, our Goodness Measure is also applicable for tradi-
tional fixed-text systems.

Table 4 shows the Goodness Measure of a number of English and non-English
sequences. The table is sorted by Accuracy, but a quick glance reveals that
Accuracy does not mean a high Gm score. For example, the Sequence ‘NE’ (row
four) has a high Accuracy but a low Gm score. The reason is its long Expectancy:
one has to wait, on the average, over 400 keystrokes before this Sequence appears.
For applications that require immediate authentication, ‘NE’ is a poor choice.

Table 4 also shows that the best performing English words (those that appear
in Table 3) rank below non-English Sequences, both in terms of Accuracy and
Gm score. Surprisingly, the Sequence ‘THE’ (third row from the bottowm) has
a long Expectancy and is not Universal. This yields a low Gm score. We surmise
that this counter-intuitive observation is because the subjects in our experiments
did not write in complete, grammatical English. This, in turn, probably reflects
the informal way English prose is used in everyday communication, rather than
an indictment of the subjects’ poor command of the language. Finally, the table
also highlights the fact that Expectancy is the dominant criteria affecting Gm

score. Many Sequences with approximately equal Accuracy and Universality
scores differ greatly in their Gm scores because of different Expectancy values.
For Keyboard Dynamics in a free-text setting, waiting for a long Expectancy
Sequence limits how quickly the system can authenticate. Sequences with short
Expectancy are more useful in this regard.
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Table 4. Performance of Classifier B - non-English sequences

Sequence Accuracy Expectancy Universality Gm

AN 1.0000 113 1 0.008866
IN 1.0000 125 1 0.007986
NG 0.9955 150 1 0.006636
NE 0.9909 407 1 0.002433
LE 0.9864 294 1 0.003360
RE 0.9818 218 1 0.004498
TI 0.9818 324 1 0.003030
HE 0.9773 157 1 0.006226
EN 0.9773 207 1 0.004722
MA 0.9773 383 1 0.002549
ER 0.9727 245 1 0.003977
OU 0.9682 317 1 0.003051
IT 0.9682 339 1 0.002857
ING 0.9682 345 1 0.002802
AI 0.9636 312 1 0.003083
...

...
...

...
...

TO 0.9455 411 1 0.002298
THE 0.8409 350 0.95 0.002296
AND 0.8318 814 1 0.001022
FOR 0.7955 1062 1 0.000749

5 Conclusion and Future Work

In this paper, we presented a technique to identify a person based on Keystroke
Dynamics in a general setting. This generalizes traditional fixed-text Keystroke
Dynamics to free-text systems. Essentially, we identify a person based on a
common list of fixed strings which we discover from analyzing users’ keystroke
logs. Our technique can also be used for verification, in which case each user can
have his/her own list of strings.

We also found that non-English Sequences were more accurate than English
words. This is useful because the prevalence of new communication technolo-
gies, such as instant messaging, online chat, text messaging, etc., means that
users increasingly use informal English (containing abbreviations and even new
words) when composing messages. This is true even for native English speakers.
To guide our selection of good non-English words to use, we proposed a novel
Goodness Measure based on well-studied properties that all biometrics ought to
possess.

In the future, we would like to conduct the experiments on a larger pool of
users to see if our results hold up. Also, we intend to investigate the effect of
different keyboards on a person’s typing speed, and how we may mitigate against
this. Finally, it would be interesting to see if keystroke dynamics can distinguish
between trained and untrained typists.
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