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Abstract. This paper attempts to make an quantitative evaluation of
available normalization techniques of matching scores in multimodal bio-
metric systems. Two new normalization techniques Four Segments Piece-
wise Linear (FSPL) and Linear Tanh Linear (LTL) have been proposed
in this paper. FSPL normalization techniques divides the region of gen-
uine and impostor scores into four segments and maps each segment us-
ing piecewise linear function while LTL normalization techniques maps
the non-overlap region of genuine and impostor score distributions to
a constant function and overlap region using tanh estimator. The ef-
fectiveness of each technique is shown using EER and ROC curves on
IITK database of having more than 600 people on following characteris-
tics: face, fingerprint, and offline-signature. The proposed normalization
techniques perform better and particularly, LTL normalization is efficient
and robust.

1 Introduction

In the recent years biometric becomes popular due to automated identification
of people based on their distinct physiological and/or behavioral characteristics
[1]. Most of the practical biometric systems are unimodal (e.g., rely on the evi-
dence of any single biometric information). Unimodal systems are usually, cost-
efficient but may not achieve the desired performance because of, noisy data,
non-universality, lack of uniqueness of the biometric trait, and spoofing attacks
[2]. The performance of the biometric system can be improved by combining
of multiple biometric characteristics. These systems are referred as multimodal
biometric systems [3]. In multimodal biometric systems fusion at matching score
level is commonly preferred because matching scores are easily available and
contains a sufficient information to make decision about legitimate user and
impostor.

Assume that OG
k =

{
rG
k1

, rG
k2

, . . . , rG
kN

}
is the set of genuine scores of N in-

dividuals and OI
k =

{
rI
k1

, rI
k2

, . . . , rI
kn

}
is the set of impostor scores of those

individuals where, n = NX(N − 1) for characteristic k. The complete set of
matching scores is denoted as Ok where, Ok = OG

k ∪OI
k and |OG

k ∪OI
k| = N +n.
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Prior to combine the matching scores of different characteristics, scores are
preprocessed and to make them homogeneous. The dissimilarity score (r

′
ki

) of
user i for characteristic k can be converted into similarity score in the common

numerical range, let it be [0, 1] using the formula, rki =
max(OG

k ,OI
k)−r

′
ki

max(OG
k ,OI

k)−min(OG
k ,OI

k)
.

Alternatively, if the raw scores are found in the range [min(Ok), max(Ok)], then
they are converted to similarity scores by simply subtracting them from max(Ok)
(e.g., max(Ok)−r

′
ki

). In the rest of the paper the symbol rki is used for similarity
score of user i for characteristic k. Further, matching scores of different charac-
teristics need not to be on same numerical scale. Using normalization technique
scores of different characteristics are transformed to a common numerical scale.
In this paper matching scores of face and fingerprint characteristics are obtained
using Haar wavelet [4] and minutiae based technique [5], respecively while global
and local features are used to compute the matching scores for offline-signature
[6].

The rest of the paper is organized as follows: Section 2 presents the re-
lated work in the area of normalization techniques of matching score in multi-
modal biometric systems. Section 3 proposes two new normalization techniques
of matching scores that improve the system performance. The performance of
normalization techniques is evaluated using different fusion strategies. Normal-
ization and fusion at matching score level are discussed in Section 4. Experimen-
tal results are given in Section 5. Finally, conclusions are presented in the last
Section.

2 Related Work

Normalization of matching scores in the multimodal biometric systems is an im-
portant issue that leads to system performance. In [7] experiments on a database
of 100 users for face, fingerprint and hand-geometry characteristics indicate that
the performances of min-max, z-score, and tanh normalizations are found to be
better than others. Also, min-max and z-score normalization techniques are sen-
sitive to outliers. Hence, there is a need for a robust and efficient normalization
procedure like the tanh normalization. A comprehensive study on normalization-
fusion, permutations has been done in [8] where Snelick et al., have proposed an
adaptive normalization technique of matching scores. This technique is compu-
tationally intensive and suffered with parameters overhead.

Score Normalization

Score normalization refers to transformation of scores obtain from different
matchers into a common numerical range. A number of normalization techniques
such as min-max, z-score, double sigmoid, tanh, piecewise linear, adaptive nor-
malization along with their evaluation are well studied in [7] and [8]. Assume
nki be the normalized score corresponding to the similarity score rki .
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Min-Max (MM) - MM normalization transforms the raw scores of Ok in the
range of [0, 1] using,

nki =
rki − min(OG

k , OI
k)

max(OG
k , OI

k) − min(OG
k , OI

k)

Z-Score (ZS) - ZS normalization transforms the scores to a distribution with
mean 0 and standard deviation 1. Let μOk

, δOk
be the mean and standard

deviation of the set Ok then ZS represents the distance between raw score rki

and μOk
in units of δOk

as,

nki =
rki − μOk

δOk

Since μOk
, δOk

are sensitive to outliers, therefore z-score is not robust. Statisti-
cally using Grubbs’ test [9] one can identify outliers and evaluate the performance
of ZS.

Double-Sigmoid (DS) - DS normalization transforms the scores into the range
of [0, 1] using,

nki =

⎧
⎪⎪⎨

⎪⎪⎩

1

1+exp

(
−2

(
rki

−tk

tkL

)) if rki < tk,

1

1+exp

(
−2

(
rki

−tk

tkR

)) otherwise.

where tk is the reference point chosen some value falling in the region of gen-
uine and impostor scores and the parameters tkL and tkR are chosen as, tkL =
tk − min(OG

k ) and tkR = max(OI
k) − tk. DS exhibits a linear characteristic of

scores in the overlap region of interval [tk − tkL , tkR − tk] and nonlinear charac-
teristic beyond to that.

Tanh - Tanh normalization is based on tanh estimator [10]. It maps the raw
scores of Ok in the range of [0, 1] as,

nki = 0.5 ∗
[

tanh

{

0.01 ∗
(

rki − μOG
k

σOG
k

)}

+ 1

]

where, μOG
k

and σOG
k

are the mean and standard deviation of the genuine match-
ing scores of characteristic k, respectively.

Piecewise-Linear (PL) - Piecewise linear (PL) normalization technique trans-
forms the scores of Ok in the range of [0, 1]. The normalization function of PL
maps the raw scores using piecewise linear function as,

nki =

⎧
⎪⎨

⎪⎩

0 if rki ≤ min(OG
k ),

1 if rki ≥ max(OI
k),

rki
−min(OG

k )

max(OI
k)−min(OG

k )
otherwise.
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Fig. 1. Proposed Score Normalization Techniques (a) Four Segments Piecewise Linear
(FSPL) (b) Linear Tanh Linear (LTL)

3 Proposed Score Normalization Techniques

This section proposes two new matching score normalization techniques: Four-
Segments-Piecewise-Linear (FSPL) and Linear-Tanh-Linear (LTL) normaliza-
tion, using quantitative combination of multiple normalization techniques. FSPL
and LTL techniques take advantages of the characteristics resulted from the
piecewise linear function and the tanh estimator for the separability of genuine
and impostor scores distributions and robustness, respectively.

3.1 Four-Segments-Piecewise-Linear (FSPL)

FSPL normalization technique divides the regions of impostor and genuine scores
into four segments and map each segment using piecewise linear functions (Fig.
1(a)). A reference point tk is chosen in between the overlapping region of OG

k

and OI
k. The scores between two extremities of the overlap region are mapped

using two linear functions separately in range of [0, 1] and of [1, 2] towards left
and right of tk, respectively as,

nki =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if rki ≤ min(OG
k ),

rki
−min(OG

k )

tk−min(OG
k )

if min(OG
k ) < rki ≤ tk,

1 + rki
−tk

max(OI
k)−tk

if tk < rki ≤ max(OI
k),

2 if rki > max(OI
k).

3.2 Linear-Tanh-Linear (LTL)

LTL normalization technique takes the advantage of the characteristic resulted
from tanh estimator. Normalization function of LTL maps the non overlap region
of impostor scores to a constant value 0 and non overlap region of genuine scores
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to a constant value 1 (Fig. 1(b)). The overlapped region between OI
k and OG

k is
mapped to a nonlinear function using tanh estimator as,

nki =

⎧
⎪⎪⎨

⎪⎪⎩

0 if rki ≤ min(OG
k ),

1 if rki ≥ max(OI
k),

0.5 ∗
[
tanh

{
0.01 ∗

(
rki

−μ
OG

k

δ
OG

k

)}
+ 1.5

]
otherwise.

The effect of normalization techniques both discussed in the previous section
and the proposed ones, are examined on system performance using the following
fusion strategies. These fusion strategies take into account the performance of
the individual characteristic in weighting their contributions [8].

I. Fusion Strategy A. (Assignment of Weights based on EER)
This fusion strategy assigns the weight to each characteristic based on their equal
error rate (EER). Weights for more accurate characteristics are higher than those
of less accurate characteristic. Thus, the weights are inversely proportional to
the corresponding errors. Let ek be the EER to characteristic k, then weight wk

associated to characteristic k can be computed by,

wk =

(
t∑

k=1

1
ek

)−1

∗ 1
ek

(1)

II. Fusion Strategy B. (Assignment of Weights based on Score Distributions)
Here weights are assigned to individual characteristic based on their impostor
and genuine scores distributions. The means of these distribution are defined
by μOI

k
and μOG

k
respectively, and standard deviations by σOI

k
and σOI

k
respec-

tively. A parameter dk [11] is used as a measure of the separation of these two
distributions for characteristic k as,

dk =
μOG

k
− μOI

k√(
σOG

k

)2

+
(
σOI

k

)2

If dk is small, overlap region of two distributions is more, and if dk is large,
overlap region of two distributions is less. Therefore, weights are assigned to
each characteristic proportional to this parameter as,

wk =

(
t∑

k=1

dk

)−1

∗ dk (2)

For both fusion strategies, 0 ≤ wk ≤ 1, (∀k);
∑t

k=1 wk = 1 and the fused score
fi for user i is computed as,

fi =
t∑

k=1

wk ∗ nki ; (∀i)
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Fig. 2. Block Diagram of Multimodal System

4 System Description

Block diagram of the multimodal biometric verification system based on the
fusion of face, fingerprint and signature information at matching score level is
shows in Fig. 2. For each characteristic k, first N matchers generate genuine
scores

{
rG
k1

, rG
k2

, . . . , rG
kN

}
using the matching of live-template to the template

of the same individual stored in the database. Next n matchers generate im-
postor scores

{
rI
k1

, rI
k2

, . . . , rI
kn

}
using matching of live-template to the template

of other individual stored in the database. Prior to transformation of scores to
a common numerical range matching scores of different characteristics must be
homogeneous. In the normalization phase scores obtained from different match-
ers (genuine and impostor) are scaled to a common numerical range. Finally to
obtain the fused scores, genuine and impostor scores of each characteristic are
combined separately using the weighted fusion strategies as follows,

(n1, n2, . . . , nN)G =
t∑

k=1

wk ∗ (nk1 , nk2 , . . . , nkN )G

and

(n1, n2, . . . , nn)I =
t∑

k=1

wk ∗ (nk1 , nk2 , . . . , nkn)I ;

The fused matching scores (n1, n2, . . . , nN )G ∪ (n1, n2, . . . , nn)I are commonly
referred as total similarity measures (TSM) of the biometric system. The per-
formance of different normalization techniques for each fusion method is studied
against EER values, number of false rejections for subjects and Receiver Oper-
ating Characteristics (ROC) curves.



580 Y.N. Singh and P. Gupta

5 Experimental Results

In this section the effect of different normalization techniques on system per-
formance for a multimodal verification system based on face, fingerprint and
offline-signature has been discussed using IITK database. For each of these char-
acteristics of total 609 users, live-template is matched against database template,
yielding 609 genuine scores and 609 (609x1) impostor scores. The EER values
for raw scores for each characteristics are found to be 2.03%, 9.86%, 6.25% for
face, fingerprint and signature respectively. The weights for different character-
istics for both fusion strategies are calculated according to (1) and (2) which are
found as (0.684, 0.123, 0.193) and (0.530, 0.297, 0.177) for face, fingerprint and
signature respectively.

Table 1. EER Values for (Normalization, Fusion) Combinations (%)

Normalizations Fusion Strategy A Fusion Strategy B

MM 1.07 0.75

ZS 0.74 0.58

DS 0.77 1.08

Tanh 0.91 0.48

PL 1.08 0.91

FSPL 0.71 0.45

LTL 0.42 0.38

Table 1 shows the EER values against different normalization techniques un-
der two fusion strategies. The best one is the lowest EER value in the individual
column. As seen in Table 1, the proposed new normalization technique LTL
leads to better performance of EER values 0.42% and 0.38% than any other nor-
malization techniques under fusion strategy A and B, respectively. These two
near EER values also lead to conclude that the performance of LTL normaliza-
tion is least dependent upon the distribution of matching scores. The effect of
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Fig. 3. Effect of Different Normalization Techniques on System Performance (a) Fusion
Strategy A and (b) Fusion Strategy B
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different normalization techniques on system performance under fusion strategy A
and B are shown in Fig. 3(a) and (b). ROC curves for the face, fingerprint and sig-
nature characteristics are also shown on these figures for comparison which shows
the improvement in performance after fusion for all normalization techniques. The
performance of different normalization techniques: MM, ZS, DS, Tanh, PL, FSPL,
and LTL under both fusion starategies are shown in Fig. 4 (a) through (g).
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Fig. 5. (a), (b) shows Outperformance of LTL under Fusion Strategy A and Fusion
Strategy B. (c), (d) shows Robustness Analysis of LTL normalization under Fusion
Strategy A and Fusion Strategy B.

It has been observed from Fig. 4(a) that the performance of MM normalization
technique under the fusion strategy B is better than that of fusion strategy A.
Similarly it is the case with Tanh, FSPL and LTL normalization as shown in Fig.
4(d), Fig. 4(f) and Fig. 4(g), respectively. The performance of ZS normalization
is better at lower FAR under fusion strategy A while at higher FAR, fusion
strategy B gives better performance as shown in Fig. 4(b). From Fig. 4(c) the
performance of DS normalization is better at higher FAR under fusion strategy
A. PL normalization achieved better performance at higher FAR under fusion
strategy B while at lower FAR, fusion strategy A gives better performance as
shown in Fig. 4(e).

wPerformance of different normalization techniques under both fusion strate-
gies are compared in Fig. 5(a) and (b). From these figures it is observed that
the proposed normalization technique LTL outperform the other normalization
techniques under both fusion strategies at lower FAR as well as at higher FAR.
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The performance of another proposed normalization technique FSPL is better at
higher FAR under both fusion strategies. Robustness behavior of the proposed
normalization technique LTL is analyzed under fusion strategy A and fusion
strategy B that are respectively shown in Fig. 5(c) and (d). From these figures it
is found that the performance of the biometric system is completely invariant to
the change in standard deviation (SD) of matching scores. In other words, LTL
normalization is insensitive towards outliers and hence, it is a robust matching
scores normalization technique.

6 Conclusion

This paper deals with the effect of normalization techniques of matching scores
on the performance of multimodal biometric systems using face, fingerprint and
offline-signature. The experimental results, obtained on a biometric database
of IITK of more than 600 individuals, show that the proposed normalization
technique Linear-Tanh-Linear (LTL) is efficient and robust. The performance
of Four-Segments-Piecewise-Linear (FSPL) normalization technique is better at
low FAR. This analysis of normalization techniques of matching scores suggests
that an exhaustive testing of score normalization is needed to evaluate the per-
formance of any multimodal biometric system.
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