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Linear Programming (LP) is one of the most famous optimization techniques
introduced independently by Kantarowitsch in 1939 and by Dantzig in 1949
(Krekó 1973). LP is applicable in decision situations where quantities (vari-
ables) can take any real values only restricted by linear (in-) equalities, e. g.
for representing capacity constraints. Still, LP has turned out to be very use-
ful for many companies so far. LP is used in APS e. g. in Master Planning
as well as in Distribution and Transport Planning. Very powerful solution
algorithms have been developed (named solvers), solving LP models with
thousands of variables and constraints within a few minutes on a personal
computer.

In case some decisions can only be expressed by integer values, e. g. the
number of additional shifts for a given week, LP usually will not provide a
feasible solution. Similarly, logical implications might be modeled by binary
variables. As an example consider the decision whether to setup a flow line for
a certain product or not: A value of “0” will be attributed to a decision “no”
and a value of“1”to“yes”. Still, the corresponding model may be described by
linear (in-) equalities. In case the model solely consists of integer variables,
it is called a pure Integer Programming (IP) model. If the model contains
both real and integer variables a Mixed Integer Programming (MIP) model
is given.

Thus, both LP and MIP comprise special model types and associated
solution algorithms. Numerous articles and textbooks have been written on
LP and MIP (e. g. Martin 1999, Winston 2004 and Wolsey 1998) representing
a high level of knowledge which cannot be reviewed here. In order to give an
understanding of LP and MIP, only the basic ideas will be provided in the
following by means of an example.

First, an LP model is presented and solved graphically (Sect. 29.1). This
model is then converted into an IP model and solved by Branch and Bound
(Sect. 29.2), where for each submodel a LP model is solved graphically. Fi-
nally, a few remarks and recommendations regarding the effective use of LP
and MIP complements this chapter (Sect. 29.3).

29.1 Linear Programming

A hypothetical production planning problem is considered here, where two
products A and B can be produced within the next month. The associated
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production amounts are represented by (real) variables x1 and x2 measured
in ten tons. Both products have to pass through the same production process.
The available capacity is 20 days (on a two shift basis). The production of ten
tons, or one unit, of product A lasts 5 days, while the respective coefficient
for product B is 4 days. This situation is represented by inequality (29.2).
LP model:

subject to
(1)
(2)
(3)

(NNC)

Max! 19x1 + 16x2 (29.1)

5x1 + 4x2 ≤ 20 (29.2)
−x1 + 2x2 ≤ 5 (29.3)
2x1 + 5x2 ≥ 10 (29.4)

x1 ≥ 0, x2 ≥ 0 (29.5)

Inequality (29.3) represents the demand constraints, stating that only
sales of product B are limited. However, we might increase sales if we also
offer product A: For every two units of product A we can extend sales of
product B by one unit (the reason may be that one has to offer a complete
product range to some customer groups in order to sell product B). Although
we aim at maximizing our revenue (29.1), we also want to make sure that
a contribution margin of at least ten thousand $ is reached within the next
month (29.4). Note, the dimension “one thousand” is scaled down to “one”
for the contribution margin constraint. Obviously, one cannot produce nega-
tive amounts which is reflected by the non-negativity constraints (NNC, see
(29.5)).

This small LP model can be solved algebraically by the Simplex algorithm
(or one of its variants, see Martin 1999). However, we will resort to a graphical
representation (Fig. 29.1). Variables x1 and x2 depict the two dimensions.
Inequalities restrict the combination of feasible values of variables. The limits
of the corresponding set of feasible solutions are illustrated by a line (see
Fig. 29.1). Whether the set of feasible solutions lies below or above a line is
depicted by three adjacent strokes being part of the set of feasible solutions.

The intersection of all the (in-) equalities of a model defines the set of
feasible solutions (shaded area in Fig. 29.1). For a given objective function
value the objective function itself is an equation (see dashed line in Fig. 29.1,
corresponding to a value of 76 [$ 000]). Since we do not know the optimal value
of the objective function we can try out several objective function values.
An arrow shows the direction in which the objective function value can be
increased. Actually, we can move the dashed line further to the right. The
maximum is reached once it cannot be moved any further without leaving
the set of feasible solutions. This is the case for x1 = 20/14 and x2 = 45/14
resulting in a revenue of 78.57 [$ 000]. The optimal solution has been reached
at the intersection of inequalities (1) and (2). It can be shown that it suffices
to look for an optimal solution only at the intersections of (in-) equalities
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OBJ ≈ 78.57 (2)
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Explanations:         region of feasible LP  solutions

                  constraint relating to a given level of the objective function
OBJ   maximum objective function value

                               grid (as a guidance for recognizing solutions)

                               LP Optimum 

Fig. 29.1. Graphical representation of an LP model

limiting the set of feasible solutions or, graphically speaking, at the “corners”
of the shaded area.

The Simplex algorithm (and its variants) carries out the search for an
optimal solution in two phases, namely

• creating an initial feasible solution and
• finding an optimal solution.

In our example a first feasible solution may be x1 = 0 and x2 = 2 with a
revenue of 2 · 16 = 32 [$ 000]. Now, the second phase is started, probably
generating an improved second solution, e. g. x1 = 0 and x2 = 2.5 with a
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revenue of 40 [$ 000]. In the next iteration variable x1 will be introduced,
resulting in the optimal LP solution.

However, an initial feasible solution may not always exist. As an example,
assume that a minimum contribution margin of 22 [$ 000] is required (see
inequality (3’) in Fig. 29.2). The set of feasible solutions is empty and thus
no feasible solution exists.
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Fig. 29.2. An infeasible LP model
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Fig. 29.3. An unbounded LP model

Now consider the situation where there is no production constraint (i. e.
eliminating inequality (1)), resulting in an unrestricted shaded area (Fig. 29.3)
and an unbounded objective function value. This case will also be detected
in the first phase. Actually, an unbounded solution indicates that the model
or the data have not been created correctly.

We would like to point out that an LP solution does not only provide opti-
mal values for the decision variables. It also shows the dual values associated
with the (in-) equalities of an LP model. As an example consider the produc-
tion capacity (29.2). If we were able to increase the number of working days
from 20 to 21, the optimal objective function value would rise from 1100/14
to 1154/14. Thus an additional capacity unit has a dual value of 3.86 [$ 000].
Management now may look for options to extend capacity which are worth
further revenues of 3.86 [$ 000] per working day. Note that only inequalities
which are binding in the optimal solution may have a positive dual value.
Although dual values have to be interpreted with caution, they are a fruitful
source for finding ways to improve the current decision situation.

As has already been stated at the beginning of this chapter, very powerful
solution algorithms and respective standard software exist for solving LP
models (e. g. CPLEX ILOG 2007 and XPRESS-MP Dash Optimization Ltd
2007). However, users of an APS do not have to deal with these solvers
directly. Instead, special modeling features have been selected within APS
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modules for building correct models. Still, care should be taken regarding
the numbers entering the model. If possible, appropriate scaling should be
introduced first, such that the coefficients of variables are in the range from
0.01 to 100 to avoid numerical problems.

29.2 Pure Integer and Mixed Integer Programming

Now let us assume that a product can only be produced in integer multiples
of ten [tons], since this is the size of a tub which has to be filled completely
for producing either product A or B. Then the above model (29.1)–(29.4) has
to be complemented by the additional constraints

x1 ∈ N0 , x2 ∈ N0 (29.6)

The set of feasible solutions reduces drastically (see the five integer solu-
tions in Fig. 29.4). Still, in practice the number of solutions to consider before
an integer solution has been proven to be optimal may be enormous.
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IP Optimum:
x1= 3, x2= 1
OBJ = 73

(2)
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Explanation:         feasible IP solution

LP Optimum:
x1= 20/14, x2= 45/14, 
OBJ ≈ 78.57 

(3)

Fig. 29.4. A graphical representation of an IP model

As can be seen from Fig. 29.4 a straightforward idea, namely rounding
the optimal LP solution to the next feasible integer values (x1 = 1, x2 = 3
with a revenue of 67 [$ 000]), does not result in an optimal integer solution
(which is x1 = 3, x2 = 1 and with a revenue of 73 [$ 000]).

Anyway, an intelligent rounding heuristic might be appropriate for some
applications. Hence, some APS incorporate rounding heuristics which usually
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require much less computational efforts than Branch and Bound which is
explained next.

Four building blocks have to be considered describing a Branch and Bound
algorithm, namely

• relaxation,
• separation rules,
• search strategy,
• fathoming rules.

The two building blocks separation rules and search strategy relate to“branch”
while relaxation and fathoming rules concern “bound”. These building blocks
will now be explained by solving our example.

Although solving the associated LP model directly usually does not yield
an optimal integer solution, we can conclude that the set of feasible integer
solutions is a subset of the set of feasible LP solutions. So, if we were able
to cut off some parts of the non-integer solution space, then we would finally
arrive at an integer solution.

Consequently, we first relax the integer requirements (29.6) in favor of the
non-negativity constraints (29.5). The resultant model is called an LP relax-
ation. If we solve an LP relaxation of a maximization problem, the optimal
objective function will be an upper bound for all integer solutions contained
in the associated set of feasible (integer) solutions. Hence, if the solution of
an LP relaxation fulfills the integer requirements (29.6), it will be an optimal
integer solution for this (sub-) model.

Next, submodels are created by introducing additional constraints, such
that a portion of the real-valued non-integer solution space is eliminated (see
Fig. 29.5). Here, the constraint x1 ≤ 1 is added resulting in submodel SM1,
while constraint x1 ≥ 2 yields submodel SM2. Now, we have to solve two
submodels with a reduced set of feasible solutions. Note that the union of the
set of feasible integer solutions of both submodels matches the initial set of
feasible integer solutions, i. e. no integer solution is lost by separation.

Submodel SM1 results in a first integer solution (x1 = 1, x2 = 3 with
a revenue of 67 [$ 000] representing the local upper bound of SM1). Subse-
quently, we will only be interested in solutions with a revenue of more than
67 [$ 000]. Thus, we set the global lower bound to 67 [$ 000] (OBJ = 67). The
term“global” is used in order to refer to our original IP model. Since submodel
SM1 has resulted in an integer solution (and cannot yield a better solution)
it will be discarded from our list of open submodels, i. e. it is fathomed.

The second submodel has a local upper bound of 78 [$ 000] which is clearly
better than our current global lower bound, but its solution is non-integer
valued (x2 = 2.5).

The search for an optimal solution can be represented by a search tree (see
right hand side of Fig. 29.5). Each node corresponds to an LP (sub-)model.

Now an unfathomed submodel has to be chosen for further investigations.
However, only submodel SM2 is unfathomed here. Subsequently, one has to
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                      OBJ        Global lower bound of  an  optimal integer solution
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SM2     OBJ=78
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OBJ = 67     SM1

(3)

OBJ =

Fig. 29.5. A graphical representation of the first and second submodel

decide on the non-integer-valued variable to branch on. These two choices
make up the search strategy and may have a great impact on the number of
submodels to solve and hence the computational effort.

The only variable which is non-integer valued in the optimal solution for
submodel SM2 is x2. Two new submodels are created, submodel SM3 with
the additional constraint x2 ≤ 2 and submodel SM4 with the additional con-
straint x2 ≥ 3. Note that all additional constraints that have been generated
on the path from the origin (SM0) to a given submodel in the search tree
have to be taken into account (here x1 ≥ 2 ).

Since, there is no feasible (real valued) solution for submodel SM4 (see
Fig. 29.6) it may be fathomed. For submodel SM3 a non-integer valued solu-
tion with an upper bound of 77.6 [$ 000] is calculated. Since this local upper
bound exceeds the global lower bound (i. e. the best objective function value
known) submodel SM3 must not be fathomed.

It now takes three further separations until we reach submodel SM9

(Fig. 29.7), where the LP relaxation yields an integer solution with an objec-
tive function value of 73 [$ 000].

Usually, there will be some unfathomed submodels which have been gener-
ated in the course of the search. An unfathomed submodel has to be selected
for a further separation until all submodels are fathomed. Then the best fea-
sible integer solution found will be the optimal one for the initial IP model.
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x1= 2.4,  x2= 2
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Fig. 29.6. A graphical representation of the third and fourth submodel

Fig. 29.7. A graphical representation of the optimal integer solution and the com-
plete search tree

In our example, the search ends once it has been found out that sub-
model SM10 has no feasible solution. Now we have proven that the solution
to submodel SM9 is optimal.
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Finally, we would like to add that the Branch and Bound scheme is almost
the same for MIP models. As an example consider that only x2 has to take
integer values. Then we would start separating on variable x2 (i. e. x2 ≤ 3
and x2 ≥ 4). Only constraint x2 ≤ 3 results in a feasible solution for the
LP relaxation. Since it is also feasible with respect to the mixed integer
constraints it is the optimal solution, too.

29.3 Remarks and Recommendations

Although the examples presented are rather simple, they have illustrated the
differences in solving an LP model and a MIP model. Generating an optimal
solution for an LP model requires “some”Simplex iterations leading from one
“corner” of the feasible solution space to the next and finally to the optimal
one. However, solving a MIP model by Branch and Bound incurs solving an
LP (sub-) model for each node of the search tree – and there may be several
thousand nodes to explore until an optimal solution has been proven.

One way to reduce the number of submodels to investigate is to truncate
the search effort. For example, the user may either set a certain time limit for
the search or indicate that the search has to be stopped once the k-th feasible
integer solution has been found. However, the problem with truncation is
that one does not know in advance at which point in time a feasible or good
solution will be found.

Another option to limit the computational effort of Branch and Bound
is to specify in advance that the search for an improved solution should be
stopped, once we are sure that there is no feasible integer solution which is
at least δ% better than our current best solution. This allows us to calculate
an aspiration level in the course of Branch and Bound, simply by multiplying
the objective function value of the current best solution by (1 + δ%). The
question whether there exists a feasible integer solution with an objective
function value no less than the aspiration level is known from the maximum
upper bound of all unfathomed submodels. If the maximum is less than our
aspiration level the search is stopped.

In our example (see the search tree in Fig. 29.7) we now assume δ =
10. Having generated the first integer solution (OBJ = 67) the aspiration
level is 73.7 [$ 000]. Since the maximum of the upper bounds of unfathomed
submodels is 78 [$ 000] (submodel 2) the search will continue. Having reached
the second integer solution with an objective function value of 70 [$ 000], an
aspiration level of 77 [$ 000] is calculated. In this example the search stops
once the maximum upper bound of all unfathomed submodels falls below
77 [$ 000] which is true after having generating submodel 8.

The number of submodels to solve largely depends on the relative dif-
ference between the objective function value of the LP relaxation and the
optimal integer solution, named integrality gap. For our example the integral-
ity gap is rather modest (e. g. (78.57-73)/73 = 0.076 or 7.6%). The smaller
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the integrality gap is, the greater is the chance to fathom submodels and
thus to keep the search tree small. Today much effort is invested in deriv-
ing additional valid inequalities (cuts) to yield small integrality gaps for each
submodel generated within Branch and Bound (see Wolsey 1998,Pochet and
Wolsey 2006).

A further option applied by advanced MIP solvers to reduce the search
effort is preprocessing. Here one investigates the interactions of the model’s
constraints in order to restrict or even fix the values of some integer variables
before starting Branch and Bound. For our example, one might conclude
that the set of feasible integer values for x1 will be restricted to {0,1,2,3} and
to {1, 2, 3} for x2. Preprocessing is very similar to the ideas of Constraint
Programming (Chap. 24).

A frequently asked question is: “Will our Master Planning model be solv-
able within reasonable CPU-times?” Before answering this question one has
to differentiate whether the Master Planning model is to be solved by an LP
or a MIP solver or a simple heuristic.

As already stated, purely linear models are much easier to solve than MIP
models. Actually, solution capabilities of state-of-the-art LP solvers should be
sufficient for solving almost all reasonable real word applications. However,
if elapsed time plays a role a few experiments at an early stage of a project
should clarify matters: The idea is to generate an LP model with only a
subset Jr of all products J and/or with a reduced number of time periods
T r compared with T periods in the final model (T r << T ), but representing
the same model structure, i.e. containing all types of constraints of the final
model. Assuming that the reduced model requires a CPU-time CPUr, a rule-
of-thumb for calculating the CPU-time (CPU) of the final model is:

CPU ∼
(

T

T r
· |J |
|Jr|

)3

· CPUr (29.7)

This rule-of-thumb is derived from the observation that the computa-
tional time required for solving an LP by a Simplex method tends to be
roughly proportional to the cube of the number of explicit constraints, so
that doubling this number may multiply the computational time by a factor
of approximately 8 (Hillier and Liebermann 2005, p. 161).

For MIP models an optimal solution usually cannot be expected within
reasonable CPU times. Hence the search for an optimal solution is truncated
(see above). Also, remember that always a (relaxed) LP model has to be
solved before the search for a MIP solution starts. In any case the CPU time
limit must be sufficient for at least generating a first feasible MIP solution.

Again preliminary experiments with the MIP model can provide valuable
insights. One approach is to start with relaxing all integer requirements, re-
sulting in a purely linear model. If this model is solved easily, then the most
important integer requirements can be introduced and the associated compu-
tational effort observed. Then further variables may be declared integer until
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a good compromise between the solution effort, solution quality and model
adequacy is reached.

A second related approach is to specify a complete MIP model including
all desired integer requirements but to relax some integer requirements for
variables in later periods in the planning horizon, where e. g. only a rough
capacity check suffices.

A third approach supported by some software vendors is to use time or
stage oriented decomposition. If this option is chosen, the overall model is
partitioned into smaller submodels (automatically) which are then solved
successively (e. g. a MIP model covering 13 periods is partitioned into 4 MIP
models with 4 periods each, while there is one overlapping period). In the
end the user will get a complete solution for the original decision problem.

In any case the user should use integer or binary variables carefully – a
MIP model incorporating (only) one hundred integer variables may already
turn out to require excessive computational efforts.

References

Dash Optimization Ltd (2007) Homepage, http://www.dashoptimization.
com, date: July, 19th 2007

Hillier, F.; Liebermann, G. (2005) Introduction to Operations Research,
McGraw-Hill, Boston, 8th ed.

ILOG (2007) Homepage, http://www.ilog.com, date: July, 19th 2007
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