
TPTP, TSTP, CASC, etc.

Geoff Sutcliffe

University of Miami, USA
geoff@cs.miami.edu

Abstract. This paper gives an overview of activities and products that
stem from the Thousands of Problems for Theorem Provers (TPTP)
problem library for Automated Theorem Proving (ATP) systems. These
include the TPTP itself, the Thousands of Solutions from Theorem
Provers (TSTP) solution library, the CADE ATP System Competition
(CASC), tools such as my semantic Derivation Verifier (GDV) and the
Interactive Derivation Viewer (IDV), meta-ATP systems such as the
Smart Selective Competition Parallelism (SSCPA) system and the Se-
mantic Relevance Axiom Selection System (SRASS), and applications in
various domains.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use
of systems that automate sound reasoning: the derivation of conclusions that fol-
low inevitably from facts. The dual discipline, automated model finding, develops
computer programs that establish that a set of statements is consistent, and in
this work we consider automated model finding to be part of ATP. These capabil-
ities lie at the heart of many important computational tasks. For example, formal
methods for software and hardware design and verification [Lam05, Das06], the
analysis of network security protocols [AB04, Mit05], solving hard problems in
mathematics [SFS95, McC97], and inference for the semantic web [FS005]. ATP
has been highly successful when the problem is expressed in classical first order
logic, so that a refutation or model of the clause normal form of the problem
can be obtained. There are some well known high performance ATP systems
that search for a refutation or model of a set of clauses, e.g., Darwin/DarwinFM
[BFT06], E/EP [Sch02], Mace [McC03], Paradox [CS03], SPASS [WBH+02],
Vampire [RV02], and Waldmeister [Hil03]. Throughout this paper (until Sec-
tion 8 that describes future plans) all discussion is in terms of ATP for classical
first order logic.

2 TPTP

The TPTP (Thousands of Problems for Theorem Provers) problem library [SS98]
is a well known standard set of test problems for ATP systems. The TPTP
supplies a comprehensive library of the ATP test problems that are available

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 6–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

TPTP, TSTP, CASC, etc. 7

today, in order to provide an overview and a simple, unambiguous reference
mechanism. The principal motivation for the TPTP is to support the testing and
evaluation of ATP systems, to help ensure that performance results accurately
reflect the capabilities of the ATP system being considered. The problems in the
TPTP are collected from various sources. The two principal initial sources were
existing electronic problem collections and the ATP literature. Since then many
people and organizations have contributed to the TPTP. Users of ATP systems
find that contributing samples of their problems to the TPTP provides exposure
to ATP system developers, who then improve their systems’ performance on the
problems, which completes a cycle to provide the users with more effective tools.

The problems in the TPTP are classified into domains that reflect the natu-
ral hierarchy of scientific domains, as presented in standard subject classification
literature. The current TPTP (v3.3.0) has thirty domains, in the fields of logic,
mathematics, computer science, science and engineering, and social sciences,
with domains ranging from combinatory logic to Smullyanesque puzzles. Each
problem has a unique name that reflects its domain and encoding. Each problem
file has a header section that contains information for the user, such as refer-
ences, the problem rating (see Section 2.1), the problem status (see Section 2.2),
etc. The logical formulae are wrapped with annotations that provide a unique
name for each formula in the problem, a user role (axiom, conjecture, etc), and
auxiliary user information. The logical formulae themselves use a consistent and
easily understood notation. The syntax (see Section 2.3) shares many features
with Prolog, a language that is widely known in the ATP community. Indeed,
with a few operator definitions, units of TPTP data can be read in Prolog using
a single read/1 call, and written with a single writeq/1 call.

A key to the initial and ongoing success of the TPTP is the TPTP2X util-
ity. The most important feature of TPTP2X is the conversion of TPTP format
problems to formats used by existing ATP systems. This functionality provides
a very low entry barrier to using the TPTP with existing ATP systems that
cannot read the TPTP format.

The availability of the TPTP has provided a stable basis for the meaningful
evaluation of ATP systems, and published results can be readily compared with
new results to determine progress in the field. Although other test problems do
exist and are sometimes used, the TPTP is now the de facto standard for testing
first order ATP systems.

2.1 Ratings

An important feature of the TPTP is the problem ratings [SS01]. The ratings
provide an accurate measure of how difficult the problems are for state-of-the-art
ATP systems. To rate problems, the performance of contemporary ATP systems
on the problems is analyzed. The performance data comes from the TSTP, de-
scribed in Section 3. The unbiased problems of the TPTP are divided into Spe-
cialist Problem Classes (SPCs) - syntactically identifiable classes of problems for
which certain ATP techniques or systems have been observed to be especially
well suited. Rating is done separately for each SPC, to provide a rating that

8 G. Sutcliffe

compares “apples with apples”. A partial order between systems is determined
according to whether or not a system solves a strict superset of the problems
solved by another system. If a strict superset is solved, the first system is said
to subsume the second system. The union of the problems solved by the non-
subsumed systems defines the state-of-the-art - all the problems that are solved
by any system. The fraction of non-subsumed systems that fail on a problem
is the difficulty rating for the problem. Problems that are solved by all non-
subsumed systems get a rating of 0.00, and are considered to be easy; problems
that are solved by just some of the non-subsumed systems get a rating between
0.00 and 1.00, and are considered difficult; problems that are unsolved get a
rating of 1.00.

The analysis done for problem ratings also provides ratings for the ATP sys-
tems. The fraction of the difficult unbiased problems that a system solves is the
rating for that system. Systems that subsume all other systems get a rating of
1.00, and systems that solve only easy problems get a rating of 0.00.

2.2 SZS

In order to use ATP systems’ results as input to other tools, it is necessary that
the results correctly and precisely specify what has been established. The SZS
ontology [SZS04] provides a fine grained ontology of result and output forms that
are used to specify what has been established about a given ATP problem. The
ontology also recommends the precise way in which the ontology values should
be reported in the output from systems and tools. Figure 1 shows an extract
from the top of the result ontology (the full ontology is available as part of the
TPTP distribution). Each value has a full name and a three letter acronym that
is useful for tables of data.

Fig. 1. SZS Ontology

At the top level the result ontology splits into two. The Success part catalogs
semantic relationships between the axioms and conjecture (or its negation) of a
problem. For example, if all models of the axioms are models of the conjecture
then the status is Theorem with code THM, if some models of the axioms are
models of the negation of the conjecture then the status is CounterSatisfiable
with code CSA, and if there is a bijection between the models of the axioms and
the models of the conjecture (as in a Skolemization step) then the status is
SatisfiabilityBijection with code SAB. The NoSuccess part of the result
ontology catalogs reasons that a system or tool could be not successful. For

TPTP, TSTP, CASC, etc. 9

example, if a system stopped because the CPU time limit ran out then the
status is Timeout with code TMO, and if a system has not attempted a problem
but might in the future then the status is NotTestedYet with code NTY.

The output ontology catalogs forms of output from ATP systems and tools.
For example, a prover might output a CNFRefutation with code CRf, and a
model finder might output a FiniteModel with code FMo.

2.3 BNF

One of the keys to the success of the TPTP and related projects is their consistent
use of the TPTP language, which enables convenient communication between
different systems and researchers. TPTP v3.0.0 introduced a new version of
the TPTP language [SSCVG06]. The language was designed to be suitable for
writing both ATP problems and ATP solutions, to be flexible and extensible,
and easily processed by both humans and computers.

A principal goal of the development of the language grammar was to make it
easy to translate the BNF into lex/yacc/flex/bison input, so that construction
of parsers (in languages other than Prolog) can be a reasonably easy task [VGS06].
To this end the language definition uses a modified BNF meta-language that sep-
arates syntactic, semantic, lexical, and character-macro rules. The separation of
syntax from semantics eases the task of building a syntactic analyzer. At the same
time, the semantic rules provide the detail necessary for semantic checking.

The latest release of the grammar provides further structuring that allows
users to build a parser for chosen components according to their need, including
the FOF and CNF core, the TFF extension, extensions for theories (e.g., arith-
metic), the THF core, and various THF extensions (see Section 8 regarding the
TFF and THF languages).

3 TSTP

The TSTP (Thousands of Solutions from Theorem Provers) solution library
[SutRL], the “flip side” of the TPTP, is becoming known as a resource for con-
temporary ATP systems’ solutions. In particular, the TSTP contains solutions
to problems from the TPTP. One use of the TSTP is for ATP system developers
to examine solutions to problems and thus understand how they can be solved,
leading to improvements to their own systems.

A key development from the old (pre-v3.0.0) TPTP language to the new one
was the addition of features for writing ATP solutions [SSCVG06], in a format
consistent with ATP problems (see Sections 2 and 2.3). This enables output
from ATP systems to be seamlessly used as input to further systems or tools.
The features were designed for writing derivations, but their flexibility makes it
possible to write a range of DAG structures. Additionally, there are features of
the language that make it possible to conveniently specify finite interpretations.

At the time of writing this paper, the TSTP contains the results of running 44
ATP systems and system variants on all the problems in the TPTP. The results

10 G. Sutcliffe

are classified according to the TPTP problem domains, then by TPTP problem.
Each result file has a header section that contains information for the user, such
as the system command line, information about the computer used, the SZS
result and output status (see Section 2.2), and statistics about the solution. The
output logical formulae use the TPTP language. Additional information that
specifies a derivation’s DAG structure, and details of inference steps, is used to
annotate each formula, for use by tools such as GDV (see Section 5.4) and IDV
(see Section 5.5).

4 CASC

In order to stimulate ATP system development, and to expose ATP systems to
interested researchers, CASC (the CADE ATP System Competition) [SS06] is
held at each CADE conference. CASC evaluates the performance of sound, fully
automatic, ATP systems – it is the world championship for such systems. The
primary purpose of CASC is a public evaluation of the relative capabilities of
ATP systems. Additionally, CASC aims to stimulate ATP research in general,
to stimulate ATP research towards autonomous systems, to motivate implemen-
tation of robust ATP systems, to provide an inspiring environment for personal
interaction between ATP researchers, and to expose ATP systems within and be-
yond the ATP community. Fulfillment of these objectives provides stimulus and
insight for the development of more powerful ATP systems, leading to increased
and more effective usage.

The design of CASC is linked to the problem and system rating scheme de-
scribed in Section 2.1. The divisions and problem categories of CASC are similar
to the SPCs used in the rating scheme. The problem ratings make it possible
to select appropriately difficult problems for CASC, to differentiate between the
systems. The rating scheme provides the principles for the CASC rating scheme,
which provides a realistic and stable ranking of the systems. Table 1 lists the
division winners over the years.

Through successive refinement of the competition design, CASC has been of
significant benefit to the development of ATP [Nie02]. CASC has had two main
effects on ATP system development. First, new strategies and techniques have
been developed to increase the range of problems that can be solved by individual
systems, and second, the quality of implementations has improved. Possibly the
most important improvement has been in the selection of strategies according
to the characteristics of the given problem – the “auto-mode”s now available in
almost all ATP systems. There have been significant developments in this area,
including a deeper understanding of what problem characteristics are important
for what aspects of strategy selection, the examination of the input to detect
the domain structure of the problem, the use of machine learning techniques
to optimize the choice of strategy, and the use of strategy scheduling. Other
effects of CASC include increased interest in the production and verification of
ATP system output, the development and refinement of FOF to CNF converters,

TPTP, TSTP, CASC, etc. 11

Table 1. CASC division winners

FOF CNF SAT EPR UEQ
J3 Vampire 8.1 Vampire 8.1 Paradox 1.3 Darwin 1.3 Waldmeister 806
20 Vampire 8.0 Vampire 8.0 Paradox 1.3 DCTP 10.21p Waldmeister 704
J2 Vampire 7.0 Vampire 7.0 Gandalf c-2.6-SAT DCTP 10.21p Waldmeister 704
19 Vampire 5.0 Vampire 6.0 Gandalf c-2.6-SAT DCTP 1.3-EPR Waldmeister 702
18 Vampire 5.0 Vampire 5.0 Gandalf c-2.5-SAT E-SETHEO csp02 Waldmeister 702
JC E-SETHEO csp01 Vampire 2.0 GandalfSat 1.0 E-SETHEO csp01 Waldmeister 601
17 VampireFOF 1.0 E 0.6 GandalfSat 1.0 Waldmeister 600
16 SPASS 1.00T Vampire 0.0 OtterMACE 437 Waldmeister 799
15 SPASS 1.0.0a Gandalf c-1.1 SPASS 1.0.0a Waldmeister 798
14 SPASS 0.77 Gandalf SPASS 0.77 Waldmeister
14 E-SETHEO Otter 3.0.4z

systems that are robust in terms of installation and execution, and improved
engineering and data structures in ATP systems.

5 Tools

The TPTP and TSTP are supported by a suite of tools for preparing and solving
problems in TPTP format, and for processing solutions in TPTP format. Five
of these tools are described in this section, along with WWW interfaces that
provide global access to the TPTP, the TSTP, and the tools.

5.1 SystemOnTPTP

SystemOnTPTP is a utility that allows an ATP problem or solution to be easily
and quickly submitted in various ways to a range of ATP systems and tools.
The utility uses a suite of currently available ATP systems and tools, whose
properties (input format, reporting of result status, etc) are stored in a simple
text database. The utility allows the input to be selected from the TPTP or
TSTP library, or provided in TPTP format by the user. One or more systems
or tools may be applied to the input.

The implementation of SystemOnTPTP uses several subsidiary tools to prepro-
cess the input, control the execution of the chosen ATP system(s), and postpro-
cess the output. On the input side TPTP2X (see Section 2) is used to prepare the
input for processing.1 A strict resource limiting program called TreeLimitedRun
is used to limit the CPU time and memory used. TreeLimitedRun monitors
processes more tightly than is possible with standard operating system calls.
(TreeLimitedRun is also used in CASC (see Section 4).) Finally a program
called X2tptp converts an ATP system’s output to TPTP format, if requested
by the user.

5.2 Prophet

Prophet uses the syntax of an axiom formula Fa to gauge the potential for the
axiom to contribute to a proof of a conjecture Fc, in the context of a set S of
1 In some situations a faster, recently developed, alternative called TPTP4X is used.

12 G. Sutcliffe

axioms and the conjecture. First, the contextual direct relevance between all
formulae in the set is measured by

∑
s∈(sym(Fa)∩sym(Fc))

(
1 − |{f :f∈S,s∈sym(f)}|

|S|
)

|sym(Fa) ∪ sym(Fc)|
Next, the contextual path relevance of every path Fa = F1 · F2 · . . . · Fn = Fc

from Fa to Fc is calculated as the smallest contextual direct relevance in the
path, divided by the length of the path. Finally, the contextual indirect relevance
between Fa and Fc is taken as the maximal contextual path relevance over all
paths connecting Fa to Fc.

Contextual indirect relevance can be used as a heuristic for selecting formulae
to use in an ATP system – this is done in the SRASS system described in Sec-
tion 6.2. A upgraded version of Prophet, based on deeper information retrieval
concepts [Sah06], is being developed.

5.3 AGInT

AGInT (Automatic Generation of Interesting Theorems) [PGS06] is a tool that
discovers interesting theorems of a given set of axioms. AGInT uses a deductive
approach to discovery - it uses an ATP system to generate CNF logical con-
sequences of the axioms, filters the logical consequences to extract interesting
theorems, and then computes an interestingness rating for each theorem. This
basic process takes place in the context of an outer level control loop that reg-
ularly refocuses the generation of logical consequences, thus enabling AGInT to
proceed deeply into the search space of logical consequences. The overall archi-
tecture of AGInT is shown in Figure 2. The final output from AGInT is an ordered
list of the interesting theorems retained in the interesting theorems store.

Axioms

ATP system Runtime
filter

Ranked
theorems

Logical
Consequences Candidate

theoremsSoSOthers

Static
ranker

Interesting
theorems

Post-
processor

All theorems

Top theorems

1st run

Loops

Old theorems

New theorems

Fig. 2. AGInT Architecture

The runtime filter measures up to eight “interestingness” features of the for-
mulae (some features are inappropriate in some situations): preprocessing detects
and discards obvious tautologies, obviousness estimates the difficulty of proving
a formula, weight estimates the effort required to read a formula, complexity
estimates the effort required to understand a formula, surprisingness measures
new relationships between function and predicate symbols in a formula, intensity

TPTP, TSTP, CASC, etc. 13

measures how much a formula summarizes information from its leaf ancestors,
adaptivity measures how tightly the universally quantified variables of a formula
are constrained, and focus measures the extent to which a formula is making a
positive or negative statement about the domain. Formulae that pass the ma-
jority of the runtime filters are passed to the static ranker. The static ranker
combines the measures from the runtime filter with a measure of usefulness,
which measures how much an interesting theorem has contributed to proofs of
further interesting theorems. The scores are then normalized and averaged to
produce an interestingness score.

AGInT has been evaluated in several domains and applications, ranging from
puzzles to set theory. A particularly useful application has been in generating
proof synopses in IDV, described in Section 5.5.

5.4 GDV

ATP systems are complex pieces of software, and thus may have bugs that
make them unsound or incomplete. While incompleteness is common (sometimes
by design) and tolerable, when an ATP system is used in an application it
is important, typically mission critical, that it be sound. GDV (my Derivation
Verifier) [Sut06] is a tool that uses structural and then semantic techniques to
verify a derivation in TPTP format.

Structural verification checks that inferences have been done correctly in the
context of the derivation. The structural checks include: checking that the speci-
fied parents of each inference step do exist, checking that the derivation is acyclic,
checking that refutations end with a false formula, checking that assumptions
are discharged, checking that split refutations are not mutually dependent, and
checking that introduced symbols (e.g., in Skolemization) are distinct.

The core technique in semantic verification is to encode the expected semantic
relationship between each inferred formula and its parent formulae into logical
obligations, in the form of ATP problems. The obligations are then discharged
by having trusted ATP systems solve the ATP problems. The required semantic
relationship between an inferred formula and its parent formulae depends on the
intent of the inference rule used. For example, deduction steps are verified by
checking that the inferred formula is a logical consequence of its parent formulae.
This intent is recorded as an SZS annotation to each inferred formula in TPTP
format derivations (see Sections 2.2 and 3). GDV uses SystemOnTPTP to control
the trusted ATP systems.

5.5 IDV

The proofs output by automated reasoning systems provide useful information to
users, e.g., the proof structure, lemmas that may be useful in future proofs, which
axioms are most used, etc. However, the proofs output by automated reasoning
systems are often unsuitable for human consumption, due to, e.g., the conversion
to CNF, use of proof by contradiction, and use of fine grained inference steps.
IDV (Interactive Derivation Viewer) [TPS06] is a tool for graphical rendering of

14 G. Sutcliffe

derivations in TPTP format. IDV provides an interactive interface that allows
the user to quickly view various features of the derivation, and access various
analysis facilities.

The lefthand side of Figure 3 shows the rendering of the derivation output
by EP 0.99 for the TPTP problem PUZ001+1.2 The IDV window is divided into
three panes: the top control strip pane provides control buttons and sliders, the
main middle pane shows the rendered DAG, and the bottom pane gives the text
of the annotated formula for the node pointed to by the mouse.

Fig. 3. EP’s Proof by Refutation of PUZ001+1

The rendering of the derivation DAG uses shape and color to visually provide
information about the derivation. The shape of a node gives the user role of
the formula, the color indicates FOF or CNF, and tags indicate features of the
inference step. The user can interact with the rendering in various ways. Mousing
over a node highlights its ancestors and descendants, clicking on a node pops
up a window with details of the inference and with access to GDV to verify the
inference, control-clicking on a node opens a new IDV window with just that node
and it’s parents, and shift-control-clicking on a node opens a new IDV window
with that node and its ancestors.
2 PUZ001+1 is the “Aunt Agatha” problem, a scenario in which one of the three people

who live in the mansion killed Aunt Agatha. The goal is to prove that Aunt Agatha
killed herself.

TPTP, TSTP, CASC, etc. 15

The buttons and sliders in the control strip pane provide a range of manip-
ulations on the rendering – zooming, hiding and displaying parts of the DAG
according to various criteria, access to GDV for verification of the whole deriva-
tion, and access to the SystemOnTSTP interface described in Section 5.6. A par-
ticularly novel feature of IDV is its ability to provide a synopsis of a derivation
by identifying interesting lemmas within a derivation, and hiding less interest-
ing intermediate formulae. This is implemented by calling AGInT to evaluate
the interestingness of each formula, and then using the interestingness slider to
select an interestingness threshold to hide nodes for less interesting formulae.
After extracting a synopsis it is possible to zoom in with the redraw button,
rendering only the “interesting” nodes. A synopsis is shown on the righthand
side of Figure 3.

5.6 WWW

All of the data and tools described in the preceding sections, and a few more
besides, are accessible via a suite of online interfaces. The TPTP and TSTP
interfaces provide access to all the problems, solutions, and documents related to
the libraries, as well as subprojects and proposals for forthcoming extensions to
the libraries. The SystemB4TPTP, SystemOnTPTP [Sut00], and SystemOnTSTP
interfaces provide access to an online service that uses the SystemOnTPTP utility
to run selected ATP systems and tools on input specified by the user. The service
can also be accessed directly via http POST requests. The input can be selected
from the TPTP or TSTP library, or provided in TPTP format by the user as
text, a file, or a URL source.

In addition to using the SystemOnTPTP utility, the SystemB4TPTP interface
provides access to tools to convert from other input formats to TPTP format.
The SystemOnTPTP interface additionally provides system reports, and recom-
mendations for systems to use on a given problem, based on the system ratings
(see Section 2.1). The SystemOnTPTP interface also has direct access to SSCPA
(described in Section 6.1) to run multiple systems in competition parallel.

6 Meta-ATP

One of the benefits of having the common TPTP format for data, and the
SZS ontology for status (see Section 2), is that it becomes easily possible to
seamlessly integrate ATP systems and tools into more complex and effective
reasoning systems. Two examples of such systems are described in this section.

6.1 SSCPA

One approach to developing more powerful ATP systems is the use of parallelism.
SSCPA (Smart Selective Competition Parallelism ATP) [SS99] is an uncoopera-
tive multiple calculus competition parallelism ATP system. SSCPA runs multiple
sequential ATP systems concurrently, in an SMP environment. This approach is
motivated by the observation, e.g., in CASC, that no individual ATP system per-
forms well on all problems. There is convincing evidence that the specialization

16 G. Sutcliffe

of ATP systems is due to the deduction techniques used in relation to the syn-
tactic characteristics of the problems. SSCPA uses the syntactic characteristics of
a given problem to classify it into one of the specialist problem classes described
in Section 2.1. SSCPA uses the system ratings (also described in Section 2.1) to
determine which of the available ATP systems perform well for that class. A se-
lection of the recommended systems are then run concurrently under the control
of SystemOnTPTP (see Section 5.1), in one of several user selectable modes.

SSCPA was evaluated by entering it into the demonstration division of CASC-
16 (see Section 4), running under the same conditions as the regular competition
entries. In the mixed CNF and satisfiable CNF divisions SSCPA solved more
problems than the competition winner. SSCPA also performed reasonably well
in the first-order and unit equality divisions.

6.2 SRASS

In recent years the ability of ATP systems to reason over large theories – theories
in which there are many functors and predicates, many axioms of which typically
only a few are required for the proof of a theorem, and many theorems to be
proved from the same set of axioms – has become more important. Large theory
problems are becoming more prevalent as large knowledge bases, e.g., ontolo-
gies and large mathematical knowledge bases, are translated into forms suitable
for automated reasoning [Qua92, Urb07, RPG05], and mechanical generation of
ATP problems becomes more common, e.g., [DFS04, MP06]. SRASS (Semantic
Relevance Axiom Selection System) [SP07] is a system for selecting necessary
axioms, from a large set also containing superfluous axioms, to obtain a proof
of a conjecture.

The basic algorithm of SRASS is to start with a set containing the negation of
the conjecture to be proved, then repeatedly find a model of the set and augment
the set with an axiom that is false in the model, until no model exists. In
this state the conjecture is a logical consequence of the selected axioms. SRASS
augments this basic algorithm with extensions that improve the implemented
performance. One of the keys to the success of SRASS is the use of Prophet
(see Section 5.2) to measure the relevance of the axioms to the conjecture, to
determine the order in which axioms are considered.

The implementation of SRASS uses a range of conventional ATP systems to
implement the various tests and evaluations required: a theorem prover (cur-
rently E/EP 0.99) to test for (counter)theoremhood, test for unsatisfiability,
and to find explicit proofs; a finite model builder (currently DarwinFM 1.3g) to
test for (counter)satisfiability and build models; and a saturating system (cur-
rently SPASS 2.2) to further test for (counter)satisfiability in cases where the
finite model builder fails and it is necessary only to establish the existence of a
model. The various ATP systems are run under the control of SystemOnTPTP
(see Section 5.1).

SRASS was tested in a conservative configuration on several problem sets from
the TPTP – problems in logical calculi, problems in set theory, and problems
in software verification, all of which are known to have superfluous axioms. In

TPTP, TSTP, CASC, etc. 17

summary, of the 71 problems that were difficult enough to be eligible for com-
parative testing, SRASS solves 54 while the underlying ATP system (E/EP 0.99)
solves only 39 without the benefit of axiom selection. SRASS was also tested in a
less conservative configuration on the MPTP Challenge problems [US06]. In the
bushy division of the challenge SRASS solves 171 of the 252 problems, compared
to E/EP’s 141, and in the chainy division (in which the problems have many
more superfluous axioms) SRASS solves 127, compared to E/EP’s 91.

7 Applications

The TPTP language and tools have been adopted for a range of user applications.
The users employ ATP systems as embedded components of some larger process.
By using the TPTP framework the users are not distracted by idiosyncrasies of
automated reasoning, and can focus on their application. This section describes
three such applications.

7.1 NASA

Research scientists in the Robust Software Engineering Group of the Intelligent
Systems Division of NASA Ames have developed, implemented, and evaluated a
certification approach that uses Hoare-style techniques to formally demonstrate
the safety of aerospace programs that are automatically generated from high-
level specifications [DF03, DFS04]. The focus is on automated – as opposed to
interactive or (the auto-modes of) tactic-based – systems, since the aim is to
have a fully automated push-button tool.

In this work the code generator was extended so that it simultaneously gen-
erates code and detailed annotations, e.g., loop invariants, regarding safety con-
ditions. A verification condition generator processes the annotated code, and
produces a set of safety obligations in the form of TPTP format problems that
are provable if and only if the code is safe. The obligation problems are dis-
charged using SSCPA (see Section 6.1), selecting up to three ATP systems, to
produce TPTP format proofs that serve as safety certificates for authorities like
the FAA. The derivations are verified by GDV (see Section 5.4). The individual
derivations from GDV, which verify each inference step, provide explicit evidence
that none of the individual tool components yield incorrect results and, hence,
that the certificates are valid.

7.2 MPTP

The goal of the MPTP project [Urb07] is to make the large formal Mizar Math-
ematical Library (MML) [Rud92] available to current ATP systems (and vice
versa), and to boost the development of domain-based, knowledge-based, and
generally AI-based ATP methods. The MPTP converts Mizar format
problems to a extended TPTP language that adds term-dependent sorts and
abstract (Fraenkel) terms to the TPTP syntax. Problems in the extended lan-
guage are transformed to standard TPTP format using relativization of sorts

18 G. Sutcliffe

and deanonymization of abstract terms. Finding proofs for these problems pro-
vides cross verification of the underlying Mizar proofs. It is interesting that some
of the ATP proofs correspond to shorter Mizar proofs of the original theorems,
and therefore are likely to be used for MML refactoring.

Mizar proofs are also exported, as TPTP format derivations, allowing a num-
ber of ATP experiments and use of TPTP tools. An example of this is the
combination of the Mizar WWW view with IDV (see Section 5.5) [UTSP07].
This allows a user to view and interact with Mizar level proofs, and to export
these to IDV and beyond to view and interact with the corresponding first-order
form.

7.3 SUMO and Cyc

In recent years there has been a growing interest in translating large ontological
knowledge bases into first-order logic, so that ATP systems can be used to reason
over the knowledge. Two examples of this are the translation of the Suggested
Upper Merged Ontology (SUMO) [NP01] and of Cyc [MJWD06].

The translation of SUMO [PS07] requires dealing with some apparently and
some truly second order constructs, adding guards to impose sort constraints,
and converting from SUMO’s SUO-KIF language to the TPTP language. Testing
on a suite of reasoning tasks provided feedback on what choices in the translation
process provide the most easily solved first-order problems. The translation has
been integrated into the Sigma ontology development environment [Pea03], with
access to IDV (see Section 5.5) for displaying derivations.

The FOLification of Cyc [RPG05] translated about 90% of ResearchCyc into
first-order logic, in the TPTP format. As with the SUMO translation, special
treatment of higher order constructs was necessary. The translation produced
1,253,117 axioms over 132,116 symbols (not including strings or numbers). This
very large background theory presented practical difficulties for using ATP sys-
tems. With the exception of E/EP, none of the ATP systems tried were able to
load more than 20% of the axioms without failing due to memory errors. This
highlighted the need for reengineering of ATP systems, in order to cope with
such large problems. A second translation of Cyc is now underway, in order to
generate problems that can be added to the TPTP library as challenges to ATP
systems.

8 Future

The TPTP and related projects are ongoing efforts, continuously aiming to ex-
tend the range and scope of TPTP compliant data and tools. Three main devel-
opments are planned for the near future.

Following discussions at the workshop on Empirically Successful Higher Order
Logic (ESHOL) [BHS05], a typed higher-order TPTP syntax has been developed
- the THF syntax. The THF syntax is divided into levels, starting with a simply
typed Church lambda calculus core, and providing three layers of more complex
constructs. This layered approach lowers the entry barrier for adopting the THF

TPTP, TSTP, CASC, etc. 19

syntax, but also provides a rich language for ongoing development. With the
syntax in place it is now planned to extend the TPTP and TSTP to include
higher-order problems and solutions. The THF effort also resulted in completion
of the typed first-order syntax (the TFF syntax), and the two are compatible.

Many applications of automated reasoning, including all those described in
Section 7, require some simple reasoning over numbers. An extension of the
TPTP language to provide interpreted arithmetic functors and predicates has
been designed, aligned with the theory of integers in the Satisfiability Modulo
Theories (SMT) library [RT06]. It is planned to extend the TPTP and TSTP to
include problems and solutions that involve arithmetic.

The TPTP, TSTP, and tools, provide a stable environment for using ATP
systems. While the ability to find solutions to ATP problems is useful directly,
in many applications further features are necessary. Two such features are an-
swer variables - the ability to extract an answer to a question that has been
framed as a conjecture, and access to provenance information – information re-
garding information sources, assumptions, learned information, and answers, as
an enabler for trust. Preliminary work on these and similar topics is now under-
way. Cyc’s handling of answer variables [MJWD06] provides a starting point for
determining the features and capabilities of answer variables in the TPTP, and
issues of provenance information are being inspired by the work in the Inference
Web [MPdS04].

9 Conclusion

This paper has given an overview of activities and products that stem from the
TPTP problem library for ATP systems. The TPTP language, the SZS ontol-
ogy, and the tools developed, provide an homogeneous environment for ongoing
research, development, and application of automated reasoning. Contributions
and feedback to improve the TPTP world are always welcome.

Acknowledgements. Many people have contributed to this work. Most salient
are: Christian Suttner, the co-developer of the TPTP library and CASC; Stephan
Schulz, who influenced the development of the new TPTP language; Allen Van
Gelder who wrote the core of the BNF; the ARTists Yi Gao, Yury Puzis, and
Steven Trac, who co-designed and implemented some of the tools; Petr Pudlak,
who inspired SRASS, Bernd Fischer, Josef Urban, Adam Pease, and the Cyclists
at Cycorp, who developed the applications described.

References

[AB04] Abadi, M., Blanchet, B.: Analyzing Security Protocols with Secrecy Types
and Logic Programs. Journal of the ACM (2004)

[BFT06] Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the Model Evolu-
tion Calculus. International Journal on Artificial Intelligence Tools 15(1),
21–52 (2006)

20 G. Sutcliffe

[BHS05] Proceedings of the Workshop on Empirically Successful Higher-Order
Logic. In: 12th International Conference on Logic for Programming Arti-
ficial Intelligence and Reasoning, vol. 0601042 of arXiv (2005)

[CS03] Claessen, K., Sorensson, N.: New Techniques that Improve MACE-style
Finite Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Pro-
ceedings of the CADE-19 Workshop: Model Computation - Principles,
Algorithms, Applications (2003)

[Das06] Das, M.: Formal Specifications on Industrial-Strength Code - From Myth
to Reality. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, p.
1. Springer, Heidelberg (2006)

[DF03] Denney, E., Fischer, B.: Correctness of Source-level Safety Policies. In:
Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 894–913. Springer, Heidelberg (2003)

[DFS04] Denney, E., Fischer, B., Schumann, J.: Using Automated Theorem Provers
to Certify Auto-generated Aerospace Software. In: Basin, D., Rusinowitch,
M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 198–212. Springer,
Heidelberg (2004)

[FS005] Fages, F., Soliman, S. (eds.): PPSWR 2005. LNCS, vol. 3703. Springer,
Heidelberg (2005)

[Hil03] Hillenbrand, T.: Citius altius fortius: Lessons Learned from the Theorem
Prover Waldmeister. In: Dahn, I., Vigneron, L. (eds.) Proceedings of the
4th International Workshop on First-Order Theorem Proving. Electronic
Notes in Theoretical Computer Science, vol. 86.1 (2003)

[Lam05] Lam, W.: Hardware Design Verification: Simulation and Formal Method-
Based Approaches. Prentice Hall, Englewood Cliffs (2005)

[McC97] McCune, W.W.: Solution of the Robbins Problem. Journal of Automated
Reasoning 19(3), 263–276 (1997)

[McC03] McCune, W.W.: Mace4 Reference Manual and Guide. Technical Report
ANL/MCS-TM-264, Argonne National Laboratory, Argonne, USA (2003)

[Mit05] Mitchell, J.: Security Analysis of Network Protocols: Logical and Com-
putational Methods. In: Barahona, P., Felty, A. (eds.) Proceedings of the
7th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, pp. 151–152 (2005)

[MJWD06] Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J.: An Introduction
to the Syntax and Content of Cyc. In: Baral, C. (ed.) Proceedings of
the 2006 AAAI Spring Symposium on Formalizing and Compiling Back-
ground Knowledge and Its Applications to Knowledge Representation and
Question Answering, pp. 44–49 (2006)

[MP06] Meng, J., Paulson, L.: Translating Higher-Order Problems to First-Order
Clauses. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) Proceedings of
the FLoC’06 Workshop on Empirically Successful Computerized Reason-
ing, 3rd International Joint Conference on Automated Reasoning, CEUR
Workshop Proceedings, vol. 192, pp. 70–80 (2006)

[MPdS04] McGuinness, D., Pinheiro da Silva, P.: Explaining Answers from the
Semantic Web: The Inference Web Approach. Journal of Web Seman-
tics 1(4), 397–413 (2004)

[Nie02] Nieuwenhuis, R.: The Impact of CASC in the Development of Automated
Deduction Systems. AI Communications 15(2-3), 77–78 (2002)

[NP01] Niles, I., Pease, A.: Towards A Standard Upper Ontology. In: Welty, C.,
Smith, B. (eds.) Proceedings of the 2nd International Conference on For-
mal Ontology in Information Systems, pp. 2–9 (2001)

TPTP, TSTP, CASC, etc. 21

[Pea03] Pease, A.: The Sigma Ontology Development Environment. In:
Giunchiglia, F., Gomez-Perez, A., Pease, A., Stuckenschmidt, H., Sure,
Y., Willmott, S. (eds.) Proceedings of the IJCAI-03 Workshop on On-
tologies and Distributed Systems, CEUR Workshop Proceedings, vol. 71
(2003)

[PGS06] Puzis, Y., Gao, Y., Sutcliffe, G.: Automated Generation of Interesting
Theorems. In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the 19th
International FLAIRS Conference, pp. 49–54. AAAI Press, Stanford, Cal-
ifornia, USA (2006)

[PS07] Pease, A., Sutcliffe, G.: First Order Reasoning on a Large Ontology. In:
Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21
Workshop on Empirically Successful Automated Reasoning in Large The-
ories (2007)

[Qua92] Quaife, A.: Automated Development of Fundamental Mathematical The-
ories. Kluwer Academic Publishers, Dordrecht (1992)

[RPG05] Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized Research-
Cyc: Expressiveness and Efficiency in a Common Sense Knowledge Base.
In: Shvaiko, P. (ed.) Proceedings of the Workshop on Contexts and On-
tologies: Theory, Practice and Applications (2005)

[RT06] Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Technical Re-
port Technical Report, Department of Computer Science, The University
of Iowa, Iowa City, USA (2006)

[Rud92] Rudnicki, P.: An Overview of the Mizar Project. In: Proceedings of the
1992 Workshop on Types for Proofs and Programs, pp. 311–332 (1992)

[RV02] Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire.
AI Communications 15(2-3), 91–110 (2002)

[Sah06] Sahami, M.: Mining the Web to Determine Similarity Between Words,
Objects, and Communities. In: Sutcliffe, G., Goebel, R. (eds.) Proceedings
of the 19th International FLAIRS Conference, pp. 14–19. AAAI Press,
Stanford, California, USA (2006)

[Sch02] Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3),
111–126 (2002)

[SFS95] Slaney, J.K., Fujita, M., Stickel, M.E.: Automated Reasoning and Exhaus-
tive Search: Quasigroup Existence Problems. Computers and Mathematics
with Applications 29(2), 115–132 (1995)

[SP07] Sutcliffe, G., Puzis, Y.: SRASS - a Semantic Relevance Axiom Selection
System. In: Pfenning, F. (ed.) Proceedings of the 21st International Con-
ference on Automated Deduction. LNCS (LNAI), vol. 4603, pp. 295–310.
Springer, Heidelberg (2007)

[SS98] Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)

[SS99] Sutcliffe, G., Seyfang, D.: Smart Selective Competition Parallelism ATP.
In: Kumar, A., Russell, I. (eds.) Proceedings of the 12th International
FLAIRS Conference, pp. 341–345. AAAI Press, Stanford, California, USA
(1999)

[SS01] Sutcliffe, G., Suttner, C.B.: Evaluating General Purpose Automated The-
orem Proving Systems. Artificial Intelligence 131(1-2), 39–54 (2001)

[SS06] Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1),
35–48 (2006)

22 G. Sutcliffe

[SSCVG06] Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP
Language for Writing Derivations and Finite Interpretations. In: Furbach,
U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81.
Springer, Heidelberg (2006)

[Sut00] Sutcliffe, G.: SystemOnTPTP. In: McAllester, D. (ed.) Automated De-
duction - CADE-17. LNCS, vol. 1831, pp. 406–410. Springer, Heidelberg
(2000)

[Sut06] Sutcliffe, G.: Semantic Derivation Verification. International Journal on
Artificial Intelligence Tools 15(6), 1053–1070 (2006)

[SutRL] Sutcliffe, G.: The TSTP Solution Library. http://www.TPTP.org/TSTP
[SZS04] Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for

Automated Theorem Proving Tools. In: Zhang, W., Sorge, V. (eds.) Dis-
tributed Constraint Problem Solving and Reasoning in Multi-Agent Sys-
tems. Frontiers in Artificial Intelligence and Applications, vol. 112, pp.
201–215. IOS Press, Amsterdam (2004)

[TPS06] Trac, S., Puzis, Y., Sutcliffe, G.: An Interactive Derivation Viewer. In:
Autexier, S., Benzmüller, C. (eds.) Proceedings of the 7th Workshop on
Workshop on User Interfaces for Theorem Provers, 3rd International Joint
Conference on Automated Reasoning. Electronic Notes in Theoretical
Computer Science, vol. 174, pp. 109–123 (2006)

[Urb07] Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments.
Journal of Automated Reasoning 37(1-2), 21–43 (2007)

[US06] Urban, J., Sutcliffe, G.: The MPTP $100 Challenges (2006),
http://www.tptp.org/MPTPChallenge/

[UTSP07] Urban, J., Trac, S., Sutcliffe, G., Puzis, Y.: Combining Mizar and TPTP
Semantic Presentation Tools. In: Proceedings of the Mathematical User-
Interfaces Workshop 2007 (2007)

[VGS06] Van Gelder, A., Sutcliffe, G.: Extending the TPTP Language to Higher-
Order Logic with Automated Parser Generation. In: Furbach, U., Shankar,
N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 156–161. Springer,
Heidelberg (2006)

[WBH+02] Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C.,
Topic, D.: SPASS Version 2.0. In: Voronkov, A. (ed.) Automated Deduc-
tion - CADE-18. LNCS (LNAI), vol. 2392. Springer, Heidelberg (2002)

http://www.TPTP.org/TSTP
http://www.tptp.org/MPTPChallenge/

	TPTP, TSTP, CASC, etc.
	Introduction
	TPTP
	Ratings
	SZS
	BNF

	TSTP
	CASC
	Tools
	SystemOnTPTP
	Prophet
	AGInT
	GDV
	IDV
	WWW

	Meta-ATP
	SSCPA
	SRASS

	Applications
	NASA
	MPTP
	SUMO and Cyc

	Future
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

