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Abstract. We study the compressed word problem: a variant of the word problem
for finitely generated groups where the input word is given by a context-free
grammar that generates exactly one string. We show that finite extensions and
free products preserve the complexity of the compressed word problem. Also,
the compressed word problem for a graph group can be solved in polynomial
time. These results allow us to obtain new upper complexity bounds for the word
problem for certain automorphism groups and group extensions.

1 Introduction

The word problem for finitely generated groups is a fundamental computational prob-
lem linking group theory, topology, mathematical logic, and computer science. For a
group G, finitely generated by Σ, it is asked whether a word over Σ and the inverses
of Σ represents the identity element of G. The word problem was introduced in the pi-
oneering work of Dehn from 1910 in relation with topological questions. It took about
45 years until Novikov and later independently Boone proved the existence of a finitely
presented group with an undecidable word problem, see [22,31] for references. Despite
this negative result, many natural classes of groups with decidable word problems were
found. Prominent examples are finitely generated linear groups, automatic groups [12],
and one-relator groups. With the advent of computational complexity theory the com-
plexity of word problems became an active research area. For instance, it was shown
that for a finitely generated linear group the word problem can be solved in logarithmic
space [20,30], that automatic groups have quadratic time word problems [12], and that
the word problem for a one-relator group is primitive recursive [5].

Group theoretic operations, which preserve (or moderately increase) the complexity
of the word problem are useful for constructing groups with efficiently solvable word
problems. An example of such a construction is the free product: it is not hard to see
that the word problem for a free product G ∗ H can be reduced in polynomial time to
the word problem for G and H . In this paper, we introduce a new technique for ob-
taining upper complexity bounds for word problems. This technique is based on data
compression. More precisely, we use compressed representations of strings — so called
straight-line programs, briefly SLPs — which are able to achieve exponential compres-
sion rates for strings with repeated subpatterns. Formally, an SLP A is a context-free
grammar which generates exactly one string eval(A). Recently, SLPs turned out to be a
very flexible compressed representation of strings, which is well-suited for studying al-
gorithms on compressed data. For instance, several polynomial time algorithms for the
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pattern matching problem on SLP-compressed input strings were developed [13,19,23].
In [21], the first author started to investigate the compressed word problem for a finitely
generated group G with finite generating set Σ. For a given SLP A that generates a
string over Σ and the inverses of Σ it is asked whether eval(A) represents the iden-
tity element in G (actually, in [21] the compressed word problem for finitely generated
monoids was studied). This problem is equivalent to the well-known circuit evaluation
problem, where we ask whether a circuit over a finitely generated group G (i.e., an
acyclic directed graph with leafs labeled by generators of G and internal nodes labeled
by the group multiplication) evaluates to the identity element of G. In [3] this problem
was investigated for finite groups, and it was shown that there exist finite groups, for
which the circuit evaluation problem is complete for P (deterministic polynomial time).

In [3,21] the main motivation for studying the compressed word problem came from
computational complexity theory. Since the input in the compressed word problem is
given in a more compact form than in the ordinary word problem it can be expected
that the compressed word problem is, in general, more difficult than the ordinary word
problem. For instance, whereas the word problem for a finitely generated free group
belongs to the class L (deterministic logspace) [20], the compressed word problem for
a finitely generated free group of rank at least two is P-complete [21].1

In [28], the second author used the polynomial time algorithm for the compressed
word problem for a free group in order to present a polynomial time algorithm for the
ordinary word problem for the automorphism group of a free group, which answered
a question from [17]. Hence, the compressed word problem is used in order to obtain
better algorithms for the ordinary word problem. In this paper, we will continue this
program and obtain efficient algorithms for a variety of word problems. In order to
achieve this goal, we proceed in two steps:

In the first step (Section 3) we give connections between the compressed word prob-
lem for a group G and the word problem for some group derived from G. We prove
three results of this kind:

– If H is a finitely generated subgroup of the automorphism group of a group G, then
the word problem for H is logspace reducible to the compressed word problem for
G (Prop. 2). This result is a straight-forward extension of Thm. 5.2 from [28].

– The word problem for the semidirect product K �ϕ Q of two finitely generated
groups K and Q is logspace reducible to (i) the word problem for Q and (ii) the
compressed word problem for K (Prop. 3).

– If K is a finitely generated normal subgroup of G such that the quotient G/K is an
automatic group, then the word problem for G is polynomial time reducible to the
compressed word problem for K (Prop. 4).

In the second step (Section 4) we concentrate on the compressed word problem. We
prove the following results:

– If K is a finitely generated subgroup of G such that the index [G : K] is finite, then
the compressed word problem for G is polynomial time reducible to the compressed
word problem for K (Thm. 1).

1 It is believed, although not proven, that L is a proper subclass of P.
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– The compressed word problem for a free product G1 ∗ G2 is polynomial time re-
ducible (under Turing reductions) to the compressed word problem for G1 and G2

(Thm. 2). This result even holds for the more general graph product construction
[14] (Thm. 4).

– The compressed word problem for a graph group [11] can be solved in polynomial
time (Thm. 3). In a graph group, every defining relation is of the form ab = ba for
generators a and b.

– The compressed word problem for a finitely generated linear group belongs to the
complexity class coRP (Thm. 5), which is the complementary class of randomized
polynomial time. See Section 4.4 for the definition.

We end this paper with a few direct applications of the above results. Let us mention one
of them concerning topology, see [31] for definitions: Crisp and Wiest [7] have shown
shown that the fundamental group of any orientable surface (and of most non-orientable
surfaces) embeds in a graph group. This gives a new proof that, for all closed surfaces,
the word problem for the automophism group of the fundamental group can be solved
in polynomial time.

A long version containing all proofs can be obtained from the authors.

2 Preliminaries

Let Σ be a finite alphabet. Let ε denote the empty word. We use Σ−1 = {a−1 | a ∈ Σ}
to denote a disjoint copy of Σ. Let Σ±1 = Σ ∪ Σ−1. For background in complexity
theory see [24]. For languages K, L we write K ≤P

m L (resp. K ≤log
m L) if there

exists a polynomial time (resp. logspace) many-one reduction from K to L. We write
K ≤P

T L if there exists a polynomial time Turing reduction from K to L, which means
that K can be solved in deterministic polynomial time on a Turing machine with oracle
access to the language L. Let � ∈ {≤P

m,≤log
m ,≤P

T }. In case K � L1 × · · · × Ln we
write K � (L1, . . . , Ln). Clearly, if L1, . . . , Ln belong to the class P (deterministic
polynomial time) and K ≤P

T (L1, . . . , Ln), then K belongs to P as well.

2.1 Groups

For background in combinatorial group theory see [22,31]. Let G be a finitely generated
group and let Σ be a finite group generating set for G. Hence, Σ±1 is a finite monoid
generating set for G and there exists a canonical monoid homomorphism h : (Σ±1)∗ →
G, which maps a word w ∈ (Σ±1)∗ to the group element represented by w. For u, v ∈
(Σ±1)∗ we will also say that u = v in G in case h(u) = h(v).

The word problem for G with respect to Σ is the following decision problem:

INPUT: A word w ∈ (Σ±1)∗.
QUESTION: w = 1 in G, i.e., h(w) = 1?

It is well known that if Γ is another finite generating set for G, then the word problem
for G with respect to Σ is logspace many-one reducible to the word problem for G with
respect to Γ . This justifies one to speak just of the word problem for the group G. The
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word problem for G is also denoted by WP(G). The free group F (Σ) generated by Σ
can be defined as the quotient monoid

F (Σ) = (Σ±1)∗/{aa−1 = a−1a = ε | a ∈ Σ}.

As usual, the free product of two groups G1 and G2 is denoted by G1 ∗ G2. The au-
tomorphism group of a group G is denoted by Aut(G). For the standard definition of
automatic groups, see [12]. Every automatic group G is finitely presented and its word
problem can be solved in time O(n2).

2.2 Trace Monoids and Graph Groups

In the following we introduce some notions from trace theory, see [8,10] for more de-
tails. This material will be only needed in Section 4.3. An independence alphabet is just
a finite undirected graph (Σ, I) without loops. Hence, I ⊆ Σ × Σ is an irreflexive and
symmetric relation. The trace monoid M(Σ, I) is defined as the quotient monoid

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I}.

It is a cancellative monoid. Elements of M(Σ, I) are called traces. The trace represented
by the word s ∈ Σ∗ is also denoted by [s]I . The graph group G(Σ, I) is defined as the
quotient group

G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}.
Note that (a, b) ∈ I implies a−1b = ba−1 in G(Σ, I). Thus, the graph group G(Σ, I)
can be also defined as the quotient monoid

G(Σ, I) = M(Σ±1, I)/{[aa−1]I = [a−1a]I = [ε]I | a ∈ Σ}.

Here, we implicitly extend I ⊆ Σ × Σ to I ⊆ Σ±1 × Σ±1 by setting (aα, bβ) ∈ I if
and only if (a, b) ∈ I for a, b ∈ Σ and α, β ∈ {1,−1}.

Free groups and free abelian groups arise as special cases of graph groups; note that
G(Σ, ∅) = F (Σ) and G(Σ, (Σ × Σ) \ idΣ) = Z

|Σ|. Graph groups were studied e.g.
in [11]; they are also known as free partially commutative groups [9,32], right-angled
Artin groups [4,7], and semifree groups [1].

2.3 Grammar Based Compression

In this section we introduce straight-line programs, which are used as a compressed
representation of strings with reoccuring subpatterns. Following [26], a straight-line
program (SLP) over the alphabet Γ is a context-free grammar A = (V, Γ, S, P ), where
V is the set of nonterminals, Γ is the set of terminals, S ∈ V is the initial nonterminal,
and P ⊆ V × (V ∪ Γ )∗ is the set of productions, such that (i) for every X ∈ V
there is exactly one α ∈ (V ∪ Γ )∗ with (X, α) ∈ P and (ii) there is no cycle in the
relation {(X, Y ) ∈ V × V | ∃α : (X, α) ∈ P, Y occurs in α}. A production (X, α)
is also written as X → α. The language generated by the SLP A contains exactly one
word that is denoted by eval(A). More generally, every nonterminal X ∈ V produces
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exactly one word that is denoted by evalA(X). We omit the index A if the underlying
SLP is clear from the context. The size of A is |A| =

∑
(X,α)∈P |α|. The length of

eval(A) may be exponentially larger than |A|; hence A may be seen as a compressed
representation of eval(A). Every SLP can be transformed in polynomial time into an
equivalent SLP that is in Chomsky normal form (as a context-free grammar). This means
that all productions have the form A → BC or A → a for nonterminals A, B, and C
and a terminal a.

In recent years, the complexity of many decision problems on strings, when the input
is represented by SLPs, was investigated, see e.g. [13,19,21,23,25]. A seminal result of
Plandowski [25] states that for given SLPs A and B it can be checked in polynomial
time whether eval(A) = eval(B). The currently best known algorithm for this problem
has a cubic running time [19].

The compressed word problem for the finitely generated group G with respect to the
finite generating set Σ is the following problem:

INPUT: An SLP A over the terminal alphabet Σ±1.
QUESTION: Does eval(A) = 1 hold in G?

Here, the input size is |A|. Also, it is easy to see that the complexity of the compressed
word problem does not depend on the chosen generating set. This allows one to speak
of the compressed word problem for the group G. The compressed word problem for G
is also denoted by CWP(G). The following fact is trivial:

Proposition 1. Assume that H is a finitely generated subgroup of the finitely generated
group G. Then CWP(H) ≤log

m CWP(G).

3 Connections Between the Word Problem and the Compressed
Word Problem

The three propositions from this section establish a link between the word problem and
the compressed word problem. For their proofs, the following fact is crucial: Let Σ be a
finite generating set for the group G and let ϕ1, . . . , ϕn ∈ Aut(G) be automorphisms of
G which are taken from some fixed finite subset of Aut(G). Then, for every a ∈ Σ±1,
we can construct an SLP A over the terminal alphabet Σ±1 such that (i) eval(A) is a
word that represents the group element ϕ1 · · ·ϕn(a) and (ii) |A| ∈ O(n); see [28].

Proposition 2 (cf [28]). Let G be a finitely generated group and let H be a finitely
generated subgroup of Aut(G). Then WP(H) ≤log

m CWP(G).

Proposition 3. Let K and Q be finitely generated groups and let ϕ : Q → Aut(K) be
a homomorphism. Then, for the semidirect product K�ϕQ we have WP(K�ϕQ) ≤log

m

(WP(Q), CWP(K)).

The semidirect product G = K �ϕ Q is an extension of K by Q, i.e., K is a normal
subgroup of G with quotient G/K � Q. A reasonable generalization of Prop. 3 would
be WP(G) ≤log

m (WP(G/K), CWP(K)). But this cannot be true: there exist finitely
generated groups G, Q, K such that (i) Q = G/K , (ii) Q and K have a decidable



254 M. Lohrey and S. Schleimer

word problem, and (iii) G has an undecidable word problem [2]. On the other hand,
if we require additionally, that Q is finitely presented (in fact, Q recursively presented
suffices), then G must have a decidable word problem [6]. For the special case that
the quotient Q = G/K is automatic (and hence finitely presented), we can prove the
following:

Proposition 4. Let K be a finitely generated normal subgroup of G such that the quo-
tient Q = G/K is an automatic group. Then WP(G) ≤P

m CWP(K).

4 Upper Bounds for Compressed Word Problems

4.1 Finite Extensions

Since every finite group is automatic, Prop. 4 applies to the case that the quotient Q is
finite. In this situation, we even obtain a polynomial time reduction from the compressed
word problem of G to the compressed word problem of K .

Theorem 1. Assume that K is a finitely generated subgroup of the group G such that
the index [G : K] is finite. Then CWP(G) ≤P

m CWP(K).

For the proof of Thm. 1 one proceeds in two steps. For a given SLP A over the gen-
erators of G one first checks whether eval(A) represents an element of the subgroup
K . This is possible in polynomial time using the coset automaton (whose states are the
cosets of K) and the fact that it can be checked in polynomial time whether a given
finite automaton accepts eval(A) for a given SLP A [26]. Then, in a second step one
transforms A in polynomial time into a new SLP B over generators for K such that
eval(A) and eval(B) represent the same group element.

The reducibility relation ≤P
m in Thm. 1 cannot be replaced by the stronger relation

≤log
m (unless P = L) because there exists a finite group G with a P-complete compressed

word problem [3] (take K = 1 in Thm. 1).

4.2 Free Products

Our main result for free products is:

Theorem 2. Assume that G = G1∗G2. Then CWP(G) ≤P
T (CWP(G1), CWP(G2)).

Let Σi be a finite generating set for Gi (i ∈ {1, 2}), where Σ1 ∩ Σ2 = ∅. In or-
der to reduce CWP(G) to CWP(G1) and CWP(G2), we follow the strategy for free
groups [21], where composition systems were used. Composition systems extend SLPs
by allowing also productions of the form A → B[i : j] for nonterminals A and B
and i, j ∈ N. Then eval(A) is the substring of eval(B) from position i to j. Hage-
nah [15] has shown that a given composition system can be transformed in polyno-
mial time into an equivalent SLP. For our proof, we use a special form of composition
systems, so called 2-level composition systems. Such a system is a tuple of the form
A = (B, (BC)C∈W ), where B is a composition system, which generates a word over
the alphabet W . Moreover, for each C ∈ W , BC is an SLP, either over the terminal
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alphabet Σ±1
1 or over the terminal alphabet Σ±1

2 . Thus, A defines in a natural way a
string eval(A) ∈ (Σ±1

1 ∪ Σ±1
2 )∗.

We transform a given input SLP A over the terminal alphabet (Σ±1
1 ∪ Σ±1

2 )∗ into a
2-level composition system A

′ = (B, (BC)C∈W ) having three additional properties:

(1) eval(A) = eval(A′) in the group G1 ∗ G2.
(2) for every C ∈ W , eval(BC) = 1 (either in G1 or in G2).
(3) for every nonterminal A of B, if C ∈ W and D ∈ W are two consecutive sym-

bols in evalB(A), then either eval(BC) ∈ (Σ±1
1 )∗ and eval(BD) ∈ (Σ±1

2 )∗ or
eval(BC) ∈ (Σ±1

2 )∗ and eval(BD) ∈ (Σ±1
1 )∗.

Properties (2) and (3) ensures that eval(A′) is irreducible in the free product G1 ∗ G2

and hence eval(A) = 1 in G1 ∗ G2 if and only if eval(A′) = ε. In order to enforce
(2), we have to solve instances of CWP(G1) and CWP(G2). Enforcing (3) is the main
difficulty. Here we follow the bottom-up procedure for free groups from [21] in order to
determine maximal cancellation between strings which are concatenated on the right-
hand side of some production of the SLP A.

Again, the reducibility relation ≤P
T in Thm. 2 cannot be replaced by the stronger

relation ≤log
m (unless P = NC, where NC is Nick’s class — the class of all problems that

can be solved with polynomially many processors in polylogarithmic time) because the
compressed word problem for Z ∗ Z is P-complete [21], whereas the compressed word
problem for Z is easily seen to be in NC.

4.3 Graph Groups and Graph Products

The word problem for a graph group can be solved in linear time on a RAM [9,32]. In
order to solve the compressed word problem for a graph group in polynomial time, we
follow again the strategy for free groups [21]. For this, it is crucial that there exists a
normal form mapping NF : M(Σ±1, I) → M(Σ±1, I) on the trace monoid M(Σ±1, I)
such that for all t ∈ M(Σ±1, I): (i) t = NF(t) in the graph group G(Σ, I) and (ii)
the trace NF(t) cannot be factorized in M(Σ±1, I) as u[aa−1]Iv or u[a−1a]Iv for
some u, v ∈ M(Σ±1, I) and a ∈ Σ [9]. Then, for a given SLP A over the terminal
alphabet Σ±1 we compute in polynomial time an SLP B over the terminal alphabet Σ±1

such that [eval(B)]I = NF([eval(A)]I). This calculation is again based on a bottom-up
process similarly to [21], but determining the maximal amount of cancellation between
composed strings of A becomes more involved in the presence of partial commutation.
Since for every t ∈ M(Σ±1, I) we have t = 1 in G(Σ, I) if and only if NF(t) = [ε]I ,
we obtain:

Theorem 3. Let (Σ, I) be a fixed independence alphabet. Then CWP(G(Σ, I)) be-
longs to P (deterministic polynomial time).

Let us end this section with a generalization of both Thm. 2 and 3. A graph product is
given by a triple (Σ, I, (Gv)v∈Σ), where (Σ, I) is an independence alphabet and Gv is
a group, which is associated with the node v ∈ Σ. W.l.o.g. assume that Σ = {1, . . . , n}.
The group G(Σ, I, (Gv)v∈Σ) defined by this triple is the quotient

G(Σ, I, (Gv)v∈Σ) = (G1 ∗ G2 ∗ · · · ∗ Gn)/{xy = yx | x ∈ Gu, y ∈ Gv, (u, v) ∈ I},
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i.e., we take the free product (G1 ∗G2 ∗· · ·∗Gn), but let elements from adjacent groups
commute. Note that G(Σ, I, (Gv)v∈Σ) is the graph group G(Σ, I) in case every Gv is
isomorphic to Z. Moreover, free products and direct products appear as special cases
of the graph product construction. Graph products were first studied by Green [14]. By
combining ideas from the proof of Thm. 2 and Thm. 3, one can show:

Theorem 4. Assume that G is a graph product of finitely generated groups G1, . . . , Gn.
Then CWP(G) ≤P

T (CWP(G1), . . . , CWP(Gn)).

4.4 Linear Groups

Recall that a language L belongs to the complexity class RP (randomized polynomial
time) if there exists a randomized polynomial time algorithm2 A such that: (i) if x ∈ L
then Prob[A accepts x] = 0 and (ii) if x ∈ L then Prob[A accepts x] ≥ 1/2. The choice
of the failure probability 1/2 in case x ∈ L is arbitrary: By repeating the algorithm c
times (where c is some constant), we can reduce the failure probability to (1/2)c and
still have a randomized polynomial time algorithm. A language L belongs to the class
coRP, if the complement of L belongs to RP. This means that there exists a randomized
polynomial time algorithm A such that: (i) if x ∈ L then Prob[A accepts x] ≤ 1/2 and
(ii) if x ∈ L then Prob[A accepts x] = 1.

Using results from [20,30], the compressed word problem for a finitely generated
linear group can be reduced to the problem whether a circuit over a polynomial ring
R[x1, . . . , xn] (where R is either Z or the finite field Fp) evaluates to the zero polyno-
mial. This problem belongs to coRP by [16]. Hence, we obtain:

Theorem 5. For a finitely generated linear group G, CWP(G) belongs to coRP.

5 Applications

In this section, we present some immediate corollaries to the results from Section 3 and
4. We concentrate on automorphism groups. Since the automorphism group of a graph
group is finitely generated [18,29], Prop. 2 and Thm. 4 imply:

Corollary 1. For a graph group G, WP(Aut(G)) belongs to P.

Let Sg be the closed orientable surface of genus g. For example, S0 is the two-sphere.
Let π1(Sg) denote the fundamental group (see [31] for definitions). Crisp and Wiest [7]
have shown that for every g ≥ 0, π1(Sg) can be embedded in a graph group. Hence, by
Prop. 1 and Thm. 4, the compressed word problems for these groups can be solved in
polynomial time. (This gives a new proof of a result of [28].) Since Sg is a double cover
of Ng+1, the non-orientable surface, [31, p. 87], it follows that π1(Sg) is an index-2
subgroup of π1(Ng+1) [31, p. 162]. With Thm. 1 and Prop. 2 we obtain:

2 A randomized algorithm A may flip coins. Hence, it accepts a given input only with some
probability. If there exists a polynomial p(n) such that for every input of length n and every
possible outcome of the coin flips, A runs in time at most p(n), then A is a randomized
polynomial time algorithm.
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Corollary 2. Let G be the fundamental group of a closed (orientable or nonorientable)
surface. Then CWP(G) and WP(Aut(G)) belong to P.

Automorphism groups of fundamental groups of surfaces play an important role in
algebraic topology; they are closely related to mapping class groups.

6 Open Problems

We finish this paper with some open problems concerning compressed word problems:

1. Is the compressed word problem for a hyperbolic group solvable in polynomial
time? For torsion-free hyperbolic groups one might try to attack this question using
the canonical representatives of Rips and Sela [27].

2. What about the compressed word problem for automatic groups? Is it possible to
prove a non-trivial lower bound (e.g. NP-hardness or coNP-hardness) for the com-
pressed word problem of some specific automatic group?

3. Is the uniform compressed word problem for graph groups solvable in polynomial
time? In this problem, the independence alphabet (Σ, I), which defines the under-
lying graph group, is also part of the input. Note that in Thm. 3 the independence
alphabet (Σ, I) is not part of the input.

4. Can Thm. 2 be generalized from free products to (suitably restricted) amalgamated
free products and HNN-extensions?

5. Is it possible to relax the restriction to an automatic quotient group Q in Prop. 4?
6. The compressed generalized word problem (CGWP) for a finitely generated group

G asks, whether for SLPs A, B1, . . . , Bn (over generators for G), the word eval(A)
represents a group element from the subgroup 〈eval(B1), . . . , eval(Bn)〉 ≤ G.
What is the complexity of CGWP(F ({a, b}))? We only know an exponential time
algorithm for this problem.
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