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Preface

The 2nd International Symposium on Computer Science in Russia (CSR 2007)
was held September 3–7 in Ekaterinburg, Russia, hosted by Ural State University.
CSR 2007 was the second event in a series of regular international meetings that
started with CSR 2006 in St. Petersburg (see LNCS 3967). The symposium
was organized under the auspices of the European Association for Theoretical
Computer Science.

The symposium was composed of two tracks: Theory and Applications/Tech-
nology. The opening lecture was given by Yuri Gurevich and other invited lec-
tures were given by Scott Aaronson, Rajeev Alur, Peter Druschel, Ziyad Hanna,
Bertrand Meyer, Alexei Miasnikov, Geraud Senizergues, and Geoff Sutcliffe. This
volume contains the accepted papers of both tracks and the abstracts of seven
invited presentations.

The scope of proposed topics for the symposium was quite broad and covered
many areas of computer science and its applications. We received 95 submissions,
the contributors being from 24 countries. Each submission was reviewed by at
least three Program Committee members. The committee decided to accept 34
papers. The reviewing process as well as the preparation of this volume were
efficiently supported by the EasyChair conference system.

The following satellite events were collocated with CSR 2007:

– Workshop on Computational Complexity and Decidability in Algebra
– Workshop on Infinite Words, Automata and Dynamics
– Russian Summer School in Information Retrieval

We thank our sponsors: Microsoft Research, Russian Foundation for Basic
Research, SKB Kontur, Ural State University, and Yandex.

Yandex, the largest resource on the Russian Internet, established the Yandex
the Best Paper Awards and Yandex Best Student Paper Awards for the CSR
series. The inauguration of the Yandex Awards formed a part of the Business
Meeting of CSR 2007 along with the presentations of the first awarded papers.
The following three papers were selected by the Program Committee:

– “Conjunctive grammars over a unary alphabet: undecidability and unbounded
growth” by Artur Jez and Alexander Okhotin — Best Paper in the Theory
Track

– “Estimation of the click volume by large-scale regression analysis” by Yury
Lifshits and Dirk Nowotka – Best Paper in the Applications and Technology
Track

– “A fast algorithm for path 2-packing problem” by Maxim Babenko — Best
Student Paper
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We thank the local Organizing Committee (co-chaired by Vladimir Tretjakov,
President of Ural State University, and Vitaly Berdyshev, Director of Mathe-
matics and Mechanics Institute of the Ural Branch of the Russian Academy of
Sciences), especially Svetlana Goldberg, Grigoriy Povarov, and Elena Pribavk-
ina.

June 2007 Volker Diekert
Mikhail Volkov

Andrei Voronkov
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Proving Church’s Thesis
(Abstract)

Yuri Gurevich

Microsoft Research

The talk reflects recent joint work with Nachum Dershowitz [4].
In 1936, Church suggested that the recursive functions, which had been de-

fined by Gödel earlier that decade, adequately capture the intuitive notion of
a computable (“effectively calculable”) numerical function1 [2]. Independently
Turing argued that, for strings-to-strings functions, the same goal is achieved by
his machines [11].

The modern form of Church’s thesis is due to Church’s student Kleene. It
asserts that every computable numerical partial function is partial recursive.
(Originally Church spoke of total functions.)

Kleene thought that the thesis as unprovable: “Since our original notion of
effective calculability. . . is a somewhat vague intuitive one, the thesis cannot be
proved” [7]. But he presented evidence in favor of the thesis. By far the strongest
argument was Turing’s analysis [11] of “the sorts of operations which a human
computer could perform, working according to preassigned instructions” [7]. The
argument convinced Gödel who thought the idea “that this really is the correct
definition of mechanical computability was established beyond any doubt by
Turing” [5].

Moreover, Gödel has been reported to have thought “that it might be pos-
sible . . . to state a set of axioms which would embody the generally accepted
properties of [effective calculability], and to do something on that basis” [3]. As
explained by Shoenfield [10]:

It may seem that it is impossible to give a proof of Church’s Thesis.
However, this is not necessarily the case. . . . In other words, we can write
down some axioms about computable functions which most people would
agree are evidently true. It might be possible to prove Church’s Thesis
from such axioms. . . . However, despite strenuous efforts, no one has suc-
ceeded in doing this (although some interesting partial results have been
obtained).

We will demonstrate that, under certain very natural hypotheses regarding al-
gorithmic activity, called the “Sequential Postulates” [6], Church’s Thesis is in
fact provable. In brief, the postulates say the following.

I. Sequential Time. An algorithm determines a sequence of “computational”
states for each valid input.

1 For brevity we use the term numerical function to mean a function from natural
numbers to natural numbers.

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 1–3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 Y. Gurevich

II. Abstract State. The states of a computational sequence can be arbitrary
(first-order) structures.

III. Bounded Exploration. The transitions from state to state in the sequence
are governed by a finite description.

For precise formulation of the three postulates see the article [6]. With
Bounded Exploration, an algorithm computes in “steps of limited complexity”,
as demanded by Kolmogorov [8]. This postulate thereby answers Kolmogorov’s
implicit question: What does it mean to bound the complexity of each individual
step?

The postulates are justified in the article [6]. On this ground, a (sequential)
algorithm is defined there as any object satisfying the three postulates. One
may worry that this definition is too liberal. To this end, the article proves that
(sequential) abstract state machines, introduced earlier by the author, satisfy
the three postulates, and that, for every algorithm, there is an abstract state
machine that emulates the algorithm.

To focus on numerical algorithms, we add the following postulate:

IV. Only basic arithmetic operations are available initially.

Algorithms satisfying postulate IV will be called numerical.
We will show that Church’s Thesis provably follows from these four postulates.

Theorem 1. Any numerical partial function is computed by a numerical algo-
rithm if and only if it is partial recursive.

Thus, to the extent that one might entertain the notion that there exist non-
recursive effective functions, one must reject one or more of these postulates.
In a similar way, we can prove Turing’s thesis from postulates I–III and a
postulate.

V. Only basic string operations are available initially.

Theorem 1 generalizes to the case when oracles are present. If only oracle
functions are available initially, postulates I–III suffice. No additional postulates
are needed.

Our goal in this work has been to remedy the situation described thus by
Montague [9]: “Discussion of Church’s thesis has suffered for lack of a precise
general framework within which it could be conducted.” We show how the Se-
quential ASM Postulates provide just such a framework. As we mentioned, Gödel
surmised that Church’s Thesis may follow from appropriate axioms of com-
putability. But, as far as we can ascertain, no complete axiomatization has previ-
ously been presented in the literature. In fact, the challenge of proving Church’s
Thesis is first in Shore’s list of “pie-in-the-sky problems” for the twenty-first
century [1].
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3. Davis, M.: Why Gödel didn’t have Church’s thesis. Information and Control 54,
3–24 (1982)

4. Dershowitz, N., Gurevich, Y.: A natural axiomatization of Church’s thesis (to
appear)
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The Limits of Quantum Computers

Scott Aaronson�

University of Waterloo

In the popular imagination, quantum computers would be almost magical de-
vices, able to “solve impossible problems in an instant” by trying exponentially
many solutions in parallel. In this talk, I’ll describe four results in quantum
computing theory that directly challenge this view.

First, I’ll show that any quantum algorithm to decide whether a function
f : [n] → [n] is one-to-one or two-to-one needs to query the function at least
∼ n1/5 times [1]. This provides strong evidence that collision-resistant hash
functions, and hence secure electronic commerce, would still be possible in a
world with quantum computers.

Second, I’ll show that in the “black-box” or “oracle” model that we know
how to analyze, quantum computers could not solve NP-complete problems in
polynomial time, even with the help of nonuniform “quantum advice states” [2].

Third, I’ll show that quantum computers need exponential time to find local
optima—and surprisingly, that the ideas used to prove this result also yield new
classical lower bounds for the same problem [4].

Finally, I’ll show how to do “pretty-good quantum state tomography”using a
number of measurements that increases only linearly, not exponentially, with the
number of qubits [3]. This illustrates how one can sometimes turn the limitations
of quantum computers on their head, and use them to develop new techniques
for experimentalists.

No quantum computing background will be assumed.

References
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Marrying Words and Trees

Rajeev Alur

University of Pennsylvania

We discuss the model of nested words for representation of data with both a
linear ordering and a hierarchically nested matching of items. Examples of data
with such dual linear-hierarchical structure include annotated linguistic data,
executions of structured programs, and HTML/XML documents. Nested words
generalize both words and ordered trees, and allow both word and tree opera-
tions. We define nested word automata—finite-state acceptors for nested words,
and show that the resulting class of regular languages of nested words has all
the appealing theoretical properties that the classical regular word languages
enjoy such as determinization, closure under a variety of operations, decidability
of emptiness as well as equivalence, and characterization using monadic second
order logic. The linear encodings of nested words gives the class of visibly push-
down languages of words, and this class lies between balanced languages and
deterministic context-free languages. We argue that for algorithmic verification
of structured programs, instead of viewing the program as a context-free lan-
guage over words, one should view it as a regular language of nested words (or
equivalently, as a visibly pushdown language), and this would allow model check-
ing of many properties (such as stack inspection, pre-post conditions) that are
not expressible in existing specification logics. We also study the relationship
between ordered trees and nested words, and the corresponding automata: while
the analysis complexity of nested word automata is the same as that of classical
tree automata, they combine both bottom-up and top-down traversals, and enjoy
expressiveness and succinctness benefits over tree automata. There is a rapidly
growing literature related to nested words, and we will briefly survey results on
languages infinite nested words, nested trees, temporal logics over nested words,
and new decidability results based on visibility.

References
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TPTP, TSTP, CASC, etc.

Geoff Sutcliffe

University of Miami, USA
geoff@cs.miami.edu

Abstract. This paper gives an overview of activities and products that
stem from the Thousands of Problems for Theorem Provers (TPTP)
problem library for Automated Theorem Proving (ATP) systems. These
include the TPTP itself, the Thousands of Solutions from Theorem
Provers (TSTP) solution library, the CADE ATP System Competition
(CASC), tools such as my semantic Derivation Verifier (GDV) and the
Interactive Derivation Viewer (IDV), meta-ATP systems such as the
Smart Selective Competition Parallelism (SSCPA) system and the Se-
mantic Relevance Axiom Selection System (SRASS), and applications in
various domains.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use
of systems that automate sound reasoning: the derivation of conclusions that fol-
low inevitably from facts. The dual discipline, automated model finding, develops
computer programs that establish that a set of statements is consistent, and in
this work we consider automated model finding to be part of ATP. These capabil-
ities lie at the heart of many important computational tasks. For example, formal
methods for software and hardware design and verification [Lam05, Das06], the
analysis of network security protocols [AB04, Mit05], solving hard problems in
mathematics [SFS95, McC97], and inference for the semantic web [FS005]. ATP
has been highly successful when the problem is expressed in classical first order
logic, so that a refutation or model of the clause normal form of the problem
can be obtained. There are some well known high performance ATP systems
that search for a refutation or model of a set of clauses, e.g., Darwin/DarwinFM
[BFT06], E/EP [Sch02], Mace [McC03], Paradox [CS03], SPASS [WBH+02],
Vampire [RV02], and Waldmeister [Hil03]. Throughout this paper (until Sec-
tion 8 that describes future plans) all discussion is in terms of ATP for classical
first order logic.

2 TPTP

The TPTP (Thousands of Problems for Theorem Provers) problem library [SS98]
is a well known standard set of test problems for ATP systems. The TPTP
supplies a comprehensive library of the ATP test problems that are available
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today, in order to provide an overview and a simple, unambiguous reference
mechanism. The principal motivation for the TPTP is to support the testing and
evaluation of ATP systems, to help ensure that performance results accurately
reflect the capabilities of the ATP system being considered. The problems in the
TPTP are collected from various sources. The two principal initial sources were
existing electronic problem collections and the ATP literature. Since then many
people and organizations have contributed to the TPTP. Users of ATP systems
find that contributing samples of their problems to the TPTP provides exposure
to ATP system developers, who then improve their systems’ performance on the
problems, which completes a cycle to provide the users with more effective tools.

The problems in the TPTP are classified into domains that reflect the natu-
ral hierarchy of scientific domains, as presented in standard subject classification
literature. The current TPTP (v3.3.0) has thirty domains, in the fields of logic,
mathematics, computer science, science and engineering, and social sciences,
with domains ranging from combinatory logic to Smullyanesque puzzles. Each
problem has a unique name that reflects its domain and encoding. Each problem
file has a header section that contains information for the user, such as refer-
ences, the problem rating (see Section 2.1), the problem status (see Section 2.2),
etc. The logical formulae are wrapped with annotations that provide a unique
name for each formula in the problem, a user role (axiom, conjecture, etc), and
auxiliary user information. The logical formulae themselves use a consistent and
easily understood notation. The syntax (see Section 2.3) shares many features
with Prolog, a language that is widely known in the ATP community. Indeed,
with a few operator definitions, units of TPTP data can be read in Prolog using
a single read/1 call, and written with a single writeq/1 call.

A key to the initial and ongoing success of the TPTP is the TPTP2X util-
ity. The most important feature of TPTP2X is the conversion of TPTP format
problems to formats used by existing ATP systems. This functionality provides
a very low entry barrier to using the TPTP with existing ATP systems that
cannot read the TPTP format.

The availability of the TPTP has provided a stable basis for the meaningful
evaluation of ATP systems, and published results can be readily compared with
new results to determine progress in the field. Although other test problems do
exist and are sometimes used, the TPTP is now the de facto standard for testing
first order ATP systems.

2.1 Ratings

An important feature of the TPTP is the problem ratings [SS01]. The ratings
provide an accurate measure of how difficult the problems are for state-of-the-art
ATP systems. To rate problems, the performance of contemporary ATP systems
on the problems is analyzed. The performance data comes from the TSTP, de-
scribed in Section 3. The unbiased problems of the TPTP are divided into Spe-
cialist Problem Classes (SPCs) - syntactically identifiable classes of problems for
which certain ATP techniques or systems have been observed to be especially
well suited. Rating is done separately for each SPC, to provide a rating that
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compares “apples with apples”. A partial order between systems is determined
according to whether or not a system solves a strict superset of the problems
solved by another system. If a strict superset is solved, the first system is said
to subsume the second system. The union of the problems solved by the non-
subsumed systems defines the state-of-the-art - all the problems that are solved
by any system. The fraction of non-subsumed systems that fail on a problem
is the difficulty rating for the problem. Problems that are solved by all non-
subsumed systems get a rating of 0.00, and are considered to be easy; problems
that are solved by just some of the non-subsumed systems get a rating between
0.00 and 1.00, and are considered difficult; problems that are unsolved get a
rating of 1.00.

The analysis done for problem ratings also provides ratings for the ATP sys-
tems. The fraction of the difficult unbiased problems that a system solves is the
rating for that system. Systems that subsume all other systems get a rating of
1.00, and systems that solve only easy problems get a rating of 0.00.

2.2 SZS

In order to use ATP systems’ results as input to other tools, it is necessary that
the results correctly and precisely specify what has been established. The SZS
ontology [SZS04] provides a fine grained ontology of result and output forms that
are used to specify what has been established about a given ATP problem. The
ontology also recommends the precise way in which the ontology values should
be reported in the output from systems and tools. Figure 1 shows an extract
from the top of the result ontology (the full ontology is available as part of the
TPTP distribution). Each value has a full name and a three letter acronym that
is useful for tables of data.

Fig. 1. SZS Ontology

At the top level the result ontology splits into two. The Success part catalogs
semantic relationships between the axioms and conjecture (or its negation) of a
problem. For example, if all models of the axioms are models of the conjecture
then the status is Theorem with code THM, if some models of the axioms are
models of the negation of the conjecture then the status is CounterSatisfiable
with code CSA, and if there is a bijection between the models of the axioms and
the models of the conjecture (as in a Skolemization step) then the status is
SatisfiabilityBijection with code SAB. The NoSuccess part of the result
ontology catalogs reasons that a system or tool could be not successful. For
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example, if a system stopped because the CPU time limit ran out then the
status is Timeout with code TMO, and if a system has not attempted a problem
but might in the future then the status is NotTestedYet with code NTY.

The output ontology catalogs forms of output from ATP systems and tools.
For example, a prover might output a CNFRefutation with code CRf, and a
model finder might output a FiniteModel with code FMo.

2.3 BNF

One of the keys to the success of the TPTP and related projects is their consistent
use of the TPTP language, which enables convenient communication between
different systems and researchers. TPTP v3.0.0 introduced a new version of
the TPTP language [SSCVG06]. The language was designed to be suitable for
writing both ATP problems and ATP solutions, to be flexible and extensible,
and easily processed by both humans and computers.

A principal goal of the development of the language grammar was to make it
easy to translate the BNF into lex/yacc/flex/bison input, so that construction
of parsers (in languages other than Prolog) can be a reasonably easy task [VGS06].
To this end the language definition uses a modified BNF meta-language that sep-
arates syntactic, semantic, lexical, and character-macro rules. The separation of
syntax from semantics eases the task of building a syntactic analyzer. At the same
time, the semantic rules provide the detail necessary for semantic checking.

The latest release of the grammar provides further structuring that allows
users to build a parser for chosen components according to their need, including
the FOF and CNF core, the TFF extension, extensions for theories (e.g., arith-
metic), the THF core, and various THF extensions (see Section 8 regarding the
TFF and THF languages).

3 TSTP

The TSTP (Thousands of Solutions from Theorem Provers) solution library
[SutRL], the “flip side” of the TPTP, is becoming known as a resource for con-
temporary ATP systems’ solutions. In particular, the TSTP contains solutions
to problems from the TPTP. One use of the TSTP is for ATP system developers
to examine solutions to problems and thus understand how they can be solved,
leading to improvements to their own systems.

A key development from the old (pre-v3.0.0) TPTP language to the new one
was the addition of features for writing ATP solutions [SSCVG06], in a format
consistent with ATP problems (see Sections 2 and 2.3). This enables output
from ATP systems to be seamlessly used as input to further systems or tools.
The features were designed for writing derivations, but their flexibility makes it
possible to write a range of DAG structures. Additionally, there are features of
the language that make it possible to conveniently specify finite interpretations.

At the time of writing this paper, the TSTP contains the results of running 44
ATP systems and system variants on all the problems in the TPTP. The results
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are classified according to the TPTP problem domains, then by TPTP problem.
Each result file has a header section that contains information for the user, such
as the system command line, information about the computer used, the SZS
result and output status (see Section 2.2), and statistics about the solution. The
output logical formulae use the TPTP language. Additional information that
specifies a derivation’s DAG structure, and details of inference steps, is used to
annotate each formula, for use by tools such as GDV (see Section 5.4) and IDV
(see Section 5.5).

4 CASC

In order to stimulate ATP system development, and to expose ATP systems to
interested researchers, CASC (the CADE ATP System Competition) [SS06] is
held at each CADE conference. CASC evaluates the performance of sound, fully
automatic, ATP systems – it is the world championship for such systems. The
primary purpose of CASC is a public evaluation of the relative capabilities of
ATP systems. Additionally, CASC aims to stimulate ATP research in general,
to stimulate ATP research towards autonomous systems, to motivate implemen-
tation of robust ATP systems, to provide an inspiring environment for personal
interaction between ATP researchers, and to expose ATP systems within and be-
yond the ATP community. Fulfillment of these objectives provides stimulus and
insight for the development of more powerful ATP systems, leading to increased
and more effective usage.

The design of CASC is linked to the problem and system rating scheme de-
scribed in Section 2.1. The divisions and problem categories of CASC are similar
to the SPCs used in the rating scheme. The problem ratings make it possible
to select appropriately difficult problems for CASC, to differentiate between the
systems. The rating scheme provides the principles for the CASC rating scheme,
which provides a realistic and stable ranking of the systems. Table 1 lists the
division winners over the years.

Through successive refinement of the competition design, CASC has been of
significant benefit to the development of ATP [Nie02]. CASC has had two main
effects on ATP system development. First, new strategies and techniques have
been developed to increase the range of problems that can be solved by individual
systems, and second, the quality of implementations has improved. Possibly the
most important improvement has been in the selection of strategies according
to the characteristics of the given problem – the “auto-mode”s now available in
almost all ATP systems. There have been significant developments in this area,
including a deeper understanding of what problem characteristics are important
for what aspects of strategy selection, the examination of the input to detect
the domain structure of the problem, the use of machine learning techniques
to optimize the choice of strategy, and the use of strategy scheduling. Other
effects of CASC include increased interest in the production and verification of
ATP system output, the development and refinement of FOF to CNF converters,
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Table 1. CASC division winners

FOF CNF SAT EPR UEQ
J3 Vampire 8.1 Vampire 8.1 Paradox 1.3 Darwin 1.3 Waldmeister 806
20 Vampire 8.0 Vampire 8.0 Paradox 1.3 DCTP 10.21p Waldmeister 704
J2 Vampire 7.0 Vampire 7.0 Gandalf c-2.6-SAT DCTP 10.21p Waldmeister 704
19 Vampire 5.0 Vampire 6.0 Gandalf c-2.6-SAT DCTP 1.3-EPR Waldmeister 702
18 Vampire 5.0 Vampire 5.0 Gandalf c-2.5-SAT E-SETHEO csp02 Waldmeister 702
JC E-SETHEO csp01 Vampire 2.0 GandalfSat 1.0 E-SETHEO csp01 Waldmeister 601
17 VampireFOF 1.0 E 0.6 GandalfSat 1.0 Waldmeister 600
16 SPASS 1.00T Vampire 0.0 OtterMACE 437 Waldmeister 799
15 SPASS 1.0.0a Gandalf c-1.1 SPASS 1.0.0a Waldmeister 798
14 SPASS 0.77 Gandalf SPASS 0.77 Waldmeister
14 E-SETHEO Otter 3.0.4z

systems that are robust in terms of installation and execution, and improved
engineering and data structures in ATP systems.

5 Tools

The TPTP and TSTP are supported by a suite of tools for preparing and solving
problems in TPTP format, and for processing solutions in TPTP format. Five
of these tools are described in this section, along with WWW interfaces that
provide global access to the TPTP, the TSTP, and the tools.

5.1 SystemOnTPTP

SystemOnTPTP is a utility that allows an ATP problem or solution to be easily
and quickly submitted in various ways to a range of ATP systems and tools.
The utility uses a suite of currently available ATP systems and tools, whose
properties (input format, reporting of result status, etc) are stored in a simple
text database. The utility allows the input to be selected from the TPTP or
TSTP library, or provided in TPTP format by the user. One or more systems
or tools may be applied to the input.

The implementation of SystemOnTPTP uses several subsidiary tools to prepro-
cess the input, control the execution of the chosen ATP system(s), and postpro-
cess the output. On the input side TPTP2X (see Section 2) is used to prepare the
input for processing.1 A strict resource limiting program called TreeLimitedRun
is used to limit the CPU time and memory used. TreeLimitedRun monitors
processes more tightly than is possible with standard operating system calls.
(TreeLimitedRun is also used in CASC (see Section 4).) Finally a program
called X2tptp converts an ATP system’s output to TPTP format, if requested
by the user.

5.2 Prophet

Prophet uses the syntax of an axiom formula Fa to gauge the potential for the
axiom to contribute to a proof of a conjecture Fc, in the context of a set S of
1 In some situations a faster, recently developed, alternative called TPTP4X is used.
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axioms and the conjecture. First, the contextual direct relevance between all
formulae in the set is measured by∑

s∈(sym(Fa)∩sym(Fc))

(
1− |{f :f∈S,s∈sym(f)}|

|S|
)

|sym(Fa) ∪ sym(Fc)|
Next, the contextual path relevance of every path Fa = F1 · F2 · . . . · Fn = Fc

from Fa to Fc is calculated as the smallest contextual direct relevance in the
path, divided by the length of the path. Finally, the contextual indirect relevance
between Fa and Fc is taken as the maximal contextual path relevance over all
paths connecting Fa to Fc.

Contextual indirect relevance can be used as a heuristic for selecting formulae
to use in an ATP system – this is done in the SRASS system described in Sec-
tion 6.2. A upgraded version of Prophet, based on deeper information retrieval
concepts [Sah06], is being developed.

5.3 AGInT

AGInT (Automatic Generation of Interesting Theorems) [PGS06] is a tool that
discovers interesting theorems of a given set of axioms. AGInT uses a deductive
approach to discovery - it uses an ATP system to generate CNF logical con-
sequences of the axioms, filters the logical consequences to extract interesting
theorems, and then computes an interestingness rating for each theorem. This
basic process takes place in the context of an outer level control loop that reg-
ularly refocuses the generation of logical consequences, thus enabling AGInT to
proceed deeply into the search space of logical consequences. The overall archi-
tecture of AGInT is shown in Figure 2. The final output from AGInT is an ordered
list of the interesting theorems retained in the interesting theorems store.

Axioms

ATP system Runtime 
filter

Ranked 
theorems

Logical 
Consequences Candidate 

theoremsSoSOthers

Static 
ranker

Interesting 
theorems

Post- 
processor

All theorems

Top theorems

1st run

Loops

Old theorems

New theorems

Fig. 2. AGInT Architecture

The runtime filter measures up to eight “interestingness” features of the for-
mulae (some features are inappropriate in some situations): preprocessing detects
and discards obvious tautologies, obviousness estimates the difficulty of proving
a formula, weight estimates the effort required to read a formula, complexity
estimates the effort required to understand a formula, surprisingness measures
new relationships between function and predicate symbols in a formula, intensity
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measures how much a formula summarizes information from its leaf ancestors,
adaptivity measures how tightly the universally quantified variables of a formula
are constrained, and focus measures the extent to which a formula is making a
positive or negative statement about the domain. Formulae that pass the ma-
jority of the runtime filters are passed to the static ranker. The static ranker
combines the measures from the runtime filter with a measure of usefulness,
which measures how much an interesting theorem has contributed to proofs of
further interesting theorems. The scores are then normalized and averaged to
produce an interestingness score.

AGInT has been evaluated in several domains and applications, ranging from
puzzles to set theory. A particularly useful application has been in generating
proof synopses in IDV, described in Section 5.5.

5.4 GDV

ATP systems are complex pieces of software, and thus may have bugs that
make them unsound or incomplete. While incompleteness is common (sometimes
by design) and tolerable, when an ATP system is used in an application it
is important, typically mission critical, that it be sound. GDV (my Derivation
Verifier) [Sut06] is a tool that uses structural and then semantic techniques to
verify a derivation in TPTP format.

Structural verification checks that inferences have been done correctly in the
context of the derivation. The structural checks include: checking that the speci-
fied parents of each inference step do exist, checking that the derivation is acyclic,
checking that refutations end with a false formula, checking that assumptions
are discharged, checking that split refutations are not mutually dependent, and
checking that introduced symbols (e.g., in Skolemization) are distinct.

The core technique in semantic verification is to encode the expected semantic
relationship between each inferred formula and its parent formulae into logical
obligations, in the form of ATP problems. The obligations are then discharged
by having trusted ATP systems solve the ATP problems. The required semantic
relationship between an inferred formula and its parent formulae depends on the
intent of the inference rule used. For example, deduction steps are verified by
checking that the inferred formula is a logical consequence of its parent formulae.
This intent is recorded as an SZS annotation to each inferred formula in TPTP
format derivations (see Sections 2.2 and 3). GDV uses SystemOnTPTP to control
the trusted ATP systems.

5.5 IDV

The proofs output by automated reasoning systems provide useful information to
users, e.g., the proof structure, lemmas that may be useful in future proofs, which
axioms are most used, etc. However, the proofs output by automated reasoning
systems are often unsuitable for human consumption, due to, e.g., the conversion
to CNF, use of proof by contradiction, and use of fine grained inference steps.
IDV (Interactive Derivation Viewer) [TPS06] is a tool for graphical rendering of
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derivations in TPTP format. IDV provides an interactive interface that allows
the user to quickly view various features of the derivation, and access various
analysis facilities.

The lefthand side of Figure 3 shows the rendering of the derivation output
by EP 0.99 for the TPTP problem PUZ001+1.2 The IDV window is divided into
three panes: the top control strip pane provides control buttons and sliders, the
main middle pane shows the rendered DAG, and the bottom pane gives the text
of the annotated formula for the node pointed to by the mouse.

Fig. 3. EP’s Proof by Refutation of PUZ001+1

The rendering of the derivation DAG uses shape and color to visually provide
information about the derivation. The shape of a node gives the user role of
the formula, the color indicates FOF or CNF, and tags indicate features of the
inference step. The user can interact with the rendering in various ways. Mousing
over a node highlights its ancestors and descendants, clicking on a node pops
up a window with details of the inference and with access to GDV to verify the
inference, control-clicking on a node opens a new IDV window with just that node
and it’s parents, and shift-control-clicking on a node opens a new IDV window
with that node and its ancestors.
2 PUZ001+1 is the “Aunt Agatha” problem, a scenario in which one of the three people

who live in the mansion killed Aunt Agatha. The goal is to prove that Aunt Agatha
killed herself.
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The buttons and sliders in the control strip pane provide a range of manip-
ulations on the rendering – zooming, hiding and displaying parts of the DAG
according to various criteria, access to GDV for verification of the whole deriva-
tion, and access to the SystemOnTSTP interface described in Section 5.6. A par-
ticularly novel feature of IDV is its ability to provide a synopsis of a derivation
by identifying interesting lemmas within a derivation, and hiding less interest-
ing intermediate formulae. This is implemented by calling AGInT to evaluate
the interestingness of each formula, and then using the interestingness slider to
select an interestingness threshold to hide nodes for less interesting formulae.
After extracting a synopsis it is possible to zoom in with the redraw button,
rendering only the “interesting” nodes. A synopsis is shown on the righthand
side of Figure 3.

5.6 WWW

All of the data and tools described in the preceding sections, and a few more
besides, are accessible via a suite of online interfaces. The TPTP and TSTP
interfaces provide access to all the problems, solutions, and documents related to
the libraries, as well as subprojects and proposals for forthcoming extensions to
the libraries. The SystemB4TPTP, SystemOnTPTP [Sut00], and SystemOnTSTP
interfaces provide access to an online service that uses the SystemOnTPTP utility
to run selected ATP systems and tools on input specified by the user. The service
can also be accessed directly via http POST requests. The input can be selected
from the TPTP or TSTP library, or provided in TPTP format by the user as
text, a file, or a URL source.

In addition to using the SystemOnTPTP utility, the SystemB4TPTP interface
provides access to tools to convert from other input formats to TPTP format.
The SystemOnTPTP interface additionally provides system reports, and recom-
mendations for systems to use on a given problem, based on the system ratings
(see Section 2.1). The SystemOnTPTP interface also has direct access to SSCPA
(described in Section 6.1) to run multiple systems in competition parallel.

6 Meta-ATP

One of the benefits of having the common TPTP format for data, and the
SZS ontology for status (see Section 2), is that it becomes easily possible to
seamlessly integrate ATP systems and tools into more complex and effective
reasoning systems. Two examples of such systems are described in this section.

6.1 SSCPA

One approach to developing more powerful ATP systems is the use of parallelism.
SSCPA (Smart Selective Competition Parallelism ATP) [SS99] is an uncoopera-
tive multiple calculus competition parallelism ATP system. SSCPA runs multiple
sequential ATP systems concurrently, in an SMP environment. This approach is
motivated by the observation, e.g., in CASC, that no individual ATP system per-
forms well on all problems. There is convincing evidence that the specialization
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of ATP systems is due to the deduction techniques used in relation to the syn-
tactic characteristics of the problems. SSCPA uses the syntactic characteristics of
a given problem to classify it into one of the specialist problem classes described
in Section 2.1. SSCPA uses the system ratings (also described in Section 2.1) to
determine which of the available ATP systems perform well for that class. A se-
lection of the recommended systems are then run concurrently under the control
of SystemOnTPTP (see Section 5.1), in one of several user selectable modes.

SSCPA was evaluated by entering it into the demonstration division of CASC-
16 (see Section 4), running under the same conditions as the regular competition
entries. In the mixed CNF and satisfiable CNF divisions SSCPA solved more
problems than the competition winner. SSCPA also performed reasonably well
in the first-order and unit equality divisions.

6.2 SRASS

In recent years the ability of ATP systems to reason over large theories – theories
in which there are many functors and predicates, many axioms of which typically
only a few are required for the proof of a theorem, and many theorems to be
proved from the same set of axioms – has become more important. Large theory
problems are becoming more prevalent as large knowledge bases, e.g., ontolo-
gies and large mathematical knowledge bases, are translated into forms suitable
for automated reasoning [Qua92, Urb07, RPG05], and mechanical generation of
ATP problems becomes more common, e.g., [DFS04, MP06]. SRASS (Semantic
Relevance Axiom Selection System) [SP07] is a system for selecting necessary
axioms, from a large set also containing superfluous axioms, to obtain a proof
of a conjecture.

The basic algorithm of SRASS is to start with a set containing the negation of
the conjecture to be proved, then repeatedly find a model of the set and augment
the set with an axiom that is false in the model, until no model exists. In
this state the conjecture is a logical consequence of the selected axioms. SRASS
augments this basic algorithm with extensions that improve the implemented
performance. One of the keys to the success of SRASS is the use of Prophet
(see Section 5.2) to measure the relevance of the axioms to the conjecture, to
determine the order in which axioms are considered.

The implementation of SRASS uses a range of conventional ATP systems to
implement the various tests and evaluations required: a theorem prover (cur-
rently E/EP 0.99) to test for (counter)theoremhood, test for unsatisfiability,
and to find explicit proofs; a finite model builder (currently DarwinFM 1.3g) to
test for (counter)satisfiability and build models; and a saturating system (cur-
rently SPASS 2.2) to further test for (counter)satisfiability in cases where the
finite model builder fails and it is necessary only to establish the existence of a
model. The various ATP systems are run under the control of SystemOnTPTP
(see Section 5.1).

SRASS was tested in a conservative configuration on several problem sets from
the TPTP – problems in logical calculi, problems in set theory, and problems
in software verification, all of which are known to have superfluous axioms. In
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summary, of the 71 problems that were difficult enough to be eligible for com-
parative testing, SRASS solves 54 while the underlying ATP system (E/EP 0.99)
solves only 39 without the benefit of axiom selection. SRASS was also tested in a
less conservative configuration on the MPTP Challenge problems [US06]. In the
bushy division of the challenge SRASS solves 171 of the 252 problems, compared
to E/EP’s 141, and in the chainy division (in which the problems have many
more superfluous axioms) SRASS solves 127, compared to E/EP’s 91.

7 Applications

The TPTP language and tools have been adopted for a range of user applications.
The users employ ATP systems as embedded components of some larger process.
By using the TPTP framework the users are not distracted by idiosyncrasies of
automated reasoning, and can focus on their application. This section describes
three such applications.

7.1 NASA

Research scientists in the Robust Software Engineering Group of the Intelligent
Systems Division of NASA Ames have developed, implemented, and evaluated a
certification approach that uses Hoare-style techniques to formally demonstrate
the safety of aerospace programs that are automatically generated from high-
level specifications [DF03, DFS04]. The focus is on automated – as opposed to
interactive or (the auto-modes of) tactic-based – systems, since the aim is to
have a fully automated push-button tool.

In this work the code generator was extended so that it simultaneously gen-
erates code and detailed annotations, e.g., loop invariants, regarding safety con-
ditions. A verification condition generator processes the annotated code, and
produces a set of safety obligations in the form of TPTP format problems that
are provable if and only if the code is safe. The obligation problems are dis-
charged using SSCPA (see Section 6.1), selecting up to three ATP systems, to
produce TPTP format proofs that serve as safety certificates for authorities like
the FAA. The derivations are verified by GDV (see Section 5.4). The individual
derivations from GDV, which verify each inference step, provide explicit evidence
that none of the individual tool components yield incorrect results and, hence,
that the certificates are valid.

7.2 MPTP

The goal of the MPTP project [Urb07] is to make the large formal Mizar Math-
ematical Library (MML) [Rud92] available to current ATP systems (and vice
versa), and to boost the development of domain-based, knowledge-based, and
generally AI-based ATP methods. The MPTP converts Mizar format
problems to a extended TPTP language that adds term-dependent sorts and
abstract (Fraenkel) terms to the TPTP syntax. Problems in the extended lan-
guage are transformed to standard TPTP format using relativization of sorts
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and deanonymization of abstract terms. Finding proofs for these problems pro-
vides cross verification of the underlying Mizar proofs. It is interesting that some
of the ATP proofs correspond to shorter Mizar proofs of the original theorems,
and therefore are likely to be used for MML refactoring.

Mizar proofs are also exported, as TPTP format derivations, allowing a num-
ber of ATP experiments and use of TPTP tools. An example of this is the
combination of the Mizar WWW view with IDV (see Section 5.5) [UTSP07].
This allows a user to view and interact with Mizar level proofs, and to export
these to IDV and beyond to view and interact with the corresponding first-order
form.

7.3 SUMO and Cyc

In recent years there has been a growing interest in translating large ontological
knowledge bases into first-order logic, so that ATP systems can be used to reason
over the knowledge. Two examples of this are the translation of the Suggested
Upper Merged Ontology (SUMO) [NP01] and of Cyc [MJWD06].

The translation of SUMO [PS07] requires dealing with some apparently and
some truly second order constructs, adding guards to impose sort constraints,
and converting from SUMO’s SUO-KIF language to the TPTP language. Testing
on a suite of reasoning tasks provided feedback on what choices in the translation
process provide the most easily solved first-order problems. The translation has
been integrated into the Sigma ontology development environment [Pea03], with
access to IDV (see Section 5.5) for displaying derivations.

The FOLification of Cyc [RPG05] translated about 90% of ResearchCyc into
first-order logic, in the TPTP format. As with the SUMO translation, special
treatment of higher order constructs was necessary. The translation produced
1,253,117 axioms over 132,116 symbols (not including strings or numbers). This
very large background theory presented practical difficulties for using ATP sys-
tems. With the exception of E/EP, none of the ATP systems tried were able to
load more than 20% of the axioms without failing due to memory errors. This
highlighted the need for reengineering of ATP systems, in order to cope with
such large problems. A second translation of Cyc is now underway, in order to
generate problems that can be added to the TPTP library as challenges to ATP
systems.

8 Future

The TPTP and related projects are ongoing efforts, continuously aiming to ex-
tend the range and scope of TPTP compliant data and tools. Three main devel-
opments are planned for the near future.

Following discussions at the workshop on Empirically Successful Higher Order
Logic (ESHOL) [BHS05], a typed higher-order TPTP syntax has been developed
- the THF syntax. The THF syntax is divided into levels, starting with a simply
typed Church lambda calculus core, and providing three layers of more complex
constructs. This layered approach lowers the entry barrier for adopting the THF
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syntax, but also provides a rich language for ongoing development. With the
syntax in place it is now planned to extend the TPTP and TSTP to include
higher-order problems and solutions. The THF effort also resulted in completion
of the typed first-order syntax (the TFF syntax), and the two are compatible.

Many applications of automated reasoning, including all those described in
Section 7, require some simple reasoning over numbers. An extension of the
TPTP language to provide interpreted arithmetic functors and predicates has
been designed, aligned with the theory of integers in the Satisfiability Modulo
Theories (SMT) library [RT06]. It is planned to extend the TPTP and TSTP to
include problems and solutions that involve arithmetic.

The TPTP, TSTP, and tools, provide a stable environment for using ATP
systems. While the ability to find solutions to ATP problems is useful directly,
in many applications further features are necessary. Two such features are an-
swer variables - the ability to extract an answer to a question that has been
framed as a conjecture, and access to provenance information – information re-
garding information sources, assumptions, learned information, and answers, as
an enabler for trust. Preliminary work on these and similar topics is now under-
way. Cyc’s handling of answer variables [MJWD06] provides a starting point for
determining the features and capabilities of answer variables in the TPTP, and
issues of provenance information are being inspired by the work in the Inference
Web [MPdS04].

9 Conclusion

This paper has given an overview of activities and products that stem from the
TPTP problem library for ATP systems. The TPTP language, the SZS ontol-
ogy, and the tools developed, provide an homogeneous environment for ongoing
research, development, and application of automated reasoning. Contributions
and feedback to improve the TPTP world are always welcome.
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Abstract. Moore’s Law continues to drive a severe increase in the num-
ber of transistors that can be integrated onto a single microprocessor
chip. Computer architects and designers continue to look for ways to
take advantage from it to produce ever more complex microprocessors.
Meanwhile, market forces are dictating a shorter time to market, a pro-
liferation of product and steeper volume ramps in production. However,
it is evident that logic correctness is one of the main challenges that
computer engineers usually face during the design and validation of such
systems.

In the last 20 years, researchers and industrial experts invented sev-
eral modeling and validation technologies, such as logic simulation, fast
hardware emulation engines, and formal methods. However the design
size and complexity continue to grow and outstrip what the validation
techniques can do for producing high quality and correct systems. As a
results, the validation problem is becoming more complex to solve and
is indeed the main limiter for producing a high quality silicon products.

Design abstraction and high level modeling is a fundamental design
strategy to cope with system complexity. The basic idea is to hide design
implementation details, while focusing on design specification, capturing
the pure logic properties and behaviors of the system. Doing this, we
believe that the size of the design model can be dramatically decreased
because none functional or physical properties of the design are excluded.
Therefore the design representation is purely logical and have a clear
semantics which it becomes easier to understand, easier and faster to
validate using dynamic or formal techniques, so design errors can be
detected earlier before going into detailed implementation and thus avoid
a costly design iterations due to late soundness issues.

In this talk we will present abstract modeling techniques and their
verification challenges. In particular we will describe the Abstract State
Machines approach for modeling and verification of high level models.
In addition we will outline several research topics in this domain to en-
courage the academic community to take an active part in exploring and
developing new verification methods that can cope with the increasing
complexity of microprocessors’ design.
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Géraud Sénizergues

LaBRI and UFR Math-info,
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Abstract. Sequences of numbers (either natural integers, or integers or
rational) of level k ∈ IN have been defined in [FS06] as the sequences
which can be computed by deterministic pushdown automata of level
k. We extend this definition to sequences of words indexed by words.
We give characterisations of these sequences in terms of “higher-order”
L-systems. In particular sequences of rational numbers of level 3 are char-
acterised by polynomial recurrences (which generalize the P-recurrent
sequences studied in [Sta80]). The equality problem for sequences of ra-
tional numbers of level 3 is shown decidable.

Keywords: Iterated pushdown automata, recurrent sequences equiva-
lence problems.

1 Introduction

The class of pushdown automata of level k (for k ≥ 1) has been introduced
in [Gre70], [Mas74] as a generalisation of the automata and grammars of [Aho68],
[Aho69], [Fis68] and has been the object of many further studies: see [Mas76],
[ES77], [Dam82], [Eng83], [ES84], [EV86], [DG86], and more recently [Cau02],
[KNU02], [CW03], [Fra05].

The class of integer sequences computed (in a suitable sense) by such automata
was defined in [Fra05], [FS06](we denote it by Sk).

The class F(Sk) consisting of all the sequences of rational numbers which can
be decomposed as an−bn

a′
n−b′n

for sequences a, b, a′, b′ ∈ Sk was also introduced.
These classes of number sequences fulfil many closure properties and generalize
some well-known classes of recurrent sequences (or formal power series). The
level 3, for example, contains all the so-called P-recurrent sequences of rational
numbers, corresponding also to the D-finite formal power series (see [Sta80] for
a survey and [PWZ96] for a thorough study of their algorithmic properties).

We give here several characterisations of the classes Sk for k ≥ 1. These char-
acterisations go through generalizations of the above classes Sk to their analogues
for sequences of words, formal power series with non-commutative undetermi-
nates and, finally, mappings from words to words. Let us denote by Sk(A∗, B∗)
the class of mappings from A∗ to B∗ computed by pushdown automata of level

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 24–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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k. The elements of Sk(A∗, B∗) can be characterised by some kind of Lindenmayer-
systems of “order k” that we introduce here. As a corollary, S3 is characterised by
polynomial recurrences. The equality problem for two sequences inF(S3) can thus
be solved by a suitable reduction to polynomial ideal theory (namely to the con-
struction of Gröbner bases). The present text is an extended abstract: it gives the
main definitions and states the main results but does not provide any formal proof.

2 Preliminaries

We introduce here some notation and basic definitions which will be used
throughout the text.

2.1 Automata

Beside the usual notions of finite automaton and pushdown automaton, we shall
consider here the notion of pushdown automaton of level k. Such automata are an
extension of classical pushdown-automata to a storage structure built iteratively.
This storage structure can be described as follows:

Definition 1 (k-iterated pushdown store). Let Γ be a set. We define in-
ductively the set of k-iterated pushdown-stores over Γ by:

0−pds(Γ )={ε} (k+1)−pds(Γ )=(Γ [k−pds(Γ )])∗ it− pds(Γ )=
⋃
k≥0

k−pds(Γ ).

The elementary operations that a k-pda can perform are:

- pop of level j (where 1 ≤ j ≤ k), which consists of popping the leftmost letter
of level j and all the structure which is “above” this letter
- push of level j (where 1 ≤ j ≤ k), which consists of pushing a new letter C on
the left of the leftmost letter D of level j and copying above this new letter C
all the structure which was “above” the letter D.

A transition of the automaton consists, given the word γ made of all the
leftmost letters of the k-pushdown (the one of level 1, followed by the one of
level 2, ..., followed by the one of level k), the state q and the leftmost letter
b (or, possibly, the empty word ε) on the input tape, in performing one of the
above elementary operations. More formally,

Definition 2 (k-pdas). Let k ≥ 1 , let POP = {popj |j ∈ [k]}, PUSH(Γ ) =
{pushj(γ)|γ ∈ Γ+, j ∈ [k]}, and TOPSYMS(Γ ) = Γ (k) − {ε}.
A k-iterated pushdown automaton over a terminal alphabet B is a 6-tuple A =
(Q,B, Γ, δ, q0, Z0) where

– Q is a finite set of states, q0 ∈ Q denoting the initial state,
– Γ is a finite set of pushdown-symbols,Z0 ∈ Γ denoting the initial symbol,
– the transition function δ is a map from Q× (B∪{ε})×TOPSYMS(Γ ) into

the set of finite subsets of Q× (PUSH(Γ ) ∪ POP ) such that:
if (q, pushj(γ)) ∈ δ(p, b̄, γ) then j ≤ |γ|+ 1 and if (q, popj) ∈ δ(p, b̄, γ) then
j ≤ |γ|.
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(see [FS06] for more details). The automaton A is said deterministic iff, for every
q ∈ Q, γ ∈ Γ (k), b ∈ B

Card(δ(q, ε, γ)) ≤ 1 and Card(δ(q, b, γ)) ≤ 1, (1)

Card(δ(q, ε, γ)) = 1 ⇒ Card(δ(q, b, γ)) = 0. (2)

In order to define a useful notion of map computed by a k-pda we introduce
the following stronger condition: A is called strongly deterministic iff, for every
q ∈ Q, γ ∈ Γ (k), ∑

b̄∈{ε}∪B

Card(δ(q, b̄, γ)) ≤ 1. (3)

In other words, the automaton A is strongly deterministic iff, the leftmost con-
tents γ of the memory and the state q completely determine the transition
of A, in particular what letter b (or possibly the empty word) can be read.
Therefore, such an automaton A can accept at most one word w from a given
configuration. We say that A is level-partitioned iff Γ is the disjoint union
of subsets Γ1, Γ2, . . . , Γk such that, in every transition of A, every occurrence
of a letter from Γi is at level i. It is easy to transform any k-pushdown au-
tomaton A into another one A′ which recognizes the same language and is
level-partitioned. Moreover, if A is strongly deterministic then A′ is strongly
deterministic.

Definition 3 (k-computable mapping). A mapping f : A∗ 	→ B∗ is called
k-computable iff there exists a strongly deterministic k-pda A, over a pushdown-
alphabet Γ which is level-partitioned, such that Γ contains k− 1 symbols U1, U2,
. . . , Uk−1, the alphabet A is a subset of Γk and for all w ∈ A∗:

(q0, f(w), U1[U2 . . . [Uk−1[w]] . . .])
∗
A (q0, ε, ε).

One denotes by Sk(A∗, B∗) the set of k-computable mappings from A∗ to B∗.

The particular case where Card(A) = Card(B) = 1 was studied in [FS06].

2.2 Number Recurrences

Definition 4 (N-rational formal power series). A mapping f : A∗ → IN is
N-rational iff there is an homomorphism M : A∗ → Nd×d and two vectors L in
B1×d and T in Bd×1 such that, for every w ∈ A∗

f(w) = L ·M(w) · T. (4)

The map f can also be denoted by
∑

w∈A∗ f(w) · w which explains our
terminology.
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Definition 5 (Polynomial recurrent relations). Given a finite index set
I = [1, n] and a family of mappings fi : A∗ → IN (for i ∈ I), we call system of
polynomial recurrent relations a system of the form

fi(aw) = Pi,a(f1(w), f2(w), . . . , fn(w)) for all i ∈ I, a ∈ A,w ∈ A∗

where Pi,a ∈ IN[X1, X2, . . . , Xn].

A similar definition can be given for mappings fi : A∗ → ZZ (for i ∈ I) and
polynomials Pi,a ∈ ZZ[X1, X2, . . . , Xn].

2.3 Word Recurrences

When considering mappings into words instead of integers, one is lead to consider
the following kind of recurrent relations.

Definition 6 (catenative recurrent relations). Given a finite index set I =
[1, n] and a family of mappings fi : A∗ → B∗ (for i ∈ I), we call system of
catenative recurrent relations a system of the form

fi(aw) =
�(i,a)∏
j=1

fα(i,a,j)(w) for all i ∈ I, a ∈ A,w ∈ A∗

where �(i, a) ∈ IN, α(i, a, j) ∈ I.

One can check that, in the case where B is reduced to one letter, a mapping
f : A∗ → B∗ is the first mapping of a family fulfilling a system of catenative
recurrent relations iff f is a rational series.

2.4 Recurrences in a Monoid

Mezei and Wright developed a general notion of grammar defining languages in
general algebras ( [MW67]). These ideas lead naturally to the following adap-
tation to arbitrary monoids of the notion of catenative recurrent relations. Let
(M, ·, 1) be some monoid.

Definition 7 (recurrent relations in M). Given a finite index set I = [1, n]
and a family of mappings fi : A∗ → M (for i ∈ I), we call system of recurrent
relations in M a system of the form

fi(aw) =
�(i,a)∏
j=1

fα(i,a,j)(w) for all i ∈ I, a ∈ A,w ∈ A∗

where �(i, a) ∈ IN, α(i, a, j) ∈ I and the symbol
∏

stands for the extension of the
binary product in M to an arbitrary finite number of arguments.

The monoids (Hom(C∗, C∗), ◦, Id), for finite alphabets C, will be of particular
interest for studying mappings of level k ≥ 3.
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2.5 L-Systems

The following notion ( [KRS97]) turns out to be crucial for describing all k-
computable mappings as compositions of simpler mappings.

Definition 8 (HDT0L sequences). Let f : A∗ → B∗. The mapping f is
called a HDT0L sequence iff there exists a finite alphabet C, a homomorphism
H : A∗ → Hom(C∗, C∗), an homomorhism h ∈ Hom(C∗, B∗) and a letter c ∈ C
such that, for every w ∈ A∗

f(w) = h(Hw(c)).

(here we denote by Hw the image of w by H). The mapping f is called a DT0L
when B = C and the homomorphism h is just the identity; f is called a HD0L
when A is reduced to one element.

3 Sequences of Level 1

Let us mention, just for sake of completeness, the description of level 1 of our
hierarchy of mappings.

Theorem 1. The elements of S1(A∗, B∗) are exactly the generalized sequential
mappings from A∗ to B∗.

4 Sequences of Level 2

N. Marin has shown in her Master thesis ( [Mar07]) that S2(A∗, B∗) has several
nice characterisations.

Theorem 2 ( [Mar07]). Let us consider a mapping f : A∗ → B∗. The follow-
ing properties are equivalent:

1- f ∈ S2(A∗, B∗)
2- There exists a finite family (fi)i∈[1,n] of mappings A∗ → B∗ which fulfils a
system of catenative recurrent relations and such that f = f1

3- f is a HDT0L sequence.

This theorem specializes as follows in the particular cases where A or B is reduced
to one letter.

Corollary 1. Let us consider a mapping f : A∗ → IN. The following properties
are equivalent:

1- f ∈ S2(A∗, IN)
2- f is a IN-rational power series with non-commutative undeterminates
in A
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Corollary 2. Let us consider a mapping f : IN → B∗. The following properties
are equivalent:

1- f ∈ S2(IN, B∗)
2- There exists a finite family (fi)i∈[1,n] of sequences IN → B∗ which fulfils a
system of catenative recurrent relations and such that f = f1

3- f is a HD0L sequence.

Since J. Honkala has proved that the equivalence for HDT0L sequences is decid-
able ( [Hon00]), theorem 2 implies

Theorem 3. The equality problem is decidable for mappings in S2(A∗, B∗).

5 Sequences of Level 3

Theorem 4. Let us consider a mapping f : A∗ → B∗. The following properties
are equivalent:

1- f ∈ S3(A∗, B∗)
2- There exists a finite family (Hi)i∈[1,n] of mappings A∗ → Hom(C∗, C∗) which
fulfils a system of recurrent relations in (Hom(C∗, C∗), ◦, Id) , an element h ∈
Hom(C∗, B∗) and a letter c ∈ C such that, for every w ∈ A∗:

f(w) = h(H1(w)(c)).

3- f is a composition of a DT0L sequence g : A∗ → C∗ by a HDT0L sequence
h : C∗ → B∗.

This theorem specializes as follows in the particular cases where B is reduced to
one letter i.e. when the mapping f is a formal power series.

Corollary 3. Let us consider a mapping f : A∗ → IN. The following properties
are equivalent:

1- f ∈ S3(A∗, IN)
2- There exists a finite family (Hi)i∈[1,n] of mappings A∗ → Hom(C∗, C∗) which
fulfils a system of recurrent relations in (Hom(C∗, C∗), ◦, Id) , an element h ∈
Hom(C∗, IN) and a letter c ∈ C such that, for every w ∈ A∗:

f(w) = h(H1(w)(c)).

3- f is composition of a DT0L sequence g : A∗ → C∗ by a rational series
h : C∗ → IN.
4- There exists a finite family (fi)i∈[1,n] of mappings A∗ → IN fulfilling a system
of polynomial recurrent relations and such that f = f1.

Definition 9. Let S be a set of mappings A∗ → IN. We denote by D(S) the set
of mappings of the form:

f(w) = g(w)− h(w) for all w ∈ A∗,
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for some mappings g, h ∈ S. We denote by F(S) the set of mappings of the form:

f(w) =
g(w)− h(w)
f ′(w)− g′(w)

for all w ∈ A∗,

for some mappings f, g, f ′, g′ ∈ S.

Using point 4 of corollary 3 we can prove the following

Theorem 5. The equality problem is decidable for formal power series in
F(S3(A∗, IN)).

The method consists, in a way similar to [Sén99] or [Hon00], in reducing such
an equality problem to deciding whether some polynomial belongs to the ideal
generated by a finite set of other polynomials.

6 Sequences of Level k

Theorem 6. Let us consider a mapping f : A∗ → B∗. The following properties
are equivalent:

1- f ∈ Sk(A∗, B∗)
2- f is a composition of k − 1 HDT0L sequences g1 : A∗ → C∗

1 , . . . , gi : C∗
i−1 →

C∗
i , . . . , gk−1 : C∗

k−2 → B∗. Moreover the g1, . . . , gk−2 can be chosen to be
DT0L’s.

From this theorem follows easily the fact that the inclusion Sk(IN, IN) ⊂ Sk+1

(IN, IN) is strict.

7 Examples and Counter-Examples

We examine here four examples of mappings A∗ → IN and locate them in the
classes Sk or some related classes.

Example 1. The Fibonacci sequence Fn defined by

F0 = 1, F1 = 1, Fn+2 = Fn+1 + Fn for all n ≥ 0

is clearly in S2 since
∑∞

n=0 FnX
n is a rational series.

Example 2. Let G : {0, 1}∗ → IN be defined by

G(w) = Fν(w)

where ν(w) is the natural number expressed by w in base 2. Since
∑∞

n=0 ν(w)w
is a rational series, G fulfils point 3 of our characterisation of S3({0, 1}∗, IN).
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Example 3. Let us consider the sequence of Catalan numbers: Cn = 1
n+1C

n
2n.

This sequence is not residually ultimately periodic ( [Ber03]) while we can prove
that every sequence in

⋃
k∈IN Sk(IN, IN) is residually ultimately periodic. By the

same arguments (Cn)n∈IN cannot belong to D(Sk) for any k ≥ 1. Nevertheless
(Cn)n∈IN belongs to F(S3).

Example 4. Let us consider the sequence Dn = nn. This sequence belongs
to S4. It does not belong to F(S3) because, for every r ≥ 1, the sequences
(Dn)n∈IN, (Dn+1)n∈IN, . . . , (Dn+r−1)n∈IN are algebraically independent over Q.
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Abstract. In this paper we extend mobile ambients with timers and
proximities, and so we get a clear notion of location and mobility. Timers
define timeouts for various resources, making them available only for a
determined period of time; we add timers to ambients and capabilities.
We present an example how the new model is working. The coordination
of the ambients in time and space is given by assigning specific values to
timers, and by a set of coordination rules.

1 Introduction

The open systems with mobile entities, and dynamically re-configurable evolving
systems accept uncertainty and distribution, leading to difficult control schemes
where decision-making are distributed widely and unexpectedly. Among the sev-
eral challenges related to the coordination aspects, we can mention the mecha-
nisms for delivery of adequate responses to time-critical demands, coordination
methods that for real-time systems, a decentralized control take into account
the timed resources. Different application contexts exhibit different needs with
respect to coordination, and the choice of a coordination model is likely to have
an important impact in the design of component-based applications.

A coordination model should integrate a number of (heterogeneous) compo-
nents (processes, objects, agents) such that the resulting system can execute as
a whole, resulting a flexible system even in an open distributed environment. A
coordination model is a high-level interaction abstraction used to globally rule
the behaviour of different components in a system. Such a coordination model
provides a formal framework in which the interaction can be expressed, and
the dynamics of an open system ensures synchronized actions, flexibility, and
a sound behaviour. The coordination rules define how the actions are handled
when the components interact. These rules can be defined in terms of a coor-
dination language. The first comprehensive survey on coordination models and
languages has been given in [8]. More recently, in [1,7], the authors survey the
state of art in coordination models for agent systems.

We intend to present a model where time is an active controlling input in the
execution of the model, and the coordination rules explicitly depend on time.
Time must advance to the desired moment when an event is allowed to take
place.

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 33–43, 2007.
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We do not use an absolute time in our approach, but a relative time given
by timers. The global clock advances the time, and the interactions happen
whenever the involved resources are available. Using such a time control, we can
achieve the concurrency of the components, and we can select between different
choices in the system evolution. Time as a common interaction requirement
provides a natural and flexible synchronization technique able to integrate and
regulate dynamically the possible evolutions of the components.

We consider the following example which can motive and illustrate the time-
driven model. We assume a student finishing the lectures, moving out of the uni-
versity building and looking for an available vehicle in order to move to a given
place. In front of the university there is a tram stop, a bus stop, and certain taxi-
cabs. The student has the possibility to use any of the three types of vehicles: bus,
tram and cab to reach the target location. Since the three variants (vehicles) have
different costs, the student establishes a priority among them: the bus has the
highest priority, followed by the tram, and finally the cab. The bus and the tram
are moving according to a predetermined scheduler which is known by the systems
(this knowledge is given by the use of a global clock). Our scenario involves a bus,
a tram and two cabs (a hired cab and an available cab). This example involves
space, mobility, time, (bus and tram) capacity, hired and available resources at a
certain moment. In order to avoid the situation in which a student exits the mov-
ing vehicle we impose some resource constraints over the city.

Our approach is aimed to provide a faithful syntactic description, and a flex-
ible dynamic semantics for such an example. Time represents a primary notion
in the new time-driven coordination model. Since space is dual to time, we think
of a model where the notions of location and space can be explicitly described.
We define a model as an extension with timers of the pure mobile ambients.
Timers define timeouts for various resources, making them available only for a
determined period of time; thus we add timers to ambients and capabilities.

2 Mobile Ambients with Time Constraints

Ambient calculus is a formalism for describing distributed and mobile computa-
tion in terms of ambients. In contrast with other formalisms for mobile processes
such as the π-calculus [6] whose computational model is based on the notion of
communication, the ambient calculus is based on the notion of movement. An
ambient, which is a named location, is the unit of movement. Ambients mobil-
ity is controlled by the capabilities in, out, and open. In an ambient we have
processes which may exchange messages.

We introduce timed Mobile Ambients (tMA) where capabilities and ambients
are used as temporal resources. A timer Δt of each temporal resource makes
the resource available only for a determined period of time t. We add timers to
ambients and capabilities.

A novelty of this approach is that a location, represented by an ambient, can
disappear. We denote by nΔt

(l,h,r)[P ]μ the fact that an ambient n has assigned a
timer Δt, a capacity l representing the number of its free resources, a weight h
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representing the number of resources allocated in the parent ambient, a radius r
of its proximity, while the tag μ is a neutral tag that indicates if an ambient is ac-
tive (a) or passive (s). If t > 0 the ambient behaves exactly as in untimed mobile
ambients. Since the timer Δt can expire (t = 0) we use a pair (nΔt

(l,h,r)[P ]μ, k�Q)
to denote a timed ambient, where Q is a safety process. The prefix k� represents
the number of resources needed by process Q to be executed. k �Q means that
process Q cannot be executed unless it has k free resources available. If nothing
happens in t units of time, the ambient n is dissolved, process P running inside
the ambient is reduced to 0, and process k�Q | ♦h is executed. By ♦h we denote
that h resources become available in the parent ambient of the dissolved ambient
n. If Q = 0 we can simply write nΔt

(l,h,r)[P ]μ instead of (nΔt
(l,h,r)[P ]μ, k � Q). If

we want to simulate the behaviour of untimed mobile ambients, then we use ∞
instead of Δt, and 0 instead of h, k, l and r.

The process openΔtn.(P, k �Q) evolves to P whenever, in the period of time
Δt, the process becomes sibling to an ambient n; otherwise evolves to k � Q.
The process !〈m〉Δt.(P, k � Q) evolves to P whenever, in the period of time Δt,
the process becomes sibling to a process which is willing to capture the name
m; otherwise evolves to k � Q.

The syntax of the timed Mobile Ambients is defined in the following table.

Table 1. Syntax of tMA

n, m, p names P, Q::= processes
a, s tags 0 inactivity
M ::= capabilities MΔt.(P, k � Q) movement

in n can enter n (nΔt
(l,h,r)[P ]μ, k � Q) ambient

out n can exit n P |Q composition
open n can open n (νn)P restriction

∗(k � P ) replication
P + Q choice

Replication creates new processes, so we use k � P to avoid the execution of
process P until it has k free resources. We define a weight function weight which
counts the resources needed by a process to be executed:

weight(P ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h if P = (nΔt

(l,h,r)[R]μ, k � Q)
weight(R) if P = (νn)R
weight(R) + weight(Q) if P = R |Q
max{weight(R), weight(Q)} if P = R + Q
0 otherwise

The above function takes into account only the resources occupied by ambi-
ents; capabilities, replication and k�Q have no need of resources to be executed.

The proximity of an ambient n is defined by a function p which returns a
set of points surrounding the ambient n with a given radius r. The radius r is
established at the beginning of the computation for each ambient. By p(n, r) we
understand the proximity of ambient n of radius r, as in the next figure:
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n

p(n,r)

r

This proximity function has the following properties:

1. 0 ≤ s < t implies p(n, s) ⊂ p(n, t) for any ambient n and numbers s and t;
2. m ⊂ p(n, s) implies ∃t > 0 such that p(m, t) ⊂ p(n, s) for any ambients m,n

and positive numbers s and t.

When we describe initially the ambients, we consider that all ambients are
active, and we associate the tag a to them.

2.1 Semantics

The timed Mobile Ambients use discrete time. The passage of time is described
by a(discrete) time-stepping function φΔ defined over the setP of tMA-processes.
The possible actions are performed at every tick of a universal clock. φΔ affects
the ambients and the capabilities which are not consumed. The consumed ca-
pabilities disappear together with their timers. If a capability or ambient has
the timer equal to ∞, we use the equality ∞− 1 = ∞ when applying the time-
stepping function φΔ. This function modifies a process accordingly with the
global passage of time. Another property of the global time progress function
φΔ is that the passive ambients can become active in the next unit of time in
order to participate in other reductions.

Definition 1. We define the time-stepping function φΔ : P → P by

φΔ(P ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MΔ(t−1).(R, k � Q) if P = MΔt.(R, k � Q), t > 0
k � Q if P = MΔt.(R, k � Q), t = 0
φΔ(R) | φΔ(Q) if P = R |Q
(νn)φΔ(R) if P = (νn)R
(nΔ(t−1)

(l,h,r) [φΔ(R)]a, k � Q) if P = (nΔt
(l,h,r)[R]μ, k � Q), t > 0

k � Q | ♦h if P = (nΔt
(l,h,r)[R]μ, k � Q), t = 0

P if P = ∗R or P = 0 or P = k � Q
φΔ(R) + φΔ(Q) if P = R + Q

To see how this function is used, observe the reduction rules (Table 3).
The semantics of the timed mobile ambients is given by two relations: struc-

tural congruence relation and reduction relation. The structural congruence re-
lation P ≡p Q relates different syntactic representations of the same process; it
is used to define the reduction relation. The reduction relation P → Q describes
the evolution of processes.
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Processes are grouped into equivalence classes by ≡p. This relation provides
a way of re-arranging expressions such that the interacting parts can be brought
together. The structural relation ≡p over the timed mobile processes is the least
relation satisfying the axioms and rules from the following Table:

Table 2. Structural congruence

(S-Refl) P ≡p P (S-Sym) P ≡p Q implies Q ≡p P
(S-Trans) P ≡p R, R ≡p Q implies P ≡p Q
(S-Res) P ≡p Q implies (νn)P ≡p (νn)Q
(S-LPar) P ≡p Q implies R |P ≡p R |Q
(S-RPar) P ≡p Q implies P |R ≡p Q |R
(S-Repl) P ≡p Q implies ∗(k � P ) ≡p ∗(k � Q)
(S-Amb) P ≡p Q and R ≡p R′ implies (nΔt

(l,h,r)[P ], k � R) ≡p (nΔt
(l,h,r)[Q], k � R′)

(S-Cap) P ≡p Q and R ≡p R′ implies MΔt.(P, k � R) ≡p MΔt.(Q,k � R′)
(S-Par Com) if weight(P ) = 0 then P |Q ≡p Q |P
(S-Par Assoc) (P |Q) |R ≡p P | (Q |R)
(S-Repl Par) ∗(k � P ) ≡p k � P | ∗ (k � P )
(S-Res Res) (νn)(νm)P ≡p (νm)(νn)P if n �= m
(S-Res LPar) (νn)(P |Q) ≡p P | (νn)Q if (n) /∈ fn(P )
(S-Res RPar) (νn)(P |Q) ≡p (νn)P |Q if (n) /∈ fn(Q)
(S-Res Amb) (νn)(mΔt

(l,h,r)[P ], k � Q) ≡p (mΔt
(l,h,r)[(νn)P ], k � Q) if n �= m

(S-Zero Par) P |0 ≡p P (S-Zero Res) (νn)0 ≡p 0 (S-Zero Repl) ∗0 ≡p 0

For the process MΔt.(P,Q) the timers of P are activated only after the con-
sumption of MΔt. To preserve the timers of P , we introduce a function which
prevents the application of the time-stepping function for P .

We denote by �→ the fact that none of the rules from the following Table,
except rule (R-GTProgress) can be applied. Because the safety process does
not change when applying the reduction rules we shall omit it from the following
table in order to simplify the syntax. The behaviour of processes is given by the
reduction rules.

In the rules (R-In), (R-Out), (R-Open) ambient m can be passive or active,
while in the rules (R-In), (R-Out) ambient n is active. The difference between
passive and active ambients is that the passive ambients can be used in several
reductions in a unit of time, while the active ambients can be used in at most
one reduction in a unit of time, by consuming their capabilities. In the rules
(R-In), (R-Out) the active ambient n becomes passive, forcing it to consume
only one capability in one unit of time.

In timed mobile ambients, if one process evolves by one of the rules (R-In),
(R-Out), (R-Open), while another one does not perform any reduction, then
one of the rules (R-LPar), (R-RPar) should be applied. If more than one
process evolve in parallel by applying one of the rules (R-In), (R-Out), (R-
Open), then the rule (R-Par) should be applied. When all the ambients become
passive, the rule (R-GTProgress) is applied to simulate the global passage of
time, changing all the p tags to a, and so permitting the ambients to participate
in other reductions in the next unit of time.
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Table 3. Reduction rules

(R-Free)
−

nΔt
(l,h,r)[R | ♦k]μ → nΔt

(l+k,h,r)[ R ]μ

(R-Alloc)
k ≤ l

nΔt
(l,h,r)[k � Q]μ → nΔt

(l−k,h,r)[Q]μ

(R-In)
h′ ≤ l′′, n ∈ p(m,r′′)

nΔt′
(l′,h′,r′)[in

Δtm.(P, P ′) |Q]a |mΔt′′
(l′′,h′′,r′′)[R]μ →

mΔt′′
(l′′−h′,h′′,r′′)[n

Δt′
(l′,h′,r′)[P |Q]s |R]μ

(R-Out) h′′ ≤ l, p(n, r′′) ∩ p(m,r′) �= ∅
pΔt
(l,h,r)[m

Δt′
(l′,h′,r′)[n

Δt′′
(l′′,h′′,r′′)[outΔtm.(P, P ′) |Q]a |R]μ]μ →

pΔt
(l−h′′,h,r)[n

Δt′′
(l′′ ,h′′,r′′)[P |Q]s |mΔt′

(l′+h′′,h′,r′)[R]μ]μ

(R-Open)
−

mΔt′
(l′,h′,r′)[openΔtn. (P, P ′) |nΔt′′

(l′′ ,h′′,r′′)[Q]μ]μ →
mΔt′

(l′+l′′,h′,r′)[P |Q]μ

(R-Res)
P → Q

(νn)P → (νn)Q
(R-LPar)

P → Q

R |P → R |Q

(R-Amb)
P → Q

nΔt
(l,h,r)[P ]μ → nΔt

(l,h,r)[Q]μ
(R-RPar)

P → Q

P |R → Q |R

(R-Par)
P → Q, P ′ → Q′

P |P ′ → Q |Q′ (R-Struct)
P ′ ≡p P, P → Q, Q ≡p Q′

P ′ → Q′

(R-Choice)
P → P ′

P + Q → P ′ and
Q → Q′

P + Q → Q′ (R-GTProgress)
P �→

P → φΔ(P )

Proposition 1. If P ≡p Q then weight(P ) = weight(Q).

The resources are preserved through reduction only in a closed system, namely
a system which is surrounded by an ambient which cannot be opened, and any
ambient can pass through it. In an open system, the resources are not preserved
through reduction because a process may acquire new resources from the envi-
ronment, or transfer resources to the environment. Some resources may become
restricted, and so unavailable for any other process, e.g. (νn)(nΔt

(l,h,r)[P ]μ, k�Q).

3 Interaction of the Timed Mobile Ambients

Let us consider that the example involves a bus, a tram and two cabs. Each of
these entities is encoded in an ambient having a corresponding label. A student
has the possibility to use any of the three transports bus, tram and cab to reach
a given location. Because the three variants of transport have different costs,
the student establishes a priority among them: the bus has the highest priority,
followed by the tram, and finally the lowest priority is the cab. For an ambient
A, free resources(A) represents the (dynamically evolving) capacity l of A.
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If bus is in the proximity of radius r of the student (bus ⊂ p(student, r)), and
it has free resources (free resource(bus) > 0) then the student enters the bus.
If the bus does not have free resources and the tram is in the proximity of radius
r of the student, and it has free resources (free resources(tram) > 0) then the
student enters the tram. If the tram does not have free resources and the cab is in
the proximity of the student, and it has free resources (free resources(cab) > 0)
then the student enters the cab. If the tram is not in the proximity of the student,
the time needed for the tram to enter that proximity is greater that the time the
student decided to wait for the tram, the cab is in the proximity of the student
having free resources free resources(cab) > 0, then the student enters the cab.

If bus is not in the proximity of student, the time needed for the bus to enter
that proximity is greater than the time the student decided to wait for the bus,
the tram is in the proximity of radius r of the student and it has free resources
(free resource(tram) > 0) then the student enters the tram. If the tram does
not have free resources and the cab is in the proximity of radius r of the student
and it has free resources (free resources(cab) > 0), then the student enter the
cab. If the tram is not in the proximity of the student, the time needed for the
tram to enter that proximity is greater that the time the student decided to wait
for the tram, then the student searches for a cab; if the cab is in the proximity of
the student and it has free resources free resources(cab) > 0, then the student
enters the cab. If none of the above conditions holds, the time-stepping function
φΔ is applied (simulating the passing of time), and then the above conditions
are re-checked.

For this scenario the bus can be described as:
bus schedule = inΔt1univ.outΔt2univ.inΔt3camp.outΔt2camp.bus schedule
bus = bus∞(l bus,h bus,r bus)[bus schedule]μ where

– Δt1 - time the bus needs to reach the univ starting from camp;
– Δt2 - time the bus awaits at a stop;
– Δt3 - time the bus needs to reach the camp;
– l bus, h bus, r bus - the free, capacity and proximity radius of the bus.

Similarly, the tram can be described as follows:
tram schedule = inΔt4univ.outΔt5univ.inΔt6camp.outΔt5camp.tram schedule
tram = tram∞

(l tram,h tram,r tram)[tram schedule]μ

The cab and the client could be described as in [9], but because our example
contains only two locations the description could be simplified. The cab can be
described as follows:

cab route = outΔt7univ.inΔt8camp.cab route + outΔt7camp.inΔt9univ.cab route
cab = cab∞(l cab,h cab,r cab)[cab route]μ

The description of student is more elaborated:
student = student∞(1,1,r student)[travel]μ

travel = in∞univ.travel univ + in∞camp.travel camp
travel camp = bus camp + tram camp + cab camp
travel univ = bus univ + tram univ + cab univ
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cab camp = inΔt15cab.(outΔt9cab.outΔt17univ.travel, cab camp)
cab univ = inΔt14cab.(outΔt8cab.outΔt16camp.travel, cab univ)
tram camp = inΔt13 tram.(outΔt4tram.outΔt17univ.travel, tram camp)
tram univ = inΔt12 tram.(outΔt6tram.outΔt16camp.travel, tram univ)
bus camp = inΔt11bus.(outΔt1bus.outΔt17univ.travel, bus camp)
bus univ = inΔt10bus.(outΔt3bus.outΔt16camp.travel, bus univ)

According to the above definitions, the bus and the tram move based on a
predefined schedule relative to a global clock, no matter whether they contain
a student inside or not, while the cab has no (time) restriction to move. Each
cab has a cyclic movement between the two locations univ and camp even it has
or does not have a student inside. The student can enter in the ambient found
in his proximity, with no constraint imposed by other ambients. In the moment
the student is at univ location, we can have one of the following scenarios:

– two of bus, tram and cab, or all are at the univ location and at least one of
them has free resources; in this case the student enters one of them which
has free resources, by choosing nondeterministic, with no regard to the cost
of the trip;

– one of bus, tram and cab are at the univ location and has a free resource;
in this case the student enters it with no regard to the cost of the trip, or
the schedule of the others;

– one, two or all of bus, tram and cab are at the univ location, but no free
resources are available; in this case the student awaits for an ambient with
free resources, and moves to be in its proximity.

3.1 Coordination of Timed Mobile Ambients

The cost of the trip is not considered in all these scenarios. We can add priorities
and interaction requirements acting over an initial assignment of the timers,
capacities and proximities. Over the model tMA we define a coordination pair
(T , CP). The first component T of this coordinating pair is a function assigning
initial values to the timers, capacities and proximities. The second component
CR is given by a set of rules. In our example the timer t10 should have initially
a smaller value than the timer t1, because the student is not willing to wait for
a bus which has to cover a distance bigger or equal than the one from the two
locations univ and camp. Having similar motivations, the timers t11, t12 and t13
can be smaller that the initial value for t3, t4, respectively t6. The rules given
by CR influence the evolution of the system, and decide a certain behaviour
according to the requirements expressed by the rules. For example, the student
establishes a strategy for lowering its travel costs and gives a priority order: the
bus has the bigger priority, followed by the tram, while the cab has the lower
priority. We impose the following rules:

[l cab �= h cab], [l cab = h cab], [t10 < t1], [t11 < t3],
[t10 < t1 ∧ t12 < t4], [t11 < t3 ∧ t13 < t6].

These rules could be integrated in the syntax, and so the processes cab and
student can be rewritten. Since the cab should make a trip only when it has
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a student inside, and it should accept a student only after it completes the
previous trip, we rewrite the syntax of the cab as

cab = cab∞(l cab,h cab,r cab)[ [l cab = h cab]cab route]
cab route = [l cab �= h cab]outΔt7univ.inΔt8 camp.[l cab = h cab]cab route

+ [l cab �= h cab]outΔt7camp.inΔt9univ.[l cab = h cab]cab route, where

– l cab �= h cab - denotes the fact that the cab has an student inside it;
– l cab = h cab - denotes the fact that the cab is available.

The initial student has no strategy of lowering its travel cost by choosing an
appropriate travel ambient. The coordinated student taking care of this aspect
has the following syntax:

student = student∞(1,1,r student)[travel]μ

travel = in∞univ.travel univ + in∞camp.travel camp
travel camp = bus camp + tram camp + cab camp
travel univ = bus univ + tram univ + cab univ

cab camp = [t11 < t3 ∧ t13 < t6]inΔt15cab.
(outΔt9cab.outΔt17univ.travel, cab camp)

cab univ = [t10 < t1 ∧ t12 < t4]inΔt14cab.
(outΔt8cab.outΔt16camp.travel, cab univ)

tram camp = [t11 < t3]inΔt13 tram.

(outΔt4 tram.outΔt17univ.travel, tram camp)
tram univ = [t10 < t1]inΔt12 tram.

(outΔt6 tram.outΔt16camp.travel, tram univ)
bus camp = inΔt11bus.(outΔt1bus.outΔt17univ.travel, bus camp)
bus univ = inΔt10bus.(outΔt3bus.outΔt16camp.travel, bus univ), where

– t10 < t1 - compares the time (t10) needed for the bus to reach univ, with the
time (t1) the student is willing to wait for bus;

– t11 < t3 - compares the time (t11) needed for the bus to reach camp, with
the time (t3) the student is willing to wait for bus;

– t12 < t4 - compares the time (t12) needed for the tram to reach univ, with
the time (t4) the student is willing to wait for tram;

– t13 < t5 - compares the time (t13) needed for the tram to reach camp, with
the time (t5) the student is willing to wait for tram.

3.2 Dynamic Aspects

The rules restrict the evolution of a system, acting when we have more than one
interaction choice in a reduction step. In what follows we describe the possible
evolutions of the system when the student is placed in the proximity of univ,
after rewriting the cab and student. When student is at univ location, we have
the following reduction:

student∞(1,1,r student)[travel]a | univ∞
(l univ,h univ,r univ)[ ]μ

→ univ∞
(l univ−1,h univ,r univ)[student∞(1,1,r student)[travel univ]s ]μ

If one the following scenarios holds:
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– the bus having free resources and is in the proximity of student;
– the bus is not at univ location, t10 > t1 (meaning that student waits for the

bus) and the bus is arriving after t1 units of time and has free resources;

the second reduction in the system is:

student∞(1,1,r student)[travel univ]a | bus∞(l bus,h bus,r bus)[ ]μ

→ bus∞(l bus−1,h bus,r bus)[student∞(1,1,r student)[outΔt3bus.outΔt16camp.travel]s ]μ

But if the scenario is one of the following:

– in univ there is no bus; tram, having free resources, is inside univ in the
proximity of student, and t10 < t1 (which means that the student is not
willing to wait for the bus);

– tram is not inside univ, t12 > t4 (which means that the student is willing to
wait for the tram), t10 < t1 and the tram is arriving after t4 units of time,
and has free resources;

the next reduction in the system is going to be the following one:

student∞(1,1,r student)[travel univ]a | tram∞

(l tram,h tram,r tram)[ ]μ

→ tram∞

(l tram−1,h tram,r tram)[student∞(1,1,r student)[outΔt6 tram.outΔt16camp.travel]s ]μ

In case of the following situations:

– in univ there is no bus or tram; cab, having free resources, is inside univ is
in the proximity of the student, t10 < t1 (which means that the student is
not willing to wait for the bus) and t12 < t4 (which means that the student
is not willing to wait for the tram);

– the cab is not inside univ, t14 > t9 (which means that the student is willing
to wait for the cab), t10 < t1, t12 < t4 and an available cab is arriving after
t9 units of time;

the system reduces as follows:

student∞(1,1,r student)[travel univ]a | cab∞(l cab,h cab,r cab)[ ]μ

→ cab∞(l cab−1,h cab,r cab)[student∞(1,1,r student)[outΔt8cab.outΔt16camp.travel]s ]μ

After the student enters one of the bus, tram or cab by applying one of the three
steps above, student is carried to the camp where student is discarded. Then
student exits the camp, and we can have a similar scenario in order to move
student from camp to univ.

4 Conclusion and Related Work

The new model is given by mobile ambients extended with timers associated
to ambients and capabilities. We define the semantics of this model, and give
some technical results. Using an easy-to-understand example, we describe the
coordination steps given by indicating specific values to timers and capacities,
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as well as to capacities and proximity radiuses, followed by defining a set of
coordination rules.

The interaction and synchronization in time-driven coordination models are
governed by time. We are working with relative time. Time is used both to
restricting the interaction between components, and to enforce a limited avail-
ability for resources .

In [4] we extend the distributed π-calculus (which is able to model communi-
cations restricted by types) by introducing timers over channel names in order
to define timeouts for communications. The resulting formalism is called timed
distributed π-calculus ((tDπ). Over this formalism we define a coordination by
timers for channel-based communications by assigning specific values to timers
and defining a constant set of coordination rules [5]. A natural example moti-
vating an extension from timed distributed π-calculus to timed mobile ambients
is presented in [3].
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Abstract. We propose a simple modification of a well-known Random
Walk algorithm for solving the Satisfiability problem and analyze its
performance on random CNFs with a planted solution. We rigorously
prove that the new algorithm solves the Full CNF with high probability,
and for random CNFs with a planted solution of high density finds an
assignment that differs from the planted in only ε-fraction of variables.
In the experiments the algorithm solves random CNFs with a planted
solution of any density.

1 Introduction

Random Walk(RW) is an algorithm for solving the Satisfiability problem orig-
inally proposed by Papadimitriou[7]. In this algorithm we start with a random
initial assignment. At every step a random unsatisfied clause in the formula is
selected and a value of a variable randomly picked from the clause is changed. It
was proven by Papadimitriou that this algorithm finds a satisfying assignment
of instances of 2-SAT in expected polynomial time.

The algorithm was also analyzed theoretically and tested for formulas with
three variables per clause by Alekhnovich and Ben-Sasson[2]. It was proven that
the algorithm solves in linear time random 3-Satisfiability formulas for densities
lower than 1.6 (i.e. the clause/variable ratio is 1.6) and there is experimental
evidence that the algorithm succeeds for densities up to 2.7. On the other hand
it was proven that RW does not solve instances with planted solution of high
densities. Moreover almost surely it does not find an assignment that would
coincide with the planted solution on substantially more than the golden ratio
conjugate ( 2

1+
√

5
≈ 0.62) of all variables in linear time.

We add some kind of weighting of variables during Random Walk which makes
it more powerful. Informally, the longer a variable keeps its value unchanged the
greater its weight becomes, and it is harder to change a variable of higher weight.
Our experiments show that Weighted Random Walk (WRW) finds solutions of
random planted instances of 3-SAT of any fixed density with high probability.
This is in contrast with Alekhnovich and Ben-Sasson’s exponential lower bound
for the running time of the standard random walk algorithm for solving random
planted 3-SAT of density larger than a constant[2]. We rigorously prove that
it solves the Full CNF (CNF consisting of all clauses that are satisfied by the
planted solution) and for the random CNFs with planted solution of densities
ρ = ρ(n) −→

n−→∞∞ for any ε > 0 almost surely it finds an assignment that differs

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 44–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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from the planted solution on at most ε-fraction of all variables. The capability
of the algorithm to solve random CNFs of constant density remains unproven.

Probabilistic analysis of algorithms for Satisfiability is a growing area. In
particular some work on analysis of Local Search[8,5,3], DPLL[1] and spectral
techniques[4] was done so far. There are known algorithms (see for example [4]
and [8]) that are proven to be efficient in solving CNFs with a planted assignment,
but the algorithms are more complicated than WRW, and only their capability
of solving problems of high density is reported.

The remainder of the paper is organized as follows. In section 2 we give defini-
tions and formulate known lemmata required for analysis, in section 3 theoretical
upper bounds are given, in section 4 we present experimental results and we con-
clude in section 5.

2 Definitions and Main Concepts

2.1 Satisfiability and Weighted Random Walk

In a 3-SAT problem we are given a Boolean formula φ in 3-CNF, i.e. the formula
is a conjunction of clauses. Each clause is a disjunction of three literals. Each
literal is either some variable or a negation of some variable.

The goal is to find an assignment that satisfies all clauses. In a MAX-3-SAT
problem the goal is to find an assignment that satisfies the greatest number of
clauses. We don’t make a distinction between assignments and boolean vectors
of size equal to the number of variables and denote both by small Latin letters
written in bold font, e.g. x.

The models of a random CNF we use in this paper are a random CNF of fixed
density and a random CNF with a planted solution of fixed density. Given density
ρ and a boolean vector r of size n, to creat a random CNF with planted solution r

we select (allowing repetition) uniformly at random ρn clauses among all 7
(
n
3

)
clauses that satisfy r. The formula containing all 7

(
n
3

)
possible clauses is called

the Full CNF with a planted solution. A random CNF of fixed density is obtained
if we are not restricting ourselves to only clauses that satisfy r.

In a random walk one starts with a random initial assignment and at every
step a random unsatisfied clause in φ is selected and a random variable in the
clause is flipped. The Weighted Random Walk starts with a random assignment
and weights of all variables equal to 1. At the first stage of a step just as in
regular RW a random unsatisfied clause in φ is selected, and for every variable
in the clause we check the following. If its weight is 1, then it is flipped and its
weight remains 1. If its weight is greater than 1, then the weight is decreased by
1. At the second stage two variables are randomly selected and their weights are
increased by 1, if it does not make their weights greater than K, which is the
maximum allowed. A pseudocode description of WRW is presented in Fig. 1.
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Input: A CNF φ containing n variables, numbers T, K
Output: An assignment x
let x be a random vector.

let w(i) = 1, for i ∈ {1, . . . , n}
for step from 1 to T do

pick a random unsatisfied clause C in φ
for all variables xj in C do

w(j) = w(j) - 1

if w(j) = 0:

let xj = ¬xj , w(j) = 1
pick two random variables, and for each of them do

if its weight is less than K then increase it by one

return x

Fig. 1. The Weighted Random Walk Algorithm

2.2 Probabilistic Analysis Tools

In this section we formulate some results from the area of probabilistic analysis
that we will use to prove our theorems. We give them a form that is convenient
for our purposes.

Chernoff Bounds. Let B(p, n) be a random variable, that is a number of
successes in n independent trials. If p is the probability of success in each trial,

then P
(∣∣∣B(p,n)

n − p
∣∣∣ ≤ ε

)
≤ 2e−

ε2n
3p .

Azuma’s Inequality[6]. Let X0, X1, . . . be a sequence of random variables and
c,Δ constants such that for each k, |Xk −Xk−1| ≤ c,E (Xk −Xk−1) ≥ Δ, then
for all t and any λ we have

P (Xt −X0 ≤ λ) ≤ 2e−
(tΔ−λ)2

2tc2 .

Wormald’s Theorem. In our analysis we use the theorem proven by Wormald
[9] that allows one to replace probabilistic analysis of combinatorial algorithm
with analysis of a deterministic system of differential equations.

We consider only discrete time random processes. Such a process is a proba-
bility space Ω denoted by (Q0, Q1, . . .), where each Qi takes values in some set S.
Consider a sequence Ωn, n = 1, 2, . . ., of random processes. The elements of Ωn

are sequences (q0(n), q1(n), . . .) where each qi(n) ∈ S. For convenience the de-
pendence of n will usually be dropped from the notation. Asymptotics, denoted
by the notation o and O, are for n→∞, but uniform over all other variables. For
a random X , we say X = o(f(n)) always if max{x|P (X = x) �= 0} = o(f(n)).
An event occurs almost surely (a.s.) if its probability in Ωn is 1− o(1). We de-
note by S+ the set of all ht = (q0, . . . , qt), each qt ∈ S for t = 0, 1 . . .. By Ht we
denote the history of the processes, that is the n × (t + 1)-matrix with entries
Qi(j), 0 ≤ i ≤ t, 1 ≤ j ≤ n.
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A function f(u1, . . . , uj) satisfies a Lipschitz condition on D ⊆ Rj if a constant
L > 0 exists with the property that

|f(u1, . . . , uj)− f(v1, . . . , vj)| ≤ L

j∑
i=1

|uj − vi|

for all (u1, . . . , uj) and (v1, . . . , vj) in D.

Theorem 1 (Wormald, [9]). Let k be fixed. For 1 ≤ � ≤ k, let y(�) : S+ → R

and f� : Rk+1 → R, such that for some constant C and all �, |y(�)| < Cn for all
ht ∈ S+ for all n. Suppose also that for some function m = m(n):

(i) for all � and uniformly over all t < m, P
(
|Y (�)

t+1 − Y
(�)
t | > n1/5 | Ht

)
=

o(n−3) always;
(ii) for all � and uniformly over all t < m,

E
(
Y

(�)
t+1 − Y

(�)
t | Ht

)
= f�(t/n, Y

(1)
t /n, . . . , y

(k)
t /n) + o(1) always;

(iii) for each � the function f� is continuous and satisfies a Lipschitz con-
dition on D, where D is some bounded connected open set containing
the intersection of {(t, z(1), . . . , z(k)) | t ≥ 0} with some neighborhood of
{(0, z(1), . . . , z(k)) | P

(
Y

(�)
0 = z(�)n, 1 ≤ � ≤ k

)
�= 0 for some n}.

Then:

(a) For (0, ẑ(1), . . . , ẑ(k)) ∈ D the system of differential equations
dz�

ds
= f�(s, z1, . . . , zk), � = 1, . . . , k, has a unique solution in D for z� : R →

R passing through z�(0) = ẑ(�), 1 ≤ � ≤ k, and which extends to points
arbitrarily close to the boundary of D.

(b) Almost surely Y
(�)
t = nz�(t/n) + o(n) uniformly for 0 ≤ t ≤ min{σn,m}

and for each �, where z�(s) is the solution in (a) with ẑ(�) = Y
(�)
0 /n, and

σ = σ(n) is the supremum of those s to which the solution can be extended.

3 Theoretical Lower Bounds for Success Probability

We first analyze the behavior of the algorithm given a formula φ that has all
clauses that are satisfied by 1 = (1, . . . , 1). Then we show that if the density is
high enough then we get the same result.

We denote by CAAA, CAAB, CABB, CBBB sets of clauses containing three, two,
one and none variables from A respectively.

3.1 Formula with All Clauses

In this section we analyze the performance of WRW on a 3-SAT formula φ that
contains all clauses that satisfy 1, i.e. all clauses that have at least one positive
literal.

Let x be any vector of variable values, w(·) be a weight function, and x′, w′(·)
be a random vector and weight function which are obtained from x, w(·) by
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performing one step of the algorithm. Let Ai be a set of all variables that have
value 1 and weight i, Bi a set of all variables that have value 0 and weight i,
and let ai = |Ai|

n , bi = |Bi|
n , a =

∑K
i=1 aK , b = 1− a.

We consider a function V (x) =
∑K

i=1 iai −
∑K

i=1(i− 1)bi, which is obviously
bounded by K. We will show that there exists a positive constant δ such that
for any x we have

E (V (x′)− V (x)) > δ, (1)

which by the Azuma’s inequality implies that a.s. after O(n) steps V (x) becomes
equal to K, and consequently the process stops.

Lemma 1. Let us have an assignment x and X be some variable from A, Y
be some variable from B. If C is an unsatisfied clause, chosen uniformly at
random, then the probability that X occurs in C is 3(1−a2)

(1−a3)n and the probability
that Y occurs in C is 3

(1−a3)n .

Proof. Let C be a clause chosen uniformly at random (not necessary unsatis-
fied). Then

– P (C ∈ CAAA) = a3,P (X ∈ C|C ∈ CAAA) = 3
an ,

P (Y ∈ C|C ∈ CAAA) = 0,
– P (C ∈ CABB) = 3a2b,P (X ∈ C|C ∈ CAAB) = 2

an ,
P (Y ∈ C|C ∈ CAAB) = 1

bn ,
– P (C ∈ CAAB) = 3ab2,P (X ∈ C|C ∈ CABB) = 1

an ,
P (Y ∈ C|C ∈ CABB) = 2

bn ,
– P (C ∈ CBBB) = b3,P (X ∈ C|C ∈ CAAA) = 0,

P (Y ∈ C|C ∈ CBBB) = 3
bn .

In the first case the clause will definitely be satisfied and in each of the lat-
ter three the probability that the clause is unsatisfied equals 1

7 . So we have
P (¬C(x)) = 1

7 (3a2b + 3ab2 + b3) = 1
7 (1− a3).

Now we compute

P (X ∈ C & ¬C(x)) = P (X ∈ C & ¬C(x)|C ∈ CAAB)P (C ∈ CAAB) +
P (X ∈ C & ¬C(x)|C ∈ CABB)P (C ∈ CABB) +
P (X ∈ C & ¬C(x)|C ∈ CBBB)P (C ∈ CBBB) . (2)

Events X ∈ C and ¬C(x) are independent under the conditions, so we have

P (X ∈ C & ¬C(x)) =
1
7

( 2
an

3a2b +
1
an

3ab2 + 0b3
)

= (3)

=
3
7n

(2ab + b2) =
3
7n

(1− a2) (4)

We plug the obtained expression into the definition of conditional probability
and get the desired expression P (X ∈ C|¬C(x)) = 3(1−a2)

(1−a3)n .

The probability P (Y ∈ C|¬C(x)) is computed similarly. �
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Now let ai, bi correspond to x and a′i, b′i to x′. We are interested in
E (V (x′)− V (x)). We can express the change in V as

V (x′)− V (x) =
K∑

i=1

i(a′i − ai)−
K∑

i=1

(i− 1)(b′i − bi) (5)

so to compute E (V (x′)− V (x)) we need to compute E (a′i − ai) and E (b′i − bi).
The numbers ai and bi are changed similarly. The set Ai changes because

some variables leave it and some arrive into it. Now it is convenient to denote
ci = ai and c−(i−1) = bi. Let qci→ci±1 be the number of variables that leave Ai

and arrive into Ai±1. None of the variables can change its weight by more than
one in one step, so we have

– c′i = ci − qci→ci−1 − qci→ci+1 + qci−1→ci + qci+1→ci , for all i, except −K + 1
and K,

– c′K = cK − qcK→cK−1 + cbK−1→bK , and similarly for c−K+1.

Variables go from Ai to Ai+1 when the weights of two variables are
increased, so

E
(
qai→ai+1

)
= 2ai. (6)

Variables go from Ai to Ai−1 and from A1 to B1 when three variables of an
unsatisfied clause decrease weights/flip. Applying lemma 1 we get

E
(
qai→ai−1

)
=

3(1− a2)
(1− a3)n

ain =
3(1− a2)
(1− a3)

ai,E (qa1→b1) =
3(1− a2)
(1− a3)

a1. (7)

Analogously we get

E
(
qbi→bi−1

)
=

3
(1− a3)

bi,E (qb1→a1) =
3

(1− a3)
b1,E

(
qbi→bi+1

)
= 2bi. (8)

Substituting the expressions for a′i into (5) we obtain

V (x′)− V (x) = (9)
K−1∑
i=0

qai→ai+1︸ ︷︷ ︸
Ψ1

−
K∑

i=1

qai→ai−1 − qa1→b1︸ ︷︷ ︸
Ψ2

−
K−1∑
i=0

qbi→bi+1︸ ︷︷ ︸
Ψ3

+
K∑

i=1

qbi→bi−1 + qb1→ba︸ ︷︷ ︸
Ψ4

.

Using equations 6 - 8 we get E (Ψ1) = 2a−2aK,E (Ψ2) = − 3a(1−a2)
1−a3 ,E (Ψ3) =

−2b + 2bK ,E (Ψ4) = 3b
1−a3 , thus

E (V (x′)− V (x)) = 2a− 2aK − 3a(1− a2)
1− a3

− 2b + 2bK +
3b

1− a3
= (10)

4a3 − a2 − a + 1
1 + a + a2

− 2aK + 2bK . (11)
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Using a standard method for finding a local minima by analysis of the first
derivative it can easily be shown that 4a3−a2−a+1

1+a+a2 > 0.42, so if we could bound
2aK by c < 0.42 then we would be able to conclude that E (V (x′)− V (x)) ≥
0.42− c > 0.

Next we argue that aK ≤ 1
K . Thus, taking K ≥ 5 we obtain inequality (1)

with δ = 0.02.

Lemma 2. For any natural number K and for any T = O(n) a.s. at any step
of the WRW before step T we have aK ≤ 1

K .

Proof. We will use Wormald’s theorem to prove that the system behaves close
to solutions of a system of differential equations and then argue that the variable
corresponding to aK never becomes greater than 1

K . Below we check conditions
(i)-(iii).

(i) As at every step only one variable is flipped we have inequalities max|a′l −
al| ≤ 1,max|b′l − bl| ≤ 1 true with probability one.

(ii) This point follows from equations 6 - 8, when we set fai(a0, . . . , bK) =
E
(
qai+1→ai

)
+ E
(
qai−1→ai+1

)
− E
(
qai→ai+1

)
− E
(
qai→ai−1

)
and use ob-

tained expressions for all E (q�) for i > 0, and similarly for fbi , fa1 .
(iii) The functions f� are Lipschitz, because they have finite first derivative.

Thus we get the equations{
dul

dx = fal
(u1, . . . , uK)

dvl

dx = fbl
(u1, . . . , uK)

, (12)

and initial conditions u0(0) = v0(0) = 1
2 , for 0 < i ≤ K, ui(0) = vi(0) = 0.

Almost surely al(t) = ul(t/n) + o(1), bl(t) = vl(t/n) + o(1).
Thus to finish the proof of the lemma we show that the solution of system

(12) satisfies uK(x) < 1
K .

We use induction to show the following:

Claim. For any 0 ≤ R < K, if s is such that
∑K

l=R+1 ul(s) is maximum and
equals α(K −R) then uR(s) > α, which in particular means that the maximum
value of

∑K
l=R ul(s) is greater than α(K −R + 1).

Proof. We denote
∑K

l=R+1 ul(s) by IR+1(s). First note that
dIR+1(s)

ds = quR→uR+1 − quR+1→uR , which follows directly from the definition
of f , so if dIR(s)

ds = 0 then uR ≥ uR+1. Indeed we have

quR→uR+1 − quR+1→uR = 2uR −
3(1− u2)
(1− u3)

uR+1

and the expression 3(1−u2)
(1−u3) equals 2 if u = 1 and is smaller if u < 1. Thus

uR < uR+1 would imply
d
∑K

l=R+1 ul(s)

ds < 0.
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The induction proof will go from R = K − 1 to R = 0. The base of induction
R = K − 1 follows from the fact that duK

ds = 0 implies uK−1 ≥ uK .
Induction step:
Consider s0 such that IR+1(s0) is maximum and equals α(K − R). We have

uR(s0) ≥ uR+1(s0). For the sake of contradiction assume that uR(s0) < α1,
which implies uR+1(s0) < α1. Then

IR+2(s0) = IR+1(s0)− uR+1(s0) > (K −R)α1 − α1,

which leads to a contradiction as (K − R − 1)α1 is the maximum
value of IR+2. �

It follows from the Claim that if the maximum value of IR(s) is α(K −R) then
the maximum value of IR−1(s) is at least α(K −R + 1). Thus if the maximum
value of uK(s) is α then the maximum value of I0(s) is at least Kα. As I0(s)
cannot be greater than 1 we get the inequality uK(s) < 1

K . Thus almost surely
we have aK(t) < 1

K . �

So if K ≥ 5 then there is a constant c > 0 such that at every step of the WRW
the expectation of the amount of change of V (x) is greater than c. The value of
V (x) cannot change by more than 5 at every step so by the Azuma’s inequality
we have

P
(
V (xt) ≤ nK

)
≤ 2e−

(tc−nK)2

2·25t .

The right hand side of the above equation starts to decrease rapidly when tc
becomes greater than nK. This proves the following theorem.

Theorem 2. If φ is a Full 3-CNF formula with a planted assignment r then
almost surely WRW with K ≥ 5 weights finds r in O(nK) steps.

3.2 Random Formula

In this subsection we prove

Theorem 3. Let φ be a random 3-CNF with a planted solution r of density
ρ = ρ(n) −→

n−→∞∞, and ε > 0 be some constant. With high probability WRW with
more than 5 weights finds a vector that differs from r in at most εn coordinates.

Let φ be a random 3-CNF with a planted solution consisting of ones. For
A,B,A1 ⊆ A we denote by CAA1B the set of all unsatisfied clauses that have
one variable from A1, one variable from A \ A1 and one from B. By Cφ

AA1B

we denote the set of clauses in φ that have this property. Analogously we de-
fine CAAiB, CAABi , etc. We define the set of all unsatisfied clauses by Cu and all
unsatisfied clauses in φ by Cφ

u .
For a formula with all clauses the expectation of the number of variables that

at a given step go from A1 to B1 equals

|CAA1B |+ 2|CA1A1B|
|Cu| , (13)
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while for formula φ it is
|Cφ

AA1B |+ 2|Cφ
A1A1B|

|Cφ
u |

. (14)

In the next lemma we show that a.s.
Cφ

AA1B

ρn is close to 6aa1b, which equals
CAA1B

ρn . The same techniques can be used to show that other members of equation
(14) divided by ρn are close to respective members of equation (13) divided
by ρn. Under the conditions of theorem 3 we have Cu

ρn = b3 > ε3, thus the
denominator of (13) is separated from zero, so expression (14) is close to (13).

Lemma 3. Let ρ(n) tend to infinity and b be a constant greater than 0. Then a.s.
for any boolean assignment x and any subsets of variables B,A,A1 ⊆ A, |B|

n = b,
where x has all variables from A equal to 1 and all variables from B equal to 0,
the following inequality holds:

∣∣∣CAA1B

ρn − 3
7a(a− a1)b

∣∣∣ ≤ o(1).

Proof. By simple counting it can be shown that if C is chosen uniformly at
random then P (C ∈ CAA1B) = 3

7a1(a − a1)b. Let Cφ
AA1B be the multiset of

clauses in φ that belong to CAA1B . In total ρn clauses are chosen to be in φ, so
the expectation of the size of Cφ

AA1B equals 3
7a1(a− a1)bρn. Using the Chernoff

bound we get

P

(∣∣∣∣∣ |C
φ
AA1B |
ρn

− 3
7
a1(a− a1)b

∣∣∣∣∣ > ε

)
< 2e

− ε2ρn
3
7 a1(a−a1)b .

We will say that φ is ε-bad if there exists an assignment, and subsets of vari-

ables A,B,A1 ⊆ A for which inequality
∣∣∣∣ |Cφ

AA1B |
ρn − 3

7a1(a− a1)b
∣∣∣∣ > ε is true.

Now we put to use the fact that the probability of a union of events is less than
or equal to the sum of the probabilities of the events to estimate the probability
of φ being ε-bad.

There are 2n boolean assignments, 2n ways to select A and B, and at most
2n to select Ai ⊆ A, so we have

P (φ is bad) ≤ 2e
− ε2ρn

3
7 a1(a−a1)b 23n = e−n(γ1ε2ρ−γ2), (15)

where γ1, γ2 are constants. We can choose ε = ρ−1/3 = o(1) so as ρ → ∞ the
function in the right hand side of the equation (15) is o(1), which completes the
proof. �

Thus for random CNFs with planted solution 1 and vectors with more than εn
zeros, WRW acts as it does for the Full CNF, that is it tends to get closer and
closer to 1. So with high probability an assignment with more than (1−ε)n ones
will be found.
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3.3 Discussion

The obtained theoretical results provide intuition on the reasons of the algo-
rithm’s success. When standard Random Walk starts with a random assignment
there are more occurrences of variables assigned zero in the unsatisfied clauses,
so the number of zero variables decreases. But when the golden ratio conjugate is
reached the numbers of occurrences of zeros and ones become equal and progress
stops. For the same reasons, when WRW starts, the number of zero variables is
decreased. Once there are fewer zero variables than one variables, the ones start
benefiting from increasing weight of randomly picked variables. The problem one
might expect here is that weights of some one variables grow infinitely (or up to
a maximum allowed size), while other variables still stay zero. Lemma 2 shows
that this is not the case with WRW: the set of one variables with maximum
possible weight stays reasonably bounded, and thus the added weight is used in
the ‘struggle’ between one and zero. Formally it is shown via use of a potential
function V .

4 Experiments

In this section we describe experiments done with the WRW algorithm. Our
experiments are done on random and random planted 3-SAT.

With regard to random 3-SAT, our experiments show that WRW works in
linear time for formulas with density 3.9. We studied the running time of the
algorithms on formulas with 10000 variables and then increased the number of
variables in steps of 1000 until 50000. For each fixed density we ran the algorithm
on 100 random instances. The result of this experiment shows linear running time
of WRW for density 3.9 when K = 4. This is interesting when compared with
the empirical evidence that standard random walk requires exponential time for
densities higher than 2.7.

Other experiments that we report here are for random planted 3-SAT. In the
first set of experiments we try to determine for which densities WRW can solve
random planted 3-SAT in a reasonable timebound. It turns out that for any fixed
density WRW works reasonably fast. Our experiment was done on formulas with
10000 variables. The density started from 3 and increased to 10 in jumps of 0.1.
For each fixed density the algorithm ran on 100 random instances and we looked
at the average running time of these 100 instances. The results of this experiment
are summarized in fig. 2 in the next page. As it is seen, the hardest instances are
those with density around 5. When the density is below 3, the formula has too
many solutions and it is easy to find one. When the density is higher than 10,
intuitively speaking, the formula contains a lot of information about the planted
solution and this information guides the algorithm toward it.

The next set of experiments was aimed at figuring out the running time of
WRW on random planted instances of a fixed density. Our observations in this
part were surprising. For density 10, we ran the algorithm on instances with
10000 to 100000 variables. The running time was the highest for instances with
10000 variable and then it reduced and converged to a fixed value and remained
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Fig. 2. Left: Running time vs. density. Right: Number of variables with different
weights vs. time.

steady. We believe that this is because this number of variables is not large
enough to allow us to see the asymptotic behavior of the algorithm. We observed
a similar behavior when the density was set to 4.5.

The last set of experiments was done to check how the number of variables
with each fixed weight changes during the course of the algorithm. For this
experiment K is set to 5, so there are ten classes of variables. The experiment was
done on formulas with 10000 variables and density 30. The result is summarized
in the figure 2. Each curve shows cl, i.e. the total number of variables with a
specific weight in 1000 experiments. The solid lines correspond to c1, . . . , cK ,
the dashed to c0, . . . , c−K+1 starting with the upmost ones and going down.
Since all experiments were finished before 90000 steps, when time approaches to
90000 in the graph, all lines become straight. Planted solution is chosen to be
all one. We see that in fact for all l(1 ≤ l < K) we have cl > cl + 1, which is
even stronger than the fact stated in the Claim used in the proof of Lemma 2.
Another observation about the graphs one could predict using formulas (6), (7)
and (8) is that when a−→ 1 we have the value bi/bi+1 growing, while the value
ai/ai+1 decreases, which intuitively means that the weights are more and more
evenly distributed over ones, while there are more zeros with small weights than
with bigger weights.

5 Conclusion and Future Work

We proposed Weighted Random Walk as a modification of the Random Walk
algorithm studied in [7,2]. The experiment shows that WRW finds a satisfy-
ing assignment for random formulas of density 3.9 and for instances of random
planted 3-SAT of any density. We proved that for instances of random planted
3-SAT with density ω(1), WRW finds a solution that is equal to the planted
solution except on a fraction ε of variables.

It remains open to show that WRW finds a satisfying assignment for instances
of random planted 3-SAT with any density. Analysis of WRW for regular random
formulas is also left open.
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Abstract. A reversible abstract machine architecture and its reversible
machine code are presented and formalized. For machine code to be re-
versible, both the underlying control logic and each instruction must be
reversible. A general class of machine instruction sets was proven to be
reversible, building on our concept of reversible updates. The presenta-
tion is abstract and can serve as a guideline for a family of reversible
processor designs. By example, we illustrate programming principles for
the abstract machine architecture formalized in this paper.

1 Introduction

This paper presents the principles behind a reversible processor architecture. We
are interested in the von Neumann architecture, a classic computer design for
sequential computation with a single random access memory. One of the first
reversible programmable processors built, Pendulum, is of this type [16,17,7].
We shall define an abstract machine and prove that all instruction sets for this
machine that satisfy certain formal conditions, identified and presented in this
paper, are reversible; i.e., their semantics are forward and backward determin-
istic. A unique feature of the reversible abstract machine is a control logic that
allows us to change the direction of execution by flipping the direction bit. It is
noteworthy that any program written in reversible machine code is guaranteed
to be reversible; no programming error can break the reversibility.

The purpose of this paper is to provide a clear specification of the interplay
between the physical and software levels. Our goal is for this formalization to pro-
vide a better understanding of the essence of reversible processor architectures.
From here, hardware designers may extend the model and work downward to-
ward a physical realization (e.g., at the circuit level) and software designers may
work upward through the various abstraction layers (e.g., assembler, high-level
languages, compilers). Understanding this interface is important, as a challenge
of reversible computing is that the entire computing system must be reversible,
from the physical bottom to the abstract top.

We believe that reversible computation models have properties that are
noteworthy in their own right and have interesting implications in other areas.
For example, reversible computing holds the promise of reducing power
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Fig. 1. Reversible abstract machine

consumption [13,2], and unconventional physical computation models, such as
quantum computing, require that all computations are organized reversibly [6].

After presenting the architecture (Sect. 2), we describe the instruction set and
state its formal properties (Sect. 3). We explain the principles of programming
the processor (Sect. 4), and conclude with related work (Sect. 5) and future work
(Sect. 6). An appendix (App. A) containing proof sketches is also included.

2 Reversible Abstract Machine

This section presents the principles behind an abstract reversible processor archi-
tecture. The design of the control logic is based on work by Vieri [16], Frank [7],
Hall [12], and Cezzar [3]. Our contribution is a clear design and a formalization
of a reversible abstract machine for which we will prove that any instruction set
that satisfies certain conditions is reversible.

We are interested in a reversible version of the von Neumann architecture,
a classic computer design with a processing unit (with registers) and random
access memory, instead of more theoretical models, such as Turing machines. A
standard abstract machine performs one-directional execution of machine code,
while a reversible abstract machine allows bidirectional (forward and backward)
execution of reversible machine code.

The challenge of reversibility for an abstract machine is two-fold. First, the
instruction execution must be reversible. This places restrictions on the instruc-
tions possible in such a reversible architecture. Specifically, they must be injective
when considered as functions on machine states. Second, the control logic must
be reversible. With control logic, we refer to the part of the processing unit con-
trolling the program counter, including any interaction from the instructions. To
ensure reversibility, this must also be an injective function on machine states.

Control Logic. The most difficult of these challenges is good design for control.
At any point of program execution, the computation direction of a reversible
machine can be switched (forward, backward). In a standard machine model, we
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constantly face the orthogonality problem. In general, we cannot know whether
we have arrived at the current state by a jump or by sequential execution. Thus,
we cannot reverse program execution and return to exactly the state that led to
the current state. A classic solution to this problem is the generation of a trace
[13,2,3]. For practical purposes, however, this is unsatisfactory, as the trace grows
proportionally to the length of the computation.

A good design for a reversible processor has to take a trace-free approach. This
can be accomplished in an architecture that has three special-purpose registers
involved in the control logic (Fig. 1):

– A program counter (pc) for pointing to the current instruction.
– A branch register (br) for jumps.
– A direction bit (dir ) for specifying execution direction.

Between instruction executions, we update the control state by the following
two rules: (1) If the branch register is zero, add the direction bit to the program
counter. The direction bit has the value 1 or −1, and thus the program counter is
either incremented or decremented. This achieves sequential forward or backward
execution of a program. (2) If the branch register is non-zero, add that (times
the direction bit) to the program counter. A non-zero branch register indicates
that a jump is to be performed. Instructions that require jumps will thus modify
the branch register and not the program counter directly. The effect of this
is to make the control logic reversible by solving the orthogonality problem:
the branch register is preserved after modifying the program counter. This is
sufficient to determine where a jump came from. We will come back to this
important point after formalizing the state model and the execution semantics.

State Model. We model the set of machine states, Σ = M×R× C, as follows.
A machine state σ ∈ Σ is a triple σ = (M,R,C) such that

Memory: M �M : Z32 → Z32

Registers: R � R : RegNames → Z32

Control: C � C : Z32 × Z32 × {1,−1}
where Z32 is the set of 32-bit integers (or any set of n-bit integers) and RegNames
is the set of register names reg0 to reg31 (written $0 to $31 in machine code). In
a state, M and R describe the contents of the memory and the registers (each
is a function from addresses or register names to 32-bit integers), respectively,
and tuple C = (pc, br , dir ) encapsulates the control registers. We do not model
input/output facilities. It is assumed that program and data are entered into
memory before the machine starts and that the results are read from mem-
ory after the machine stops (if it stops). Before loading program and data, all
registers and the entire memory are zero-cleared.

Instructions. The design of the abstract machine is closely tied to the design of
its reversible instruction set. The instructions fall into the two general classes of
data modification and control flow instructions. As an example of a reversible
data modification instruction, consider the addition instruction

ADD $3 $4 .
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Reversible execution step:
σ →ie σ′′ σ′′ →pc σ′

σ →1 σ′

Instruction execution:

σ = (M, R, (pc, br , dir)) I(M(pc), dir) = i 〈σ, i〉 →inst σ′

σ →ie σ′

Control logic:

br = 0
(M, R, (pc, br , dir)) →pc (M, R, (pc +32 dir , br , dir))

br �= 0
(M, R, (pc, br , dir)) →pc (M, R, (pc +32 br · dir , br , dir))

Fig. 2. Semantics of a reversible execution step

The effect of executing this instruction is to add to the value in register $3 the
value in register $4. This instruction has an inverse interpretation: subtract the
value of $4 from $3. A reversible architecture must provide two interpretations
of the same instruction depending on the direction bit: the standard semantics
and the inverse semantics. A standard instruction usually has the effect of over-
writing the destination register irreversibly: the original value of the register
cannot be recovered from the resulting state. Such irreversible instructions are
not allowed in a reversible architecture.

As outlined above, control flow instructions interact with the control state in
non-trivial ways. The unconditional jump instruction

BRA 15

has the effect of adding 15 · dir to the branch register br . It is important that
branch instructions use relative offsets for jumps, and not absolute addresses.
If br �= 0, the control logic adds br · dir to the program counter pc, instead of
irreversibly overwriting the value of pc with an absolute address to perform the
jump. We illustrate programming principles for the abstract machine in Sect. 4.

3 Reversible Instruction Set

The small-step operational semantics shown in Fig. 2 describes the workings of
the machine code after program and data have been entered into memory. We
treat each instruction as atomic, regardless of the actual processor design. Each
step updates the machine state σ = (M,R,C). Below, we will explain the rules
and state the main theorems. As an example of a reversible instruction set, we
use the Pendulum Instruction Set Architecture, PISA [17,7]. The meanings of
the instructions are defined by structural operational semantics, cf. [18].
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Reversible Execution Step. An execution step is described by a relation
→1⊆ Σ ×Σ. The single judgment form shows explicitly how an execution step
consists of two parts: (i) instruction execution (→ie) and (ii) control logic (→pc).
This separation is important when we consider the reversibility properties later,
as the details are more subtle than one would initially assume.

Control Semantics. The relation →pc ⊆ Σ × Σ formalizes the control logic as
described in Sect. 2. The program counter pc is updated, while all other parts
of the state are unchanged. The choice between the two rules depends on the
contents of branch register, br . Operation a +32 b is defined as (a + b) mod 232.

Instruction Execution Semantics. The relation →ie ⊆ Σ × Σ is a single judg-
ment form that defines instruction execution. We will need the direction bit dir
as well as the current instruction M(pc). The instruction interpretation function
I has type (Z32 × {1,−1}) ⇀ Inst , where Inst is a fitting (abstract) descrip-
tion of the instruction set. If the bit pattern does not define a legal instruction,
its interpretation is undefined. An abstract instruction i ∈ Inst will consist of
an instruction name and up to three arguments, which can be either register
names or immediate values (i.e., integer constants contained in the instruction).
Depending on dir , the current instruction M(pc) is mapped into an abstract
instruction i implementing its standard or its inverse semantics. This mapping
is local program inversion performed on-the-fly at execution time [10]. It is im-
portant that the inversion of an instruction depends only on the local context of
the instruction (‘peephole’) and, unlike other program inversion methods [11,14],
does not require global analysis or transformation of the program. This is key
to efficient reversible execution.

Local program inversion is the only feature of I in which we are interested—
the actual bit patterns of the instructions do not concern us. Thus, we only
assume that I(b, d) = i ⇔ I(b,−d) = inv(i). The inverse instruction inv(i) of
an instruction i is specified by its effect on the state such that ∀σin , σout ∈ Σ:

〈σin , i〉 →inst σout ⇐⇒ 〈flip(σout ), inv(i)〉 →inst flip(σin )

where flip((M,R, (pc, br , dir))) = (M,R, (pc, br ,−dir)) flips the direction bit.
Suppose bit pattern b represents instruction ADD $2 $3, then I(b, 1) = ADD reg2

reg3 and I(b,−1) = SUB reg2 reg3. We use the self-inverse function inv defined
by the following table. Unless indicated in this table, we have inv(i) = i. In-
structions RL, RLV , RR, RRV rotate the bit pattern of a register regsd by a
specified number of places to the left or right.

i inv (i)
ADD regsd regt SUB regsd reg t

ADDI regsd imm ADDI regsd −imm
RL regsd amt RR regsd amt
RLV regsd regt RRV regsd reg t
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And-xor:

σ = (M, R,C) regd �= regs regd �= reg t

〈σ,ANDX regd regs regt〉 →inst (M, R[regd 
→ R(regd) ⊕ (R(regs) ∧ R(regt))], C)

Branch-if-equal:

σ = (M, R, (pc, br , dir)) R(rega) = R(regb)
〈σ,BEQ rega regb off 〉 →inst (M, R, (pc, br +32 off · dir , dir))

σ = (M, R, C) R(rega) �= R(regb)
〈σ, BEQ rega regb off 〉 →inst σ

Unconditional-branch:

〈(M, R, (pc, br , dir)),BRA off 〉 →inst (M, R, (pc, br +32 off · dir , dir))

Reverse-unconditional-branch:

〈(M, R, (pc, br , dir)),RBRA off 〉 →inst (M, R, (pc,−(br +32 off · dir),−dir))

Swap-branch-register:

〈(M,R, (pc, br , dir)),SWAPBR regb〉 →inst (M, R[regb 
→ br ], (pc, R(regb), dir))

Memory-register-exchange:

σ = (M, R, (pc, br , dir)) pc �= R(rega)
〈σ,EXCH regd rega〉 →inst (M [R(rega) 
→ R(regd)], R[regd 
→ M(R(rega))], C)

Fig. 3. Excerpt of the instruction semantics of PISA (→inst)

Instruction Semantics. The relation →inst⊆ (Σ × Inst) × Σ is a judgment
form for updating the state by executing an abstract instruction. Except for the
program counter, all parts of a state may be reversibly updated by →inst . As
will be explained below, the relation →inst may be extended with instructions
the execution semantics of which are reversible updates (with the restriction
that pc and M(pc) must not be changed). The concept of a reversible update is
introduced below. An excerpt of the semantics for PISA is shown in Fig. 3. We
shall now describe the semantics of the selected instructions.

Data Modification. And-xor (ANDX ) updates the register regd with the result
of R(regs)∧R(reg t). Memory M and control C are unchanged. The update a⊕b
is defined as bitwise exclusive-or on the binary representation of values a and b.
Similarly, ∧ is bitwise and. Conditions regd �= regs and regd �= regt ensure that
regd is not an operand of ∧, which would be generally irreversible.

Branch Instructions. Branch-if-equal (BEQ) depends on the contents of registers
rega and regb : if they are equal, off ·dir is added to branch register br ; otherwise,
state σ is unchanged. Unconditional-branch (BRA) is similar to BEQ except that
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Fig. 4. Logically reversible update

br is unconditionally updated. Reverse-unconditional-branch (RBRA) flips the
sign of the direction bit and the sign of the branch register after adding off · dir
to it.1 Swap-branch-register (SWAPBR) exchanges the contents of register regb

and branch register br . The branch instructions modify the branch register br ,
but never the program counter pc, which is only updated by the control logic.
This is the way in which instruction execution and control logic cooperate.

Memory Access. Memory access can be performed reversibly by allowing only
an exchange (EXCH ) between a register regd and a memory cell pointed to by
rega (regardless of whether the memory cell holds an instruction or data). This
combines the conventional irreversible load and store instructions that overwrite
values into a single reversible instruction.

Reversible Updates. The conditions of an instruction reversibly updating val-
ues are as follows. We say that a partial function, written as an infix binary
operator � : (A×B) ⇀ C, is injective in its first argument, if ∀a, a′ ∈ A, ∀b ∈ B:
if a� b and a′ � b are defined then

a� b = a′ � b ⇒ a = a′ .

For any operator � injective in its first argument there exists an operator � :
(C ×B) ⇀ A such that ∀a ∈ A, ∀b ∈ B:

((a� b)� b) = a .

For example, n + c = m + c implies n = m and we have (n + c)− c = n for any
integer c. On the other hand, n · 0 = m · 0 does not imply n = m, and thus the
operator · is not injective in its first argument (in fact, it is not injective in any
argument). Bitwise exclusive-or, ⊕, has the useful property that ((a⊕b)⊕b) = a.

1 The operational meaning of RBRA given in [7] is incorrect in that it either breaks
the reversibility of the control logic, or does not work as intended in uncalls of
subroutines. The semantics shown in Fig. 3 rectifies these problems.



Reversible Machine Code and Its Abstract Processor Architecture 63

Every injective operator is also injective in its first argument, but the converse
need not hold. Note that (a � b) � b = a does not imply (c � b) � b = c, so �
and � are not necessarily exchangeable.2

Given a partial function f : D ⇀ B and operator � : (A× B) ⇀ C injective
in its first argument, we call a partial function g : (A×D) ⇀ (A×D) such that

g(x, y) = (x � f(y), y) ,

a reversible update wrt its first argument. There always exists a left inverse

g−1(x, y) = (x� f(y), y) .

A reversible update g is necessarily injective. It is bijective if A × D is finite,
and g is total. The second argument of g and g−1 is returned unchanged. Note
that f does not need to be injective and that parameters x and y may be tuples
(x1, . . . , xn) and (y1, . . . , ym), n,m ≥ 0. Clearly, the above can be stated for any
argument, and not only for the first. Reversible updates are illustrated in Fig. 4.
It is useful to know that a reversible update with ⊕ is self-inverse for any f :

g(x, y) = g−1(x, y) = (x⊕ f(y), y)

Reversible updates are particularly well suited to model changes of a compu-
tation state where one part of the state, x, is updated using another part of the
state, y, that is not changed. As an example, consider the instruction ANDX the
effect of which is described by the reversible update

gANDX(x, (y1, y2)) = (x ⊕ (y1 ∧ y2), (y1, y2)) .

A particular instruction, say ANDX $2 $5 $7, can thus be viewed as a reversible
update of register $2 by gANDX($2, ($5, $7)). It is self-inverse: gANDX = g−1

ANDX.
It is essential for the reversibility of the entire machine architecture that all

modifications of the machine state, be it by instructions or the control logic, are
reversible updates regardless of whether they change memory M , registers R, or
control C. For example, BEQ is a reversible update of branch register br and
relation →pc is a reversible update of program counter pc. This is a requirement
for any machine architecture to be truly reversible.

The concept of reversible updates provides a generic instruction format for a
reversible instruction set architecture (ISA). Reversible updates are particularly
well suited for implementation in reversible hardware or reversible programming
languages (e.g., a self-interpreter for a reversible language [19]). As f is generally
irreversible, a realization in reversible hardware usually requires the addition of
garbage bits to the output and constant presets to the input. For reversible imple-
mentation, there is a direct parallel to the Bennett trick [2] in which a circuit f ′

computing f(y) with garbage bits and constant presets can be inverted to yield
y again and no garbage bits. Fig. 5 shows the general implementation strategy
2 For example, with integer multiplication * and integer division / defined on Z\{0},

we have (a * b) / b = a, but (c / b) * b �= c if b does not divide c.
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Fig. 5. Reversible implementation of reversible update

for reversible updates (constant presets omitted). Also shown is the case of a
copy operator and x = 0, when the strategy defaults to being the Bennett trick.
We assume that copy(x, z) = (x � z, z) can be implemented without garbage
bits. This assumption is not unreasonable as copy is injective, and in general we
expect injective functions to be implementable without garbage generation. In
the case of � = ⊕, copy is implementable by a Feynman gate [6].

Formal Properties. Now, we present the main theorems regarding the abstract
machine and its instruction set. The first theorem states that the semantics
of an execution step (Fig. 2) is forward and backward deterministic if every
instruction in the machine’s instruction set Inst satisfy certain conditions. The
second theorem states that an execution step can be reversed in a particular
simple way. The interested reader can find proof sketches in App. A.

Theorem 1 (Forward and Backward Determinism). Assume that the se-
mantics of every instruction i ∈ Inst is a reversible update with the restriction
that pc and M(pc) must be preserved over →inst . Then, the semantics of an
execution step, →1, is forward and backward deterministic:

1. Forward determinism: ∀σ, σ′, σ′′ ∈ Σ . σ →1 σ′ ∧ σ →1 σ′′ ⇒ σ′ = σ′′

2. Backward determinism: ∀σ, σ′, σ′′ ∈ Σ . σ′ →1 σ ∧ σ′′ →1 σ ⇒ σ′ = σ′′.

This corresponds to saying that →1 is an injective function. Similar results apply
to →pc and →ie . We define the function rev : Σ → Σ by rev = (→pc) ◦ flip to
reverse the execution direction and update the program counter.

Theorem 2 (Local Invertibility). Assume Thm. 1 holds for instruction set
Inst, and that ∀i ∈ Inst . inv (i) ∈ Inst. Individual execution steps are reversible:

∀σ, σ′ ∈ Σ . σ →1 σ′ ⇒ rev(σ′) →1 rev(σ).

An instruction set for which these two theorems hold is reversible, specifically
reversible on the abstract machine of Sect. 2.

Theorem 3. PISA, as presented here and in [7, App.B], without the I/O in-
structions, is a reversible instruction set.
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Thm. 1 states what is usually meant by reversibility. The restrictions on the
instruction set illustrate a central point of this paper: instruction execution and
control logic should be kept separate. Even if an instruction is a reversible update
of the program counter, recovering a unique previous program counter may no
longer be possible. If an instruction modifies either pc or M(pc), we can no longer
uniquely identify which instruction was executed from the resulting state. This
means backwards non-determinism and irreversibility.

Thm. 1 and 2 guarantee some surprising properties for programs written in
reversible machine code. No matter what the program does, regardless of the
programmer’s intent, execution of the program is guaranteed to be reversible.
Furthermore, if the state space is finite, programs either terminate or eventually
return to the precise starting state, looping forever.

4 Programming the Reversible Processor

Rather than giving a general programming methodology, we explain the main
points by examining an example program written in PISA (Fig. 6). The pro-
gram shows some key aspects of reversible programming. The subroutine Fall
implements a simple discrete physical simulation of an object that falls through
a vacuum. The object has two associated variables, h and v, giving its height
in meters and downward velocity in meters per second, respectively. The two
variables are calculated for each second (t = 1, 2, ...) of free fall according to the
following equations where g is the gravitational acceleration at sea level (approx.
10 m/s2). Initially, v0 = 0 and h0 is the height from which the object is dropped.

vt = vt−1 + g

ht = ht−1 − vt +
g

2
The simulation is coded as a subroutine, callable from anywhere in the program.
For simplicity, the subroutine updates two registers (v, h) instead of recording
the values of each iteration in an array. We use symbolic names for registers
(v, h,...) instead of ($1, $2,...). We will now explain the implementation of the
subroutine (labels 27-36) and then subroutine call and uncall (labels 10-12, 18-
21). The subroutine simulates a free fall lasting tend seconds. The program is
loaded into memory at the locations indicated by the labels in Fig. 6.

The paired branch approach is used for reversible jumps [12,7]. Jumping from
one branch instruction to another that points back at the calling branch clears
the branch register and resumes normal sequential execution.

A reversible unconditional jump between labels 27 and 36 is implemented by
the paired branch instructions BRA 9 and BRA -9. To illustrate the reversibility
of this control-flow structure, let control C0 = (36, 0, 1) in a state (M,R,C0). The
execution of BRA -9 at label 36 with →1 leaves M and R unchanged, but changes
C0 to C1 = (27,−9, 1), which is a jump from label 36 to 27. Next, the execution of
BRA 9 at label 27 changes C1 to C2 = (28, 0, 1) and normal sequential execution
is resumed. Now, reverse the execution direction: rev((M,R,C2)) = (M,R,C3)
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Call Fall: Subroutine Fall:

10: ADDI h 1000 27: BRA 9

11: ADDI tend 5 28: SWAPBR rtn ; br <=> rtn

12: BRA 16 ; call 29: NEG rtn ; rtn=-rtn

30: BGTZ t 5 ; t > 0?

Uncall Fall: 31: ADDI v 10 ; v += 10

18: ADDI v 40 32: ADDI h 5 ; h += 5

19: ADDI t 4 33: SUB h v ; h -= v

20: ADDI tend 4 34: ADDI t 1 ; t += 1

21: RBRA 7 ; uncall 35: BNE t tend -5 ; t �= tend?

36: BRA -9

Fig. 6. Example program: free-falling object

where C3 = (27, 0,−1). Executing BRA 9 gives C4 = (36,−9,−1), which is the
reverse jump from label 27 to 36, and then BRA -9 gives C5 = (35, 0,−1), and
we return to the initial state: rev((M,R,C5)) = (M,R,C0). This shows how
paired branch instructions implement reversible unconditional jumps.

A reversible loop structure implements the main part of the simulation. Con-
ceptually, this control-flow structure has two conditionals to maintain [19]: a
loop-entry and a loop-exit conditional. The loop-entry condition must be true
when entering the loop and false after each subsequent execution of the loop
body. Symmetrically, the loop-exit condition will have to be false in all except
the last iteration when it becomes true and the loop is exited. We implement the
loop using the paired branch approach (labels 30-35): at loop entry we expect
t = 0 and at loop-exit t = tend . When the loop is repeated by jumping from 35
to 30, BNE and BGTZ are both executed because 0 < t < tend . The instructions at
30 and 35 are negations of the loop-entry and loop-exit conditions, respectively.
The paired offsets are 5 and -5. Branch instructions BNE and BGTZ are identical
to BEQ (Fig. 3), except that they branch on �= and > 0 instead of =.

A reversible subroutine should be callable from different places in a program.
For this purpose, the paired branch approach does not suffice as a “callee branch”
can only point back to a single “caller branch”. When a non-recursive subroutine
is called, the “return address” in the guise of the branch register is swapped
with a zero-cleared return register (here, rtn), using instruction SWAPBR and
changing the sign using instruction NEG (labels 28-29). After the swap br = 0,
which means that normal sequential execution is resumed and the subroutine
body is executed. The body is enclosed in paired branches, as discussed above,
so at the end of the subroutine execution we reach the same SWAPBR instruction
at which we entered the subroutine. The effect of this will be return to the caller.
Recursive subroutines are implemented by maintaining a call stack with “return
addresses” instead of a single return register rtn.

We can now solve the following simulation problem: an object is dropped from
the top of a tower 1000 m in height. What is the height of the object after a free
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fall of 5 s? This can be calculated (labels 10-12) by initializing registers h and
tend with the corresponding values and calling the subroutine, implemented by
an unconditional jump BRA to the procedure entry (label 28). Recall that all
registers are initially zero-cleared so register v already has the required value.

With the same subroutine, we can also solve the following inverse simulation
problem: after a free fall of 4 s, an object reaches the ground with a downward
velocity of 40 m/s. How tall is the tower? To solve this problem, we change the
execution direction and run the forward simulation backwards (labels 18-21).
The RBRA instruction (Fig. 3) changes the direction bit and runs the subroutine
backwards, i.e. it uncalls the subroutine. Sharing the forward and backward code
is possible because the abstract machine allows changing the execution direction.
Note that forward and backward computation of the subroutine take the same
number of execution steps, and thus there is no penalty for running the forward
code backward, or vice versa.

An abstract machine may have a forward and backward deterministic exe-
cution relation, which means that no information is lost and the machine can
be implemented on reversible hardware. However, as long as there is no facility
to change the machine’s execution direction while running, we cannot share the
code of a subroutine and its inverse. In this case, it will be necessary to implement
two subroutines—one for forward and another for backward computation.

5 Related Work

A great deal of the previous work on reversible machine code suffered from defi-
ciencies. In [3], a history trace was used for reversibility as suggested earlier [13];
in [12] data modification was reversible, but the control logic was unclear and
quite probably irreversible; and in [8] the control logic and certain control flow
instructions were irreversible. We stress that even if each instruction is reversible,
this is not sufficient to ensure reversibility of the complete architecture.

In contrast, PISA is the newest and most complete design of a reversible ar-
chitecture [16]. The description of the instruction set is informal [7], but our
formalization has been shown to be reversible as described in this paper. This
makes PISA the only truly reversible practical programmable architecture. Re-
versible logic gates [9,6] and reversible logic circuits [4,5] have been studied.

A high-level imperative language for reversible programming, Janus, has re-
cently been formalized and confirmed to be reversible [19]. One of the earliest
works considering reversible subroutines was [15].

Reversible languages, such as Janus and PISA, allow efficient standard and
inverse computation. A general method for inverse computation is the Universal
Resolving algorithm [1], which also allows inverse computation of programs that
do not implement injective functions, but is less efficient due to the search space.

6 Conclusions and Future Work

In this paper, we have formally described an abstract machine suitable for re-
versible computing. We clarified that for machine code to be fully reversible both
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the underlying control logic as well as each instruction must be reversible, and
that forward and backward code can be shared if the machine allows a program
to switch between standard (forward) and inverse (backward) computation. We
have shown a general class of instruction sets that are reversible, building on
our concept of reversible updates. We have shown that PISA, as a member of
this class, is reversible. Finally, we gave programming principles for the abstract
machine architecture formalized in this paper.

We posit that reversible computing is sufficiently different from irreversible
computing to warrant consideration as a separate paradigm. As such, we sug-
gest a “principles first” approach to reversible machine architectures. Designing
and implementing hardware for a minimal instruction set based on the princi-
ples outlined in this paper could serve as a first effort in this direction. Work
on a translator from the structured high-level reversible programming language
Janus [19] to PISA is currently in progress.
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A Appendix: Proof Sketches

Proof Sketch for Thm. 1. Each instruction is a reversible update of some
part of the state (e.g., a register), and can therefore be considered an injective
function on the state. Thus,→inst is injective for each individual instruction. The
restriction that pc is preserved ensures that the program counter of the previous
state is unique, as →pc is injective by simple case analysis. The restriction that
M(pc) is preserved ensures that the previous instruction executed is also unique,
so the injectivity of →inst for this instruction then gives the injectivity of →ie .
The composition of two injective functions is itself injective, so →1 is injective.

Proof Sketch for Thm. 2. It can easily be shown that

(→pc)−1 = flip ◦ (→pc) ◦ flip and (→ie)−1 = flip ◦ (→ie) ◦ flip.

Note that flip and rev are self-inverse functions Σ → Σ. In the equation sequence
below, the term to be reduced/expanded in each successive equation is underlined
to make it easier to understand. This is equivalent to the claim of Thm. 2.

(→1)−1 = (→ie)−1 ◦ (→pc)−1 = (→ie)−1 ◦ flip ◦ (→pc) ◦ flip

= (→ie)−1 ◦ flip ◦ rev = id ◦ (→ie)−1 ◦ flip ◦ rev

= (→pc) ◦ (→pc)−1 ◦ (→ie)−1 ◦ flip ◦ rev

= (→pc) ◦ flip ◦ (→pc) ◦ flip ◦ (→ie)−1 ◦ flip ◦ rev

= rev ◦ (→pc) ◦ flip ◦ (→ie)−1 ◦ flip ◦ rev

= rev ◦ (→pc) ◦ flip ◦ flip ◦ (→ie) ◦ flip ◦ flip ◦ rev

= rev ◦ (→pc) ◦ (→ie) ◦ rev = rev ◦ (→1) ◦ rev

Proof Sketch for Thm. 3. By case analysis on →inst , each instruction in
PISA (without the four I/O instructions READ, SHOW, EMIT, TAKE ) can
be shown to be a reversible update. No instruction in PISA can modify pc and
memory access is specifically restricted from modifying the current instruction,
M(pc). Thus, Thm. 1 holds for PISA. The inverse of each instruction is easily
specified by the reversible update as instruction in PISA, and so Thm. 2 holds.
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Abstract. Let G = (VG, EG) be an undirected graph, T = {T1, . . . , Tk}
be a collection of disjoint subsets of nodes. Nodes in T1 ∪ . . . ∪ Tk are
called terminals, other nodes are called inner. By a T -path P we mean
an undirected path such that P connects terminals from distinct sets in
T and all internal nodes of P are inner. We study the problem of finding
a maximum cardinality collection P of T -paths such that at most two
paths in P pass through any node v ∈ VG. Our algorithm is purely
combinatorial and achieves the time bound of O(mn2), where n := |VG|,
m := |EG|.

1 Introduction

For an undirected graph G we write VG, EG to denote the set of nodes and
the set of edges of G, respectively. Let G be an undirected graph, T ⊆ VG

be a distinguished set of nodes (called terminals). All nodes in VG − T are
called inner. Furthermore, suppose that T is partitioned into a collection of sets
T = {T1, . . . , Tk}. By a T -path we mean a path P such that: (i) the endpoints
of P are terminals belonging to distinct sets Tα and Tβ (1 ≤ α �= β ≤ k);
(ii) all internal nodes of P are inner. In particular, the definition implies that
the endpoints of P are distinct. Let P(G, T ) denote the family of all T -paths
in G. A packing (of T -paths) is a function f : P(G, T ) → R+. The size ||f || of a
packing f is the sum

∑
P f(P ). Put

ζf :=
∑(

f(P ) · χVP : P ∈ P(G, T )
)

thus forming a function ζf : VG → R+. Here VP , EP denote the (multi-) sets of
nodes and edges of a path P , respectively; χU denotes the indicator of a (multi-)
set U . A packing of the maximum size (in a certain class) is called maximum.

Given a node capacities vector c : VG → Z+, we call f a c-packing if ζf (v) ≤
c(v) holds for all v ∈ VG. Consider the following problem:

(P) Find a maximum integer c-packing f : P(G, T ) → Z+.

For the case c(v) ≡ 1, this problem was earlier studied in [3] (see also [1,5,6]). It
is known that (P) reduces to the linear matroid matching problem and, hence,
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is polynomially solvable. However, the actual time bound that comes from the
general algorithm is unsatisfactory. Recently, an O(n6)-algorithm for (P) (in case
c(v) ≡ 1) was proposed, see [1] (hereinafter n denotes the number of nodes in a
graph and m — the number of edges). Another algorithmic approach (applicable
to a somewhat more general case of group-labelled graphs) can be found in [4].

In this work we consider the case c(v) ≡ 2, which seems to be more tractable.
The paper is organized as follows. Section 2 discusses some useful properties
of 2-packings. The general algorithmic scheme is presented in Section 3. The
complexity of the suggested procedure is estimated in Section 4. Section 5 sum-
marizes the results and describes several open questions.

2 Basic Properties of 2-Packings

In case all node capacities are even, (P) exhibits the following nice property: the
optimum does not change if we allow arbitrary real-valued packings f , see e.g. [4].
This simple fact allows to employ the standard linear programming techniques,
linear duality theory in particular.

Let us generalize (P) as follows. Consider a collection Q = {Q1, . . . , Qk} of
subsets of VG such that: (i) the sets in Q are pairwise disjoint; (ii) Ti ⊆ Qi

holds for all 1 ≤ i ≤ k. The sets Qi are called islands and Q is called an island
collection. Hereinafter, δ(A) (resp. γ(A)) denotes the set of edges (or arcs) e such
that exactly one (resp. both) endpoints of e are in A. A T -path P is said to be
Q-admissible if |EP ∩ δ(Qi)| ≤ 1 holds for all 1 ≤ i ≤ k. A 2-packing f is said
to be a (Q, 2)-packing if P is a Q-admissible path whenever f(P ) > 0.

Consider a new problem as follows:

(QP) Find a maximum integer (Q, 2)-packing f : P(G, T ) → Z+.

A function w : VG → R+ is called a (Q, 2)-covering if w(VP ) ≥ 2 holds for all
Q-admissible T -paths P . (We assume that any real-valued function h : U → R is
extended to 2U : h(A) :=

∑
a∈A h(a) for all A ⊆ U .) The size ||w|| of a covering c

is c(VG). A covering of the minimum size (in a certain class) is called minimum.
Viewing (QP) as a linear program (obtained by dropping the integrality re-

quirement) one can write the dual problem and the complementary slackness
conditions as follows:

(QC) Find a minimum (Q, 2)-covering w : VG → R+.

(CS1) If f(P ) > 0 for some P ∈ P(G, T ) then w(VP ) = 2.

(CS2) If w(v) > 0 for some v ∈ VG then ζf (v) = 2.

Clearly, any integer packing f : P(G, T ) → Z+ may be given by a multiset P
of T -paths with |P| = ||f ||. We shall use f and P notations interchangeably and
will make no distinction between these two forms.

One may consider two types of packings with a very simple structure. Firstly,
let P be a T -path. Hereinafter we denote the reverse path by P−1. Clearly,{
P, P−1

}
is 2-packing; we call it a double path generated by P , see Fig. 1(a).
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Fig. 1. Elements of a canonical 2-packing

The other class is obtained as follows. Fix a certain subset of terminals A =
{t0, . . . , ts−1}, a collection S = {P0, . . . , Ps−1}, where Pi is a T -path from ti to
ti+1 (indices are assumed to be taken modulo s), and a sequence of non-negative
integers L = (l0, . . . , ls−1). For each 0 ≤ i < s the nodes of Pi, except for the
first li +1 and the last li+1 +1 nodes, are called proper. By a q-prefix of a path P
we mean a path obtained by taking the first q edges of P . Suppose that (A,S, L)
obeys the following properties: (i) for each 0 ≤ i < s the li-prefix of Pi coincides
with the li-prefix of P−1

i−1; (ii) all proper nodes are distinct; (iii) for all 0 ≤ i < s
the li-prefixes of Pi are node-disjoint. Then clearly S is a 2-packing; we call it a
star. In case s is odd, S is called an odd star. Refer to Fig. 1(b) for an example.

We call a 2-packing P canonical if P is a disjoint union of double paths and
odd stars. A maximum 2-packing constructed by our algorithm is canonical.
Hence, we shall prove the following statement:

Theorem 1. For any undirected graph G and a collection of disjoint terminal
sets T there exists, and can be found in O(mn2) time, a maximum 2-packing P
of T -paths that is canonical.

A (possibly empty) path L is called a half T -path if L starts in a node from T
and all intermediate nodes of L are in VG − T . (In contrast to a T -path, a half
T -path may end in any node. Moreover, the first and the last nodes of L may
coincide.)

Let Q = {Q1, . . . , Qk} denote an island collection; put Q := Q1 ∪ . . . ∪ Qk

and Z := VG −Q. The notion of Q-admissibility is extended to half T -paths in
a natural manner. Note that any Q-admissible half T -path is exactly of one of
the following three kinds:

(H1) a path that is fully contained in one of the islands Qα ∈ Q;
(H2) a path that starts in an island Qα ∈ Q, crosses the cut δ(Qα), and ends

in Z;
(H3) a path that starts in an island Qα ∈ Q, crosses the cut δ(Qα), traverses

some (possibly empty) set of nodes in Z, crosses some other cut δ(Qβ) for
α �= β, and ends in Qβ.

The next lemma constitutes the core of our island-extension approach.



A Fast Algorithm for Path 2-Packing Problem 73

a

b

c

d e

f g

h
Q1 Q2

(a) Graph G and a pair of islands Q1 and
Q2

a2

b2

c2

a1

b1

c1

d

f

e2

g2

h2

e1

g1

h1

Q1
1

Q2
1

Q1
2

Q2
2

(b) Graph G(Q) (undirected edges de-
note pairs of oppositely directed arcs)

Fig. 2. Constructing G(Q)

Lemma 1. Let P be a (Q, 2)-packing, Qα ∈ Q be an island, A ⊆ Z be a set of
nodes. Put Q′

α := Qα ∪A, Q′ := Q−{Qα} ∪ {Q′
α}. Suppose that P is a (Q′, 2)-

packing. Also, suppose that for each x ∈ A there is a (Q′, 2)-packing Px and a
half T -path Lx such that: (i) |Px| = |P|; (ii) Lx is contained in Q′

α and ends
in x; (iii) for each y ∈ VLx − {x} one has ζPx(y) ≤ 1. Now if P is a maximum
(Q′, 2)-packing then P is a maximum (Q, 2)-packing.

Proof. Let w denote a minimum (Q′, 2)-covering. One has |P| = ||w||. We claim
that w is also a (Q, 2)-covering, hence P is a maximum (Q, 2)-packing. Suppose
the contrary: there exists a Q-admissible T -path P in G such that w(VP ) ≤ 1.
Path P cannot be Q′-admissible. Therefore, |EP ∩ δ(Q′

α)| ≥ 2. Clearly there is
a part P1 of P that obeys the following properties: (i) P1 starts in Tβ ∈ T for
some β �= α; (ii) P1 ends in a node x ∈ A; (iii) VP1 ∩Q′

α = {x}. Then, w(VP1 ) ≤
w(VP ) ≤ 1. Extend P1 to a Q′-admissible T -path P2 by appending L−1

x to its
end. By (CS2) for w and Px one has w(y) = 0 for all y ∈ VLx − {x}. Therefore,
w(VP2 ) = w(VP1 ) = 1 contradicting with the (Q′, 2)-covering condition for w.

Corollary 1. Let P be a (Q, 2)-packing, let L be a half T -path of type (H2) that
starts in Tα ∈ T . Let ζP(x) ≤ 1 for all x ∈ VL, ζP (x) = 0 for all x ∈ VL∩Z. Put
Q′

α := Qα∪VL, Q′ := Q−{Qα}∪{Q′
α}. Then P is a (Q′, 2)-packing. Moreover,

if P is a maximum (Q′, 2)-packing, then P is a maximum (Q, 2)-packing.

Proof. Since ζP(x) = 0 for all x ∈ A := VL ∩ Z, no path in P passes through
any node x ∈ A, so it is clear that P is a (Q′, 2)-packing. Putting Px := P for
all x ∈ A and applying Lemma 1 one gets the required result.

We also introduce an auxiliary digraph G(Q) defined as follows. Each node
v ∈ Q is split into a pair v1, v2 of nodes in G(Q). Each node v ∈ Z corresponds
to a unique node in G(Q); we identify the latter node in G(Q) with v. Each
edge {u, v} ∈ γ(Z) generates a pair of arcs (u, v), (v, u) in G(Q). Each edge
{u, v} ∈ γ(Qi), 1 ≤ i ≤ k generates four arcs (uj , vj), (vj , uj) in G(Q), j = 1, 2.
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Fig. 3. Possible types of Z-nodes

Each edge {u, v} ∈ EG with u ∈ Qi, 1 ≤ i ≤ k, v ∈ Z generates arcs (u1, v)
and (v, u2) in G(Q). Finally, each edge {u, v} ∈ EG with u ∈ Qi, v ∈ Qj ,
1 ≤ i �= j ≤ k generates arcs (u1, v2), (v1, u2) in G(Q). Nodes v1, v2 in G(Q)
(corresponding to v ∈ Q) are endowed with capacity 1; nodes v ∈ Z in G(Q) are
endowed with capacity 2. An example is depicted in Fig. 2.

Put Ai :=
{
vi | v ∈ A

}
for any set A ⊆ Q. One can extend the notion of

T -path to G(Q): by such a path we mean a directed path connecting a node in
T 1

α with a node in T 2
β for some α, β (1 ≤ α �= β ≤ k). By merging copies of

nodes and arcs, each directed T 1–T 2 path P̂ in G(Q) can be transformed into a
path P in G with both endpoints in T . The resulting path P is a Q-admissible
T -path in G iff P̂ is a T -path in G(Q). Vice versa, any Q-admissible T -path P

in G can be lifted to give a T -path P̂ in G(Q).

3 Algorithm

The algorithm for constructing a maximum 2-packing consists of iterations. It
maintains a certain current 2-packing P0. Each iteration aims to increase |P0|.
Initially P0 := ∅; clearly, O(n) iterations are possible. An iteration consists of a
sequence of phases. An island collection Q0 = {Q1, . . . , Qk} is maintained such
that P0 is a (Q0, 2)-packing. At the beginning of an iteration Qi := Ti for all
1 ≤ i ≤ k. A phase aims to increase either |P0| (in which case a new iteration
starts) or

∑
i |Qi|. Clearly, only O(n) phases are possible during any iteration.

The following invariant holds:

(J1) If P0 is a maximum (Q0, 2)-packing then P0 is a maximum 2-packing.

Canonicity property of a packing is too strong to be maintained directly during
phases. Instead we introduce a relaxed version of it. Let Q = {Q1, . . . , Qk} be
an island collection, let P be a (Q, 2)-packing. As earlier, put Q := Q1∪ . . .∪Qk



A Fast Algorithm for Path 2-Packing Problem 75

and Z := VG − Q. Then P is said to be weakly Q-canonical if for each node
v ∈ Z exactly one of the following four cases (Z1)–(Z4) applies:

(Z1) No path from P passes through v.
(Z2) A unique path P ∈ P passes through v. Also, P has no intersections in Z

with other paths from P . See Fig. 3(a).
(Z3) There are exactly two paths P1, P2 ∈ P that pass through v. Each of P1,

P2 intersects Z by exactly one node, namely v. Paths P1, P2 connect four
distinct islands in Q. See Fig. 3(b).

(Z4) There is a path P1 ∈ P that passes through v. Let v1, . . . , vs be the se-
quence of nodes passed by P1 in Z (in this order). There is a unique path
P2 ∈ P that has intersection with P1 in Z. Namely, P2 passes the nodes
w1, . . . , wt, vj , vj−1, . . . , v1 in Z (in this order). Here t ≥ 0, 1 ≤ j ≤ s. The
nodes v1, . . . , vs, w1, . . . , wt are distinct. Path P1 starts in the same island
where P2 ends. No other path in P (except for P1, P2) passes through nodes
v1, . . . , vs, w1, . . . , wt. Node vj is called the fork node (of paths P1 and P2).
See Fig. 3(c).

Clearly, any canonical (Q, 2)-packing is weakly Q-canonical (moreover, case
(Z3) never applies to it).

Proofs of the next two lemmas are based on certain decomposition properties
of 2-packings and due to the lack of space will appear in the full version of the
paper.

Lemma 2. Let Q be an island collection and P be a (Q, 2)-packing that is weakly
Q-canonical. Then there exists, and can be found in O(m) time, a canonical
(Q, 2)-packing P ′ with |P ′| = |P|.

Lemma 3. Let Q be an island collection and P be a (Q, 2)-packing that is weakly
Q-canonical. Let L be a half T -path of type (H2) that starts in an island Qα ∈ Q
and ends in a node v ∈ Z of type (Z2). Denote by P the unique path in P passing
through v. Let P connect some islands Qβ ∈ Q and Qγ ∈ Q, α �= β, α �= γ.
Finally, suppose that ζP(x) ≤ 1 for all x ∈ VL. Then there exists, and can be
found in O(m) time, a canonical (Q, 2)-packing P ′ with |P ′| = |P|+ 1.

At the beginning of each phase the algorithm has a certain weakly Q0-canonical
(Q0, 2)-packing. With the help of Lemma 2 it is turned into a canonical (Q0, 2)-
packing in O(m) time. Denote the latter packing by P0. The algorithm lifts
each path P ∈ P0 to a (uniquely determined) T -path P̂ in G(Q0) thus forming
a collection P̂0 of T -paths in G(Q0). Adding up the indicators of paths in P̂0

one gets a function ϕ0 : AG(Q0) → Z+ that is a feasible (w.r.t. node capacities)
integer flow in G(Q0) of value |P0|.

The algorithm tries to increase the size of P̂0 by applying the standard aug-
menting approach. More precisely, for an integer S–T flow ϕ : AH → Z+ in a
digraph H endowed with integer node capacities c : VH → Z+ an augmenting
sequence P (w.r.t. ϕ) is a sequence

P = (v0, a1, v1, a2, . . . , al, vl), (1)
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where vi ∈ VH , ai ∈ AH , and the following properties hold:

1. ai connects nodes vi−1 and vi (1 ≤ i ≤ l);
2. if ai leaves vi then ϕ(ai) > 0 (1 ≤ i ≤ l);
3. if ai leaves vi−1 and ai+1 leaves vi then ϕ(vi) < c(vi) (1 ≤ i < l).
4. v0 ∈ S, vl ∈ T ;
5. a1 leaves v0 and al enters vl;
6. ϕ(v1) < c(v1), ϕ(vl) < c(vl).

(Here ϕ(v) denotes the flow through v, i.e. the maximum of two values: the total
incoming flow at v and total outcoming flow at v.) The arcs ai in (1) leaving vi−1

are called forward, others (those leaving vi) are called backward. The definition
implies that the first and the last arcs of P are forward.

The algorithm checks for the existence of an augmenting sequence w.r.t. ϕ0. In
case no augmenting sequence is found, by a simple max-flow min-cut argument
one can see that there exists a set B of nodes of G(Q0) such that: (i) every
directed T 1–T 2 path contains at least one node from B; (ii) the total capacity of
nodes in B is |P0|. Construct an integer weight function w : VG → Z+ as follows:
(i) for every v ∈ Z put w(v) := 2 if v ∈ B, w(v) := 0 otherwise; (ii) for every
v ∈ Q put w(v) := |B ∩

{
v1, v2

}
|.

Lemma 4. w is a minimum (Q0, 2)-covering.

Proof. First prove that w is indeed a (Q0, 2)-covering. Suppose towards con-
tradiction that there is a Q0-admissible T -path P in G such that w(VP ) ≤ 1.
Lift P to a directed T 1–T 2 path P̂ in G(Q0). Since B ∩ VP̂ �= ∅, it follows that
w(VP ) ≥ 1, therefore w(VP ) = 1. Hence, all Z-nodes of P̂ do not belong to B

and there is exactly one Q-node of P̂ belonging to B. Consider the path P−1.
Its image P̂−1 in G(Q0) does not contain nodes from B — a contradiction. The
minimality of w follows from the equality ||w|| = |P0| and the fact that (QC) is
dual to (QP).

Let R be an augmenting sequence. We follow along R while maintaining a current
node q in G(Q0), a collection P̂ of paths in G(Q0), and a path L̂ in G(Q0) ending
in q. Combine L̂ (viewed as a sequence of nodes and arcs) with the suffix of R
starting at q and denote the resulting sequence by Rq. The following invariants
(in addition to (J1)) hold:

(J2) The images P (in G) of paths P̂ ∈ P̂ form a weakly Q0-canonical (Q0, 2)-
packing (denoted by P).

(J3) Rq is an augmenting sequence w.r.t. the flow corresponding to P̂.
(J4) The image of L̂ (in G) is a Q0-admissible half T -path (denoted by L).

Initially P̂ := P̂0, q is the first node of R, and L̂ is the empty path starting
and ending at q. A generic way move along R works as follows. Examine the type
of arc a that follows q in R. If a is a forward arc, then execute a forward step:
add arc a to the end of L̂. Otherwise, there exists a path P̂ ∈ P̂ containing a.
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q q

Fig. 4. Augmentation step in case (Z2): α = β

Let P̂ be split by q into the parts P̂1 and P̂2 (that is, P̂ = P̂1 ◦ P̂2). Perform
a backward step replacing P̂ by P̂ −

{
P̂
}
∪
{
L̂ ◦ P̂2

}
and putting L̂ to be P̂1

with the last arc a removed. Once the end of R is reached, L is a Q0-admissible
T -path that can be added to P , thus completing the iteration.

The above changes always preserve (J3). Property (J1) is preserved as long as
Q0 is unchanged. The remaining of the section is devoted to explaining of how
to maintain (J2) and (J4).

Firstly, if before an augmentation step L is of type (H1) or (H3), then (J2)
and (J4) will hold after this step.

Secondly, suppose that L is of type (H2) before an augmentation. Let Qα ∈ Q
denote the island where L starts. One may assume that VL ∩ Z = {q}. Indeed,
otherwise let r denote the first node of L belonging to Z, r �= q. Then either
ζP(r) = 0 or ζP (r) = 1, so either (Z1) or (Z2) case applies to the appropriate
prefix of R, see below. In both of these cases the current phase completes.

We proceed by case splitting according to the definition of weak canonicity.
Case (Z1). No path in P passes through q ∈ Z. Then by Corollary 1 one can

add node q to Qα; the current phase completes. (Note that extension of islands
cannot violate weak Q0-canonicity of the current packing, so the next phase gets
a weakly Q0-canonical (Q0, 2)-packing P , as required.)

Case (Z2). A unique path P ∈ P passes through q. Also, P has no inter-
sections in Z with other paths from P . Let P go from Qβ ∈ Q0 to Qγ ∈ Q0

for β �= γ. In case α �= β and α �= γ, apply Lemma 3 and complete the current
iteration. If α = β, then by Lemma 1 one can extend the island Qβ by adding
the nodes of P up to q (including q), see Fig. 4. Otherwise one can similarly
extend the island Qγ by adding the nodes of P starting from q (including q).
This completes the phase.

Case (Z3). Let P1, P2 ∈ P be the paths that pass through q. Since P1 and
P2 connect four distinct islands, property (J2) can always be preserved (possibly
with the help of path switching at q), The updated current path is of type (H1);
node q is of type (Z3) or (Z4); property (J4) remains valid.

Case (Z4). Denote the corresponding fork node (see the definition of (Z4))
by f . Two subcases are possible depending of whether ζP(q) = 1 or ζP(q) = 2.

Subcase (Z4-1). Let ζP(q) = 1, denote by P1 the unique path in P passing
through q. Split P at q into the parts P11 and P12 (P1 = P11 ◦ P12). One may
assume that f belongs to P11. Let P1 go from an island Qβ to Qγ . In case α �= β,
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Fig. 5. Augmentation step in case (Z4-1): α �= β, α �= γ
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Fig. 6. Augmentation step in case (Z4-1): α = β
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Fig. 7. Augmentation step in case (Z4-1): α = γ

α �= γ, Lemma 3 applies and the current iteration completes, see Fig. 5. If α = β,
then by Lemma 1 the island Qβ may be extended by adding the nodes of P1 up
to the fork node f (including f), see Fig. 6. Finally, suppose α = γ. Then again
by Lemma 1 the island Qγ may be extended by adding the nodes of P1 starting
from q (including q), see Fig. 7.
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Fig. 8. Augmentation step in case (Z4-2): α = β
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Fig. 9. Augmentation step in case (Z4-2): q �= f , α �= β, γ = δ
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Fig. 10. Augmentation step in case (Z4-2): q �= f , α �= β, γ �= δ

Subcase (Z4-2). Suppose ζP(q) = 2. Denote by P1 and P2 the paths in
P that pass through q. Let P1 go from Qβ to Qγ and P2 go from Qδ to Qβ . If
α = β, then by Lemma 1 the island Qβ is extended by adding the nodes of P1 up
to q (including q), see Fig. 8. Otherwise α �= β. Suppose q �= f . If γ = δ, then by
Lemma 1 the island Qγ = Qδ may be extended by adding the nodes of P1 starting
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q q q

Fig. 11. Augmentation step in case (Z4-2): q = f , α �= β, γ = δ = α

from f (including f) and the nodes of P2 up to f (including f), see Fig. 9. If
γ �= δ, then let q and f split P1 into the parts P11, P12, P13 (P1 = P11◦P12◦P13).
Replace P1 by P11 ◦L−1. Now Lemma 3 applies with L := P−1

13 , so the iteration
is complete, see Fig. 10. Finally, let us consider the case q = f . If γ = δ = α, then
by Lemma 1 the island Qα may be extended by adding the nodes of P1 from f
(including f) and the nodes of P2 up to f (including f), see Fig. 11. Otherwise
(γ �= δ or γ �= α or δ �= α), the augmentation step always succeeds (possibly with
the help of path switching at f). One can assume that VP1 ∩Z = VP2 ∩Z = {f},
since otherwise after replacing the corresponding “long” part of a path by L
(possibly reversed) one may execute an island extension and, hence, complete
the phase. After the augmentation step the node f is of an allowed type, namely
(Z3) or (Z4), and the updated path L is of type (H1); properties (J2) and (J4)
are preserved.

4 Running Time

Now let us estimate the running of the procedure described in Section 3. As
earlier, put n := |VG|, m := |EG|. It was already shown that the algorithm
performs up to O(n) iterations each consisting of up to O(n) phases. It remains
to bound the complexity of a single phase. To store packings we represent each
path by a linked list of edges (or arcs). Packing canonization procedure is carried
out in O(m) time. To find an augmenting sequence R (or figure out that no such
sequence exists) one can traverse the residual graph in O(m) time.

During each augmentation the algorithm may need to find out the islands
containing the endpoints of a certain path P in the current packing. Generally
this cannot be carried out in O(1). But in all these cases the algorithm either
completes a phase (so the straightforward tracing in O(n) works) or the requested
islands may be found by walking O(1) distance from q along P .

Therefore, each augmentation step takes O(1) time, except for the last one,
which may take O(n) time. Totally the running time is O(n2(m+n)) = O(mn2),
as claimed.
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5 Conclusions

There are several ways the above results may be improved and generalized.
Firstly, the approach seems to be directly applicable to the framework of group-
labelled graphs (see [1,4]) thus providing a simple combinatorial algorithm for
constructing a maximum 2-packing of non-returning T -paths.

Secondly, one may consider a generalized version of (P) where c(v) are even
for all v ∈ VG. Obviously, this problem may be solved by the above algorithm
in pseudo-polynomial time with the help of node-splitting transformation. The
capacity-scaling approach should also work here achieving the time bound that
is polynomial in n, m, and logU (where U denotes the maximum capacity). The
exact complexity for this problem is still to be settled.

Finally, the case of singleton terminal classes (|Ti| = 1 for all 1 ≤ i ≤ k) may
be considered. It turns out that our approach is not efficient here. Rather, a
simple augmenting procedure (which resembles Edmonds’ ideas) can be used to
achieve O(mn) time bound. Due to the lack of space, we omit the details. One
may ask if some sort of the blocking augmentation strategy may help to reduce
the time bound even further.
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Abstract. In this paper, we consider the decidability of two problems
related to information flow in a system with respect to some property.
A flow occurs in a system if the conditional probability of the property
under some partial observation differs from the a priori probability of that
property. For systems modelled as finite Markov chains we prove that the
two following problems are decidable: does a system has information flow
for a given regular property? is it true that the system has no information
flow for any (sequential) property?

1 Introduction

In this paper we study the following Security of Information Flow problem:
verify that no partial observation of a system behavior does leak an information
that should be hidden.

Statement of the problem and our results. We use the framework of [14] and its
formalization from [3]. In our trace-based approach, we assume a set of observ-
able low-level events L and a set of (not directly observable) high-level events
H . The question is whether observing a certain low-level trace can give informa-
tion about the occurrence of high-level events in a probabilistic sense, yielding
quantitative information about high-level activity. More precisely we propose a
parameterized view of information flow. We define information flow with respect
to a property (a set of system traces) which is deemed important for the system
under scrutiny. This property is our parameter of the problem. The system has
information flow with respect to the given property if there exist two low-level
observations for which the chosen property has different probabilities of occur-
rence. In this case, the quantitative, probabilistic knowledge about the given
property is sensitive to the observation which can be made, and so there is infor-
mation flow in the system with respect to this property. It is worth mentioning
that this probabilistic definition of information flow is related to Shannon’s orig-
inal definition of information, based on probabilities. In our previous paper [3]
the formalization of information flow was presented for the first time together
with necessary and sufficient conditions for having no information flow for all
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properties in a given system. Here, in order to get decidability results we restrict
ourselves to systems modelled by finite Markov chains (with labelled edges) and
to regular properties. It has a clear practical motivation. A field of application
can be for example verification of security for parallel programming. Interleaving
of actions of different threads is generally managed in a probabilistic way, and
can be modelled as a Markov chain. As for security properties, many of them
are regular.

Our first result states that it is decidable in polytime whether a system has
information flow for a given property. The key ingredient of the algorithm is a
trick from linear algebra, reformulating the notion of information flow as orthog-
onality of the set of vectors corresponding to all possible observations to some
checking vector.

Our second result states that it is decidable in exponential time whether a
given system has no information flow for all properties. We consider two subcases:
no information flow for any property and no information flow for sequential
properties (those that do not consider the explicit value of low level actions).

Plan of the paper. Section 2 introduces the model under study and some related
notations and definitions. In sections 3, 4 we present our decidability results
just mentioned above together with an example of application in the domain
of concurrent programs that illustrates how the interleaving of low-level actions
can give probabilistic information on what happens at the high-level. Section 5
concludes.

Related work. There is an important body of work in studying definitions related
to information flow, for an overview see, e.g., [10]. We restrict the comparaison
to the two features of our formalization: our notion of information flow is pa-
rameterized and it has probabilistic nature.

As far as we are aware of, only the paper of J. Halpern and K. O’Neill [7] pa-
rameterizes information flow by giving a definition of secrecy in multi-agent sys-
tems. They use a modal logic of knowledge in a state-based model as compared to
our approach which is trace-based. Their framework generalizes several existing
approaches and can be extended to probabilistic security. Their parametrization
stems from defining formulas (knowledge) of what must be kept secret.

The other probabilistic approaches are more restrictive. McLean [10] intro-
duces the flow model which distinguishes mere correlation from actual causal
influence. Gray [5] introduces probabilistic interference in a context of finite
state machines and gives a more general information-theoretic framework (as
compared to [10]) including probabilistic channel capacity [6]. Sabelfeld and
Sands [13] define probabilistic noninterference in the context of schedulers for
multithreaded programs, based on the concept of probabilistic bisimulation.
Lowe [9] treats quantitative information flow distinguishing probabilistic aspects
from nondeterminism. A probabilistic process-algebraic approach is given in [1],
focused on noninterference, generalizing the possibilistic variant and allowing for-
mal reasoning about the amount of information flow. All these works are aimed
at the definition of the models and do not deal with algorithmic problems.
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Very few authors studied verification problems related to information flow.
Among probabilistic approaches we can cite [4] that uses a process algebra for-
malism to study bisimulation-based security properties. Concerning probabilistic
models, [12] gives a decidability result for "nondeducibility on composition" for
probabilistic timed automata, and Gray [5] gives a sufficient condition for infor-
mation flow security which seems decidable.

2 Probabilistic Event Systems

Notations. Given a finite alphabet A, A∗ (resp. Aω) denotes the set of finite
(resp. infinite) sequences (or traces) over this alphabet. The set A∞ is the union
of A∗ and Aω. The empty sequence is denoted ε.
Given a sub-alphabet A′ ⊂ A and a trace λ, λ|A′ denotes the projection of λ
onto this sub-alphabet.

Let u, v ∈ (A∗)n, u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn). We denote by
u⊗ v the simple interleaving of u and v defined as u⊗ v = x1y1x2y2 . . . xnyn. If
U, V ⊂ (A∗)n, we denote by U ⊗ V the set: U ⊗ V = {u ⊗ v|u ∈ U, v ∈ V }. If
U, V ⊂ (A∗)ω, the definition of U ⊗ V is extended in a standard way.

Probabilistic Event Systems. The behaviour of a probabilistic event system is
modelled by its set Tr of traces which are finite or infinite sequences of atomic
events from a set E. A particular atomic event τ is distinguished which represents
the halting of the system. For example, if λ is a sequence of atomic events, it is
useful to distinguish between “λ has occurred but the system is still in action”,
and “λ has occurred and the system stopped”. The last case is modelled by the
event λτ . In order to unify the presentation it is convenient to use only infinite
sequences and thus we use λτω instead of λτ . Then, from now on, Tr is a set
of infinite sequences which either do not contain any occurrence of τ or of the
form λτω where λ does not contain any occurrence of τ .

In order to deal with information flow issues, the set of atomic events E is
divided into two disjoint sets, the set H of high-level (i.e. secret) atomic events
and the set L of low-level (i.e. public) ones.

The set of traces Tr is equipped with a probability measure μ over the σ-
algebra generated by the cylinders αEω , such that Tr is μ-measurable. The
measure μ(X) of a measurable set X is denoted as Prμ(X), or shortly Pr(X).
Thus if we consider the infinite tree TS built from Tr with edges labelled by
atomic events, each edge of the tree is equipped with a non-zero probability.
(We assume that every prefix of a trace in Tr has a non-zero probability).

As usual, we introduce the following notation for conditional probabilities: if
P and Q are two measurable events and Pr (Q) �= 0, the conditional probability
Pr(P |Q) is equal to Pr(P ∩ Q)/Pr(Q). Since we are interested only in traces
of the system S we will deal only with the conditional probabilities relative to
Tr . Thus, for each measurable event X we denote by PrS(X) the probability
Pr(X |S) (Pr (S) is supposed to be positive).
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Definition 1. A probabilistic event system is a tuple (E,H,L,Tr , μ) where
E = H ∪ L, H ∩ L = ∅ and H (resp. L) is the set of high-level (resp. low-
level) actions, μ is a probabilistic measure on Eω and Tr ⊂ Eω, the set of traces
of the system, is μ-measurable.

We assume that only low-level actions are observable on the low-level, i.e., for a
trace λ the projection λ|L is observable by low-level users. More precisely, every
finite prefix of λ|L is observable. Thus, from the observation of u ∈ L∗, the low-
level user who is supposed to know the entire system can construct the bunch
BS(u) = {λ ∈ Tr | u is a prefix of λ|L} and possibly deduce some information
on what happened or what will happen. When there is no ambiguity, we will
write B(u) instead of BS(u).

A property is a subset of Eω. From now on we consider only μ-measurable
properties.

Definition 2. A system S is without information flow for a property P if
for every u, v ∈ L∗ such that B(u) and B(v) are non-empty, PrS(P |B(u)) =
PrS(P |B(v)).

The above definition means that, whatever the low level user observes, he does
not get additional information on the probability of P to hold.

A particular case of interest is when only the presence of low level events is
important for P , not their value. Such a property is called sequential and defined
below.

Definition 3. A property P is sequential if there exists P ′ ⊆ (H ∪ {l})ω such
that P = φ−1(P ′) where φ is a morphism which is identity on H and for each
li ∈ L, φ(li) = l.

3 Decidability of Information Flow for a Given Property

We will now state some conditions under which one can decide whether a prob-
abilistic event system has information flow under some property.

The most common probabilistic systems described in a finite way are Markov
chains, and the simplest properties are regular ones, i.e. recognized by a deter-
ministic Muller automaton. We recall below the definition of Markov chains [8]
(with a small change) and Muller automata [11].

Definition 4. We call Markov chain with labelled edges a systemA=(Σ, i, A, T )
where S is a finite set of states, i ∈ S is the initial state, A is a finite alphabet,
T : S × A × S 	→ [0, 1] is a function such that ∀s ∈ S,

∑
s′∈S,a∈A T (s, a, s′) = 1

and for each (s, a) ∈ S ×A there is at most one s′ such that T (s, a, s′) > 0.1

This system is slightly different from a classical Markov chain for which T :
S×S 	→ [0, 1]. Here there can be more than one edge between two states (if they
1 This last condition means that the underlying automaton (without the probabilities)

is deterministic.



86 D. Beauquier, M. Duflot, and Y. Lifshits

have different labels). In order to get decidability results we suppose that T has
its values in the set Q of rational numbers.

Let Pq be the set of paths from state q. The set Pi of infinite paths from the
initial state i is equipped with a probabilistic measure μ in a standard way. A
trace is the infinite sequence of labels of an infinite path.

Let Tr be the set of traces. The probability measure μ′ on Tr is defined as
follows: for every basic cylinder uAω, μ′(uAω ) is the mesure μ(wPq) where w is
the path from i labelled with u and q is the last state of w.

Thus if A is partitioned into two sets of high-level and low-level actions, H
and L, the Markov chain defines a probabilistic event system (A,H,L,Tr , μ′).

Definition 5. A Muller automaton is a tuple M = (Q,A, q0, Δ,F), where Q is
the finite set of states, q0 is the initial state, Δ is the set of transitions and F
is the set of accepting subsets. An infinite word w is accepted by the automaton
if the set of infinitely visited states along some2 path with label w belongs to F .

It is a well known result that deterministic (complete) Muller automata have
the same expressive power as nondeterministic ones [11].

Now that we have defined the type of systems we consider, we can state the
main result.

Theorem 1. Given a system S described by a Markov chain with labelled edges,
and a regular property on infinite traces P given as a deterministic Muller au-
tomaton, we can decide in polytime whether the system S has information flow
for the property P .

Proof. The full proof cannot fit in the page limitation but is available in the full
paper [2]. We can however give here a sketch.

To prove the result, we state the problem in terms of matrices. We want the
probability PrS(P |B(u)) to be a constant (not dependant on u). In other words
we want to exhibit some constant c such that Pr(P∩B(u))

Pr(B(u)) = c for every u, which
is equivalent to: Pr(P ∩B(u)) = c× Pr (B(u)).

1. first we compute a composition of the Markov chain and Muller automaton
of the property, giving a new (labelled) Markov chain

2. from this chain we compute, for each low level event a "one step matrix" Ml

giving the transition probabilities for H∗l,
3. next we show that the information flow problem is equivalent to the or-

thogonality of a linear hull (generated by the initial vector and iterated
multiplication by the one step matrices) and a given “check vector” related
to the probability, from each state of the product markov chain, to satisfy
the property P ,

4. and to conclude we prove that the hull mentioned above is computable.  !

Example 1. Let us consider the problem of information flow for concurrent pro-
grams. The question is whether observing some values for its low variables we
can conclude anything about high ones.
2 Such a path is unique in the case of a deterministic and complete automaton.
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Consider the following multi-threaded program O inspired by [15]:
• Thread α: • Thread β:
h0 := h1; h0 := h2;
l0 := 1; l1 := 1;

The low variables are l0, l1 initially equal to zero, h0, h1, h2 are high variables.
The content of h1 and h2 are different. Suppose that the two threads are sched-
uled probabilistically, with equal probabilities at each step for each thread to be
run. The corresponding Markov chain is given in figure 2.

1

2 3

4 5 6

7 8

9

h1 h2

l0 h2 h1 l1

h2 l0 l1 h1

l1 l0

⊥

⊥

⊥ ⊥

⊥

⊥

Fig. 1. The Markov chain associated to the program (each edge has a probability 1/2)

Each state contains the current state of threads (i.e. the set of instructions
still to execute). For i = 1, 2, the label hi means that the instruction h1 := hi is
executed, and the label li corresponds to the execution of li := 1. The actions of
thread α (resp. β) correspond to the left (resp. right) edges.

For example state 5 corresponds to (α : l0 := 1; β : l1 := 1;) and state 6
corresponds to (α : h0 := h1; l0 := 1;).

Suppose we are interested in the value of h0 at the end of the program, more
precisely in the property P : h0 = h1 after the execution of O. We can represent
P as the language (L ∪H∪ ⊥)∗h1(L∪ ⊥)ω. Indeed this regular expression says
that the last update of h0 is h0 := h1. Notice that this property is sequential.

Using our method, from the Markov chain given previously and the two-state
deterministic Muller automaton corresponding to property P , we get :

1. a composed Markov chain with 13 states,
2. two “one step matrices” Ml0 and Ml1 ,
3. we generate the hull reachable from the initial state using the above one step

matrices (the dimension of the hull is 5 in this case),
4. then we see that this linear hull is not orthogonal to the check vector.

We can then conclude that the program has information flow for property P . In
this particular case it means that, seeing the order in which low level variables
are assigned, the low level user can gain (probabilistic) information on the order
in which high level variables are assigned.
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4 Decidability of General Information Flow

Definition 6. A system is without (sequential) information flow if it is without
information flow for every (sequential) property.

In [3] such systems were characterized, i.e. necessary and sufficient conditions were
given to ensure the absence of such information flow. We will show in this section
that it is possible to decide whether a system is without (sequential) information
flow when the considered system is a Markov chain with labelled edges.
The plan of this section is as follows:
– we first recall some definitions and notations necessary to state the criteria,
– then we recall the theorems from [3],
– and we conclude by proving that all these criteria are decidable for the

models considered

In the following, low level actions are denoted a, b, ..., sequences of low-level
actions u, v, ..., sequences of high-level actions α, β, ... and traces λ, λ′, ....

Let S = (E,H,L,Tr , μ) be a system, T be the associated probabilistic tree
and Pref (Tr) denote the set of finite prefixes of traces of Tr We define:
Hn(Tr) = {(α1, ..., αn) ∈ (H∗)n | ∃ a1, ..., an ∈ L α1a1...αnan ∈ Pref (Tr)}.
Ln(Tr) = {(a1, ..., an) ∈ Ln | ∃ α1, . . . , αn ∈ H∗ α1a1...αnan ∈ Pref (Tr)}
Trn = {α1a1 . . . αnan ∈ Pref (Tr ) | αi ∈ H∗, ai ∈ L}.

For the decidability proof given below, we need to introduce some technical
terms related to the probabilistic tree T .

We are interested in the set of sequences of high-level actions (including the
empty word) which can occur starting from a node x. To make this set of se-
quences more explicit we build for each such node x a probabilistic tree Tx in
the following way: we keep only the high edges reachable in T from x, and for
each node y (including x) accessible from x by a high path with at least one low
edge starting from y, we add a node y′ and an edge (y, y′) labelled by ε and with
a probability equal to the sum p of the probabilities of low edges starting from
y in T . The tree Tx is a probabilistic tree which has the following meaning: the
probability of a path in Tx starting from x labelled by α (without ε labels) is
exactly the probability that the sequence of high-level actions α occurs from x;
the probability of a path in Tx starting from x labelled by α and ending in a leaf
is the probability that from x the sequence of actions α followed by a low-level
action occurs.

A tuple (x, x′, y, y′) of nodes of the tree T is H,L-compatible if there exist
(α1, ..., αn), (β1, ..., βn) ∈ Hn(Tr), and (a1, ..., an), (b1, ..., bn) ∈ Ln(Tr) such that
the paths from the root to x, x′, y, y′ are labelled respectively by α1a1...αnan,
α1b1...αnbn, β1a1...βnan and β1b1...βnbn.

Let p1, ..., pn, q1, ..., qn be the probabilities of edges labelled by a1, ..., an on
the path from the root to x (resp. y). Let p′1, ..., p

′
n, q′1, ..., q′n be the probabilities

of edges labelled by b1, ..., bn on the path from the root to x′ (resp. y′).
An H,L-compatible tuple (x, x′, y, y′) is perfect if for every i = 1, ..., n we

have pi/qi = p′i/q
′
i.

Let us now rephrase theorems from [3].



Decidability of Parameterized Probabilistic Information Flow 89

Theorem 2. A probabilistic system such that Tr �⊂ Hω is

1. without information flow iff its projection on L is reduced to a single trace.
2. without sequential information flow iff

(1) ∀n > 0 Trn = Hn(Tr )⊗ Ln(Tr).
(2a) Every H,L-compatible tuple (x, x′, y, y′) of the tree T is perfect and
(2b) the probabilistic trees Tx (resp.Ty) and Tx′ (resp.Ty′) are isomorphic.
(3) For every n > 0 (Ln(Tr) �= ∅ → PrS(Tr ∩ (H∗L)n−1Hω) = 0).

We can now state our decidability result:

Theorem 3. Given a system S described by a Markov chain A with labelled
edges, one can decide in exponential time whether S has (sequential) information
flow.

Proof. The proof of this theorem is given in the full paper [2]. Here are the main
ideas.

First for non sequential information flow the criterion is clearly decidable.
For point (1) of sequential information flow we compute the deterministic

finite automata recognizing respectively ∪n∈NTrn and ∪n∈N(Hn(Tr )⊗Ln(Tr)).
Checking the equality of the two languages is decidable.

For point (2) we compute an automaton whose states are the quadruples of
H,L-compatible states (states corresponding to some H,L-compatible nodes)
and verify on the fly that the ratio on probabilities are preserved, and that the
corresponding probabilistic trees are isomorphic.

For point (3) we compute ergodic sets containing only high-level actions and,
if one exists, reason on the number of low-level actions necessary to reach this
ergodic set.  !
Here is an example of system without sequential information flow. In particular
the ratio of probabilities of events l1 and l2 from state 2 to state 4 and from
state 3 to state 5 is the same.

1

2 3

4 5

h, 3/4 h′, 1/4

l1, 1/4 l2, 1/2 l1, 1/3 l2, 2/3

h, 1/3

h, 1/4

h′, 1/2

l, 2/3 l, 1/2

Fig. 2. A Markov chain without sequential information flow

5 Conclusion and Further Work

This paper presents two decidability results for information flow when the system
is a Markov chain with labelled edges and properties are regular. First we show
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that it is decidable whether a system has information flow for a specific regular
property. Then we consider the decidability of absence of information flow for
a class of properties and prove that the criteria given in [3] to ensure that the
system has no information flow for two classes of properties, are decidable.

As it was noticed in the introduction, very few papers are devoted to algorith-
mic questions related to information flow. To our knowledge, our results are the
first decidability ones for a probabilistic and parameterized model. This opens a
way to quantitative evaluation of information flow.

Interesting open questions include: (1) computing quantitative estimations of
information flow, (2) generalizing our algorithms to more expressive formalisms
of system/property descriptions and (3) implementing and experimental testing
of our algorithms in some applied domain.

Acknowledgements. We are grateful to Anatol Slissenko for the numerous and
fruitful discussions about this paper.
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and Nikolay Vereshchagin5

1 CWI, Amsterdam
buhrman@cwi.nl

2 University of Chicago
fortnow@cs.uchicago.edu

3 Institute of Mathematics of Czech Academy of Sciences
mkoucky@cs.mcgill.ca

4 DePaul University, Chicago
jrogers@cs.depaul.edu

5 Lomonosov Moscow State University
ver@mech.math.msu.su

Abstract. The class TFNP, defined by Megiddo and Papadimitriou,
consists of multivalued functions with values that are polynomially veri-
fiable and guaranteed to exist. Do we have evidence that such functions
are hard, for example, if TFNP is computable in polynomial-time does
this imply the polynomial-time hierarchy collapses? (By computing a
multivalued function in deterministic polynomial-time we mean on ev-
ery input producing one of the possible values of that function on that
input.)

We give a relativized negative answer to this question by exhibiting
an oracle under which TFNP functions are easy to compute but the
polynomial-time hierarchy is infinite. We also show that relative to this
same oracle, P �= UP and TFNPNP functions are not computable in
polynomial-time with an NP oracle.

1 Introduction

Megiddo and Papadimtriou [MP91] defined the class TFNP, the class of mul-
tivalued functions with values that are polynomially verifiable and guaranteed
to exist. A function from TFNP is specified by a polynomial time computable
binary relation R(x, y) and a polynomial p such that for every string x there
is a string y of length at most p(|x|) such that R(x, y) holds. It maps x to any
y of length at most p(|x|) such that R(x, y). This class of functions includes
Factoring, Nash Equilibrium, finding solutions of Sperner’s Lemma, and finding
collisions of hash functions.

Fenner, Fortnow, Naik and Rogers [FFNR03] consider the hypothesis, which
they called “Q”, that for every function in TFNP there is a polynomial-time
procedure that will output a value of that function. That is, Proposition Q states

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 92–103, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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that for every R and p defining a TFNP-function there is a polynomial time
computable function f such that R(x, f(x)) holds for all x.

Fenner et. al. showed that Q is equivalent to a number of different hypotheses
including

– Given an NP machine M with L(M) = Σ∗, there is a polynomial-time
computable function f such that f(x) is an accepting computation of M(x).

– Given an honest onto polynomial-time computable function g there is a
polynomial-time computable function f such that g(f(x)) = x. (A function
g(x) is called honest if there is a polynomial p(n) such that |x| ≤ p(|g(x)|)
for all x.)

– For all polynomial-time computable subsets S of SAT there is a polynomial-
time computable function f such that for all φ in S, f(φ) is a satisfying
assignment to φ.

– For all NP machines M such that L(M) = SAT, there is a polynomial-time
computable function f such that for every φ in SAT and accepting path p
of M(φ), f(φ, p) is a satisfying assignment of φ.

Proposition Q implies that all disjoint coNP-sets are P-separable (which
implies that NP ∩ coNP = P) and is implied by P = NP. Fenner et. al. ask
whether we can draw any stronger complexity collapses from Q, in particular
if Q implies that the polynomial-time hierarchy collapses. We give a relativized
negative answer to this question by exhibiting an oracle relative to which Q holds
and the polynomial-time hierarchy is infinite. Our proof uses a new “Kolmogorov
generic” oracle.

The proposition Q naturally generalizes to other levels of the polynomial
hierarchy. Namely, define the class of TFΣp

k as follows. A TFΣp
k-function is

specified by a binary relation R(x, y) computable in polynomial time with an
oracle from Σp

k−1 and a polynomial p such that for every string x there is a
string y of length at most p(|x|) such that R(x, y) holds. For k ≥ 1 we will label
Σp

kQ the statement

for every R and p defining a TFΣp
k-function there is a function f com-

putable in polynomial time with an oracle from Σp
k−1 such thatR(x, f(x))

holds for all x.

For k = 1 we obtain the class TFNP and the Proposition Q.
Proposition TFΣp

k implies that PΣp
k−1 = Σp

k ∩Πp
k and is implied by Σp

k−1 =
Σp

k . A natural question is whether, similar to the implication

Σp
k−1 = Σp

k =⇒ Σp
k = Σp

k+1,

Proposition TFΣp
k implies Proposition TFΣp

k+1. We give a relativized negative
answer to this question in the case k = 1: for any Kolmogorov generic G the
Proposition TFΣp,G

2 does not hold. Besides, we show that for any Kolmogorov
generic G, PG �= UPG.
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2 Definitions and Preliminaries

Let Σ denote the alphabet {0, 1}. The set of all finite-length binary strings is
denoted Σ∗.

2.1 Complexity Classes

Our model of computation is the oracle Turing machine, both deterministic
(DTM) and nondeterministic (NTM). Unless otherwise noted, all machines in
this paper run in polynomial time. We assume that the reader is familiar with
the complexity classes P, NP, UP, PSPACE, Σp

k , and Πp
k for k ≥ 0. The class

Δp
k is defined as PΣp

k−1 , and PH =
⋃

k Σp
k stands for the Polynomial hierarchy.

The class FΔp
k is defined as the class of all functions from Σ∗ to Σ∗ that are

computable in polynomial time with an oracle from Σp
k−1.

We say that disjoint sets B,C are P-separable if there is a set D ∈ P such
that B ⊂ D and C ⊂ Σ∗ −D.

Proposition Q and its generalizations Σp
kQ are defined in the Introduction. It

is easy to see that Σp
kQ is equivalent to the following statement:

For every nondeterministic polynomial-time Turing machine M with or-
acle from Σp

k−1 that accepts Σ∗, there is a function f in FΔp
k such that,

for all x, f(x) is an accepting computation of M(x).

It is easy to see the following:

Proposition 1. If Σp
k−1 = Σp

k then Σp
kQ is true. If Σp

kQ is true then Δp
k =

Σp
k ∩Πp

k .

2.2 Kolmogorov Complexity and Randomness

An excellent introduction to Kolmogorov complexity can be found in the text-
book by Li and Vitányi [LV97]. We will state here the definitions and results
relevant to our work. Roughly speaking, the Kolmogorov complexity of a binary
string x is defined as the minimal length of a program that generates x; the
conditional complexity C(x|y) of x conditional to y is the minimal length of a
program that produces x with y as input.

A conditional description method is a partial computable function Φ (that is,
a Turing machine) mapping pairs of binary strings to binary strings. A string
p is called a description of x conditional to y with respect to Φ if Φ(p, y) = x.
The complexity of x conditional to y with respect to Φ is defined as the minimal
length of a description of x conditional to y with respect to Φ:

CΦ(x|y) = min{|p| | Φ(p, y) = x}.

A conditional description method Ψ is called universal if for all other conditional
description methods Φ there is a constant k such that

CΨ (x|y) ≤ CΦ(x|y) + k
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for all x, y. The Solomonoff–Kolmogorov theorem [Sol64, Kol65] states that uni-
versal methods exist. We fix a universal Ψ and define conditional Kolmogorov
complexity C(x|y) as CΨ (x|y). We call this Ψ the reference universal Turing
machine. The (unconditional) Kolmogorov complexity C(x) is defined as the
Kolmogorov complexity of x conditional to the empty string. Comparing the
universal function Ψ with the function Φ(p, y) = Ψ(p, empty string) we see that
the conditional Kolmogorov complexity does not exceed the unconditional one:

C(x|y) ≤ C(x) + O(1).

Comparing the universal function Ψ with the function Φ(p, y) = p we see that
the Kolmogorov complexity does not exceed the length:

C(x) ≤ |x|+ k (1)

for some k and all x. For most strings this inequality is close to an equality: the
number of strings x of length n with

C(x) < n−m

is less than 2n−m. Indeed, the total number of descriptions of length less than
n−m is equal to

1 + 2 + · · ·+ 2n−m−1 = 2n−m − 1.

In particular, for every n there is a string x of length n and complexity at least
n. Such strings are called incompressible, or random.

Let f(x, y) be a computable function mapping strings to strings. To describe
the string f(x, y) it is enough to concatenate x and y. Thus we obtain:

C(f(x, y)) ≤ 2|x|+ |y|+ k. (2)

where k depends on f and on the reference universal machine but not on x, y.
The factor of 2 is needed, as we have to separate x from y. To this end we write
the former in a self-delimiting form. As a self-delimiting encoding of a string
u we take the string ū obtained from u by doubling all its bits and appending
the pattern 01. For instance, 001 = 00001101. A similar inequality holds for
computable functions of more than 2 strings:

C(f(x1, x2, . . . , xn)) ≤ |x1|+ 2|x2|+ · · ·+ 2|xn|+ O(1). (3)

2.3 Generic Oracles

An oracle is a subset of Σ∗. The oracles we use are generic oracles. What does this
mean? To explain this we need to recall some definitions from category theory.

A condition on an oracle A is a finite set of requirements having the form
x ∈ A and y �∈ A, where x, y ∈ Σ∗. We say that an oracle A satisfies a condition
α if all the requirements in α are satisfied by A. Let U be a family of oracles and
let Uα denote the set of all A ∈ U satisfying α. An interval in U is a non-empty
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subset of U having the form Uα. A subset S of U is called dense in U if every
non-empty interval I in U has a sub-interval J in U included in S. Countable
intersections of dense sets are called large subsets of U .

Let P be a property of oracles, that is, a set of oracles. We say that P holds
for a generic oracle if the set P is large in the set of all oracles. We say that P
holds for a generic oracle in U if the set P ∩U is large in U . Assume that U has
the following property: the intersection of every infinite descending chain

I1 ⊃ I2 ⊃ I3 ⊃ . . .

of intervals in U is non-empty. Then by the usual diagonalization we can show
that every large subset of U is non-empty. Using a metaphor, we can say that
“generic oracles exist.” Our usage of the term “generic” oracle is similar to the
usage of the term “random” oracle. Indeed, we say that a property P holds for
a random oracle if P is a measure 1 set.

Note that if a property P0 holds for a generic oracle in U and P1 holds for
a generic oracle in U then so does P0 ∩ P1. Therefore if we want to prove that
Proposition Q holds but that the polynomial hierarchy is infinite relative to
a generic oracle in U we can prove these things separately. The same applies
to countable families of properties. If each Pi holds for a generic oracle in U
then the property

⋂
i Pi also holds for a generic oracle in U . For example, if we

want to prove that P �= NP relative to a generic oracle in U we can define a
relativized language L that is in NP for generic oracle in U and then define a set
of requirements Ri, where Ri is the statement “DTM number i does not accept
L.” Then it is enough to prove, for every i, that Ri holds relative to a generic
oracle in U . To this end it suffices to prove that the set U ∩ Ri is dense in U :
every interval I in U has a subinterval J in U such that J ⊂ Ri.

Good introductions and several applications of the approach we are using here
may be found in the papers [BGS75, FFKL03, FR03, MV96].

Previous Results

The method we are using was essentially designed in [BGS75]. Let U be a family
of oracles. Fix a PSPACE-complete set H and consider oracles of the form

A⊕H = {0x | x ∈ A} ∪ {1x | x ∈ H},

where A ∈ U . We will denote the set of all such oracles by U⊕PSPACE-complete.
Consider “tower” numbers, that is, natural numbers 1, 2, 22, 222

, . . . . The next
tower number from n is 2n. Let

U0 = {A | A ∩Σn = ∅ for all non-tower n}.

Most of the oracle constructions use (U⊕PSPACE-complete)-genericity where
U is a subfamily of U0. We survey three such particular families U , which are
relevant to the results of this paper:
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– Relative a generic oracle in U0⊕PSPACE-complete (Cohen-generic, accord-
ing to [FR03]) the following is true: P = NP∩coNP, Q is false [IN88], there
are disjoint P-inseparable coNP-sets, P = UP [FR03], and, moreover, the
polynomial hierarchy PH is infinite (this is a direct corollary of lower bounds
for constant depth circuits from [H̊as89]).

– Let U1 = {A ∈ U0 | |A ∩ Σn| ≤ 1 for all tower n}. Relative to a generic
oracle in U1 ⊕ PSPACE-complete (UP-generic, according to [FR03]), P =
NP∩coNP, all disjoint coNP-sets are P-separable [BGS75], Q is true and
P �= UP = PH [FR03].

– U2 = {A ∈ U0 | |A∩Σn| = 1 for all tower n}. Relative to a generic oracle in
U2 ⊕ PSPACE-complete we have P �= NP ∩ coNP = UP = PH [MV96].

2.4 Kolmogorov-Generic Oracles

Neither of genericity notions known from the literature is suitable to construct
an oracle such that Q is true but PH is infinite. For instance, this is easily seen
for the three genericity notions surveyed above. So we have to define a new one,
which we call Kolmogorov generic.

For each n fix a binary string Zn of length n2n that is incompressible, that
is, C(Zn) ≥ |Zn| −O(1). Divide Zn into substrings z1, . . . , z2n , each of length n.
Let Yn be the set {〈i, zi〉|i ∈ {0, 1}n}. (Here we identify i with the integer binary
represented by i. The pair 〈u, v〉 is encoded be the string ūv, where ū stands for
the self-delimiting encoding of u defined in Section 2.2.) Let U be the set of all
subsets of

⋃
n Yn where the union is over all tower n.

When proving that a certain property holds for a Kolmogorov generic oracle
A = G ⊕ H ∈ U ⊕ PSPACE-complete we use the fact that every two different
lengths of strings in G are exponentially far apart. When discussing a particular
polynomial-time computation, we only have to worry about strings at exactly one
length in the oracle. Longer strings cannot be queried by the computation and so
cannot affect it. Shorter strings can all be queried and found by the computation.

3 Results

Theorem 1. Relative to a generic oracle in U ⊕ PSPACE-complete (a
Kolmogorov-generic oracle), Proposition Q is true.

Proof. We first assume that P = PSPACE and prove that Proposition Q is
true under a generic oracle G ∈ U .

As explained above it suffices for every polynomial-time oracle NTM M , to
prove that relative to a Kolmogorov-generic oracle,

M accepts Σ∗ ⇒ there is a polynomial time machine
finding for each input an accepting computation of M .

(4)

Fix M . WLOG M on an input x runs in time |x|k + k, for some constant k
independent of its oracle. Indeed, for each oracle nondeterministic Turing ma-
chine M (not necessarily polynomial time) and natural k we can construct an
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NTM that acts as M supplied with a clock that prevents it to run more than in
|x|k + k steps. If MA runs in polynomial time then for some k the machine MA

supplied with the clock |x|k + k is equivalent to MA.
We will show that the set of oracles satisfying (4) is dense. Let I = Uα be an

interval in U . We need to construct a sub-interval J of I such that (4) is true
for all G ∈ J . Consider two cases.

(1) There is a sub-interval of I such that for all A in that sub-interval, MA

does not accept Σ∗. Then let J be equal to that sub-interval of I.
(2) There is no such sub-interval. Consider the following polynomial-time

deterministic algorithm A that, given an input x of length at least two, finds an
accepting path of the computation MG(x). Let n be the largest tower number
smaller or equal to 4|x|2k. The algorithm A will try to collect enough information
about the oracle G so that it could find an accepting path of MG(x). The
algorithm A starts by asking the value of G on all the strings in Yi for i ≤ logn.
This can be done in time polynomial in |x|.

After that it will iteratively build a set Q of strings from G∩Yn starting from
an empty set Q. Using the assumption that P = PSPACE and the information
about G collected so far, the algorithm finds the lexicographically first accepting
path of MG on x under the assumption that G ∩ {〈i, u〉|i, u ∈ {0, 1}n} = Q.
(Note, M on x cannot query any string in Ym, for m > n.) Such path does exist,
as otherwise, the sub-interval J of I, consisting of all G′ with G′ ∩ {〈i, u〉|i, u ∈
{0, 1}n} = Q and G′ ∩ Yi = G ∩ Yi for all i ≤ logn would qualify case (1).

If this path is indeed an accepting path of the computation MG(x), A is done.
If not then there is a string w ∈ (G ∩ {〈i, u〉|i, u ∈ {0, 1}n}) \Q that is queried
along this path. Clearly such w is from Yn. The algorithm picks the first such w,
adds it to the set Q and iterates the process. Clearly, A eventually finds a correct
accepting path of MG(x). We claim that A will find it within polynomially many
iterations.

Observe, given M , x, G∩Y≤log n each string in Q can be described by k log |x|
bits by its order number among the queries of M on x on the accepting path
described above. The set G ∩ Y≤log n has at most n + logn + log logn + . . .
strings, each of length at most logn. Thus G ∩ Y≤log n can be described in at
most O(n logn) bits. Hence if Q reaches size �, we can describe Q by �k log |x|+
O(n log n) + 2|x|+ O(1) bits (by Equation (3)).

Recall that all of the strings in Yn are derived from Zn. Because of the way
Yn is defined any set A of � strings from Yn has Kolmogorov complexity at least
�n/2−O(1).

Indeed, each element of Yn is a pair 〈i, y〉. Let p denote the concatenation of
all y’s from all pairs 〈i, y〉 outside A arranged according to the order on i’s. The
length of p is n(2n− �). The initial string Zn can be obtained from p by inserting
the second components of pairs from A, their first components specify the places
where to insert. Thus given p and the shortest description q of A we can find
Zn, and Equation (2) implies

n2n −O(1) ≤ C(Zn) ≤ |p|+ 2|q|+ O(1) = n(2n − �) + 2C(A) + O(1).
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Since 2+2k log |x| < n ≤ 4|x|2k, the Kolmogorov complexity of � strings from
Yn is at least �k log |x|+ �−O(1). Thus Q cannot grow bigger than O(n log n)+
2|x| = O(|x|2k log |x|).

We can remove the hypothesis that P = PSPACE by first relativizing to
an oracle making P = PSPACE. It is known that relative to every PSPACE-
complete set H we have P = PSPACE. Thus, relative to H , Q-property holds
relative to a generic oracle in U . As H is computable, the Kolmogorov complex-
ity relativized by H coincides with the unrelativized Kolmogorov complexity (up
to an additive constant), and relativization does not change the notion of Kol-
mogorov genericity. In other words, Property Q holds relative a generic oracle
in U ⊕ PSPACE-complete.  !

Theorem 2. Relative to a generic oracle in U ⊕ PSPACE-complete (a
Kolmogorov-generic oracle), for all k ≥ 0 we have Σp

k �= Σp
k+1.

Proof. Meyer and Stockmeyer [MS72] show that if Σp
k = Σp

k+1 then Σp
k = Σp

j

for all j ≥ k. So it is sufficient for us to show that Σp
k−2 �= Σp

k+1 for all k ≥ 3
relative to G.

We use the Sipser [Sip83] functions as defined by H̊astad [H̊as89]. The function
fm

k is represented by a depth k alternating circuit tree with an OR gate at the
top with fan-in

√
m/ logm, bottom fan-in

√
km logm/2 and all other fan-ins

are m. Each variable occurs just once at each leaf.

Theorem 3 (H̊astad). Depth k − 1 circuits computing fm
k are of size at least

2Ω(
√

m/(k log m)).

Pick a tower n. Set m = 2n/k. The number of variables of fm
k is mk−1

√
k/2 < 2n

for large n. For each of the variables of this formula assign a unique i ∈ {0, 1}n

so we can in polynomial-time find i from the variable and vice-versa.
Now consider the language Lk(G) such that input 1n is in L(G) if fm

k is true if
we set the variables corresponding to i to one if 〈i, zi〉 is in G and zero otherwise.

We will show relative to a Kolmogorov generic oracle G⊕H , Lk(G)∈Σp,G⊕H
k+1 −

Σp,G⊕H
k−2 .
First notice that Lk(G) ∈ Σp,G⊕H

k+1 for all G ∈ U : Consider an alternating
Turing machine that uses k-alternations to simulate the circuit. To determine
whether a variable corresponding to i is true the machine makes the NP query
“is there a z such that 〈i, z〉 is in G.” This gives us a ΣNP,G

k = Σp,G
k+1 machine

accepting Lk(G).
Let M be an alternating Σp

k−2 oracle Turing machine that runs in time nj .
Let I = Uα be an interval in U . We need to construct a subinterval J of I such
that MG⊕H does not accept L(G) for all G ∈ J . Along the lines of Sipser [Sip83]
we can convert the computation to a circuit of depth k−1 and size 2O(nj) whose
input variables correspond to queries to G. Hardwire the queries not of the form
〈i, zi〉 to zero and we have a circuit whose variables are the same as those in fm

k

in the definition of Lk(G) on 1n. By Theorem 3 for sufficiently large n this circuit
cannot compute fm

k so there must be some setting of the variables where the
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circuit and fm
k have different outputs. Add to the condition α the requirement

〈i, zi〉 ∈ G if variable i is assigned 1 in this setting and the requirement 〈i, zi〉 �∈ G
otherwise. For all G ∈ U satisfying the resulting condition, MG⊕H(1n) accepts
iff 1n is not in L(G).  !
We can also show that one-way functions exist relative to G.

Theorem 4. Relative to a Kolmogorov generic oracle G⊕H, P �= UP.

Proof. Define the relativized language LX as {〈i, 0n〉 : (∃z)|z| = n & 〈i, z〉 ∈ X}.
For a string z of length n, there is at most one string of the form 〈i, z〉 in G
so the language is in UPG. A simple argument demonstrates that LG is not in
PG⊕H .  !
Can the proof that Q holds relative to a Kolmogorov-generic be lifted to show
that Σp

kQ holds and we get the collapse of the Δp
k and Σp

k ∩ Πp
k? The answer

is no for k = 2 and the proof of this shows that this is true for a broad class of
finite extension oracles.

To show that Σp
2Q fails relative to a Kolmogorov-generic oracle G, let f be a

function from Σ∗ to Σ∗ where for every x of length n

f(x) = y1 . . . yn−1

and
yj = 1 ⇐⇒ (∃u, z) |u| = n, |z| = 2n + logn, 〈xju, z〉 ∈ G.

No matter what strings are in G, the pigeonhole principle tells us that, for
all n, there will always be a collision, that is, two different strings x1 and x2 of
length n such that f(x1) = f(x2).

Let M be a Σp,G
2 machine that on any input of length n guesses two different

strings of length n in its existential step and then accepts iff those strings collide
on f . It is clear from the definition of f that M can find these collisions and
that it accepts Σ∗. A PNPG

machine that finds an accepting path of M could
be modified to output the two colliding strings on that path so, without loss of
generality, we will assume it does just that.

Theorem 5. Relative to a Kolmogorov generic oracle G⊕H, no PNP machine
can find an accepting path of the computation M(x) for every x.

Proof. Let 〈R,N〉 be an arbitrary pair consisting of an oracle polynomial time
DTM R and an oracle polynomial time NTM N . We will show that the set of
all oracles G such that R with oracle NG⊕H does not find any collision of fG is
dense in U .

WLOG we can assume that there are polynomial upper bounds of the running
time of R and N that do not depend on their oracles. Let pR and pN stand for
those polynomials, respectively.

Let Iα be an interval in U . We will show that for some n there is an interval
Iβ ⊂ Iα such that for all G ∈ Iβ , RNG⊕H

(0n) does not find two strings that
collide on fG.
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Pick a large n that is bigger than the maximal length of strings in the domain
of α and such that 2n + logn is a tower number. (We call the set of all y such
that α contains a condition y ∈ G or y �∈ G the domain of α and use the notation
domα.)

Note that the outcome of RNG⊕H

on input 0n depends only on membership
in G of strings of length at most pN (pR(n)). First we add to α the requirements
y /∈ G for all strings y /∈ Y2n+log n ∪ domα of length at most pN (pR(n)) and
denote by β0 the resulting condition. The condition β is obtained from β0 in at
most pR(n) iterations. In ith iteration we define a condition βi obtained from
βi−1 by adding some requirements of the form y ∈ G and y /∈ G for y ∈ Y2n+log n.

Let us explain this in more detail. For x ∈ Σn and j = 1, . . . , n− 1 let

Bjx = {〈xju, zxju〉 | u ∈ Σn}.

We call the set Bx =
⋃n−1

j=1 Bjx the bag corresponding to x. The value fG(x)
depends only on Bx∩G. More specifically, jth bit of fG(x) is 0 if the set Bjx∩G
is empty.

On each iteration we choose a set D ⊂ Σn of cardinality at most pN (pR(n))
and set oracle’s value on the set

⋃
x∈D Bx. This means that for every y in this

set we include in βi either the condition y /∈ G, or the condition y ∈ G. The
notation Di will refer to the set of all strings x such that oracle’s value is set on
Bx during iterations s = 1, . . . , i. We will keep the following statement invariant:
fG is injective on Di for all G ∈ Iβi .

Additionally, on ith iteration we choose the desired answer ai of NG⊕H to
the i-th query to NG⊕H in the run of R on input 0n.

On ith iteration we run R on input 0n assuming the answers a1, . . . , ai−1 to
oracle queries until R makes ith query qi to the oracle or outputs a result. If the
first option happens, we choose the desired answer of NG⊕H on qi as follows.

Assume that G ∈ Iβi−1 and C is an accepting computation of NG⊕H on input
qi. We say that 〈G,C〉 is a good pair if the following holds. Let D be the set of
all x ∈ Σn such that computation C queries a string in the bag of x. The pair
〈G,C〉 is good if fG is injective on the set D ∪Di−1.

Assume first that there is a good pair 〈G,C〉. In this case we pick a good pair
〈G̃, C̃〉, define D as explained above and choose YES as the desired answer to ith
query. The condition βi is obtained from βi−1 by adding the requirements y ∈ G
for all y ∈

⋃
x∈D Bx ∩ G̃ and the requirements y /∈ G for all y ∈

⋃
x∈D Bx \ G̃.

Note that NG⊕H(qi) = 1 for all G ∈ Iβi .
If there is no good pair 〈G,C〉 then we choose NO as the desired answer to

ith query and set βi = βi−1, Di = Di−1.
On some iteration k ≤ pR(n), R makes no new queries and outputs two strings

x1 and x2, where f presumably collides. At this point we set oracle’s value on all
remaining strings in Y2n+log n as follows. Pick any oracle G̃ ∈ Iβk−1 such that f G̃

is injective on the set Dk = Dk−1 ∪ {x1, x2} and such that for all x ∈ Σn \Dk,
f G̃(x) = 00 . . . 0. If n is large enough then there is such G̃. Indeed, the length of
qi is at most pR(n) and thus every computation of N G̃⊕H on input qi runs in
time pN (pR(n)). Hence |Dk| is bounded by the polynomial pR(n)pN (pR(n))+ 2.
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If 2n−1 is bigger than this bound then there are enough strings in the range of
f to avoid collision in Dk.

We let β be the condition containing the requirements y ∈ G for all y ∈ G̃ of
length at most pN (pR(n)) and the requirements y /∈ G for all y /∈ G̃ of length at
most pN (pR(n)).

We claim that for all G ∈ Iβ , RNG⊕H

on 0n computes the way how we de-
termined. Indeed, if R computes differently for some G ∈ Iβ then there must be
a query answered in the opposite way than we desire. Let qi be the first such
query. Note that qi coincides with the ith query in our construction, as all the
previous queries are answered by NG⊕H as we desire. If we have chosen YES as
the desired answer to ith query then by construction NG⊕H(qi) = 1 and thus
the desired answer is correct. Therefore this may happen only if we have chosen
NO as the ith answer and NG⊕H(qi) = 1.

By way of contradiction, assume that this is the case. Pick then an accepting
computation C of NG⊕H on qi. We will show that there is G′ ∈ Iβi−1 such that
〈G′, C〉 is a good pair. Let D be the set of all x ∈ Σn such that computation
C queries a string in the bag of x. Note that by construction fG is injective on
Dk. (However, fG may be not injective on Di−1 ∪D thus 〈G,C〉 may be not a
good pair.)

We will add to G some strings from
⋃

x∈D\Dk
Bx so that for the resulting

oracle G′ the pair 〈G′, C〉 is good. We may assume that 2n, the cardinality of
every set Bjx, is greater than the number of queries along C. For every x ∈ D\Dk

and every j we can change jth bit of fG(x) to 1 by adding to G a non-queried
string from Bjx. All of the 2n−1 values in the range of f can be obtained in this
way. Thus we can change fG(x) for all x ∈ D \Dk one by one so that for the
resulting oracle G′, C is an accepting computation and fG′

(x) is injective on
D ∪Dk and hence on D ∪Di−1.  !

4 Conclusion and Open Problems

Is there an oracle relative to which the polynomial-time hierarchy is proper
and Σp

kQ is true for all k? As a corollary we would get a relativized world
where the hierarchy is proper and Δp

k = Σp
k ∩ Πp

k . The second statement re-
mains open even relative to Kolmogorov generics and, if true, would give a
relativized version of the polynomial-time hierarchy that acts like the arithmetic
hierarchy.
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1 Introduction

Overview. The development of structured programs is carried out either using bottom-
up techniques, or top-down techniques; we show how refinement and proof can be used
to help in the top-down development of structured imperative programs. When a prob-
lem is stated, the incremental proof-based methodology of event B [9] starts by stating
a very abstract model and further refinements lead to finer-grain event-based models
which are used to derive an algorithm. The main idea is to consider each procedure call
as an abstract event of a model corresponding to the development of the procedure;
generally, a procedure is specified by a pre/post specification and then the refinement
process leads to a set of events, which are finally combined to obtain the body of the
procedure. It means that the abstraction corresponds to the procedure call and the body
is derived using the refinement process. The refinement process may also use recursive
procedures and supports the top-down refinement. The procedure call simulates the ab-
stract event and the refinement guarantees the correctness of the resulting algorithm.

Proof-based Development. Proof-based development methods [6,1,14] integrate formal
proof techniques in the development of software systems. The main idea is to start with
a very abstract model of the system under development. Details are gradually added to
this first model by building a sequence of more concrete events. The relationship be-
tween two successive models in this sequence is that of refinement [6,1]. The essence
of the refinement relationship is that it preserves already proved system properties in-
cluding safety properties and termination.

A development gives rise to a number of, so-called, proof obligations, which guar-
antee its correctness. Such proof obligations are discharged by the proof tool using
automatic and interactive proof procedures supported by a proof engine [4].

At the most abstract level it is obligatory to describe the static properties of a model’s
data by means of an “invariant” predicate. This gives rise to proof obligations relating
to the consistency of the model. They are required to ensure that data properties which
are claimed to be invariant are preserved by the events of the model. Each refinement
step is associated with a further invariant which relates the data of the more concrete
model to that of the abstract model and states any additional invariant properties of the

� This work was supported by grant No. ANR-06-SETI-015-03 awarded by the Agence Na-
tionale de la Recherche.

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 104–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Proved-Patterns-Based Development for Structured Programs 105

(possibly richer) concrete data model. These invariants, so-called gluing invariants are
used in the formulation of the refinement proof obligations.

The goal of a event B development is to obtain a proved model and to implement
the correctnes-by-contruction [13] paradigm. Since the development process leads to a
large number of proof obligations, the mastering of proof complexity is a crucial issue.
Even if a proof tool is available, its effective power is limited by classical results over
logical theories and we must distribute the complexity of proofs over the components
of the current development, e.g. by refinement. Refinement has the potential to decrease
the complexity of the proof process whilst allowing for traceability of requirements.

B models rarely need to make assumptions about the size of a system being mod-
elled, e.g. the number of nodes in a network. This is in contrast to model checking
approaches [10]. The price to pay is to face possibly complex mathematical theories
and difficult proofs. The re-use of developed models and the structuring mechanisms
available in B help in decreasing the complexity.

Organisation of the paper. Section 2 introduces the modelling language called event B.
It introduces definitions for event, refinement, model and corresponding proof obliga-
tions. Section 3 describes the development of the sorting problem and the relationship
between models and programs; it illustrates the methodology for developing structured
programs. Section 4 summarizes the general methodology. Finally, we conclude our
work in the last section.

2 The Modelling Framework

2.1 Overview of Event B Development by Step-Wise Refinement

Event-based modelling. Our event-driven approach [2,9] is based on the B notation.
It extends the methodological scope of basic concepts in order to take into account the
idea of formal models. Roughly speaking, a formal model is characterised by a (finite)
list x of state variables possibly modified by a (finite) list of events; an invariant I(x)
states properties that must always be satisfied by the variables x and maintained by the
activation of the events. In the following, we briefly recall definitions and principles of
formal models and explain how they can be managed by tools [4,11].

Generalised substitutions are borrowed from the B notation. They provide a means to
express changes to state variable values. In its simple form, x := E(x), a generalised
substitution looks like an assignment statement. In this construct,x denotes a vector built
on the set of state variables of the model, and E(x) a vector of expressions. The interpre-
tation we shall give here to this statement is not however that of an assignment statement.
We interpret it as a logical simultaneous substitution of each variable of the vector x by
the corresponding expression of the vector E(x). There exists a more general normal
form of this, denoted by the construct x : |P (x0, x). This should be read: “x is modified
in such a way that the predicate P (x0, x) holds”, where x denotes the new value of the
vector and x0 denotes its old value. This is clearly non-deterministic in general.

An event has two main parts: a guard, which is a predicate built on the state variables,
and an action, which is a generalised substitution. An event can take one of the three
normal forms. The first form (evnt =̂ begin x : |P (x0, x) end) shows an event



106 D. Cansell and D. Méry

that is not guarded: it is thus always enabled and is semantically defined by P (x, x′).
The second (evt =̂ when G(x) then x : |Q(x0, x) end) and third (evt =̂
any t where G(t, x) then x : |R(x0, x, t) end) forms are guarded by a guard which
states the necessary condition for these events to occur. Such a guard is represented by
WHEN G(x) in the second form, and by any t where G(t, x) (for ∃ t ·G(t, x) ) in the
third form. We note that the third form defines a possibly non-deterministic event where
t represents a vector of distinct local variables. The, so-called, before-after predicate
BA(x, x′) associated with each of the three event types, describes the event as a logical
predicate expressing the relationship linking the values of the state variables just before
(x) and just after (x′) the “execution” of event evt. The second and the third forms are
semantically equivalent to G(x) ∧ Q(x, x′) resp. ∃ t· (G(t, x) ∧ R(x, x′, t).

Proof obligations are produced from events in order to state that an invariant condi-
tion I(x) is preserved. Their general form follows immediately from the definition of
the before-after predicate, BA(x, x′), of each event:

I(x) ∧ BA(x, x′) ⇒ I(x′)

Note that it follows from the two guarded forms of the events that this obligation is
trivially discharged when the guard of the event is false. When this is the case, the event
is said to be “disabled”.

Model Refinement. The refinement of a formal model allows us to enrich a model
in a step-by-step approach, and is the foundation of our correct-by-construction [13]
approach. Refinement provides a way to strengthen invariants and to add details to a
model. It is also used to transform an abstract model in a more concrete version by
modifying the state description. This is done by extending the list of state variables
(possibly suppressing some of them), by refining each abstract event into a correspond-
ing concrete version, and by adding new events. The abstract state variables, x, and the
concrete ones, y, are linked together by means of a, so-called, gluing invariant J(x, y).
A number of proof obligations ensure that (1) each abstract event is correctly refined by
its corresponding concrete version, (2) each new event refines skip, (3) no new event
takes control for ever, and (4) relative deadlock-freeness is preserved. Details of the
formulation of these proofs follows.

We suppose that an abstract model AM with variables x and invariant I(x) is refined
by a concrete model CM with variables y and gluing invariant J(x, y). If BAA(x, x′)
and BAC(y, y′) are respectively the abstract and concrete before-after predicates of
the same event, we have to prove the following statement, corresponding to proof
obligation (1):

I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′ · (BAA(x, x′) ∧ J(x′, y′))

Now, proof obligation (2) states that BA(y, y′) must refine skip (x′ = x), generating
the following simple statement to prove (2):

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ J(x, y′)
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For the third proof obligation, we must formalise the notion of the system advancing
in its execution; a standard technique is to introduce a variant V (y) that is decreased
by each new event (to guarantee that an abstract step may occur). This leads to the
following simple statement to prove (3):

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ V (y′) < V (y)

Finally, to prove that the concrete model does not introduce additional deadlocks,
we give formalisms for reasoning about the event guards in the concrete and abstract
models: grds(AM) represents the disjunction of the guards of the events of the abstract
model, and grds(CM) represents the disjunction of the guards of the events of the
concrete model. Relative deadlock freeness is now easily formalised as the following
proof obligation (4):

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM)

To review, when one refines a model, one can either: refine an existing event by
strengthening the guard and/or the before-after predicate (effectively reducing the de-
gree of non-determinism), or add a new event in order to refine the skip event. Further-
more, such refinement guarantees that the set of traces of the refined model contains
(modulo stuttering) the traces of the resulting model.

3 Development of Structured Programs

Using a very traditional problem, namely the sorting problem, the section illustrates
the general methodology for deriving structured programs, which are using procedures
and functions calls. We identify new proof obligations to ensure the correctness of the
resulting program.

The sorting problem can be simply stated as follows: finding an algorithmic method
to sort an array of values. What is a sorting algorithm? The sorting of an array t of mx
values can be summarised, in an abstract way, by finding a permutation π over 1..mx,
such that it produces a sorted array from the initial array by applying the permutation.
This statement is never included into the resulting code, even if the code is structured.
Let us consider for instance the following possible resulting code produced in a classical
way.

procedure sort(t, n, mx)
begin

if n �= 1 then
swap(t, imax(t, n, mx), n, mx);
sort(t, n − 1, mx)

end

swap is a procedure, which swaps two
values of the array and imax computes
the index of the maximal value in the
array t. sort is a procedure which sorts
the array t over 1..n. To sort the ar-
ray t one can call sort(t,mx,mx). Our
goal is to develop this structured algo-
rithm using the modelling framework:
the event B method.
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3.1 First Model for the Sorting Problem

The first abstraction captures the essence of the sorting problem by defining an abstract
event modelling the application of a permutation π which is sorting a prefix (between
1 and n) of the array. The event sorting can be considered as a procedure specifi-
cation and it non-deterministically chooses a correct permutation. The variable t is a
total function from 1..mx to N, where mx is a constant value greater than 0. The vari-
able t is initially set to any function from 1..mx to N. We state that the execution of
the event sorting produces the sorted array t (between 1 and n) in one shot, which
is corresponding to a procedure specification. The constant n belongs to the interval
1..mx.

constants n,mx
axioms mx > 0 ∧ n ∈ 1..mx

variables t
invariant t ∈ 1..mx −→ N

initialization t :∈ 1..mx −→ N

sorting =̂
any π where

π ∈ 1..n �� 1..n

∀i ·

⎛⎝ i ∈ 1..n− 1
⇒
t(π(i)) ≤ t(π(i + 1)

⎞⎠
then

t := t �− (π; t)
end

In the event sorting, 1..n �� 1..n is the set of total one-to-one functions and (π; t)
is the composition of functions (first π then t) which is a total function over 1..n. The
event B expression t �− (π; t) is a total function which is equal to (π; t) on 1..n and
t on n + 1..mx then only the first n value can change with (π; t). The event sorting is
simulated by the procedure call of the corresponding code, which is under development.
The refinement introduces new details in the models and how the algorithmic process
is working.

3.2 Second Model for the Sorting Problem

The second model is a refinement of the first model. It introduces the code of the pro-
cedure. The control is introduced by defining a set STATUS which is equal to the set
{start, call, end}. The variable control indicates the current control of the execution.
The procedure starts by the evaluation of the boolean expression n �= 1. Either the re-
sult is FALSE and the event nothing is triggered; the code of the procedure provides its
final result: the array is sorted. Or, the result is TRUE and then first, the code swaps the
maximum (event swapmax) and the value at n; then the recursive call (event rec call)
before to complete the computation and to provide the final sorted array. New events
modify the array and we introduce a new variable T which is initialised by the same
value as t.
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nothing =̂
when

n = 1
control = start

then
control := end

end

swapmax =̂
any im where

n �= 1
control = start
im ∈ 1..n ∧ ∀i.(i ∈ 1..n ⇒ T (i) ≤ T (im))

then
T := T �−{im 
→ T (n)} �−{n 
→ T (im)}
control := call

end

rec call =̂
any π where

π ∈ 1..n − 1 �� 1..n − 1
∀i.(i ∈ 1..n − 2 ⇒ t(π(i)) ≤ t(π(i + 1)))
control = call

then
T := T �− (π; T ) || control := end

end

sorting =̂
when

control = end
then

t := T
end

We should prove that the current model refines the previous model and we use the
following invariant:

T ∈ 1..mx −→ N

control ∈ STATUS

(control = end ⇒ ∃π. ·
(

π ∈ 1..n �� 1..n ∧ T = (π; t) ∧
∀i.(i ∈ 1..n − 1 ⇒ T (i) ≤ T (i + 1))

)
(control = call ⇒ ∀i.(i ∈ 1..n ⇒ T (i) ≤ T (n)))
(control = call ⇒ ∃π.(π ∈ 1..n �� 1..n ∧ T = (π; t)) ∧ n �= 1)
(control = start ⇒ T = t)

It describes the computation states of the sorting algorithmic process and it can be
used to derive a proved annotation of the resulting procedure. We address the derivation
of a procedure in the next sub-section. The invariant was designed during the proof
proccess. To prove the existence of a permutation over 1..n when the control variable is
equal to end (third line of the invariant) we have suggested (πguard ∪ {n 	→ n};πcall)
where πguard is the permutation over 1..n− 1 given by the guard of event rec call and
πcall is the permutation over 1..n given by the fifth line of the invariant.

3.3 Towards a Procedure for Sorting an Array

The set of events can be structured according to the variable status, which contains
the value of the program counter, following rules for deriving algorithms suggested by
Abrial [3]. A first skeleton called abstract sorting expresses an algorithmic statement
of the procedure sorting:
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abstract sorting
begin

if n �= 1 then
swapmax;
rec call

else
nothing

fi
concrete sorting

end

procedure sorting(var t, n, mx)
precondition t = t0 ∧ t0 ∈ 1..mx −→ N ∧ 1 ≤ n ≤ mx
postcondition [T, t := t, t0]Assert(end)
local variable T ∈ 1..mx −→ N

begin
T := t; {start: Assert(start)}
if n �= 1 then

swapmax(T, n, mx); {call: Assert(call)}
sorting(T, n − 1, mx)

fi {end: Assert(end)}
t := T

end

New variables of the refinement model are local variables of the procedure and we
get initial values of these variables in the corresponding part of the refinement model.
The event swapmax is still non-deterministic but is defined for T and n. A further re-
finement is needed to derive a more deterministic procedure and we will reuse a former
development corresponding to the procedure swap. Comparing the abstract event sort-
ing and the concrete event rec call, we observe that they are very similar and we can
identify a matching defined by the following relations: t to T , n to n− 1.

Considering the question of proofs related to the development and to the resulting
procedure, we can attach annotations to the control points of the procedure as follows:
{ctrl:Assert(ctrl)} where Assert(ctrl) is the conjunction of predicates P such that
(control = ctrl ⇒ P ) is in the invariant. The postcondition [T, t := t, t0]Assert(end)
is the predicate Assert(end) where T, t is subtituted by t, t0 (t0 is the initial value of
the variable t). The predicate looks like the before-after predicate of the abstract event
sorting.

Proof obligations for the procedure call express that concrete parameters of a call
satisfy properties of formal parameters and initial conditions of the abstract model:
When the control is call,

– n− 1 ≥ 1: the actual value of n should be greater than 2.
– n− 1 ≤ mx holds.
– T ∈ 1..mx −→ N holds.
– The event rec call refines the instantiated abstract event sorting.
– A variant decreases to ensure the termination of the recursive call.

Finally, the procedure can be transformed to eliminate redundant informations, like,
for instance, the substitution of T by t and the removal of t := t; we can use the event
keep, which can modify abstract variables in a refinement [5]. The call swapmax(T,n)
should be made deterministic and we can develop a procedure by refining the one-shot
model and the next sub-section gives details of this development.

3.4 Developing the Event swapmax into a Procedure

In the previous sub-section, the event swapmax is still non-deterministic and it should
be transformed into a procedure by applying the same technique of refinement.
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The new development starts from a model
with the event swapmax executed. The
event is generalised by eliminating the con-
trol state and the condition over n. We have
identified a problem more general than the
problem of swapping two cells of t in the
procedure sorting; the problem is to swap
two cells of t and is solved by the one-shot
event:

swapmax =̂
any im where

im ∈ 1..n

∀i ·

⎛⎝ i ∈ 1..n
⇒

T (i) ≤ T (im)

⎞⎠
then

T := T �−{im 
→ T (n)}
�−{n 
→ T (im)}

end

The variable T is typed by T ∈ 1..n −→ N and is initialised by any function of
1..n to N. The refinement model introduces the scheduling in the behaviour by the set
STATUS swap equal to {start, sw, end} and the variable control; the invariant is
summarised by:

Im ∈ 1..n
control ∈ STATUS swap
(control = sw ⇒ ∀i.(i ∈ 1..n⇒ T (i) ≤ T (Im)))

The refinement model describes a computation such that, first, the value of the index
of the maximum is computed and stored in the new variable Im and, secondly, the two
cells of T are swapped.

imax =̂
any im where

control = start
im ∈ 1..n

∀i ·

⎛⎝ i ∈ 1..n
⇒

T (i) ≤ T (Im)

⎞⎠
then

Im := im || control := sw
end

swapmax =̂
when

control = sw
then

T := T �−{Im 
→ T (n)}
�−{n 
→ T (Im)}

control := end
end

The refinement model provides us enough informations for deriving the abstract
swapmax and the corresponding procedure by eliminating the control states.

abstract swapmax
begin

imax;
concrete swapmax

end

procedure swapmax(T, n, mx)
local variable Im
begin

imax(T, n, Im,mx);
T := T �−{Im 
→ T (n)} �−{n 
→ T (Im)}

end

The call imax(T,n,Im,mx) can be translated into a function call and the mechanism
for assigning arguments to parameter T , namely argument passing, is the call-by-value
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mechanism, since T is not modified. Obviously, the procedure imax is not satisfactory
and should be refined into a procedure, which will return the value of the index of
the maximal value of T . The process can derive further procedures and preserve the
structure of the current program.

4 Principles for Deriving Structured Programs from Event B
Developments

We summarise principles applied for deriving correct-by-construction structured pro-
grams. The main idea relies upon the development of structured programs following a
top/down approach, which is clearly well known in earlier works of Dijkstra [12,14],
and to use the refinement for controlling the correctness of the resulting program. It
relies on a more fundamental question related to the notion of problem to solve.

G. Polya [15] describes a set of techniques or recipes which can be used to solve
problems. The different steps advocated by Polya can be summarised as follows. A first
step is the understanding the problem and list the data, conditions on the data, the un-
known elements and the feasibility of the requirements listed in the statement of the
problem. It is clearly important to identify the redundancy and the possible inconsis-
tencies; elicitation of requirements is clearly a very important step and it can be driven
following an incremental and progressive methodology based on proof checking. The
methodology can be based on incremental proof-based developments. However, the link
between the problem and the first model remains to be expressed and the refinement is
a real help to justify in a very progressive way the choices of design.

Following the thesis of Polya, it appears that the link between the data and the un-
known should be defined in an appropriate way. However, Polya mentions the use of
auxiliary problems or sub-problems and they lead us to discover new solutions to the
given sub-problems or to reuse existing problems having already been solved: the iden-
tification of an already seen problem is something that is not so easy to carry out. The
identification of a new problem with a given existing (well-understood) problem is
possible in a cognitive way but is not yet so obvious in a mathematical and logical
framework. The identification of a problem is the question to be addressed; where the
classification of the problem seems to be related to the solution and to the statement
of the solution. For instance, the problem of searching something in a collection of
data or the problem of computing a fixed-point over a structure can be formalised in a
mathematical way and an algorithmic solution can be found; the problem of modelling
the greedy method [8] is more complex to solve because there are a lot of greedy al-
gorithms which are using the same principle and the question is to be able to provide
a general framework for solving this problem on a special case. We should be able to
produce a plan of the solution where it is made up of event-based models related by
the refinement relationship and of logico-mathematical theories on data. The question
is then to check if a problem is identical to another problem or if a problem is a weaker
or a stronger instance. Clearly, refinement plays the role of a link between problems as
long as we are able to attach a model to a problem. Moreover, the model should be as
general as possible and reusable. The question of the analogy among problems is also a
very important issue and it is related to an adaptation of the refinement.
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The previous section illustrates the use of the refinement for unfolding events consid-
ered as procedure calls and it defines a general pattern based on refinement and proof,
for deriving structured programs.

5 Concluding Remarks and Perspectives

Principles and rules applied in the development are quite simple and they are supported
by proof obligations. The first principle is to state the problem by an abstract model,
which generally contains an event modelling the one-shot execution of the target pro-
cedure. The main idea is to consider the one-shot event as a procedure call and the
refinement helps in deriving a refinement model which is structuring the body of the
procedure. The procedure call is refined by the text of the procedure which may be
expanded in the text. The general approach is a top-down methodology and each re-
finement step can introduce new sub-problems to discover; the resolution of a problem
is solved by the resolution of new sub-problems and each sub-problem is solved by a
specific development that is delegated to another development. The refinement drives
the structuration of the final solution. Abrial [3] has defined a decomposition notion to
split events and variables in two (or more) parts to allow further independent refine-
ments. These refinements produce more and more events which can occur and can then
interleave with events of other parts of the decomposition. Our methodology looks like
decomposition but is more constrained. We are sure that the code of all events of the re-
finement runs until completion and then another abstract event can occur: the procedure
execution seems to be done in one shot like in the abstraction.

Future works will provide a list of proof obligations that should be added to guarantee
the correctness of the final procedure. We have not clearly stated new proof obligations
to check for establishing the correct-by-construction statement and we let this point for
the full version of the paper. However, proof obligations should state that procedures
are called in a correct state with respect to the preconditions of events. Our title was
emphasizing the question of proved patterns for aiding in the development of structured
programs from the statement of the problem. Finally, the implementation of techniques
for helping the construction of models and the generation of proof obligations will be
integrated as a plugin in the plateform RODIN and will partly support our approach.
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Abstract. We explore the restrictiveness of planarity on the complexity
of computing the determinant and the permanent, and show that both
problems remain as hard as in the general case, i.e. GapL and #P com-
plete. On the other hand, both bipartite planarity and bimodal planarity
bring the complexity of permanents down (but no further) to that of de-
terminants. The permanent or the determinant modulo 2 is complete for
⊕L, and we show that parity of paths in a layered grid graph (which is
bimodal planar) is also complete for this class. We also relate the com-
plexity of grid graph reachability to that of testing existence/uniqueness
of a perfect matching in a planar bipartite graph.

1 Introduction

For many natural problems on graphs, imposing planarity does not reduce the
complexity. For instance, vertex cover is NP-complete, and remains so even for
planar degree-3 restrictions; so does planar 3-dimensional matching [15]. The
circuit value problem is P-complete, and remains so even if the graph underlying
the circuit is restricted to be planar. In [19] and [27], the complexity of several
counting problems has been investigated under planar restrictions. More recently,
[32] establishes that counting vertex covers remains #P-complete even when
restricted to 3-regular planar bipartite graphs. Thus there is some evidence to
believe that planarity is not a real restriction at all.

However, there are notable exceptions. In the circuit setting, for instance,
monotone circuit value is P-complete, but monotone planar circuit value is in
NC [33,14]. Constant-width circuits characterize NC1 [7], while planar constant-
width circuits characterize its subclass ACC0 [16]. In the graph-theoretic setting,
counting the number of perfect matchings in a bipartite graph is #P-hard [28],
while counting it in a planar bipartite graph (or even in a planar non-bipartite
graph) is in NC [30,21]. Another very recent exception has to do with reacha-
bility. Given a directed graph G and two vertices s and t, determining whether
� Part of this work was done while this author was visiting the Chennai Mathematical

Institute.
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there is a path from s to t is the canonical complete problem for nondetermin-
istic logspace NL. However, if the graph is planar, then a recent result from
[9], building on the techniques of [25,4], shows that the presence, and even the
absence, of a path can be detected in unambiguous logspace UL. While UL is
known to coincide with NL in the non-uniform setting, and even in the uniform
setting under a plausible hardness condition [6], as of now they are not known to
coincide unconditionally. So the result of [9] is an instance of planarity reducing
the complexity of a problem.

Thus we see that the condition of planarity could be exploited in establishing
better upper bounds in some cases. Motivated by the need to better understand
how planarity can help, we examine the complexity of determinant, permanent,
and unique perfect matchings when restricted to planar instances. Recall that
both the determinant and the permanent of the adjacency matrix of a graph
G count the total weight of all cycle covers in G, with the one difference that
the determinant considers the signed weight. Computing the determinant (over
integers or rationals) is known to be GapL-complete [13,26,29,31], while com-
puting the permanent is known to be #P-complete (see [28]; the 0-1 permanent
equals the number of perfect matchings in a related bipartite graph). However,
testing whether the 0-1 permanent is zero is in P and thus significantly easier
than #P, whereas testing whether the 0-1 determinant is zero is complete for
the exact-counting-in-logspace class C=L [3], and thus at least as hard for NL.
Interestingly, the permanent mod 2 equals the determinant mod 2 and is thus
easy to compute, in fact complete for the parity logspace class ⊕L. Another
complete problem for ⊕L is checking whether the number of s � t paths in a
directed acyclic graph is odd. Testing whether a bipartite graph has a perfect
matching, B-PM, is known to be hard for NL [11], while testing whether a bipar-
tite graph has a unique perfect matching, B-UPM, is known to be hard for NL

and in C=L∩NL⊕L [18].
We examine planar restrictions of these and related problems. Our main re-

sults are summarized in Table 1. (The involved terms are explained in the re-
spective sections.)

This paper is organised as follows. Section 2 describes the notation needed
to describe the results of the paper. Sections 3 and 4 describe the hardness
and the membership results respectively concerning determinant and permanent.
Section 5 describes the hardness of ⊕LGGR for ⊕L, and Section 6 describes the
results concerning planar B-PM and B-UPM.

2 Notation and Preliminaries

L and P denote deterministic logspace and polynomial time computation, re-
spectively. We consider the nondeterministic classes NP and NL, their counting
counterparts #P and #L, and the closures of these under subtraction GapP and
GapL. We also consider (1) the exact counting in logspace class C=L; a language
L is in C=L if and only if some GapL function vanishes exactly on strings in
L, and (2) the parity logspace class ⊕L; L is in ⊕L if and only if some GapL
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Table 1. Main results

Problem General bound Restriction Our New Bound
Total signed weight of GapL-complete planar GapL-hard
cycle covers (Determinant
of adjacency matrix)
Total weight of cycle
covers (Permanent of
adjacency matrix)

#P-complete
planar #P-hard
planar bipartite GapL-complete
planar bimodal GapL-complete

Total weight of perfect #P-complete planar bipartite GapL-complete
matchings (Permanent of
bip-adjacency matrix)
Parity of #s � t paths in ⊕L-complete planar, even ⊕L-hard
directed acyclic graph layered grid graph
Bipartite UPM NL-hard, planar in ⊕L, L-hard,

in C=L∩NL⊕L co-LGGR-hard,
equiv to GGUPM

Bipartite PM NL-hard planar L-hard, GGR-hard,
equiv to GGPM

function takes odd values exactly on strings in L. It is known that NL ⊆ C=L

and that ⊕L⊕L = ⊕L. The canonical complete problem for NL is Reachability
in a directed acyclic graph. A complete problem for GapL is computing the de-
terminant of an integer matrix; hence testing singularity of a matrix is complete
for C=L. See for instance [1].

We consider planar graphs specified by planar combinatorial embeddings: such
an embedding specifies, for each vertex, the cyclic ordering of edges incident on
it in some plane drawing. Testing planarity and obtaining planar combinato-
rial embeddings can be done in L by the results of [5,24]. A planar embedding
of a directed graph is bimodal if at every vertex, all the incoming edges ap-
pear contiguously in the cyclic ordering. Not every planar graph has a bimodal
embedding. See for instance [23].

A grid graph is a directed graph with vertices laid out on the plane at integer
coordinates, and edges going unit distance east-west or north-south only. A grid
graph is layered if all horizontal edges are in the same direction (say left-to-right,
or x-monotone), and so are all vertical edges (y-monotone).

We will frequently use the following observation:

Proposition 1. A bipartite graph can be drawn on the plane with straight-line
edges, and with no two crossings sharing the same coordinates. The combinatorial
embedding corresponding to such a drawing can be obtained in logspace.

(To draw Kn,n, place vertices of the first part on the x-axis, vertex ui at (0, i).
Place vertices of the second part on the x = 1 line suitably spaced apart; place
vertex vj at (1, n2j).)

For any directed graph H with a special source vertex s and sink vertex t,
define the split graph Split(H) as follows: (1) split every node v into two nodes,
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vin and vout, (2) for every edge (u, v) in the original graph, draw an edge from
uout to vin, with the same weight, (3) draw the edges from vin to vout for each
v, with weight 1, and (4) delete sin and tout; rename sout and tin as s and
t. Note that Spilt(H) is always bipartite. Further, if H has a bimodal planar
embedding, then Split(H) is also bimodal planar, and the witnessing embedding
can be easily obtained from that of H . (If H is planar but not bimodal, then
Split(H) may not be planar at all.)

Corresponding to any n×n matrix M , we can associate two graphs: GM is a
directed graph on n vertices, with edge 〈i, j〉 having weight M(i, j), and HM is
an undirected bipartite graph on 2n vertices, with edge (i, n + j) having weight
M(i, j). M is said to be the adjacency matrix of GM and the bipartite adjacency
matrix of HM . A cycle cover in a graph is a collection of vertex disjoint cycles
spanning the graph. The determinant of a matrix M , Det(M), equals the total
signed weight of all cycle covers in GM , while its permanent, Perm(M), equals
the total unsigned weight of all cycle covers in GM . The sign of a cycle cover
is (−1)k, where k is the number of even length cycles in the cover. Perm(M)
also equals the total weight of all perfect matchings in HM . Here the weight of
a cycle cover or matching is the product of the weights of its constitutent edges.

3 Planarizing the Determinant and the Permanent:
Retaining Hardness

Computing the determinant (over integers) is known to be GapL-complete
[13,26,29,31]. We show that it remains hard if the matrix is restricted to be
the adjacency matrix of a planar graph. Weights in {0,1} suffice, and if the
graph is required to be bipartite then weights in {-1,0,1} suffice. Further, a nat-
ural complete problem for GapL is DAG-WT-s � t-PATHS: finding the total
weight of all s � t paths in a weighted directed acyclic graph DAG. We show
that this problem remains GapL-hard even restricting the DAG to be planar, if
we allow negative weights.

We also investigate the complexity of the planar permanent. The permanent
itself is #P-complete, though the hardness is under Turing reductions. There are
two types of planar restrictions we can consider, and they have quite a different
flavour. We want to compute Perm(M) when either the graph GM or the graph
HM (see Section 2) is planar. If we require HM to be planar, then #P-hardness
is lost, because the total weight of perfect matchings in a planar (bipartite or
otherwise) graph can be done in GapL using the framework of Pfaffians; see
[30,21]. We show that this is in fact not just in GapL but also GapL-complete.
Though [21] shows that computing the Pfaffian is GapL-complete, the underlying
graphs are not planar. We show hardness without recourse to Pfaffians.

If we require that the graph GM is planar, then we are counting the total
weight of cycle covers in a planar graph. We show that this restriction continues
to be as hard as the original problem, i.e.#P-hard. On the other hand, if GM

is restricted to be bimodal planar, or simultaneously planar and bipartite, then
we show that computing Perm(M) is GapL-hard. This is the best lower bound



Planarity, Determinants, Permanents, and (Unique) Matchings 119

possible, since in the next section we also show that in these cases we can also
evaluate the permanent in GapL.

The results of this section can be summarized as follows:

Theorem 1. The following problems are hard for GapL via ≤log
m reductions.

1. DAG-WT-s � t-PATHS for planar graphs (total weight of all s � t paths
in a weighted directed acyclic graph DAG).

2. Det(M) for planar GM (total signed weight of cycle covers in planar graph).
3. Perm(M) for planar bipartite GM (total weight of cycle covers in GM ).
4. Perm(M) for planar bimodal GM (total weight of cycle covers in GM ).
5. Perm(M) for planar bipartite HM (total weight of perfect matchings in HM).

Further, computing Perm(M) for planar GM (total weight of cycle covers in
planar graph) is hard for #P.

We now sketch the proofs for each of these claims.

GapL ≤log
m Planar-DAG-WT-s � t-PATHS: We start with the canonical

GapL-complete problem Directed Path Difference (see for instance [26,22]). The
input is a directed graph G with special vertices s, t+ and t−, and the desired
output #(G, s, t+, t−) is the difference in the number of s � t+ paths and the
number of s � t− paths. Without loss of generality, we can assume that (1) G
is acyclic and layered (vertices appear in layers and all edges go from a layer to
the next layer), (2) s is on the first layer and t+ and t− on the last layer, and all
s � t+ or s � t− paths are of even length, (3) all edges having weight 1, and
(4) the number of vertices is odd.

We create a new vertex t and add edge 〈t+, t〉 with weight 1, and edge 〈t−, t〉
with weight −1, to get G1. All s � t paths are of odd length. The hard function
is the total weight of all s � t paths in G1.

Fig. 1. Planarizing Gadget 1

Now we planarize G1 as follows: We draw
G1 in the plane, with edge crossings (as de-
scribed in Proposition 1). We replace each
crossing by the gadget shown alongside to
get a planar graph G2. Observe that for any
vertices a, b in G1, the weight of each a � b
path as well as the parity of the length of
the path is preserved in G2. Since G (and
G1) was bipartite, so is G2. (Here bipartite-
ness is in the undirected sense: there are no undirected odd cycles.) Also, the
embedding of G2 we have is upward planar; it is planar and all edges are mono-
tonic w.r.t. the x-coordinate.1 In particular, this implies that the embedding of
G2 is bimodal. Without loss of generality, assume that G2 has an odd number
N of vertices.

We want to map paths in G2 to (signed) cycle covers in a related graph. Toda
[26] achieves this by subdividing every edge, adding self-loops everywhere except
at s and then adding edge 〈t, s〉. We adapt this proof in two different ways.
1 Using the techniques of Section 5, we can even ensure that G2 is a layered grid graph.
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GapL ≤log
m PLANAR 0-1 DET: The method of [26] does not eliminate neg-

ative weights. To handle this, we selectively subdivide only those edges with
weight 1. Edges with weight −1 are not subdivided, but their weight is changed
to 1. We can then show that this graph, say G3, has the desired properties.

GapL≤log
m {-1,0,1} BIPARTITE PLANAR BIMODAL DET/PERM:

The above method loses bipartiteness not just because it adds self-loops, but
also because of asymmetric subdivisions for weight 1 or −1. Instead, we can
construct Split(G2) and add to it edges 〈vout, vin〉 for each v �∈ {s, t}, and the
edge 〈t, s〉; all these edges have weight 1. Call this graph G4; we can now show
that it has the desired properties.

If A3, A4 are the adjacency matrices of G3, G4 respectively, then

Det(A4) = Perm(A4) = Det(A3) = #(G2, s, t) = #(G1, s, t) = #(G, s, t+, t−)

GapL- ≤log
m BIPARTITE PLANAR PERFECT MATCHINGS: Let G5

be the undirected graph underlying Split(G2); then G5 is planar bipartite, and
s � t paths in G2 are in 1-1 correspondence with perfect matchings in G5 of
the same weight. Thus the sum of the weights of the perfect matchings in G5 is
precisely #(G2, s, t). (See [11,18] for details.)

PERM ≤log
m PLANAR PERM: We now show that computing Perm(M),

when GM is planar, is as hard as computing arbitrary permanents (i.e. #P-
hard). Recall that Perm(M) computes the total weight of all cycle covers in GM .
Let N be the n × n matrix whose permanent we wish to compute. Consider

the matrix A =
(

0n N
In 0n

)
where In and 0n denote the identity and the all-

zeros matrices of size n. Clearly Perm(A) = Perm(N). Consider a drawing of the
directed bipartite graph GA as described in Proposition 1.

A C

BD

A C

BD

X Y

Fig. 2. Planarizing Gadget 2

As was done for the determinant, we re-
place each crossing with a planarity gad-
get so as to preserve the total weights of
cycle covers. The planarity gadget used is
shown alongside. Cycle covers using exactly
one of the two edges AB or CD will now use
the corresponding length 3 path AXYB or
CY XD. Cycle covers using neither of these
edges will now use the 2-cycle XY . Cycle
covers using both edges are essentially spliced; locally, we use instead the paths
AXD and BY C.

Applying this planarity gadget to all crossings, we obtain a planar graph G6

with adjacency matrix M . Since Perm(M) = Perm(A) = Perm(N), we have
established the hardness of planar permanent.

Note that this planarity gadget preserves neither bipartiteness nor bimodality.
This is not surprising, given the results of the next section.
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4 Easy Versions of Planar Permanent Restrictions

We now show that certain planar restrictions of the permanent are significantly
easier than #P, in fact, they are computable in GapL. We establish the following.

Theorem 2. The following functions are computable in GapL.

1. Perm(M) for planar bipartite GM (total weight of cycle covers in GM ).
2. Perm(M) for planar bimodal GM (total weight of cycle covers in GM ).
3. Even-Odd Crossings Difference: The difference between the total weight of

cycle covers with even number of crossings and the total weight of cycle
covers with odd number of crossings, in a given plane drawing of a graph G.

The proof of the first two results exploits the fact that finding the total weight
of perfect matchings in planar graphs can be computed in GapL ([30,21]).

Let GM = (V,E) be the given bipartite (directed) graph, with bipartition
X ∪̇ Y . Let E1 be those edges of E directed from X to Y , and E2 be the re-
maining edges, and let Gi = (V,Ei) for i = 1, 2 be planar bipartite undirected
graphs. Then, with an appropriate renumbering of vertices (that can be com-
puted in logspace since bipartite-testing is in L as a consequence of [24]), we have

M =
(

0n A1

A2 0n

)
where HA1 = G1 and HA2 = G2. (If GM were undirected, we

would have A1 = AT
2 .) Clearly, Perm(M) = Perm(A1)×Perm(A2). But Perm(Ai)

equals the total weight of perfect matchings in the planar graph Gi, this can be
computed in GapL.

If GM is planar bimodal, then Split(GM ) is planar bipartite bimodal, and the
cycle-covers in the two graphs are in bijection. So Perm(M) is the total weight
of cycle covers in Split(GM ); we have just shown that this is in GapL.

The third result is really an exploration into how far planarizing gadgets can
be pushed. If we can replace the crossings in a graph drawing by a gadget which
preserves the weighted sum of cycle covers and also preserves bipartiteness or
bimodality, then arbitrary pemanents would be expressible as planar bipartite
permanents, implying the unlikely collapse of #P to GapL. This suggests that
such gadgets are unlikely to exist.

Fig. 3. Planarizing Gadget 3

However, we do have a bipartiteness-
preserving gadget which reduces the
Even-Odd Crossings Difference problem
to cycle covers in planar graphs: Given a
specific drawing of the graph, count the
difference between the number of cycle
covers with even number of crossings and
the number of cycle covers with odd num-
ber of crossings. The gadget shown along-
side will do the job. Now, if we start with a bipartite graph, then the resulting
graph will be bipartite planar. So, for bipartite graphs, Even-Odd Crossings
Difference can be computed in GapL.
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5 Hardness of ⊕LGGR for ⊕L

Although the permanent is #P-hard, the permanent mod 2 equals the determi-
nant mod 2 and is thus complete for ⊕L. A canonical ⊕L-complete problem is
⊕PATH-DAG: counting the number of s � t paths, mod 2, in a directed acyclic
graph (DAG). We show that this remains ⊕L hard (under ≤log

m -reductions) even
if the DAG is planar, further, even if it is a layered grid graph. ⊕LGGR, referred
to below, is layered grid graph reachability (LGGR) mod 2, that is, the problem
of counting the number of s � t paths mod 2 in a layered grid graph.

Theorem 3. ⊕L ≤log
m ⊕LGGR

The result is significant because for the decision version (reachability in a DAG),
the general case is NL-complete while its restriction to planar graphs is known to
be in UL∩ co-UL [9]. (Planar Directed Reachability PDR is known to be L-hard,
and equivalent to reachability in grid graphs GGR [4], but its exact complexity
is still unknown. Reachability in layered grid graphs LGGR is not even known
to be L-hard. The complexity of various versions of grid graph reachability is
investigated in [2].)

The following chain of reductions establishes the result.
⊕PATH-DAG ≤log

m ⊕PATH-PLANAR-DAG ≤log
m ⊕PATH-x-MON-GG ≤log

m

⊕PATH-LGG = ⊕LGGR
The first reduction considers a layered DAG (without loss of generality),

draws it according to Proposition 1, and then uses the planarizing gadget of
Figure 1, except that all edges have weight 1. This preserves the parity of the
number of paths. From here, going to ⊕LGGR is achieved by using the grid-
graph-embedding technique of [8,10].

6 (Unique) Perfect Matchings in Planar Bipartite Graphs

We now investigate the complexity of checking existence and uniqueness of a
perfect matching in a bipartite graph, B-PM and B-UPM, respectively when
restricted to planar instances. Both B-PM and B-UPM are known to be NL-hard
([11,18]), but B-UPM is believed to be easier since unlike B-PM, it is known
to be in NC (in both C=L and NL⊕L [18]). We provide two further pieces of
evidence that B-UPM may be easier by considering the planar restrictions of
these problems, Pl-B-PM and Pl-B-UPM. Firstly, we show that while both are L-
hard, Pl-B-PM is hard for Planar Directed Reachability PDR, whereas Pl-B-UPM
is hard only for co-Layered Grid Graph Reachability co-LGGR. (It is known that
PDR is equivalent to co-PDR and to its restriction Grid Graph Reachability
GGR, [4]). The hardness of Pl-B-PM for PDR can be viewed as a planarization of
the result “Reachability reduces to B-PM”. We do not know how to planarize the
result “co-Reachability reduces to bipartite-UPM” from [18]. Secondly, we obtain
an upper bound of ⊕L for Pl-B-UPM. This can be viewed as a planarization of the
result “B-UPM is in Reach⊕L” from [18]: our algorithm is a GGR⊕L algorithm,
and since Section 5 shows that ⊕LGGR is hard for ⊕L, it is in fact in GGR⊕LGGR.
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We note, however, that the complexity of LGGR (and co-LGGR) is an inter-
esting question in its own right. It is not known whether it is in L, or L- hard,
or reducible to its complement co-LGGR. However, its best known upper bound
is the same as that for PDR, namely UL ∩ co-UL.

Also, analogous to the equivalence of PDR and GGR, we show that Pl-B-PM
and Pl-B-UPM are equivalent to searching for or testing uniqueness of perfect
matchings in grid graphs GGPM and GGUPM respectively.

We also consider the related problem of testing uniqueness of a minimum-
weight perfect matching. In a bipartite graph with unary weights, this is known
to be hard for NL and in LC=L and NL⊕L [18]. No better upper bound is known
for the planar restriction, though the lower bound is also not known to hold. We
show that GGR reduces to this planar restriction.

The results in this section can be summarized as follows. (See Figure 4. The
pairs of dotted and dashed arrows show the planarizing results.)

Theorem 4. 1. (L ∪ co-LGGR) ≤proj Pl-B-UPM ≡proj GGUPM ∈ ⊕L
2. (L ∪ GGR) ≤proj Pl-B-PM ≡proj GGPM
3. Testing uniqueness of a min-weight perfect matching in a planar bipartite

graph with unary weights is hard for GGR.

L≤proj Pl-B-UPM; L≤proj Pl-B-PM: We start with the logspace-complete prob-
lem of determining whether there is an s � t path in a directed forest G [12].
Given an instance (G, s, t), first construct its split graph G′. Then define H1 to

Reach⊕L = NL⊕L C=L B-PM

B-UPM
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Fig. 4. Pl-B-UPM and Pl-B-PM and their relationships with other classes
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be the undirected version of G′ and H2 to be H1 ∪{(s, t)}. Since G was a forest,
H1 and H2 are clearly planar bipartite. Also their construction involves simple
projections; it is FO-uniform.

Now, as in [11,18], for every s � t path in G, the alternate edges of the
corresponding path in H , along with edges of the form (vin, vout) for vertices
v not on the path, form a perfect matching in H1 and H2. H1 has no other
matching, H2 has one more which is the added (s, t) edge along with all the
edges of the form (vin, vout). Thus H1 ∈ Pl-B-PM if and only if H2 ∈ Pl-B-UPM
if and only if (G, s, t) is not in Forest-Reachability.

co-LGGR≤proj Pl-B-UPM; GGR≤proj Pl-B-PM: This follows from carefully
analysing the requirements in the above reduction, and some pre-processing.

Unique minimum weight Pl-B-UPM is hard for GGR: For the purpose of
this section alone, the weight of a matching is the sum of its constituent edges.

Let (G, s, t) be the GGR instance; as discussed above, we can assume that G is
bimodal and has s and t on the external face. We now assign weights to the edges
of G according to the weighting scheme of [9] to get graph G′; this weighting
scheme has the property that s �G t ⇐⇒ s �G′ t ⇐⇒ the minimum weight
s �G′ t path is unique. Now construct H = Split(G′), copying the weight of an
edge (u, v) in G′ to the edge (uout, vin) of H and assigning weight zero toall the
edges of the form (vin, vout). H is a planar bipartite graph and can be obtained
via simple projections.

If (G, s, t) /∈ GGR, then it is easy to see that H has no perfect matching.
If (G, s, t) ∈ GGR, then the unique minimum-weight path ρ : s �G′ can

be extended to a perfect matching in H Mρ = {(uout, vin) | 〈u, v〉 ∈ ρG′} ∪
{(vin, vout)|v ∈ G′and v /∈ ρ} of the same weight. Since all (vin, vout) edges in H
have weight 0, it is easy to see that this matching is the unique minimum-weight
matching in H .

Pl-B-UPM≤log
m GGUPM; Pl-B-PM≤log

m GGPM: Both these results hold because
there is a parsimonious (in the number of perfect matchings) reduction from
planar bipartite graphs to grid graphs. This reduction is obtained by a slight
modification of the grid graph embedding technique of [4], applied on an equiv-
alent graph with maximum degree 3; the equivalent graph can also be obtained
in logspace ([20]).

Pl-B-UPM is in ⊕L: In [18], an NL⊕L algorithm for B-UPM is described. Given a
bipartite graph G, it proceeds in two stages. In the first stage, an L⊕L procedure
either constructs some perfect matching M , or detects that G is not in B-UPM.
In the second stage, an NL procedure, with oracle access to M , verifies that M
is indeed unique.

We show that for planar bipartite G, the second stage can be performed in
LPDR. Since PDR is known to be in UL∩co-UL[9] which is contained in ⊕L, and
since ⊕L⊕L = L⊕L = ⊕L ([17]), it then follows that Pl-B-UPM is in ⊕L.
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The key idea in obtaining the LPDR bound is the following: As described in
[18], a given perfect matching M is unique in a bipartite graph G if and only if
G has no alternating (with respect to M) cycles. We can consider an auxiliary
graph H where an alternating path of length 2 in G, beginning with an M -edge,
becomes a directed edge in H ; then M is unique in G if H has no cycles. We
show that H is planar. This implies that detecting cycles in H is in LPDR.

References

1. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J.
(ed.) Complexity of Computations and Proofs, Quaderni di Matematica, vol. 13,
pp. 33–72. Seconda Universita di Napoli (2004). An earlier version appeared in the
Complexity Theory Column, SIGACT News 28, vol. 4, pp. 2–15 (December 1997)

2. Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Grid graph
reachability problems. In: Proceedings of 21st IEEE Conference on Computational
Complexity, pp. 299–313. IEEE Computer Society Press, Los Alamitos (2006)

3. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity 8(2), 99–126 (1999)

4. Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Ra-
manujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238–249. Springer,
Heidelberg (2005)

5. Allender, E., Mahajan, M.: The complexity of planarity testing. Information and
Computation 189(1), 117–134 (2004)

6. Allender, E., Rheinhardt, K., Zhou, S.: Isolation, matching and counting: uniform
and nonuniform upper bounds. Journal of Computer and System Sciences 59, 164–
181 (1999)

7. Barrington, D.: Bounded-width polynomial size branching programs recognize ex-
actly those languages in NC1. Journal of Computer and System Sciences 38, 150–
164 (1989)

8. Barrington, D.A.M.: Grid graph reachability problems. Talk presented at Dogstuhl
Seminar on Complexity of Boolean funcions, Seminar Number 02121 (2002)

9. Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in un-
ambiguous logspace. In: Proceedings of IEEE Conference on Computational Com-
plexity CCC 2007 (to appear)

10. Chakraborty, T., Datta, S.: One-input-face MPCVP is hard for L, but in LogDCFL.
In: Proc. of 26th FST TCS Conference. LNCS (2006)

11. Chandra, A., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM Jour-
nal on Computing 13(2), 423–439 (1984)

12. Cook, S.A., McKenzie, P.: Problems complete for L. Journal of Algorithms 8, 385–
394 (1987)

13. Damm, C.: DET=L(#L). Technical Report Informatik–Preprint 8, Fachbereich In-
formatik der Humboldt–Universität zu Berlin (1991)

14. Delcher, A.L., Kosaraju, S.R.: An NC algorithm for evaluating monotone planar
circuits. SIAM Journal of Computing 24(2), 369–375 (1995)

15. Dyer, M.E., Frieze, A.M.: Planar 3DM is NP-complete. J. Algorithms 7(2), 174–184
(1986)

16. Hansen, K.: Constant width planar computation characterizes ACC0. In: Diekert,
V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 44–55. Springer, Heidelberg
(2004)



126 S. Datta et al.

17. Hertrampf, U., Reith, S., Vollmer, H.: A note on closure properties of logspace
MOD classes. Information Processing Letters 75(3), 91–93 (2000)

18. Hoang, T.M., Thierauf, T., Mahajan, M.: On the bipartite unique perfect matching
problem. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 453–464. Springer, Heidelberg (2006)

19. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Stearns, R.E.: The complexity
of planar counting problems. SIAM Journal on Computing 27(4), 1142–1167 (1998)

20. Kulkarni, R., Mahajan, M.: Seeking a vertex of the planar matching polytope in nc.
In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 472–483. Springer,
Heidelberg (2004)

21. Mahajan, M., Subramanya, P.R., Vinay, V.: The combinatorial approach yields
an NC algorithm for computing Pfaffians. Discrete Applied Mathematics 143(1-3),
1–16 (2004)

22. Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, complexity.
Chicago Journal of Theoretical Computer Science, 5 (December 1997),
http://www.cs.uchicago.edu/publications/cjtcs

23. Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins University Press,
Maryland (2001)

24. Reingold, O.: Undirected st-connectivity in logspace. In: Proc. 37th STOC, pp.
376–385 (2005)

25. Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J.
Comp. 29, 1118–1131 (2000)

26. Toda, S.: Counting problems computationally equivalent to the determinant. Tech-
nical Report CSIM 91-07, Dept. of Comp. Sc. & Information Mathematics, Univ.
of Electro-Communications, Chofu-shi, Tokyo (1991)

27. Vadhan, S.: The complexity of counting in sparse, regular, and planar graphs.
SIAM Journal on Computing 31(2), 398–427 (2001)

28. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

29. Valiant, L.G.: Why is boolean complexity theory difficult? In: Paterson, M.S. (ed.)
Boolean Function Complexity. London Mathematical Society Lecture Notes Series,
vol. 169. Cambridge University Press, Cambridge (1992)

30. Vazirani, V.: NC algorithms for computing the number of perfect matchings in
K3,3-free graphs and related problems. Information and Computation 80(2), 152–
164 (1989)

31. Vinay, V.: Semi-unboundedness and complexity classes. PhD thesis, Indian Insti-
tute of Science, Bangalore (July 1991)

32. Xia, M., Zhao, W.: #3-regular bipartite planar vertex cover is #P-complete. In:
TAMC, pp. 356–364 (2006)

33. Yang, H.: An NC algorithm for the general planar monotone circuit value problem.
In: Proceedings of 3rd IEEE Symposium on Parallel and Distributed Processing,
pp. 196–203. IEEE Computer Society Press, Los Alamitos (1991)

http://www.cs.uchicago.edu/publications/cjtcs


Equivalence Problems for
Circuits over Sets of Natural Numbers

Christian Glaßer, Katrin Herr, Christian Reitwießner,
Stephen Travers, and Matthias Waldherr

Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Germany

Abstract. We investigate the complexity of equivalence problems for
{∪,∩, −, +,×}-circuits computing sets of natural numbers. These prob-
lems were first introduced by Stockmeyer and Meyer (1973). We continue
this line of research and give a systematic characterization of the com-
plexity of equivalence problems over sets of natural numbers. Our work
shows that equivalence problems capture a wide range of complexity
classes like NL, C=L, P, ΠP

2 , PSPACE, NEXP, and beyond. McKenzie
and Wagner (2003) studied related membership problems for circuits over
sets of natural numbers. Our results also have consequences for these
membership problems: We provide an improved upper bound for the
case of {∪,∩, −, +,×}-circuits.

1 Introduction

In 1973, Stockmeyer and Meyer [7] defined and investigated equivalence problems
for integer expressions. They considered expressions that can be built up from
single natural numbers by using Boolean operations (−, ∪, ∩), addition (+), and
multiplication (×).

The equivalence problem for integer expressions is the question of whether two
given such expressions describe the same set of natural numbers. Restricting the
set of allowed operations results in equivalence problems of different complexities.
Stockmeyer and Meyer [7] showed that the equivalence test for expressions over
{−,∪,∩,+} is PSPACE-complete, and that this problem becomes ΠP

2 -complete
if one restricts to operations from {∪,+}.

We continue these investigations and study equivalence problems over natural
numbers in a systematic way. Despite of their simple definition, integer expres-
sions are powerful enough to describe highly non-trivial sets. For instance, the
set of primes can be described as

Primes = 0 ∪ 1× 0 ∪ 1 ∩ 0 ∪ 1.

This can easily be verified: The complement of {0, 1}multiplied with itself yields
all composite numbers. Taking its complement gives the set consisting of 0, 1,
and all primes. The intersection with 0 ∪ 1 yields the set of primes. Expressions
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c© Springer-Verlag Berlin Heidelberg 2007



128 C. Glaßer et al.

like this illustrate that equivalence problems for integer expressions comprise
some of the most prominent, unsolved problems in mathematics.

In 1742, Christian Goldbach stated his famous conjecture as a footnote in a
letter to Leonhard Euler: “At least it seems that every number greater than 1 is
a sum of three prime numbers.”1

Euler answered with an equivalent version of this conjecture which nowadays
we call the Goldbach conjecture.

Goldbach Conjecture: Every even integer ≥ 4 is the sum of two primes.

The following integer expression describes exactly the set of integers that are
counter examples for the Goldbach conjecture.

CounterExamples = (2 × 0 ∪ 1) ∩ Primes + Primes

The left set of the intersection is the set of even integers greater than or equal to
4, while the right set consists of those integers that are not a sum of two primes.
The Goldbach conjecture is true if and only if the set of counter examples is
empty. Therefore,

Goldbach conjecture holds ⇐⇒ CounterExamples is equivalent to
0 ∩ 0.

We have seen that the Goldbach conjecture can be formulated as an equiva-
lence problem for integer expressions. So already at this point, the expressiveness
of integer expressions makes us aware of the possibility that the general equiv-
alence problem might be undecidable. Indeed, the decidability of the general
equivalence problem will be one of our open questions.

Stockmeyer and Meyer’s [7] motivation for the study of equivalence problems
for integer expressions originated from equivalence problems for Kleene’s reg-
ular expressions [4]. Since then, several variants and generalizations of integer
expressions have been studied. Beside integer expressions (which we call integer
formulas) researchers were also interested in integer circuits which were intro-
duced by Wagner [10]. The latter represent expressions in a succinct way and so
yield problems of higher complexity.

Wagner [10], Yang [12], and McKenzie and Wagner [5] studied the complexity
of membership problems for formulas and circuits over natural numbers: Here,
for a given circuit C and a number n, one has to decide whether n belongs to
the set that is described by C. Breunig [2] studied membership problems for
formulas and circuits over N+, the positive integers, while Travers [9] studied the
variant for Z, the integers.

In this paper, we study equivalence problems for formulas and circuits over
natural numbers. In particular, this contains the equivalence problems for for-
mulas that Stockmeyer and Meyer [7] were interested in. For most of these
equivalence problems we can precisely characterize their complexity.

1 Note that at that time, 1 was considered to be a prime.



Equivalence Problems for Circuits over Sets 129

It turns out that our results also have consequences for the known results
about membership problems. In fact, our upper bound for the equivalence prob-
lem for {∪,∩,−,+,×}-circuits yields an improved upper bound for the member-
ship problem for {∪,∩,−,+,×}-circuits. This is the first nontrivial upper bound
for MCN(∪,∩,−,+,×), the most general membership problem.

Our main open question is whether the unrestricted version of the equiva-
lence problem, ECN(∪,∩,−,+,×), is decidable or not. While we can show that
this problem is equivalent to the corresponding membership problem, the up-
per bound we provide is not a decidable upper bound. So if one proves that
ECN(∪,∩,−,+,×) is undecidable, then it follows that MCN(∪,∩,−,+,×) also
is undecidable.

A summary of our results and a discussion of open problems can be found in
the conclusions section.

2 Preliminaries

We fix the alphabet Σ = {0, 1}. Σ∗ is the set of words, and |w| is the length of
a word w ∈ Σ∗. N denotes the set of the natural numbers, which include zero,
whereas N+ denotes N−{0}. For a, b ∈ N we define [a, b] df={a, a+ 1, . . . , b− 1, b}
if a ≤ b and [a, b] df= ∅ otherwise. The binary representation of a natural number
n is denoted by bin(n).

We extend the arithmetical operations + and · to subsets of N: Let M,N ⊆ N.
We define the sum of M and N as M + N

df={m + n : m ∈ M and n ∈ N}. We
define the product of M and N as M × N

df={m · n : m ∈ M and n ∈ N}. In
some cases we will identify the singleton {a} with a. Unless otherwise stated,
the domain of a variable is N.

For a nondeterministic logarithmic space machine M , define accM (x) as the
number of accepting paths of M on input x. The class #L consists of precisely
these functions. A set A is in C=L if there exist f, g ∈ #L such that

x ∈ A ⇔ f(x) = g(x) for every x ∈ Σ∗.

See [1] for a survey on these counting classes.
For a complexity class C, let ∃p·C denote the class of languages L such that

there exists a polynomial p and a B ∈ C such that for all x,

x ∈ L ⇐⇒ ∃y
(
|y| ≤ p(|x|), (x, y) ∈ B

)
.

Let C and D be complexity classes. We define

C ∨D df={A ∪B
∣∣A ∈ C, B ∈ D}.

The symmetric difference of sets A and B is defined as A&B = (A−B) ∪
(B −A). The complex version is defined as C ⊕ D = {A&B : A ∈ C, B ∈ D}.
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For a class of languages C which is closed under union and intersection, the
Boolean hierarchy over C [11] is the family of classes C(k) and coC(k) where
k ≥ 1,

C(k) df=

k times︷ ︸︸ ︷
C ⊕ C ⊕ · · · ⊕ C, and

coC(k) df=
{
L : L ∈ C(k)

}
.

Unless stated otherwise, all hardness- and completeness-results are in terms
of logspace many-one reducibility.

The class DLOGCFL was introduced by McKenzie and Wagner [5]. It is the
deterministic restriction of the class LOGCFL [8]. A language L belongs to
DLOGCFL if it can be accepted by a deterministic, logarithmic space-bounded
Turing machine M that has also access to a pushdown store that is not subject
to the logarithmic space-bound. Furthermore, M must have polynomial running
time.

3 Decision Problems for Circuits over Sets of Natural
Numbers

We define circuits over sets of natural numbers and related decision problems.
A circuit C = (V,E, gC) is a finite, non-empty, directed, acyclic graph (V,E)

with a specified node gC ∈ V . We remark that the graph can contain multi-
edges, that it does not have to be connected, and that V = {1, 2, . . . , n} for
some n ∈ N. Moreover, the nodes in the graph (V,E) are topologically ordered,
i.e., for all v1, v2 ∈ V , if v1 < v2, then there is no path from v2 to v1. The nodes
in V are also called gates. Nodes with indegree 0 are called input gates and gC

is called output gate. If in a circuit there is an edge going from gate u to gate v,
then we say that u is a direct predecessor of v and v is the direct successor of u.
If there is a path from u to v but u is not a direct predecessor of v, then u is an
indirect predecessor of v and v is an indirect successor of u.

Let O ⊆ {∪,∩,−,+,×}. An O-circuit C = (V,E, gc, α) is a circuit (V,E, gc)
with an attached labeling function α : V → O∪N such that the following holds:
Each gate has an indegree in {0, 1, 2}, gates with indegree 0 have labels from
N, gates with indegree 1 have labels −, and gates with indegree 2 have labels
from {∪,∩,+,×}. An O-formula is an O-circuit that only contains nodes with
outdegree ≤ 1. For each of its gates g, the O-circuit C = (V,E, gc, α) computes
a set I(g) ⊆ N as follows:

If g is an input gate, then I(g) df=α(g). If g has label − and direct predecessor
g1, then I(g) df= N− I(g1). If g has label ◦ ∈ {∪,∩,+,×} and direct predecessors
g1 and g2, then I(g) df= I(g1) ◦ I(g2).

The set computed by C is I(C) = I(gC); for simplification we will sometimes
write C instead of I(C).
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Example 1. We present circuits for the expressions given in the introduction.

0 1

∪

−

×

−

∩

0 1

∪

−

×

−

∩

+

2

−

∩

0 2

−

×

+

+

The first circuit produces the set of primes: The complement of {0, 1} multiplied with
itself gives all composite numbers. So the complement of this set yields the set of primes
and additionally 0 and 1. We can remove 0, 1 with a ∩-gate and obtain the set of all
primes. The second circuit produces all sums of two odd primes. The third circuit pro-
duces all even numbers greater than four. Hence, a terminating algorithm that decides
whether the last two circuits are equivalent would answer the Goldbach conjecture.

Definition 2. Let O ⊆ {∪,∩,−,+,×}. We define membership problems and
equivalence problems for circuits and formulas.

MCN(O) df= {(C, b)
∣∣C is an O-circuit, b ∈ N, and b ∈ I(C)}

MFN(O) df= {(C, b)
∣∣C is an O-formula, b ∈ N, and b ∈ I(C)}

ECN(O) df= {(C1, C2)
∣∣C1, C2 are O-circuits such that I(C1) = I(C2)}

EFN(O) df= {(C1, C2)
∣∣C1, C2 are O-formulas such that I(C1) = I(C2)}

When an O-circuit C = (V,E, gc, α) is used as input for an algorithm, then
we use a suitable encoding such that it is possible to verify in deterministic
logarithmic space whether a given string encodes a valid circuit. In the following,
we will therefore assume that all algorithms start with such a validation of their
input strings.

We summarize known results about the complexity of equivalence problems.

Theorem 3. 1. [5] ECN(+) is ≤log
m -complete for C=L.

2. [5] ECN(+,×) is in coNP.
3. [7] EFN(∪,+) is ≤log

m -complete for ΠP
2 .

4. [7] EFN(−,∪,∩,+) is ≤log
m -complete for PSPACE.

5. [6] ECN(+,×) is in coRP.
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3.1 Relations to Membership Problems

In this subsection we discuss that in some cases (i.e., for several O ⊆ {∩,∪,−,
+,×}), the complexity of the equivalence problem ECN(O) is related to the
complexity of MCN(O) in a straightforward way. As a consequence, we obtain
several general upper and lower bounds for ECN(O) which we summarize below.
In contrast, in the following sections more sophisticated arguments are needed
to establish optimal bounds.

Lemma 4. The following holds.

1. If O⊆{∩,∪,−,+}, then ECN(O)∈coNPMCN(O) and EFN(O)∈coNPMFN(O).
2. If O ⊆ {∩,∪,+,×}, then EFN(O) is in coNPMFN(O).

The following proposition shows that in many cases, the intuition that equiva-
lence problems are a generalization of membership problems is correct.

Proposition 5. The following holds.

1. If {∩}⊆O or {∪}⊆O, then MCN(O)≤log
m ECN(O) and MFN(O)≤log

m EFN(O).
2. If O ⊆ {+,×}, then MCN(O)≤log

m ECN(O) and MFN(O)≤log
m EFN(O).

In some cases, equivalence problems are not harder than membership problems.

Proposition 6. 1. If {∩,−,×} ⊆ O or {∪,−,×} ⊆ O, then ECN(O)≤log
m

MCN(O).
2. If O ⊆ {∪,∩,−}, then ECN(O)≤log

T MCN(O) and EFN(O)≤log
T MFN(O).

3. If O ⊆ {+,×}, then ECN(O)≤log
m MCN(O∪{∩,×}) and EFN(O)≤log

m MFN(O∪
{∩,×}).

4. If O ⊆ {∩,+,×}, then ECN(O)≤log
T MCN(O∪{∩,×}) and EFN(O)≤log

T MFN

(O ∪ {∩,×}).

In combination with the results by McKenzie and Wagner [5] we obtain the
following lower bounds.

Corollary 7. It holds that

1. ECN(−,∪,∩,+,×) and ECN(∪,∩,+,×) are ≤log
m -hard for NEXP.

2. EFN(−,∪,∩,+,×), ECN(−,∪,∩,+), ECN(−,∪,∩,×), EFN(−,∪,∩,+),
EFN(−,∪,∩,×), ECN(∪,∩,+), ECN(∪,∩,×), and ECN(∪,+,×)
are ≤log

m -hard for PSPACE.
3. ECN(−,∪,∩), ECN(∪,∩), ECN(∩,+,×), and ECN(+,×) are ≤log

m -hard
for P.

4. ECN(∩,+), ECN(∩,×), and ECN(+) are ≤log
m -hard for C=L.

5. ECN(∪), ECN(∩), and ECN(×) are ≤log
m -hard for NL.

6. EFN(−,∪,∩), EFN(∪,∩), EFN(∪), EFN(∩), EFN(∩,+), EFN(∩,×), EFN

(∩,+,×), EFN(+), EFN(×), and EFN(+,×) are ≤log
m -hard for L.
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4 Feasible Equivalence Problems

In this section, we present several equivalence problems for which we can show
that efficient evaluation algorithms exist. While the algorithms in the first part
all require deterministic polynomial time or less, randomization is needed in the
second part of the section.

4.1 Equivalence Problems Solvable in Polynomial Time

From Proposition 6 and the results by McKenzie and Wagner [5] we obtain the
following.

Corollary 8. ECN(∪,∩), ECN(∪,∩,−), ECN(∩,×) ∈ P, EFN(∩,+,×) ∈
DLOGCFL, ECN(∪), ECN(∩) ∈ NL, and EFN(∪), EFN(∩), EFN(∪,∩), EFN

(∪,∩,−), EFN(×), EFN(+), EFN(∩,×) ∈ L.

We now show that ECN(∩,+) is complete for the class coC=L(2), which is the
complement of the second level of the Boolean hierarchy over C=L. As a useful
tool, we introduce non-emptiness problems for circuits.

Definition 9. We define non-emptiness problems forO-circuits andO-formulas.

NECN(O) df= {C
∣∣C is an O-circuit such that C �= ∅}.

NEFN(O) df= {C
∣∣C is an O-formula such that C �= ∅}.

Lemma 10. NECN(∩,+) is ≤log
m -complete for C=L and NEFN(∩,+) ∈ L.

The next proposition shows that in some cases, equivalence problems with ad-
dition can very easily be reduced to equivalence problems with multiplication.

Proposition 11. ECN(∩,+)≤log
m ECN(∩,×) and ECN(+)≤log

m ECN(×).

Corollary 12. EFN(∩,+) ∈ L.

Theorem 13. ECN(∩,+) is ≤log
m -complete for coC=L(2).

Corollary 14. ECN(∩,×) is ≤log
m -hard for coC=L(2), ECN(×) is ≤log

m -hard for
C=L.

4.2 Equivalence Problems Solvable by Randomized Algorithms

We explain that ECN(∩,+,×) ∈ BPP, i.e., decidable in bounded-error prob-
abilistic polynomial time. Schönhage proved [6] that ECN(+,×) ∈ coRP, and
McKenzie and Wagner showed [5] that MCN(∩,+,×) ≡log

m ECN(+,×). So MCN

(∩,+,×) ∈ coRP. By Proposition 6, ECN(∩,+,×) ∈ PcoRP, and hence ECN

(∩,+,×) ∈ BPP due to the self-lowness of BPP [3].

Corollary 15. MCN(∩,+,×) ∈ coRP and ECN(∩,+,×) ∈ BPP.
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5 Intractable Equivalence Problems

In this section we analyze equivalence problems which are more difficult to decide
than the problems presented in the former section. The scope ranges from ΠP

2 -
complete for the more restricted problems like EFN(∪,+) and EFN(∪,×) up to
NEXP-hard for ECN(−,∪,∩,+,×), the most general membership problem we
consider. The best upper bound we can give in that case is the Turing-degree of
the halting problem.

5.1 ΠP
2 -Complete Problems

We show ΠP
2 -completeness for several equivalence problems. Lemma 4 already

shows that some of these problems belong to ΠP
2 , and it is known that EFN(∪,+)

is ΠP
2 -complete [7]. Hence, it suffices to prove ΠP

2 -hardness for EFN(∪,×). We
first show that the following problem is ΠP

2 -complete.

QPOS2
df=
{
(x1, . . . , x2n, b)

∣∣x1, . . . , x2n, b ≥ 1 and ∀I ⊆ {1, . . . , n}
∃J ⊆ {n+1, . . . , 2n}

(∏
i∈I xi

∏
j∈J xj = b

)}
We then prove that QPOS2≤log

m EFN(∪,×).

Theorem 16. QPOS2 is ≤log
m -complete for ΠP

2 .

Theorem 17. EFN(∪,×) is ≤log
m -hard for ΠP

2 .

Furthermore, we can show that ECN(∪,×) and ECN(∪,+) are in ΠP
2 by using

standard techniques. We obtain:

Theorem 18. The following problems are all ≤log
m -complete for ΠP

2 :ECN(∪,+),
ECN(∪,×), EFN(∪,∩,+,×), EFN(∪,∩,+), EFN(∪,∩,×), EFN(∪,+,×), EFN

(∪,+), EFN(∪,×)

5.2 More General Equivalence Problems

We analyze the complexity of the most general equivalence problem, ECN

(−,∪,∩,+,×). From the Propositions 5 and 6 it follows that ECN(−,∪,∩,+,×)
≡log

m MCN(−,∪,∩,+,×).
Every decision algorithm for ECN(−,∪,∩,+,×) would enable us to automat-

ically verify Goldbach’s conjecture. This means that we run the algorithm on
input of the circuit that formulates Goldbach’s conjecture (this circuits is shown
in the introduction of this paper) and the algorithm definitely tells us whether
or not the conjecture is true.

It is possible that ECN(−,∪,∩,+,×) is undecidable, but at the moment, we
cannot prove this. Observe that the problem EFN(−,∪,∩,+,×) shares the same
fate: Obviously, a terminating decision procedure for EFN(−,∪,∩,+,×) can also
be used to decide ECN(−,∪,∩,+,×) by simply unfolding the circuit into a (pos-
sibly exponentially larger) formula before feeding it to the decision algorithm.
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Circuits over positive natural numbers will turn out useful to analyze the
most general equivalence problem. Breunig [2] showed that if we restrict the
range to N+ (instead of N), then the general membership problem for circuits
is decidable in PSPACE. We will utilize this result to show that we can solve
ECN(−,∪,∩,+,×) if the evaluation algorithm has oracle access to the halting
problem.

Theorem 19 ([2]). MCN+(−,∪,∩,+,×) is ≤log
m -complete for PSPACE.

Lemma 20. There exists an oracle Turing machine M with oracle K (the halt-
ing problem) that on input of a {−,∪,∩,+,×}-circuit C over N outputs a
{−,∪,∩,+,×}-circuit D over N+ and a set Z ⊆ {0} such that C = D ∪ Z.

Theorem 21. MCN(−,∪,∩,+,×) and hence also ECN(−,∪,∩,+,×) belong to
degT(K) where K denotes the halting problem.

Since the general circuits can contain −-gates, the following is easy to see:

Proposition 22. The problem ECN(−,∪,∩,+,×) is recursively-enumerable if
and only if ECN(−,∪,∩,+,×) is decidable.

However, the equivalence problems become decidable if we forbid the combina-
tion of −-, +-, and ×-gates.

Proposition 23. 1. ECN(∪,∩,+,×) and ECN(∪,+,×) are in coNEXPNP.
2. ECN(−,∩,∪,×),EFN(−,∩,∪,×),ECN(∩,∪,×) ∈ PSPACE

Testing equivalence for {∪,+,×}-circuits is likely to be more difficult than test-
ing membership: While the membership problem is PSPACE-complete [5], we
can show that the equivalence problem is NEXPTIME-hard. For the member-
ship problem, it suffices to compute numbers in the length of the target number,
as numbers can only become smaller when multiplied by 0. Intuitively, the diffi-
culty when testing equivalence for {∪,+,×}-circuits is that we have to deal with
very large (up to exponential in length) numbers.

It was observed [9] that a similar effect occurs when testing membership for
{∪,+,×}-circuits over the integers : By describing a generic reduction, it was
shown that MCZ(∪,+,×) is NEXP-complete [9]. An analysis of that involved
proof yields that with minor modifications, it does also show that ECN(∪,+,×)
is ≤log

m -hard for NEXP.

Corollary 24. The problem ECN(∪,+,×) is ≤log
m -hard for NEXP.

6 Conclusions

In Table 1 we summarize upper and lower bounds for ECN(O) and EFN(O) for
different sets of operations. In general, equivalence problems are more difficult to
solve than their corresponding membership problems. Two circuits are equivalent
if for all natural numbers x, they coincide with respect to membership of x. The
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Table 1. Upper and lower bounds for ECN(O) and EFN(O). All lower bounds are
with respect to ≤log

m -reductions and the numbers in parentheses refer to the corre-
sponding theorems (T), corollaries (C), or lemmas (L). The PSPACE-completeness
of EFN(−,∪,∩, +) and the ΠP

2 -completeness of EFN(∪, +) were shown by Stockmeyer
and Meyer [7]. The C=L-completeness of ECN(+) was shown by McKenzie and Wag-
ner [5]. ECN(+,×) ∈ coRP was shown by Schönhage [6]. For ECN(−,∪,∩, +,×) and
EFN(−,∪,∩, +,×) we only have degT(K), the Turing degree of the halting problem, as
upper bound. It is possible that these problems are undecidable.

ECN EFN

O Lower Bound Upper Bound Lower Bound Upper Bound
− ∪ ∩ + × NEXP (C7) degT(K) (T21) PSPACE (C7) degT(K) (T21)
− ∪ ∩ + PSPACE (C7) PSPACE (L4) PSPACE (T3) PSPACE (T3)
− ∪ ∩ × PSPACE (C7) PSPACE (P23) PSPACE (C7) PSPACE (P23)
− ∪ ∩ P (C7) P (C8) L (C7) L (C8)

∪ ∩ + × NEXP (C7) coNEXPNP (L23) ΠP
2 (T18) ΠP

2 (T18)
∪ ∩ + PSPACE (C7) PSPACE (L4) ΠP

2 (T18) ΠP
2 (T18)

∪ ∩ × PSPACE (C7) PSPACE (P23) ΠP
2 (T18) ΠP

2 (T18)
∪ ∩ P (C7) P (C8) L (C7) L (C8)
∪ + × NEXP (C24) coNEXPNP (L23) ΠP

2 (T18) ΠP
2 (T18)

∪ + ΠP
2 (T18) ΠP

2 (T18) ΠP
2 (T3) ΠP

2 (T3)
∪ × ΠP

2 (T18) ΠP
2 (T18) ΠP

2 (T18) ΠP
2 (T18)

∪ NL (C7) NL (C8) L (C7) L (C8)
∩ + × P (C7) BPP (C15) L (C7) DLOGCFL (C8)
∩ + coC=L(2) (T13) coC=L(2) (T13) L (C7) L (C12)
∩ × coC=L(2) (C14) P (C8) L (C7) L (C8)
∩ NL (C7) NL (C8) L (C7) L (C8)

+ × P (C7) coRP (T3) L (C7) DLOGCFL (C8)
+ C=L (T3) C=L (T3) L (C7) L (C8)

× C=L (C14) P (C8) L (C7) L (C8)

difference between equivalence and membership becomes even more apparent if
one realizes that in general, this universal quantifier is not polynomially bounded
in the length of the circuits. For example, a circuit that contains ×-gates can
produce numbers of exponential length in its output. An equivalence test has
to make sure that two given circuits of size n agree with respect to membership
of all x such that |x| ≤ 22n. In some cases (e.g., ECN(∪,×)) it is possible to
condense the search space such that one ends at a polynomially-bounded uni-
versal quantifier. In other cases (e.g., ECN(∪,+,×)) such a polynomial bound
cannot be established. We leave open whether the bounds for ECN(∪,+,×) and
ECN(∪,∩,+,×) can be improved.

The most general case we consider is the equivalence problem for {−,∪,∩,
+,×}-circuits. As discussed in the introduction, Goldbach’s conjecture can be
formulated as such an equivalence problem. This explains why we were not able
to find decidable upper bounds for ECN(−,∪,∩,+,×) and EFN(−,∪,∩,+,×).
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However, with the Turing-degree of the halting problem we identify at least
one non-trivial upper bound. This yields the first non-trivial upper bound for
MCN(−,∪,∩,+,×) and MFN(−,∪,∩,+,×). It is possible that ECN(−,∪,∩,+,×)
and EFN(−,∪,∩,+,×) are undecidable, but so far the best provable lower bound
is NEXP. We leave as our most challenging open question whether these prob-
lems are decidable. Here we only know that they are either decidable or not
recursively enumerable.

When comparing the complexities of membership problems with their cor-
responding equivalence problems, we notice that usually the complexity either
stays the same or increases significantly because of the earlier discussed univer-
sal quantifier. When looking at the equivalence problem for {∩,+}-circuits we
observe a completely different behavior. While the complexity of MCN(∩,+) is
C=L, the complexity of ECN(∩,+) is coC=L(2), which is the complement of the
second level of the Boolean hierarchy over C=L. So here we observe a moderate
jump of the complexity. For the related problem ECN(∩,×) we obtain coC=L(2)
as lower bound, but we leave open whether this is also an upper bound. Similarly,
we would like to know matching bounds for ECN(×).
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Abstract. The Bouillon project implements the vision termed a “So-
cial Web”. It is an extremely open collaboration environment employing
social links for creation, filtering and dissemination of information. It is
also an attempt to boost the wiki effect of knowledge crystallization.

Currently, the project is in stage of public testing, available at http://
oc-co.org.

1 Introduction

1.1 General Theory

Many limitations of current online environments have their roots in the problem
of trust. The author’s general theory is that every information exchange environ-
ment has two key parameters: openness and (quality) control. Those parameters
have to be balanced. Over-controlled environment has problems accommodat-
ing new information and thus become poor. Too open environment becomes
polluted. These problems are generic and exist independently of a particular
medium (paper, voice or bytes). This simple theory is further illustrated with
some examples. Although openness and control seem to be contradicting ob-
jectives, the author’s point is that more advanced environments combine more
openness and more control. E.g. Wikipedia’s success compared to Britannica [15]
may be explained by the former being much more open while still keeping the
level of control comparable to the latter. The objective of the Bouillon project is
to create an online environment having a bit more of openness and control than
those currently existing.

1.2 On Wiki Scalability

Original WikiWikiWeb [2] ideas targeted minimum-effort collaboration leading
to information “automagically” crystallizing. Wiki is supposed to be a single
medium for reading, collaborative editing, discussions and conversations. In
many cases, “crystallization” appeared to be a more effective way of putting
information together than the “glue” that search engines provide for WWW.
Recognition of the wiki way’s advantages is a Wikipedia article being the first
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entry for many Google searches on appropriate topics (if you still have no habit
of checking Wikipedia first).

Do wiki face any challenges? Or, what might be more open than a wiki?
Any information environment have faced the scalability challenge; while some

crises lead to the environment’s decay (such as the Usenet’s Eternal Septem-
ber), other crises were answered by a major breakthrough (such as Google’s
PageRank [23]). Wikis are increasingly popular; Wikipedia accommodates ex-
ponentially growing content [5] without any visible degradation of its quality.

Obviously, extreme openness (any visitor can edit) leads to regular abuses
by spambots and vandals. Many of today’s smaller wikis have to employ user
accounts and passwords. This shifts their utility closer to ordinary web pages.
Wikipedia, as an Internet-scale project, has some advantages in this regard.
Namely, Wikipedia may have exhaustive statistics on strangers’ behavior. The
great attention resource of Wikipedia gives a unique possibility to remove van-
dalism and spam by manual labor. Still, the scope of the project is limited to
encyclopedic factual information. Working with personal opinions, experiences
and discussions, commercial or local information, manuals and guides etc etc are
all beyond possibilities of Wikipedia’s technology.

So, wiki openness and scalability have visible limits.

2 State of the Field

2.1 Social ∩ Web

One path for improving wiki scalability was proposed by the original wiki in-
ventor Ward Cunningham [14] in 1997. The “folk memory” approach assumes
a more social, peer-to-peer way of new material creation, filtration and dissem-
ination – much like “folk tales or folk songs are remembered and propagated
within a culture”. Indeed, if it works in the real world, in real social networks,
why wouldn’t it work automatically online?

Another concept, the “Social Web”, although rather fuzzy, seems relevant to
our case. Wikipedia defines Social Web as “an open global distributed data shar-
ing network” that “links people, organizations, and concepts”. One attempted
step in practical implementation of the Social Web is Augmented Social Net-
work Initiative [18]. The initiative took some effort in introducing online social
interaction standards based on OASIS XDI, but produced no usable outcome.

One more relevant ongoing effort is the NEPOMUK project (Networked Envi-
ronment for Personalized, Ontology-based Management of Unified Knowledge [6])
which is a part of the Semantic Web movement. Wiki-related activities of NEPO-
MUK include creation and deployment of semantically annotated wikis [19].

2.2 Topology

This work follows the Folk memory vision of information propagation in a social
network. Because of this, topological features of social networks are extremely
important for this work. What do we know about social topology?
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One recent breakthrough in this area was associated with the scale-free net-
works theory [10]. The most characteristic feature of scale-free networks is power-
law distribution of node degree P (k) ∼ k−γ , 2 < γ < 3, where P (k) is a prob-
ability of node degree being equal to k. Two results on scale-free networks are
especially relevant in the context of this paper.

The first result is that scale-free networks have no epidemic threshold. Less
prevalent memes (genes, pathogens, rumors) do not die out exponentially fast,
albeit they are present in smaller populations [11]. An immediate conclusion is
that even some less-demanded information will travel through a friend-to-friend
network of such topology. To put it simply: long-tail content is welcomed.

Another result is that scale-free networks are ultrasmall. A scale-free net-
work has a diameter of ∼ log logN , where N is the number of nodes [13]. This
fact is informally known as the six degrees of separation hypothesis, originally
attributed to S. Milgram. Ultrasmall diameter guarantees that a network may
undergo exponential growth without significant topology changes, i.e. it is of ul-
timate scalability. Also, this gives us good information reachability guarantees,
see Sec. 3.1.

2.3 Related Research

Some recent advances are not directly related to the subject of this paper, but
heavily intersect with it, so it is worth to be mentioned briefly.

Some previous work was focused on DHT-style distributed wiki hosting [25],
that is supposed to change the technical aspect leaving collaboration aspects of
wiki(pedia) intact. Steps were taken by different entities to introduce some Wiki
Interchange Format, mostly for offline wiki synchronization, although the author
is unaware of any widely accepted standard in this area.

There are numerous commercial and open-source collaborative real-time edi-
tors letting a limited number of participants to craft a common document. No-
table products of this kind include SubEthaEdit [7] for Mac OS X, open-source
editor ACE [1] and others. A web-based collaborative editor SynchroEdit [8]
may also be used as a wiki editor.

During last five years, the internet has shown explosive growth of online social
networking sites, such as LinkedIn, LiveJournal or MySpace.

Extensive work was undertaken to optimize peer-to-peer query flood
algorithms [12,26,20]. That approach was originally used in the Gnutella P2P
network [4], as well as in some later projects, and it is considered to be compu-
tationally inefficient. The main concern was exponential growth of the amount
of queries compared to the number of users [24]. Bouillon’s objective is to turn
this exponential growth weakness into a strength, see Sec. 3.1. Sec. 3.2 specially
addresses complexity issues of Bouillon’s use of query flood.

3 Bouillon

Bouillon project aims to create a real-time WYSIWYG wiki without any dis-
tinction between reading and editing modes. The extreme openness is balanced
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by the employed information filtering and dissemination process: any changes
and opinions propagate from friend to friend, so content is sieved by the social
network. This is much along the Folk Memory and Social Web visions mentioned
earlier.

As in any wiki, every Bouillon page is identified by its name. Every Bouillon
page is a tree of pieces. To better visualize pieces, one may think of sections,
subsections and paragraphs of an article and their parent–child relations. Tech-
nically, Bouillon deals with a coarsened DOM tree [3] of an XML document.
Every piece has a partially ordered set of versions. To choose among different
versions and to glue separate pieces into a tree Bouillon employs opinions. Opin-
ions can be of two kinds: either “a/b” claiming relevance of piece b as a child of
piece a, or “b : v” claiming relevance of particular version v of a piece a. Opinions
could be both positive and negative.

As it was mentioned, any information, opinions, requests and pieces are passed
from friend to a friend; the network has social topology. Forming links (contacts)
are weighted with reputation in both directions, ρa(b) ∈ [0; 1]. Reputations are
supposed to be auto calculated based on past performance/compliance of one
respective peer in the eyes of another. All opinions are weighted according to
reputation distance to the author, where “reputation distance” stands for multi-
plicative weight of a path from the opinion’s source to the current peer. Opinion
calculations are made according to a formal model based on fuzzy logic which is
explained in [17] and in more detail in [27].

To retrieve opinions from the social network peers use requests of two types.
Root request /a asks for anyone who knows about the piece a; child request a/
retrieves a/b and a : v kind of opinions. Correspondingly, opinion retrieval goes
in two phases. Root request floods vicinity of a peer to detect every promising
direction where something is known on the target page. Such a flood covers
just a sublinear amount of nodes (compared to the overall size of the network).
The following recursive retrieval is destined to promising directions only; as the
process advances deeper into the tree, the list of promising directions shrinks,
until the whole tree of reachable material is retrieved.

After all relevant opinions are retrieved, the client assembles the page using the
most recommended/fresh versions of accepted pieces and finally shows it to the
user. Any further edits introduced by the user are committed as opinions and new
versions of pieces. That edits immediately become available to the author’s social
vicinity. On silent approval by any other reading peer, new changes propagate
further by the social network.

3.1 Reachability

It is not obvious whether information will propagate quick in such a network or
the process will get stuck e.g. the network may separate into islands of incom-
patible changes. There is a simple topological result:

Lemma 1. IF an average peer is able to serve its sublinear neighborhood (i.e.
Na nodes, assuming N to be the size of the network) THEN any information
or change that has propagated to a corresponding sublinear proportion of nodes
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(N1−a) is now broadly accessible (i.e. the majority of peers may retrieve it by
requests).

Proof. (For Erdos-Renyi random graphs). Both nodes storing the information
and nodes covered by the request are assumed to be random node subsets of
size O(N1−a) and O(Na) respectively. Thus, size of the intersection of two sets
has an order of pqN = N1−a

N × Na

N × N = 1, where p and q are probabilities
for a node to belong to the respective set. (Actually, we get a Bernoulli trial
having success probability pq.) Mean intersection size of 1 may seem unreliable;
this is easily fixed by multiplying size of either set by some constant factor c.
Deviations from the mean follow binomial distribution, so this gives us success
(request meets the information) in most of the cases.  !

For scale-free graphs, the situation is even better. In a scale-free graph, highly-
connected nodes (hubs) appear early in a vicinity ball growing from some cen-
ter [13]. So, both sets of nodes that store the information and those covered by
the request are supposed to heavily intersect with a third set of hubs (which also
has sublinear size [16]). This boosts the effect described in the previous lemma.

What about information that gained no sublinear “prevalence”? First, most
of information is of local value and is not supposed to spread globally. People’s
interests are supposed to correlate with social links, so such local information
will likely reach all of its audience without disturbing the rest.

Because of the absence of epidemic threshold (Sec. 2.2) it is generally expected
that no information would die out if it is of some interest to anyone. The six
degrees of separation hypothesis contributes another optimistic expectation. If
a vicinity ball covered by requests has a radius of two steps (degrees), then from
any point of humankind to any other point a piece of information might ideally
be relayed by two intermediate evaluations.

3.2 Computational Load

The Bouillon protocol has some resource-hungry features. First, the initial root
request (vicinity flood) that must cover some significant sublinear proportion of
nodes. Second, a separate request corresponds to each piece of a page. Third,
each request has to be refreshed every 50 seconds to support real-time change
notification feature. (The interval of 50 seconds is an empirical tradeoff between
the need to refresh expired and to store unexpired requests).

Let’s estimate bandwidth requirements for a peer in a network of 106 nodes,
assuming node vicinity to be 103 nodes, average message size to be 100 − 200
bytes, 10− 20 bytes compressed (high compress ratio is explained by repetitive-
ness of the XML format). As tokens stream by long-living TCP connections,
network overhead is skipped. Average page size is 100 pieces and all peers are
simultaneously reading different pages (no aggregation is possible). All peers re-
side at different hosts, no traffic is local. In this worst-case scenario, an average
node has to process an order of 103 × 100 requests every 50 seconds, i.e. 2 ∗ 103

messages per second or 4 ∗ 104 bytes per second. Finally, we get 320Kbit/s, less
than a typical BitTorrent download speed.
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We may also suppose that a high clustering coefficient [21,22] of social net-
works may lead to unnecessary message duplication. (Clustering coefficient is
the probability of two random friends of a random node being friends to each
other). Let the clustering coefficient be as high as 0.9. Simplistically, this leads
to the effect of 90% requests being passed to a node that already has a copy,
so to cover 103 nodes 104 request copies are needed. Thus, the pessimistically
estimated bandwidth consumption jumps to 3.2 Mbit/s, which is still has an
order of an average ADSL connection.

(Needless to say, some datacenter-based deployment variants are always pos-
sible, users do not spend online 24 hours a day, some users read the same pages,
some peers know nothing about a page, so they get no requests except for the
root request, also clustering effect is less relevant for the outer layer of a vicinity
ball, which is the most of the ball’s mass, etc etc).

4 Conclusion

A wiki-wiki prototype of a Social-Web was implemented in ∼2000 lines of Java
code for the engine plus ∼400 lines of original JavaScript code for the client
(WYSIWYG editing is implemented by TinyMCE [9]). The technology is ex-
pected to scale very well, combining extreme openness and reasonable quality
control for massively distributed collaboration. The prototype is always available
at http://oc-co.org.
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Abstract. Starting off with Moss and Parikh’s view of knowledge we
develop a kind of dynamic logic of knowledge acquisition. Corresponding
procedures are basically modelled by functions changing the knowledge
states of the agent under discussion, and the machinery of deterministic
PDL is then utilized for knowledge-based programming. The main issues
of the paper are the fundamental meta-theorems on the arising logic,
KAL. We prove, in particular, the soundness and completeness with re-
spect to the intended class of structures as well as the decidability of
KAL.

Keywords: logics of knowledge, knowledge acquisition, propositional
dynamic logic, topological reasoning.

1 Introduction

The approach undertaken here relies on the particular logic of knowledge set
out in the papers [1] and [2], respectively. That system, L, emphasizes the in-
terrelation between knowledge and topology. We briefly recall the basics of L
at the beginning of this paper. In L, the knowledge of an agent in question is
represented by the space of all knowledge states. These are the sets of states the
agent considers possible at a time. If an effort is made to acquire knowledge,
then this appears as a shrinking procedure regarding that space of sets. The for-
mulas of the language underlying L may contain both a modality K describing
knowledge and an operator � expressing effort. The semantic domains are triples
(X,O, V ) called subset spaces, which consist of a non-empty set X of states, a
set O of subsets of X representing the knowledge states of the agent (sometimes
called the opens), and a valuation V determining the states where the atomic
propositions are true. The operator K then quantifies over some knowledge state
U ∈ O, whereas � quantifies ‘downward’ over O since shrinking elements of O
and gaining knowledge correspond to each other.

The fact that � implicitly models some knowledge acquisition procedure is
the starting point to the following. What we do below is making such procedures
explicit. To this end, we enrich subset spaces with partial functions operating on
O. It is intended that these functions represent the ‘elementary’ procedures of
that kind; the more complex ones then come into play by means of the program
constructs known from PDL; cf, eg, [3], § 10.
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Epistemic dynamic logic is an active field of research, and several relevant
systems were proposed in the literature; see, eg, [4,5,6]. The present approach
differs from most of these to the effect that it allows a topological interpretation
of knowledge acquisition. Actually, corresponding procedures may be viewed as
computable approximations in certain spaces of sets, in particular, topological
ones. Thus, by modelling knowledge acquisition in the way indicated above the
basis of formal topological reasoning is widened at the same time.

The subsequent technical part of the paper is organized as follows. In the next
section, we define the new language describing knowledge acquisition. We give
also some examples concerning expressiveness there. In Section 3, we turn to the
arising logic, which we call KAL (Knowledge Acquisition Logic). We prove the
soundness and completeness of KAL with respect to the class of all appropriately
enriched subset spaces. After that, we show that KAL is decidable, and we touch
on complexity questions. Concluding the paper, we summarize and point to
future research.

2 The Language

We now introduce the language underlying KAL and give some sample specifi-
cations. Throughout this paper, we confine ourselves to the single-agent case.

We first define the syntax. Let PROP = {A,B, . . .} be a denumerable set of
symbols called proposition letters, and let F = {F,G, . . .} be a set of one-place
function symbols. The set KAP of (knowledge acquisition) procedures and the
set F of all formulas over PROP ∪ F are simultaneously defined by the rules

P ::= F | P ;Q | P ∪Q | P ∗ | Kα? and α ::= A | ¬α | α ∧ β | Kα | [P ]α,

respectively, where the letter K has to be substituted in a way that will be
explained in a moment. The missing boolean connectives are treated as abbre-
viations, as needed. The duals of the modal operators are indicated by putting
the corresponding letters in angle brackets; thus 〈K〉 denotes the dual of K and
〈P 〉 denotes the dual of [P ]. Now, K = K or K = 〈K〉. Thus tests are restricted
to knowledge formulas here.1

Secondly, we define the semantics. For a start, we fix the relevant domains.
We let P(X) designate the powerset of a given set X .

Definition 1 (Subset frames and subset spaces with procedures)

1. A subset frame with procedures is a triple S := (X,O, {RP | P ∈ KAP})
such that
(a) X is a non-empty set,
(b) O ⊆ P(X) is a set of subsets of X, and
(c) for every P ∈ KAP, RP ⊆ O×O is a binary relation satisfying U ′ ⊆ U

if U RP U ′, for all U,U ′ ∈ O.
1 In this place, we could be a bit more general by allowing boolean combinations of

formulas prefixed by K. However, this is not important to the purposes of this paper.
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2. Let S = (X,O, {RP | P ∈ KAP}) be a subset frame with procedures. The set
of neighbourhood situations of S is NS := {(x, U) | x ∈ U and U ∈ O}.

3. Let S = (X,O, {RP | P ∈ KAP}) be a subset frame with procedures and
V : PROP −→ P(X) be a mapping. Then V is called an S–valuation.

4. Let S = (X,O, {RP | P ∈ KAP}) be a subset frame with procedures and V be
an S–valuation. Then, M := (X,O, {RP | P ∈ KAP}, V ) is called a subset
space with procedures (or, in short, an SSP). In this case we say that M is
based on S.

Note that the requirement ‘U ′ ⊆ U if U RP U ′’ in item 1 (c) of this definition is
to reflect knowledge acquisition. Furthermore, unlike the case of usual PDL the
relations hold between sets of states.

Now, let an SSP M be given. We define the relation of satisfaction, |=M ,
between neighbourhood situations of the underlying frame and formulas from F.
In the following, neighbourhood situations are written without brackets.

Definition 2 (Satisfaction; validity). Let M = (X,O, {RP | P ∈ KAP}, V )
be an SSP based on S = (X,O, {RP | P ∈ KAP}) , and let x, U ∈ NS be a
neighbourhood situation. Then

x, U |=M A : ⇐⇒ x ∈ V (A)
x, U |=M ¬α : ⇐⇒ x, U �|=M α

x,U |=M α ∧ β : ⇐⇒ x, U |=M α and x, U |=M β

x, U |=M Kα : ⇐⇒ for all y ∈ U : y, U |=M α

x,U |=M [P ]α : ⇐⇒ ∀U ′ ∈ O : (if U RP U ′ and x ∈ U ′, then x, U ′ |=M α) ,

for all A ∈ PROP, P ∈ KAP, and α, β ∈ F. In case x, U |=M α is true we say
that α holds in M at the neighbourhood situation x, U. Furthermore, a formula α
is called valid in M iff it holds in M at every neighbourhood situation. (Manner
of writing: M |= α.)

Note that the meaning of proposition letters is independent of neighbourhoods
by definition, thus ‘stable’ with respect to [P ]. This fact is reflected by a special
axiom later on; see Sec. 3.

The intended domains are certain special SSPs rather than arbitrary ones.
These are introduced in the next definition.

Definition 3 (Standard SSPs). Let M = (X,O, {RP | P ∈ KAP}, V ) be an
SSP. M is called standard iff the following conditions are satisfied for all F ∈ F ,
P,Q ∈ KAP and α ∈ F :

1. RF is a partial function, RF : O −→ O,
2. RP ;Q = RP ◦RQ,
3. RP∪Q = RP ∪RQ,
4. RP∗ = (RP )∗, and
5. for all U,U ′ ∈ O, it holds that U RKα? U

′ iff U ′ = U and y, U |=M Kα for
some y ∈ U .
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Note that the ‘∗’ on the right-hand side of the equation in item 4 of this definition
denotes the reflexive and transitive closure.

The reader will easily convince himself or herself that every standard SSP is
in fact an SSP, i.e., satisfies the requirement in item 1 (c) of Definition 1.

The semantics of the knowledge acquisition procedures defined above and
the one of the knowledge-based programs considered in [7], Sec. 7, turn out to
be fairly different. While the latter is based on a fine-grained description of the
interplay between knowledge and action in multi-agent scenarios, we confine our-
selves to simplified terms by allowing procedures to transform entire knowledge
states. In this way, we obtain an easily comprehensible system which might be
sufficient for simple specification tasks.

Concluding this section we present two examples. The first one contains some
program constructs involving the (non-)knowledge of the agent.

Example 1. A program expressing ‘IF the agent knows α THEN P ELSE Q’
reads (Kα?;P ) ∪ (〈K〉¬α?;Q) . Similarly, ‘WHILE the agent does not know α
DO P ’ can be expressed by (〈K〉¬α?;P )∗ ; Kα? (the outer brackets are omitted).

The second example deals with the topological interpretation of the new lan-
guage.

Example 2. During this example we assume that the �–operator from L is avail-
able, too. Moreover, we let the underlying subset frame (X,O) be a topological
space. – Let P ∈ KAP. Then we have that �α → [P ∗]α is a validity, for all
α ∈ F; cf Definition 1.1(c).2 Now, a ‘weak converse’ of this schema is imposed,
viz [P ∗]α→ ��α. According to Definition 2, this means that the iterated com-
putation of P eventually leads to arbitrarily small neighbourhoods. Therefore,
since P ∗ step-by-step yields smaller and smaller opens we may say that effec-
tive approximations in topological spaces can be specified by formulas of the
language up to a certain degree.

Example 2 builds a bridge to so-called dynamic topological logics in a sense,
which were designed, among other things, for modelling hybrid systems; see, eg,
[8] and, more recently, [9].

3 The Logic

In this section, we first propose an axiomatization of the logic KAL. After that
we sketch the proof of the soundness and semantic completeness of KAL with
respect to the class of all SSPs. This takes up most of the time expended here.
At the end of this section, we establish the decidability of KAL and comment on
its complexity.

The axioms are divided into three groups. To begin with, we list the axioms
for the knowledge modality K.

2 In fact, �α → [P ] α is globally true for all procedures P ∈ KAP.
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1. All instances of propositional tautologies.
2. K(α → β) → (Kα → Kβ)
3. Kα→ (α ∧ KKα)
4. 〈K〉α → K〈K〉α,

where A ∈ PROP and α, β ∈ F. It is expressed in this way that, for every Kripke
model M validating these axioms, the accessibility relation of M belonging to
the knowledge operator is an equivalence.

Now let F be a fixed set of function symbols and KAP be the relevant set of
procedures. The axioms describing the elements of KAP then read as follows.

5. [P ](α → β) → ([P ]α→ [P ]β)
6. 〈F 〉α → [F ]α
7. (A → [F ]A) ∧ (〈F 〉A → A)
8. [P ;Q]α↔ [P ][Q]α
9. [P ∪Q]α↔ [P ]α ∧ [Q]α

10. [P ∗]α → α ∧ [P ] [P ∗]α
11. [P ∗] (α → [P ]α) → (α → [P ∗]α)
12. [Kα?]β ↔ (Kα→ β),

where F ∈ F , P ∈ KAP, A ∈ PROP and α, β ∈ F. Most of these schemata
are well-known from usual PDL; cf [3], § 10. We point to the different ones only.
Axiom 6 captures the deterministic case, Axiom 7 is due to the special semantics
given here (see the remark following Definition 2), and Axiom 12 reflects the
present restrictions concerning tests.

The most interesting group of axioms deals with the interplay between knowl-
edge and procedures.

13. K[F ]α→ [F ]Kα
14. [F ]Kα→ K[F ]α ∨ [F ]β,

where F ∈ F and α, β ∈ F. A couple of points are worth mentioning. Axiom
13 represents the variant of the Cross Axiom from [2] which is appropriate to
the context of this paper. A commutation axiom of this type is typical of every
logic of knowledge and effort. Axiom 14 determines to what extent the converse
of Axiom 13 is valid. Note that both schemata need to be required only for the
basic procedures. Moreover, both axioms have a counterpart in the linear time
version of temporal L; cf [10].

From this list, we obtain the logical system KAL by adding the standard proof
rules of modal logic, i.e., modus ponens and necessitation with respect to each
modality.

Definition 4 (The logic). The smallest set of formulas containing the axiom
schemata 1 – 14 and being closed under the application of the following rule
schemata is denoted KAL :

(modus ponens)
α→ β, α

β
(Δ–necessitation)

α

Δα
,

where α, β ∈ F and Δ ∈ {K} ∪ {[P ] | P ∈ KAP}.
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It is easy to see that KAL is sound for standard SSPs. In the remaining part
of this section, we show that KAL is also complete with respect to this class of
structures. The argumentation in proving this is partly similar to that in case of
(deterministic) PDL. Thus we may be brief regarding this and let the differences
take first place instead.

Let α0 ∈ F be not contained in KAL, and let Σ0 be the Fischer-Ladner closure
of α0; cf [3], p 112. We do some more work on Σ0. First, we close the set
Σ0 ∪ {¬α | α ∈ Σ0} under finite conjunctions of pairwise distinct elements.
Second, we form the closure under single applications of the operator 〈K〉. And
finally, we collect all subformulas of the formulas obtained up to now. (This
step is necessary since 〈K〉 is an abbreviation.) Let Σ denote the resulting set of
formulas. Then Σ is finite and subformula closed.

Furthermore, let KAPΣ0 be the smallest subset of KAP including the set F0

of all elements of F occurring in Σ0 and all tests contained in Σ0, and being
closed under ; , ∪, and ∗.

We must construct an SSP falsifying α0. To this end, we start off with the
canonical model of KAL restricted to the relations determined by KAPΣ0 : Mc =
(Xc, Rc

K, {Rc
P | P ∈ KAPΣ0}, V c). This model is then collapsed in the usual way.

Since we are free to choose a filtration of the relations Rc
F , where F ∈ F0, we take

the minimal one for this. The minimal filtration too is taken for the modality K.
Let M =

(
X,RK, {RP | P ∈ KAPΣ0}, V

)
be the resulting structure. (For later

purposes it should be mentioned that V (A) = ∅ holds for all A /∈ Σ0, without
loss of generality.) Then we have the following proposition.

Proposition 1. M is a filtration of Mc, the PDL–reduct of M is a standard
model (in the spirit of usual PDL), and ¬α0 is satisfied in M at some point x0.

Proof. See [3], Theorem 10.7 and Corollary 10.9. Only the case of tests is different
from that of PDL here and requires attention thus. However, this case does not
cause any complications.

So far we have exploited the properties of Σ0 and the axioms (5 and) 8 – 12.
Now we utilize the structure of Σ as well as the axioms 1 – 4 and 13 – 14.

Proposition 2. The model M satisfies the following properties:

1. RK is an equivalence relation.
2. For all F ∈ F0 and x, y, z ∈ X such that xRF y RK z, there exists v ∈ X

such that xRK v RF z.
3. For all F ∈ F0 and x, y, z ∈ X such that xRK y RF z and x has some

RF –successor at all, there exists v ∈ X such that xRF v RK z.

Proof. For each item, one first shows that the corresponding property holds for
the canonical model and then that it passes down to the filtration. In particular,
the structure of the filter set Σ, the S5–properties of K, and Axiom 13, are used
for item 2. For item 3, Axiom 13 has to be replaced with Axiom 14. Note that
a rather involved argument like that in the proof of Proposition 7 from [11] is
required each time.
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The remaining difficulties of the proof are connected with Axiom 6. It is a known
fact that the functionality of a relation gets lost in passing down to a filtration.
This shortcoming has to be rectified now. For a start, we have at least a partial
result.

Proposition 3. Let F ∈ F0, x, y ∈ X satisfy xRF y, and 〈F 〉α ∈ Σ. Suppose
that M, y |= α, where |= denotes the PDL satisfaction relation. Then M, z |= α
is true for all RF –successors z of x.

Proof. See [12], 3.5. Note that this is the place where Axiom 6 plays its part.

The further proceeding relies heavily on the proof of [12], Theorem 4.1. We quote
those points of this proof that we shall need below in the following lemma.

Lemma 1. 1. For each x ∈ X, let D(x) := {〈F 〉α ∈ Σ | M, x |= 〈F 〉α}. Then
there exists a finite tree Tx such that
(a) the nodes of Tx are labelled by elements of X and the edges of Tx are

labelled by elements of F0,
(b) the root is labelled by x,
(c) if there is an edge labelled by F from y to z, then y RF z,
(d) for each node on the tree and all F ∈ F0 there is at most one outgoing

edge labelled by F ,
(e) for all 〈F 〉α ∈ D(x), if 〈F 〉α equals 〈P1〉 . . . 〈Pk〉β, where β is not of the

form 〈P 〉γ, then there exists a node y on the tree such that xRP1 ◦ . . . ◦
RPk

y and M, y |= β.
2. The trees from item 1 can be composed in such a way that a finite determin-

istic standard model T of ¬α0 results in case α0 is in the K–free fragment of
the language.

Proof. Item 1 is essentially [12], Lemma 4.6, (a) – (d). Only the definition of
D(x) is slightly different here (Σ0 is replaced with Σ), but this does not change
the original proof. Item 2 is a rather lax summary of the final part of the proof
of Theorem 4.1 there. We shall be more precise in a minute when we modify the
construction of T appropriately.

We now describe how a structure realizing ¬α0 can be obtained, which is both a
deterministic PDL model and a Kripke model with respect to RK; moreover, the
knowledge axioms as well as the conditions from Proposition 2 will be satisfied.
In a following step, this model is converted into a semantically equivalent SSP.
First we state one more technical lemma.

Lemma 2. Let x ∈ X, and let Tx be the tree given by Lemma 1. Moreover, let
T ′, T ′′ be trees such that

1. both T ′ and T ′′ satisfy (a) – (d) from item 1 of Lemma 1,
2. T ′ and T ′′ are isomorphic (i.e., there is a bijection, respecting the labelling

of edges, between the sets of nodes of T ′ and T ′′).
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Finally, assume that T ′ is a subtree of Tx. Then there exists a tree T̂x which
contains T ′′ as a subtree and satisfies all the requirements from Lemma 1.1.

Proof. Proposition 3 as well as further concepts and results from [12] (Lemma
4.3, Definition 4.4, and Lemma 4.5) have to be applied. The detailed proof of
Lemma 2 is deferred to the full version of this paper.

The construction of a set of deterministic trees (in fact, a forest) underlying the
intermediate model falsifying α0 proceeds in five steps. The first one is taken
from [12] (final part of the proof of Theorem 4.1).

1. Let x0 ∈ X be such that M, x0 |= ¬α0 (see Proposition 1). Let T0 be x0

and, for all n ∈ N, Tn+1 be Tn with the following modifications:
(a) if x is a leaf of Tn and Tx has not been used yet, then replace x with Tx,
(b) if x is a leaf of Tn and Tx has already been used, then take Tx, delete x,

and draw the corresponding edge from the predecessor of x in Tn to the
root of Tx.

Then let T 0 :=
⋃
n
Tn. T 0 is in fact a finite deterministic tree.

2. Let {x0, x1, . . . , xm} be the RK–equivalence class of x0. Construct determin-
istic trees T 1, . . . , Tm being rooted in x1, . . . , xm, respectively, like T 0 in the
previous step.

3. Define the joint tree of {T 0, T 1, . . . , Tm}, denoted T̃ , in the following way
by induction.
(a) Take a new point y0 /∈ X. Let y0 be the root of T̃ . Label y0 by the empty

sequence ().
(b) Let T̃ be already defined up to level n. Take any (temporary) leaf x and

suppose that x is labelled by (Fi1 , . . . , Fin), where Fi1 , . . . , Fin ∈ F0. For
every F ∈ F0, do the following exactly once: if for some i ∈ {0, . . . ,m}
there is an (Fi1 , . . . , Fin , F )–path in T i starting at the root, then take a
new point y (i.e., y /∈ X and y has not been used up to now), let y be a
node of level n + 1 of T̃ , and label y by (Fi1 , . . . , Fin , F ).

4. For i = 0, . . . ,m, let T ′
i be the maximal subtree of T i which is isomorphic

to a subtree T ′′
i of T̃ . Let σi : T ′′

i −→ T ′
i be a corresponding isomorphism.

Pass the labelling of nodes from T ′
i over to T ′′

i by means of (σi)−1. Then let
T̂ i

0 be the tree containing T ′′
i whose existence is guaranteed by Lemma 2.

5. For each of the trees T̂ i
0 there exists a canonical mapping πi

0 : U i
0 −→

X, where U i
0 is the set of nodes of T̂ i

0. Now, if need be, change the la-
belling of the nodes of T̂ i

0 in such a way that, whenever y, y′, z, z′ ∈ T ′′
i ∩

T ′′
j , πi

0σ
i(y)RF πi

0σ
i(z), πj

0σ
j(y′)RF πj

0σ
j(z′), and πi

0σ
i(y)RK πj

0σ
j(y′), then

πi
0σ

i(z)RK πj
0σ

j(z′), for all i, j = 0, . . . ,m and F ∈ F0. Let T̂ i be the re-
sulting tree (i = 0, . . . ,m).

The following lemma is almost immediate from Proposition 2.3 and Lemma 2.
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Lemma 3. All the requirements stated in item 5 above can be satisfied.

Now, let Ui be the set of nodes of T̂ i. We may assume that these sets are
pairwise disjoint (which can easily be achieved, if need be). Let πi : Ui −→ X
be the canonical mapping (i = 0, . . . ,m). Moreover, let X ′ :=

⋃
i Ui. For every

F ∈ F , define R′
F ⊆ X ′×X ′ by sR′

F t : ⇐⇒ there are i ∈ {0, . . . ,m} such that
s, t ∈ Ui and an edge from s to t in T̂ i labelled by F , for all s, t ∈ X ′. Extend
these relations to KAP in such a way that the standard model conditions are
fulfilled. Furthermore, let sR′

K t : ⇐⇒ ∃ i, j ∈ {0, . . . ,m} : s ∈ Ui, t ∈ Uj

and πi(s)RK πj(t), for all s, t ∈ X ′. And finally, let a Kripke valuation V ′ :
PROP −→ P(X ′) be given by M′, s |= A : ⇐⇒ ∃ i ∈ {0, . . . ,m} : s ∈ Ui and
M, πi(s) |= A, for all s ∈ X ′ and A ∈ PROP. With that, we have the next
lemma.

Lemma 4. 1. Each of the relations R′
F is a partial function, and R′

K is an
equivalence.

2. The resulting model M′ = (X ′, R′
K, {R′

P | P ∈ KAP}, V ′) validates all the
above axioms.

3. M′, x0 |= ¬α0.

The proof of this lemma is omitted here as well, but we mention that, among
other things, Proposition 2 is used for it.

We now turn to the final step of the construction, giving us the desired SSP
M. Let the carrier set X of M consist of all paths f through any of the trees
M′ consists of. For every F ∈ F0, define a relation of precedence between R′

K–
equivalence classes by [s] �F [t] : ⇐⇒ ∃ s′ ∈ [s], t′ ∈ [t] such that there is an edge
from s′ to t′ labelled by F (s, t ∈ X ′). Now, every chain [s0] �F1 . . . �Fn [sn]
starting at the smallest class [s0] (which consists precisely of the roots of the
trees T̂ i) determines an open U[s0]F1 ...Fn [sn] in the following way. If f is any
element of X , then

f ∈ U[s0]F1 ...Fn [sn] : ⇐⇒
{

[s0] �F1 . . . �Fn [sn] and , for all i = 0, . . . , n,
f passes through [si] by respecting Fi.

Let O := {U[s0]F1 ...Fn [sn] | n ∈ N, s0, . . . , sn ∈ X ′, F1, . . . , Fn ∈ F0 and [s0] �F1

. . . �Fn [sn]}. For all F ∈ F , define RF ⊆ O ×O by

U[s0]F1 ...Fn [sn] RF U[t0]G1 ...Gl [tl]
: ⇐⇒

⎧⎨⎩
l = n + 1, [si] = [ti] for all i = 0, . . . , n,
Fj = Gj for all j = 1, . . . , n− 1,
and Gl = F.

Extend these relations to KAP as above. Letting additionally A hold at the
neighbourhood situation f, U[s0]F1 ...Fn [sn] iff A is true in M′ at some node t of
f (where A ∈ PROP, s0, . . . , sn ∈ X ′ and F1, . . . , Fn ∈ F0), we obtain the final
lemma of this section.

Lemma 5. The structure M = (X,RK, {RP | P ∈ KAP}, V ) is a standard SSP
falsifying α0.
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Proof. We first argue that RF is a partial function, for all F ∈ F . We may
restrict attention to the function symbols contained in F0. It was achieved, in
particular, by step 5 of the above construction (right before Lemma 3) that not
only every element s of X ′ has at most one RF –successor in M′, but also the
whole class [s] of s. To be more precise, the construction ensured that, for all
s, s′, t, t′ ∈ X ′, if sR′

F t, s′ R′
F t′ and sR′

K s′, then t R′
K t′. This shows that each

RF is really a partial function.
Now we prove that U RF U ′ implies U ′ ⊆ U , for all F ∈ F0 and U,U ′ ∈ O.

Let U ′ = U[s0]F1 ...Fn [sn], for some n ∈ N, s0, . . . , sn ∈ X ′ and F1, . . . , Fn ∈ F0.
Let g ∈ U ′. Then, for all i = 0, . . . , n there exists a uniquely determined node
gsi of g being contained in [si], and for all i = 0, . . . , n − 1 the edge leading
from gsi to gsi+1 is labelled by Fi. Since U RF U ′ is assumed to be valid, we
infer U = U[s0]F1 ...Fn−1 [sn−1]

from that. This proves that g ∈ U . Consequently,
U ′ ⊆ U .

Our next task is to show that V is well-defined. Let A ∈ PROP be given.
Then A is true in M′ at some node of f , iff A is true in M′ at every node of
f . Actually, M′ inherits this property from M, for which it is valid because of
Axiom 7 and the fact that we chose the minimal filtration of the accessibility
relations of the canonical model; see also the remark preceding Proposition 1.

Finally, the following property, which suffices for the remaining part of Lemma
5, can be proved by structural induction (notations as above):

For all α ∈ Σ, f ∈ X , and U = U[s0]F1 ...Fn [sn] ∈ O such that f ∈ U , we
have that f, U |=M α iff M′, fsn |= α.

The induction is not carried out here. (Again, the reader is referred to the full
version of the paper.) – This finishes the proof of the lemma.

The main part of the subsequent first theorem of this paper is an immediate
consequence of Lemma 5.

Theorem 1 (Soundness and completeness). KAL is sound and complete
with respect to the class of all standard SSPs.

We have even prepared virtually everything we need to prove the second of our
main results.

Theorem 2 (Decidability). KAL is a decidable set of formulas.

Proof. We showed, in particular, the finite frame property of KAL. It is a known
fact that this property implies the decidability of the logic; cf [13],

Concluding this section we attend to the complexity of the KAL-satisfiability
problem, SKAL. In case of deterministic PDL, the corresponding problem is
EXPTIME-complete; cf [12], Sec. 5. By using this we can show that SKAL is
hard for EXPTIME anyway. As to the upper bound, we mention the method
applied in the proof of Theorem 5.1 of the paper [12], which is usually called
Elimination of Hintikka sets; cf [13], Sec. 6.8. Roughly speaking, superfluous
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elements of the filtration M are faithfully eliminated with that. Now, the essen-
tial difference to the present case is that the filter set Σ has another order of
magnitude here. Thus even if we apply the Elimination method successfully we
shall not get a matching complexity bound. – Unfortunately, the determination
of the exact complexity of SKAL must be postponed to future research.

4 Concluding Remarks

In this paper, we developed a dynamic logic of knowledge acquisition, KAL, by
combining a variant of Moss and Parikh’s logic of knowledge and deterministic
PDL. Looking into the merits of the new system we can tell that on the one hand
knowledge-based programming and on the other hand topological reasoning is
supported to some extent. The theoretical results we obtained back up this thesis.
We proved both the semantic completeness and the decidability of the arising
logic.

We combined only the most basic systems of the respective fields in this very
first step. Thus there remains a lot to be done with regard to both theory and
practical applications. Two problems concerning the first area already appeared
above: the integration of the �–operator (see Example 2) and the determination
of the complexity of KAL. Because of their fundamental character these problems
should be solved next.

Concerning the integration of the operator �, there is a ‘solution’ suggesting
itself provided that there are only finitely many elementary procedures, F =
{F0, . . . , Fn}, and the iterated application of the elements of F is exhaustive in
the following sense:

O =

( ⋃
F∈F

RF

)∗
,

where O is the distinguished set of subsets of the underlying frame. In fact, �
is then definable by

�α :≡
[
(F0 ∪ . . . ∪ Fn)∗

]
α,

for all α ∈ F. Now, the formula [P ∗]α → ��α from Example 2 actually says
that the particular procedure P represents a computable contraction; cf once
again the literature we referred to at the end of Section 2.

In connection with the �–operator, one might also think of a combination of
the temporal systems from [10] or [11] and the PDL-like one presented in this
paper. This means adding an S5–component to dynamic linear time temporal
logic; cf [14]. Moreover, multi-agent versions of such systems are very desirable
in view of recent developments in dynamic epistemic logic.
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Abstract. In this paper, using the chromatic properties of power graphs we 
propose a new approach for placing resources in symmetric networks. Our 
novel placement scheme guarantees a perfect placement when such a solution is 
feasible in the topology. 

Keywords: Interconnection networks, Resource placement, Symmetric graphs, 
Power graphs, Chromatic number. 

1   Introduction 

There might be several types of resources in a multicomputer that each processor 
needs to access. These resources may encompass I/O processors, memory or software 
packages. However, it is not often an economical nor it is a feasible or logical choice 
to place one resource from each type in each node of the system. In general, then, the 
problem of resource placement is how to disseminate some limited resources over the 
nodes of the network giving comparable access to all processors.  

Resource placement has extensively been studied in the literature. Most of the 
solutions to this problem have been put forth for specific topologies such as the 
hypercube [9], [10], [22], [18], [24] and the torus [19], [20], [21], [5], [6], [7], [3]. 
Resource placement in the star interconnection network has been studied in [4]. While 
a variety of techniques have been envisioned, most of the presented placement 
schemes use the error correcting linear coding theory for distinguishing the nodes 
which contain the resources from the other nodes of the network. 

Let G be a graph with a vertex set V(G) and edge set E(G). We denote by degG(v) 
the degree of a given vertex v in G and by distG(v,u) the distance between two given 
vertices u and v in G. Throughout this paper we use N , Dim(G), and deg(G), to refer 
to the number of vertices in G , the diameter and the degree of G, respectively. The kth 
power of G denoted by Gk is a graph obtained from G by adding edges to G between 
any two vertices whose distance from each other is less than or equal to k for some k ≥ 
1. Obviously, G1=G. Due to their interesting properties, power graphs have been the 
source of much attention in the past and power of several classes of graph have been 
studied extensively in the literature [16], [8], [12], [13], [1]. The applications of 
power graphs appear in different fields like routing in networks, quantum random 
walks in physics, etc. 
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The problem of coloring powers of graphs has also been considered in the past 
where the powers of some specific classes of graphs like planer graphs [1] and 
chordal graphs [2] have been studied. Vertex coloring of power graphs has been used 
to solve different problems like interleaving [15], distributing data storage and sphere 
packing [11], [17]. 

In this paper, we propose a novel approach, using the notion of chromatic sets, for 
deriving resource placement schemes for symmetric network. In particular, we study 
the chromatic properties of powers of symmetric graphs, and show that the chromatic 
sets of the kth power of a symmetric graph can be used to derive resource placement 
schemes for the former network. Our proposed solution for resource placement is 
optimal in the sense that it results in a perfect placement whenever such a placement 
is feasible depending on the topology, number of resources and distance at which the 
placement strategy is desired. We will also propose some criteria for checking the 
feasibility of the resource placement schemes. 

2   Preliminaries and Definitions 

A resource allocation strategy is said to be perfect iff no two resource nodes are 
adjacent to each other, and all non-resource nodes are adjacent to the same number of 
resource nodes [4]. Similarly, a perfect distance-d placement is achieved when the 
resources are distributed such that every non-resource node is within a distance d or 
less from exactly one resource node and the distance between no two resource nodes 
is less than or equal to d. An allocation strategy is called an m-perfect adjacency if it 
is perfect, and each non-resource node is adjacent to exactly m resource nodes. 

 
Definition 1: We call a source placement scheme a k-perfect distance-d placement if 
1) every non-resource node is within a distance d or less from exactly k resource 
nodes and 2) the distance between any two resource nodes is more than d. Thus, 
perfect distance-d placement and m-perfect adjacency are two specific cases of k-
perfect distance-d placement obtained when d=1 and k=1, respectively. 

While a perfect placement scheme is always preferable, but a perfect solution may 
not exist for some graph topologies for some k and d values. Whenever referring to a 
placement scheme which does not satisfy the perfectness criteria, we would simply 
omit the term “perfect”, e.g. k distance-d placement is a placement scheme which 
does not satisfy the second condition in definition 1. In [4] it is proved that any 
perfect resource set is a dominating set and a maximum independent set for the 
corresponding graph topology. We would use this result later in order to put forth our 
initial idea for resource placement.  

 
Theorem 1: Given a regular graph G, the number of resource copies required to 
achieve an m-adjacency placement for G is given by 

( , )
deg( )

Nm
R G m

G m
=

+
 

For perfect m-adjacency (if it exists), R is an integer number. 
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Proof: If R nodes are to be chosen as the resource nodes, out of the entire N nodes in 
the network, N−R nodes would remain as non-resource nodes. According to the 
definition of perfect adjacency no two resource nodes can be adjacent. Therefore, 
each resource node would be adjacent to deg(G) non-resource nodes. The total 
number of edges in G which connect some resource node to some non-resource node 
then could be derived as deg( )R G . As each non-resource node is adjacent to m 

resource node, the number of edges in G which connect a non-resource node to a 
resource node would be ( )m N R− . As G is a digraph the number of edges from 

resource nodes to non-resource nodes is equal to the number of edges from non-
resource nodes to the resource nodes. Hence, ( ) deg( )m N R G R− =  and from here we 

can derive R as the proposed equation.                                                                          □ 
 

A graph G is symmetric if it is both vertex and edge transitive, i.e. each pair of 
vertices and each pair of edges are equivalent under some automorphism group [14]. 
Every symmetric graph is a regular graph but the inverse is not generally true. 
Hereafter, we use the term ‘symmetric’ to refer to ‘connected symmetric’ graphs since 
all of the graphs being considered in the context of interconnection networks are 
connected, while the symmetric networks are the most attractive yet common 
topologies. 

The chromatic number of a graph G, denoted by ( )Gχ is the smallest number of 

colors ( )Gγ  needed to color the vertices of G so that no two adjacent vertices share 

the same color [23]. The number of graph vertices in the largest complete sub-graph 
of G, denoted by ( )Gω is called the clique number of G. It is easy to see that the 

chromatic number of a graph must be greater than or equal to its clique number. G is 
said to be perfect if for every induced subgraph H of G, the clique number we have 
ω(H)=χ(H). Similarly, we define a quasi-perfect graph as a graph whose clique 
number and chromatic number are equal. It is easy to see that any perfect graph is 
quasi-perfect as well but the inverse is not true. Obviously, the quasi-perfectness is 
considered a weaker property than the perfectness. 

The clique number is a measure of the local connectivity of a graph. If G is 
symmetric we can easily conclude that every vertex of G is contained in a clique of 
size ( )Gω . The ( )Gχ parameter on the other hand, expresses some of the properties of 

the network as well. In particular, we expect a symmetric graph whose chromatic 
number is somewhat bigger then its clique number to expose some irregularity in its 
general structure. Conversely, in this study we introduce the quasi-perfect graphs as a 
class of topologies with extremely regular structures. We will show that this attractive 
property would make the problem of resource placement quite straightforward for this 
class of graph topologies. 

 
Definition 2: Let G be a graph with the chromatic number ( )Gχ , i.e. G can be 

colored with ( )Gχ colors so that no two adjacent edges have the same color. Each 

such coloring divides the vertices of the graph to ( )Gχ sets each containing the 

vertices which the same color. We call each such a set a chromatic set for G. 
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Theorem 2: Let G be any symmetric graph. Gd is symmetric of degree VolG(d) where 
VolG(d) is the excluding volume of radius d of G which is defined as the number of 
vertices within distance d from any given vertex.  

Proof: If G is a symmetric graph then each vertex v of G has k vertices at the 1-
distance. We can state the same argument for the vertices at the 1-distance of v to 
derive the 2-distance neighbors of v. In general, having the vertices at the distance i of 
v, we can derive the vertices at the distance i+1 by finding the neighbors of the 
vertices at the distance i of v and ignoring the already visited vertices. As G is 
symmetric and v was initially chosen arbitrarily, starting from any other vertex u of G 
we will have the same situation at each stage while finding vertices of larger distance. 
Hence, the number of vertices within distance d from any vertex of G is equal to 
VolG(d) . As in Gk any vertex is connected to all vertices within distance d from that 
vertex in G, the degree of each vertex in Gk would be VolG(d). Let A:V(G)→V(G) be 
the automorphism group defined on the vertex set of G which maps v to u and let R 
denote the adjacency relation. The automorphism group on the edge set of G, 
B:V(G)×V(G)→V(G)×V(G) is defined as B(xRy)=A(x)RA(y) for any two arbitrary 
adjacent vertices in G. Hence to derive the automorphism group for Gd we define B as 
B(xRdy)=A(x)RdA(y). Then, A and B define vertex and edge automorphism groups for 
Gd under which x and its distance 1 to d neighbors would be equivalent to y and its 
distance 1 to d neighbors. As x and y were chosen arbitrarily for any two vertices 
(edges) in Gd, there exists an automorphism group under which the two vertices 
(edges) are equivalent. Therefore, Gk is symmetric.                                                      □  

3   Chromatic Properties and Adjacency Placement  

In this section, we study the chromatic properties of symmetric graphs and propose an 
adjacency placement for the symmetric networks accordingly. Our initial idea for 
using the chromatic numbers for resource placement was shaped based on the fact that 
the graph coloring by its definition assigns a particular color to the vertices which are 
disseminated in the network. We can always assure that no two nodes in a chromatic 
set are adjacent. This is one of the conditions which are required for a perfect 
adjacency placement. The chromatic number of a graph on the other hand, is a 
measure of the connectivity of the corresponding network i.e. the chromatic number 
of a highly connected network is rather big which means that the number of nodes in 
each of its chromatic set is small. This is in correspondence with the fact that for a 
highly connected network fewer resources are needed as each node can gain access to 
many resource nodes within few hops. 

In order to study the effectiveness of the resource set in a resource placement 
scheme we need to define some metrics for the resource sets.  

 

Definition 3: Let G be a symmetric connected graph and ( )s V G⊂ be a dominating 

set for G. Then, the suffusion ratio of a set s in G is defined as: 

*
, ,

2 ( , )

( 1)s
u v s u v

d u v

s s d
σ

∈ ≠
=

− ∑  
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or equivalently as: 

( )
,

*

( , )
,u v s

s

E d u v
u v

d
σ ∈= ≠  

where
,u v s
E

∈
is defined as the expected value calculated over all different vertex pairs of 

(s, d) which specifies the distance between any two given vertices and d* = Dim(G). 
The parameter sσ is a measure of the dissemination of the nodes of s throughout 

the other nodes of the graph. It calculates the average distance between any pair of 
nodes in the set related to the diameter of the network which is always an upper 
bound for any distance in the network. 

In the context of resource placement, it would be desired to choose s of a specific 
size such that it maximizes sσ . Next, we show that the chromatic sets provide the 

maximum sσ and hence are the best candidates for the resource set. 
 

Theorem 3: Let G be a quasi-perfect symmetric graph with clique number of ω(G); 
then any given vertex v of G is contained in a clique of size ω(G).  

Proof: As the clique number of G is ω(G) there should be at least a single clique of 
this size in G. Yet as G is a symmetric graph no two vertices of G differ in their 
connectivity to their neighboring nodes, i.e. each vertex can be obtained from another 
vertex with an automorphism group. Hence, if there exists such a clique C in the 
graph with a vertex v contained in it, every other vertex of G should also be in some 
clique C’ obtained from C with an automorphism group.                                             □ 
 
Theorem 4: Let G be a quasi-perfect symmetric graph, then any chromatic set s of G 
is a dominating set for G. 

Proof: As G is quasi-perfect, as a result of last theorem, each arbitrary vertex of G is 
contained in a clique of size χ(G). First, we show that each such a clique contains 
exactly a single vertex from each of different χ(G) chromatic sets of G. A clique by 
definition is a complete subgraph, i.e. any two arbitrary vertices in a clique are 
connected. Hence, while coloring the graph, no two vertices of the clique can be 
colored with the same color. As the size of the clique is χ(G), it contains exactly one 
vertex from each chromatic set. This fact implies that each given vertex v of G has 
neighbors from all different chromatic sets. Then, for any arbitrary chromatic set s 
corresponding to the vertices which are colored in a color Cs, v is either colored in Cs 
(i.e. contained in s) or is adjacent to s. Therefore, s is a dominating set for G.             □  
 
Theorem 5: Let G be a quasi-perfect symmetric graph. Then any chromatic set s of G 
is a maximum independent set for G. 

Proof: Let s be the set of entire vertices colored in a specific color Cs and u and v be 
any two arbitrary vertices in s. As the membership of u and v is defined by the graph 
coloring and because u and v have the same color, they cannot be neighboring 
vertices. As we chose u and v arbitrarily, no two vertices in s all neighbors and hence  
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this results in the independency of s. To prove that s is maximal, we show that adding 
any other vertex of G to s abrogates it independency. Let x be any given arbitrary 
vertex of G such that x∉ s. x belongs to a clique of size χ(G) and hence a neighboring 
vertex of G in that clique belongs to s. Therefore adding x to s causes the set to loose 
its independency. Therefore, s is maximal.                                                                    □ 
 

Theorem 6: For a given quasi-perfect graph G, we have ( ) | ( )V G Gχ i.e. |V(G)| is 

divisible to χ(G). Furthermore, each chromatic set s of G contains 
( )

( )

V G

Gχ
 vertices.  

Proof: Let us assume that V(G) is not divisible to χ(G). Then ( ) mod ( )V G Gχ of the 

chromatic sets of G has at least one vertex more than the other chromatic sets, i.e. 

they have 
( )

( )

V G

Gχ
⎡ ⎤
⎢ ⎥
⎢ ⎥

vertices while the others have only 
( )

( )

V G

Gχ
⎢ ⎥
⎢ ⎥
⎣ ⎦

vertices. Let s be a 

chromatic set containing 
( )

( )

V G

Gχ
⎢ ⎥
⎢ ⎥
⎣ ⎦

vertices. As G is a symmetric graph, we can 

conclude that each vertex in G is contained in some clique of size ω(G). As some sets 
like s have fewer members, we expect that some vertices in G do not have a 
neighboring vertex in s. On the other hand, due to the fact that G is symmetric, the 
size of the clique for all the vertices is the same hence ω(G) ≤ χ(G) − 1 which 
contradicts our assumption that G is quasi-perfect. Therefore, we have ( ) | ( )V G Gχ . 

Using the same way to prove that all the chromatic sets have equal number of 
vertices, we can show that if two chromatic sets have different number of vertices 
then the clique number of graph would be less than its chromatic number. Suppose s 
and s’ be two chromatic sets with different number of vertices and |s|>|s’|. We can 
infer that some vertices in G are not neighbors of s’ while they are neighbors of s, and 
as all of the vertices in G belong to a clique of the same size, we can infer that ω(G) ≤ 
χ(G) − 1 that is again contradictory. Hence, the vertices of the graph are divided to 

ω(G) equal pieces each of size 
( )

( )

V G

Gχ
.                                                                          □ 

 

Corollary 1: Given a quasi-perfect graph G, each pair of the chromatic sets of G are 
equivalent under some automorphism group and thus have an equal suffusion ratio 
which is maximal. 
 
Theorem 7: Any vertex v of a given chromatic set has at least ( ) 1Gχ −  edges to the 

vertices contained in other ( ) 1Gχ −  different chromatic sets. 

Proof: As G is symmetric, for each vertex v in G, a subset of G which correspond to 
Kω(G) can be built such that it contains v. This implies that each arbitrary vertex v in G 
has a degree of at least ω(G) −1. If G is quasi-perfect then χ(G) = ω(G). Now let us 
consider v and the set of its neighbors which are in a Kω(G) with v. As they build a 
Kω(G), each vertex is adjacent to all of the other vertices in that set; hence, each vertex 
in the set must receive a different color and belong to a different chromatic set. 
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Therefore, any arbitrary vertex of this set as v is adjacent to the vertices contained in 
χ(G) − 1 different chromatic sets.                                                                                  □  

 

Finally, using the results obtained in the last theorems, in what follows we prove that 
the chromatic sets provide the maximum suffusion ratio. 

 

Theorem 8: Let G be a given symmetric graph. Then, a chromatic set s of G provides 
the maximal suffusion ratio throughout all dominating sets of size | s |. 

Proof: Let us assume that s is not maximal. After replacing some vertex x∈s by some 
vertex y∉s of G a set s’ is obtained where its suffusion ratio is bigger than s, i.e. y is 
farther from the vertices in s relative to x. We show that no such a vertex could ever 
exist in G. As y is not in s, knowing that s is a dominating set we can conclude that y 
is adjacent to some vertex (vertices) in s. It is while any given vertex of s (like x) is 
not adjacent to any other vertices in s as they share the same color. Hence, replacing x 
with y would decrease the suffusion ratio and s is maximal. 

Now that we proved the optimality of the chromatic sets we shall figure out to 
which class of placement would the resulting placements belong. The next two 
theorems investigate this issue in detail. 

 

Theorem 9: Let G be a given symmetric quasi-perfect graph. Then, choosing one of 
the χ(G) chromatic sets of G as the resource set of the network results in a perfect m-

adjacency placement where m can be obtained as
deg( )

( ) 1

G
m

Gχ
=

−
. 

Proof: We proved that any of the chromatic sets of a symmetric quasi-perfect 
graph is a maximum independent set and a dominating set for G. Suppose we 
choose a chromatic set s as the resource set. As s is an independent set, 1) no two 
resource nodes are adjacent and hence the resource placement is perfect. 
Furthermore, as s is a dominating set, 2) each given vertex in G is either a resource 
node or is adjacent to a resource node, i.e. at least a copy of the resource is 
accessible within a single hop from each non-resource node. Next we will derive 
the equation proposed for the number of adjacent resource nodes. Reminding from 
section 1, we derived the number of resource nodes required to achieve a perfect 
m-adjacency placement as:  

( , )
deg( )

Nm
R G m

G m
=

+
. 

Now that we are using a chromatic set as the resource set, the number of resource 

nodes is known and equals 
( )

( )

V G

Gχ
 where |V(G)| (or equivalently N) denotes the 

number of nodes in the network. By replacing this value in the last equation for R we 
have: 
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( ) deg( )

N Nm

G G mχ
=

+
. 

Finally, after solving the equation for m we get 
deg( )

( ) 1

G
m

Gχ
=

−
.                                    □ 

 
As we saw in the last theorem using a chromatic set as the resource set of a network 
results in a known resource placement. This placement is defined by the graph 
topology and hence there is no guarantee that it matches the exigencies of our specific 
network. In general, what is desired is a placement strategy which provides some 
degree of freedom for choosing or fine-tuning parameters such as the number of 
resources in the network, and the distance of placement. Although, the problem of 
resource placement is more dictated by the network topology rather than the designer 
of the network which means that many resource placement schemes are not 
achievable in a given graph topology, it is sometimes preferable to neglect some of 
the rigid conditions (e.g. perfectness) in order to obtain some flexibility while 
choosing crucial parameters such as number of resources in the network. In the next 
theorem, we would prove that by selecting more than one chromatic set as the 
resource set, one can obtain regular adjacency placements which let the presence of 
more resources in the network. 

 
Theorem 10: Let G be a given symmetric quasi-perfect graph. By choosing the union 
of k arbitrary sets, 1 ≤ k ≤ χ(G), out of the χ(G) chromatic sets of G as the resource set 
of the network, an mk-adjacency placement is achieved where m can be obtained as 

deg( )

( ) 1

v
m

w G
=

−
. While this obviously does not suggest a perfect placement as the 

resource nodes can be adjacent, it guarantees the existence of mk neighboring 
resource nodes for each non-resource node. 

Proof: If the union of more than one chromatic sets are chosen as the resource set, 
then the resource vertices still build a dominating set for G as adding new members to 
a dominating set does not disrupt its dominating property. Yet, this time the resource 
set cannot be an independent set as the resource nodes can be adjacent. Hence, the 
corresponding placement would be an mk-adjacncy. The number of resources adjacent 
to each node is obtained as the product of the number of chosen chromatic sets m and 
the number of vertices in each chromatic set which are adjacent to each non-resource 
node k.                                                                                                                            □  

4   Conclusions 

In this paper, by utilizing the chromatic properties of symmetric graphs, we showed 
that under some criteria the chromatic sets of a symmetric graph are the dominating 
sets and hence a solution to the problem of resource placement. To solve the problem 
for distances more than one, we studied the chromatic properties of power of 
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symmetric graphs. The results of this works are interesting in the sense that ours is the 
first study to consider the problem of resource placement in general for a class of 
networks. By using some heuristics, the same scheme can be applied to other classes 
of non-symmetric networks which were not discussed in this work. 

Particularly, our work reduces the problem of resource placement to the well-know 
problem of graph coloring which has been extensively studied in graph theory and 
thus the existing high performance algorithms for deriving the chromatic set can be 
well utilized. 
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Abstract. It has recently been proved (Jeż, DLT 2007) that conjunc-
tive grammars (that is, context-free grammars augmented by conjunc-
tion) generate some nonregular languages over a one-letter alphabet. The
present paper improves this result by constructing conjunctive grammars
for a larger class of unary languages. The results imply undecidability of
a number of decision problems of unary conjunctive grammars, as well as
nonexistence of an r.e. bound on the growth rate of generated languages.
An essential step of the argument is a simulation of a cellular automaton
recognizing positional notation of numbers using language equations.

1 Introduction

Formal languages over an alphabet consisting of a single letter, known as unary
languages, can be regarded as sets of natural numbers, and the questions of rep-
resentation of such sets by the standard devices of formal language theory form
a special topic of study. Regular unary languages are just ultimately periodic
sets, though there remain nontrivial questions, such as the economy of descrip-
tion studied by Chrobak [1]. Context-free unary languages are well-known to be
regular, though, as shown by Domaratzki et al. [3], context-free grammars give
very succinct descriptions of ultimately periodic sets. Simple types of cellular au-
tomata, such as trellis automata studied by Culik et al. [2], Ibarra and Kim [6]
and others, are also limited to regular languages when considered over {a}.

All the above families of languages are characterized by systems of language
equations of the general form⎧⎪⎨⎪⎩

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

with different operations allowed in their right-hand sides. As established by
Ginsburg and Rice [4], context-free languages are obtained by using concatena-
tion and union in (*). If concatenation is restricted to one-sided linear then the
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solutions represent exactly the regular languages. Finally, trellis automata, as
shown by Okhotin [12], can be simulated by equations with union, intersection
and two-sided linear concatenation.

The first example of a nonregular unary solution of a language equa-
tion was given by Leiss [9], who constructed a single equation with
concatenation and completementation, such that its unique solution is
{an | the octal notation of n starts with 1, 2 or 3}. The general case of such lan-
guage equations was recently studied by Okhotin and Yakimova [14].

While equations with complementation as the only Boolean operation are of
a purely theoretical interest, some classes of language equations (*) constitute
natural extensions of the context-free grammars. One of these classes are con-
junctive grammars introduced by Okhotin [10], represented by language equa-
tions with union, intersection and concatenation. These grammars have good
practical properties (such as efficient parsing algorithms) and are surveyed in a
recent article [13].

The expressive power of conjunctive grammars over a unary alphabet was one
of the most important open problems in the area [10,13], and it was conjectured
that only regular languages are generated. This conjecture has recently been
disproved by Jeż [7], by constructing a grammar for the language {a4n | n ∈ N},
as well as grammars for a large class of languages of an exponential growth.

This result leaves us with some natural questions to ponder. How far does the
expressive power of unary conjunctive languages extend? Are these languages
restricted to exponential growth? Can their standard decision problems, such
as emptiness, equivalence, etc., be effectively decided? In this paper we answer
these questions by showing that the emptiness problem and other related decision
problems are undecidable, while the growth is not recursively bounded, which
by far exceeds earlier expectations on the power of this class of unary languages.

2 Conjunctive Grammars and Trellis Automata

Definition 1. A conjunctive grammar [10] is a quadruple G = (Σ,N, P, S), in
which Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively; P is a finite set of grammar rules, each of the form

A→ α1& . . .&αn (where A ∈ N , n 	 1 and α1, . . . , αn ∈ (Σ ∪N)∗) (1)

while S ∈ N is a nonterminal designated as the start symbol.

Informally, a rule (1) states that if a word is generated by each αi, then it is
generated by A. This semantics can be formalized using term rewriting, which
generalizes Chomsky’s word rewriting.

Definition 2. Given a grammar G, the relation =⇒ of immediate derivability
on the set of terms is defined as follows: (I) Using a rule A → α1& . . .&αn,
a subterm A of any term ϕ(A) can be rewritten as ϕ(A) =⇒ ϕ(α1& . . .&αn).
(II) A conjunction of several identical words can be rewritten by one such word:
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ϕ(w& . . .&w) =⇒ ϕ(w), for every w ∈ Σ∗. The language generated by a term
A is LG(α) = {w |w ∈ Σ∗, A =⇒∗ w}. The language generated by the grammar
is L(G) = LG(S) = {w | w ∈ Σ∗, S =⇒∗ w}.
An equivalent definition can be given using language equations. This defini-
tion generalizes the well-known characterization of the context-free grammars
by equations due to Ginsburg and Rice [4].

Definition 3. For every conjunctive grammar G = (Σ,N, P, S), the associated
system of language equations [11] is a system of equations in variables N , in
which each variable assumes a value of a language over Σ, and which contains
the following equation for every variable A:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N) . (2)

Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution of such
a system is a vector of languages (. . . , LC , . . .)C∈N , such that the substitution of
LC for C, for all C ∈ N , turns each equation (2) into an equality.

It is known that every such system has solutions, and among them the least
solution with respect to componentwise inclusion, and this solution consists of
exactly the languages generated by the nonterminals of the original conjunctive
grammar: (. . . , LG(C), . . .)C∈N [11]. This representation by language equations
constitutes an equivalent semantics of conjunctive grammars, and it is this se-
mantics, and not the fairly artificial derivation, that accounts for the intuitive
clarity of conjunctive and context-free grammars.

Let us give conjunctive grammars for some standard examples of non-context-
free languages:

Example 1. [10] The following conjunctive grammar generates the language
{wcw | w ∈ {a, b}∗}:

S → C&D
C → aCa | aCb | bCa | bCb | c
E → aE | bE | ε

D → aA&aD | bB&bD | cE
A→ aAa | aAb | bAa | bAb | cEa
B → aBa | aBb | bBa | bBb | cEb

The nonterminal D generates the language {uczu |u, z ∈ {a, b}∗}. This is done as
follows: the rules forD match a symbol in the left part to the corresponding symbol
in the right part using A or B, and the recursive reference to aD or bD makes
the remaining symbols be compared in the same way. An intersection with the
language {ucv | u, v ∈ {a, b}∗, |u| = |v|} generated by C completes the grammar.

Example 2. [7] The following conjunctive grammar with the start symbol A1

generates the language {a4n | n 	 0}:
A1 → A2A2&A1A3 | a
A2 → A12A2&A1A1 | aa
A3 → A12A12&A1A2 | aaa
A12 → A3A3&A1A2
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To understand this grammar, note that each Ai generates the language of all
words a�, such that the base-4 notation of � is given by the digit(s) i followed
by zeroes.

This construction can be generalized to the following:

Theorem 1 (Jeż, 2007 [7]). For every k 	 2 and for every finite automaton
A over {0, . . . , k − 1}, there exists a conjunctive grammar over {a} generating
all strings an, such that the k-ary notation of n is in L(A).

Let us now define an important subclass of conjunctive grammars, defined by
analogy with linear context-free grammars. A conjunctive grammar is called
linear conjunctive [10], if every rule it contains is either of the form A →
u1B1v1& . . .&unBnvn, where n 	 1, ui, vi ∈ Σ∗ and Bi ∈ N , or of the form
A→ w, where w ∈ Σ∗. Note that the grammar in Example 1 is linear, while the
grammar in Example 2 is not.

The family of languages defined by linear conjunctive grammars has actually
been known for almost thirty years before these grammars were introduced [12]:
this is the family recognized by one of the simplest types of cellular automata.
These are trellis automata, also known as one-way real-time cellular automata,
which were studied by Culik, Gruska and Salomaa [2], Ibarra and Kim [6], and
others. Let us explain this concept following Culik et al. [2], who proposed it as
a model of parallel computation in some electronic circuits.

A trellis automaton (TA), defined as a quintuple (Σ,Q, I, δ, F ), processes an
input string of length n 	 1 using a uniform array of n(n + 1)/2 processor
nodes, as presented in the figure below. Each processor computes a value from a
fixed finite set Q. The processors in the bottom row obtain their values directly
from the input symbols using a function I : Σ → Q. The rest of the processors
compute the function δ : Q × Q → Q of the values in their predecessors. The
string is accepted if and only if the value computed by the topmost processor
belongs to the set of accepting states F ⊆ Q.

Definition 4. A trellis automaton is a quintuple M = (Σ,Q, I, δ, F ), in which:
Σ is the input alphabet, Q is a finite non-empty set
of states, I : Σ → Q is a function that sets the initial
states, δ : Q×Q→ Q is the transition function, and
F ⊆ Q is the set of final states.
Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)) ,

while I is extended to a homomorphism I : Σ∗ → Q∗. a1 a2 a3 a4

Let LM (q) = {w | δ(I(w)) = q} and define L(M) =
⋃

q∈F LM (q).

Linear conjunctive grammars and trellis automata are computationaly
equivalent:

Theorem 2 ([12]). A language L ⊆ Σ+ is recognised by a linear conjunctive
grammar if and only if L is recognized by a trellis automaton. These represen-
tations can be effectively transformed into each other.
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Trellis automata over a unary alphabet recognize only regular languages, since
in this case they behave as DFAs. Another property of TA which we often use
is their closure under quotient with singletons [12], that is, whenever a language
L ∈ Σ∗ is recognized by some trellis automaton M , then for every a ∈ Σ the
languages a−1L and La−1 are recognized by some TA M ′ and M ′′. These M ′,M ′′

can be effectively computed from M and a. From this the following result can
be concluded:

Lemma 1. Let L be a linear conjunctive language over an alphabet Σ, let u, v ∈
Σ∗ and a ∈ Σ. Then the language L ∩ ua∗v is regular.

Proof. Let K = L ∩ ua∗v. Then the language K̃ = {u}−1 ·K · {v}−1 is linear
conjunctive by the closure of this family under quotient with singletons. Since K̃
is a unary linear conjunctive language, it is regular. Then K = uK̃v is regular
as well.  !

3 Representing Grammars in Positional Notation

Words over a unary alphabet {a} can be regarded as natural numbers, and,
accordingly, languages over {a} represent sets of numbers. Our constructions
are based upon representing these numbers in positional notation, that is, we fix
a number k 	 2, define the alphabet Σk = {0, 1, 2, . . . , k− 1} of k-ary digits and
consider words over this alphabet that represent numbers. Unary languages are
accordingly represented by languages over Σk.

Let the empty string ε ∈ Σ∗
k denote the number 0. No representation of a

number shall begin with 0, that is, the set of valid representations of numbers is
Σ∗

k \ 0Σ∗
k. Define the bijection fk : Σ∗

k \ 0Σ∗
k ↔ a∗ as

fk(w) = {an | w read as k-ary notation represents n} .

We extend this function for languages in a usual way, preserving the bijectiveness.
Let us define a language-theoretic operator 
k : Σ∗

k × Σ∗
k → Σ∗

k , 
 for sim-
plicity, which represents addition of numbers in k-ary notation:

u 
 v = {the k-ary notation of i + j | u is the k-ary notation of i,
v is the k-ary notation of j} .

It is extended to languages in the standard way: K 
L = {u
 v |u ∈ K, v ∈ L}.
Now this operation can be used in the context of language theory, e.g., if k = 10,
then one can say that 9+ 
 2 = 10∗1. Let us assume that concatenation has the
highest precendence, followed by 
 and then by intersection and union.

Define the corresponding subtraction operator on languages as follows:

K � L = {the k-ary notation of i− j | i 	 j, the k-ary notation of i is in K,

the k-ary notation of j is in L} .

Consider systems of language equations of the form Xi = ϕ(X1, . . . , Xn)
(i=1, . . . , n) over the alphabet Σk with ∪,∩,
 as allowed operations and with



Conjunctive Grammars over a Unary Alphabet 173

regular constants. Since all operations are monotone, any such system has a least
solution of the same kind as in systems from Definition 3. The following tight
correspondence between these two types of systems can be established:

Definition 5. Let k 	 2. Let Xi = ϕ(X1, . . . , Xn) be a system of language
equations over the alphabet {a} using concatenation and Boolean operations. The
corresponding k-ary system of language equations over Σk is Yi = ψ(Y1, . . . , Yn),
obtained by replacing each Xj with Yj, each concatenation operator with 
 and
each constant language L ⊆ a∗ with the language f−1

k (L).

Lemma 2. Let Xi = ϕi(X1, . . . , Xn) be a system of language equations over the
alphabet {a} and let Yi = ψi(Y1, . . . , Yn) be the corresponding language equations
over Σk. Then a vector of languages (fk(L1), . . . , fk(Ln)) is a solution of the
former system if and only if the vector of languages (L1, . . . , Ln) is a solution
of the latter system. In particular, if (fk(L1), . . . , fk(Ln)) is the least solution of
the former system, then (L1, . . . , Ln) is the least solution of the latter system.

Note that for all languages K,L ⊆ Σ∗
k , fk(K 
 L) = fk(K) · fk(L). The rest of

the proof is by a straightforward structural induction.

Example 3. Consider the conjunctive grammar from Example 2, consider the
system of language equations over {a} corresponding to it by Definition 3, and
then consider the system over Σ4 = {0, 1, 2, 3} corresponding to that system
according to Definition 5.

X1 = (X2
X2 ∩ X1
X3) ∪ {1}
X2 = (X12
X2 ∩ X1
X1) ∪ {2}
X3 = (X12
X12 ∩ X1
X2) ∪ {3}
X12 = X3
X3 ∩ X1
X2

The least solution of the system is (10∗, 20∗, 30∗, 120∗), cf. Example 2.

4 A Representation of Trellis Automata

Let us now show how the computation of a trellis automaton can be simulated
by the class of language equations introduced in the previous section.

Lemma 3. For every k 	 4 and for every trellis automaton M over Σk, such
that L(M) ∩ 0∗ = ∅, there exists and can be effectively constructed a resolved
system of language equations over the alphabet Σk using operations ∪, ∩ and

 and regular constants, such that the least solution of this system contains a
component ((1 · L(M)) � 1) · 10∗.

Proof (Outline). In this proof we abuse the notation of 
 and � by allowing
their arguments and the result to have leading zeroes. We shall do this only for
the second argument equal to 1. Under these conditions we define the result to
have the same length as the first argument, e.g., 0100� 1 is deemed to be 0099.
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We shall never use this notation in a context where these requirements cannot
be fulfilled, that is, for (k− 1)+ 
 1 and for 0∗ � 1. This abused notation is used
only in the text of the proof, while language equations strictly adhere to the
definition.

Given a trellis automaton M = (Σk, Q, I, δ, F ), we represent its input words
w ∈ Σ∗

k as words of the form 1(w � 1)10m, for all m 	 0. This representation
allows us to concatenate symbols to words both on the right and on the left by
adding some appropriate numbers.

For a given M , we shall construct language equations with the set of variables
Xq for q ∈ Q, and with an additional variable Y , such that their least solution
is Xq = Lq, Y = L, where

Lq = 1
((

LM (q) \ 0∗
)

� 1
)
10∗ = {1w10� | � 	 0, w /∈ 9+, w 
 1 ∈ LM (q)} and

L = 1
((

L(M) \ 0∗
)

� 1
)
10∗ = {1w10� | � 	 0, w /∈ 9+, w 
 1 ∈ L(M)} .

Let us define expressions λi and ρj , for i, j ∈ Σk, which depend upon the vari-
ables Xq, and which we use as building blocks for the equations for Xq.

λi(X) = 1iΣ∗
k ∩
⋃
i′

(
(X ∩ 1i′Σ∗) 
 10∗ ∩ 2i′Σ∗

k

)

 (k + i− 2)0∗ , for i=0, 1

λi(X) = 1iΣ∗
k ∩
⋃
i′

(
(X ∩ 1i′Σ∗) 
 10∗ ∩ 2i′Σ∗

k

)

 1(i− 2)0∗ , for i 	 2

ρj(X) =
⋃
j′

((
(X ∩ 1Σ∗

kj
′10∗) 
 10∗ ∩ 1Σ∗

kj
′20∗
)


 (k + j − 2)10∗
)
∩

∩ 1Σ∗
kj10∗ for j = 0, 1

ρj(X) =
⋃
j′

((
(X ∩ 1Σ∗

kj
′10∗) 
 10∗ ∩ 1Σ∗

kj
′20∗
)


 1(j − 2)10∗
)
∩

∩ 1Σ∗
kj10∗ for 2 � j � k − 2

ρk−1(X) =
⋃
j′

((
(X ∩ 1Σ∗

kj
′10∗) 
 10∗ ∩ 1Σ∗

kj
′20∗
)


 (k − 3)10∗
)
∩

∩ 1Σ∗
k(k − 1)10∗

Let us also define constants Rq, for all q ∈ Q, which are regular by Lemma 1.

Rq = 1
((

(0∗(Σk \ 0) ∪ (Σk \ 0)0∗) ∩ LM (q)
)

� 1
)
10∗

Using this notation, the system of language equations is constructed as follows:⎧⎪⎨⎪⎩
Xq = Rq ∪

⋃
q′,q′′:δ(q′,q′′)=q

i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) (for all q ∈ Q)

Y =
⋃

q∈F Xq

In these equations the sets Rq represent the starting part of Xq used to com-
pose longer words. A word w ∈ Σ�2 belongs to LM (q) if and only if there are
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states q′, q′′ such that δ(q′, q′′) = q and Σ−1
k w ∈ LM (q′′) and wΣ−1

k ∈ LM (q′).
And so a word 1(w � 1)10∗ should belong to Xq if and only if there are two
witnesses belonging to Xq′′ and Xq′ (with some additional constraints). This
is specified in λ and ρ, respectively. These expressions represent adding digits
at some specific positions, so that selected digits in the original word could be
modified in the resulting word, while the rest of the digits remain the same. The
main technical difficulty is to force the addition of digits at proper positions.
This is achieved by adding the digits in two phases, and by checking the form of
intermediate and final results using intersection with regular constants.

The correctness of the construction is stated as follows.

Main Claim. The least solution of the system is (. . . , Lq, . . . , L).

The first to be established are the correctness statements for the expressions λi

and ρj . For each λi, its value on any singleton of the form {1w10m} is charac-
terized as follows:

Claim 1. For every word 1w10m ∈ 1Σ+
k 10∗ \ 1(k − 1)∗10∗,

λi({1w10m}) = {1iw10m}.

Given a number with the notation 1w10m, the expression λi, adds a number
notated 10|w|+1+m to it to obtain 2w10m. The subsequent addition of (k + i−
2)0|w|+1+|m| results in a number with the notation 1iw10m. The intersections
used in λi ensure that no other additions are possible.

Since λj is an operation on languages defined as a superposition of ∪, ∩ and

, it is additive in the sense that λi(K) =

⋃
w∈K λi({w}) for every language K.

Hence Claim 1 actually describes λi(K) for every K ⊆ 1Σ+
k 10∗ \ 1(k − 1)∗10∗.

A similar statement is established for ρj:

Claim 2. For every word u ∈ 1Σ+
k 10∗ \ 1(k − 1)∗10∗,

ρj({u}) =

{
{1wj10m}, if u = 1w10m+1 and j = k − 1 ,

{1wj10m}, if u = 1(w � 1)10m+1 and j �= k − 1 .

Now let us substitute the intended solution (. . . , Lq, . . . , L) into λi and ρi. Then
Claims 1 and Claim 2 easily imply the following equalities:

Claim 3. λi(Lq) = 1(i(LM (q) \ 0∗) � 1)10∗.

Claim 4. ρj(Lq) = 1((LM (q) \ 0∗)(j + 1 mod k) � 1)10∗.

The next claim is that the words in the intended solution (. . . , Lq, . . . , L) belong
to the corresponding components of every solution of the system.

Claim 5. For the least solution (. . . , Sq, . . .) of the system and for every q ∈ Q,
Lq ⊆ Sq.
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For every 1w10n ∈ Lq it has to be shown that 1w10n is contained in Sq as well.
The proof is done inductively on |w|, following the structure of the computation
of M . The basis is given by the set Rq, which places in Sq all words 1w10n for
all w such that w 
 1 has one nonzero digit, which is the last one or the first
one. For the induction step, one has w 
 1 = iuj ∈ LM (q) and one has to prove
that 1w10n is in Sq. The definition of a trellis automaton implies iu ∈ LM (q′)
and uj ∈ LM (q′′) for some q′, q′′, such that δ(q′, q′′) = q. Then the induction
hypothesis gives that 1(iu � 1)10n+1 ∈ Sq′ and 1(uj � 1)10n ∈ Sq′′ , and from
these two words the equation for Xq produces 1w10n ∈ Sq, according to Claims 1
and 2.

Let us now show that the substitution of the intended solution (. . . , Lq, . . . , L)
into the system is contained in this intended solution.

Claim 6. For every q ∈ Q, Lq ⊇ ϕq(. . . , Lq, . . .), where ϕq denotes the right-hand
side of the equation for Xq.

Any word 1w10n in ϕq(. . . , Lq, . . .) is contained both in λi(Lq′′ ) and in ρj(Lq′),
for some q′, q′′ such that δ(q′, q′′) = q. By Claim 4, (w 
 1)Σ−1

k ∈ LM (q′), and
by Claim 3, Σ−1

k (w
1) ∈ LM (q′′). Then w
1 ∈ LM (q), which yields the claim.
The proof of the main claim follows by the elementary properties of fixed

points. Taking the componentwise inclusions of vectors

(. . . ,∅, . . .) * (. . . , Lq, . . .) * (. . . , Sq, . . .),

which holds by Claim 5, one can iteratively apply the right-hand sides of the
system to each of the three components, obtaining the following limits:

(. . . , Sq, . . .) * (. . . , Lq, . . .) * (. . . , Sq, . . .).

This shows that the intended solution of the system is its least solution.  !

Lemma 4. For every k 	 4 and for every trellis automaton M over Σk there
exists and can be effectively constructed a resolved system of language equations
over the alphabet Σk using the operations ∪, ∩ and 
 as well as regular constants,
such that its least solution contains a component 1 · L(M).

Proof. For every j ∈ Σk, consider the language L(M) · {j}−1. By the closure
properties of trellis automata, this language is generated by a trellis automaton
Mj. Then, by Lemma 3, there exists a system of language equations, such that
one of its variables, Yj , represents the language (L(M) · {j}−1) � 1.

Let us combine these equations for all j into a single system, and add a new
equation

Z =
k−1⋃
j=0

(Yj ∩ 1Σ∗1) 
 (1j � 1).

This equation uses the same technique as in Lemma 3. The value of Z is L(M).
 !
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Theorem 3. For every k 	 4 and for every trellis automaton M over Σk, such
that no words in L(M) start with 0, there exists and can be effectively constructed
a resolved system of language equations over the alphabet Σk using the operations
∪, ∩ and 
 as well as regular constants, such that its least solution contains a
component L(M).

Proof. For every i ∈ Σk\{0}, the language {i}−1 ·L(M) is generated by a certain
trellis automaton. By Lemma 4, there is a system of language equations, such
that one of its variables, Zi, represents the language {i}−1 · L(M).

Combine these systems and add a new variable T with the following equation:

T =
⋃
i,i′

(
(Zi ∩ 1i′Σ∗

k) 
 (i− 1)0∗
)
∩ ii′Σ∗

k.

The right-hand side of this equation evaluates to L(M) on the least solution,
which is shown by the same method as in Lemmata 3 and 4.  !

We now translate the above result to the languages generated by the unary
conjunctive grammars. We need a small technical lemma to handle the cases of
k = 2, 3.

Lemma 5. Let � = kn for some natural n > 0. Then for every languages L,
L′ such that fk(L) = f�(L′), L is linear conjunctive if and only if L′ is lin-
ear conjunctive. Given a trellis automaton for either of the languages, a trellis
automaton for the other language can be effectively constructed.

The proof is by a straightforward grouping of digits, and it is omitted.

Theorem 4. For every k 	 2 and for every trellis automaton M over Σk =
{0, 1, . . . , k − 1}, such that no words in L(M) start with 0, there exists and can
be effectively constructed a conjunctive grammar generating fk(L(M)).

Proof. For big enough k, that is k 	 4, by Theorem 3, there exists a resolved
system of language equations over Σk with regular constants that defines L(M).
According to Lemma 2, there exists a corresponding system over {a}, which uses
constants of the form fk(K) for regular languages K ⊆ Σ∗

k . But, according to
Theorem 1, every such constant is generated by a conjunctive grammar. Com-
bining these grammars with the system of equations, the requested conjunctive
grammar is obtained.

For k < 4 we use Lemma 5 and the already proved results for k = 4, 9.  !

5 Decision Problems for Unary Conjunctive Grammars

One of the main techniques of proving undecidability results in formal language
theory is by representing one or another form of the language of computations
of a Turing machine. Given a TM T over an input alphabet Ω, one represents
its computations as words over an auxiliary alphabet Γ . For every w ∈ L(T ),



178 A. Jeż and A. Okhotin

let CT (w) ∈ Γ ∗ denote some representation of the accepting computation of T
on w. The language

VALC(T ) = {w�CT (w) | w ∈ Ω∗ and CT (w) is an accepting computation}

over the alphabet Ω∪Γ∪{�} is the language of valid accepting computations of T .
It was shown by Hartmanis [5] that for a certain simple encoding CT : Ω∗ → Γ ∗

the language VALC(T ) is an intersection of two context-free languages, while
the complement of VALC(T ), denoted INVALC(T ), is context-free. Being able
to represent these languages is one of the crucial properties of trellis automata.

Proposition 1 ([12]). For every Turing machine T there exists an encoding
CT : Ω∗ → Γ ∗ of its computations, such that VALC(T ) is recognized by a trellis
automaton.

This leads to a number of undecidability results for TA, which are inherited
by linear conjunctive grammars [12] and hence by conjunctive grammars of the
general form [10]. However, it appears hard to replicate these results for the case
of a unary alphabet—a straightforward approach fails due to the apparent lack of
structure in words, on which all known encodings of VALC(T ) rely. Contrary to
this intuition, Theorem 4 asserts that if the computation histories in VALC(T )
are regarded as notations of numbers, then, as a linear conjunctive language,
VALC(T ) can be specified in unary encoding by a unary conjunctive grammar.

Let us make some further technical assumptions on the encoding of these lan-
guages. Assume that VALC(T ) is defined over an alphabet Σk = {0, . . . , k− 1},
for a suitable k, and that 0 ∈ Ω, so that no word in VALC(T ) has a leading zero.
Define the language INVALC(T ) as (Σ∗

k \ 0Σ∗
k) \VALC(T ). These elaborations

do not affect Proposition 1, so that we can use Theorem 4 to obtain the following
result:

Lemma 6. For every Turing machine T there exist and can be effectively
constructed conjunctive grammars G and G′ over the alphabet {a}, such that
L(G) = fk(VALC(T )) and L(G′) = fk(INVALC(T )).

The undecidability of basic decision problems for unary conjunctive grammars,
such as whether a given grammar generates ∅ or whether a given grammar
generates a∗, can be easily inferred from this. Let us, however, establish a more
general result:

Theorem 5. For every fixed unary conjunctive language L0 ⊆ a∗ there is no
algorithm to decide whether a given conjunctive grammar over {a} generates L0.

Proof. Let G0 = (Σ,N0, P0, S0) be a fixed conjunctive grammar generating L0.
Suppose there is an algorithm to check whether L(G) = L0 for any given con-
junctive grammar G over {a}. Let us use this algorithm to solve the emptiness
problem for Turing machines. Depending on the form of L0, there are two cases.

Case I: L0 contains no subset of the form a�(ap)∗, where � 	 0 and p 	 1. Given
a Turing machine T , construct a conjunctive grammar GT = ({a}, NT , PT , ST )
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for fk(VALC(T )). On the basis of GT and G0, construct a new conjunctive
grammar G = ({a}, NT ∪ N0 ∪ {S,A}, PT ∪ P0 ∪ P, S), where P contains the
following four new rules: S → S0, S → STA, A → aA and A → ε. Then it can
be proved that L(G) = L0 if and only if L(GT ) = ∅, and the latter is equivalent
to L(T ) = ∅.

Case II: L0 contains a subset a�(ap)∗, where � 	 0 and p 	 1. Assume that
p is larger than the cardinality of the alphabet used for INVALC(T ). Define
INVALC(T ) over a p-letter alphabet and consider the language fp(INVALC(T ) ·
0), which is generated by some conjunctive grammar G′

T = ({a}, N ′
T , P

′
T , S

′
T ).

Using G0 and G′
T , construct a new grammar G = ({a}, N ′

T ∪N0∪{S,B,C}, P ′
T ∪

P0 ∪ P, S), where the new rules in P are as follows: S → S0&B, S → a�S′
T ,

B → ai (for all 0 � i < �), B → a�+iC (for all 1 � i < p), C → apC and
C → ε. Note that LG(B) = a∗ \ a�(ap)∗. For this grammar one can establish
that L(G) = L0 if and only if INVALC(T ) = Σ∗

p \ 0Σ∗
p , which in turn holds if

and only if L(T ) = ∅.
In each case we have shown that the emptiness problem of Turing machines

would be decidable, which forms a contradiction.  !

If L0 is not generated by a conjunctive grammar, then this problem becomes
trivial. Hence, the following characterization is obtained:

Corollary 1. For different constant languages L0 ⊆ a∗, the problem of test-
ing whether a given conjunctive grammar over {a} generates L0 is either
Π1-complete or trivial.

Theorem 6. For conjunctive grammars over a unary alphabet there exist no
algorithm to decide whether a given grammar generates a finite language (a
regular language).

Proof (a sketch). Given a Turing machine T , construct another TM T ′ that
recognizes {ε} if L(T ) �= ∅, and ∅ otherwise. Construct a conjunctive grammar
G for fk(VALC(T ′))·{akn |n 	 0}. Then L(G) is either nonregular (if L(T ) �= ∅)
or empty.  !

Having seen the above results, it is natural to ask whether unary conjunctive
languages have any nontrivial decidable properties. It is known that the mem-
bership of a word can be decided in cubic time [10], but nothing besides this
problem and its Boolean combinations is known to be decidable. Finding such
an example (or perhaps proving its nonexistence) is left as a problem for future
study.

6 Growth of Unary Conjunctive Languages

Every infinite unary language L = {ai1 , ai2 , . . . , ain , . . .} where 0 � i1 < i2 <
. . . < in < . . ., can be regarded as an increasing integer sequence, and it is
natural to consider the growth rate of such sequences, represented by a function
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g(n) = in. Obviously, the growth of every regular language is linearly bounded.
The example of a conjunctive grammar for the language {a4n | n 	 0} [7], see
Example 2, shows that the growth of unary conjunctive languages can be expo-
nential, which raises two questions. First, can this growth be superexponential,
and is there any upper bound for the growth rate of unary conjunctive languages?
Second, can this growth be superlinear but subexponential, e.g., polynomial?

The following theorem gives the strongest possible answer to the first question:

Theorem 7. For every recursively enumerable set of natural numbers X there
exists a conjunctive grammar G over an alphabet {a}, such that the growth func-
tion of L(G) is greater than that of X at any point.

Proof. Let T be a Turing machine, which recognizes the set X = {i1, i2, . . . ,
ij, . . .}, where 0 � i1 < i2 < . . . < ij < . . ., and the numbers are given to it
in a binary notation. Consider the language VALC(T ), which contains words
wn = f−1

2 (an)#CT (n). By Lemma 6, there exists a conjunctive grammar G over
an alphabet {a} that generates L = fk(VALC(T )) for some k 	 2.

Let g(n) be the growth function of L. It is sufficient to show that g(j) 	 ij for
each j 	 1. To see this, consider the values g(1), g(2), . . . , g(j). At least one of
them describes a computation wj′ for j′ 	 j. Since g is an increasing function,
we obtain g(j) 	 fk(wj′ ) > j′ 	 j.  !

Note that this quick-growing language is bound to be computationally very
easy, as the upper bound of parsing complexity for conjunctive grammars is
DTIME(n3) ∩DSPACE(n) [10,13].

The next example gives a unary conjunctive language of a polynomial growth.

Proposition 2. There exists a conjunctive grammar G over an alphabet {a},
such that the growth function of L(G) satisfies is g(n) = Θ(n2).

Proof (a sketch). Consider the set of numbers X = {(2m +3i) ·2m |m 	 0, 2m �
2m + 3i < 2m+2}. Let g(n) denote the n-th largest element of X ; this is the
growth function of the corresponding unary language L = {an |n ∈ X}. The set
of binary notations of the numbers in X is

f−1
2 (L) =

{
1w0m

∣∣ |w| = m− 1 or |w| = m, and f2(w) divides by 3
}
.

This is clearly a linear context-free language, hence L is conjunctive by Theo-
rem 4. Let us prove that n2 � g(n) � 4n2.

It is not hard to prove that for any number n = 2m + j, where 0 � j < 2m,
it holds that g(2m + j) = (2m + 3j)2m; in particular, g(2m) = 22m. Then, to see
that g(n) 	 n2, consider g(2m + j) for 0 � j < 2m. We have

g(2m + j) = (2m + 3j)2m = 22m + 3j · 2m 	 22m + 2j · 2m + j2 = (2m + j)2,

where the inequality is due to j · 2m 	 j2. On the other hand,

g(2m + j) � g(2m+1) = 22m+2 � 4(2m + j)2,

which proves the upper bound g(n) � 4n2.  !
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This construction can be generalized to obtain the following result:

Theorem 8. For every rational number p/q 	 1 there exists a conjunctive
grammar G over an alphabet {a}, such that the growth function of L(G) is
g(n) = Θ(np/q).

7 Conclusion

We can conclude that though we have established that the growth of unary
conjunctive grammars can be as high as theoretically possible, we still have no
means of proving that some particular unary languages cannot be represented by
conjunctive grammars, and hence the class of conjunctive languages still could
not be separated from NSPACE(n). Inventing a method for producing such
nonrepresentability results for unary conjunctive grammars is left as an open
problem.
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Informatique Théorique et Applications 38(1), 69–88 (2004)

13. Okhotin, A.: Nine open problems for conjunctive and Boolean grammars. Bulletin
of the EATCS 91, 96–119 (2007)

14. Okhotin, A., Yakimova, O.: On language equations with complementation. In:
Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 420–432. Springer,
Heidelberg (2006)



Ruling Out Polynomial-Time Approximation
Schemes for Hard Constraint Satisfaction

Problems

Peter Jonsson1, Andrei Krokhin2, and Fredrik Kuivinen1

1 Department of Computer and Information Science
Linköpings Universitet, SE-581 83, Linköping, Sweden

{petej,freku}@ida.liu.se
2 Department of Computer Science

Durham University, Durham, DH1 3LE, UK
andrei.krokhin@durham.ac.uk

Abstract. The maximum constraint satisfaction problem (Max CSP)
is the following computational problem: an instance is a finite collection
of constraints on a set of variables, and the goal is to assign values to
the variables that maximises the number of satisfied constraints. Max
CSP captures many well-known problems (such as Max k-SAT and
Max Cut) and so is NP-hard in general. It is natural to study how
restrictions on the allowed constraint types (or constraint language) af-
fect the complexity and approximability of Max CSP. All constraint
languages, for which the CSP problem (i.e., the problem of deciding
whether all constraints in an instance can be simultaneously satisfied) is
currently known to be NP-hard, have a certain algebraic property, and
it has been conjectured that CSP problems are tractable for all other
constraint languages. We prove that any constraint language with this
algebraic property makes Max CSP hard at gap location 1, thus ruling
out the existence of a polynomial-time approximation scheme for such
problems. We then apply this result to Max CSP restricted to a single
constraint type. We show that, unless P = NP, such problems either
are trivial or else do not admit polynomial-time approximation schemes.
All our hardness results hold even if the number of occurrences of each
variable is bounded by a constant.

Keywords: maximum constraint satisfaction, complexity, approxima-
bility.

1 Introduction

Many combinatorial optimisation problems are NP-hard so there has been a
great interest in constructing approximation algorithms for such problems. For
some optimisation problems, there exist collections of approximation algorithms
known as polynomial-time approximation schemes (PTAS). An optimisation
problem Π has a PTAS A if, for any fixed rational c > 1 and for any instance
I of Π , A(I, c) returns a c-approximate (i.e., within c of optimum) solution
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in time polynomial in |I|. There are some well-known NP-hard optimisation
problems that have the highly desirable property of admitting a PTAS: exam-
ples include Knapsack, Euclidean Tsp, and Independent Set restricted
to planar graphs [1]. It is also well-known that a large number of optimisation
problems do not admit a PTAS unless some unexpected collapse of complexity
classes occurs. For instance, problems like Max k-SAT and Independent Set
do not admit a PTAS unless P = NP [1]. We note that if Π is a problem that
does not admit a PTAS, then there exists a constant c > 1 such that Π cannot
be approximated within c in polynomial time.

Constraint satisfaction problems (CSP) [19] and its optimisation variants have
played an important role in research on approximability. Many combinatorial
problems are subsumed by the CSP framework, and examples include problems
in graph theory [10], combinatorial optimisation [13], and computational learn-
ing [7]. We will focus on a class of optimisation problems known as the maximum
constraint satisfaction problem (Max CSP). The most well-known examples in
this class are Max k-SAT and Max Cut.

Let D be a finite set. A subset R ⊆ Dn is called a relation and n is the arity
of R. Let R

(k)
D denote the set of all k-ary relations on D and let RD = ∪∞

i=1R
(i)
D .

A constraint language is a finite subset of RD.

Definition 1 (CSP(Γ )). The constraint satisfaction problem over the const-
raint language Γ , denoted CSP(Γ ), is defined to be the decision problem with
instance (V,C), where

– V is a finite set of variables, and
– C is a (multi)set of constraints {C1, . . . , Cq}, in which each constraint Ci is

a pair (Ri, si) with si a list of variables of length ni, called the constraint
scope, and Ri ∈ Γ is an ni-ary relation in RD, called the constraint relation.

The question is whether there exists an assignment s : V → D which satisfies
all constraints in C. A constraint (Ri, (v1, v2, . . . , vni)) ∈ C is satisfied by an
assignment s if the image of the constraint scope is a member of the constraint
relation, i.e., if (s(v1), s(v2), . . . , s(vni)) ∈ Ri.

For a constraint language Γ ⊆ RD, the optimisation problem Max CSP(Γ ) is
defined as follows:

Definition 2 (Max CSP(Γ )). Max CSP(Γ ) is defined to be the optimisation
problem with

Instance: An instance (V,C) of CSP(Γ ).
Solution: An assignment s : V → D to the variables.
Measure: Number of constraints in C satisfied by the assignment s.

We use multisets of constraints instead of just sets of constraints as we do not
have any weights in our definition of Max CSP. We chose to use multisets
instead of weights because bounded occurrence restrictions are easier to explain
in the multiset setting. Note that we prove our hardness results in this restricted
setting without weights and with a constant bound on the number of occurrences
of each variable.
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Example 1. Given a (multi)graph G = (V,E), the Max k-Cut problem, k ≥ 2,
is the problem of maximising |E′|, E′ ⊆ E, such that the subgraph G′ = (V,E′)
is k-colourable. For k = 2, this problem is known simply as Max Cut. The
problem Max k-Cut is known to be APX-complete for any k (it is Problem
GT33 in [1]), and so has no PTAS. Let Nk denote the binary disequality relation
on {0, 1, . . . , k − 1}, k ≥ 2, that is, (x, y) ∈ Nk ⇐⇒ x �= y. To see that Max
CSP({Nk}) is precisely Max k-Cut, think of vertices of a given graph as of
variables, and apply the relation to every pair of variables x, y such that (x, y)
is an edge in the graph, with the corresponding multiplicity.

Most of the early results on the complexity and approximability of Max CSP
were restricted to the Boolean case, i.e. when D = {0, 1}. For instance,
Khanna et al. [13] characterise the approximability of Max CSP(Γ ) for all
Γ over the Boolean domain. It has been noted that the study of non-Boolean
CSP gives a better understanding (when compared with Boolean CSP) of what
makes CSP easy or hard: it appears that many observations made on Boolean
CSP are special cases of more general phenomena. Recently, there has been some
major progress in the understanding of non-Boolean CSP: Bulatov has provided
a complete complexity classification of the CSP problem over a three-element
domain [3] and also given a classification of constraint languages that contain
all unary relations [2]. Corresponding results for Max CSP have been obtained
by Jonsson et al. [11] and Deineko et al. [8].

It has been conjectured [4] that, for all constraint languages Γ , CSP(Γ ) is
either in P or is NP-complete (i.e., it cannot be NP-intermediate), and the
conjecture also specifies the dividing line between the two cases, by means of
a certain algebraic condition. Moreover, it was shown in [4] that, for all con-
straint languages Γ satisfying this condition, the problem CSP(Γ ) is indeed
NP-complete. In this paper we prove that, for such languages Γ , it is NP-hard
to tell instances of Max CSP(Γ ) in which all constraints are satisfiable from
instances where at most an ε-fraction of the constraints are satisfiable (for some
constant ε which depends on Γ ). In particular, this implies that, for such Γ , the
problem Max CSP(Γ ) cannot admit a PTAS.

We then apply this result to study the case when the constraint language
Γ consist of a single relation R. We show that, for such Γ , Max CSP(Γ ) is
either trivial or else does not admit a PTAS. Finally, we use this last result to
strengthen several earlier hardness results obtained in the study of Max CSP
via the algebraic property of supermodularity.

We obtain our results by techniques which are quite different from the ones
used in [8,11]. In [11] it was proved that constraint languages over a three element
domain which are cores and not supermodular (see Section 5 for a definition) give
rise to Max CSP-problems which do not admit a PTAS (it is in fact proved that
they are APX-hard, which implies that they do not admit a PTAS, unless P =
NP). The technique used in [11] is mainly that of strict implementations. With
strict implementations, certain new relations can be constructed from old ones
in a way that preserve the hardness of the corresponding Max CSP-problem.
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That is, if Γ is a constraint language which strictly implements a relation R,
then Max CSP(Γ ∪ {R}) is no harder than Max CSP(Γ ). This technique can
be used to reduce the huge number of constraint languages to a set of constraint
languages which is easier to reason about. Hardness results for this smaller set
of constraint languages are then obtained from known results.

Let us fix a finite domain D and let UD be the set of all unary constraints on
D, that is UD = {R | R ⊆ D}. In [8] it was proved that Max CSP(Γ ∪ UD) is
APX-hard (and, therefore do not admit a PTAS) if Γ ∪UD is not supermodular
on any chain (a chain is a lattice which is a total order) on D, and tractable
(in PO) otherwise. The proof of this result uses a characterisation of relations
which are supermodular on some chain together with strict implementations.

In contrast to the two results described above, we obtain the results in the
present paper by quite different means. Our main result is proved by using
perfect implementations and the associated theory of universal algebra. Universal
algebra have previously been successfully used to classify the complexity of CSPs
(we give an overview of this connection in Section 3, see also [4]). By using the
notion of hardness at gap location 1 and working with bounded occurrence Max
CSP-problems (this was also done in [8]) we manage to prove not only NP-
hardness results, but also the impossibility of a PTAS (unless P = NP). Proofs
of our results are omitted due to space constraints.

2 Preliminaries

A combinatorial optimisation problem is defined over a set of instances (admis-
sible input data); each instance I has a set sol(I) of feasible solutions associated
with it, and each solution y ∈ sol(I) has a value m(I, y). The objective is, given
an instance I, to find a feasible solution of optimum value. The optimal value is
the largest one for maximisation problems and the smallest one for minimisation
problems.

Definition 3 (Performance ratio). A solution s ∈ sol(I) to an instance I of
a optimisation problem Π is r-approximate if

max
{
m(I, s)
opt(I)

,
opt(I)
m(I, s)

}
≤ r,

where opt(I) is the optimal value for a solution to I. An approximation algo-
rithm for an optimisation problem Π has performance ratio R(n) if, given any
instance I of Π with |I| = n, it outputs an R(n)-approximate solution.

Definition 4 (PTAS). An optimisation problem Π admits a PTAS if, for any
rational constant c > 1, there is an algorithm that, given an instance I of Π,
returns a c-approximate solution in time polynomial in |I|.

Definition 5 (Hard to approximate). We say that a problem Π is hard to
approximate if there exists a constant c such that it is NP-hard to approximate
Π with performance ratio c.
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Obviously, any problem that is hard to approximate cannot admit a PTAS. The
following notion has been defined in a more general setting in [17].

Definition 6 (Hard gap at location α). Max CSP(Γ ) has a hard gap at
location α ≤ 1 if there exists a constant ε < α such that it is NP-hard to
decide if, for a given instance I = (V,C) of Max CSP(Γ ), opt(I) ≥ α|C| or
opt(I) ≤ ε|C|.

Note that if a problem Π has a hard gap at location α (for any α) then Π is
hard to approximate. This simple observation has been used to prove inapprox-
imability results for a large number of optimisation problems. See, e.g., [1,20]
for surveys on inapproximability results and the related PCP theory.

Petrank [17] gave an informal conjecture which states that for “natural” op-
timisation problems hardness at gap location 1 can be used to show hardness
at all other possible gap locations. Sometimes this can be done by a padding
argument. Given an instance I = (V,C) of Max CSP(Γ ), we can add fresh
variables V ′ and constraints C′ to I such that at most a constant fraction ε
of the constraints in C′ can be satisfied simultaneously. If we choose C′ and
V ′ appropriately then we will obtain a proof of hardness at gap location α (for
some α which depends on ε) for Max CSP(Γ ). Hence, in this sense hardness at
gap location 1 is a stronger result than hardness at any other gap location. Pe-
trank [17] give further arguments for why hardness at gap location 1 is a natural
and interesting hardness notion.

Throughout the paper, Max CSP(Γ )-k denotes the problem Max CSP(Γ )
restricted to instances where the number of occurrences of each variable is
bounded by k. Note that if a variable occurs t times in a constraint which
appears s times in an instance, then this would contribute t · s to the number of
occurrences of that variable in the instance. The bounded occurrence property
is closely related to bounding the degree in graphs. Re-considering Example 1,
the problem Max CSP({N2})-3 would correspond to Max Cut restricted to
(multi)graphs with maximum degree 3. In our hardness results, we will write
that Max CSP(Γ )-B is hard (in some sense) to denote that there is a k such
that Max CSP(Γ )-k is hard in this sense.

3 Hardness at Gap Location 1 for Max CSP

We will now present the definitions and basic results we need from universal
algebra. For a more thorough treatment of universal algebra in general we re-
fer the reader to [5]. The article [4] contains a presentation of the relationship
between universal algebra and constraint satisfaction problems.

An operation on a finite set D is an arbitrary function f : Dk → D. Any
operation on D can be extended in a standard way to an operation on tuples
over D, as follows: Let f be a k-ary operation on D. For any collection of k
n-tuples, t1, t2, . . . , tk ∈ Dn, the n-tuple f(t1, t2, . . . , tk) is defined as follows:

f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n], t2[n], . . . , tk[n])),
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where tj [i] is the i-th component in tuple tj . An operation f : Dk → D is said
to be idempotent if f(d, d, . . . , d) = d for all d ∈ D, and it is called a projection
if there is 1 ≤ i ≤ k such that f(x) = xi, for all x = (x1, x2, . . . , xk) ∈ Dk.

Let Ri be a relation in the constraint language Γ . If f is an operation such
that for all t1, t2, . . . , tk ∈ Ri we have f(t1, t2, . . . , tk) ∈ Ri, then Ri is said to
be invariant under f . If all relations in Γ are invariant under f , then Γ is said to
be invariant under f . An operation f such that Γ is invariant under f is called
a polymorphism of Γ . The set of all polymorphisms of Γ is denoted Pol(Γ ). For
a set of operations F , the set of all relations which are invariant under each
operation in F is denoted Inv(F ).

Example 2. Let D = {0, 1, 2} and let R be the directed cycle on D, i.e., R =
{(0, 1), (1, 2), (2, 0)}. One polymorphism of R is the operation f : {0, 1, 2}3 →
{0, 1, 2} defined as f(x, y, z) = x − y + z (mod 3). This can be verified by
considering all possible combinations of three tuples from R and evaluating f
component-wise.

We continue by defining a closure operator 〈·〉 on sets of relations: for any set
Γ ⊆ RD, the set 〈Γ 〉 consists of all relations that can be expressed using re-
lations from Γ ∪ {EQD} (where EQD denotes the equality relation on D),
conjunction, and existential quantification. Those are the relations definable by
primitive positive formulae (pp-formulae) using relations from Γ ∪ {EQD}. As
an example of a pp-formula consider the relations A = {(0, 0), (0, 1), (1, 0)} and
B = {(1, 0), (0, 1), (1, 1)}, over the boolean domain {0, 1}. With those two rela-
tions we can construct I = {(0, 0), (0, 1), (1, 1)} with the pp-formula I(x, y) ⇐⇒
∃z : A(x, z) ∧B(z, y).

The sets of relations of the form 〈Γ 〉 are referred to as relational clones, or
co-clones. An alternative characterisation of relational clones is given in the
following theorem.

Theorem 1 ([18])

– For every set Γ ⊆ RD, 〈Γ 〉 = Inv(Pol(Γ )).
– If Γ ′ ⊆ 〈Γ 〉, then Pol(Γ ) ⊆ Pol(Γ ′).

By using this connection between polymorphisms and relations definable by pp-
formulae we obtain the following lemma. This lemma allows us to use some of the
algebraic theory, which is commonly used when studying CSP, to get hardness
results for Max CSP.

Lemma 1. Let Γ be a constraint language and let R be a relation which is
definable by a pp-formula using relations from Γ . If Max CSP(Γ ∪ {R})-k has
a hard gap at location 1, then Max CSP(Γ )-k′ has a hard gap at location 1 for
some integer k′.

The notions of a core and a retraction play an important role in the study of
graphs, and they can easily be generalised to constraint languages. A retraction
of a constraint language Γ is a unary polymorphism π ∈ Pol(Γ ) such that
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π(x) = x for all x in the image of π. We will say that Γ is a core if the only
retraction of Γ is the identity function. Given a relation R ∈ R

(k)
D and a subset X

of D we define the restriction of R onto X as follows: R
∣∣
X

= {x ∈ Xk | x ∈ R}.
For a set of relations Γ we define Γ

∣∣
X

= {R
∣∣
X
| R ∈ Γ}. If π is a retraction of

Γ with minimal image D′, then a core of Γ is the set Γ
∣∣
D′ . As in the case of

graphs, all cores of Γ are isomorphic, so one can speak about the core of Γ .
The intuition here is that if Γ is not a core, then it has a non-injective retrac-

tion π, which implies that, for every assignment s, there is another assignment
πs that satisfies all constraints satisfied by s and uses only a restricted set of
values. Hence, the problem is equivalent to a problem over this smaller set.

Lemma 2. If Γ ′ is the core of Γ , then, for any k, Max CSP(Γ ′)-k is hard at
gap location 1 if and only if Max CSP(Γ )-k is hard at gap location 1.

The three definitions below closely follows the presentation in [4].

Definition 7 (Finite algebra). A finite algebra is a pair A = (A;F ) where
A is a finite non-empty set and F = {fA

i | i ∈ I} is a set of finitary operations
on A.

We will only make use of finite algebras so we will write algebra instead of finite
algebra. An algebra is said to be non-trivial if it has more than one element.

Definition 8 (Homomorphism of algebras). Given two algebrasA=(A;FA)
and B = (B;FB) such that FA = {fA

i | i ∈ I}, FB = {fB
i | i ∈ I} and both fA

i

and fB
i are ni-ary for all i ∈ I, then ϕ : A → B is said to be an homomorphism

from A to B if

ϕ(fA
i (a1, a2, . . . , ani)) = fB

i (ϕ(a1), ϕ(a2), . . . , ϕ(ani))

for all i ∈ I and a1, a2, . . . , ani ∈ A. If ϕ is surjective, then B is a homomorphic
image of A.

For an operation f : Dn → D and a subset X ⊆ D we define f
∣∣
X

as the function
g : Xn → D such that g(x) = f(x) for all x ∈ Xn. For a set of operations F on
D we define F

∣∣
X

= {f
∣∣
X
| f ∈ F}.

Definition 9 (Subalgebra). Let A = (A;FA) be an algebra and B ⊆ A. If
for each f ∈ FA and any b1, b2, . . . , bn ∈ B, we have f(b1, b2, . . . , bn) ∈ B, then
B = (B;FA

∣∣
B

) is a subalgebra of A.

The operations in Pol(Inv(FA)) are the term operations of A. If F consists of
the idempotent term operations of A, then the algebra (A;F ) is called the full
idempotent reduct of A, and we will denote this algebra by Ac. Given a set of
relations Γ over the domain D we say that the algebra AΓ = (D; Pol(Γ )) is
associated with Γ . An algebra B is said to be a factor of the algebra A if B is a
homomorphic image of a subalgebra of A. The following theorem concerns the
hardness of CSP for certain constraint languages.
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Theorem 2 ([4]). Let Γ be a constraint language and let Γ ′ be its core. If the
algebra Ac

Γ ′ has a non-trivial factor whose term operations are only projections,
then CSP(Γ ) is NP-hard.

It has been conjectured [4] that, for any other core languages Γ , the problem
CSP(Γ ) is tractable, and this conjecture has been verified in many important
cases (see, e.g., [2,3]).

Our first result, Theorem 3, shows that the problems from the above theorem
are not only NP-hard, but also the corresponding optimisation problems are
hard at gap location 1, which rules out the existence of PTAS for such problems.
By Lemma 2, it is sufficient to prove this for core constraint languages.

Theorem 3. Let Γ be a core constraint language. If Ac
Γ has a non-trivial factor

whose term operations are only projections, then Max CSP(Γ )-B is hard at gap
location 1.

There are four basic ingredients in the proof of Theorem 3. The first two are
Lemma 1 and the rather standard use of expander graphs to bound the number
of variable occurrences (see, e.g., Section 8.4.1 of [1]). We also use the following
alternative technical characterisation (obtained in the proof of Proposition 7.9
of [4]) of constraint languages satisfying the conditions of the theorem.

The not all equal relation contains the tuples (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0),
(1, 0, 1), and (0, 1, 1), we denote this relation by NAE. We denote set of all
singleton unary relations by CD, that is, for a finite domain D we have CD =
{{(x)} | x ∈ D}.

Lemma 3. Let Γ be a core constraint language. The following are equivalent:

– The algebra Ac
Γ has a non-trivial factor whose term operations are only

projections.
– There exists a subset B of D and a surjective mapping ϕ : B → {0, 1} such

that the relational clone 〈Γ ∪CD〉 contains the relation ϕ−1(NAE) which is
the full preimage (under ϕ) of NAE.

The final ingredient in the proof of Theorem 3 is that the problem Max Not-
All-Equal 3Sat is hard at gap location 1, which was proved in [17].

Note that if CSP(Γ ) is tractable, then Max CSP(Γ ) cannot be hard at gap
location 1. Hence, if the above conjecture from [4] holds, our result describes all
problems Max CSP(Γ ) that are hard at gap location 1.

It is not hard to see that hardness at gap location 1 rules out the existence
of PTAS even when Max CSP(Γ )-B is restricted to satisfiable instances (i.e.,
those where all constraints can be simultaneously satisfied).

Corollary 1. Under the assumptions of Theorem 3, there exists a constant c
(depending on Γ ) such that Max CSP(Γ )-B restricted to satisfiable instances
cannot be approximated within c in polynomial time (unless P = NP).

The following conjecture has been made by Feder et al. [9].
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Conjecture 1. For any fixed Γ such that CSP(Γ ) is NP-complete, there is an
integer k such that CSP(Γ )-k is NP-complete.

Under the assumption that the dichotomy conjecture (that all problems CSP(Γ )
not covered by Theorem 2 are tractable) holds, an affirmative answer follows im-
mediately from Theorem 3. So, for all constraint languages Γ such that CSP(Γ )
is currently known to be NP-complete, it is also the case that CSP(Γ )-B is
NP-complete.

4 Approximability of Single Relation Max CSP

A relation R is said to be d-valid if (d, . . . , d) ∈ R for d ∈ D, and simply
valid if it is is d-valid for some d ∈ D. It was proved in [12] that every problem
Max CSP({R}) with R neither empty nor valid is NP-hard. We strengthen this
result by proving that the problems are not only NP-hard but also cannot have
a PTAS. Note that for some Max CSP problems such approximation hardness
results are known, e.g., for Max Cut and Max DiCut (see Example 1). Our
result extends those hardness results to all possible relations.

Theorem 4. Let R ∈ RD be non-empty. If (d, . . . , d) ∈ R for some d ∈ D then
Max CSP({R}) is trivial. Otherwise, Max CSP({R})-B is hard to approxi-
mate.

For a constraint language Γ , let Aut(Γ ) denote the permutation group consisting
of injective unary polymorphisms of Γ . Recall that a permutation group G on
a set D is called transitive if, for every d, d′ ∈ D, there exists g ∈ G such that
g(d) = d′. A digraph G = (V,E) is said to be vertex-transitive if the permutation
group Aut({E}) is transitive.

After proving a couple of lemmas which reduce the set of relations one needs
to consider to prove Theorem 4, the relations which are left are edge relations of
vertex-transitive digraphs. In [16] the following characterisation of the complex-
ity of the CSP problem for such relations was given. By deriving an algebraic
characterisation of this result we can use Theorem 3 together with certain ideas
and techniques (domain restriction, strict implementation) from [12] to prove
Theorem 4.

Theorem 5 ([16]). Let G = (V,E) be a vertex-transitive digraph which is a
core. If G is a directed cycle, then CSP({E}) is tractable. Otherwise, CSP({E})
is NP-complete.

Theorem 4 can be used to classify approximability of Max CSP(Γ ) for con-
straint languages Γ with sufficiently many symmetries. The following result can
be derived from Theorem 4.

Corollary 2. Let Γ be a constraint language such that Aut(Γ ) is transitive. If
Γ contains a non-empty relation R which is not d-valid for all d ∈ D, then Max
CSP(Γ ) is hard to approximate. Otherwise, Max CSP(Γ ) is trivial.

Note that the constraint languages considered in Corollary 2 can be seen as a
generalisation of vertex-transitive graphs.
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5 Max CSP and Supermodularity

In this section, we present two results whose proofs make use of Theorem 4.
These results strengthens earlier published results [14,15] in various ways (e.g.,
they apply to a larger class of constraint languages or they give approximation
hardness instead of NP-hardness).

Recall that a poset P = (D,*) is a lattice if, for every x, y ∈ D, there
exist a greatest lower bound x  y and a least upper bound x ! y. The algebra
L = (D; ,!) is a lattice, and x ! y = y ⇐⇒ x  y = x ⇐⇒ x * y. We will
write x  y if x �= y and x * y. All lattices we consider will be finite, and we will
simply refer to these algebras as lattices instead of using the more appropriate
term finite lattices. The direct product of L, denoted by Ln, is the lattice with
domain Dn and operations acting componentwise.

Definition 10 (Supermodular function). Let L be a lattice on D. A function
f : Dn → R is called supermodular on L if it satisfies,

f(a) + f(b) ≤ f(a  b) + f(a ! b) (1)

for all a, b ∈ Dn.

The characteristic function of a n-ary relation R over the domain D is the func-
tion f : Dn → {0, 1} such that f(x) = 1 iff x ∈ R. Call a relation supermodular
if its characteristic function is such. The set of all supermodular relations on a
lattice L will be denoted by SpmodL and a constraint language Γ is said to be
supermodular on a lattice L if Γ ⊆ SpmodL.

Supermodularity on lattices plays an important role in the study of Max
CSP, as all known tractable cases of Max CSP(Γ ) can be explained via this
property [6,8,11,15].

The next definition follows [6].

Definition 11 (Generalised 2-monotone). Given a poset P = (D,*), a
relation R is said to be generalised 2-monotone on P if

x ∈ R ⇐⇒ ((xi1 * ai1) ∧ . . . ∧ (xis * ais)) ∨ ((xj1 + bj1) ∧ . . . ∧ (xjs + bjs))

where x = (x1, x2, . . . , xn) and ai1 , . . . , ais , bj1 , . . . , bjs ∈ D, and either of the
two disjuncts may be empty.

It is not hard to verify that generalised 2-monotone relations on some lattice are
supermodular on the same lattice. For brevity, we will use the word 2-monotone
instead of generalised 2-monotone.

The following proposition is a combination of results proved in [6] and [14].

Proposition 1

– If Γ consists of 2-monotone relations on a lattice, then Max CSP(Γ ) can
be solved in polynomial time.

– Let P = (D,*) be a poset, which is not a lattice. If Γ contains all at most
binary 2-monotone relations on P, then Max CSP(Γ ) is NP-hard.
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We strengthen the second part of the above result as follows:

Proposition 2. Let * be a partial order, which is not a lattice order, on D. If
Γ contains all at most binary 2-monotone relations on *, then Max CSP(Γ )-B
is hard to approximate.

A diamond is a lattice L on a domain D such that |D|− 2 elements are pairwise
incomparable. That is, a diamond on |D| elements consist of a top element, a
bottom element and |D| − 2 elements which are pairwise incomparable. A chain
is a lattice with total order. The following proposition is a combination of results
proved in [6] and [15].

Theorem 6. Let Γ contain all at most binary 2-monotone predicates on a lattice
L which is either a chain or a diamond. If Γ �⊆ SpmodL, then Max CSP(Γ ) is
NP-hard.

We can strengthen this result in three ways: our result applies to arbitrary
lattices, we obtain hardness of approximation instead of NP-hardness, and we
get the result for bounded occurrence instances.

Theorem 7. Let Γ contain all at most binary 2-monotone predicates on an ar-
bitrary lattice L. If Γ �⊆ SpmodL, then Max CSP(Γ )-B is hard to approximate.
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Abstract. To solve a problem on a given CNF formula F a splitting
algorithm recursively calls for F [v] and F [¬v] for a variable v. Obvi-
ously, after the first call an algorithm obtains some information on the
structure of the formula that can be used in the second call. We use
this idea to design new surprisingly simple algorithms for the MAX-SAT
problem. Namely, we show that MAX-SAT for formulas with constant
clause density can be solved in time cn, where c < 2 is a constant and
n is the number of variables, and within polynomial space (the only
known such algorithm by Dantsin and Wolpert uses exponential space).
We also prove that MAX-2-SAT can be solved in time 2m/5.88, where
m is the number of clauses (this improves the bound 2m/5.769 proved
independently by Kneis et al. and by Scott and Sorkin).

1 Introduction

Splitting method is one of the most popular ways of proving upper bounds for
SAT and MAX-SAT problems. The simplest form of a splitting algorithm is given
in Fig. 1. Obviously, without the simplification phase the worst case running
time of such an algorithm is 2n, as it just considers all possible candidates (i.e.,
assignments of Boolean values to all variables of a formula) to solutions.

A natural idea for reducing the running time of such an algorithm is introduc-
ing the following partial order on candidates: α is stronger than β if β cannot be
a solution without α being a solution. Clearly, in such a case there is no need in
considering the assignment β and thus the search space is reduced. This is ac-
tually what is done at simplification phase in many known splitting algorithms.
For example, if l is a pure literal, then any assignment α � l is stronger than
(α\{l}) ∪ {¬l}. Thus to prove that a given splitting algorithm is correct one
has to prove that any possible candidate is either considered by the algorithm
or is weaker than some other assignment. However such kind of knowledge is
typically used in the same branch. That is, if in some branch an algorithm does
not consider an assignment β, then there is an assignment α, which is stronger
than β and is considered in the same branch.
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Splitting Algorithm

Input: a CNF formula F .
Method.

1. Simplify F as long as it is possible.
2. If the solution for F is obvious (in particular, if F is empty), then return it.
3. Choose a variable v according to some heuristic.
4. Recursively call for F [v] and F [¬v] and return the solution according to the solu-

tions returned by both recursive calls.

Fig. 1. Form of a splitting algorithm

In this paper we show how to get rid in the current branch of the candidates
considered in another branch. The idea itself is quite natural and not new: it
is used, e.g., in theoretical algorithms ([1], [2]), practical solvers ([3], [4], [5])
and even in proof systems ([6]). In SAT algorithms this is usually called clause
learning, which means that an algorithm stores partial assignments that make a
formula unsatisfiable. In our new algorithms we use a natural extension of this
simple idea, i.e., we store partial assignments that cannot be extended to an
optimal (satisfying maximal possible number of clauses) assignment. We prove
the following bounds (throughout all the paper we ignore polynomial factors):

– cn for MAX-SAT for formulas with constant clause density, where c < 2 is
a constant and n is the number of variables;

– 2m/5.88 for MAX-2-SAT, where m is the number of clauses.

Both algorithms use only polynomial space.

Overview of previous results. We are only aware of one bound better than 2n

for MAX-SAT for formulas with constant clause density. The algorithm is due
to Dantsin and Wolpert [7]. This algorithm however uses exponential space.

For MAX-2-SAT, several bounds w.r.t. the number of clauses were obtained
since 1999, see Table 1. Note that the bounds by Scott and Sorkin are actually

Table 1. Known bounds for MAX-2-SAT

2m/2.873 [9] Niedermeier and Rossmanith
2m/4.000 [10] Hirsch
2m/5.000 [11] Gramm, Hirsch, Niedermeier, and Rossmanith
2m/5.000 [12] Scott and Sorkin
2m/5.217 [13] Kneis and Rossmanith
2m/5.500 [14] Kojevnikov and Kulikov
2m/5.769 [15] Kneis, Mölle, Richter, and Rossmanith
2m/5.769 [16] Scott and Sorkin
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applied to a wider class of problems, namely for MAX-2-CSP. All these bounds
explore the splitting method, which seems to be unable to give any non-trivial
upper bound for MAX-2-SAT w.r.t. the number of variables. Williams [8] uses
a fast matrix multiplication algorithm in a nice way to get a 2n/1.261 bound.

2 General Setting

2.1 Main Definitions

Let V be a set of Boolean variables. The negation of a variable v ∈ V is denoted
by ¬v. A literal is either a variable or its negation. A clause and an assignment
are sets of literals that do not contain any variable together with its negation.
A formula in conjunctive normal form (CNF) is a multi-set of clauses. A total
assignment is an assignment to all variables of a formula. We say that a clause
C is satisfied by an assignment α, if C ∩ α �= ∅; however, we say that C is
falsified by α, if ∀l ∈ C, ¬l ∈ α. By V (α) we denote the set of variables of
α. By Cl(F, α) we denote the number of clauses of F satisfied by α and by
MCl(F ) we denote the maximal number of simultaneously satisfiable clauses
(thus, MCl(F ) = maxα Cl(F, α)). The SAT problem asks whether there exists an
assignment that satisfies all clauses of a given formula. The MAX-SAT problem
asks for an assignment that satisfies MCl(F ) clauses.

A d-literal is a literal occurring exactly d times in a formula. A d+-literal
appears at least d times. A (d1, d2)-literal appears d1 times positively and d2

times negatively. Other literal types are defined similarly.
Let F be a CNF formula, v be a variable of F , α be an assignment to variables

of F . We usually write assignments {v} and {¬v} just as v and ¬v. By F [α] we
denote the formula resulting from F by first removing all clauses satisfied by α
and then removing all literals l such that ¬l ∈ α from the remaining clauses. Let
also

Fv = {C : C ∪{v} ∈ F}, F¬v = {C : C ∪{¬v} ∈ F}, F−v = {C ∈ F : v �∈ C} ,

then clearly
F [v] = F¬v ∪ F−v, F [¬v] = Fv ∪ F−v .

For assignments α and β such that V (β) ⊆ V (α), by αβ we denote the as-
signment resulting from α by changing the values of V (β) in accordance with β.
For example, αa assigns the value True to a.

Let α be a total assignment to a formula F and a be an (i, j)-literal of F .
Then,

Cl(F, αa) = i + Cl(F [a], α) = i + Cl(F¬a, α) + Cl(F−a, α) , (1)

Cl(F, α¬a) = j + Cl(F [¬a], α) = j + Cl(Fa, α) + Cl(F−a, α) . (2)

By n(F ) and m(F ) we denote, respectively, the number of variables and
clauses in a formula F (we usually omit F , when it is clear from the context).
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2.2 Splitting Algorithms

A splitting algorithm usually first somehow simplifies an input formula F and
then recursively calls for several formulas of the form F [α] (this is called split-
ting). To estimate the running time of a splitting algorithm one has to specify
a formula complexity measure γ(F ). A splitting number of a splitting F [α1],
. . . , F [αk] is defined to be the unique positive root of the equation 1 =

∑k
i=1 x

−ai ,
where ai = γ(F ) − γ(F [αi]), and is denoted by τ(a1, . . . , ak). It is known [17]
that the running time of a splitting algorithm on a formula F does not exceed
τ

γ(F )
max , where τmax is the maximal splitting number of this algorithm. Thus, to

prove upper bounds on the running time it suffices to prove upper bounds on
τmax. There are several simple properties of splitting numbers [17]. In particular,

– τ(a, a) = 21/a;
– τ(a, b) ≤ 21/

√
ab;

– τ(a1, . . . , ap) ≤ τ(b1, . . . , bp), if ∀i, ai ≥ bi;
– τ(1, 2, . . . , a) < 2 and τ(1, 2, . . . , a) < τ(1, 2, . . . , a + 1);
– τ(1, a) → 1 as a→∞.

To prove that a splitting algorithm is correctone has to prove that this algorithm
considers all possible candidates to solutions (e.g., if an algorithm for SAT returns
the answer “Unsatisfiable”, then one has to guarantee that it considered all possi-
ble total assignments and none of them is a satisfying assignment). To achieve this
goal splitting algorithms usually split on a set of assignmentsα1, . . . , αk, such that
any possible total assignment is an extension of one of αi’s. However if we know
that a total assignment β cannot be a solution without a total assignment α being
a solution, then there is no need to consider β. For example, if l is a pure literal,
then there is no sense in considering assignments containing ¬l. We formalize this
simple idea in the following definition (a similar definition is used in [18]).

Let α1 and α2 be assignments to variables of a formula F . We say that α1

is stronger w.r.t. F than α2 and write α1 ,F α2, if for any total assignment β,
βα2 can be a solution to a problem for F only if βα1 is a solution (again, we
omit F if this does not lead to ambiguity). By a solution for SAT we mean a
satisfying assignment, while a solution for MAX-SAT is an assignment satisfying
the maximal number of clauses.

3 A New Algorithm for MAX-SAT

In this section we show that MAX-SAT for formulas with at most Δn clauses,
where Δ is a constant, can be solved in time cn, where c < 2 is a constant.

First, let us give some informal ideas showing that there exists a SAT al-
gorithm with running time cn, where c < 2, for formulas with constant clause
density Δ. The algorithm works as follows. If a formula contains a (d+, d+)-
literal l, for some big constant d = d(Δ), it just splits on it. This provides a
good splitting number w.r.t. the number of clauses (in both branches at least d
clauses are eliminated). Otherwise, the algorithm picks a d−-literal a and checks
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the satisfiability of Fa. This can be easily done in polynomial time: at each step
we choose a literal (of course, we assume that it is not pure) and split the cur-
rent formula into two formulas having fewer clauses; since Fa contains at most d
clauses, the size of the resulting splitting tree is at most 2d. If Fa is unsatisfiable,
then so is F [¬a] = Fa ∪ F−a and we can just assign the value True to a. Other-
wise, we find a satisfying assignment to Fa. It is easy to see that it contains at
most d literals. Let us denote it by α = {l1, . . . , lk} (k ≤ d).

Now we recursively call for F [¬a] = Fa ∪ F−a. If the answer is “Satisfiable”
we immediately return. Otherwise we can conclude that α cannot be extended
to a satisfying assignment of F−a, which means that we do not need to consider
extensions of α in the a-branch. Thus, we split F [a] to

F [a,¬l1], F [a, l1,¬l2], . . . , F [a, l1, . . . , lk−1,¬lk] .

The overall splitting number w.r.t. n is τ(1, 2, . . . , k+1) < 2. Thus, the algorithm
is always able to find a good splitting w.r.t. either n or m. Since m ≤ Δn, we
can prove that the overall running time of this algorithm is cn, where c < 2.

The formal description of the algorithm for MAX-SAT is given in Fig. 2.
The algorithm first applies the pure literal rule as long as it is applicable. Then
it splits on a D+-literal, if such literal exists. If there is no such literal, the
algorithm just selects any literal a and finds optimal assignments αa and α¬a

for Fa and F¬a, respectively. Since both Fa and F¬a contain at most D clauses,
this can be done in polynomial time. Moreover, we can assume that both αa

and α¬a contain at most D literals. Finally, the algorithm splits a formula using
the literals of one of the found assignments. We do not explain here how the
algorithm constructs the answer from the answers returned by the recursive
calls, as this is a standard operation (all one needs to do is to count the number
of currently satisfied clauses; see, e.g., [10]).

Theorem 1. For any constant Δ > 0 there exist constants D > 0 and c < 2
such that MaxSatAlg(D) returns MCl(F ) for any formula F with at most Δn(F )
clauses in time cn(F ).

Proof. If a current formula F contains a D+-literal, the algorithm just splits on
it. This removes one variable and at least one clause in one branch and one vari-
able and at least D clauses in the other branch (remind that F does not contain
pure literals). Now consider the case when F consists of D−-literals only. Assume
w.l.o.g. that i + k¬a ≥ j + ka (remind that a is an (i, j)-literal). We claim that
α¬a ∪ a ,F α¬a ∪ ¬a. Indeed, consider any total assignment β to F . By (1),

Cl(F, βα¬a∪a) = i + k¬a + Cl(F−a, β
α¬a) ,

while by (2),
Cl(F, βα¬a∪¬a) ≤ j + ka + Cl(F−a, β

α¬a) .

So, βα¬a∪a satisfies at least as many clauses of F as βα¬a∪¬a (for any β) and
we conclude that α¬a ∪ a ,F α¬a ∪ ¬a. Thus, we do not need to consider any
extension of α¬a in the ¬a-branch. Thus, we can split as follows:

F [a], F [¬a,¬y1], F [¬a, y1,¬y2], . . . , F [¬a, y1, . . . , yq−1,¬yq] .
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Algorithm MaxSatAlg

Parameters: a positive real number D.
Input: a CNF formula F .
Output: MCl(F ).
Method.

1. Assign the value True to all pure literals of F .
2. If F is empty, then return 0.
3. If F contains a D+-literal a, then recursively call for F [a] and F [¬a] and return

the answer.
4. Let a be any literal of F . Let also i = d(a), j = d(¬a).
5. Find optimal assignments for Fa and F¬a. Denote them by αa = {x1, . . . , xp} and

α¬a = {y1, . . . , yq}, respectively, and let

ka = MCl(Fa) = Cl(F, αa) ,

k¬a = MCl(F¬a) = Cl(F, α¬a) .

6. If i + k¬a ≥ j + ka, then recursively call for

F [a], F [¬a,¬y1], F [¬a, y1,¬y2], . . . , F [¬a, y1, . . . , yq−1,¬yq]

and return the answer.
7. Otherwise recursively call for

F [¬a], F [a,¬x1], F [a, x1,¬x2], . . . , F [a, x1, . . . , xp−1,¬xp]

and return the answer.

Fig. 2. An algorithm for MAX-SAT

If i+ k¬a < j + ka, then by using exactly the same argument one can show that
αa ∪ ¬a ,F αa ∪ a. This ensures that MaxSatAlg is correct.

Now let us estimate the running time. We use the following complexity mea-
sure (for w = w(Δ) defined later):

γ(F ) =
{
n(F ) + wm(F ), if F contains a D+-literal,
n(F ), otherwise.

If a formula contains a D+-literal, the algorithm splits with a splitting number
at most τ(1 + w, 1 + wD). Otherwise, the splitting number is at most rD =
τ(1, 2, . . . , D + 1) (as p, q ≤ D). Now let d be any constant bigger than Δ.
Assume now that there exists constants w and D, such that

τ(1 + w, 1 + wD) ≤ 2
1

1+wd and τ(1, . . . , D + 1) ≤ 2
1

1+wd .

Then the running time of the algorithm is bounded by

2
γ

1+wd ≤ 2
n+wm
1+wd ≤ 2n 1+wΔ

1+wd = cn ,
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where c = 2
1+wΔ
1+wd < 2 is a constant. Below we prove that such w and D exist.

It is easy to see that for any integer D ≥ 1 there exists wD > 0 such that
τ(1, . . . , D+1) = 2

1
1+wDd (since τ(1, . . . , D+1) < 2). Thus, it is sufficient to find

an integer D such that τ(1 + wD, 1 + wDD) ≤ 2
1

1+wDd . To show this it suffices
to show that (1 + wDd)2 ≤ (1 + wD)(1 + wDD) (since τ(a, b) ≤ 2

1√
ab ). The last

inequality is equivalent to wDd2+2d ≤ D+1+wDD, which is obviously satisfied
for large enough D.  !

4 MAX-2-SAT

In this section we present a new algorithm for MAX-2-SAT with a running time
2m/5.88 ≈ 1.12512m. It extends an algorithm by Kojevnikov and Kulikov [14]
by using the idea of clause learning. The analysis is mostly the same as in [14]
with several cases improved. The algorithm first simplifies an input formula by
applying (as long as it is possible) to it almost common clauses, pure literal, dom-
inating unit clause, and frequently meeting variables rules. We do not describe
here the rules in detail (see [14]), but provide several important properties of sim-
plified formulas in Lemma 1, where by a simplified formula we mean a formula
for which no rule described above is applicable. After simplifying the algorithm
just splits a resulting formula by assigning Boolean values to some variables.

Before stating some known properties of this algorithm we give some addi-
tional definitions. For a literal l, by d1(l) we denote the number of unit clauses
(l) in a formula and by d2(l) we denote the number of 2-clauses containing the
literal l. By weight of a variable x we mean d2(x) + d2(¬x).

Lemma 1 ([14])

– A simplified formula does not contain variables of weight at most 2.
– A simplified formula does not contain clauses of the form (xy) and (¬xy).
– If a variable x occurs at most one time without a variable y, then a formula

can be simplified.
– If F is a simplified formula, (xy) ∈ F and y has weight 3, then at least in

one of the formulas F [x] and F [¬x] the simplification rules assign a Boolean
value to y.

– If a simplified formula F contains only variables of weight 3, then there is a
variable x, such that both F [x] and F [¬x] (after simplifying) contain at least
6 variables fewer than F .

The running time of the algorithm by Kojevnikov and Kulikov is estimated w.r.t.
the following complexity measure:

γ(F ) = N3 + 1.9 ·N4(F ) +
∑
i≥5

i ·Ni(F )
2

,
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where Ni(F ) is the number of variables of weight i of F . We change the coeffi-
cients as follows:

γ(F ) = 0.98 ·N3 + 1.96 ·N4(F ) +
∑
i≥5

i ·Ni(F )
2

.

Thus, we have to prove that the algorithm always splits a simplified formula
with a splitting number at most τ(5.88, 5.88). Note that reducing the weight of
any variable in a simplified formula reduces γ at least by 0.5 (as the difference
between any two coefficients before Ni is at least 0.5). First consider the case,
when a formula F contains a variable x of weight w ≥ 6. In this case we can
just split on this variable. This reduces γ at least by w in the both branches:
eliminating x reduces γ at least by w/2, decreasing the weight of neighbors of x
further reduces γ at least by w/2.

Now consider a case when F contains only variables of weight at most 4. Let
x be a variable of weight 4. For 1 ≤ i ≤ j ≤ 4, let kij denote the number of
neighbors of x that have weight j and occur i times with x. It is easy to see
that such a neighbor of x becomes a variable of weight (j − i) after assigning a
Boolean value to x. By Lemma 1, kij = 0 for j ≤ 2 and for j−i ≤ 1. So, only k13,
k14 and k24 can be positive. Since x is a variable of weight 4, k13+k14+2k24 = 4.
Now let F ′ be a formula obtained from F by assigning a Boolean value to x.
Then,

γ(F )− γ(F ′) = (0.98 · k13 + 1.96 · (k14 + k24 + 1))− 0.98 · k14 =
0.98 · (k13 + k14 + 2k24) + 1.96 = 0.98 · 4 + 1.96 = 5.88 .

If F contains only variables of weight at most 3, then by Lemma 1 we can always
find a (6, 6)-splitting w.r.t. n. This gives a (5.88, 5.88)-splitting w.r.t. γ, since
γ(F ) = 0.98 ·n(F ). The only remaining case is when a formula contains at least
one variable of weight 5 and all other variables have weight at most 5 and this
is the case where we explore clause learning.

First, let us calculate a straightforward splitting number. It is done similarly
to the case with a variable of weight 4:

k13 + k14 + k15 + 2k24 + 2k25 + 3k35 = 5 ,

γ(F )− γ(F ′) =
(0.98 · k13 + 1.96 · (k14 + k24) + 2.5 · (k15 + k25 + k35 + 1))

−(0.98 · (k14 + k25) + 1.96 · k15)
= 0.54 · (k13 + k14 + k15 + 2k24 + 2k25 + 3k35) + 2.5

+0.44 · (k13 + k14 + 2k24 + k25 + 2k35)
= 5.2 + 0.44 · (k13 + k14 + 2k24 + k25 + 2k35) .

Thus, if

(k13 + k14 + 2k24 + k25 + 2k35) ≥ 2 (3)
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then we already have a required splitting number. This, in particular, means
that we do not need to consider cases when either k24 > 0 or k35 > 0.

The idea of clause learning is used in the following lemma, which says that for
any two neighbors of a we do not need to consider extensions of some assignment
to these neighbors in one of the branches.

Lemma 2. Let F be a simplified 2-CNF formula, a be a variable of weight 5
and l, l′ be literals appearing with a. Then either

{a, l1, l2} ,F {¬a, l1, l2} or {¬a, l1, l2} ,F {a, l1, l2} ,

where l1 is either l or ¬l and l2 is either l′ or ¬l′.

Proof. Let F contain i2 2-clauses with literal a, j2 2-clauses with ¬a, i1 clauses
(a) and j1 clauses (¬a). Note that Fa and F¬a consist of i2 and j2 unit clauses,
respectively.

Now, from the fact that 5 = (i2+j2) = (i1+i2−j1)+(j1+j2−i1) we conclude
that either (i1 + i2 − j1) or (j1 + j2 − i1) is at least 3. W.l.o.g. we assume that
i1 + i2 − j1 ≥ 3.

Let α be a total assignment to F . Then, by (1) and (2),

Cl(F, αa) = i1 + i2 + Cl(F¬a, α) + Cl(F−a, α) ,

Cl(F, α¬a) = j1 + j2 + Cl(Fa, α) + Cl(F−a, α) .

Thus,

Cl(F, αa)− Cl(F, α¬a) = i1 + i2 − j1 − j2 + Cl(F¬a, α)− Cl(Fa, α)
≥ 3− j2 + Cl(F¬a, α)− Cl(Fa, α)

Note that Cl(F¬a, α)−Cl(Fa, α) ≥ −i2, as α satisfies at least 0 clauses of F¬a

and at most i2 clauses of Fa. If (l) or (¬l) is in F¬a, we set l1 to be a literal
satisfying this unit clause. Otherwise, if (l) or (¬l) is in Fa, we set l1 so that it
falsifies the corresponding clause. The literal l2 is defined similarly. Then, for any
α � l1, l2, Cl(F¬a, α)−Cl(Fa, α) ≥ −i2 + 2, and hence Cl(F, αa)−Cl(F, α¬a) ≥
3−j2−i2+2 ≥ 0. Thus, we have shown that for any total assignment α such that
a, l1, l2 ∈ α, Cl(F, αa) ≥ Cl(F, α¬a), which means that {a, l1, l2} ,F {¬a, l1, l2}.

 !

Let us give an example of using this lemma. Suppose that F contains the fol-
lowing five clauses: (al1)(al2)(al3)(¬al4)(¬al5) (and does not contain any other
clauses with variable a). Lemma 2 implies that {a,¬l2, l4} ,F {¬a,¬l2, l4}. In-
deed, any extension of {¬a,¬l2, l4} satisfies at most 4 of the mentioned above
clauses (as (al2) is falsified), while any extension of {a,¬l2, l4} satisfies at least
4 of these clauses.

Now we consider all the remaining cases. Remind that F contains only vari-
ables of weight at most 5 and let a be a variable of weight exactly 5. First consider
the case when a has a neighbor b of degree 3. By (3), k13 = 1 and k15 = 4. By
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Lemma 1, b is assigned a Boolean value in at least one of the branches F [a] and
F [¬a], moreover all three neighbors of b are different variables. Thus, splitting
on a provides a splitting number not exceeding τ(5.2+0.44, 5.2+0.44+2·0.54) <
1.12.

Suppose that a appears with some variable b twice. This means, by (3), that
k25 = 1 and k15 = 3. Lemma 2 implies that {la, lb} ,F {¬la, lb}, where la
and lb are literals of a and b. Thus, we can assign a Boolean value to b in
one of the branches F [a] and F [¬a]. The corresponding splitting number is
τ(5.2 + 0.44, 5.2 + 0.44 + 0.98) < 1.121.

Now we know that a has exactly five different neighbors. Moreover, by (3) at
most one of them has weight at least 4, while all other have weight exactly 5
(in other words, k14 ≤ 1, k15 ≥ 4, k14 + k15 = 5). W.l.o.g. we can assume that
d1(a) + d2(a) − d1(¬a) ≥ 3 (otherwise, we consider ¬a instead of a). Let b1, b2
be any two literals appearing together with the literal a and c be any literal
appearing together with the literal ¬a. Lemma 2 then implies that

{a,¬b1,¬b2} ,F {¬a,¬b1,¬b2} ,

{a,¬b1, c} ,F {¬a,¬b1, c} .

Thus we can split F to F [a], F [¬a, b1], F [¬a,¬b1, b2, . . . , bi2 ,¬c1, . . . ,¬cj2 ],
where b1, . . . , bi2 and c1, . . . , cj2 are all literals appearing together with the lit-
erals a and ¬a, respectively. So all we have to do is to show that this splitting
gives good splitting number in all the remaining cases. First, rename the literals
so that the splitting above corresponds to a splitting

F [a], F [¬a, l1], F [¬a,¬l1, l2, l3, l4, l5] .

Let l1, l2, l3, l4 be literals of variables of weight 5 variables and l5 be literal of a
variable of weight d, where d ∈ {4, 5}.

Assume that l1 has at least three neighbors of degree less than 5 in F [¬a].
Then the straightforward splitting number is τ(5.2 + 0.44 · (5 − d), 5.2 + 0.44 ·
(5−d)+1.96+3 ·0.98+0.54, 5.2+0.44 · (5−d)+5 ·1.96+(d−5) ·0.98). In both
cases it does not exceed 1.1249. Otherwise, the neighborhood of {l1, l2, l3, l4}
in F [¬a] contains at least 8 literals of variables of weight 5 (and hence these
are different from l1, l2, l3, l4, l5). In this case it is not difficult to show that the
splitting number does not exceed τ(5.2+0.44 · (5−d), 5.2+0.44 · (5−d)+1.96+
4 · 0.54, 5.2 + 0.44 · (5− d) + 5 · 1.96 + (d− 5) · 0.98 + 2.94), hence, 1.1246.
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Abstract. In the paper, new modified agglomerative algorithms for hi-
erarchical clustering are suggested. The clustering process is targeted
to generating a cluster hierarchy which can contain the same items in
different clusters. The algorithms are based on the following additional
operations: (i) building an ordinal item pair proximity (’distance’) in-
cluding the usage of multicriteria approaches; (ii) integration of several
item pair at each stage of the algorithms; and (iii) inclusion of the same
items into different integrated item pairs/clusters. The suggested modifi-
cations above are significant from the viewpoints of practice, e.g., design
of systems architecture for engineering and computer systems.

Keywords: Hierarchical clustering, agglomerative algorithm, hierarchy,
system architecture, multicriteria analysis.

1 Introduction

Clustering problems is a basic scientific problem and has been studied many
years (e.g., [2], [4], [9], [10], [16], [20], [22], [23], [27], [30], [33], [35], [39], [50],
[55], [61], [62], [66]). In recent years a set of survey works on clustering algorithms
was published ([1], [4], [12], [24], [26], [31], [33], [49], [53], [64]). Generally, the
following basic clustering strategies (styles) are pointed out (e.g., [24], [31]):
(1) partitioning (or k-clustering) (e.g., [2], [37]) and graph partitioning using
pagerank vector [3]; (2) hierarchical clustering including (2.1) single-link, (2.2)
average-link, (2.3) complete-link (e.g., [34], [59]); (3) graph-theoretic methods
(e.g., via minimal spanning tree [63]) (e.g., [5], [29], [61]); (4) combinatorial
optimization methods (e.g., [15], [48], [54]); (5) conceptual clustering (e.g., [8],
[14], [45], [46], [60]); and (7) AI methods (e.g., neural networks, knowledge bases)
(e.g., [30], [51], [57], [58]); (8) evolutionary approaches, genetic algorithms (e.g.,
[6], [17], [18], [36], [40], [44]); (8) approximation clustering (based on semidefinite
programming methods) [47]); and (9) fixed points approach [20].

In last decade, many studies are targeted to hierarchical clustering, for ex-
ample: (i) graph-based hierarchical clustering [32], (ii) lattice-based hierarchical
clustering [43], (iii) likehood based hierarchical clustering [11], (iv) energy ef-
ficient hierarchical clustering [7], and (v) hierarchical clustering using dynamic
modeling [38], and (vi) model-based Gaussian hierarchical clustering [25]. In

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 205–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



206 M. Sh. Levin

addition, it is reasonable to point out contemporary studies multiple criteria
classification problems based on multicriteria decision making methods (e.g.,
[13], [65])

This paper describes new modifications of agglomerative algorithm for hierar-
chical clustering. The suggested algorithms are based on the following additional
operations: (i) building an ordinal item pair proximity (‘distance’) including the
usage of multicriteria approaches; (ii) integration of several item pair at each
stage of the algorithms; and (iii) inclusion of the same items into different inte-
grated item pairs/clusters. Thus the clustering process is targeted to generating
a cluster hierarchy which can contain the same items in different clusters. The
clustering process above (i.e., hierarchy) can correspond to a structure (or ar-
chitecture) of a modular (composite) hierarchical system and this structure is a
significant result in system analysis/design of engineering and computer systems.
Complexity of basic considered algorithms is polynomial.
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2 Agglomerative Algorithm

2.1 Basic Algorithm

There is a set of n elements A = {A1, ..., Ai, ..., An} and a corresponding
vector estimate of m attributes/parameters (T1, ..., Tj , ..., Tm) for each element
i: zi = (zi,1, ..., zi,j , ..., zi,m). The basic agglomerative algorithm (polynomial,
algorithm 1) is as follows (Bottom-Up element pair integration process):

Stage 1. Computing the matrix of element pair ∀(A(i1), A(i2)), A(i1) ∈ A,
A(i2) ∈ A, i1 �= i2 “distances” (a simple case, metric l2):

di1i2 =

√√√√ m∑
j=1

(zi1,j − zi2,j)2.
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Stage2. Revelation of the smallest pair “distance” and integration of the cor-
responding two elements into a resultant “integrated” element.

Stage 3. Stopping process or re-computing the matrix of pair “distances” and
Go To Stage 2.

As result, a tree-like structure for the element pair integration process
(Bottom-Up) is obtained (one element pair integration at each integration step).
A basic procedure for aggregation of items (aggregation as average values) is as
follows (Ji1,i2 = Ai1&Ai2): ∀j zJi1,i2 ,j = zi1,j+zi2,j

2 . The item pair aggregation
process can be based on other functions (e.g., max, min ). Integration of sev-
eral items can be considered analogically. An illustrative example of hierarchical
clustering is depicted in Fig. 1. Evidently, the number of integration steps equals
O(n) (complexity of algorithm 1 equals O(n3m)). At each step of the algorithm
clusters without intersection are obtained. Fig. 2 depicts clusters for step 3 in
Fig. 1.
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Fig. 4. Clusters for Step 2

2.2 Properties and Improvement Ideas

Let us point out some properties of the considered clustering process as follows:

1. The matrix of unit pair “proximity” can contain several “minimal” ele-
ments. Thus there are problems as follows: (i) selection of the “best” unit pair
for integration; (ii) possible integration of several unit pair at each algorithm
stage.

2. Computing the matrix of element pair “distances” often does not corre-
spond to the problem context and it is reasonable to consider a “softer” approach
for computing element pair “proximity”.

3. The obtained structure of the clustering process is a tree. Often the clus-
tering problem is used to get a system structure that corresponds to the above-
mentioned clustering process (e.g., evolution trees, system architecture). Thus,
it is often reasonable to organize the clustering process as a hierarchy, e.g., for
modular systems in which the same modules can be integrated into different
system components/parts.
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Fig. 3 illustrates concurrent integration of unit pairs at the same step of the
algorithm when some units can be integrated into different system components
parts, i.e., obtaining a hierarchical system structure (common modules/parts, e.g.,
3 and 4). In this case, obtained clusters can have intersections (Fig. 4.) Fig. 4
depicts clusters for step 2 in Fig. 3.

3 Modifications

3.1 Ordinal Unit Pair Proximity

Computing the item “distance” based on metric l2 is a ‘simplified’ mathemat-
ical approach. Now let us consider two methods based on an ordinal scale
[0, 1, ..., k], 0 corresponds to “equal” items pair. The first method interval di-
viding scheme is the following. The mapping process is: ∀(i1, i2) di1,i2 ⇒ ri1,i2 ,
where ri1,i2 ∈ [0, ..., k]. Fig. 5 illustrates the method. Let a, b, v, w, p, q, e, f ∈ A.
Interval (μ = min(i1,i2){di1,i2},M = max(i1,i2){di1,i2}) is divided into k+1
subintervals 0, 1, 2, ..., k. As a result, ra,b = 0 if da,b ∈ [0, M−μ

k+1 ], rp,q = 1 if

dp,q ∈ [M−μ
k+1 , 2(M−μ)

k+1 ], etc. It is reasonable to consider versions of the method:
(i) equal subintervals, (ii) non-equal subintervals (dividing process is based on a
context).

interval 0 interval 1 interval k. . .
μ = min(i1,i2){di1,i2} M = max(i1,i2){di1,i2}

da,b dv,w� � dp,q�� de,f��

Fig. 5. Illustration of “interval dividing”

Thus, it is possible to select the smallest ordinal “proximity” and integrate
corresponding item pairs. The problem may exist in the case when items can
be integrated into different item pairs because the number of pairs will be very
large. In this case a special limitation algorithmic rule can be used:

limitation of integrated pairs number at each algorithm stage, e.g., ≤ λ ≤ n.
Now let us consider multicriteria approach, e.g., Pareto approach [52]. The

following m criteria are considered for item pair proximity { C1, ..., Cj , ..., Cm }.
As a result, we get a space of vector proximity for item pair (i1, i2):

δ(i1,i2) = {δ(i1,i2),1, ..., δ(i1,i2),j, ..., δ(i1,i2),m},

where δ(i1,i2),j = |zi1,j − zi2,j| corresponds to criterion Cj .
Fig. 6 illustrates the method (the depicted points correspond to item pair

proximity {δ(i′,i′′)}): (i) if item pair proximity corresponds to ideal point then
r(i1,i2) = 0, (ii) if item pair proximity corresponds to Pareto-effective points
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Fig. 6. Illustration for Pareto-approach

then r(i1,i2) = 1, etc. Here the limitation algorithmic rule can be used as well.
Clearly, other methods of multicriteria ranking can be used, e.g., outranking
techniques [56].

Multicriteria approaches (e.g., Pareto approach) to computing item pair prox-
imity are more justified and correct than the usage of metric (e.g., l2) by the
following reasons: 1. from the viewpoint of using various scales (i.e., quantita-
tive, nominal, ordinal) for assessment of the initial items, 2. from the viewpoint
of processing the obtained item estimates.

3.2 Multi-pair Integration Process

On the other hand, the clustering process can be organized as a series of clique
problems [19]. Let G = (A,E) be a graph over set of elements A and set of edges
E corresponds to item pair with the minimal value of proximity. The solution of
“maximal clique problem” in G leads to selection of a subgraph H = (B,E′) (B ⊂
A) where elements of B can be integrated into an aggregated item. Here a Top-
Down process is obtained to build a “system hierarchy”: revelation of maximal
clique(s) in initial graph G, revelation of maximal clique(s) in subgraph(s) as H ,
etc. Evidently, the above-mentioned solving scheme is based on series of NP-hard
problems. Note improvement ideas from the previous section (and corresponding
polynomial operations) are more preferable from the viewpoint of complexity.

4 Improved Algorithms

Let us consider algorithm improvements.
Improvement 1 (algorithm 2):

Stage 1. Computing an ordinal “distance”/proximity (0 corresponds to equal
or the more similar elements). Here it is possible to compute the pair “distance”
via the previous approach and mapping the pair “distance” to the ordinal scale.

Stage 2. Revelation of the smallest pair distance and integration of the corre-
sponding elements.
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Note 1. It is possible to reveal several close element pairs and execution several
pair integration.

Note 2. It is possible to include the same element into different integrated
pairs.

Stage 3. The stage corresponds to stage 3 in algorithm 1.
Here, a hierarchical structure for the element pair integration (Bottom-Up) is

obtained (several element pair integration at each integration step). The com-
plexity of the problem may consist in revelation of many subcliques (in graph
over elements and their proximity). In the process of computing the ordinal
proximity it is reasonable to use a limited number of element pairs for each level
of the proximity ordinal scale. As a result, the limited number of integrated
element pairs (or complete subgraphs or cliques) will be revealed at each inte-
gration stage. This provides polynomial complexity of the algorithm (number of
operations, volume of required memory) O(m n2).

Improvement 2 (algorithm 3): This algorithm is close to algorithm 2, but the
computing process for the ordinal element pairs proximity is based on multicri-
teria analysis, e.g., Pareto-approach or outranking technique (i.e., Electre-like
methods). Complexity of the algorithm is O(m n4).

The algorithms 2 and 3 implement the following trend:
from tree-like structure (of clustering process) to hierarchy.

An analysis of obtained clique(s) can be included into the algorithms as well.

5 Application

5.1 Education

The described algorithms are used as a special student laboratory work (MatLab-
environment) in the author’s course “Design of systems: structural approach”,
Moscow Inst. of Physics and Technology (State Univ.) ([41], [42]). Each student
has to prepare the program and an example (a numerical example or a real world
application from his/her professional domain).

Table 1. Estimates

Attributes

T1 T2 T3 T4

A1

A2

A3

A4

A5

A6

A7

2 3 300 2.4
54 5 100 5.0
11 3 300 2.4
54 3 300 2.4
55 1 100 2.4
0.25 1 10 2.4
54 3 200 5.0

Table 2. Distances/Proximity

A2 A3 A4 A5 A6 A7

A1

A2

A3

A4

A5

A6

5.9(4) 1.4(1) 5.0(3) 5.9(4) 5.0(3) 5.9(4)
5.0(3) 3.0(2) 4.1(3) 6.5(4) 2.2(1)

4.0(3) 4.9(3) 3.8(2) 3.2(2)
3.0(2) 6.1(4) 1.4(1)

5.0(3) 2.4(1)
5.9(4)



Towards Hierarchical Clustering 211

5.2 Design of System Hierarchy

Let us consider clustering of wireless standards: 802.11 (A1), 802.11a (A2), 802.11b
(A3), 802.11g (A4), 802.15.3 (A5), 802.15.4 (A6), and HyperLAN2 (A7). This nu-
merical example is partially based on laboratorywork of student Dmitry Yu. Mikhin
(Fall 2005). The set of attributes is as follows: Maximal speed (T1), Power require-
ments (T2), Distance (m) (T3), and Frequency (GHz) (T4). Table 1 contains esti-
mates of the items, Table 2 contains initial “distances” and corresponded ordinal
proximity (4 level). Fig. 7 depicts clustering hierarchy.

Algorithm 2 (interval dividing scheme) was used. Here after Step 1 the
item estimates and “distance”/proximity matrix were re-computed and 3-item
clique (initial items {2, 4, 5, 7}) was revealed.

Step 0 1 2 3 4 5 6 7

Step 1 1, 3
�

�
2, 7
�

4, 7
�

5, 7
�

6
������� ���

Step 2 1, 3
�

�
2, 4, 5, 7

����� �
�����

�
6
�

�

1, 2, 3, 4, 5, 6, 7
. . .

Fig. 7. Clustering hierarchy

6 Towards Quality of Clustering

Generally, clustering procedures can be evaluated from the following viewpoints:
(a) complexity (e.g., computational complexity, required memory, information
complexity of various kinds) and (b) quality of the results. Let us consider basic
goals of clustering processes as follows: (1) a set of clusters, (2) hierarchy of clus-
ters (e.g., trees, hierarchies), (3) fuzzy clustering (e.g., intersection of clusters).

A traditional clustering evaluation measure (for a cluster set) has the follows
kind: (e.g., [21], [32]):

ClusteringQuality =
InterClusterDistance

IntraClusterDistance

In the case of hierarchical clustering another metric has to be applied (i.e.,
other goals) (e.g.,[32], [43]). In [32] three basic measures are analyzed and new
measures are suggested: 1. three basic measures: (i) the greatest coverage by
the smallest possible clusters, (ii) the greater cluster’s inferential power, and
(iii) minimal overlap between clusters; 2. new metrics: Quality, Diversity, and
Coverage. Fuzzy clustering procedures require special kinds of quality metrics
(e.g., [28]).
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In our case (as in many applications), clustering procedures have an investi-
gation character and are targeted to an analysis of data under various research
situations. A procedural possibility to change some parameters (e.g., proxim-
ity intervals), modes, to analyze intermediated results, etc. is a result. From
this viewpoint, complexity, easy to use and to understand, changeability, results
presentability, reproducibility of results can be considered as basic goals and
characteristics. Finally, quality of hierarchical clustering procedures and perfor-
mance analysis of the resultant hierarchical clustering require special additional
studies (including usage of multicriteria approaches).

7 Conclusion

In the paper, we have described our modified agglomerative algorithms for hier-
archical clustering which involve the following additional operations: (i) building
an ordinal item pair proximity (’distance’) including the usage of multicriteria
approaches; (ii) integration of several item pair at each stage of the algorithms;
and (iii) inclusion of the same items into different integrated item pairs. Multi-
criteria approaches and ordinal item pair proximity are more reasonable for the
following two viewpoints: (a) using various scales for item assessment and (b)
processing the item estimates. The suggested modifications above are significant
from the viewpoints of practice, e.g., design of systems structure/architecture
for engineering and computer systems.

Future research directions are the following: 1. evaluation and comparative
study of the suggested clustering algorithms 2. design and analysis of a man-
machine clustering procedure that can involve expert judgment; 3. examination
of various real world applications; 4. usage of fuzzy set approaches; and 5.
special studies of hierarchical clustering procedures and performance analysis of
the resultant hierarchies.

The author would like to thank the anonymous referees whose comments
highly contributed to the revision of this paper.
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Abstract. How could one estimate the total number of clicks a new ad-
vertisement could potentially receive in the current market? This ques-
tion, called the click volume estimation problem is investigated in this
paper. This constitutes a new research direction for advertising engines.
We propose a model of computing an estimation of the click volume.
A key component of our solution is the application of linear regression
to a large (but sparse) data set. We propose an iterative method in or-
der to achieve a fast approximation of the solution. We prove that our
algorithm always converges to optimal parameters of linear regression.
To the best of our knowledge, it is the first time when linear regression
is considered in such a large scale context.

1 Introduction

In general, an advertising engine (AE) (1) maintains a database of advertise-
ments, (2) receives ad requests “some person is accessing some media”, and (3)
returns several ads that are most relevant to this request. Google AdWords,
Yahoo! Search Marketing, and Microsoft adCenter are the most prominent ad-
vertising engines for sponsored search. Google AdSense is an example of an AE
for contextual advertisements. Finally, the Amazon.com recommendation sys-
tem [8] is a particular case for an e-commerce recommendations AE. We expect
that specialized advertising engines will be introduced very soon for blogspace,
social networks, computer games and virtual reality, and even supermarket bills.

In this paper we start a new research direction for advertising engines. Con-
sider the following question: How could one estimate the total number of clicks
a new advertisement can potentially receive in the current market? We call this
the click volume estimation problem and use CV (a) to denote the click
volume of an advertisement a. Knowledge about advertisements (the ad space),
requests for ads (the request space), and historical information can be used to
calculate an estimation of CV (a). The click volume estimation problem has not
yet been investigated in the literature to the best of our knowledge.
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The same ad

to all ad requests
clickclickclick

There are plenty of reasons to be interested in the click volume of an ad. Let’s
consider some of them.

– Maintainers of advertising engines might wish to understand how many clicks
they can (approximately) sell for any given advertisement. Click volume
information can be useful for setting optimal prices.

– The click volume can measure the current effectiveness of advertising engines.
– Advertising engines might use different strategies for the cases when the click

volume is smaller than the demand from advertisers and when it is larger.
In the latter case an AE can skip some ad request even if advertisers mark
it as belonging to their target group.

– The real goal of an AE is to recognize the whole interested audience for the
given ad and to display it only to these people. Hence, estimating the volume
of that audience is the first step towards the recognition problem.

– Using click volume estimation, an advertiser can predict the necessary re-
sources needed to cover a given fraction of market.

– Comparison of overall click volume and click volume restricted to the tar-
get subspace of ad requests provides a kind of “target coverage” value. It
can help advertisers to understand whether their target description is good
enough.

– Assuming we have a purchase history table. Then applying similar techniques
we can estimate the purchase market for a new product.

Results. This paper is the first step towards setting a formal definition of click
volume and constructing efficient algorithms for computing reliable CV estima-
tions. Our main contributions are (1) a general model of an advertising engine
and its history table, (2) a methodology for calculating the click volume using
linear regression, (3) a fast iterative algorithm for solving the linear regression
problem on large and sparse data sets based on [11,18], (4) a complexity bound
for one round of iterations, and (5) a proof of convergence for the algorithm.
Finally, we pose a series of open problems and suggest directions for further
research in Section 4.

Let us describe our solution for the click volume problem in an informal way.
We take a history table and transform it into the list of pairs: event vector,
empirical value of click-through rate. Here, an event vector characterizes a dis-
played ad, an ad request and their relationship. It belongs to a high dimensional
euclidean space, but only few of its components are nonzero. We make an as-
sumption that the click-through rate (more precisely, logit of click-through rate)
can be calculated as a scalar product between the event vector and some un-
known vector α. Then we have to find the α that minimizes the prediction error
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over the whole history table. This is a well-known linear regression problem.
Unfortunately, classical methods, like direct method and SVD-based method
[15] are infeasible in our settings. As far as we know, all previous algorithms
have time complexity Ω(mn) where mn is the size of underlying matrix. In
order to get better complexity, we have to use the sparseness of the underlying
matrix.

In essence, we need just to compute the projection of one vector to the linear
hull of some family of sparse vectors. While solving systems of linear equations
and computing eigenvectors are well studied in sparse settings [13], no particular
method was suggested for the projection problem. In this paper we propose an
iterative algorithm based on componentwise descent method [18]. In [18] only one
component of the current approximation is updated in every turn. Inspired by the
sequential minimal optimizations method [11] used for training support vector
machines, we make a modification to componentwise descent method. That is,
we calculate the optimal shift value analytically. We show that shift computation
is linear just to the number of nonzero components of the corresponding term
vector.

In this paper we just start the investigation of solving the large scale regression
problem on sparse data. But we are convinced that this method can find much
more applications in web computing than just click volume estimation.

Related research. The algorithm for predicting the click-through rate in [12] was
the main inspiration source for our research. However, there are some important
differences. In [12] the click-through rate (hence, click volume) is estimated for
all ads shown for a given search term (ad request in our terminology). We present
a solution for the dual problem: fixing an ad and assuming that it is displayed
on all ad requests. Moreover, we estimate the click through rate for any pair of
ad and ad request. In our case the problem of insufficient history can not be
solved solely by the assumption that two content-similar ads have a similar click
volume. Indeed, a collection “ad-to-ad-request” is far from the completeness for
every ad and even for every ad cluster. Next, we present a model which captures
various industrial solutions at the same time, while [12] addresses only sponsored
search technology.

Let us compare our regression based solution with other possible approaches.
For every newcomer event vector one can locate the nearest events from our his-
tory table and use their click-through rates as the basis of estimation. However,
the nearest neighbors algorithms either are (asymtotically) too slow [6], or use
assumptions (like a non-euclidean space) [17] that clearly do not hold for our
case. Alternatively, one can, for example, treat ads as people, ad requests as
books and empirical click-through rates as ratings. Than we can apply the well
developed theory of collaborative filtering [10]. Unfortunately, one needs at least
few appearances of the newcomer ad in the history table to apply this method.
Also, collaborative filtering does not use term similarity between ads and ad
requests.
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We refer to the papers [4,16] for a general introduction to sponsored search.
Algorithms for optimal ad choosing are constructed in [9]. Auction design for
sponsored search is well presented in [3,5]. Many open problems around adver-
tising engines were posed on the SSA’06 panel discussion [1]. Finally, various
versions of similarity for search terms (i.e. ad requests in our terminology) are
investigated in the paper [2].

2 Basic Model: Advertising Engine and History Table

The general setting discussed in this paper is an advertising engine which,
given some historical information about placing advertisements and a new adver-
tisement from an advertiser, has to estimate the number of clicks (click volume)
this new ad would get over a certain period of time. Let’s define our notation.

Let A be the set of all advertisements. By convention we denote elements of A
by a and its subscripted versions. Let anew ∈ A denote the advertisement whose
click volume will be estimated. In principle an element of A might be defined
by several properties like the content of the advertisement (for example text
with a link and a phone number), a target audience description, some keywords
describing the ad, and so on. However, all we assume here is that an ad is
represented by a vector of reals. For example, an entry of a might denote the
membership of the ad in some property where 1 means that a has that property
and 0 means that a does not have that property.

Furthermore, we need a notion of ad request. The AE is contacted every time
a person is contacting some media (in most cases websites). Let R be the set
of all ad requests whose elements are denoted by r and its subscripted versions
in the following. Requests, like advertisements, could be described by a number
of parameters like a person (or rather IP address), media (for example a search
web page), and an action (for example an entered search query). But again, all
we require is r being a vector of reals, like advertisements.

Advertisements and requests together form an exposition event. An event
should be represented by features of the advertisement (for example, keywords,
language, target group), features of the ad request (for example, location, search
phrase), and the relation between ad and ad request (for example, whether or
not the language of the ad is spoken at the location the request came from). Let
us assume that an event is represented as a vector such that each component
denotes whether or not that event possesses that feature. Let E denote the set of
all events. Given an ad a and a request r, let e(a, r) denote the event representing
the ad, the ad request, and the relation between them.

The data we use for our estimation of the click volume is called history ta-
ble over E × {0, 1} where (e(a, r), b) denotes an advertisement a shown on ad
request r which received a click if b = 1 and no click if b = 0. Let us fix an
arbitrary history table HT with n entries for the rest of this paper. We have

HT = (e(a1, r1), b1), (e(a2, r2), b2), . . . , (e(an, rn), bn) .
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We can visualize the history
table as a set of + and − sym-
bols in the table whose columns
correspond to ads and rows cor-
respond to ad request. Actu-
ally every cell represents the
set of all possible unique ex-
position events that are ob-
served at the same pair (a, r).
Our history table is a collection
of “click-occurrence” values on
some points in the table. We
want to stress here that

there is an important difference between columns and rows. Namely, in our
history ad requests are taken randomly from standard daily (weekly, annual)
distribution. But ads were chosen by the advertising engine and they are by
no means random. Typically, for every row our history covers only few cells.
Therefore, we can assume that only a linear (more precisely, proportional to the
number of all requests) number of cells is covered by the history.

The click volume CV (a) is the total number of clicks over a fixed period of
time (for example one week) that we would expect for a to get if shown at all ad
requests taken from the same distribution as in HT . The click-through rate is a
standard term for internet advertising. We recall it in the setting of our model.
Given an event e the click-through rate (CTR) CTR(e) is the ratio between the
number of clicks for e and the total number of times e occurs (impressions), or
in other words, the probability that a is clicked on in conjunction with the ad
request r when e = e(a, r).

3 Reduction to the Regression Problem

The history table HT records for each event e either a click or no click. What
we really want to know, though, is the probability of an event being clicked,
that is, we need the actual CTR of e. The CTR of an event can in principle be
calculated from the number of times e occurs in HT and the number of times
when e received a click. However, this simple approach does not work well, since
most of the vectors in HT are unique.

The history table HT is assumed to be our given input. Although it is a natural
way to present the input data, it is not suitable for calculating the click volume
of a new ad quickly. Therefore, HT is pre-processed. The first step in the pre-
processing phase is a dimensionality reduction of HT . There exist a number of
different approaches to reduce the dimensionality of E; see [14] for a survey. We
suggest dimensionality reduction by some term extraction method, for example
term clustering. Latent semantic indexing is another method for term extraction.
However, we do not suggest latent semantic indexing here since it will turn out
that sparseness of the event vector set is a desired property for applying the linear
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regression method to our problem as suggested below; see the next section in
particular. Let us assume that DR denotes the dimensionality reduction function
of our choice, that is, DR(e) denotes the event derived from e by reducing its
dimensionality.

The function DR is now used to transform the history table HT into a reduced
history table RHT . Firstly, we replace every entry (e, b) of the history table HT
by (DR(e), b), and secondly, all entries (e′, b1), . . . , (e′, bk) of the same reduced
event e′ are combined to one entry (e′, b′) where b′ denotes the click through rate
(
∑

1≤i≤k bi)/k for e′. Let the set of all reduced events in RHT be denoted by a
matrix T and the set of all click through rates by a vector β, that is RHT = Tβ.

Given an event enew , the problem of estimating the click through rate of enew

can be formulated as the problem of fitting the function that relates reduced
events to their click through rate. The linear regression analysis is a standard
method for curve fitting where a linear function is used to describe the relation
between two variables; in our case, these are reduced events and click through
rate.

However, it is not guarantied that the function resulting from the linear regres-
sion analysis yields a value between 0 and 1 for enew . To avoid this problem, we
apply a one-to-one mapping from [0, 1] to [−∞,+∞] to all click through rate val-
ues in RHT . Such a mapping is for example logit where logit(p) = log(p/(1−p)).
Let now γ = logit(β), and we perform a linear regression analysis on Tγ. The
regression analysis yields a vector α such that ‖Tα − γ‖ is minimal, that is, α
approximates the relation between reduced events and the (logit of the) click
through rate such that the sum of the quadratic error of all entries is minimal.
The click through rate of enew is now estimated by logit−1(α · DR(enew )), that
is (1) the dimensionality of enew is reduced, (2) this reduced event is combined
with α, and (3) the resulting value is mapped into the interval [0, 1] by logit−1.

We would like to know the sum of all clicks a new ad anew should get when
exposed to all requests of the history (for a given time period). That is, a query
consists of an ad anew which needs to be combined with all requests in HT . We
get the following formula.

CV (anew ) =
∑

1≤i≤n

logit−1(α ·DR(e(anew , ri)))

All these steps are summarized in the following methodology.

Methodology for Click Volume Estimation

Pre-processing:
1. Dimensionality reduction of E, e.g. by term clustering
2. Calculation of RHT = Tγ

3. Approximate calculation of α such that ‖(αT )− γ‖ is minimal (see
next section)

Query: Calculate CV (anew ) =
∑

1≤i≤n logit−1(α · DR(e(anew , ri)))
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4 Solving the Large Scale Regression Problem

The methodology of estimating the click volume of anew of the previous section
employs the linear regression analysis for calculating CV (anew ). Consider the
history table entries of reduced dimensionality, let e = DR(e(anew , ri)). The
direct calculation of parameters of linear regression requires inverting a huge
and non-sparse matrix. Since we assume to work with large data sets and under
strict time constraints this method is not available to us. Instead, we suggest an
alternative method to estimate α which is iteratively approximating the optimal
solution and which also has good convergence properties for sparse settings as the
ones we consider for click volume. Intuitively, α is learned by using the reduced
history table as a training set.

The formal setting. We consider the history table of reduced dimensionality
RHT where we have a logit value for click through rate assigned to every event
entry e. Let m denote the dimension of e, and let T denote the n ×m matrix
of entries in RHT , and let γ be an n vector where γi denotes the logit value
of the click through rate the i-th entry in RHT . Let tj denote the j-th column
vector (of dimension n) of T for all 1 ≤ j ≤ m. The goal is to find the α such
that ‖Tα − γ‖ is minimal. Certainly, α = (T · T ∗)−1T ∗γ. However, calculating
α directly this way is too expensive for our purpose. Therefore we describe an
iterative method in the next paragraph which generates a sequence α(1), α(2),
. . . converging towards α.

The iterative algorithm. Let α(1) be the zero vector. Assume α(k) is known and
we would like to calculate α(k+1). First, one component j of α(k) is chosen. Then
α(k+1) is such that αk+1

i = α
(k)
i for all i �= j and

α
(k+1)
j = α

(k)
j +

(α(k)T − γ) · tj
‖tj‖2

.

Intuitively, we minimize the error of the “prediction” of all CTR values in our
history table by α(k) by adjusting only the j-th component α(k) while all other
components are left unchanged.

A geometric interpretation. Let us reformulate our algorithm in terms of dis-
crepancy vector ϕ:

ϕ(k) = γ − α(k)T

ϕ(0) = γ, ϕ(k+1) = ϕ(k) − ϕk · tj
‖tj‖2

tj

Consider the linear hull span(T ) of T . We would like to come as close to
γ as possible, while all our estimations belong to span(T ). Hence, our opti-
mal estimation is the orthogonal projection of γ to span(T ), let us denote it
by ϕ. A minimal error achieved by a vector that is equal to span(T )-orthogonal
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component of γ. In every step of our algorithm we do the following. Take our
current estimation ϕ(k) ∈ span(T ), draw a line parallel to tj and going through
ϕ(k), then project γ (or, with the same result, ϕ) to this line. This projection
point is our new estimation ϕ(k+1).

Algorithm analysis

Theorem 1 (Convergence theorem). Consider a euclidean space, a vector
ϕ(0), a family of vectors T = {t1, . . . , tm}, and a fixed infinite order of updates
J : j1, j2, . . . that contains every index infinitely many times. Let us construct
the sequence ϕ(k) by the following rule:

ϕ(k+1) = ϕ(k) − ϕ(k) · tjk

‖tjk
‖2

tjk

Then the sequence (ϕ(k)) converges to ϕ, where ϕ is the span(T )-orthogonal
component of ϕ(0).

Proof. Note that ϕ(k+1)⊥tjk
. Indeed,

ϕ(k+1) · tjk
= ϕ(k) · tjk

− ϕ(k) · tjk

‖tjk
‖2

tjk
· tjk

= 0.

Since ϕ(k) = ϕ(k+1) + ϕ(k)·tjk

‖tjk
‖2 tjk

and ϕ(k+1)⊥tjk
, we have ‖ϕ(k)‖ ≥ ‖ϕ(k+1)‖.

Assume now that (ϕ(k)) does not converge to ϕ. Since ‖ϕ(k)‖ is bounded, we
can choose a subsequence (ϕ(ki)) converging to some ψ �= ϕ. Let us divide all T
family to those vectors that are orthogonal to ψ (subfamily T1) and those that
are not orthogonal (subfamily T2). Then T2 is nonempty, otherwise ψ coincides
with ϕ.

Let c = minj∈T2
ψ·tj

‖tj‖ . Since there exists a subsequence of (ϕ(k)) converging
to ψ, there are infinitely many members, that belong to the c/2 neighborhood
of ψ. Consider one such visit ϕ(k). Let us look at the next updates. If we use
jk ∈ T1 we can come only closer to ψ. Indeed, as was shown above, ϕ(k+1)⊥tjk

,
moreover ψ⊥tjk

. Since

ϕ(k) − ψ = (ϕ(k+1) − ψ) +
ϕ(k) · tjk

‖tjk
‖2

tjk

and the first and second terms are orthogonal, ‖ϕ(k) − ψ‖ ≥ ‖ϕ(k+1) − ψ‖.
Since every index occurs infinitely often we will finally apply an update for

some jk ∈ T2, still being in the c/2 neighborhood of ψ. Let us estimate the “size”
of this step.

ϕ(k) · tjk

‖tjk
‖2

tjk
=

ψ · tjk
+ (ϕ(k) − ψ) · tjk

‖tjk
‖2

tjk
≥

c‖tjk
‖ − c

2‖tjk
‖

‖tjk
‖2

tjk
≥ c

2‖tjk
‖ tjk

.

Since the shift was orthogonal to ϕ(k+1), we have

‖ϕ(k+1)‖2 ≤ ‖ϕ(k)‖2 − c2

4
.
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Let us summarize our observations. Sequence (ϕ(k)) visits c/2 neighborhood
of ψ infinitely often, once coming inside it cannot escape by T1 updates, while
T2 update leads to a substantial decrease of ‖ϕ(k)‖. We get a contradiction with
the facts that ‖ϕ(k)‖ is nonnegative and monotonically decreasing. �

Lemma 1 (Round complexity). It is possible to make a single update for
every j (one round of updates) in time linearly depending from the number of
nonzero elements in the history table.

Proof. At the beginning, we precompute norms of all tj . We will maintain both
current regression vector α(k) and current discrepancy vector ϕ(k) = γ − α(k)T .
We start from α(k) = 0 and ϕ(0) = γ. Consider some j and let qj be the number
of nonzero components in tj . At first we update α

(k)
j in O(qj) time. Indeed, we

need to calculate the scalar product between tj and ϕ(k) and this can be done
by few corresponding look-ups. Then we update the discrepancy vector by the

rule ϕ(k+1) = ϕ(k)− ϕ(k)·tjk

‖tjk
‖2 tjk

. Again, scalar product can be computed in O(qj)

time and only qj components of ϕ(k) should be modified. Summing over all j we
get the required round complexity. �

Some other complexity remarks:

1. A vector α(k) can be safely updated in two components j1 and j2 in parallel
if we have tj1 ∩ tj2 = ∅. Again the sparseness assumption would allow for a
high degree of parallelism in practice.

2. Note that in the case of orthogonal column vectors ti α is reached by updat-
ing every component exactly once.

3. Also the joint update of two components i and j is not expensive. In order
to calculate(

α
(k+1)
i α

(k+1)
j

)∗
=
(
α

(k)
i α

(k)
j

)∗
− ((titj) · (titj)∗)−1 (titj)∗(α(k)T − γ)

we need to invert (titj) · (titj)∗ which is only a 2× 2 matrix.

5 Further Work

In this paper we state the click volume problem, show how one can reformulate
it as the large scale regression problem and propose an iterative algorithm for
solving the latter. It is the first time this has been done and many questions
follow from that. How do we estimate the convergence speed of our algorithm?
How should we choose the next component for update? Assume that we allow
the output “cannot predict CTR for this event”. Can we improve the accuracy
by solving the problem with this relaxation? Can we combine the regression
approach with other methods, e.g. clustering?
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Experimental validation. Of course, one wants to verify our regression based
approach in industrial applications (e.g. Google AdWords system). Forthcoming
experiments should answer the following questions. What is the convergence
speed of our iterative algorithm in practice? What is the overall error of linear
regression estimation on the history table? What event vector representation and
dimensionality reduction routines lead to the most accurate CTR prediction?
Finally, it is interesting to apply the large scale linear regression algorithm to
other problems, e.g. predicting news article popularity on digg.com.

Related problems for on-line advertisements. The dual problem for click volume
estimation is the ad volume estimation. Namely, to estimate the total amount
of advertisements that could get a positive response on the given ad request.
Click volume for the whole market : What is the fastest way to estimate the click
volume for every advertisement in the system? More precisely, can we do it faster
than doing a separate click volume estimation for every ad?

Finally, the click volume problem is just a single member of our list of web-
related algorithmic problems. In [7], one can find more theoretical questions in
web computing.
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Abstract. Consider a family of sets and a single set, called query set.
How can one quickly find a member of the family which has a maximal in-
tersection with the query set? Strict time constraints on the query and on
a possible preprocessing of the set family make this problem challenging.
Such maximal intersection queries arise in a wide range of applications,
including web search, recommendation systems, and distributing on-line
advertisements. In general, maximal intersection queries are computa-
tionally expensive. Therefore, one needs to add some assumptions about
the input in order to get an efficient solution. We investigate two well-
motivated distributions over all families of sets and propose an algorithm
for each of them. We show that with very high probability an almost op-
timal solution is found in time logarithmic in the size of the family. In
particular, we point out a threshold phenomenon on the probabilities
of intersecting sets in each of our two input models which leads to the
efficient algorithms mentioned above.

1 Introduction

The nearest neighbor problem is the task to determine in a general metric space
a point that is closest to a given query point. This kind of queries appear in
a huge number of applied problems: text classification, handwriting recognition,
recommendation systems, distributing on-line advertisements, near-duplicate de-
tection, and code plagiarism detection.

In this paper we consider the nearest neighbor problem in a “binary” form.
Namely, every object is described as a set of its features and similarity is defined
as the number of common features. For some cases, like recommending a person
who has a maximal number of joint friends with you but is not your direct
friend, this formalization is quite natural. On the other hand, weighted models
could be simply reduced to the binary form. Let us illustrate this reduction by
example. Assume that we are working with documents and their terms, and one
particular term is “Ekaterinburg”. Then we can introduce 8 new artificial terms
Ekaterinburg1, . . .Ekaterinburg8. For an object having the largest weight for
� Partially supported by grants INTAS YSF 1000014-6233, INTAS 04-77-7173 and
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Ekaterinburg in weighted representation we simply put all eight new terms, while
for objects with small weights we put only Ekaterinburg1. Thus, an intersection
similarity for the new representation is somehow reflecting the classical scalar
product similarity for the vector model.

In order to construct an efficient solution some assumptions should be added
to the problem. In our paper we assume that the input is taken from some
predefined distribution. Then we construct an algorithm and show that the time
complexity and/or the accuracy are reasonably good with high probability. Here
we use the probability over the input distribution, not over random choices of
the algorithm. This probabilistic approach was inspired by the recent survey of
Newman [7]. He gives a comprehensive survey about random models of graphs
that agree well with many real life networks, including Web graph, friendship
graphs, co-authorship graphs, and many others. Hence, we can attack the nearest
neighbor problem in already “verified” random models.

The Maximal Intersection Problem. Consider a family of sets and a single set.
We ask for a member of the set family which has a maximal intersection with
the query set.

The Maximal Intersection Problem (MaxInt)

Database: A family F of n sets such that |f | ≤ k for all f ∈ F .
Query: Given a set fnew with |fnew | ≤ k, return fi ∈ F with maximal

|fnew ∩ fi|.
Constraints: Preprocessing time n · polylog(n) · poly(k) or n1+o(1). Query

time polylog(n) · poly(k) or at most o(n).

Let us restate the MaxInt problem in a graph theoretical notation. A data-
base is a bipartite graph with vertex set partition (V, V ′) such that |V | = n and
the degree of every v ∈ V is at most k. A query is a (new) vertex v (together
with edges connecting v with V ′) of degree at most k. The query task is to return
a vertex u ∈ V with a maximal number of paths of length 2 from v to u.

Results. Inspired by [4] we present for the first time a theoretical investigation of
MaxInt. In Section 2 and Section 3 we propose two new randomized models of
bipartite graphs, called the Zipf model and the hierarchical schema. Assume that
the terms of a query document are ordered by their frequency in the document
collection. Now consider the probability curves for the two following events with
parameter q. Any q-match: there is a document in the random (according to our
models) collection that has at least q common terms with the query document.
Prefix q-match: there is a document in the random collection that has at least q
“top” terms of the query document. Both curves have the similar structure: the
probability is close to 1 for small q, but suddenly, at some “magic level”, it falls
to nearly zero and remains so till the end. Our main observation is that these
magic levels for prefix match and any match are very close to each other. And
this is extremely important for solving MaxInt. Indeed, finding the best prefix
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match is computationally feasible, but we don’t know the general solution for
MaxInt. We show that closeness of magic levels for any match and prefix match
with high probability allows to find an approximate solution for MaxInt.

Related Work. MaxInt is a special case of the nearest neighbor problem. In-
deed, one just needs to define the distance between two vertices in a bipartite
graph as the inverse of the number of 2-step paths between these vertices. Yian-
ilos proposed in [9] vp-trees (vantage point trees), a data structure that solves
nearest neighbor problem on general metric spaces. The preprocessing time of
his algorithms is in O(n · log n) and expected query time is in O(logn). However,
he uses a strong anti-discrete assumption about the metric that does not hold
for our similarity-by-intersection-size model.

Nearest neighbors are particularly well studied in vector models with a simi-
larity function based on the scalar product [3]. Actually, we can interpret a doc-
ument as a vector of 0s and 1s (1 means a term is contained in a document).
Then, the scalar product is equal to the size of the intersection. Unfortunately,
the first algorithm from [3] needs quadratic space and the second one has linear
query time, so none of them preserve our constraints. Both algorithms return
a γ-approximate nearest neighbor and are based on random projections of the
database vectors onto several randomly chosen directions.

Closely related to MaxInt is text search. Finding documents that most fit
to some given search terms can also be considered as a problem on a bipartite
graph. The documents and terms are the nodes and edges are drawn when a term
occurs in a document. Basically the task is to find all documents containing every
query term and rank these documents by relevance. The key technique in this
area is inverted files (inverted indexing). A comprehensive survey of the topic
can be found in [10].

A problem similar to MaxInt called collaborative filtering is considered by
O’Connor and Herlocker in [8]. Collaborative filtering can be seen as a bipartite
graph problem where nodes represent people and objects and weighted edges
between these people and objects are defined by ratings. The task is to estimate
the weight of a new edge.

2 MaxInt in the Zipf Model

Throughout the following sections we use a documents-terms notation, that is,
vertices from D = {d1, . . . , dn} represent documents and vertices from T =
{t1, . . . , tm} represent terms. Let n ≥ 3, and m ≤ poly(n). By log we always
mean log2, while ln denotes loge.

We now describe a probabilistic mechanism for generating a document collec-
tion called the Zipf model. Every document is generated independently. Terms
occurrences are also independent. A document contains term ti with probability
1
i . Hence, the expected number of terms in a document is approximately equal
to lnm in our model. This model is similar to the configuration model (see [7])
with Zipf’s law for distribution of term degrees and constant document degrees.



230 B. Hoffmann, Y. Lifshits, and D. Nowotka

Zipf’s law states that in natural language texts the frequency of a word is ap-
proximately inversely proportional to its rank in the frequency table1. For more
details about Zipf’s law see [6].

Remark 1. The frequency of a term t in a collection D of documents is
defined as

|{d ∈ D | t ∈ d}|
|D| .

The expected frequency of the term ti is equal to 1
i . At the same time, the ex-

pected frequency rank for ti is exactly the i-th value among those of all terms. So
the Zipf model reflects in a natural way Zipf’s law. Since some of our motivating
applications also deal with natural language texts, we can state that the Zipf
model agrees with real life at least by degree distribution.

Remark 2. In the following proofs we will use two inequalities (a, b > 0):(
1− a

b

)b

< 2−a, a ≤ b (∗)

(
1− 1

ab

)a

> 1− 1
b
, a, b ≥ 2 (∗∗).

These inequalities follow from the well-known fact lim
n→∞(1− x

n )n = e−x.

For further considerations we partition the set of terms in the following way:

t1 t2︸︷︷︸
P1

t3 t4 t5 t6 t7︸ ︷︷ ︸
P2

. . .

Here the group Pi includes terms from t�ei−1� to t�ei� A document that contains
lnm terms p1 . . . pln m, pi ∈ Pi, will be called regular.

We now introduce a magic level to give statements about the most probable
size of maximal intersection

q =
√

2 lnn.

Theorem 1 (Magic Level for the Zipf Model). Let 3 ≤ γ < q − 1 be
a positive integer. Fix n,m and a regular query document dnew . Then for a
document collection following the Zipf model the following holds:

1. The probability that there exists a document d ∈ D that contains the first

q − γ terms (“prefix match”) of dnew is greater than 1− 2−e
q(γ+1)

2 .
2. The probability that there exists a document d ∈ D that contains at least

q + γ arbitrary terms (“any match”) of dnew is smaller than 1
e(γ−2)q .

1 In the frequency table, the most frequent term is at rank 1, the second most frequent
term at rank 2 and so on.
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Proof. 1. The probability that a document contains the prefix of length q − γ
of dnew is equal or greater than

1
e
· . . . · 1

eq−γ
>

1

e
(q−γ+1)2

2

>
e

q(γ+1)
2

e
q2
2

=
e

q(γ+1)
2

n
.

This means the probability that there exists no document in D that contains
the (q − γ)-prefix of dnew is equal to or smaller than(

1− e
q(γ+1)

2

n

)n

< 2−e
q(γ+1)

2 ,

which follows from inequality (∗) (note that e
q(γ+1)

2 < n for γ < q − 1). So

with probability greater than 1 − 2−e
q(γ+1)

2 there exists a document d ∈ D
that has all terms from the (q − γ)-prefix of dnew .

2. Let dnew = {a1, . . . , a�ln m�}, s = q + γ. We now estimate the probability
that a random document has a large overlap with dnew :

Pr(|dnew ∩ d| ≥ s) ≤
∑

j1<···<js

Pr(aj1 , . . . , ajs ∈ d)

≤
∑

j1<···<js

exp(−
s∑

k=1

(jk − 1))

=
∑

Δ1≥0, Δ2,...Δs>0

exp(−sΔ1 − (s− 1)Δ2 − · · · −Δs)

≤
∞∑

Δ1=0

exp(−sΔ1) ·
s∏

k=2

∞∑
Δk=1

exp(−Δk(s− k + 1))

=
1

1− exp(−s)

s∏
k=2

exp(−(s− k + 1))
1− exp(−(s− k + 1))

≤ exp(1−
s∑

k=2

s− k) ≤ exp
(

(s− 2)2

2

)
≤ 1

e
q2
2 · e(γ−2)q

≤ 1
n · e(γ−2)q

.

The probability that not a single document in D contains at least q+γ terms
of dnew is equal to or greater than(

1− 1
n · e(γ−2)q

)n

> 1− 1
e(γ−2)q

,

which follows from inequality (∗∗) (note that e(γ−2)q ≥ 2 for 3 ≤ γ < q).
Therefore, we proved that the probability that any document matches dnew

at q + γ arbitrary positions is smaller than 1
e(γ−2)q .
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By Theorem 1 we can conclude that with very high probability there exists
a document in D that matches a prefix of length q−γ, whereas with quite small
probability there exists a document that has at least q + γ common terms with
dnew (at arbitrary positions). We get the following algorithm:

MaxInt Algorithm in the Zipf Model

Preprocessing:
1. For every document: Sort the term list according to the position of

the term in the frequency table.
2. For every document: Generate the set of all possible regular (q−γ)-

lists, i.e. generate all possible term subsets of size (q−γ) containing
one term from every group P1, . . . , Pq−γ .

3. Sort these regular lists and store for every list a pointer to the
corresponding document.

Query: Find a regular (q− γ)-list having the maximal common prefix with
the query document by binary search. Return the document correspond-
ing to this (q − γ)-list.

The running time is as follows (for average case2 analysis we assume that the
length of term lists is logm, for worst case analysis the length is m):

average worst

Step 1 O(n · logm · log logm) O(n ·m · logm)

Step 2 n1+o(1) O(n2 · logn)

Step 3 O(logm · n · logn) O(m · n · logn)

Query O(logm · logn) O(m · logn)

Let us explain the estimations from the second line. The number of all possible
regular (q − γ)-lists is equal to

|P1| · · · · · |Pq−γ | ≤
q−γ∏
k=1

ek < eq2/2 = n

Therefore, a single document can generate at most n different regular (q − γ)-
lists, the logn factor arises from the size of a single list. Let us prove the bound
for the average case. The probability of containing some fixed regular (q−γ)-list
is n−1+o(1). Summing over all possible lists we see that the expected number of
generated regular lists per document is at most n−1+o(1) · n = no(1). Therefore,
the expected time for the indexing stage is n1+o(1).

One can try to improve the accuracy of our algorithm by finding a “maximal
prefix with at most one difference to the query document”. A famous technique
called “indexing with errors” [2,5] might be useful for such an extension.
2 Only for the average case our constraints from Section 1 are preserved.
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3 MaxInt in the Hierarchical Schema

Fig. 1. Hierarchical Schema

Let |D| = 2k, k ∈ N, k ≥ 3, and |d| = k for
every d ∈ D. Let |T | = (2k−1) ·k be the num-
ber of different terms. A hierarchical schema
is a table with k levels, level 1 to level k. Level
i is divided to 2i−1 cells, 1 ≤ i ≤ k. Every
cell contains k terms. A document collection
based on this schema can be generated as fol-
lows: Choose a random cell on level k. Then
mark all cells that are above it and choose one
random term in every marked cell. Now each
document corresponds to a path from the top
cell to a bottom cell (see Figure 1).

Remark 3. We claim that the hierarchical schema follows Zipf’s law. To be more
precise, the following holds: For every level the product of expected frequency and
expected frequency rank of a term is the same. Indeed, the expected frequency
of a term on level i is calculated by the formula 2k

2i−1·k . The expected rank of
a term is calculated by the formula (2i−1 − 1) · k + 2i−2 · k. Hence, the product
between frequency and frequency rank (divided by 2k) is equal to

2k

2i−1 · k · (
1.5
2k

· 2i−1 − 1) · k ≈ 3
2

and hence Zipf’s law applies.

Again we introduce magic levels to give statements about the most probable
size of maximal intersection. The magic levels are

q =
k

1 + log k
and q′ =

k

log k
.

Theorem 2 (Magic Levels for Hierarchical Schema). Let k ≥ 4 and 2 ≤
γ < q be a positive integer. Fix a query document dnew following hierarchical
schema and take a randomly generated document collection D:

1. The probability that there exists a document d ∈ D that matches the same
terms from top q−γ levels (“prefix match”) of dnew is greater than 1−2−(2k)γ

.
2. The probability that there exists a document d ∈ D that matches at least

q′ + γ arbitrary terms (“any match”) of dnew is smaller than 2
kγ−1 .

Proof. 1. The number of different prefixes of length q − γ is equal to

k(2k)q−γ−1 < 2(1+log k)(q−γ) = 2(1+log k)( k
1+log k−γ) = 2k · (2k)−γ .
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So the probability that a new document does not match a prefix of length
q − γ with any document from D is smaller than(

1− (2k)γ

2k

)2k

< 2−(2k)γ

.

Since (2k)γ < 2k, this inequality follows from inequality (∗). We get that
the probability that there exists a document with the same prefix as dnew of
length q − γ is greater than 1− 2−(2k)γ

.

2. Let t ≥ q′ + γ be the last position where the terms of d and dnew match. We
want to estimate the probability that dnew matches at least q′ + γ terms at
arbitrary positions with d. The probability that the first t terms (beginning
at the top) of d and dnew are all in the same cells is 21−t. The probability that
at least q′ + γ terms are matched on some fixed positions is equal or smaller
than

(
1
k

)q′+γ ·
(

k−1
k

)t−q′−γ
. An upper bound for the number of different

possibilities of matching at least q′ + γ out of t terms is 2t. Since the factor(
k−1

k

)t−q′−γ
is smaller than 1, overall we get that the probability that dnew

matches at least q′ + γ terms at arbitrary positions with d is equal to or
smaller than

k · 2t ·
(

1
k

)q′+γ

· 21−t = 2 · k ·
(

1
k

)q′+γ

= 2 ·
(

1
k

)q′+γ−1

.

The factor k is due to the fact that we need to consider all possible levels for
the last matched position t. Now the probability that no document matches
at q′ + γ arbitrary positions with dnew is greater than(

1− 2 ·
(

1
k

)q′+γ−1
)2k

=

(
1− 1

2k · kγ−1

2

)2k

> 1 − 2
kγ−1

,

which follows from inequality (∗∗), since γ ≥ 2, k ≥ 4. So the probability
that we get any match in D is smaller than 2

kγ−1 .

By Theorem 2 we get an analogue algorithm as the one for the Zipf model:

MaxInt Algorithm in the Hierarchical Schema

Preprocessing:
1. For every document: Sort the term list according to the hierarchical

schema, i.e. according to the levels in which the terms appear.
2. Sort the documents according to their corresponding cell paths, i.e.

documents that correspond to the leftmost path in the schema are
at the beginning of the sorted list. Documents that correspond to
the same cell path are sorted lexicographically.

Query: Find a document having the maximal common prefix with the query
document by binary search.
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Step 1 of preprocessing needs time O(2k · k · log k). Step 2 needs time O(2k · k2).
So the overall running time of the preprocessing is in O(2k ·k2). The query time
is in O(k2).

4 Further Work

In this paper we have shown that assumptions on the random nature of the
input can lead to provable time and accuracy bounds for MaxInt. Also, we
have discovered a MaxInt threshold phenomenon in two randomized models.

The next step is to understand it better. Does it hold for other randomized
models from [7], especially the preferential attachment model? Is it still true
when we replace the Zipf distribution by a power law distribution? Does it
hold in the real life networks? Can we introduce randomized models for sparse
vector collections and find a similar effect there? Of course, the most challenging
problem is to find an exact algorithm for MaxInt or to prove its hardness. What
are other particular cases or assumptions that have efficient MaxInt solutions?
On the other hand, we have a very particular subcase for which we still do
not believe in a positive solution. Hence, we ask for a hardness proof for the
following on-line inclusion problem. Note that we have a constraint on space for
preprocessing, not time. A related problem but with a much stronger restriction
on preprocessing space was proven to be hard by Bruck and Naor [1].

On-line Inclusion Problem

Database: A family F of 2k subsets of [1 . . . k2].
Query: Given a set fnew ⊆ [1 . . . k2], decide whether there exists an f ∈ F

such that fnew ⊆ f .
Constraints: Space for preprocessed data 2k · poly(k).

Query time poly(k).

Our algorithm in Section 3 uses polylogarithmic time (in the number of docu-
ments) but it returns only an approximate solution with high probability (not
every time). Can we get an optimal solution or at least a guaranteed approxi-
mation by relaxing the time constraint to expected polylogarithmic time?

Acknowledgments. The authors would like to thank Holger Petersen, Hinrich
Schütze, Kirill Shmakov and Jason Utt for their useful comments and fruitful
discussions.
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Abstract. Given a program with two arguments p(x,y). Let the first
argument x0 be fixed. The aim of program specialization with respect to
the known x0 is to construct an optimized program px0(y) such that
px0(y) = p(x0,y). Specialization of interpreters with respect to pro-
grams is well known problem. In this paper we argue that specialization
of interpreters with respect to data may be seen as program verification.

Keywords: Program specialization, supercompilation, program verifi-
cation, cache coherence protocols.

1 Specialization of Interpreters with Respect to Data

Given two programming languages L, M and the semantics of L described by
an interpreter int(p,d) written in M, where the first argument stands for the
source L-programs and the second ranges over the data of L language. There
is a famous task for automated specialization of the interpreter with respect
to the first argument int(p0,d), i.e. the program p0 is known while the data
d is unknown. Specialization has to generate a residual program q such that
q(d) = int(p0,d), where the equality holds whenever the pair (p0,d) belongs
to the domain of the interpreter. Certainly the q is written in M: consequently
q can be seen as a result of compilation of p0 from L to M. The goal is to
construct an optimal q. The formulated problem is both undecidable (of course)
and interesting. A lot of work was devoted to approximation of the problem (see
[8,9,11,12,20,26] for examples).

In this paper we show that specialization of interpreters with respect to data
may be reasonable and leads to interesting applications in verification. We con-
sider the following specialization problem int(p,d,d0), where the known part
of the data is separated from the unknown part. Firstly, for the sake of simplic-
ity, let us think of the languages L,M as predicative languages, i.e. the languages
defining only (partial) predicates rather than arbitrary recursive functions. An-
other assumption is that the interpreter int terminates for all possible values of
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its arguments, but for some values it may terminate with abnormal stop. The
abnormal stop indicates the input values of the arguments are outside of the
domain. Let us have a robust specializer generating a residual program q defin-
ing an extension of the partial predicate defined by the problem int(p,d,d0).
Assume that q is a partial constant function TRUE or FALSE and this property is
expressed explicitly in syntax of q. For example, q does not contain any syntactic
construction with the semantics return FALSE (in the case of the TRUE partial
constant). Thus, we assume that specializer was weak enough not to be able to
optimize the predicate int as

q(p,d) { return TRUE; }
but was strong enough to eliminate all constructors of the form return FALSE;.
In such a case, the result of specialization can be considered as a proof of the
(partial) constant property. The termination property of int mentioned above
guarantees that the domain of the original partial predicate is not empty. Notice
that we assume that the specializer is allowed to extend the domain of the
original partial predicate. This provides additional important possibilities for
specialization (see [21]) and distinguishes supercompilation, the technology of
specialization we use (see Section 2.1), from other well known specialization
technologies (e.g. partial evaluation [11]).

Consider now a more complicated interpreter. Let int be a composition ϕ ◦
fint of a functional language interpreter fint (i.e. not only predicative) and
a predicate-postcondition ϕ testing the result of fint-interpretation. Now the
TRUE-constant property of the residual program q means all source programs p
satisfy the post-condition ϕ (in the given context of specialization). In such a
case we conclude the specializer solved a verification problem. The composition
ϕ ◦ fint can be encoded in various ways.

The idea of using supercompilation for proving that p implies q by composing a
filter for p (a function f such that f(x) = x if p(x) and undefined if not) with
a predicate for q is not new and is originated by V.F. Turchin (see [27,28,29]). The
following section is devoted to a non-trivial application of the idea: to verification
of a parameterized distributed system.

2 An Interesting Example

G. Delzanno [4] specifies a class of parameterized cache coherence protocols
with global correctness conditions in terms of Extended Finite State Machines
(EFSM) [3], which are essentially transition systems with data variables ranging
over non-negative numbers. EFSM-transitions are linear transformations with
the guards expressed as linear constraints. We find it convenient to consider
such models as non-deterministic pebble games, where variables and their val-
ues are represented by locations (baskets) and numbers of pebbles in baskets,
respectively. Then evolution of EFSM can be thought of as non-deterministic
movement of pebbles between baskets and safety properties of the protocols are
expressed as systems of linear inequalities imposed on the numbers of the pebbles
in the baskets.
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Given a initial state d of such a game and a finite sequence p of the moves,
the p determines the game state reached as the result of the last move. Thus,
inherently, the p(d) is a call for a program transforming the states of the game
and the result of the program p is the last state. We treat the fint-interpreter
as an interpreter of the programming language defined by the game rules: each
program is a finite sequence of the moves. Notice that not all moves are applicable
to all game states; an attempt of execution of non-applicable move leads to an
abnormal stop of the program. The post-condition ϕ encodes the safety property
of the corresponding protocol. Hence, in the case of strong specialization (as
described above) of the composition int = ϕ ◦ fint with respect to a part of
the data d, a TRUE-constant residual program means successful verification of
the protocol (in the given context) was happened.

As an example, consider specification of MESI protocol given G. Delzanno [4].

(RH) modified + shared + execlusive ≥ 1 → .

(RM) invalid ≥ 1 → invalid’ = invalid - 1, exclusive’ = 0, modified’ = 0,

shared’ = shared + exclusive + modified + 1 .

(WH1) modified ≥ 1 → .

(WH2) exclusive ≥ 1 → exclusive’ = exclusive - 1, modified’ = modified + 1 .

(WH3) shared ≥ 1 → shared’ = 0, exclusive’ = 1, modified’ = 0,

invalid’ = invalid + modified + exclusive + shared - 1 .

(WM) invalid ≥ 1 → shared’ = 0, exclusive’ = 1, modified’ = 0,

invalid’ = invalid + modified + exclusive + shared - 1 .

Here modified, exclusive, shared, invalid are non-negative integer variables of
EFSM model, which represent counting abstraction of original parameterised
automata model: the names denote various states of the automaton (cache)
and the values of the variables keep track of the number of automata in cor-
responding states. The rules (RH)-(WM) define the dynamic of EFSM model.
Starting with some initial evaluation of the variables, the system may apply
non-deterministically any of the rules. In the case the quard of a rule (its left-
hand part) is satisfied in a current state (evaluation of all variables, i.e integer
vector), the update expressed by the right-hand side of the rule is executed.
Primed variable names are used in updates to denote updated values.

The parameterized initial configuration of MESI protocol, i.e. the start state
of the MESI game, is expressed as

invalid ≥ 1, modified = 0, shared = 0, exclusive = 0.

The potentially unsafe states are expressed with the two following constraints

-- (C1) invalid ≥ 0, modified ≥ 1, shared ≥ 1, exclusive ≥ 0;
-- (C2) invalid ≥ 0, modified ≥ 2, shared ≥ 0, exclusive ≥ 0.

The rule names are the move names of the game corresponding to this pro-
tocol. Finite sequences of the names describe possible evolutions of the non-
deterministic protocol MESI.

We did a number of successful experiments with verification of such kinds of
protocols by means of automatic specialization, as we explained above. The follow-
ing subsection is devoted to some principal technical details of our experiments.
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2.1 On Properties of a Program Encoding of the Protocols

We implemented such a MESI-interpreter fint in a functional programming
language REFAL-5 [30,31], wherein the main syntactical expressing tools are
pattern matching and term rewriting. (See the Appendix 3 for additional in-
formation on the language.) Nevertheless, we explain some properties of the
encoding (as many of them as it is possible) in language independent terms. The
encoding follows straightforward the specification. Its logical structure looks as
follows:

fint(ps, <invs,mods,shars,excs>) {

if null(ps) then return <invs,mods,shars,excs>;

else fint( cdr(ps), move( car(ps), <invs,mods,shars,excs> ) );

}

move(p, <invs,mods,shars,excs>) {

// RH - trivial. Nothing to do.

if p =? RM && !null(invs)

then return <cdr(invs),[],[], I : append(mods, append(shars, excs))>;

// WH1 - trivial. Nothing to do.

else if p =? WH2 && !null(excs)

then return <invs, I : mods, shars, cdr(excs)>;

else if p =? WH3 && !null(shars) then

return <append(invs, append(mods,append(cdr(shars), excs))),[],[],I>;

else if p =? WM && !null(invs) then

return <append(cdr(invs), append(mods,append(shars, excs))),[],[],I>;

}

Here we use capital letters to name constants and the angle brackets to denote
the tuples. Numbers are represented in the unary system, i.e. 0 ::= [ ], n+1
::= I : n. Note the last else-alternative is undefined. The ϕ predicate testing
the data consistency is

phi(<invs,mods,shars,excs>) {

if !null(mods) && !null(shars) then return FALSE;

else if !null(cdr(mods)) then return FALSE;

else return TRUE;

}

We incorporate a call for the phi into the body of fint (in its return state-
ment) to organize the composition int = ϕ ◦ fint:

int(ps, <invs,mods,shars,excs>) {

if null(ps) then return phi(<invs,mods,shars,excs>);

else fint( cdr(ps), move( car(ps), <invs,mods,shars,excs> ) );

}

Such a kind of the encoding of the composition is crucial for successful au-
tomatic verification of the protocol. Note for any values of the parameters
ps,invs,mods,shars,excs the call int(ps, <invs,mods,shars,excs>) ter-
minates (possibly it falls into an abnormal stop).
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2.2 On Properties of the Specializer

In our experiments we used the SCP4 supercompiler [22,13,25,24] as a special-
izer. In this section we consider a number of properties of SCP4 concerning to
specialization of the protocol class described by G. Delzanno [4]. To facilitate
this, we critically simplify some real mechanisms of the SCP4 and get rid of some
of them at all by making an explicit assumption that the append function is as-
sociative and represented by concatenation1. Symbolically that can be expressed
as follows.

append(xs, ys) {
return xs : ys;

}

Every call for the append has to be replaced with such its result in our encoding.
An expression is defined by the following grammar:

expr ::= [ ] | SYMBOL : expr | VARIABLE : expr,

where the variables range over the set of the expressions and the symbols range
over identifiers.

Definition 1. A configuration is any syntactical composition of functions and
the tuple constructor:

conf ::= expr | <conf1, . . ., confn> | FuncName(conf1, . . ., confn).

Definition 2. Given two configurations conf1 and conf2, a configuration gconf

= gen(conf1,conf2) is a generalization of conf1, conf2 iff there exist substi-
tutions ϑ1, ϑ2 of the variables of gconf such that the results of the substitutions
in gconf coincide correspondingly with conf1, conf2.

Definition 3. A set MSG of the generalizations of conf1, conf2 is said to be
the set of most specific generalizations of conf1, conf2 iff for any generaliza-
tion gconf = gen(conf1,conf2) there exists a substitution ϑ of the variables of
gconf such that the result of the substitution in gconf coincides with an element
of MSG.2

The task to be specialized is the following:

int(ps, <I : invs, [], [], []>)

where ps and invs are parameters. Firstly, we suppose the SCP4 is correct itself.
The specializer is a general tool (for specialization) knowing nothing in advance

1 In fact, the REFAL concatenation constructor is associative and there exists another
constructor allowing imitate a LISP style append. See [30] and Sections 3, 3 for
additional explanations.

2 The associativity of the concatenation causes MSG can contain more than one element.
E.g. both the following generalizations are most specific: gen(I , I : I) = I : xs

and gen(I , I : I) = ys : I.
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on the specific goal of our specialization that is the hypothesis we have to prove.
The hypothesis states the correctness property of the MESI protocol. SCP4
successfully proves the hypothesis, i.e. it automatically verifies the protocol (see
Section 1). Using its general mechanisms, SCP4 discovers that the hypothesis
can be proved simultaneously with another hypothesis

int(ps, <invs, [], I : shars, []>)

by induction on the length of the ps program. And the specializer proves both hy-
potheses simultaneously, i.e. referring one to another in the course of induction.
It is important to stress the second hypothesis is generated fully automatically
on the base of analysis and generalizing the possible parameterized configura-
tions of the MESI protocol: they are configurations that appear during unfolding
of the potentially infinite tree of all possible computations (of the program en-
coding the protocol) starting with the initial configuration. It is well known that
more general hypotheses can often be proved by induction more easily than the
hypotheses from which they were generated.

Let two different configurations conf1, conf2 be given on a branch originat-
ing from the root of the tree of all possible computations and ending in conf2.
Let the SCP4 decide to generalize conf1, conf2. The result of such a decision
is cancellation of the subtree with the root conf1, excluding conf1 itself, and
replacement of the upper configuration conf1 with gen(conf1,conf2). That is
to say, the generalization takes into account only configurations belonging to the
same branch of the directed tree. Consequently, in general, the result of special-
ization depends on the strategy choosing an order of analysis of the branches,
which in its turn depends on the order of the branches of the program being
analyzed.

Another crucial problem must be solved by the specializer is how to separate
the protocol configurations corresponding the base cases of the induction from its
inductive cases. In the given example the SCP4 decides four configurations are
base cases3. In fact, the crucial separation once again happens full automatically
and it is a consequence of the generalization procedure used by SCP4. The
decision procedure is based on a well-quasi-ordering ≺ of the configurations
modulo variables’ names, which is a variant of the Higman-Kruskal relation
[10,14,15]: all syntactical constructors are monotone with respect to ≺ and they
are matched with the ≺. Let two configurations conf1, conf2 belonging to the
same branch, such that the first configuration is upper than the second along
the branch, be given.

Generalization. decides to generalize conf1, conf2 iff

– conf1 ≺ conf2, i.e. strictly greater;
– and there is a configuration conf which is a most specific generalization of
conf1 and conf2, such that there are no occurences of [] in conf1 and
SYMBOL in conf2, generalized to the same variable in conf.

3 Some additional explanations are given in Section 3.
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The second condition allows to separate of the base cases from the inductive
cases. For example, the generalization does not generalize the following two con-
figurations conf1 = () and conf2 = (I). The necessity of generalization of the
substructures [ ] and I to a variable causes that. The second example demon-
strates a successful most specific generalization: gen((), (I : I)) = (xs). Here
xs is a variable. See [18,22] for the details.

2.3 A Parameter of the Encoding

Our encoding of protocols (see the MESI example above) is not unique and it
has a natural parameter - the order in which clauses corresponding to different
moves in protocol games are expressed. For the MESI we have 24 (i.e. 4!) different
permutations for these clauses and thus 24 different specialization tasks which
one may try in order to verify the protocol.

The following statement shows that the part of the result of specialization
(i.e. the proof of the hypothesis, in which we are interested) does not depend on
the order in which moves are expressed in the program.

Proposition 1. Let σ be a permutation of the cases RM,WH2,WH3,WM4 of the
MESI specification and intσ be the interpreter corresponding to σ. Consider the
initial configuration

start = intσ(ps, <I : invs,[],[],[]>).

Let there exists a permutation σ0 such that the SCP4 specializer verifies the MESI
protocol encoded with intσ0 . Then for any σ the SCP4 starting with start and
transforming the intσ constructs a residual program pσ(ps,invs) (the result of
specialization) not containing return FALSE.

Proof. (Sketch) The existence of the automatic verification proof for the intσ0

encoding implies that no non-parameterized configuration conf of intσ0 violates
the safety property and moreover that the generalization algorithm does not
break the safety property of conf. On the other hand the unknown value of
ps and the properties of our encoding guarantee that the SCP4 considers all
possible evolutions of the protocol and tests the MESI safety condition at each
step (each clock cycle) of its development.

Now the proposition is immediately implied by the following observation: for
any σ the set of all possible evolutions of intσ coincides with the set of all
possible evolutions of intσ0 . Once again the safety property is not violated and
this is checked at each clock cycle. Thus the residual program pσ(ps,invs)
never returns FALSE. The termination property of the original program im-
plies pσ(ps,invs) contains a return TRUE operator such that the operator is
reachable.  !

At first glance, the necessity of such a proof gives rise to doubts: it is not a
problem to specialize the 24 different tasks by the SCP4. We did that and the
4 We exclude the trivial cases.
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SCP4 proved the proposition. But the MESI example is very small and has been
chosen just for demonstration purposes. In fact, the same proposition holds for
a number of protocols (see Section 3) being experimented. But for some of them
the number of permutations does not allow hope that such a proof can be done
by experiments. For example, the MSI protocol will take about two months for
such experiments even though specialization of a single fixed MSI encoding is
quick. The arguments in the proof given above hold for all protocols mentioned
in the following section.

3 Discussion and Conclusions

On the structure of the automatic proof. The graph given in Figure 1
represents the structure of the inductive proof of the MESI safety condition.
The graph was constructed from the residual program and reflects its syntac-
tical properties. The [1] node corresponds to the main theorem proved by the
SCP4 supercompiler, the [3g] node corresponds to the generalized hypothesis
(see Section 2.2), the [5] lemma stands for an additional induction hypothesis
encountered in regular development of the tree of all possible computations, that
was not constructed with the generalization. The TRUE cases are the base cases
of the induction. The solid arrows denote choice between different cases, while
the dashed arrows mean the induction steps. The proofs of the [3g] generalized
hypothesis and the [5] lemma refer one to the other, i.e. these two statements
become true simultaneuosly.

On the encoding. The graph given in Figure 1 represents the proof of the
simplified encoding as explained in Section 2.2. The general encoding with the
recursive append function such that it is not known in advance to be associative
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was also specialized with the SCP4. The corresponding residual program once
again does not contain return FALSE operators. Thus the MESI protocol was
successfully verified under this general encoding. The corresponding automatic
proof is much more complicated than the given above. Proposition 1 still holds,
but introduction of additional SCP4 tools are needed to elaborate on the proof
of such a proposition.

Other protocols. In addition to the MESI protocol we successfully verified (by
specialization of interpreters with respect to data) the following cache coherence
protocols with conditions of global correctness: IEEE Futurebus+, MOESI, MSI,
“The University of Illinois”, DEC Firefly, “Berkeley”, Xerox PARC Dragon [4,5].
All these protocols are specified analogously to description given in Section 2.
Safety properties for a formal model of Steve German’s directory-based consis-
tency protocol specified in a slightly more complicated fashion [7] was success-
fully verified by the SCP4 as well.

First steps in constructing of a theoretical model of supercompilation process
in the particular context of parameterized testing by specialization with respect
to data, were done in [19], but still there is much work to be done. Safety prop-
erties of majority of systems we have considered so far are expressed by systems
of linear inequalities and these properties are non-recursive (i.e can be tested by
non-recursive programms). It is certainly, recursive correctness properties will
lead to considerable complication of the specialization process of the programs
encoding the composition of the corresponding interpreters and testing predi-
cates. It would be very interesting to find an example of a protocol with such a
recursive correctness property, which can be verified by a specializer using our
approach. The Alternating Bit Protocol is an example of an infinite-states sys-
tem, for which the SCP4 fails to construct a proof of correctness of this protocol
specified as in [1].

Acknowledgements. The authors thank anonymous referees for several in-
sightful comments that led to a substantial improvement of the paper.
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Appendix

In this section we give an introduction to REFAL-5 and some additional in-
formation on supercompilation [29,22]. Emphasize that here the angle brackets
have different semantics than it used in the previous sections.

Language REFAL-5. The language is a first-order strict functional language.
A fragment of REFAL-5 [30] can be defined by the grammar given below.

program ::= $ENTRY definition+

definition ::= function-name { sentence;+ }

sentence ::= pattern = expression

expression ::= empty | term expression | function-call expression

function-call ::= <function-name expression>

pattern ::= empty | term pattern

term ::= SYMBOL | variable | (expression)

variable ::= e.variable-name | s.variable-name

empty ::= /* nothing */

REFAL data are defined by the following grammar:

d ::= (d1) | d1 d2 | SYMBOL | empty

Roughly speaking, a program in the fragment of REFAL is a term rewriting
system. The semantics of the language is based on pattern matching. As usually,
the rewriting rules are ordered for matching from the top to the bottom. The
terms are generated using two constructors. The first is concatenation. It is
binary, associative and is used in infix notation, which allows us to drop its
parenthesis. The blank is used to denote concatenation. The second constructor
is unary. It is syntactically denoted with its parenthesis only (that is without
a name). The unary constructor is used for constructing tree structures. Every

http://www.botik.ru/pub/local/scp/refal5/
http://www.botik.ru/pub/local/scp/refal5/,2000
http://www.botik.ru/pub/local/scp/refal5/
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function is unary. Empty sequence is a special basic ground term. This term
is denoted with nothing and is called the “empty expression”. It is the neutral
element (both left and right) of concatenation. Below we use the meta-symbol []
for the empty expression. All other basic ground terms are named as “symbols”.
There exist two types of variables - e.name and s.name. An e-variable can take
any expression as its value, an s-variable can take any symbol as its value. For
every sentence its set of variables from the left side includes its set of variables
from the right side; there are no other restrictions on the variables. Associativity
of concatenation may cause pattern matching to be ambiguous on some patterns.
For example, the following equation e.1 e.2 = A B has three solutions: 1) e.1
= [], e.2 = A B; 2) e.1 = A, e.2 = B; 3) e.1 = A B, e.2 = []; . In such
cases the pattern matching chooses the solution with the minimal length of the
datum assigned to the first e-variable (from the left to the right) and so on by
induction. In our case the first solution e.1 = [], e.2 = A B will be chosen.
The function append can be defined in REFAL as:

$ENTRY append { (e.xs) (e.ys) = e.xs e.ys; }

The supercompiler SCP4. Let us consider a program in a language, as well
as a parameterized input entry of the program. Then such pair defines a partial
mapping. By definition, a supercompiler is a transformer of such pairs. It un-
folds a potentially infinite tree of all possible computations. The computations
can depend on the values of the parameters that can be unknown during trans-
formation. The supercompiler reduces in the process the redundancy that could
be present in the original program. It folds the tree into a finite graph of states
and transformations between possible configurations of the computing system.
The folding procedure called generalization sometimes is able to lose some infor-
mation of the structure of the arguments of the configurations. The arguments
are generalized with the goal of producing the finite graph of states. Let us note
the main differences between this technique and conventional partial evaluation
[11]: 1) supercompilation works online, 2) exploits negative information on the
ranges of parameters and on intersection of the ranges; 3) it is allowed to extend
the domains of the partial functions defined by programs being transformed;
4) the original program definition is thrown away unchanged, i.e. the resulting
definition is constructed solely based on the meta-interpretation of the source
program rather than by a step-by-step transformation of the original program.
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Abstract. We study the compressed word problem: a variant of the word problem
for finitely generated groups where the input word is given by a context-free
grammar that generates exactly one string. We show that finite extensions and
free products preserve the complexity of the compressed word problem. Also,
the compressed word problem for a graph group can be solved in polynomial
time. These results allow us to obtain new upper complexity bounds for the word
problem for certain automorphism groups and group extensions.

1 Introduction

The word problem for finitely generated groups is a fundamental computational prob-
lem linking group theory, topology, mathematical logic, and computer science. For a
group G, finitely generated by Σ, it is asked whether a word over Σ and the inverses
of Σ represents the identity element of G. The word problem was introduced in the pi-
oneering work of Dehn from 1910 in relation with topological questions. It took about
45 years until Novikov and later independently Boone proved the existence of a finitely
presented group with an undecidable word problem, see [22,31] for references. Despite
this negative result, many natural classes of groups with decidable word problems were
found. Prominent examples are finitely generated linear groups, automatic groups [12],
and one-relator groups. With the advent of computational complexity theory the com-
plexity of word problems became an active research area. For instance, it was shown
that for a finitely generated linear group the word problem can be solved in logarithmic
space [20,30], that automatic groups have quadratic time word problems [12], and that
the word problem for a one-relator group is primitive recursive [5].

Group theoretic operations, which preserve (or moderately increase) the complexity
of the word problem are useful for constructing groups with efficiently solvable word
problems. An example of such a construction is the free product: it is not hard to see
that the word problem for a free product G ∗ H can be reduced in polynomial time to
the word problem for G and H . In this paper, we introduce a new technique for ob-
taining upper complexity bounds for word problems. This technique is based on data
compression. More precisely, we use compressed representations of strings — so called
straight-line programs, briefly SLPs — which are able to achieve exponential compres-
sion rates for strings with repeated subpatterns. Formally, an SLP A is a context-free
grammar which generates exactly one string eval(A). Recently, SLPs turned out to be a
very flexible compressed representation of strings, which is well-suited for studying al-
gorithms on compressed data. For instance, several polynomial time algorithms for the

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 249–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



250 M. Lohrey and S. Schleimer

pattern matching problem on SLP-compressed input strings were developed [13,19,23].
In [21], the first author started to investigate the compressed word problem for a finitely
generated group G with finite generating set Σ. For a given SLP A that generates a
string over Σ and the inverses of Σ it is asked whether eval(A) represents the iden-
tity element in G (actually, in [21] the compressed word problem for finitely generated
monoids was studied). This problem is equivalent to the well-known circuit evaluation
problem, where we ask whether a circuit over a finitely generated group G (i.e., an
acyclic directed graph with leafs labeled by generators of G and internal nodes labeled
by the group multiplication) evaluates to the identity element of G. In [3] this problem
was investigated for finite groups, and it was shown that there exist finite groups, for
which the circuit evaluation problem is complete for P (deterministic polynomial time).

In [3,21] the main motivation for studying the compressed word problem came from
computational complexity theory. Since the input in the compressed word problem is
given in a more compact form than in the ordinary word problem it can be expected
that the compressed word problem is, in general, more difficult than the ordinary word
problem. For instance, whereas the word problem for a finitely generated free group
belongs to the class L (deterministic logspace) [20], the compressed word problem for
a finitely generated free group of rank at least two is P-complete [21].1

In [28], the second author used the polynomial time algorithm for the compressed
word problem for a free group in order to present a polynomial time algorithm for the
ordinary word problem for the automorphism group of a free group, which answered
a question from [17]. Hence, the compressed word problem is used in order to obtain
better algorithms for the ordinary word problem. In this paper, we will continue this
program and obtain efficient algorithms for a variety of word problems. In order to
achieve this goal, we proceed in two steps:

In the first step (Section 3) we give connections between the compressed word prob-
lem for a group G and the word problem for some group derived from G. We prove
three results of this kind:

– If H is a finitely generated subgroup of the automorphism group of a group G, then
the word problem for H is logspace reducible to the compressed word problem for
G (Prop. 2). This result is a straight-forward extension of Thm. 5.2 from [28].

– The word problem for the semidirect product K �ϕ Q of two finitely generated
groups K and Q is logspace reducible to (i) the word problem for Q and (ii) the
compressed word problem for K (Prop. 3).

– If K is a finitely generated normal subgroup of G such that the quotient G/K is an
automatic group, then the word problem for G is polynomial time reducible to the
compressed word problem for K (Prop. 4).

In the second step (Section 4) we concentrate on the compressed word problem. We
prove the following results:

– If K is a finitely generated subgroup of G such that the index [G : K] is finite, then
the compressed word problem for G is polynomial time reducible to the compressed
word problem for K (Thm. 1).

1 It is believed, although not proven, that L is a proper subclass of P.
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– The compressed word problem for a free product G1 ∗ G2 is polynomial time re-
ducible (under Turing reductions) to the compressed word problem for G1 and G2

(Thm. 2). This result even holds for the more general graph product construction
[14] (Thm. 4).

– The compressed word problem for a graph group [11] can be solved in polynomial
time (Thm. 3). In a graph group, every defining relation is of the form ab = ba for
generators a and b.

– The compressed word problem for a finitely generated linear group belongs to the
complexity class coRP (Thm. 5), which is the complementary class of randomized
polynomial time. See Section 4.4 for the definition.

We end this paper with a few direct applications of the above results. Let us mention one
of them concerning topology, see [31] for definitions: Crisp and Wiest [7] have shown
shown that the fundamental group of any orientable surface (and of most non-orientable
surfaces) embeds in a graph group. This gives a new proof that, for all closed surfaces,
the word problem for the automophism group of the fundamental group can be solved
in polynomial time.

A long version containing all proofs can be obtained from the authors.

2 Preliminaries

Let Σ be a finite alphabet. Let ε denote the empty word. We use Σ−1 = {a−1 | a ∈ Σ}
to denote a disjoint copy of Σ. Let Σ±1 = Σ ∪ Σ−1. For background in complexity
theory see [24]. For languages K,L we write K ≤P

m L (resp. K ≤log
m L) if there

exists a polynomial time (resp. logspace) many-one reduction from K to L. We write
K ≤P

T L if there exists a polynomial time Turing reduction from K to L, which means
that K can be solved in deterministic polynomial time on a Turing machine with oracle
access to the language L. Let / ∈ {≤P

m,≤log
m ,≤P

T }. In case K / L1 × · · · × Ln we
write K / (L1, . . . , Ln). Clearly, if L1, . . . , Ln belong to the class P (deterministic
polynomial time) and K ≤P

T (L1, . . . , Ln), then K belongs to P as well.

2.1 Groups

For background in combinatorial group theory see [22,31]. Let G be a finitely generated
group and let Σ be a finite group generating set for G. Hence, Σ±1 is a finite monoid
generating set for G and there exists a canonical monoid homomorphismh : (Σ±1)∗ →
G, which maps a word w ∈ (Σ±1)∗ to the group element represented by w. For u, v ∈
(Σ±1)∗ we will also say that u = v in G in case h(u) = h(v).

The word problem for G with respect to Σ is the following decision problem:

INPUT: A word w ∈ (Σ±1)∗.
QUESTION: w = 1 in G, i.e., h(w) = 1?

It is well known that if Γ is another finite generating set for G, then the word problem
for G with respect to Σ is logspace many-one reducible to the word problem for G with
respect to Γ . This justifies one to speak just of the word problem for the group G. The
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word problem for G is also denoted by WP(G). The free group F (Σ) generated by Σ
can be defined as the quotient monoid

F (Σ) = (Σ±1)∗/{aa−1 = a−1a = ε | a ∈ Σ}.

As usual, the free product of two groups G1 and G2 is denoted by G1 ∗ G2. The au-
tomorphism group of a group G is denoted by Aut(G). For the standard definition of
automatic groups, see [12]. Every automatic group G is finitely presented and its word
problem can be solved in time O(n2).

2.2 Trace Monoids and Graph Groups

In the following we introduce some notions from trace theory, see [8,10] for more de-
tails. This material will be only needed in Section 4.3. An independence alphabet is just
a finite undirected graph (Σ, I) without loops. Hence, I ⊆ Σ ×Σ is an irreflexive and
symmetric relation. The trace monoid M(Σ, I) is defined as the quotient monoid

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I}.

It is a cancellative monoid. Elements of M(Σ, I) are called traces. The trace represented
by the word s ∈ Σ∗ is also denoted by [s]I . The graph group G(Σ, I) is defined as the
quotient group

G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}.

Note that (a, b) ∈ I implies a−1b = ba−1 in G(Σ, I). Thus, the graph group G(Σ, I)
can be also defined as the quotient monoid

G(Σ, I) = M(Σ±1, I)/{[aa−1]I = [a−1a]I = [ε]I | a ∈ Σ}.

Here, we implicitly extend I ⊆ Σ × Σ to I ⊆ Σ±1 × Σ±1 by setting (aα, bβ) ∈ I if
and only if (a, b) ∈ I for a, b ∈ Σ and α, β ∈ {1,−1}.

Free groups and free abelian groups arise as special cases of graph groups; note that
G(Σ, ∅) = F (Σ) and G(Σ, (Σ × Σ) \ idΣ) = Z

|Σ|. Graph groups were studied e.g.
in [11]; they are also known as free partially commutative groups [9,32], right-angled
Artin groups [4,7], and semifree groups [1].

2.3 Grammar Based Compression

In this section we introduce straight-line programs, which are used as a compressed
representation of strings with reoccuring subpatterns. Following [26], a straight-line
program (SLP) over the alphabet Γ is a context-free grammar A = (V, Γ, S, P ), where
V is the set of nonterminals, Γ is the set of terminals, S ∈ V is the initial nonterminal,
and P ⊆ V × (V ∪ Γ )∗ is the set of productions, such that (i) for every X ∈ V
there is exactly one α ∈ (V ∪ Γ )∗ with (X,α) ∈ P and (ii) there is no cycle in the
relation {(X,Y ) ∈ V × V | ∃α : (X,α) ∈ P, Y occurs in α}. A production (X,α)
is also written as X → α. The language generated by the SLP A contains exactly one
word that is denoted by eval(A). More generally, every nonterminal X ∈ V produces
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exactly one word that is denoted by evalA(X). We omit the index A if the underlying
SLP is clear from the context. The size of A is |A| =

∑
(X,α)∈P |α|. The length of

eval(A) may be exponentially larger than |A|; hence A may be seen as a compressed
representation of eval(A). Every SLP can be transformed in polynomial time into an
equivalent SLP that is in Chomsky normal form (as a context-free grammar). This means
that all productions have the form A → BC or A → a for nonterminals A,B, and C
and a terminal a.

In recent years, the complexity of many decision problems on strings, when the input
is represented by SLPs, was investigated, see e.g. [13,19,21,23,25]. A seminal result of
Plandowski [25] states that for given SLPs A and B it can be checked in polynomial
time whether eval(A) = eval(B). The currently best known algorithm for this problem
has a cubic running time [19].

The compressed word problem for the finitely generated group G with respect to the
finite generating set Σ is the following problem:

INPUT: An SLP A over the terminal alphabet Σ±1.
QUESTION: Does eval(A) = 1 hold in G?

Here, the input size is |A|. Also, it is easy to see that the complexity of the compressed
word problem does not depend on the chosen generating set. This allows one to speak
of the compressed word problem for the group G. The compressed word problem for G
is also denoted by CWP(G). The following fact is trivial:

Proposition 1. Assume that H is a finitely generated subgroup of the finitely generated
group G. Then CWP(H) ≤log

m CWP(G).

3 Connections Between the Word Problem and the Compressed
Word Problem

The three propositions from this section establish a link between the word problem and
the compressed word problem. For their proofs, the following fact is crucial: Let Σ be a
finite generating set for the group G and let ϕ1, . . . , ϕn ∈ Aut(G) be automorphisms of
G which are taken from some fixed finite subset of Aut(G). Then, for every a ∈ Σ±1,
we can construct an SLP A over the terminal alphabet Σ±1 such that (i) eval(A) is a
word that represents the group element ϕ1 · · ·ϕn(a) and (ii) |A| ∈ O(n); see [28].

Proposition 2 (cf [28]). Let G be a finitely generated group and let H be a finitely
generated subgroup of Aut(G). Then WP(H) ≤log

m CWP(G).

Proposition 3. Let K and Q be finitely generated groups and let ϕ : Q→ Aut(K) be
a homomorphism. Then, for the semidirect productK�ϕQ we have WP(K�ϕQ) ≤log

m

(WP(Q),CWP(K)).

The semidirect product G = K �ϕ Q is an extension of K by Q, i.e., K is a normal
subgroup of G with quotient G/K 0 Q. A reasonable generalization of Prop. 3 would
be WP(G) ≤log

m (WP(G/K),CWP(K)). But this cannot be true: there exist finitely
generated groups G,Q,K such that (i) Q = G/K , (ii) Q and K have a decidable
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word problem, and (iii) G has an undecidable word problem [2]. On the other hand,
if we require additionally, that Q is finitely presented (in fact, Q recursively presented
suffices), then G must have a decidable word problem [6]. For the special case that
the quotient Q = G/K is automatic (and hence finitely presented), we can prove the
following:

Proposition 4. Let K be a finitely generated normal subgroup of G such that the quo-
tient Q = G/K is an automatic group. Then WP(G) ≤P

m CWP(K).

4 Upper Bounds for Compressed Word Problems

4.1 Finite Extensions

Since every finite group is automatic, Prop. 4 applies to the case that the quotient Q is
finite. In this situation, we even obtain a polynomial time reduction from the compressed
word problem of G to the compressed word problem of K .

Theorem 1. Assume that K is a finitely generated subgroup of the group G such that
the index [G : K] is finite. Then CWP(G) ≤P

m CWP(K).

For the proof of Thm. 1 one proceeds in two steps. For a given SLP A over the gen-
erators of G one first checks whether eval(A) represents an element of the subgroup
K . This is possible in polynomial time using the coset automaton (whose states are the
cosets of K) and the fact that it can be checked in polynomial time whether a given
finite automaton accepts eval(A) for a given SLP A [26]. Then, in a second step one
transforms A in polynomial time into a new SLP B over generators for K such that
eval(A) and eval(B) represent the same group element.

The reducibility relation ≤P
m in Thm. 1 cannot be replaced by the stronger relation

≤log
m (unless P = L) because there exists a finite group G with a P-complete compressed

word problem [3] (take K = 1 in Thm. 1).

4.2 Free Products

Our main result for free products is:

Theorem 2. Assume that G = G1∗G2. Then CWP(G) ≤P
T (CWP(G1),CWP(G2)).

Let Σi be a finite generating set for Gi (i ∈ {1, 2}), where Σ1 ∩ Σ2 = ∅. In or-
der to reduce CWP(G) to CWP(G1) and CWP(G2), we follow the strategy for free
groups [21], where composition systems were used. Composition systems extend SLPs
by allowing also productions of the form A → B[i : j] for nonterminals A and B
and i, j ∈ N. Then eval(A) is the substring of eval(B) from position i to j. Hage-
nah [15] has shown that a given composition system can be transformed in polyno-
mial time into an equivalent SLP. For our proof, we use a special form of composition
systems, so called 2-level composition systems. Such a system is a tuple of the form
A = (B, (BC)C∈W ), where B is a composition system, which generates a word over
the alphabet W . Moreover, for each C ∈ W , BC is an SLP, either over the terminal
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alphabet Σ±1
1 or over the terminal alphabet Σ±1

2 . Thus, A defines in a natural way a
string eval(A) ∈ (Σ±1

1 ∪Σ±1
2 )∗.

We transform a given input SLP A over the terminal alphabet (Σ±1
1 ∪Σ±1

2 )∗ into a
2-level composition system A′ = (B, (BC)C∈W ) having three additional properties:

(1) eval(A) = eval(A′) in the group G1 ∗G2.
(2) for every C ∈W , eval(BC) �= 1 (either in G1 or in G2).
(3) for every nonterminal A of B, if C ∈ W and D ∈ W are two consecutive sym-

bols in evalB(A), then either eval(BC) ∈ (Σ±1
1 )∗ and eval(BD) ∈ (Σ±1

2 )∗ or
eval(BC) ∈ (Σ±1

2 )∗ and eval(BD) ∈ (Σ±1
1 )∗.

Properties (2) and (3) ensures that eval(A′) is irreducible in the free product G1 ∗ G2

and hence eval(A) = 1 in G1 ∗ G2 if and only if eval(A′) = ε. In order to enforce
(2), we have to solve instances of CWP(G1) and CWP(G2). Enforcing (3) is the main
difficulty. Here we follow the bottom-up procedure for free groups from [21] in order to
determine maximal cancellation between strings which are concatenated on the right-
hand side of some production of the SLP A.

Again, the reducibility relation ≤P
T in Thm. 2 cannot be replaced by the stronger

relation≤log
m (unless P = NC, where NC is Nick’s class — the class of all problems that

can be solved with polynomially many processors in polylogarithmic time) because the
compressed word problem for Z ∗ Z is P-complete [21], whereas the compressed word
problem for Z is easily seen to be in NC.

4.3 Graph Groups and Graph Products

The word problem for a graph group can be solved in linear time on a RAM [9,32]. In
order to solve the compressed word problem for a graph group in polynomial time, we
follow again the strategy for free groups [21]. For this, it is crucial that there exists a
normal form mapping NF : M(Σ±1, I) → M(Σ±1, I) on the trace monoid M(Σ±1, I)
such that for all t ∈ M(Σ±1, I): (i) t = NF(t) in the graph group G(Σ, I) and (ii)
the trace NF(t) cannot be factorized in M(Σ±1, I) as u[aa−1]Iv or u[a−1a]Iv for
some u, v ∈ M(Σ±1, I) and a ∈ Σ [9]. Then, for a given SLP A over the terminal
alphabetΣ±1 we compute in polynomial time an SLP B over the terminal alphabet Σ±1

such that [eval(B)]I = NF([eval(A)]I). This calculation is again based on a bottom-up
process similarly to [21], but determining the maximal amount of cancellation between
composed strings of A becomes more involved in the presence of partial commutation.
Since for every t ∈ M(Σ±1, I) we have t = 1 in G(Σ, I) if and only if NF(t) = [ε]I ,
we obtain:

Theorem 3. Let (Σ, I) be a fixed independence alphabet. Then CWP(G(Σ, I)) be-
longs to P (deterministic polynomial time).

Let us end this section with a generalization of both Thm. 2 and 3. A graph product is
given by a triple (Σ, I, (Gv)v∈Σ), where (Σ, I) is an independence alphabet and Gv is
a group, which is associated with the node v ∈ Σ. W.l.o.g. assume that Σ = {1, . . . , n}.
The group G(Σ, I, (Gv)v∈Σ) defined by this triple is the quotient

G(Σ, I, (Gv)v∈Σ) = (G1 ∗G2 ∗ · · · ∗Gn)/{xy = yx | x ∈ Gu, y ∈ Gv, (u, v) ∈ I},
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i.e., we take the free product (G1 ∗G2 ∗· · ·∗Gn), but let elements from adjacent groups
commute. Note that G(Σ, I, (Gv)v∈Σ) is the graph group G(Σ, I) in case every Gv is
isomorphic to Z. Moreover, free products and direct products appear as special cases
of the graph product construction. Graph products were first studied by Green [14]. By
combining ideas from the proof of Thm. 2 and Thm. 3, one can show:

Theorem 4. Assume thatG is a graph product of finitely generated groupsG1, . . . , Gn.
Then CWP(G) ≤P

T (CWP(G1), . . . ,CWP(Gn)).

4.4 Linear Groups

Recall that a language L belongs to the complexity class RP (randomized polynomial
time) if there exists a randomized polynomial time algorithm2 A such that: (i) if x �∈ L
then Prob[A accepts x] = 0 and (ii) if x ∈ L then Prob[A accepts x] ≥ 1/2. The choice
of the failure probability 1/2 in case x ∈ L is arbitrary: By repeating the algorithm c
times (where c is some constant), we can reduce the failure probability to (1/2)c and
still have a randomized polynomial time algorithm. A language L belongs to the class
coRP, if the complement of L belongs to RP. This means that there exists a randomized
polynomial time algorithm A such that: (i) if x �∈ L then Prob[A accepts x] ≤ 1/2 and
(ii) if x ∈ L then Prob[A accepts x] = 1.

Using results from [20,30], the compressed word problem for a finitely generated
linear group can be reduced to the problem whether a circuit over a polynomial ring
R[x1, . . . , xn] (where R is either Z or the finite field Fp) evaluates to the zero polyno-
mial. This problem belongs to coRP by [16]. Hence, we obtain:

Theorem 5. For a finitely generated linear group G, CWP(G) belongs to coRP.

5 Applications

In this section, we present some immediate corollaries to the results from Section 3 and
4. We concentrate on automorphism groups. Since the automorphism group of a graph
group is finitely generated [18,29], Prop. 2 and Thm. 4 imply:

Corollary 1. For a graph group G, WP(Aut(G)) belongs to P.

Let Sg be the closed orientable surface of genus g. For example, S0 is the two-sphere.
Let π1(Sg) denote the fundamental group (see [31] for definitions). Crisp and Wiest [7]
have shown that for every g ≥ 0, π1(Sg) can be embedded in a graph group. Hence, by
Prop. 1 and Thm. 4, the compressed word problems for these groups can be solved in
polynomial time. (This gives a new proof of a result of [28].) Since Sg is a double cover
of Ng+1, the non-orientable surface, [31, p. 87], it follows that π1(Sg) is an index-2
subgroup of π1(Ng+1) [31, p. 162]. With Thm. 1 and Prop. 2 we obtain:

2 A randomized algorithm A may flip coins. Hence, it accepts a given input only with some
probability. If there exists a polynomial p(n) such that for every input of length n and every
possible outcome of the coin flips, A runs in time at most p(n), then A is a randomized
polynomial time algorithm.
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Corollary 2. Let G be the fundamental group of a closed (orientable or nonorientable)
surface. Then CWP(G) and WP(Aut(G)) belong to P.

Automorphism groups of fundamental groups of surfaces play an important role in
algebraic topology; they are closely related to mapping class groups.

6 Open Problems

We finish this paper with some open problems concerning compressed word problems:

1. Is the compressed word problem for a hyperbolic group solvable in polynomial
time? For torsion-free hyperbolic groups one might try to attack this question using
the canonical representatives of Rips and Sela [27].

2. What about the compressed word problem for automatic groups? Is it possible to
prove a non-trivial lower bound (e.g. NP-hardness or coNP-hardness) for the com-
pressed word problem of some specific automatic group?

3. Is the uniform compressed word problem for graph groups solvable in polynomial
time? In this problem, the independence alphabet (Σ, I), which defines the under-
lying graph group, is also part of the input. Note that in Thm. 3 the independence
alphabet (Σ, I) is not part of the input.

4. Can Thm. 2 be generalized from free products to (suitably restricted) amalgamated
free products and HNN-extensions?

5. Is it possible to relax the restriction to an automatic quotient group Q in Prop. 4?
6. The compressed generalized word problem (CGWP) for a finitely generated group

G asks, whether for SLPs A,B1, . . . ,Bn (over generators for G), the word eval(A)
represents a group element from the subgroup 〈eval(B1), . . . , eval(Bn)〉 ≤ G.
What is the complexity of CGWP(F ({a, b}))? We only know an exponential time
algorithm for this problem.
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Abstract. Digital watermarking, named after paper watermarking, was
proposed to protect copyrights of perceptual content owners. A Water-
mark, or an author’s signature, is hidden in a signal by small modifi-
cations of the signal. This signature, particularly, can be used as the
evidence of authorship/ownership in a court.

Performing attacks, a Malefactor is finding ways to destroy the em-
bedded watermark so that it will not be found by a detection algorithm.

Frequently a watermark becomes undetectable after an attack due
to the loss of synchronization problem. One of the ways to handle this
problem is to build a reference system which would be robust to a certain
range of attacks.

A novel algorithm of building such a system has been proposed by
Delannay in [1].

Starting from ideas of Delannay we propose new approach to con-
structing a secret binary partition of an image.

Keywords: digital image watermarking, secret image partition, pseu-
dorandom partition, loss of synchronization problem.

1 Introduction

Digital watermarking is a branch of modern digital steganography. Digital
steganography itself is a study of information hiding techniques when additional
information has to be hidden in a still image, audio or video content.

Digital watermarking, named after paper watermarking, was proposed to pro-
tect copyrights of perceptual content owners. A Watermark, or author’s signa-
ture, is hidden in a signal by small modifications of the signal. This signature,
particularly, can be used as the evidence of authorship/ownership in a court.

A Malefactor will be finding ways to destroy the embedded watermark so that
it will not be found by a detection algorithm. Modifying the signal (performing
attacks), the malefactor is also restricted in amount of modifications because
the signal must not be badly degraded. In the case of digital image, typical
attacks are loss-compression, cropping and geometrical transformations. More
complicated operations, such as local geometrical distortions, special filtering,
or noise addition, can be carried out to destroy the embedded watermark.
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This paper concerns the robustness of the digital image watermarking. Wa-
termark degradation may be caused both by intentional and non-intentional
actions. Sometimes a watermark becomes undetectable after an attack due to
the loss of synchronization problem; thus constructing a robust watermarking
system, one must define the way to handle this problem.

Let us decribe the problem briefly.
A common way to embed information is to add a weak watermark signal to

a content. For example we can represent a two-dimensional picture as a one-
dimensional array of numbers and then add information modifying least signifi-
cant bits of these numbers. Improving this algorithm (e.g. using error-correction
codes) we can achieve robustness to a filtering, noise addition and loss compres-
sion. But if one crops the image, rotates it by a small angle or resizes, we are not
able to restore information because we cannot find the original one-dimensional
array in the modified picture. So the watermark is still present in the image, but
the detector is not able to find it due to the loss of synchronization.

Different methods have been proposed to handle the loss of synchronization
problem. First, for the embedding one can choose a domain that is invariant to
the range of attacks under consideration. Fourier magnitude, log-polar mapping,
log-log mapping and Fourier-Mellin domain can be used to achieve robustness
with regard to affine transforms and a cropping [4,5].

The pilot signal can be embedded to determine and revert transformations
[7].

Finally, we can exploit an image content to build a reference system which will
be transformed along with the image. This approach is very promising because
such reference systems are hard to modify with small modifications of an image.
In [6] extraction of image corner points and triangulation are used to embed a
robust watermark.

Different methods of synchronizing are reviewed and studied in [1] by
Delannay.

In [1], Chapter 4.2, Delannay proposes construction of a reference system of an
image. This system is robust to geometrical distortions. Delannay also suggests
an image-dependent secret binary partition algorithm, based on this system.

Secret binary image partition is a mean to break an image into two parts
in a way that seems random and can be reconstructed only with the knowl-
ege of a secret key. For instance an image-independent secret partition can be
obtained mapping a one-dimensional pseudorandom binary sequence on the two-
dimensional array of image pixels.

Secret binary image partition can be used in the digital watermarking. For
example, in a Patchwork algorithm [2] a watermark is embedded by increasing
luminosity of one part of an image and decreasing lunimosity of another part
by a small amount. More comlicated algorithms use secret partition to hide a
watermark signal [3]. So the construction of a robust secret partition is a challenge
adjacent to the construction of a robust watermark.

Briefly, Delannay’s approach can be described as following. First for each pixel
of an image a scale and rotation invariant characteristic (so called local radius)
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is calculated. The calculation is based on the luminosity behavior of the image
in the neighbourhood of the considered pixel. Then two circles with the center in
the considered pixel are selected. Their radii are defined relative to the calculated
local radius and unknown to attacker. Finally the membership of the considered
pixel in the partition is determined by the angle between positions of maximum
and minimum luminosities of the image along selected circles.

Using behavior of luminosity on circular objects centered in the considered pixel
to determine pixel’s membership is a significal benefit of Delannay’s approach.
It allows to achieve robustness towards image rotation and cropping. Using radii
relative to scale-invariant local radius allows also handle the scaling attack.

We see several drawbacks of proposed algorithm. First drawback is insuffi-
cient secrecy: The key of partition consists of two radii, which are varying in a
relative narrow interval. Second drawback, as it seems, consists in the procedure
of defining membership of pixel. This procedure uses indiviual pixel luminosi-
ties (minimum and maximum luminosity along a circle), so it’s result can be
significantly affected by the noise.

The work was initially started as an attempt to eliminate mentioned draw-
backs of Delannay’s algorithm, but finally a new flexible approach with a good
theoretical robustness was obtained.

We started from idea to repace the procedure of calculation of the angle be-
tween minimum and maximum of luminosity along the circle with the procedure
of calculating difference of mean luminosities along two circles.

Our approach is described in following sections.

2 Elemental Convolution

To construct a robust secret binary partition of an image we shall try to “com-
plicate” the image using operations robust to a certain range of attacks. Finally
the partition can be obtained thresholding the complicated picture.

The “complicating” is performed as a sequence of elemental transformations
of an image. Parameters of transformations on each step form a key of the secret
partition.

Let us consider an elemental transformation of an image as following. The
luminosity value of each pixel of the image is replaced with the difference between
mean luminosities of two circles of different radii r1 and r2 with the center in
the considered point. Radii of circles are the parameters of transformation.

Such a choice of an elemental transformation is caused by the robustness
demands. Indeed, using an integral characteristic of an image (the mean lumi-
nosity) allows eliminating influence of attacks in the high frequency domain (e.g.
loss compression or noise addition). Using a circular form gives an independence
from the rotation of an image. Selecting radii small enough provides robustness
to the local distortions of an image.

Considering the choice of r1 and r2 two approaches are available.
We can use fixed radii r1 and r2 for all pixels of an image. Let’s denote it as

the global radii selection. Alternatively, we can choose individual r1 and r2 for
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each pixel basing on some robust geometrical local image characteristic near this
pixel. We shell refer it as the local radii selection approach.

Local approach seems preferable because radii will be correctly recovered in
the cropped or resized image. Nevertheless, two issues remain opened; first, we
must construct a robust local geometrical characteristic of an image. For example
we can try to use the reference radius characteristic described in [1] by Delannay.
Also, performing computations of the mean luminosity of a circle for each pixel
separately is very slow.

Global approach is attractive because of an availability of its quick realization.
Indeed, if radii r1 and r2 are the same for each pixel in a step, required difference
between the mean circle luminosities for each pixel can be obtained simultane-
ously after a single convolution of an image with the filter of the special kind.
The filter consists of two uniform circles of radii r1 and r2 such that the integral
luminosity of the first circle equals 1 and the integral luminosity of the second
circle equals −1.

Although global approach potentially is less robust towards the cropping and
resizing, several cases can be handled properly. Particular, a case when an image
is only cropped (because cropping does not affect r1 and r2), or only resized (then
we can select r1 and r2 relative to the image dimensions). Also we can think of
constructing a geometrical characteristic of an “important” part of an image
and defining radii relative to it. The radii can be reconstructed if an “important
part” will be found in a cropped image.

We choose global approach to examine viability of the complicating scheme
due to its computational efficiency.

As it was mentioned, an elemental transformation of an image in the global
case can be performed as a convolution of an image and the kernel, defined by
the radii r1 and r2. Let us refer such convolution as elemental convolution with
parameters r1, r2.

After an elemental convolution an image with the luminosity from [0.. N ] is
transformed into an image with the luminosity from [−N .. N ].

In the resulting image pixels with a big absolute value of luminosity are dis-
tributed near the border pixels of the original image. Uniform areas of the original
picture cause small absolute values after an elemental convolution.

Thresholding the result we can build the following binary image partition.
Pixels are included in the first part if their luminosity value after a convolution
is greater than zero; otherwise they are included in the second part.

Figure 1a shows the result of an elemental convolution of the Lena image
with the filter, consisted of two circles of width 2 pixels and radii 8 and 12 pixels
respectively. On the figure dark pixels correspond to negative values of the lumi-
nosity and bright pixels correspond to positive values. Obviously, binary image
partition prescribed by this elemental convolution is far from the pseudoran-
dom. Borders of the original image are clearly discovered in the “complicated”
image. Nevertheless quantity of the border pixels after an elemental convolution
is increased and we can complicate the image so forth applying next elemental
convolution.
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a) b)

c) d)

Fig. 1. Resulting image after 1(a), 2 (b), 5 (c) and 10 (d) elemental convolutions

Next elemental convolution has its own parameters; they are also included in
the key of the partition. After the second convolution quantity of border pixels
increases and the picture looks more random. We can continue this process
with a third convolution and so forth. Finally a binary partition is constructed
thresholding the resulting image with the zero threshold. Partition key is defined
as the set of elemental convolution parameters on each convolution step.

Note that algorithm cam be optimized if replace a sequence of convolutions by
one convolution with another filter; this filter itself is a convolution of elemental
convolution filters.

Figure 1 shows resulting images after 1, 2, 5 and 10 elemental convolutions
with the same parameters (r1 = 8, r2 = 12). A link between the original image
and the image after ten elemental convolutions is not so obvious. Nevertheless,
experiments showed that such partition do not meet demands of secrecy of a
partition. An algorithm of secret image partition which overcomes this problem
is described in the following section.



264 A. Lysenko

3 Secret Partition Algorithm

Preliminary tests of the algorithm described above showed a good robustness
towards common attacks, but essential imperfection was also found. The weak-
ness is related to secrecy of the partition. In some cases two partitions of the
same image built with completely different keys were coincident on over than 80
percents of pixels. This effect is frequently observed on almost uniform image
areas with a small number of details.

It is clear that good secret partition must be independent from other parti-
tions, providing coincidence about 50 percents. This issue is especially important
when robustness of the partition is required. Indeed, after attack partition will
not be recovered perfectly, so the detection must base on then fact that coinci-
dence essentially differs from 50 percents.

Let us figure out the reason of low secrecy of the described partition. After
the first elemental convolution areas with big absolute values of the luminosity
appear as lines around the border pixels of an image. On the next step bright
borders appears around these borders and so on (see 1).

This process resembles a wave propagation and interference from the border
pixels of an image. Parameters of a secret key affect the length of a wave and do
not affect the wave front itself. This is the reason why we can see lines parallel
to image borders even after a big number of elemental convolutions.

This metaphorical reasoning helps understand that we must supplement the
algorithm with operations different from convolutions to obtain secrecy of the
partition.

To decrease influence of image borders we try to combine intervening parti-
tions after a certain number of elemental convolutions.

A scheme of the modified algorithm is shown on the figure 2.
Here the key of partition is a two-dimensional array K of m × n elemental

convolution parameters.
The input is an image I0. A sequence of elemental convolutions with parame-

ters K(1, 1), K(1, 2), ... , K(1, n) is applied to I0. Result after n convolutions is
stored as I1. Next sequence of convolutions with parameters K(2, 1), K(2, 2), ...
, K(2, n) is applied to I1, then result is combined with I1 using operation × and
stored as I2 (the choice of operation × will be discussed below). I3 is obtained
as a combination of next n convolutions with I2, and so on until m-th iteration.

Finally, binary partition is built thresholding Im. The first part includes pixels
(x, y) which has Im(x, y) > 0, and the second part includes all remaining pixels.

Initially operation × was defined as comparison of two partitions defined by
images Ik and Il

Ik × Il(x, y) = 1, if sign(Ik(x, y)) = sign(Il(x, y)), else Ik × Il(x, y) = −1.

That is equivalent to:
Ik × Il(x, y) = 1, if Ik(x, y) · Il(x, y) ≥ 0, else Ik × Il(x, y) = −1.

Practically better robustness was achieved on the continuous operation of
element-wise product of images Ik and Il; this expands previous definition.
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Fig. 2. Construction of a secret binary image partition

Ik × Il(x, y) = Ik(x, y) · Il(x, y).

An example of building a secret partition is shown on the figure 3. The result-
ing partition I4 looks much more random than any of partitions on the figure 1.
Experiments shown that varying parameters of an algorithm balance between se-
crecy and robustness can be shifted.

To achieve a better robustness towards the noise we used circles of width 2, 3,
and 4 pixels in the convolution filter. We shell refer this parameter as cirwidth.

Experiments showed that an optimal combination of fuzziness and robustness
of the partition is achieved when the distance between the circles in the filter is
minimal, i.e. r2 = r1 + cirwidth. Therefore parameters of an elemental convo-
lution on each step can be represented by the number r1. We limit it by rmin

below and vary it with a step cirwidth, i.e.

r1 = rmin + c · cirwidth,where c ∈ [0, V − 1]– is a part of the key.

Thus the global parameters of an algorithm are

– n – the count of sequential convolutions between element-wise multiplica-
tions.

– m – the count of element-wise multiplications
– cirwidth – the width of circles. Typical values are 2, 3, 4 pixels.
– rmin – the minimal radius of circles. Typical values are 4, 6 pixels.
– V – the number of variants of choice r1 on each elemental convolution step.

Typical values are 6 and 8.
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Fig. 3. Example of building a partition with random key of size 4 × 3

4 Experimental Results and Directions for Further Work

Evaluating properties of the proposed partition we used a Patchwork water-
marking scheme. Image was divided into two parts according the given secret
partition. Then luminosity of the first part was increased and luminosity of the
second part was decreased by the same value δ (we choose δ = 1.25% of the max-
imum image luminosity). The watermark can be detected breaking an image in
two parts according the given secret partition and comparing mean luminosi-
ties of these parts. If difference is close to 2 · δ than watermark is detected. We
evaluate the strenth of a watermark as the ratio of calculated difference to 2 · δ.

Experiments were carried out in the MATLAB environment in the following
way. For each selected combination of global parameters n, m, cirwidth, V , rmin,
ten random keys where generated. For each key were calculated:

– strength of the watermark in an unmarked image (false positivity).
– strength of the watermark in a marked image
– strength of the watermark after the noise attack (Caussian noise with the

zero mean and the variance of 0.005 was used)
– strength of the watermark after the rotation by 15 degrees attack

For each set of global parameters following values were calculated:

– mean and max strength of the watermark in an unmarked image
– mean and max coincidence of partitions built with different keys
– minimal, mean, and maximal strength of the watermark in a marked image
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– minimal, mean, and maximal of the watermark after noise attack
– minimal, mean, and maximal of the watermark after rotation attack

Experiments demonstrated that varying length of the key via global parame-
ters balance between robustness and secrecy can be shifted in a wide range.

A good level of the robustness and secrecy was achieved concerning non-
geometrical attacks (noise and compression). Concerning a rotation attack most
secret watermarks turn out to be insufficiently robust.

Exact demands to the robustness and secrecy of the partition are formed with
a specific application. Some combinations of global parameters which showed
a good results are listed in the table 1. However it is possible that another
more complicated watermarking scheme exploiting described secret partition will
demonstrate a better robustness. For instance we could add to the image a two-
dimensional harmonic modulated by a secret partition; the detection then will be
based on a presence of the frequency in the spectrum of the image multiplicated
by the secret partition.

Table 1. Combinations of global parameters

Key
length

n m V rmin False
alarm

Strength Strength
(noise)

Strength
(rotate)

45 bit 3 7 8 6 0.06 0.88 0.26 0.26
45 bit 3 7 8 4 0.03 0.67 0.16 0.25
39 bit 3 6 8 6 0.07 0.83 0.31 0.26
35 bit 2 7 8 6 0.1 0.765 0.29 0.30

The work is still in progress. Issues to investigate are:

– The choice of parameters. Although about 40 series of experiments were
carried out to reveal an optimal set of global parameters, expanding image
base, number of experiments in series, and range of attacks is desireable.
Stirmark benchmarking is also advisable.

– The choice of the key. Now we use an array of size m×n of random generated
integers from [0, V − 1]. Nevertheless robustness of two random keys can
differ drastically. Describing a way of optimal key generation can improve
robustness of an algorithm.

– Revision of current algorithm. For example it well may be that optimal
number of convolution steps between multiplications is not constant and
depends on an iteration number. Smoothing of an image before building a
partition can be useful.

– Defining a way to handle a scaling attack. Finding a robust geometrical
characteristic of an image which allows to resize an image to an original
scale before building a partition.

– Examining a viability of a local approach. Constructing of a geometrically
robust local characteristic of an image and finding an algorithm for quick
realization.
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5 Conclusion

We have introduced an approach to the construction of the robust secret binary
partition of an image. Proposed scheme is based on the sequential convolutions
with secret parameters and allows an efficient trade of between robustness and
secrecy. Good robustness towards non-geometrical attacks was achieved. Parti-
tion with a lower level of secrecy also demonstrated robustness towards a rotation
attack. There might be ways to increase robustness of the proposed scheme re-
garding regarding the geometrical attacks. We believe the described approach
can be useful in an image watermarking applications.
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Abstract. We revisit a well studied linear algebraic problem, computing
the rank and determinant of matrices, in order to obtain completeness
results for small complexity classes. In particular, we prove that comput-
ing the rank of a class of diagonally dominant matrices is complete for
L. We show that computing the permanent and determinant of tridiag-
onal matrices over Z is in GapNC1 and is hard for NC1. We also initiate
the study of computing the rigidity of a matrix: the number of entries
that needs to be changed in order to bring the rank of a matrix below
a given value. It is NP-hard over F2 and we prove that some restricted
versions characterize small complexity classes. We also look at a variant
of rigidity where there is a bound on the amount of change allowed. Us-
ing ideas from the linear interval equations literature, we show that this
problem is NP-hard over Q and that a certain restricted version is NP-
complete. Restricting the problem further, we obtain variations which
can be computed in PL and are hard for C=L.

1 Introduction

A series of seminal papers by a variety of people including Valiant, Mulmuley,
Toda, Vinay, Grigoriev, Cook, and McKenzie, set the stage for studying the com-
plexity of computing matrix properties (in particular, determinant and rank) in
terms of logspace computation and poly-size polylog depth circuits. This area
has been active for many years, and an NC upperbound is known for many
related problems in linear algebra; see for instance [1]. In particular, the com-
plexity of computing the rank of a given matrix over Q has been well studied.
For general matrices, checking if the rank is at most r is C=L-complete [3].

Complete problems for complexity classes are always promising, since they
provide a set of possible techniques that are associated with the problem to
attack various questions regarding the complexity class. Such results can be ex-
pected to flourish when the complete problem has well-developed tools associated
with it. With this motivation, we look at special classes of the matrix rank prob-
lem and try to characterize small complexity classes. We consider restrictions
which are combinations of non-negativity, 0-1 entries, symmetry, diagonal dom-
inance, tridiagonal support, and we consider the complexities of three problems:
computing the rank, computing the determinant and testing singularity. These,
though intimately related, can have differing complexities, as Table 1 shows.

However, the corresponding optimization search problems can be considerably
harder. Consider the following existential search question: Given a matrix M over

V. Diekert, M. Volkov, and A. Voronkov (Eds.): CSR 2007, LNCS 4649, pp. 269–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Table 1. rank bound, singular, and determinant for special matrices

Matrix type (over Q) rank bound singular determinant

general C=L-complete [3] C=L-complete[3] GapL complete
(even 0-1) [9,22,19,21]
symmetric non-neg. C=L-complete [3] C=L-complete [3] ?
symmetric non-neg. L complete L complete
diag. dominant (d.d.) (Theorem 1) (Theorem 1) ?
symmetric d.d. L hard even when det ∈ {0, 1} (Theorem 2) ?
tridiagonal ? C=NC1 (Theorem 3) GapNC1 (Thm. 3)
tridiagonal non-neg. non-negative perm equivalent to planar #BWBP (Theorem 3)

a field K, a target rank r and a bound k, decide whether the rank of M can be
brought down to below r by changing at most k entries of M . Intuitively, one
would expect such a question to be in ∃ · NC: guess k locations where M is to
be changed, guess the new entries to be inserted there, and compute the rank
in NC ([15]). However, this intuition, while correct for finite fields (this case
was recently shown to be NP-complete [10]), does not directly translate to a
proof for Q and Z

1 since the required new entries may not have representations
polynomially-bounded in the input size. In fact, the best upper bound we can
see in the general case is recursive enumerability. In this paper, we explore the
computational complexity of several variants of this problem.

The above question is a computational version of rigidity of a matrix, which
is the smallest value of k for which the answer to the above question is yes. The
notion of rigidity was introduced by Valiant [20] and independently proposed
by Grigoriev [11]. The main motivation for studying rigidity is that good lower
bounds on rigidity give important complexity-theoretic results in other com-
putational models, like linear algebraic circuits and communication complexity.
Though the question we address is in fact a computational version of rigidity, it
has no direct implications for these lower bounds. However, it provides natural
complete problems based on linear algebra for important complexity classes.

An important aspect of computing rigidity is its possible connection to the
theory of natural proofs developed by Razborov and Rudich [17]. Valiant’s reduc-
tion [20] identifies “high rigidity” as a a combinatorial property of the functions
based on which he proves linear size lower bounds for log-depth circuits. How-
ever, the model of arithmetic circuits has not been studied in sufficient detail
such that in the setting of natural proofs this can directly provide some evidence
about the power of the proof technique. Nevertheless, this could be thought of
as a motivation for the computational question of rigidity.

Our question bears close resemblance to the body of problems considered
under matrix completion, see for instance [6,12]. Given a matrix with indetermi-
nates in some locations, can we instantiate them in such a way that some desired

1 Technically, rank over Z is not defined, since Z is not a field. In Section 2, we define
a natural notion of rank over rings. Under this, since Z is an integral domain, the
rank is the same as over the corresponding division ring Q.
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Table 2. Our bounds on rigid when k ∈ O(1) or r = n

K, S ⊂ K restriction bound
(if –, then S = K)
Z or Q, {0,1} in NP

Z or Q, {0,1} k ∈ O(1) C=L-complete (Thm 4)
Z or Q k ∈ O(1) C=L-hard [3]
Q r = n C=L-complete [3]

witness-search in LGapL (Thm 5)
Z r = n and k = 1 in LGapL (Thm 6)
Z or Q bounded rigidity, r = n NP-complete (Thm 7)
Z or Q bounded rigidity, r = n, k = 1 In PL, and C=L-hard (Thm 8)

property (e.g. non-singularity) is achieved? In Section 4, we discuss how results
from matrix completion can yield upper bounds for our question.

In this paper, we restrict our attention to Z and Q (some extensions to finite
fields are discussed at the end). Since even an upper bound of NP is not
obvious, we restrict the choice available in changing matrix entries. We consider
two variants: (1) In the input, a finite subset S ⊆ K is given. M has entries over
S, and the changed entries must also be from S; rank computation continues
to be over K. (For instance, we may consider Boolean matrices, so S = {0, 1},
while rank computation is over Z.) It is easy to see that this variant is indeed
in NP. (2) In the input, a bound θ is given. We require that the changes be
bounded by θ; we may apply the bound to each change, or to the total change,
or to the total change per row/column. (See for instance [13].) This version has
close connections with another well-studied area called linear interval equations
(see [18]) with applications in control systems theory. We obtain tighter lower
and upper bounds for some of these questions. We show completeness for C=L
when k ∈ O(1) in the first variant, for NP when r = n in the second variant,
and for C=L when r = n in the general case. Table 2 summarizes the results.

Due to shortage of space, many proofs are skipped; see [14] for details.

2 Preliminaries

Over any field F, the rank of a M ∈ Fn×n (we consider only square matrices in
this paper) has the following equivalent definitions : (1) The maximum number
of linearly independent rows or columns in M . (2) The maximum size of a non-
singular square submatrix of M (3) The minimum r such that M = AB for some
A ∈ Fn×r and B ∈ Fr×n. (4) The minimum r such that M is the sum of r rank-1
matrices, where a rank-1 matrix has every row as a multiple of the other rows.
These definitions need not be equivalent when the underlying algebraic structure
is not a field. Hence, the notion of rank is not well-defined over arbitrary rings.
However, if the ring under consideration is an infinite integral domain (like Z)
(notice that a finite integral domain has to be a field), then the above definitions
are indeed equivalent, and can be taken as a definition of rank. In fact, the rank
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in that case can be easily seen to be same as the rank over the corresponding
quotient field; thus rank over Z as defined above is the same as rank over Q.

L and NL denote languages accepted by deterministic and nondeterministic
logspace classes respectively, and FL is the class of logspace-computable func-
tions. #L is the class of functions that count the number of accepting paths of
an NL machine, and GapL is its closure under subtraction. Computing the
determinant over Z or Q is complete for GapL . In contrast, computing the
permanent is complete for # P , the class of functions counting accepting paths
of an NP machine. NC1 is the class of languages with polynomial size logarith-
mic depth Boolean circuits. #NC1 is the class of functions computed by similar
arithmetic circuits (gates compute + and ×), and GapNC1 is its closure under
subtraction. AC0 (TC0) is the class of languages with polynomial size constant
depth unbounded fanin Boolean circuits, where gates compute and, or, not
(and majority). For more details, see [23].

A language L is in the exact counting logspace class C=L (or probabilistic
logspace PL ) iff it consists of exactly those strings where a certain GapL
function is zero (positive, respectively). The languages

singular(K) = {M | Over K, M is not full rank}

rank bound(K) = {(M, r) | Over K, rank(M) < r}

for K = Z or Q are complete for C=L [3]. Note that for any type of matri-
ces, and any complexity class C, C-hardness of singular implies C-hardness of
rank bound. However the converse is not true:

Proposition 1. Restricted to diagonal matrices, singular(Z) is in AC0 while
rank bound(Z) and determinant are TC0-complete.

The rigidity function, and its decision version, are as defined below2. (Here
support(N) = #{(i, j) |ni,j �= 0}.)

RM (r)
def
= inf

N
{support(N) : rank(M + N) < r}

rigidK = {(M, r, k) | RM (r) ≤ k}

Lemma 1. (Valiant, folklore) Over any field F, RM (r + 1) ≤ (n− r)2.

3 Computing the Rank for Special Matrices

Computation of rank is intimately related to computation of the determinant.
Mulmuley [15] showed that over arbitrary fields, rank can be computed in NC
(with the the field operations as primitives). Over Z and Q, rank bound is
C=L-complete ([3]), and we wish to characterize its subclasses by restricting the

2 In much of the rigidity literature, rank(M + N) ≤ r is required. We use strict
inequality to be consistent with the definition of rank bound from [3].
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types of matrices. A natural approach is to use characterizations of matrix rank
in terms of associated combinatorial objects, like graphs. However, no known
parameter of the graph of a matrix characterizes the matrix rank in general.

The following is easy to see:

Proposition 2. The languages rank bound(Z) and singular(Z) remain hard
for C=L even if the instances are restricted to be symmetric 0-1 matrices.

However, we do not know similar hardness for determinant. While it remains
GapL hard for 0-1 matrices, it is not clear that there are GapL -hard symmetric
instances. (In a personal communication, Raghav Kulkarni has described to us
why symmetric instances are GapL -hard under Turing reductions.)

We now consider an additional restriction. A matrix M is said to be diagonally
dominant if for every i, |mi,i| ≥

∑
j �=i |mi,j |. (If all the inequalities are strict,

then M is said to be strictly diagonally dominant.) We show:

Theorem 1. singular(Z) restricted to non-negative diagonally dominant sym-
metric matrices is L-complete. The hardness is via uniform TC0-computable
many-one reductions.

Proof Sketch: This result exploits a very nice combinatorial connection between
such matrices and graphs. For a non-negative symmetric diagonally-dominant
matrix M , its support graph GM = (V,EM ) has V = {v1, . . . vn}, and EM =
{(vi, vj) | i �= j mi,j > 0}∪{(vi, vi) | mi,i >

∑
i�=j mi,j}. The following is shown

in [8] for R, and for matrices over Q this is same as the rank over Q.

Lemma 2 ([8]). Let M be a non-negative symmetric diagonally dominant ma-
trix of order n over Q or R. Then rank(M) = n − c, where c is the number of
bipartite components in the support graph GM .

Note: the presence of a self-loop means a component is non-bipartite.
Membership in L now follows easily. To show L -hardness, we start with the

L -hard problem of Undirected Forest Accessibility UFA and construct a graph
which has no bipartite components on Yes instances but exactly one bipartite
component on No instances. The graph construction is highly uniform, but going
from the graph to the associated matrix requires TC0 computations.  !
Corollary 1. The language rank bound(Z), restricted to instances that are
symmetric non-negative diagonally dominant, is L-complete.

Note that though rank for these matrices can be computed in L, we do not
know how to compute the exact value of the determinant itself. (Note that by
Theorem 1 this is hard for FL .) In a brief digression, we note the following: if a
matrix is to have no trivial (all-zero) rows, and yet be diagonally dominant, then
it cannot have any zeroes on the diagonal. How restrictive is this requirement?
In general, it isn’t too much so, as the following lemma shows. However, we do
not know of a many-one reduction.

Lemma 3. For every GapL function f and every input x, f(x) can be expressed
as det(M)− 1, where M has no zeroes on the diagonal. M can be obtained from
x via projections (each output bit is dependent on at most one bit of x).
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We also show via a somewhat different reduction that the L-hardness of
singular in Theorem 1 holds even if we allow negative values, but disallow
matrices with determinant other than 0 or 1.

Theorem 2. singular(Z) for symmetric diagonally dominant matrices is L
-hard, even when restricted to instances with 0-or-1 determinant.

Proof Sketch: As in Theorem 1, we begin with an instance (G, s, t) of UFA where
G has two components, and add edge (s, t) to obtain graph H . The Laplacian
matrix A of H is symmetric and diagonally dominant, and by the matrix-tree
theorem, (see for e.g. Theorem II-12 in [4]), the determinant of its (1,1) minor
counts spanning trees in H . But the number of spanning trees in H is 1 if s ��G t
(H itself is a tree) and is 0 if s �G t (H still has two components).  !
The next restriction we consider is tridiagonal matrices: mi,j �= 0 =⇒ |i− j| ≤ 1.
We show that determinant and permanent are in GapNC1, by using bounded-
width branching programs BWBP . In the the Boolean context, BWBP equals
NC1. However, in the arithmetic context, they are not that well understood.
It is still open ([1,7]) whether the containment #BWBP ⊆ #NC1 is in fact an
equality. Layered planar BWBP are the G-graphs referred to in [2]. Counting
paths in G-graphs may well be simpler than GapNC1 due to planarity. However
[2] (see also [1]) shows that even over width-2 G-graphs, it is hard for NC1. We
show that the permanent and determinant of tridiagonal matrices are essentially
equivalent to counting in width-2 G-graphs.

Theorem 3. Computing the permanent of a non-negative tridiagonal matrix
over Z is equivalent to counting paths in a layered planar BWBP of width 2.

Proof. Given a tridiagonal matrix A, let Ai be the top-left submatrix of A of
order i, and let Xn and Yn denote its permanent and determinant respectively.
We have the following recurrences:

X0 = Y0 = 1 X1 = Y1 = a1,1

Xi = ai,iXi−1 + ai−1,iai,i−1Xi−2 Yi = ai,iYi−1 − ai−1,iai,i−1Yi−2

When all entries are 0-1, then it is easy to see that the branching program for
Xn has width 2 and can be drawn in a layered planar fashion.(see below).
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When the entries are larger, each edges can be replaced by a width-3 gadget
with the appropriate number of paths in a standard way, giving width 5. If there
are negative entries, or when we are computing the determinant, we need to
either allow negative weights, or double the width and lose planarity.
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To see the other direction, notice that any layer of a width-2 BWBP should
look like one of the structures shown in figure.

Now any width-2 graph G corresponding to the BP can be encoded as a
sequence of D and U components. First suppose that the encoded string has al-
ternate DU . By just reading off the weights on the
corresponding edges in the graph, we can produce
two matrices M1 and M2 such that permanent
of M1 and the determinant of M2 (by putting in
appropriate negations) computes the number of
weighted s-t paths in the graph.

◦ a 		
b

















 ◦ ◦ d 		◦

◦
c

		 ◦
f

		

e

��������� ◦

D U

Now it is sufficient to argue that the graph corresponding to any BWBP can
be transformed to this form. If the string does not start with a D we will just
put in a prefix D with def = 101. We need to handle the case when there are
two UU and DD. Simply put in a D with def = 101 in between two U and a
U with abc = 101 in between two Ds. Notice that the new width-2 graph when
encoded will have only DU , and the weight of the paths are preserved in the
transformation. The above reduction now gives the two matrices M1 and M2.

In addition, observe that if the BWBP has 0,1 weights then the matrix M1

that we produce is also 0,1 and M2 will have entries from {−1, 0, 1}.  !

Corollary 2. Computing the permanent and determinant of a tridiagonal ma-
trix over Z is in GapNC1 and is hard for NC1 under AC0[5] reductions.

4 Complexity Results on Rigidity

In this section we study the problem of computing matrix rigidity, rigidK, and
also its restriction rigidK,S defined below, where the matrices can have entries
only from S ⊆ K.

rigidK,S =
{

(M, r, k) | M over S, ∃M ′ over S :
rank(M ′) < r ∧ support(M −M ′) ≤ k

}
We will mostly consider S to be either all of K, or only B = {0, 1}. We also
consider the complexity of rigid when k is fixed, via the following language:

rigidK,S(k) = {(M, r) | (M, r, k) ∈ rigidK,S}

As mentioned in the introduction, matrix rigidity and matrix completion are
related. The MinRank problem takes as input a matrix with variables, and asks
for the minimum rank achievable under all instantiations of the variables in the
underlying field, see for instance [6]. 1-MinRank is its restriction where every vari-
able occurs at most once, and is also called minimum rank completion. MaxRank
and 1-MaxRank are similarly defined. The naive algorithm for rigidity, mentioned
in the introduction, easily translates to an upperbound of NP(1-MinRank). While
MinRank over Z is undecidable [6], this hardness proof does not carry over for
1-MinRank. Nonetheless, the best known upper bound for 1-MinRank is r.e.. Thus
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the naive algorithm does not give any reasonable upper bound for rigid. On the
other hand, we do not know any hardness result for rigid over Q or Z either.

We now consider restricted versions of the problem. The language rigidZ(0) is
complete for C=L, by [3]. When k > 0, we can still obtain some bounds provided
S is finite. We have the following completeness result for one such case.

Theorem 4. For each fixed k, rigidZ,B(k) is complete for C=L.

Proof Sketch: We show that for each k, rigidZ,B(k) is in C=L. For a fixed
k, there are only polynomially many changed matrices possible. Checking the
rank of each of them can be done in C=L. Since C=L is closed under logspace
disjunctive truth-table reductions the membership follows.

To show corresponding hardness, note that the hardness for rigidZ,B(0) holds
because singular remains C=L-hard even when restricted to 0-1 matrices. Hard-
ness for all the languages mentioned in the lemma also follows from this fact,
and from the following claim:

M ∈ singular(Z) =⇒ (M ⊗ Ik+1, n(k + 1)− k) ∈ rigidZ,B(0) ⊆ rigidZ,B(k)
M �∈ singular(Z) =⇒ (M ⊗ Ik+1, n(k + 1)− k) �∈ rigidZ(k)

Here ⊗ denotes tensor product and Ik+1 denotes the (k + 1) × (k + 1) identity
matrix. Note that rank(M ⊗ Ik+1) = (k + 1)rank(M). The claim essentially
follows from the fact that over any field F, if two matrices M and N of the same
order differ in exactly one entry, then their ranks can differ by at most 1.  !

We also note that this result holds for any finite S, even if S is not fixed a priori
but supplied explicitly as part of the input. The hardness of Theorem 4 essentially
exploits the hardness of testing singularity. Therefore we now consider the com-
plexity of rigid at the singular-vs-non-singular threshold, i.e. when r = n. From
Lemma 1 we know that over any field F, (M,n, k) is in rigid whenever k ≥ 1.
And (M,n, 0) is in rigid if and only if M ∈ singular(F). So the complexity of
deciding this predicate over Q is already well understood. We then address the
question of how difficult it is to come up with a witnessing matrix.

Theorem 5. Given a non-singular matrix M over Q, a singular matrix N sat-
isfying support(M −N) = 1 can be constructed in LGapL.

Another question that arises naturally is the complexity of rigid at the singular-
ity threshold over rings. Note that Lemma 1 does not necessarily hold for rings.
For instance, changing one entry of a non-singular rational matrix M suffices
to make it singular. But even if M is integral, the changed matrix may not be

integral, and over Z, RM (n) may well exceed 1. (It does, for the matrix
[

2 3
5 7

]
.)

Thus, the question of deciding RM (n) over Z is non-trivial. We show:

Theorem 6. Given M ∈ Z
n×n, deciding if (M,n, k) is in rigid(Z) is (1) trivial

for k ≥ n, (2) C=L complete for k = 0, and (3) in LGapL for k = 1.
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In particular, (3) above implies that if over Z, RM (n) = 1, then the non-zero
entry of a witnessing matrix is polynomially bounded in the size of M .

However, if RM (n) > 1 we do not know such a size bound. To demonstrate
this difficulty, consider the case in which k = 2. Following the general idea
in Theorem 5, for each choice of two entries in the matrix, replace them by
variables x and y. This defines a family of

(
n
2

)
= O(n2) matrices and a fam-

ily P of bilinear bivariate polynomials representing the corresponding determi-
nants. The coefficients of each p ∈ P can be computed in GapL. Now, to test
if RM (n) ≤ 2, it suffices to check if at least one of the Diophantine equations
defined by p ∈ P (or equivalently, the single multilinear Diophantine equation
q(x1, x2 . . . , y1, y2 . . .) =

∏
p∈P p(xp, yp) = 0 ) has an integral solution.

5 Computing Bounded Rigidity

We now consider the bounded norm variant of rigidity described in Section 1:
changed matrix entries can differ from the original entries by at most a pre-
specified amount θ. Formally, the functions of interest: the norm rigidity ΔM (r)
and bounded rigidity RM (r, θ),as defined in [13], and the decision version, are

ΔM (r)
def
= inf

N

⎧⎨⎩∑
i,j

|ni,j |2 : rank(M + N) < r

⎫⎬⎭
RM (r, θ)

def
= inf

N
{support(N) : rank(M + N) < r, ∀i, j : |ni,j | ≤ θ}

b-rigidK = {(M, r, k, θ) | RM (r, θ) ≤ k}

Over Z, the naive algorithm for b-rigidZ is now in NP . However over Q, the
bound θ still does not imply an a priori poly-size bound on the changed entries.
Thus, unlike in Section 4, here computation over Q appears harder than over Z.

The following lemma shows that the bounded rigidity functions can behave
very differently from the standard rigidity function.

Lemma 4. For any ε, and for any sufficiently large n such that n
log n > ε + 1,

there is an n× n matrix M over Q such that RM (n) = 1, ΔM (n) = Θ(4n), and
the bounded rigidity RM (n, nε) is undefined.

Since for a given a matrix M , a rank r and a bound θ, RM (r, θ) can be undefined,
we examine how difficult is it to check this. We show the following:

Theorem 7. Given a matrix M ∈ Qn×n, and a rational number θ > 0, it is
NP-complete to decide whether RM (n, θ) is defined, and if Yes, is at most k.

Proof. RM (r, θ) ≤ k iff there is a matrix N of rank r such that ∀i, j : mi,j − θ ≤
ni,j ≤ mi,j + θ and mi,j �= ni,j for at most k positions (i, j). A natural approach
is to guess the ni,j ’s and compute the rank of N . However, for an NP upper
bound, we need to show that if such an N exists, then in fact there exists such
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an N ′ with entries having a bounded (poly sized) representation in terms of the
input size. In [18] and [16], a poly-size bound is shown for the case when r = n.

For two matrices A and B, we say that A ≤ B if for each i,j, Ai,j ≤ Bi,j .
For A ≤ B, the interval of matrices [A,B] is the set of all matrices C such that
A ≤ C ≤ B. An interval is said to be singular if it contains at least one singular
matrix. Let J be the all 1-s matrix. Then the interval [M−θJ,M+θJ ] is singular
if and only if RM (n, θ) is defined. Now the hardness follows from a result from
[16] showing that checking interval singularity is NP-hard.  !

It is easy to see that, by clearing denominators, we have hard instances where
M, θ take integral values. Thus, the hardness result holds for Z as well.

Unravelling the NP algorithm described in the membership part above, and
its proof of correctness, is illuminating. Essentially, what is established in [18]
and used in [16] is the following:

Lemma 5 ([18]). If an interval [A,B] is singular, i.e. the determinant vanishes
for some matrix C within the bounds A ≤ C ≤ B, then the determinant vanishes
for a matrix D ∈ [A,B] which, at all but at most one position, takes an extreme
value (di,j is either ai,j or bi,j).

In particular, this implies that there is a matrix in the interval whose entries
have representations polynomially long in that of A and B. This can be seen
as follows: Let D be the matrix claimed to exist as above, and let k, l be the
(only) position where akl < dkl < bkl. The other entries of D match those of
A or B and hence are polynomially bounded anyway. Now put a variable x at
k, l to get matrix Dx. Its determinant is a univariate linear polynomial αx + β
which vanishes at x = dkl. Now α and β can be computed from Dx in GapL ,
and hence are polynomially bounded. If α = 0, then β = 0 and the polynomial
is identically zero. Otherwise, the zero of the polynomial is −β/α. Either way,
there is a zero with a polynomially long representation.

In [18], the above lemma is established as part of a long chain of equivalences
concerning determinant polynomials. However, it is in fact a general property of
arbitrary multilinear polynomials, as we show below.

Lemma 6 (Zero-on-an-Edge Lemma). Let p(x1 . . . xt) be a multilinear poly-
nomial over Q. If it has a zero in the hypercube H defined by [�1, u1], . . . [�t, ut],
then it has a zero on an edge of H, i.e. a zero (a1, . . . , at) such that for some k,
∀(i �= k), ai ∈ {�i, ui}.

Proof. The proof is by induction on the dimension of the hypercube. The case
when t = 1 is vacuously true, since H is itself an edge. Consider the case t = 2. Let
p(x1, x2) be the multilinear polynomial which has a zero (z1, z2) in the hypercube
H ; �i ≤ zi ≤ ui for i = 1, 2. Assume, to the contrary, that p has no zero on
any edge of H . Define the univariate polynomial q(x1) = p(x1, z2). Since q(x1) is
linear and vanishes at z1, p(�1, z2) and p(u1, z2) must be of opposite sign. But the
univariate linear polynomials p(�1, x2) and p(u1, x2) do not change signs on the
edges either, and so p(�1, u2) and p(u1, u2) also have opposite sign. By linearity of
p(x1, u2), there must be a zero on the edge x2 = u2, contradicting our assumption.
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Let us assume the statement for hypercubes of dimension less than t. Consider
the hypercube of dimension t and the polynomial p(x1, . . . xt). Let (z1 . . . zt) be
the zero inside the hypercube. The multilinear polynomial r corresponding to
p(x1, . . . xn−1, zt) has a zero inside the (t− 1)-dimensional hypecube H ′ defined
by intervals [�1, u1], . . . [�t−1, ut−1]. By induction, r has a zero on an edge of
H ′. Without loss of generality, assume that this zero is (z′1, α2 . . . αt−1) where
αi ∈ {�i, ui}. Thus the polynomial q(x1, xt) = p(x1, α2 . . . αt−1, xt) has a zero in
the hypercube defined by intervals [�1, u1], [�t, ut]. Hence the base case applies
again, completing the induction.  !

Analogous to Theorems 4, 5 and 6, we consider b-rigidK when k ∈ O(1).

Theorem 8. b-rigidQ and b-rigidZ are C=L-hard for each fixed choice of k,
and remain hard when r = n. When k = 1 and r = n, b-rigidQ is in PL ,
while b-rigidZ is in LGapL.

Proof Sketch: For any k, (M,n, k, 0) ∈ b-rigidK ⇐⇒ M is singular; hence
C=L-hardness.

To see the PL upper bound over Q, let θ = p
q . For each element (i, j), define

the (i, j)th element as variable x and then write the determinant as ax + b. Thus,
if |x| = | ba | ≤

p
q for at least one such (i, j) pair, we are done. This is equivalent to

checking if (bq)2 ≤ (ap)2. a and b can be written as determinants, hence (ap)2 and
(bq)2 are GapL functions, and comparison of two GapL functions can be done in PL.
Since PL is closed under disjunction, the entire computation can be done in PL.

Over Z, q = 1 and θ = p, but we need an integral value for x as well. That is, we
want an (i, j) pair where | ba | ≤ θ and a divides b. This can be checked in LGapL.  !

6 Discussion

While the matrix rigidity problem over finite fields is NP -complete ([10]), we
can consider restricted versions there too. It is known [5] that singular(Fp)
is complete for ModpL (computing the exact value of the determinant over Fp

is in ModpL.), and that (see e.g. [1]), for any prime p, rank bound(Fp) is in
ModpL. Using this, and closure properties of ModpL, we can obtain analogues of
Theorem 4 and 5 over Fp.
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Abstract. Retrieval of images based on the content is a process that requires the 
comparison of the multidimensional representation of the contents of a given 
example with all of those images in the database. To speed up this process, 
several indexing techniques have been proposed. All of them do efficiently the 
work up to 30 dimensions [8]. Above that, their performance is affected by the 
properties of the multidimensional space. Facing this problem, one alternative is 
to reduce the dimensions of the image representation which however conveys 
an additional loss of precision. Another approach that has been studied and 
seems to exhibit good performance is the clustering of the database. On this 
article we analyze this option from a computational complexity approach and 
devise a proposal for the number of clusters to obtain from the database, which 
can lead to sublinear algorithms. 

1   Introduction 

The retrieval of image takes place in a multidimensional space which is an abstract 
representation of the images in the database. It is the result of applying some analysis 
and processing techniques which processes the contents of the images and maps them 
to a multidimensional point, where each dimension can be, for example, a value of a 
bin of a color histogram [1]. The same process is applied to an image supplied as a 
query. Then this query point (or feature vector) is compared to all of those in the 
database. This process measures the similarity between them by computing some kind 
of distance, usually the Euclidean distance (L2). The aim is to find the set of k most 
similar images in the database to the query; this is called k nearest neighbor (kNN) 
query processing which is the most usual kind of queries in content based image 
retrieval (CBIR) systems.  

Processing kNN queries sequentially for a large database is inefficiently. Indexing 
methods, following a space or a data partitioning approach [2], allows to quickly find 
interesting regions and thus retrieving the set of k objects of interest. Cases of space 
partitioning are the X-tree [3] and the R-tree [4] and their derivatives, which are 
implemented using the vector space model, they take into consideration topological 
characteristics of the data space and to prune non interesting regions for higher 
dimensions it must visited almost all tree nodes, thus degrading their performance. 
Data partitioning methods can use a metric space representation [5][6] of 
multidimensional points. Thus the only consideration between images is their distance 
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and takes advantage of the triangle inequality to find interesting ones. Notable 
approaches are M-tree [7] and iDistance [8]. The M-Tree is a balanced tree which 
optimizes disk IO’s and distance evaluation costs. The iDistance order the 
multidimensional points based on their distance, and then uses a single dimensional 
B+Tree to process queries. This process still conveys a high cost in distance 
calculations which makes the CBIR process computationally expensive and the 
complexity increase exponentially with the number of dimensions. 

Clustering, is a process that reduces the searching space by partitioning the images 
of the database into groups based on their similarity, the idea is to glue together 
images in a preliminary step, then to use a structure to find interesting cluster 
containing possibly the searched images [9][10][11], so a query can find in a cluster 
or relatively small set of clusters the images satisfying a kNN query. Though in 
clustering methods it must still be computed the distance to find the clusters of 
interest, they take advantage of a precomputed representative of each cluster, often 
called centroid. All the clusters centroids, act then as a general index of the database.  

In this paper, our aim is to make a complexity analysis of the CBIR process using a 
clustering approach and to suggest a value to the number of clusters to partition the 
database so that the retrieval process can achieve a sublinear performance.  

The rest of the article is structured as follows, in the next section we present our 
analysis for the estimated complexities of searching process in general, then in section 
3 we state our conditions and derive the proposal based on the clustering of the 
database and section 4 reports some test on synthetic data, finally section 5 concludes. 

2   Searching Without Clustering 

The main problem CBIR face is the course of dimensionality. This means that it is not 
possible to index efficiently points in high dimensions. In general it was reported an 
average supported 15 dimensional space [12] for indexing methods, above that their 
performance is comparable with sequential search. Even when a recent proposal, the 
iDistance, reports performance up to 30 dimensions it has not been proved its limits.  

The table 1 gives the principal complexities for the retrieval of k images in a 
database of size n, where k is a constant independent of and smaller than the size n. 

The queries independent of the size of the database but tied to the result seems 

difficult to achieve. However, constant searches in O(p) and those in ( )nΟ  could be 

possible. In the notations, the factor log2n is an optional sort. 

Table 1. Some complexities for searching in a database of n images, eventually the k best with 
k<<n 

constant [ ]( )kk 2logΟ  

logarithmic [ ]( )kkn 22 loglog +Ο  = ( )n2logΟ  as [ ] nkk 22 loglog ≤  

Square root [ ]( )kkn 2log+Ο  = ( )nΟ  as [ ] nkk ≤2log  

linear [ ]( )kkn 2log+Ο  = ( )nΟ  as nkk ≤2log  

sorted ( )nnn 2log+Ο  
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In general, processing a query in logarithmic time is impossible because of the 
dimensionality of the space. However, when the number of dimensions is small 
enough it can be possible to use X-Trees, M-Tree or iDistance. But it implies that the 
image description is limited to small sizes, thus we can not represent with fidelity all 
the features’ content of the images. Besides the above mentioned cases, which are not 
general, CBIR has linear performance. In the worst case the sequential search is 
followed by a general sort of the database, which gives the upper bound of an 

algorithm for CBIR, ( )nn 2logΟ . 

In practice, it must be taken into consideration not only the number of images n, 
but also the size of their abstract representation m. The relation between them is a 
constant nm ⋅= λ , more λ is bigger more are the repercussions on the 
performances. As an alternative to indexing we analyze the case of CBIR using a 
clustering of the database in the next section. 

3   CBIR Using Clustering 

To avoid the performance degradation exhibited by indexing methods, it is possible to 
proceed with a reduction of dimensions or a clustering process.  

Dimensionality reduction is a process that transforms the data space into another 
less complex, but to be worth for CBIR, this transformation process must take into 
consideration as much as possible the characteristics of the initial space, to preserve 
them to that of arrival. For this reason, the weakness of dimensionality reduction 
approaches is an additional loss of precision. We are not going to discuss further 
about them. 

Clustering suffers a priori of the same general problem of indexing methods. 
Indeed, multidimensional points are used as abstract representation of actual images 
and the searching process can not avoid distance calculations. But the intention is to 
compute as less as possible of them; and clustering methods can help by grouping 
together similar images in a compact entity, the cluster. Although clustering processes 
are computationally expensive, they can be executed off line in a preliminary step. 
Here, we do not suggest a specific clustering process but k-means is a process that can 
be used in conjunction with our proposal as it can accept, as an input, the desired 
number of clusters. Here we concentrate into taking advantage of it to provide 
efficient CBIR. 

Assume the case of a search via some data clustering, then we can write the generic 
complexity as: 

O(f(C)) + O(g(C')) (1) 

Where: 
 

• |C|≤ n is the number of clusters produced by a classification algorithm; 
• f(C) is the search complexity on the clusters; 
• |C’|≤|C| is the number of clusters susceptible of contain enough similar 

images; 
• g(C’) is the search complexity on the C’ clusters of multidimensional points. 
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The standard complexities for f(C) and g(C) are reported in tables 2 and 3, 
respectively. 

We can observe from table 2 that the logarithmic traversal of a clustered database, 
supposed hierarchical and well balanced, presents little importance. In fact, it sets a 
weak limit on the number of clusters susceptible of containing enough images of 
interest: C’ ≤ log2C. We will see that this hypothesis imposes a restriction (c.f. C’sup in 
table 4). 

Table 2. Some complexities f(C) for the sequential traversal of C clusters 

Constant ( )'CΟ  

Logarithmic )'(log2 CC +Ο  

linear ( )CΟ  

Table 3 has a rewrite of the complexities of table 1, estimating that each cluster is 

in average of the same size, assume it is ⎟
⎠
⎞

⎜
⎝
⎛Ο

C

n . The eventual complexities of results 

merging are inferior to those of each cluster; i.e, in the case constant, the selection for 

each cluster in [ ]( )kkC 2log'Ο , can be followed by a step of merging that is in 

( )kC 'Ο  even with a naïve algorithm. 

Table 3. Some complexities g(C) for searching in a database of n images, with eventually the 
best k, with k <<n 

constant [ ]( )kkC 2log'Ο  

logarithmic [ ]⎟
⎠
⎞

⎜
⎝
⎛ +Ο kkC

C

n
C 22 log'log'  

square root 
[ ]⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Ο kkC

k

n
C 2log''   

linear [ ]⎟
⎠
⎞

⎜
⎝
⎛ +Ο kkC

C

n
C 2log''  

sorted 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ο

C

n
C

C

n
C 'log' 2

 

The generic complexity (1), introduce an optimization problem. Which in order to 
achieve optimal processing it should satisfy the following constraints: 

 

• to minimize O(g(C')) as a function of the number of candidate classes, i.e., 
|C'| << |C|, and the number of the selected classes; 

• to ensure that O(f(C)) ≤ O(g(C')); 
• to ensure that |C| << n. 
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Let us consider the worst case with: 

• a linear selection of the clusters; 
• a sequential scan within each selected cluster; 
• a full sort based on the concatenation of the results issued from the selected 

clusters. 
 

Lemma 1 (upper bound for retrieval using clustering). Under the abovementioned 
conditions, the general complexity in (1) becomes: 

                           ( ) ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅⋅+⋅Ο+Ο

C

n
C

C

n
C

C

n
CC 'log'' 2

 (2) 

An thus, the searching algorithm based on data clustering is optimal in 
( )nn 2logΟ , with clusters of size: 
 

nnC 2log= ; .log' 2 nC ≤  and clusters of similar cardinalities. 
 

Proof. First simplify by setting C’=1. Then let propose nC =  and substituting in 
equation (2) gives a complexity in 

( ) ( )nnnn
n

n
n

n

n
n 222 logloglog Ο=Ο=⎟

⎠
⎞

⎜
⎝
⎛ +Ο  

with a multiplicative constant equal to 
2

1 . Second, let also propose nnC 2log= , 

then equation (2) becomes:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ο=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Ο

nn

n
n

nn

n
nn

nn

n
n

nn

n
nn

2
2

2
2

2

2

2

2 log
log

log
log

log
log

log
log  

( )nnnn
n

n
nn 2222

2
2 loglogloglog

2

1

log
log Ο=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+Ο=  

The second proposition makes asymptotically equal the two terms, that is to say the 
optimal algorithm. Having said that, the complexity of the two approaches are the 
same. They define a range of validity for the number of clusters. 

Substituting the proposed cardinalities, the complexity  of (2) becomes 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅+⋅+

nn

n
n

nn

n
n

nn

n
nOnnO

2

22

2

2

2

22
log

loglog
log

log
log

loglog , 

i.e., 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅++ nnnOnnO 222 log

2

1
loglog  which is certainly in ( )nnO 2log          ■ 
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Notice that from the proof it can be derived some algorithmic variations, from optimal 

to suboptimal in ( )nn 2
2logΟ , under the conditions less restrictives, 

[ ]nnnC 2log,∈  and C’≤ log2n, the optimal case can be obtained with a near 

multiplicative factor λ, since C’ is small and independent of n. 

Table 4. Illustration of usability conditions for some sizes of images databases, assuming small 
sizes for personal collections then bigger for professional 

n 1, 024 8,192 32,768 1,048,576 33,554,432 
Cinf n  32 91 181 1,024 5,793 
Csup nn 2log  320 1,177 2,715 20,480 144,815 
n’inf n

C

n =
inf

 
32 91 181 1,024 5,793 

n’sup n
C

n
2

inf

log=  
3 7 12 51 232 

Selectivity [ ]
n

1λ  
3,13 % 1,10 % 0,55 % 0,10 % 0,02 % 

C’inf   n
n

n

n

2
inf

log=  1 1 1 1 1 

C’sup    n
n

n

n

2
sup

log=  11 13 15 20 25 

Speedup 

n
nn

nnn ≈+

2

2

log

log  35 97 193 1,075 6,024 

 
This lemma is important since, thanks to the clustering hypothesis, it allows the 

design of a sub-linear search by-content algorithm, using basic algorithms which are 
not. The proposed algorithm is order of magnitudes under the sequential scan, though 
it is still much slower than the best theoretical achievement which would be in log2 n. 

Additionally, this lemma gives us the (asymptotic) optimal number of classes (i.e., 
it accepts small variations), which can be used as a parameter by the clustering 
algorithm. Table 4 shows computed values for different database sizes arranged in 
columns. 

4   Experiments 

To test the actual efficiency of our proposal, we have developed an experimental 
platform. (It is written in Java 1.5 running on a Pentium processor at 3 GHz with 1 
GB of main memory). We generated synthetic clusters following the normal  
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Fig. 1. Processing time for 50 kNN queries using different dataset dimensionalities 

100knn,10e7

0

100

200

300

400

dim

tm
se

c min

max

avg

min 187 187 203 234 265 296 328

max 219 204 285 313 282 313 359

avg 196.69 199.14 227.08 255.65 277.27 305.76 337.63

10 20 50 100 150 200 250

 

Fig. 2. Processing time for 100 kNN queries using different dataset dimensionalities 

distribution for dimensions 10,20,50,100,150, 200 and 250 dimensions. The databases 
varied in size but here we show results for 107. The test consisted in generating 1000 
random queries, then to process kNN queries for k=50,100, 200 and 300. 

Searching process scans and prunes clusters centroids at the first time and the 
selection of the most interesting ones is based on their distance from the query point. 
No indexing structure is used and all the centroids and data points are stored in disk. 
Thus, measuring the behavior on the worst case as the centroids could fit into main 
memory and hence speeding up the pruning process. 
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Fig. 3. Processing time for 200 kNN queries using different dataset dimensionalities 
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Fig. 4. Processing time for 300 kNN queries using different dataset dimensionalities 

We can observe that results are lightly influenced by the dimensionality of the 
dataset. This is due to the reduced searching space provided by the partitioning of the 
database into clusters of similar images thus reducing the time to seek for interesting 
regions. Also the size of the clusters make unnecessary to speed up the search process 
at the interior of each one of the selected ones. Just the merging process altogether 
with a pruning of the result to satisfy k is necessary. 
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5   Conclusions 

Here we have presented a proposal for partitioning a database into a set of clusters. 
The proposal gives under worst case assumptions a range of acceptable values for the 
number of clusters. If we consider voluminous databases the proposal can then be 
used as a parameter estimation to the number clusters to place in the parallel machine. 
This is indeed a further work, altogether with experiments for non uniform cluster 
sizes, as derived analytically. 
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Abstract. Traffic pattern is a point of concern in today’s modeling approach of 
network-based computing systems including NoC's and Clusters. Hypermesh is 
a promising network topology suitable for a range of networks. Although there 
are few models reported for hypermeshes with uniform traffic pattern, no 
analytical model has been reported yet that deal with hotspot traffic load. Since 
uniform traffic assumption is not always justifiable in practice as there are 
many parallel applications that exhibit non-uniform traffic patterns, which can 
produce hotspots in the network, in this study we propose a novel analytical 
model to analyze the mean message latency in wormhole-switched hypermesh 
in the presence of hot-spot traffic.  

Keywords: Performance modeling, Interconnection network, Hypermesh, Hot-
spot traffic. 

1   Introduction 

An n-dimension radix-k hypermesh is a regular topology that consists of k nodes in 
each dimension. Instead of having direct connection to the neighbors in each 
dimension, as in mesh and k-ary n-cube, each node in the hypermesh is connected to 
all the nodes in each dimension [1]. This topology has a very low diameter, and the 
average distance between nodes scales very well with network size. The hypermesh 
[6] has been well-evaluated using simulation experiments. Few works have been 
conducted on the performance modeling and analysis of hypermeshes [10, 11]. These 
models deal with uniform traffic pattern and adaptive routing.  

Since uniform traffic assumption is not always justifiable in practice, in this study 
we propose a new analytical model to analyze the mean message latency in 
wormhole-switched hypermesh in the presence of hot-spot traffic. To our knowledge, 
no performance model has been proposed for hypermeshes under the non-uniform 
traffic load, such as hotspot traffic, with fully adaptive routing. Our analysis reveals 
that the proposed model exhibits good accuracy even under heavy traffic loads and 
near saturation region where other models usually fail to predict the behavior of the 
network. 
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2   The Hypermesh 

The hypermesh topology HMk,n, has ( ) nkHMN =  nodes, arranged as n dimensional 

grid with k node in each dimension. Nodes in each dimension are connected together 
as a complete graph. A node in an n-dimension hypermesh with radix k consists of a 
processing element and a router. The processing element is comprised of a processor 
and a local memory. The router has n(k-1) input physical channels as well as an 
injection channel and n(k-1) output physical channels in addition to an ejection 
channel. The router contains flit buffers for each incoming channel. The flit buffers 
associated with each channel may be organized into several lanes (or virtual 
channels), and the buffers in each virtual channel can be allocated independently [7]. 
The input and output virtual channels are connected by a crossbar switch that can 
simultaneously connect multiple input channels to multiple output channels given that 
there is no contention over the output channels. Assuming that each physical channel 
in the hypermesh network is associated with V virtual channels, a ( )( ) Vkn ⋅+−⋅ 21 -
way crossbar switch inside the router directs messages from any input channel to any 
output channel.  

The HMk,n is regular and symmetric, has a node degree of ( ) ( )1dN HM n k= ⋅ − , a 

diameter of ( ) nHMd = , and ( )( ) 1nCh HM k k n= ⋅ − ⋅  channels.  

Deadlock free fully adaptive routing in the hypermesh [3] requires V  virtual 
channels per physical channel to ensure deadlock freedom, where V virtual channels 
are split into two classes A and B. Class A contains V1 virtual channels, while Class B 
includes V2 virtual channels. Virtual channels of class A are used by a fully adaptive 
routing function, and virtual channels of class B are used by a deadlock-free routing 
function. As the deadlock free routing used in this study is dimensioned-ordered 
routing, therefore in our simulation we set the value of V1 to one and the value of V2 to 
(V-1). The main reason behind this assumption is to use virtual channels efficiently. 
The minimum virtual channels required to ensure deadlock freedom is then two, one 
in class A and one in class B. 

3   The Analytical Model 

The model uses assumptions that are widely used in the literature [3-5, 8, 9]: 

1) According to the traffic model used to generate hot-spot traffic load, each 
generated message at a source node is destined to the hot-spot node with the 
probability of α  and to other nodes of the network with the probability of (1 )α− . 

Let us refer to these two types of messages as hot-spot and regular messages, 
respectively [12].  
2) The proposed model assumes that there is one hot-spot node in the network.  
3) Nodes generate traffic independently of each other, which follows a Poisson 
process with a mean rate of 

gλ  messages/cycle, consisting of regular and hot-spot 

portions of ( ) gλα−1  and 
gαλ , respectively. The destination node of a regular 

message is randomly chosen among network nodes. 
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4) Messages are assumed to have fixed length of msgl flits. The transfer time of a 
flit between any two adjacent nodes is assumed to be one cycle. Also, intra-node 
delay is assumed to be equal to the delay of routing arbitration applied to the 
header flit and is assumed to be rt  unit cycles. 
5) Messages at the destination node are transferred to the local PE one at time via 
the ejection channel. 
6) To implement a fully adaptive routing V virtual channels are used per physical 
channel: V1 virtual channels are used by the fully adaptive routing sub-function 
and V2 virtual channels are used by the deterministic (deadlock free) routing sub-
function. To simplify the model derivation, no distinction is made between the 
deterministic and adaptive virtual channels when computing the different virtual 
channels occupancy probabilities [4]. 

The mean message latency is composed of the mean network latency, S , that is, 
the time to cross the network and the mean waiting time seen by a message in the 
source node, 

sW . However, to capture the effects of virtual channels multiplexing, the 

mean message latency has to be scaled by a factor, V , representing the average 
degree of virtual channels multiplexing that takes place at a given physical channel. 
Therefore, we can write the mean message latency as [4]: 

( ) VWSLatency s ×+=  (1) 

If rS  and hS  denote the mean network latency for regular and hot-spot messages, 
respectively, the mean network latency of the network, taking into account both types 
of messages, can be given by: 

( ) hr SSS ..1 αα +−=  (2) 

Therefore, the mean network latency for regular messages can be formulated as 

( )( ) ( )
( )

,
, ,

1
  

1 1
r S Dn n

S D G G D H

S S
k k ∈ × ≠

=
− − ∑  

(3) 

where ( )DSS ,  is the network latency seen by a regular message originated from a 

specific source node S, and destined to another specific destination node D. Therefore, 

( )
( ) ( )( ) ( ) ( )DS

rBlockingssr
DS

rlockingNodalonTransmissiDS TtmsglttDSDiffTTTS ,
,

,
,, , +⋅++=++= B

 (4) 

where ( )DS
rBlockingT ,

,
 is the mean blocking time seen by the regular message traveling 

between S and D . We can divide the nodes into n groups, each group consists of the 
nodes located j hops away from the hot-spot node where nj ≤≤1 . Taking into 

account the number of nodes in each group, ( )( ) jn
j k 1− , the mean network latency for  

hot-spot messages can be calculated as  
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( )( )( )
1

1
1

,

−

×−
=
∑

=
n

n

j
jh

jn
j

h k

Sk

S  (5) 

where 
jhS ,
 is the network latency seen by a hot-spot message originated from a node 

located j hops away from the hot-spot node. Therefore, 
jhS ,
, considering both static 

and dynamic delay parts, can be calculated as 

( ) ( ), ,
1

j

h j r s s Blocking i
i

S j t t msgl t T
=

= ⋅ + + ⋅ +∑  (6) 

where 
iBlockingT ,
 is the mean blocking time seen by the hot-spot message at its ith hop 

along the path to the destination node. 
In order to calculate the blocking time of a j-hop hot-spot message, the aggregation 

of all blocking times on the nodes over which the message may traverse should be 
calculated. Since all possible nodes which the message may visit on the ith hop of its 
path are located ( )ij −  hops away from the hot-spot node, the blocking times of the 

message on these nodes are equal. Therefore, it is better to classify the blocking times 

according to the message’s steps along its path. Hence, we have the term ∑
=

j

i
iBlockingT

1
,

 

for the total blocking time that a j-hop hot-spot message sees.  
Blocking time of a hot-spot message in the ith step of its path is approximated by 

the product of ( )ijP Block
i −  which is the blocking probability of the hot-spot message 

on the node located j-i hops away from the hot-spot node to the mean waiting time 
tolerated by the message on the given node to acquire a virtual channel. Thus, 

( )ijPWT Block
iijhiBlocking −×= −,,

 (7) 

We have to find all possible nodes on which the message may position along its 
path and then adding up all blocking times tolerated by the given message on these 
nodes. Thus, we have 

( ) ( )
( )
∑

∈
=

DSGx
Blocking

DS
rBlocking xTT

,

,
,

 (8) 

where ( )DSG ,
 is the set of all nodes located in at least one of the minimal paths 

between (S,D) pair. The blocking time for a regular message on node x, ( )xTBlocking
, is 

approximated by the product of the probability of blocking on the given node and the 
minimum waiting time tolerated by the message to acquire a  virtual channel at the 
given node. Therefore, we have 

( ) ( ) ( ) xr
Block

DSBlocking WxPxT ,, ×=  (9) 

Average message arrival rate on a specific channel consists of two parts, the arrival 
rate of hot-spot messages and the arrival rate of regular messages. Consider the set J 
of all channels located j hops away from the hot-spot node. For a specific channel that 
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is j hops away from the hot-spot node, the number of source nodes located at a 
distance of i hops from the given channel and (i + j) hops from the hot-spot node that 
their hot-spot message traverses the given channel with the probability greater than 
zero is ( ) ( )1

in j
i k− ⋅ − . By varying i from j to n-j, the whole number of source nodes 

can be found as ( ) ( )∑
−

=

− −×
jn

ji

ijn
i k 1 . 

The probability of visiting one node which is located j hops away from the hot-spot 
node by a hot-spot message originated from a source node located i hops away from 
the given node and (i + j) hops away from the hot-spot node in which the given node 
is located in the minimal path between the source node and the hot-spot node is 
computed using the following recursive formula as [12] 

( ) ( ) ( ) ∏
−

=
− ++

−=
+

×+=
1

0
1 11

1
i

m

Pass
i

Pass
i mj

mi

j

i
jPjP  (10) 

considering the termination condition (initial state) of ( ) 10 ==+ Source
Pass PijP . 

Probability of traversing a channel which is located j hops away from the hot-spot 
node by a hot-spot message originated from a source node located i hops away from 
the given node and (i + j) hops away from the hot-spot node in which the given 
channel is located in the minimal path between source node and hot-spot node, only 
depends on the location of the channel from the hot-spot node. The mentioned 
probability can be given by [12] 

( ) ( ) ( ) ( )∏
−

= ++
−×

+
=

+
×=><

1

0 11

1

1

1
 

i

m
Pass

Pass
i mj

mi

jj
jPjP  (11) 

The traffic rate or the mean arrival rate of hot-spot messages on a channel located j 
hops away from the hot-spot node is given by 

( )( )( ) 1 , ∑
−

=

− ><×−××=
jn

ji

Pass
i

ijn
igjh jPkλαλ  (12) 

By considering the source of message, regular messages are also divided into two 
groups. The first group contains the regular messages originated from the hot-spot 
node and the second group contains the regular messages originated from all other 
nodes. Consider a regular message in the former group; there are 1−nk  destination 
choices to which the message may be sent. Therefore, the probability that the given 
message reaches a specific destination node is )1/(1 −nk . In the latter group, since the 

hot-spot node can not be the destination of a regular message, this probability gets 
riser by considering the fact that the number of choices is decreased by one. 
Therefore, the probability that the message is destined to a specific node 
becomes )2/(1 −nk . 

Let ( ) >< jP Pass
DS ,

 indicate the probability of traversing channel >< j  (located j hops 

away from the hot-spot node) by a regular message with known source  
and destination nodes, the rate of the first group of regular messages with speci- 
fic source-destination pair on the aforementioned channel can be given by 
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( ) ( ) ><×
−

××− jP
k

Pass
DSng ,1

1
1 λα  and the rate of the second group is given by 

( ) ( ) ><×
−

××− jP
k

Pass
DSng ,2

1
1 λα . 

Taking into account both message arrival rates, the mean arrival rate of regular 
messages traveling between S and D via channel >< j  is 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
+

−
×><××−>=<

1

1

2

1
1 ,, nn

Pass
DSgDSr

kk
jPj λαλ  (13) 

Generalizing the above formula by summing up all message arrival rates generated 
by all source-destination pairs, the mean arrival rate of regular messages on channel 

>< j  becomes 

( )
( )

∑
≠×∈

><=
HDGGDS

DSrjr j
,,

,, λλ  
(14) 

Note that for the pairs in which channel >< j  does not locate in the minimal path, 

( ) >< jP Pass
DS ,

 will be equal to zero, regarding to the fact that the messages traveling 

between these pairs have no effect on the traffic rate of channel >< j . Taking into 

account both hot-spot and regular traffic rates, the mean message arrival rate on 
channel >< j  is can be formulated as 

jrjhj ,,  λλλ +=  (15) 

The blocking probability of all permitted physical channels on node x  is ( )xPBlock
 

and in a similar manner the blocking probability of a physical channel emanating 
from the node x  is >< yxPBlock ,  (blocking probability of all adaptive and 

deterministic virtual channels of the physical channel >< yx, ) [12]. Therefore, we 

have, 

( ) ∑
∈

><=
OUTchy

BlockBlock yxPxP ,  
(16) 

where OUTch is the set of all endpoints of the output channels from node x  specified 
by the routing algorithm to direct the given message. Note that set OUTch depends on 
the source and destination of the given message. We define the blocking probability 
of the message traveling between S and D via node x  as the product of blocking 
probability of all permitted physical channels on node x  to the probability of visiting 
(passing) node x  as 

( ) ( ) ( ) ( ) ( ), ,  Block Pass
BlockS D S DP x P x P x= ⋅  (17) 

For computing the probability of visiting node x, ( )( ) , xPPass
DS

, by a message traveling 

between specific source and destination nodes, it should be noted that the number of 
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possible input channels through which the message can enter the node may vary from 
one node to the other, even if the distances of the nodes from the hot-spot node are 
equal. A value obtained by adding set of probabilities of passing input channels 
(located in a minimal path between source and destination nodes) to an arbitrary node 
like x , by the message, is the probability of visiting node x  which can be given as 

( ) ( ) ( )∑
∈

><=
INchz

Pass
DS

Pass
DS xzPxP , ,,

 (18) 

where INch (endpoints of permitted input channels) is the set of all adjacent nodes to 
the node x  with the property 

( ) ( ){ }1,, +== DxDiffDzDiffzINch  (19) 

that guaranties the placement of the nodes on the minimal path. In order to 
calculate ( ) >< xzP Pass

DS ,,
, it is necessary to calculate the probability of traversing channel 

>< xz,  by the message emanating from node z  given that the message is in 

node z , ( ) ( ) ,, zxzP Pass
DS >< . We have the following dimensionless equation.  
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(20) 

If two or more physical channels are free to use (the corresponding fields are zero), 
the probability of traversing each one by the message will be the same. This is the 

reason why the above equation contains term ( )∑
−

=

−
1

0

1/1
A

i
ia . >< izPBlock ,  is the 

blocking probability of an output channel emanating from node z  and is calculated. 
The probability of traversing channel >< xz,  can be calculated as  

( )( ) ( ) ( )( )zxzpzPxzP Pass
DS

Pass
DS

Pass
DS ><×=>< ,)(, ,,,

 (21) 

Furthermore, the probability of visiting node x, ( ) ( ) , xP Pass
DS

, can be obtained 

iteratively as 
( ) ( ) ( )∑

∈

><=
INchz

Pass
DS

Pass
DS xzPxP , ,,

 and ( ) ( ) ( ) ( ) ( )zxzpzPxzP Pass
DS

Pass
DS

Pass
DS ><×>=< ,, ,,,

 with 

terminating condition ( ) ( ) 1 , == SxP Pass
DS

. 

Consider an (i + j)-hop hot-spot message visits a node, ( )j , located j hops away 

from the hot-spot node. The blocking probability of the given message in node ( )j  is 

calculated as 

( ) ( ) ( )jPjPjP Block
Pass

i
Block

i .=  (22) 
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where ( )jPBlock
 is the blocking probability of hot-spot message in the node ( )j  given 

that the message is in node ( )j . Therefore, the blocking probability of the hot-spot 

message given that it is in node ( )j  becomes [12] 

( ) ( )1
, & ,

j
B lock a j a d jP j P P−= ×  (23) 

and the probability of interest can be written as 

( ) ( )
( )( )

1
1

, & ,
0 1

i
jBlock

i a j a d j
m

i m
P j P P

j m

−
−

=

−= × ×
+ +∏  (24) 

Let jvP ,  be the probability that V virtual channels at a physical channel located j hops 

away from the hot-spot node are busy. The probability that all adaptive virtual 
channels at a physical channel that is j hops away from the hot-spot node are busy, 

jaP , , can be written as [12] 
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In the same manner, jdaP ,&  which indicates the probability that all adaptive and 

deterministic virtual channels at a physical channel that is j hops away from the hot-
spot node are busy can be formulated as [12] 
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The waiting time seen by the message at a physical channel located j hops away 
from the hot-spot node to have at least one free virtual channel among the associated 
adaptive and deterministic virtual channels, is calculated by modeling the given 
physical channel as a single-server system with Poisson arrivals and arbitrary service-
time distribution (M/G/1 queue). Thus, we have [8] 
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where jρ  is the utilization factor of the channel located j hops away from the hot-

spot node and in the case of single-server system its definition becomes 
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where 2

jSσ is the variance of service time distribution; following the suggestion made 

by Draper and Ghosh [8] according to the fact that the minimum service time at a 
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channel is equal to the message length, we can approximately 

write ( )22 msglS jS j
−=σ . Note that jS  is the mean service time experienced by the 

message on a channel which is j hops away from the hot-spot node. Putting all 
together, the mean waiting time at a physical channel located j hops away from the 
hot-spot node can be written as 
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The mean waiting time of the hot-spot message on the given node is equal to the 
waiting time of one of the related channels. Therefore, we have 

><= jjh WW ,
 (29) 

If a regular message is blocked on the node located j hops away from the hot-spot 
node, the emanating channels from the given node can be divided into channels 
located j or (j + 1) hops away from the hot-spot node, and therefore the waiting time 
of a regular message in the given node becomes 

>+<>+<>< == 11, ),( jjjjr WWWMinW  (30) 

The average service time of a channel considering its distance from the hot-spot 
node and also the effects of both hot-spot and regular messages, taking into accounts 
their appropriate weights, can be written as [4] 
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where jrS ,  is the average service time experiences by regular messages to cross a 

channel located j hops away from the hot-spot node and jhS ,  is the mean service 

time tolerated by hot-spot messages until crossing the given channel.  
The mean waiting time in the source node is calculated in a similar way of a 

network channel. A message in the source node can enter the network through any of 
V  virtual channels. Modeling the local queue in the source node that is j hops away 
from the hot-spot node as an M/G/1 queue with the mean arrival rate of Vg /λ , yields 

the mean waiting time as 
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where 
jS  is the mean network latency for a message originated at a source node 

located j hops away from the hot-spot node. Therefore, considering both hot-spot and 
regular messages, and also taking into account their weights, we can write 

( ) , ,1j r j h jS S Sα α= − ⋅ + ⋅  (33) 

Taking into account the number of nodes located j hops away from the hot-spot 
node, ( )( ) jn

j k 1− , as the weight of the waiting time on the related source nodes, the 

mean waiting time at the source node becomes 
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The probability,
jvP ,
, that V  virtual channels are busy at a physical channel located 

j hops away from the hot-spot node can be determined by a Markovian model as [7] 
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(35) 

The average degree of virtual channel multiplexing that takes place at a physical 
channel located j hops away from the hot-spot node can be estimated as [7] 
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Averaging over all multiplexing degrees for all groups of channels located in 
different distances from the hot-spot node, and taking into account the number of 
channels located j hops away from the hot-spot node, ( )( ) jn

j k 1− , the average degree of 

virtual channel multiplexing can be formulated as 
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4   Model Validation 

The above model has been validated through a discrete-event simulator that performs 
a time-step simulation of the network operations at the flit level. Each simulation 
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experiment was run until the network reached its steady state. Extensive validation 
experiments have been performed for several combinations of network sizes, message 
lengths, and virtual channels and the general conclusions have been found to be 
consistent across all the cases considered. However, for the sake of specific 
illustration, figures 1 and 2 depict latency results predicted by the above model 
plotted against those provided by the simulator for the

4 4 4HM × ×
 only (more validation 

results can be seen in [12]). Message length msgl=32 and msgl=64 flits; Number of 
virtual channels per physical channel V= 4; Fractions of hot-spot traffic are =α 0, 
0.07, 0.21 and 0.35. 
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Fig. 1. Mean message latency predicted by the model against simulation in the 4*4*4 
hypermesh: V=4 virtual channels, message lengths 32 and 64 flits, and different hot spot 
fractions α =0 (uniform traffic), 0.07 
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Hypermesh 4*4*4 ( V = 4 ) ( HR = 0.21 )
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Hypermesh 4*4*4 ( V = 4 ) ( HR = 0.35 )
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Fig. 2. Mean message latency predicted by the model against simulation in the 4*4*4 
hypermesh: V=4 virtual channels, message lengths 32 and 64 flits, and different hot spot 
fractions α =0.21, 0.35 

Figures 1 and 2 reveal that in all cases, the analytical model predicts the mean 
message latency with a good degree of accuracy in the steady-state regions. 
Moreover, the model predictions are still good even when the network operates in the 
heavy traffic region, and when it starts to approach the saturation region. However, 
some discrepancies around the saturation point are apparent. These can be accounted 
for by the approximations made to ease derivation of different equations of the model, 
e.g. the variance of the service time distribution at a channel. Such approximations 
greatly simplified the model as they allow us to avoid computing the exact 
distribution of the message service time at a given channel, which is not a 
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straightforward task due to inter-dependencies between service times at successive 
channels as wormhole routing relies on a blocking mechanism for flow control. 

5   Conclusions 

In this paper, we proposed an analytical model to calculate the average message 
latency in hypermesh topology in the presence of hot-spot traffic when fully adaptive 
wormhole routing is used. As reported by simulation results, the model exhibits a 
reasonable accuracy even when the rate of hot-spot messages is high. Future works in 
this line can be investigating a general performance model for irregular networks and 
for any traffic patterns. 
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Abstract. In order to simplify simulation and verification of SDL specified 
communication protocols, we introduce modified coloured Petri nets called 
hierarchical timed typed nets (HTT-nets). A method for translation from SDL 
into HTT-nets is presented. A tool SPV (SDL protocol verifier) including a 
translator from SDL into HTT-nets, as well as means for editing, simulating, 
visualizing and verifying the net models, is described. For verification, the tool 
SPV uses a model-checking method. As case studies, we apply the tool SPV to 
RE-protocol [4], ATMR protocol [10] and i-protocol [5]. 

1   Introduction 

The analysis, validation and verification of communication protocols are a challenge 
for computer science. In spite of considerable progress in theoretical research, 
obtained results find a limited use in modern practice. The formal description 
technique SDL accepted as an international standard [18] is widely used to represent 
communication protocols. Therefore, development of methods and tools for analysis 
and verification of SDL specified communication protocols is an important problem. 
It should be noted that high expressive power of SDL increases difficulties in 
verification of communication protocols. 

A natural approach to overcome the problem is to use the models like finite state 
machines, Petri nets or their generalizations. Coloured Petri Nets (CPN) [11] should 
be distinguished among them because they have significant expressive power, a wide 
application, and simulation and analysis tools available [15, 17]. 

However, constructing the models of distributed systems manually is unreliable. 
Therefore, the problem of automatic construction of the net models arises for SDL 
specified distributed systems. It should be noted that the problem of automated 
translation of SDL specifications into CPN has been mentioned in [11]. Translation 
from SDL into so-called SDL time nets which extend conventional Petri nets by time 
intervals and guards for transitions has been described in [6]. Translation from SDL 
into high level Petri nets called M-nets has been described in [7]. A method for 
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translation from an SDL dialect called TNSDL and from the standard SDL into high 
level Petri nets similar to Predicate / Transition nets has been described in [9] and  
[1], respectively.  

Different tools have been implemented for the analysis, simulation and verification 
of these net models. Such tools as SITE [6], PEP [8], Emma [9], Maria [1], 
Design/CPN [15], CPN Tools [17] should be mentioned. A model-checking method is 
used by the tools PEP, Emma and Maria for verification of the net models. 

In order to simplify the simulation and verification process in many cases, we 
introduce modified CPN called hierarchical timed typed nets (HTT-nets) and develop 
a method for translation from SDL into HTT-nets. We have implemented a tool SPV 
(SDL protocol verifier) which includes a translator from SDL into HTT-nets, as well 
as means for editing, simulating, visualizing and verifying the net models. 

The purpose of the paper is to describe this method of translation, the tool SPV and 
its application to modeling and verification of communication protocols. The paper 
consists of 6 sections. HTT-nets are presented in Section 2. The translation method is 
described in Section 3. The tool SPV is presented in Section 4. Application of the tool 
SPV to RE-protocol [4], ATMR protocol [10] and i-protocol [5] is outlined in 
Section 5. Results and perspectives of our approach are discussed in Section 6. 

This work is partly supported by Russian Foundation for Basic Research under 
grant 07-07-00173. 

2   Net Model 

Let us describe our net model resulting in a modification of CPN [11]. A 
nonhierarchical net consists of three parts: a net structure, declarations and a net 
marking. A hierarchical coloured net is a composition of a number of nonhierarchical 
nets called pages. Pages can contain a special kind of transitions called modules. 
Modules are connected with places on a page in the same way as transitions. 

A module is a subnet placed on a separate page. The subnet can also contain 
modules. Pages presenting these modules are called subpages. A subpage contains a 
copy of each place (“copy-place”), which has been connected to the module. A copy-
place can be an input/output place for some transition or module on the subpage if its 
prototype is an input/output place, respectively, for the module. 

The behavior of a hierarchical net is equivalent to the behavior of a nonhierarchical 
net, where each module is replaced by the corresponding subnet. Connections within 
nonhierarchical nets are those obtained by substitution of transitions in hierarchical 
CPN, where each prototype is glued with all its copy-places. 

An HTT-net has the basic set of colours corresponding to the standard data types: 
integer, real, string and boolean. A set of colours can be described by enumerating all 
possible values. Constructed types (arrays and records) are represented by tuples. 
There are also special places representing queues of tokens (queue-places). 

Let us distinguish the type multi-layer which is the set of colours consisting of 
pairs (n, t), where n is the layer number and t is some colour. A place marked as 
multi-layer is called  the multi-layer place.  Any multi-layer place in which the type t 
is not a queue, can contain at most one token belonging to some layer.  Otherwise, 
such a place can contain at most one queue belonging to some layer. The model 
allows only a finite number of layers.  
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Multiple firing of a transition is permitted in HTT-nets. At any time a transition 
can have a number of tokens in the input places sufficient for two or more 
simultaneous firings. Thus, one transition can fire several times simultaneously, but 
every time it fires only with tokens belonging to one layer. HTT-nets are semi-safe 
meaning that all places, except queue-places, can contain at most one token belonging 
to each layer. 

The HTT-nets are provided with the Merlin's time mechanism [2] and priorities.  A 
pair of non-negative numbers dmin and dmax is assigned to each transition. If t is the 
time moment when the transition is enabled, then it fires within the time range 
[t+dmin ,t+dmax]. 

The priority of a transition is defined by a non-negative integer number. The larger 
number defines the higher priority of the transition, as usual. The absence of the 
priority corresponds to the lowest priority. 

y

1’(1,0)+1’(2,0)
layer(int)layer(int)

1’(1,0)

x

t3
[m 3]
[0, 3]

t2
[2, 3]

t1
[0, 1]

(n, m)(n, m)

(n, i)
(n, i+1)

 

Fig. 1. Example of HTT-net 

Let us consider an HTT-net given on Fig. 1. There is one integer token with the 
value 0 in the place x of the layer with number 1. There are two tokens in the place y, 
where one of them is in the layer with number 1, and another is in the layer with 
number 2. Each token has value 0. Each arc expression has the variable n in its first 
position. Thus, all transitions can fire with the tokens belonging to the same layer.  
The transitions t1 and t2 have no guards and their firings are defined only by timer 
constructions.  The transition t3 is enabled if the value of the token in the place x is 
less than or equal to 3. At first, the transitions t1 and t3 can fire. The transition t2 can 
not fire because at least two time units have to pass before its firing can occur. At 
firing of the transition t3, the tokens of the places x and y (of the layer with number 1) 
are removed, and after that all transitions can not fire. 

3   Translation of SDL Specifications into HTT-Nets 

Let us describe generating an HTT-net model for a given SDL specification. Details 
of our translation method can be found in [3]. Pages which represent a system, blocks, 
processes, SDL-transitions and procedures are created by steps. At the first step, a 
page is created which represents a net corresponding to the general structure of the 
SDL specification. It contains one module per block. Nets related to the modules 
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which have been created at the first step, are constructed at the second step. These 
nets represent the structure of blocks and they are placed on separate pages connected 
with the modules. At the next step, the nets modeling the processes definitions are 
created and placed on separate pages. After that, transitions of the SDL system are 
translated into HTT-transitions and, finally, the pages containing the nets 
corresponding to the procedures defined in the specification are built. 

Generation of top-level nets. One module is created in the net for each block 
definition. Channels and signal routes are represented by special places – queue-
places.  The signals which can be kept in every queue-place, are presented by a queue 
of tokens. Each token is a record that carries the information about the sender and 
receiver processes. Channels which connect blocks to one another or to the system 
boundary, are presented by queue-places connected with the modules by arcs. 

A one-direction channel is presented by one place. The place modeling the 
channel, through which the signals only come into the block, is the input place to the 
module corresponding to the block. The place modeling the channel, through which 
the signals only come out of the block, is the output place of the module. A bi-
direction channel is represented by two places, where one of them is the input place of 
the module and another is the output one. 

All instances of a process are modeled by a single net constructed according to the 
process definition but each instance has its own tokens in the multi-layer places of the 
net. The first field of the tokens in all places, except otherwise specified, contain 
“PId” (Process Identifier) of the process instances. The Pid service place is created to 
generate unique PId values. 

Thus, after the first step of the modeling, we have a net which consists of the 
modules corresponding to the SDL blocks, the places modeling the channels and the 
places modeling the exported variables and the place Pid.  

Nets of the second level. The inner structure of each block is mapped onto the page 
related to this block. This page is built in the same way as the first page. The net from 
this page contains one transition for each new block or process definition, one or two 
places for each internal channel (uni- or bi-directional).  

According to the rules of HTT-net generation, a copy of each place representing an 
external channel appears on the page related to the module. The places representing 
the internal channels or routes are merged with the places representing the external 
channels. Several internal channels can join to one external channel. Several places 
representing internal channels can be merged with one place representing an external 
channel. 

Some peculiarities appear when we construct a net for a block consisting of 
processes. A signal coming through a channel to the block can be delivered through 
several signal routes connected to this channel. Our method supports the signal 
transition from an input signal route to all instances of the process connected to this 
signal route. To this end, an additional subnet is created. This subnet models the 
delivery of a signal to all instances of the process. 

To provide a possibility for modeling a process creation, a special place Pid was 
created at the first step. At this step, several places cr_id (one for each process 
definition) are created on the block page. The Pid place is used to ensure uniqueness 
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of the PId value for each process instance. The cr_id place (where id is the offspring 
process name) is used to connect parent and offspring processes. 

Nets of the third and fourth levels. Different instances of a process are modeled by 
a single net with multi-layer places. The tokens belonging to a process instance are of 
the same layer corresponding to this instance. The tokens are added into the places at 
the moment of the instance creation. They are removed when the process instance 
enters the STOP state. The service place cr_id, where id is the name of the offspring 
process, is the input and output place to the activate transition in the net modeling this 
offspring process. A new instance is created by firing the activate transition, i.e. 
tokens with the corresponding initial values are added to all output places of this 
transition. 

A net fragment, which models the creation of the new PId value, is presented at 
Fig. 2. Assume that the process instance which creates the process A is modeled by 
the tokens belonging to the layer with the number n. 

PId self cr_A

gene rate_nul

offspring count

gene rate

 

Fig. 2. Creation of the new PId value 

At the firing of the transition generate, the following actions take place: 

• the token with some value p is removed from the place PId and is added 
to it with the value (p + 1); 

• the token from the place count which is at the net page modeling the 
process A  is removed and added to it with the same value; 

• the token with the value (n, n) is removed from the place self and added 
to it; 

• the token from the place offspring is removed and added to it with the 
value (n, p); 

• the token (p, n) is added to the queue at the place cr_A, where  p is PId of 
the new instance of the process A and n is PId of the father instance. 

At the firing of the transition generate_nul, the token with the value of the last 
created offspring is removed from the place offspring and added to it with the value e. 
This transition can fire when the number of instances of the process A is maximum in 
the system. 
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The inner structure of a process is mapped on a page connected with a module 
corresponding to the process definition. The net contains one transition for each SDL 
transition of the process definition. The net contains one multi-layer place for each 
SDL variable. The sort of the variable defines the colour set of the corresponding 
place.  

Besides, this page contains several service multi-layer places. For example, the 
place queue presents the input ports of all instances of the same process and contains 
the queues of tokens corresponding to the queues of signals to all instances of the 
process. The multi-layer place State is associated with the states of the instances. This 
place is the input and output place of each transition modeling the SDL transition. 
Thus, the atomicity of the SDL transition execution is guaranteed. 

A subnet for an SDL transition is created on the page connected with the module 
corresponding to the transition. Execution of some SDL transition can be modeled by 
one transition in the net. Such SDL transition contains a set of assignment statements 
and, perhaps, OUTPUT statements. The guard and the expressions on the surrounding 
arcs of the transition are defined at this step. The definition of coloured nets ensures 
that the execution of such SDL transition and firing of the corresponding net 
transition results in an equivalent change of the global state of the process instance 
and the net marking, respectively. 

An SDL transition is called complex if it is not modeled by one net transition. 
Complex SDL transitions are divided into fragments. Each fragment is represented by 
a subnet. The subnets are connected consequently by means of connective places. The 
execution of a complex SDL transition is modeled by consequent firings of all net 
transitions. 

Net modeling of the SET statement. Let us consider modeling of an SDL transition 
containing the statement SET(N,t). The modeling net is shown on Fig. 3. It has 
transitions begin, end, as well as the subnets net1 and net2 which represent statements 
standing before and after the statement SET in the SDL transition. The subnet SAVE is 
indicated by a dotted line. This net models saving all signals in a queue to a process 
instance except the signal t. To avoid overloading, some places and transitions, as 
well as arcs of the subnet SAVE, are not shown on the figure. 

There is the place now which contains a token keeping the current time of the 
model. The transition add has a firing interval [1,1]. The place now is the input and 
output place of this transition. The transition add has no other input and output places. 
Firing of this transition removes the token with the value of the current time, waits for 
one time unit and returns the token with the value incremented by 1. 

To model a timer t, the place timer is created. At the moment of creating a new 
process instance, a token with the value (p,-1) is put into the place timer, where p is a 
PId value of the instance. The token (p,-1) means that the timer is inactive. The 
token (p,0) means that the timer is active and its signal is in the queue of the process 
instance. A token of any other colour means that the timer has been set, but its value 
is greater than the current model time. 

The transition send is enabled if the value m of the token (p,m) in the place timer is 
less than or equal to the value of the token at the place now. The firing interval of the 
transition send is [0,0]. This means that the transition has to fire as soon as it is 
enabled. At firing of the transition, the token (p,m) is replaced by the token (p,0) and 
the timer signal is put into the input queue of the process instance. 
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Fig. 3. Net presentation of a transition with the statement SET(N,t) 

Consumption of a timer signal by a simple SDL transition of the process instance is 
modeled by firing of the corresponding net transition which removes the first element 
from the input queue and replaces the token (p,0) by the token (p,-1) in the place 
timer. Consumption of a timer signal by a complex SDL transition is similar but it is 
modeled by firing of the transition begin in the subnet corresponding to this SDL 
transition. 

According to the SDL semantics, a new setting of the timer should cancel the 
previous setting. Moreover, if a timer signal corresponding to the previous setting is 
still in the input queue of the process instance, then it should be removed from the 
queue. In the modeling net, this is implemented in the following way. If the value of 
the second field of the token in the place timer is not equal to 0, the transition set 
fires. As a result of firing, the token is replaced by a token corresponding to the new 
timer setting. Otherwise, the transition newest fires. It results in firing of the 
transitions of the subnet SAVE such that the timer signal is removed from the place 
queue and the token (p,-1) appears in the place timer. As a result, the transition set 
becomes enabled. 

The RESET statement is modeled in a similar way. 
 

Net size bound. Let us consider an upper bound of the resulting net. In order to take 
no account of modules and copy-places, we consider the size of the equivalent net 
which is not hierarchical. It is a result of module removing and gluing the copy-places 
of the same prototype. First, we consider the net modeling the process which contains 
descriptions of var variables including export and viewed variables, par parameters, t 
timers. Also the process has m input and output signal routes and n statements 
including k constructions DECISION, SET, RESET, JOIN, SAVE and C procedures 
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and macro calls. Modeling of the constructions SAVE, SET and RESET needs at most 
7 places and 6 transitions for each of them. 

Let att be var+14+2*m+par+t. The resulted net has at most 
TN=(2*n+5+2*m+6*k)*(C+1) transitions and PN=(n+att+7*k)*(C+1) places. 

The net modeling the SDL specification consists of the nets representing the 
process definitions, channel-places, places now and Pid, additional transitions and 
places mapping the connection of the signal routes to the channel, at most o*s, where 
o is the number of different processes, s is the number of signals transmitted through 
the channel.  

Thus, the net size bound is the sum of the net size bounds of all processes and  
5*(o*(s+m)+1)+n transitions and 6*(m*p+1) places, where p is the maximum 
number of different instances of one process.  

4   The Tool SPV 

The tool SPV is an integrated program environment for the design, verification, and 
simulation of net models of communication protocols.  The tool consists of the 
following main components: translator, graphical editor, simulator, verifier, 
visualizer. 

The translator performs automatic translation of SDL protocol specifications into 
net models. 

The verifier allows one to examine the model properties using a model checking 
method. 

In the multi-window graphic editor, the net model is represented as a tree of pages, 
on each of which the net is depicted in the form of a marked oriented graph.  The 
editor provides means to control and modify the model. 

The simulator is integrated with the editor and visualizes functioning of HTT-nets, 
as well as allows us to log a simulation session.  In the course of simulation, the user 
has access to the following information: 

• The current state of the HTT-net is graphically displayed as a change in place 
marking and in current temporal characteristics of transitions. 

• The set of events that can occur at the next simulation step, and the user can 
control the choice of events. 

• The sequence of events (trace) of the current simulation session which can be 
stored in the database for subsequent analysis or repetition of the saved 
simulation session from an arbitrary intermediate state.  

The simulator can work in both step-by-step and automatic modes.  In the step-by-
step mode, full control of the simulation process is given to the user.  In the automatic 
mode, the choice of a possible event at the next simulation step is performed in a 
random fashion.  The tool provides means to facilitate model analysis and debugging, 
such as specifying the conditions for which the simulation process is suspended.  An 
important feature of the tool is the capability of interaction of the editor/simulator 
with a text editor. When doing this, the user can easily compare an individual 
component or a model fragment obtained as a result of translation to the 
corresponding parts of the source specification.  
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The HTT-net is fed as the verifier input along with the formula of mu-calculus that 
expresses the network property to be checked. The verifier consists of a model 
constructor and an analyzer.  Based on the net description, the model constructor 
generates a description of the net accessibility graph and places which, along with the 
mu-formula, are fed to the analyzer input that performs the procedure of model 
checking.  Details of the verifier description can be found in [14]. 

The visualizer constructs a special model that operates with terms natural for the 
input protocol. In this model, instead of places and transitions, receivers/transmitters 
and connectors are used to perform the transmission of data packages. Besides, any 
other objects can be created that are related to the peculiarities of this or that protocol.  
This model is called visualization because its objects are represented in the form of 
graphic elements (ovals, rectangles, lines, pictures, etc.), and a change in a model 
state is reflected by the change of the elements and their graphic attributes (shape, 
filling, line thickness, etc.). The visualization has subordinate character, its entire 
behavior is determined by the behavior of the basic net model in the course of its 
simulation but the behavior of the protocol being modeled is reflected in the 
visualization in a graphic form. 

The net model is represented in the standard language PNML [19] which provides 
the possibility for model exchange between the tool components and with third party 
tools. 

The SPV tool is implemented using the object-oriented language Python which 
provides its portability and extensibility. 

5   Case Studies 

The SPV tool was used to perform checking of the most important properties of 
reliability for the following 3 communication protocols: RE-protocol [4], ATMR-
protocol [10] and i-protocol [5]. 

The first case study was held for RE-protocol – a protocol which is used in ring 
networks. In this protocol each station sends a frame filled with data to its 
downstream neighbor. The frame has two special service bits (R and E) which are 
used to control correctness of network functioning. This control is performed by a 
special kind of a station in the ring called a monitor. According to the values of R and 
E bits, the monitor decides which action will perform: reinitialize the ring or do 
nothing. 

The RE-protocol was studied for cases of reliable and unreliable medium with up 
to 3 stations and a monitor. It was checked to be satisfying the following properties: 

1. Presence of deadlocks. This property can be identified at the stage of 
reachability graph construction or with mu-formula ¬<to>true, where true 
corresponds to all states in the model. RE-protocol in the cases studied has 
no deadlocks. 

2. Safety. This property can be described with mu-formula µX.<to> (received 
∨ X), and it holds if it is possible to receive all sent messages. The predicate 
received corresponds to the states in the model where a message is received. 
This property holds for RE-protocol in all cases studied. 
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3. Extended safety. This property is described by formula sent → µX. 
(received ∨ [to] X). It means “all sent messages are received”. The predicate 
sent corresponds to the states in the model where a message is sent. This 
property holds only for cases with reliable medium. 

4. Repeating messages. We found that if the medium is unreliable, the message 
sent by one station to another may eventually come more than one time to its 
recipient. This property can be described by the following mu-formula:    
received ∧ <to>(µX.(received ∨ ( ¬ sent ∧ <to>X))). Our program verification 
confirmed that in case of unreliable medium the repetition of messages 
appears. This does not happen for models with the reliable medium. To avoid 
message repetition, we introduced some changes in the protocol specification. 
We also verified the corrected version of RE-protocol and found that message 
repetition does not appear.  

The second protocol to verify was ATMR-protocol. It is also a ring-protocol and it 
is similar to RE-protocol in its basics. However, there is no special station to control 
the correctness of network functioning. ATMR-protocol is a high-speed protocol and 
it has no unreliable medium handler. It is supposed that high-level protocols should 
take care of re-sending messages. That is why we studied ATMR-protocol for cases 
with reliable medium only. We verified this protocol with 3 stations. We checked the 
same properties as for RE-protocol and found that ATMR-protocol has no deadlocks, 
satisfies safety and extended safety properties and message repetition does not appear. 
In contrast to the RE-protocol, the absence of duplicated messages confirms the 
effectiveness of the ATMR-protocol. 

i-protocol is a part of the GNU UUPC package of Free Software Foundation. The 
protocol is used to transmit data via communication links. The i-protocol is a 
modification of the sliding window protocol. This protocol resends a minimum 
number of data packages, as compared to other versions of the sliding window 
protocol. A live-lock error, arising during the protocol functioning, is described in [5]. 
Transmitter resends the same data package. Receiver ignores them. Here, receiver 
does not send any data package because receiving of a new package causes timer 
reset. Thus, permanent activity of the protocol is registered, but the user does not send 
a new package and receiver does not receive any package. In the i-protocol 
environment, a special step sequence has been reproduced during the simulation using 
the tool SPV. This sequence causes the Kaivola error [12] in the Stenning protocol. 
The Kaivola error appears as a result of incorrect processing of receiver 
acknowledgments. As distinct from the Stenning protocol, the acknowledgments are 
correctly received by transmitter during the processing of this step sequence. 
However, the reproduction of this step sequence causes live-lock in the i-protocol. In 
addition, the experiments show that the same situation appears in the i-protocol as a 
result of any event sequence which leads to the state when the transmitter window is 
filled in and no acknowledgments are received. 

6   Conclusion 

This paper introduces a new modification of CPN called HTT-nets which has the 
following advantages: 
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- HTT-nets are semi-safe; 
- Time concept in HTT-nets is simpler, as compared with CPN; 
- Expressive power of HTT-nets allows us to model SDL specifications using 

dynamic constructs. 

To the best of our knowledge, our translation method is the first such that net models 
of SDL specifications are semi-safe and the net size bounds are linear for 
communication protocols in many cases. Semi-safeness of HTT-nets simplifies 
simulation and analyses of communication protocols. 

The tool SPV here described supports simulation, analysis and verification of these 
net models. Experiments with RE-protocol, ATMR-protocol and i-protocol have been 
successfully performed. The ineffectiveness of RE-protocol has been proven using the 
model-checking method. Also a modified effective version of the protocol has been 
verified. New cases of a live-lock for i-protocol, as compared with the cases in [5], 
have been found. Combination of different means for the analysis, simulation and 
verification of HTT-nets plays an important role, as demonstrated by experiments 
with RE-protocol, ATMR protocol and the i-protocol. 

It is supposed to apply the tool SPV to verification of protocols with feature and 
service interaction in telecommunication systems [13].  
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Abstract. In the first part we provide an elementary proof of the result
of Homer and Mocas [3] that for all constant c, the class EXP is not
included in P/nc. The proof is based on a simple diagonalization, whereas
it uses resource-bounded Kolmogorov complexity in [3].

In the second part, we investigate links between resource-bounded
Kolmogorov complexity and nonuniform classes in computational com-
plexity. Assuming a weak version of polynomial-time symmetry of infor-
mation, we show that exponential-time problems do not have polynomial-
size circuits (in symbols, EXP �⊂ P/poly).

Keywords: computational complexity, nonuniform lower bounds,
resource-bounded Kolmogorov complexity, symmetry of information.

1 Introduction

Whereas some uniform lower bounds have been proved long ago thanks to hi-
erarchy theorems, little progress have been made towards longstanding open
problems concerning nonuniform lower bounds in complexity theory. This ob-
servation is explained by the lack of proof techniques for these nonrelativizing
questions. In particular, a simple diagonalization is not suitable for the main
question of whether exponential-time problems have polynomial-size circuits.
Yet the advantage of diagonalization is its simplicity. In this paper, we show
that a hypothesis of resource-bounded Kolmogorov complexity gives diagonal-
ization enough power to settle these questions.

We are interested in the question of whether the class EXP of problems decided
in exponential time has polynomial-size circuits (in symbols, whether EXP ⊂
P/poly). As mentioned above, the separation EXP �= P is well-known but this
nonuniform counterpart is still open. On this problem, two approaches have
yielded significant results.

The first approach was to find the smallest uniform class provably not con-
tained in P/poly. In this direction, Kannan [4] proved that NEXPNP does not
have polynomial-size circuits, and afterwards Schöning [12] gave a simplified
proof that EXPSPACE does not have polynomial-size circuits. Here, we see that
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performing a diagonalization out of P/poly requires more than exponential time.
Later, the second approach was to obtain the best nonuniform lower bound for
EXP problems. Homer and Mocas [3] showed that EXP does not have circuits of
size nc for any fixed constant c.

As a first step toward our main theorem, another proof of this last result
is provided in the first part of the present paper (Proposition 2). This is an
elementary proof consisting in a mere diagonalization (whereas the original proof
of [3] makes use of resource-bounded Kolmogorov complexity) which is included
here because it familiarizes with the proof of the main result of the paper, and
also because this easy proof has never been published to the author’s knowledge
(though it uses techniques very similar to [12]). As a corollary, included here as
another illustration of this method, we obtain a nonuniform lower bound on PP
problems (Proposition 4). Unfortunately this is much weaker than the result of
Vinodchandran [13].

In the second and main part, we show that an assumption of resource-bounded
Kolmogorov complexity enables to combine both approaches described above.
Namely, if a weak version of polynomial-time symmetry of information holds
true, then EXP �⊂ P/poly (Theorem 2). This result therefore relates two major
open questions. The proof once again consists in a simple diagonalization.

Symmetry of information is a beautiful theorem in Kolmogorov complexity
and one of its versions can roughly be stated as follows: if x and y are two words,
x contains the same quantity of information on y as y on x. This theorem is due
to Levin [14] and Kolmogorov [6].

When requiring polynomial time bounds on the computations, however, the
similar property, called polynomial-time symmetry of information, is a challeng-
ing open problem in resource-bounded Kolmogorov complexity. This problem
has already been related to computational complexity by at least two results.
First, Longpré and Watanabe [9] show that if P = NP then polynomial-time
symmetry of information holds. Second, more recently and closer to our present
preoccupations, Lee and Romashchenko [7] show that if polynomial-time sym-
metry of information holds, then EXP �= BPP. A longer discussion on symmetry
of information, inspired by the introduction of [7], is provided in Section 4.

Here, assuming a weak versionof polynomial-time symmetry of information (see
Section 4) we prove that EXP �⊂ P/poly (a stronger conclusion than in [7] since
BPP ⊂ P/poly, see [1]). As we shall see, symmetry of information enables to divide
advices into small blocks on which diagonalization can be performed in EXP.

All these results teach us that polynomial-time symmetry of information, even
in its weakest forms, is a hard but central question to study. Indeed, if it holds,
then EXP does not have polynomial-size circuits, else P �= NP. In both cases, a
fundamental question in complexity theory would find an answer.

Organization of the paper. Section 2 is devoted to definitions and notations in
computational complexity and resource-bounded Kolmogorov complexity. Sec-
tion 3 consists of another proof of the result of [3] that exponential-time problems
do not have circuits of any fixed polynomial size nc. A simple corollary is also
shown there, namely a nonuniform lower bound on PP problems.



Symmetry of Information and Nonuniform Lower Bounds 317

Section 4 precisely state the hypothesis of polynomial-time symmetry of in-
formation as well as some simple results about this. Finally, Section 5 proves the
main result, namely that polynomial-time symmetry of information implies that
exponential-time problems do not have polynomial-size circuits.

2 Preliminaries

For references on computational complexity we recommend the book [2]. For Kol-
mogorov complexity, we refer to [8]. The notions used in this paper are standard,
though stated from the unifying point of view of universal Turing machines.

Universal machines. If M is a Turing machine, for simplicity we will assume
that it is encoded in binary and denote by M this encoding. Therefore M is
also seen as a program. We restrict ourselves to two-tape Turing machines; the
following result on a universal Turing machine is then well-known.

Proposition 1. There exists a universal Turing machine U , with two tapes,
which, on input (M,x), simulates the two-tape machine M on input x. There is
a constant c > 0 depending only on the machine M such that the simulation of
t steps of M(x) takes ct steps of U .

Such a universal Turing machine U is fixed in the remainder of the paper. The
machine M simulated by U will also be called the program of U . For instance, we
will say that the program M decides the language A if for all x, the computation
U(M,x) halts, and it accepts iff x ∈ A.

Complexity classes. If t : N → N is a function, the class DTIME(t(n)) is the set
of languages A recognized in time O(t(n)). More precisely, A ∈ DTIME(t(n)) if
there exist a constant c > 0 and a fixed program M ∈ {0, 1}∗ such that for all
word x, the computation U(M,x) stops before ct(|x|) steps and it accepts if and
only if x ∈ A. We call EXP the class ∪k≥0DTIME(2nk

).
Now, nonuniform computation is defined via advices as introduced by Karp

and Lipton [5]. The advice class DTIME(t(n))/a(n) is the set of languages A such
that there exist a program M , a constant c > 0 and a family (an) of advices
(that is to say, words) satisfying:

1. |an| ≤ a(n);
2. U(M,x, a|x|) stops in less than ct(|x|+ a(|x|)) steps;
3. U(M,x, a|x|) accepts iff x ∈ A.

The nonuniform class P/poly is defined as ∪k≥0DTIME(nk)/nk (i.e. polynomial
working time and polynomial-size advice) and is easily shown to be the set of
languages recognized by a family of polynomial-size boolean circuits. Similarly,
EXP/poly is the class ∪k≥0DTIME(2nk

)/nk (i.e. exponential working time and
polynomial-size advice). By this definition, it is easy to see that

EXP ⊂ P/poly ⇐⇒ EXP/poly = P/poly.
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Another complexity measure is the space needed to decide a language. Space
complexity counts the number of cells used by the machine. The class DSPACE
(s(n)) is the set of languages A recognized in space O(s(n)), and advice classes
are defined accordingly. The class PSPACE is ∪k≥0DSPACE(nk).

In this paper, we shall also quickly meet the complexity class PP. This is the
set of languages A such that there exist a language B ∈ P and a polynomial p(n)
satisfying x ∈ A ⇐⇒ #{y ∈ {0, 1}p(|x|) : (x, y) ∈ B} ≥ 2p(|x|)−1.

Resource-bounded Kolmogorov complexity. For two words x, y and an integer t,
we denote by Ct(x|y) the time t bounded Kolmogorov complexity of x condi-
tional to y, that is, the size of a shortest program M which, when run on the
universal Turing machine U on input y, outputs x in time ≤ t. For a Turing
machine M (and in particular for U), we denote by M t(x) the word written on
the output tape of the machine M after t steps of computation on input x. Thus
in symbols we have

Ct(x|y) = min{k : ∃M of size k such that U t(M, y) = x}.

We will use the notation Ct(x) for Ct(x|ε), where ε is the empty word.

Advice and programs. For a fixed word length n, the words x ∈ {0, 1}n of size
n are lexicographically ordered and the i-th one is called x(i) (for 1 ≤ i ≤ 2n).
Let A be a language. The characteristic string of A=n is the word χ ∈ {0, 1}2n

defined by χi = 1 iff x(i) ∈ A. We will often consider programs that output
characteristic strings rather than programs that decide languages. We rely on
the following obvious lemma.

Lemma 1. If A is a language in DTIME(t(n))/a(n) (where t(n) ≥ n), then
there exist constants α, k > 0 and a family (Mn) of programs satisfying:

1. |Mn| ≤ k + a(n);
2. for 1 ≤ i ≤ 2n in binary, U(Mn, i) outputs the i first bits of the characteristic

string χ of A=n in time αit(n + a(n)).

Proof. Let M be a DTIME(t(n)) machine deciding A with advice of size a(n).
The program Mn merely enumerates the i first words x of size n and simulates
M(x): Mn is therefore composed of the code of M , of an enumeration routine
for the i first words of size n and of the advice for the length n.  !

3 Diagonalizing Out of nc Advice Length

We provide another proof of the following proposition of Homer and Mocas [3].
The initial proof of [3] makes use of resource-bounded Kolmogorov complexity.
Here it consists in a usual diagonalization, similar to the proof of Schöning [12]
that EXPSPACE does not have polynomial-size circuits (see [2, Th. 5.6]): at
each step of the diagonalization process, we eliminate half of the possible pro-
grams. This easy proof can be considered as folklore; still we include it in the
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present paper since it seems unpublished so far, and because it introduces some
techniques used in the proof of the main result of this paper. Furthermore, this
method yields a nonuniform lower bound on PP problems as a corollary. This
lower bound is rather weak and a better one is already known; we include it here
only as another application of the method.

Proposition 2. For all constants c1, c2 ≥ 1, there is a sparse language A in
DTIME(2O(n1+c1c2)) but not in DTIME(2O(nc1))/nc2 .

Proof. The idea of the proof is to diagonalize against all programs of size nc2

thanks to a language that eliminates half of them at each step.
Let us define A=n for all n, therefore fix n. Recall that x(1) < x(2) < . . . <

x(2n) are the words of {0, 1}n sorted in lexicographic order. We will diagonalize
over the programs M of size at most n + nc2 (of which there are 2n+nc2+1 − 1),
and the universal machine U will be simulated for t(n) = 2n1+c1c2 steps. The set
A=n is defined word by word as follows:

x(1) ∈ A=n ⇐⇒ for at least half of the programs M of size ≤ n + nc2 ,
the first bit of U t(n)(M) is 0,

that is, at least half of the programs give the wrong answer for x(1). Let V1 be
the set of programs M giving the right answer for x(1), i.e. such that the first
bit of U t(n)(M) corresponds to “x(1) ∈ A”. Hence |V1| < 2n+nc2 (less than half
of the programs of size ≤ n + nc2 remain). We then go on with x(2):

x(2) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V1,

the second bit of U t(n)(M) is 0,

that is, among the programs that were right for x(1), at least half make a mistake
for x(2). Let V2 be the set of programs M ∈ V1 giving the right answer for x(2).
We go on like this:

x(i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ Vi−1,

the i-th bit of U t(n)(M) is 0

until Vi is empty. Call k the first i such that Vi = ∅. We decide arbitrarily that
x(j) �∈ A=n for j > k. Note that k ≤ n + nc2 + 1 because |Vi| is halved at each
step, therefore A is sparse.

If A ∈ DTIME(2O(nc1))/nc2 , then by Lemma 1 there would be a constant k and
a family (Mn) of programs of size ≤ k+nc2 writing down the characteristic string
of A=n in time α(n+nc2 +1)2O(nc1c2 ) ≤ 2βnc1c2 for some β. This is not possible
as soon as n ≥ k and t(n) > 2βnc1c2 since all programs of size n+nc2 must make
a mistake on some input of size n. Therefore A �∈ DTIME(2O(nc1))/nc2.

Now, in order to decide if x(i) ∈ A it is enough to decide if x(j) ∈ A for all
j ≤ i. This is done in the order j = 1, . . . , i because we need the answer of
j for j + 1. For x(j) we proceed as follows: we enumerate all the programs M
of size ≤ n + nc2 , compute U t(n)(M) by simulating U for t(n) steps, we test
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whether M ∈ Vj−1 (this is done by comparing for each k < j the k-th bit of
U t(n)(M) with the already computed value of “x(k) ∈ A”), and count how many
M ∈ Vj−1 produce an output whose j-th bit is 0. If there are more than half
such M , then x(j) ∈ A, otherwise x(j) �∈ A. The overall running time of this
algorithm is (n + nc2)2O(nc2 )t(n), thus A ∈ DTIME(2O(n1+c1c2)).  !

The same proof also works for space complexity.

Proposition 3. For all constants c1, c2 ≥ 1, there is a sparse language A in
DSPACE(n1+c1c2) but not in DSPACE(nc1)/nc2 .

The following corollary is now immediate.

Corollary 1. For every constant c > 0, EXP �⊂
(
P/nc

)
and PSPACE �⊂ (∪k

DSPACE(logk n)/nc).

Remark 1. The original result of Homer and Mocas [3] has since been improved
by Ronneburger [11, Th. 5.21] in the following way: there is a language R ∈ EXP
such that for all k, there exists a language L ∈ EXP which is not truth-table
reducible to R in time 2nk

with nk bits of advice.

The construction of the language A of Proposition 2 enables us to prove the
following nonuniform lower bound for PP problems. As already mentioned, this
is a much weaker result than Vinodchandran [13] showing that PP does not have
circuits of size nk for any fixed k.

Proposition 4. For any fixed k > 0, PP �⊂ DTIME(nk)/(n− logn).

Proof. The idea relies on the following remark: in the proof of Proposition 2, if
the simulation time of the machine U is polynomial, then deciding whether “for
at least half of the programs M ∈ Vi−1, the i-th bit of U t(n)(M) is 0” is a PP
problem.

Let us now fill the details. Take t(n) = n3+k for the simulation time and
diagonalize over programs of size ≤ n − (logn)/2 (of which there are less than
2n/

√
n). For conveniency, if k ≤ n+1− (logn)/2 and b1, . . . , bk are k bits, define

B(b1, . . . , bk) = {M |M is a program of size ≤ n− (logn)/2 such that
∀i ≤ k, the i-th bit of U t(n)(M) is bi}.

Let us now define the following language C:

C = {(b1 . . . bk+1, 0mk)| for at least half of the programs M ∈ B(b1, . . . , bk),
the (k + 1)-th bit of U t(n)(M) is bk+1}.

The second term 0mk of the couple in C is only a padding term, so that the length
of the queries to C will be always the same. Since k ≤ n+1− (logn)/2, one can
assume by choosing an appropriate encoding that the length of (b1 . . . bk+1, 0mk)
is always n.



Symmetry of Information and Nonuniform Lower Bounds 321

Note that deciding whether M ∈ B(b1, . . . , bk) can be done in polynomial
time (there are k ≤ n + 1 − (logn)/2 simulations to perform, each of which
requires time O(t(n))). Therefore C ∈ PP.

We can now define our main language A very similarly as in Proposition 2:

x(1) ∈ A=n ⇐⇒ (0, 0m1) ∈ C,

that is, x(1) ∈ A if and only if at least half of the programs of size ≤ n−(logn)/2
reject x(1) (i.e., they make a mistake on x(1)). Call b1 ∈ {0, 1} the right answer
for x(1), that is, b1 = 1 iff x(1) ∈ A=n. Then we go on with x(2):

x(2) ∈ A=n ⇐⇒ (b10, 0m2) ∈ C.

Once again, among the programs that were right for x(1), at least one half give
the wrong answer for x(2). Going on like this for n + 1 − (log n)/2 steps, all
the programs are wrong on at least one word because every program has been
diagonalized against. We decide arbitrarily that x(i) �∈ A=n for i > n + 1 −
(logn)/2. We thus have A �∈ DTIME(nk+2)/(n− logn).

The language A can then be recognized in time O(n2) with oracle access to
C: it is enough to decide successively whether x(1) ∈ A, x(2) ∈ A, etc. These
n + 1 − (logn)/2 steps can be done thanks n + 1 − (logn)/2 queries of size n
to C (the time complexity of the algorithm is O(n2) because it has to ask O(n)
questions of size O(n)).

Suppose for a contradiction that PP ⊂ DTIME(nk)/(n − logn). Then C ∈
DTIME(nk)/(n − logn) and the algorithm above only queries words of size n.
Hence A ∈ DTIME(nk+2)/(n− logn) which is a contradiction.  !

4 Symmetry of Information

In this section we state the hypothesis of resource-bounded symmetry of in-
formation we will use. For the sake of completeness, we first state a version of
symmetry of information for exponential time bounds. For a proof one can easily
adapt the unbounded case, see for instance [8, Th. 2.8.2 p. 182].

Theorem 1. There exist constants α, β such that for all words x, y and all time
bound t, the following equality holds:

Ct(x, y) ≥ Ct2α(|x|+|y|)
(x) + Ct2α(|x|+|y|)

(y|x)− β log(|x|+ |y|).

Notice that the other inequality also holds up to a logarithmic factor and is
much easier to show. Here we are only interested in the “hard part” of symme-
try of information. This is an open question whether this inequality holds for
polynomial time bounds, i.e. whether there exists a polynomial q(n) such that
Ct(x, y) ≥ Ctq(|x|+|y|)(x)+Ctq(|x|+|y|)(y|x)−β log(|x|+ |y|). However, if one-way
functions exist (as is often believed), then polynomial-time symmetry of infor-
mation does not hold, see [9]. This suggests that this version of polynomial-time
symmetry is too strong.
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One way to relax this hypothesis is to allow a larger error, replacing the
O(log(|x| + |y|)) error term by δ(|x| + |y|). This would imply that polynomial-
time computable functions can be inverted in time 2O(δ(n)). This does not seem
completely impossible if δ(n) is large enough, for instance δ(n) = εn. Note also
that the hypothesis is true for δ(n) = n, since trivially there exists a polynomial
q such that 2Ct(x, y) ≥ Ctq(|x|+|y|)(x) +Ctq(|x|+|y|)(y|x). All these remarks lead
us to the following version of the hypothesis of polynomial-time symmetry of
information. It is interesting to note that Lee and Romashchenko [7], in the
introduction of their paper, already ask a very similar question: can we show
that (2 − ε)C(x, y) ≥ C(x) + C(y|x) for some contant ε > 0 when polynomial-
time bounds are required?

(SI) There exist a constant α > 1/2 and a polynomial q such that
for all time bound t and all words x, y, z of size |x|+ |y|+ |z| = n,

Ct(x, y|z) ≥ α

(
Ctq(n)(x|z) + Ctq(n)(y|x, z)

)
.

Note that we need time bounds tq(n) in the right-hand side, instead of q(t) in
the usual settings of polynomial-time symmetry of information, in order to limit
the growth of the time bound when iteratively applying (SI). It would be nice
to rule this problem out and use the usual q(t) time bound instead. Note finally
that the hypothesis can be weakened, as mentioned in the following remark.

Remark 2. For our purpose, the following restrictions can further be applied on
the hypothesis (SI):

1. we can require |x| = |y| and Ctq(n)(x|z) = Ctq(n)(y|x, z);
2. the time bound t can be taken < 2n2

and in this framework, the hypothesis
can hold only for all but a finite number of words x and y;

3. the constant α can be replaced by the nonconstant term 1/2 +
1/
√

log(|x| + |y|), which is closer to 1/2.
4. the multiplicative time bound q(n) can in fact be much larger than a poly-

nomial: we could take q(n) = 22
√

log n

, which is greater than 2logk n for all k.
All we need is a function q such that q(nlog n)log

2 n < 2nk

for some k.

Putting these points together, here is the weaker (but more complicated) hy-
pothesis we obtain:

Let f(n) = 22
√

log n

. For all n, all t < f(n), all word z and all but finitely many
words x, y of same length, if |x|+ |y|+ |z| = n and Ctq(n)(x|z) = Ctq(n)(y|x, z),
then

Ct(x, y|z) ≥
(

1
2

+
1√

log(|x|+ |y|)

)(
Ctf(n)(x|z) + Ctf(n)(y|x, z)

)
.
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Note that relative to the oracle O = {(M,x, b) : M(x) = b in ≤ 2|x| steps}, (SI)
is true. Furthermore, since our proofs below relativize and the conclusion does
not, we obtain the following proposition (certainly also provable directly).

Proposition 5. There exists an oracle A relative to which (SI) is true and an
oracle B relative to which (SI) is false.

We wish to iteratively apply (SI). In order to do that, we need to precise how
we encode tuples. The main property we will need is that (x1, . . . , x2n) should
have the same encoding as ((x1, . . . , xn), (xn+1, . . . , x2n)). This is achieved for
instance by representing three symbols “zero”, “one” and a delimiter # by 00,
11 and 01. Hence the size of the encoding of an n-tuple (x1, . . . , xn) will be
2(n− 1) + 2(|x1|+ . . . + |xn|). Of course, much shorter encodings could also be
chosen, but it would not help in this paper.

Lemma 2. Suppose (SI) holds and take a corresponding polynomial q. Let t be
a time bound, u1, . . . , un be words of size s and z be another word of arbitrary
size. We define m = ns + |z| the size of all these words. Suppose there exists a
constant k such that for all j ≤ n, we have Cq(m)log nt(uj|u1, . . . , uj−1, z) ≥ k.

Then Ct(u1, . . . , un|z) ≥ (2α)�log n�k.

Proof. Fix a sequence of words (ui)i≥1 of size s. Let us first show the result when
n is a power of 2. We show by induction on n (only for powers of 2) the following
hypothesis: for every time bound t, every word z and all m ≥ ns + |z|, if for all
j ≤ n, Cq(m)log nt(uj |u1, . . . , uj−1, z) ≥ k then Ct(u1, . . . , un|z) ≥ (2α)log nk.

This is clear for n = 1. For n > 1, take t, z and m ≥ ns + |z|. By (SI),

Ct(u1, . . . , un|z) ≥ α

(
Ctq(m)(u1, . . . , un/2|z)+

Ctq(m)(un/2+1, . . . , un|u1, . . . , un/2, z)
)
.

By induction hypothesis at rank n/2, for the time bound tq(m) and where for
the last term we take as new z the word u1, . . . , un/2, z, the right-hand side is at
least α((2α)log(n/2)k + (2α)log(n/2)k) = (2α)log nk.

Now, if n is not a power of 2, let p be the largest power of 2 less than n. Then
Ct(u1, . . . , un|z) ≥ Ct(u1, . . . , up|z) ≥ (2α)log pk = (2α)�log n�k.  !

We now establish links between the Kolmogorov complexity of a characteristic
string and the length of the advice.

Lemma 3. Let A be a language and χ(n) the characteristic string of A=n

(i.e. χ(n)
i = 1 iff x(i) ∈ A=n). We denote by χ(n)[1..i] the string consisting of the

i first bits of χ(n). Let r(n) be a function and suppose that there exists an un-
bounded function s(n) ≥ 0 such that for all constant α > 0, there exist infinitely
many n and 1 ≤ i ≤ 2n satisfying Cαir(n+a(n))(χ(n)[1..i]) > s(n) + a(n).

Then A �∈ DTIME(r(n))/a(n).
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Proof. Suppose that A ∈ DTIME(r(n))/a(n). Then there exist a fixed program
M together with an advice function c(n) of size ≤ a(n), such that for all x ∈
{0, 1}n, U(M,x, c(n)) works in time O(r(n+ a(n))) and accepts iff x ∈ A=n. By
enumerating the first i words of size n in lexicographic order and simulating the
program M on each of them, there is another program N with advice c(n) that
enumerates χ(n)[1..i] in time O(ir(n+a(n))). Hence there exists a constant α > 0
such that for all n and for all i ≤ 2n, Cαir(n+a(n))(χ(n)[1..i]) ≤ |N |+ a(n).  !

5 Diagonalizing Out of Polynomial Advice Length

We are now interested in diagonalizing over all polynomial advices, not just of
size nc for some fixed c. We will use the hypothesis of symmetry of informa-
tion above. Here the main difficulty is to diagonalize over all advices without
enumerating them, otherwise we would go outside of EXP. The idea is simple:

– Two different “useful” and “independent” parts of size k1 and k2 of an advice
“must” carry roughly k1 + k2 bits of information.

– We therefore decompose the advice in small blocks (of size O(n)) and di-
agonalize over the blocks instead of the whole advice, while making sure
that these blocks are “independent”. The hypothesis (SI) then enables us to
“glue” these blocks together.

This can also be seen as efficiently finding a string of high Kolmogorov complexity
and Lemma 2 helps us do that.

Theorem 2. If (SI) holds true, then EXP �⊂ P/poly.

Proof. Suppose (SI) holds true: this gives a corresponding polynomial q. We
diagonalize over programs (“blocks”) M of length ≤ n − 1 and simulate the
universal machine U for t(n) = q(n1+log n)log

2 nn2+log n+log3 n steps. Define the
language A as follows, by length as in the proof of Proposition 2. The n first
steps of the definition are the same as for Proposition 2; the difference occurs
only after, when we reuse the initial segment of A=n in our simulation. So we
define for i ≤ n:

x(i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V
(0)
i−1,

the i-th bit of U t(n)(M) is 0,

where V
(0)
i−1 is the set of the remaining programs of size ≤ n− 1 which give the

right answer for x(i−1). Remark that V
(0)
n = ∅ since all of the 2n − 1 programs

M have been eliminated.
Call u(1) the characteristic string of the initial segment of size n of A=n defined

above: thus |u(1)| = n and for i ≤ n, u(1)
i = 1 if and only if x(i) ∈ A=n. We now

define the next segment of size n of A=n.

x(n+1) ∈ A=n ⇐⇒ for at least half of the programs M of size ≤ n− 1,
the first bit of U t(n)(M,u(1)) is 0,
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that is, at least half of the programs M of length ≤ n− 1 give the wrong answer
for x(n+1) even with the string u(1) as advice. Let V

(1)
1 be the set of programs

M giving the right answer for x(n+1), i.e. such that the first bit of U t(n)(M,u(1))
corresponds to “x(n+1) ∈ A”. Hence |V (1)

1 | < 2n−1. We then go on like this:

x(n+i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V
(1)
i−1,

the i-th bit of U t(n)(M,u(1)) is 0.

Call u(2) the characteristic string of the second segment of size n of A=n

defined above: thus |u(2)| = n and u
(2)
i = 1 if and only if x(n+i) ∈ A=n. We

define the third segment of size n of A=n analogously:

x(2n+1) ∈ A=n ⇐⇒ for at least half of the programs M of size ≤ n− 1,
the first bit of U t(n)(M,u(1), u(2)) is 0,

etc. Going on like this we have (for the (j + 1)-th segment):

x(jn+i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V
(j)
i−1,

the i-th bit of U t(n)(M,u(1), u(2), . . . , u(j)) is 0.

We stop when j = nlog n and decide arbitrarily that x(k) �∈ A for k > n× nlog n.
Let us first show that A �∈ P/poly. Note that at each step of the definition

of A, we have Ct(n)(u(j)|u(1) · · ·u(j−1)) ≥ n because no program of length ≤
n− 1 writes u(j) in time ≤ t(n) on input u(1) · · ·u(j−1). Since (SI) holds and by

definition of t(n), Lemma 2 asserts that for i = n×nlog n, Ci.n1+log3 n

(χ(n)[1..i]) ≥
(2α)log

2 nn = n1+log(2α) log n for large enough n.
Hence by Lemma 3, if we let a(n) = nlog(2α) log n − n and r(n) = nlog n, we

have A �∈ DTIME(r(n))/a(n). In particular, A �∈ P/poly.
It is straightforward to see that A ∈ EXP, and the theorem follows.  !

Remark 3. The same proof also works for space complexity if we assume a corre-
sponding version of symmetry of information for polylogarithmic space bounded
Kolmogorov complexity. That is, under such an assumption we can prove that
PSPACE �⊂ (∪kDSPACE(logk n)/poly).

Let us now give a consequence of symmetry of information on randomized algo-
rithms. The following theorem of Nisan and Wigderson [10] will be useful for our
purpose. By approximating a problem we mean an algorithm that is right on all
but a fraction 1/f(n) of the inputs, where f(n) is superpolynomial (see [10]).

Theorem 3. If there exists ε > 0 such that EXP cannot be approximated by
circuits of size 2nε

then there exists c > 0 such that BPP ⊆ DTIME(2logc n).

We can use this theorem as follows. In the proof of Theorem 2, if we build
segments of size 2nε

(instead of n1+log n) for ε < 1 and repeat the process for
each segment until we fill {0, 1}n, then it is easy to see that every program of
size 2nε

must make a mistake not only on one, but on a fraction ≥ 1/(2nε) of the
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inputs (otherwise the segments could be compressed by encoding separately the
“good” program and the positions where it makes a mistake). That is, assuming
(SI), EXP cannot be approximated by circuits of size 2nε

, in the sense of [10].
Theorem 3 therefore yields the following corollary.

Corollary 2. If (SI) holds then there is c > 0 such that BPP ⊆ DTIME(2logc n).

6 Further Research and Acknowledgement

It would be interesting to overcome the problem with q(t) time bounds in the hy-
pothesis (SI) (instead of tq(n)), in order to be able to use the usual statement of
polynomial-time symmetry of information. Then one could try to obtain uncon-
ditional results by using variants of resource-bounded Kolmogorov complexity
such as CBP or CAMD (see [7]).

The author is really indebted to Andrei Romashchenko for the useful and
numerous discussions on this paper and on Kolmogorov complexity (in particular
on symmetry of information). He also wants to thank Pascal Koiran for pointing
out the open problem “EXP ⊂ P/poly?”, and the anonymous referees for useful
comments.
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2. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. EATCS monographs
on theoretical computer science, vol. 11. Springer, Heidelberg (1988)

3. Homer, S., Mocas, S.: Nonuniform lower bounds for exponential time classes.
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Perceptrons of Large Weight
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Abstract. A threshold gate is a sum of input variables with integer
coefficients (weights). It outputs 1 if the sum is positive. The maximal
absolute value of coefficients of a threshold gate is called its weight. A
perceptron of order d is a circuit of depth 2 having a threshold gate on
the top level and any Boolean gates of fan-in at most d on the remaining
level.

For every constant d 	 2 independent of the number of inputs n we
exhibit a perceptron of order d that requires weights at least nΩ(nd), that
is, the weight of any perceptron of order d computing the same Boolean
function is at least nΩ(nd). This bound is tight: every perceptron of order
d is equivalent to a perceptron of order d and weight nO(nd). In the case
of threshold gates (i.e. d = 1) the result was established by H̊astad in
[1]; we use H̊astad’s techniques.

1 Introduction

A threshold gate with input Boolean variables x1, . . . , xn is a Boolean function
of the form sgn(

∑n
i=1 wixi − t), where w1, w2, . . . , wn, t are integers, called the

weights and the threshold, respectively, and sgn stands for the sign function:
sgn(x) = 1 if x is positive, sgn(x) = 0 if x = 0 and sgn(x) = −1 otherwise.
For technical reasons we assume that the variables x1, . . . , xn range over {−1, 1}
(and not {0, 1}, as usual).

The maximal absolute value of t, w1, . . . , wn is an important parameter of the
threshold gate and is called its weight. If a Boolean function is computed by a
threshold gate, it can be computed by a threshold gate of weight nO(n) (see [2]
or [1]). In the paper by H̊astad [1] it was shown that this bound is tight: there
exists a function of n variables, that is computable by a threshold gate, but all
such threshold gates have weights at least nΩ(n).

Perceptrons [3] are natural generalizations of threshold gates. A perceptron
of order d is a circuit of depth 2 having a threshold gate on the top level and
any gates of fan-in at most d on the remaining level. The weight of a perceptron
is the weight of its threshold gate.

Any Boolean function f : {−1, 1}d → {−1, 1} can be expressed by a degree-
d polynomial in its input variables x1, . . . , xd, whose coefficients are rational
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numbers of the form i/2d with |i| ≤ 2d. Since there are at most 22d

(n + 1)d

Boolean functions of fan-in at most d of n variables, we can transform any
perceptron of order d and weight w into an equivalent one of order d and weight
22d+d(n + 1)dw with only XOR-gates at the bottom level (a XOR-gate outputs
the product of its inputs).

Therefore, in the sequel we assume that perceptrons have only XOR-gates
on the bottom level. In other words, in the sequel a perceptron of order d is a
polynomial of degree d with integer coefficients, and its weight is the maximal
absolute value of its coefficients.

There are at most O(nd) functions on the bottom level of a perceptron of
order d. Consider them as independent variables, the upper bound for weight of
threshold gates translates to the upper bound nO(nd) for perceptrons. That is,
every perceptron of order d with n input variables is equivalent to a perceptron
of order d and weight nO(nd) (the constant hidden in O-notation depends on d).
The same result was proved in the paper [5] by generalization of the proof of
the upper bound for threshold gates and there were conjectured that this bound
is tight. In the present paper we prove this conjecture: we show that for every
d > 1 and every n of the form d2m there is a perceptron of order d such that
every perceptron of order d that computes the same function has weight at least
nΩ(nd) (the constant hidden in Ω-notation depends on d).

In the case d = 1 the similar statement was proved by H̊astad in [1]. Our
function is a generalization of H̊astad’s and we use some of the intermediate
results of his paper.

Beigel in [4] exhibited a threshold gate with n inputs such that for every d any
perceptron of order d computing the same function has weight at least 2Ω(n/d2).
Beigel’s bound is weaker for d = 1 than H̊astad’s one, but on the other hand it
claims a lower bound for every d.

It is unknown whether there is a statement that generalizes both Beigel’s and
H̊astad’s results. More precisely, we do not know whether for any d and n there is
perceptron of order d such that for every d′ any perceptron of order d′ computing
the same function has weight at least nf(d′)n, where f is a fixed positive-valued
function.

Some exponential lower bounds for the weight of perceptrons were also shown
by Minsky and Papert [3]. However they used a very special set of functions
allowed on the bottom level.

2 The Result

Theorem 1. For some positive ε for any large enough N of the form d2m there
is a function G : {−1, 1}N → {−1, 1} that is computable by a perceptron of order
d and such that any perceptron of order d computing that function has weight at
least NεNd

.

Proof. Let us denote n = N/d. An input to G is a sequence of d2m bits −1, 1
and will be viewed as d functions f1, . . . , fd from {−1, 1}m to {−1, 1}. First n
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bits are the values of function f1 on all inputs, the following n bits are the values
of f2 and so on.

For an integer m let [m] denote the set {1, . . . ,m}. For all α ⊆ [m] we consider
the monomial ϕα in variables x1, . . . , xm, that is equal to the product of all
variables in α. If α is empty then ϕα is the constant 1. The functions ϕα form an
orthogonal basis in the linear space of all functions of the type {−1, 1}m → R.
where the inner product is defined as (f, g) =

∑
x∈{−1,1}m f(x)g(x).

We use the following lemma from [1]:

Lemma 1. There is an ordering α1, α2, . . . , αn of all subsets of [m] such that

1. |αi| � |αj | for i < j,
2. |αiΔαi+1| � 2 for all i.

We will denote this ordering by <0. We also need another ordering denoted
by <1. With respect to this ordering the subsets of [m] are arranged as follows:
α1, α2, . . . , αn. Note that the <0-minimal subset coincides with <1-maximal one,
which is the empty set, and vice verse. However the orderings <0 and <1 are
not dual: it might happen that both inequalities α <0 β and α <1 β hold
simultaneously.

Now we will define an ordering < of all the d-tuples of subsets of [m]. This
order will be essentially the lexicographic one. More specifically, the first com-
ponents α1, β1 of two tuples t = 〈α1, α2, . . . , αd〉 and s = 〈β1, β2, . . . , βd〉 are
compared with respect to the order <0, and we declare t < s if α1 <0 β1 and
t > s if α1 >0 β1. If the first components coincide, the second components are
compared w.r.t. the order <i, where i is the parity of the ordinal number of the
first component α1 = β1 w.r.t. the ordering <0. If both the first and the second
components coincide, the third components are compared w.r.t. the order <j ,
where j is the parity of the ordinal number of the second component w.r.t. the
order <i, and so on.

In other words, we define recursively, for each k-tuple t, an ordering <t of
subsets of [m] as follows:

<empty tuple=<0 and <〈t,α〉=<i

where i is the parity of the ordinal number of α with respect to the order <t.
The ordering of k-tuples is defined recursively: 〈t, α〉 < 〈s, β〉 if either t < s (with
respect to the order on (k − 1)-tuples), or t = s and α <t β.

Now we need to recall the function F that requires large weights from [1],
namely

F (f) = sgn(f, ϕα),

where α stands for the maximal subset with respect to the order <0 such that
(f, ϕα) �= 0. We define the following generalization of F :

G(f1, . . . , fd) = sgn((f1, ϕα1) · . . . · (fd, ϕαd)),

where 〈α1, . . . , αd〉 denotes the maximal d-tuple (with respected to the intro-
duced order) such that (f1, ϕα1) · . . . · (fd, ϕαd) �= 0.
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Lemma 2. The function G is computable by a perceptron of order d.

This lemma is a generalization of a similar lemma of H̊astad for d = 1.

Proof. We claim that

G(f1, f2, . . . , fd) = sgn

⎛⎝ nd∑
k=1

(nd + 1)k−1(f1, ϕα1
k
) . . . (fd, ϕαd

k
)

⎞⎠ ,

where 〈α1
k, . . . , α

d
k〉 denotes k-th d-tuple w.r.t. our ordering (note that (f, ϕα) is

a linear function in the variables f(x) and hence this is a representation in the
required form).

Let l be the number of the last nonzero term in the displayed sum. It is enough
to prove that

|(nd + 1)l−1(f1, ϕα1
l
) . . . (fd, ϕαd

l
)| > |

l−1∑
k=1

(nd + 1)k−1(f1, ϕα1
k
) . . . (fd, ϕαd

k
)|.

Since for all k we have |(f1, ϕα1
k
) . . . (fd, ϕαd

k
)| � nd and for l we have

|(f1, ϕα1
l
) . . . (fd, ϕαd

l
)| 	 1, we only need to show

(nd + 1)l−1 >

l−1∑
k=1

(nd + 1)k−1nd,

and it is not hard to prove this by induction on l.

Assume that G is represented as a degree-d polynomial in the variables fi(x),
i = 1, . . . , d, x ∈ {−1, 1}m:

G(f1, f2, . . . , fd) = sgn
∑

k

ukgk (1)

where every gk is a monomial of degree at most d in the variables fi(x) and all
uk are integers. We need to show that max |uk| is large.

Lemma 3. Setting to 0 all the coefficients uk such that in the monomial gk not
all functions f1, . . . , fd are presented preserves Equation (1).

Proof. Consider an arbitrary j from [d]. Observe that

G(f1, f2, . . . ,−fj, . . . , fd) = −G(f1, f2, . . . , fj, . . . , fd)

As G is represented by Equation (1) we have

G(f1, f2, . . . ,−fj, . . . , fd) = sgn(
∑
i∈A

uigi −
∑
k∈B

ukgk) (2)

where A is the set of all indices i such that gi contains an even number of terms
of the form fj(x) and B is the set of all remaining indices. Since the sign of G
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is changing, as we change the sign of fj , the absolute value of the second sum is
greater than the absolute value of the first one and the sign of G depends only on
the sign of the second sum. Since this holds for all inputs f1, . . . , fd, we can set
all weights in the first sum to zero. Performing this procedure consequently for
all j we get rid of all terms containing even number of occurrences of fj(x) for
some j. As zero is an even number, all the remaining monomials contain some
fj(x) for all j.

Thus we may assume that each monomial in Equation (1) has degree exactly d
and each function appears in the monomial exactly once. It will be more conve-
nient to switch to a representation of G as a linear combination of the degree-d
monomials in variables (fi, ϕα), where α ⊆ [m]. The following construction is an
obvious generalization of H̊astad’s construction for threshold functions.

The family of functions {ϕα | α ⊆ [m]} form an orthogonal basis in the space
R

2m

. Using the Fourier expansion, every function f can be expressed as a linear
combination of ϕα,

f(x) =
1

2m

∑
α

(f, ϕα)ϕα(x). (3)

(By the way, as ϕα(x) is a product of x1, . . . , xm, this proves the claim from
the Introduction that every Boolean function f : {−1, 1}d → {−1, 1} can be
expressed by a degree-d polynomial in its input variables x1, . . . , xd, whose co-
efficients are rational numbers of the form i/2d with |i| ≤ 2d.)

Replacing in Equation (1) each fj(x) by the right hand side of Equation (3),
we obtain a representation of the form

G(f1, f2, . . . , fd) = sgn
∑

α1,...,αd

wα1,...,αd(f1, ϕα1)(f2, ϕα2) . . . (fd, ϕαd) (4)

where the sum is over all d-tuples. Each wα1,...,αd is a linear combination of
coefficients from Equation (1) uk with rational coefficients of the form ±1/nd.
Multiplying the representation (4) by nd we turn all wα1,...,αd into integers not
exceeding nd max |uk| in absolute value.

Thus it suffices to show that for any representation of G in the form (4), where
all wα1,...,αd are integer we have max |wα1,...,αd | = nΩ(nd).

Let us arrange all d-tuples t according to the ordering defined above and
consider the corresponding sequence wt1 , . . . , wt

nd
. Now we are going to identify

a subsequence in which each term is greater than the preceding one, and most
terms are much greater than the preceding ones.

First note that all wt are positive. Indeed the value of G on any input of
the form f1 = ϕα1 , . . . , fd = ϕαd is 1. On the other hand, if we substitute f1 =
ϕα1 , . . . , fd = ϕαd in the right hand side of Equation (4), we obtain sgnwα1,...,αd .
Thus sgnwα1,...,αd = 1.

Fix an arbitrary (d − 1)-tuple r = 〈α1, α2, . . . , αd−1〉 and consider all the
terms in the sequence wt1 , . . . , wt

nd
corresponding to d-tuples ti of the form

〈r, αd〉 (that is, whose projection on the first d − 1 coordinates is equal to r).
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Note that
G(ϕα1 , . . . , ϕαd−1 , fd) = F (fd)

where F is the H̊astad’s function, or

G(ϕα1 , . . . , ϕαd−1 , fd) = F̂ (fd),

where F̂ is the “dual” of F , that is F̂ (f) = sgn(f, ϕα), where the set α ⊆ [m] is
maximal w.r.t. the order <1 such that (f, ϕα) �= 0. Indeed, the value (ϕα1 , ϕβ1) ·
. . . · (ϕαd−1 , ϕβd−1) · (fd, ϕβd) is nonzero only if β1 = α1, . . . , βd−1 = αd−1 and
the ordering on the last component is either <0, or <1.

On the other hand,

G(ϕα1 , . . . , ϕαd−1 , fd) = sgn
∑
αd

wα1,...,αd−1,αd(fd, ϕαd).

Thus the coefficients wα = wα1,...,αd−1,α represent F or F̂ , and we are able to
use the following bound from [1]:

Lemma 4. Let the function F be represented in the form F (f) =
= sgn

∑
α wα(f, ϕα). For all i ∈ [n] let αi be i-th set w.r.t. the ordering <0.

For all i such that |αi| 	 2 we have

wαi > (2|αi|−1 − 1)wαi−1 	 2|αi|−2wαi−1 .

Consider the minimal set α with respect to <0 of cardinality 2, call it A. Assume
that F (f) = sgn

∑
α wα(f, ϕα) is a representation of F . Let α increase from A

to its complement Ā. By Lemma 4 wα increases at least∏
2�|α|<m−2

2|α|−2

times, as α increases from A to Ā. The sum of cardinalities of all subsets of [m] is
at least Ω(m2m) (indeed more than half of them have cardinality at least m/2).
Therefore this product is at least

2
∑

2�|α|<m−2 |α|−2m+1
= 2Ω(m2m)−2(1+m+m(m−1)/2)−2m+1

= 2Ω(m2m) = nΩ(n).

Thus for every fixed (d − 1)-tuple r such that <r=<0 we have w〈r,Ā〉 	
nΩ(n)w〈r,A〉.

We need a similar bound for those (d − 1)-tuples r such that <r=<1. We
prove it by translating the properties of F into properties of F̂ .

Lemma 5. For all weights wα, the equality F̂ (f) = sgn
∑

α wα(f, ϕα) holds for
all f if and only if the equality F̂ (f) = sgn

∑
α wα(f, ϕα) holds for all f .

Proof. Assume that F (f) = sgn
∑

α wα(f, ϕα) for all f . Consider the function
F (ϕ[m] · f) where (f · g)(x) = f(x) · g(x).
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Observe that (ϕ[m] · f, ϕα) = (f, ϕα · ϕ[m]) = (f, ϕα). Thus F (ϕ[m] · f) =
sgn(ϕ[m] · f, ϕα) = sgn(f, ϕᾱ), where α is maximal w.r.t. the order <0 such
that inner product is nonzero. Hence by definition of the order <1 the set α is
maximal in this order such that inner product is nonzero. Therefore we have
F̂ (f) = F (ϕ[m] · f) = sgn

∑
α wα(ϕ[m] · f, ϕα) = sgn

∑
α wα(f, ϕα).

The converse implication is proved in a similar way.

This lemma implies that for every (d − 1)-tuple r such that <r=<1 we have
w〈r,A〉 	 nΩ(n)w〈r,Ā〉.

Now we introduce some notation allowing to express the proved bounds in
a uniform way. Let min(<0) = max(<1) = A and min(<1) = max(<0) = Ā.
Let next<i(α) (for α �= max(<i)) denote the set following α with respect to the
order <i. Using this notation we can summarize the proved bounds as follows.
Let t be a d-tuple and let α denote ith component of t so that t = 〈p, α, r〉 and
the length of p is i− 1. Call the ith component of t good if α ∈ [min; max] w.r.t.
<p. Otherwise call the ith component of t bad.

– If d-tuples s and t have the same common prefix r of length d − 1 and
their last components are equal to max(<r) and min(<r), respectively, then
ws > nΩ(n)wt.

– If d-tuples s and t coincide in all components except the ith component and
the ith component of t is good and follows the ith component of s w.r.t. the
ordering <r (where r is their length-(i − 1) common prefix) then we have
ws > wt. Indeed, if we fix all components except the ith component, we will
obtain either function F , or function F̂ and by Lemma 4 and Lemma 5 we
will get the desired inequality. (In fact, these lemmas provide even a stronger
inequality, which we do not need.)

We distinguish 2 cases.
Case 1. The parity of the ordinal number of A with respect to the ordering

<0 is different from that with respect to the ordering <1. (This implies that the
same is true for Ā.)

Let us delete from the sequence wt1 , . . . , wt
nd

all wt for d-tuples t that contain
a bad component. The remaining terms split naturally into (n′)d−1 continuous
subsequences, where n′ denotes the number of subsets of [m] between A and Ā
w.r.t. <0 (which is equal to the number of subsets of [m] between Ā and A w.r.t.
<1). We have shown that the last term of each such continuous subsequence is
more than nΩ(n) times bigger than the first one. We claim that the first term
wt of each such continuous subsequence is greater than the last term ws of the
preceding continuous subsequence.

To prove the claim we show that s and t differ only in one component. Indeed,
s and t have the form

s = 〈r, α,maxi+1,maxi+2, . . . ,maxd〉, t = 〈r, next(α),mini+1,mini+2, . . . ,mind〉

where “next” is with respect to <r and all minima and maxima are taken with
respect to the orders associated with respective prefixes.
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The orders corresponding to length-i prefixes of s and t are different and
hence the sets maxi+1 and mini+1 coincide. Moreover, their ordinal numbers
in respective orderings have different parities. Therefore the sets maxi+2 and
mini+2 coincide as well. Reasoning by induction we see that maxi+k and mini+k

coincide for all k ≤ d− i.
Thus we have wt > ws. This implies that max |wt| > (nΩ(n))(n

′)d−1
. Obviously,

n′ > n/2 and we are done.
Case 2. The parities of the ordinal numbers of A with respect to the orderings

<0, <1 coincide. What changes in the above argument? In this case s and t differ
in all components i + 1, i + 2, . . . , d and we cannot claim that wt > ws.

We modify the argument as follows. Consider the tuples

s =〈r, α,maxi+1,maxi+2, . . . ,maxd〉,
s1 =〈r, next(α),mini+1,maxi+2, . . . ,maxd〉,
s2 =〈r, next(α), next(mini+1),mini+2, . . . ,maxd〉,

. . .

sd−i =〈r, next(α), next(mini+1), next(mini+2), . . . ,next(mind−1),mind〉.

In each of these tuples next,min,max are understood with respect to the order-
ings specified by the respective prefixes of the tuple.

Each of these tuples differs from the preceding one only in one component,
thus wsd−i

> · · · > ws1 > ws. Note that sd−i is the first term of a continuous
subsequence. Although that subsequence is not the subsequence that follows s,
the total number of d-tuples between s and sd−i is rather small. Indeed, each
such d-tuple has a component that is equal either to A, or to Ā. So all d-tuples
all components of which lie strictly between A and Ā will lie in our subsequence.
This implies that max |wt| > (nΩ(n))(n

′−2)d−1
. Obviously, n′ − 2 > n/2 and we

are done.

Remark 1. The proof of the theorem could be modified as follows. First, we could
try to find an ordering in Lemma 1 so that to get rid of Case 2. However we don’t
know if there is such ordering. Second, we could reason as follows: Remove in
advance all the subsets of [m] that do not belong to the union of segment [A, Ā]
(w.r.t. <0) and [Ā, A] (w.r.t. <0). (Note that these segments do not coincide,
as the orders <0 and <1 are not dual.) Then define recursively a large enough
ordered set M of d-tuples of remaining sets so that every two consecutive tuples
in M differ only in one component. Then define G, as above, but this time using
only d-tuples from M . This option requires to re-prove Lemma 4, as we cannot
use its statement directly. We believe that the presented proof is simpler than
that obtained along these lines.
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A Padding Technique on Cellular Automata to
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Abstract. We will show how padding techniques can be applied on one-
dimensional cellular automata by proving a transfer theorem on com-
plexity classes (how one inclusion of classes implies others). Then we
will discuss the consequences of this result, in particular when consid-
ering that all languages recognized in linear space can be recognized in
linear time (whether or not this is true is still an open question), and see
the implications on one-tape Turing machines.

1 Introduction

Cellular automata (CA) are a simple yet powerful and complex massively par-
allel computing model. It is known to be Turing-complete, but the parallelism
of the computation makes it quite different from usual sequential models (Tur-
ing machines, RAM machines, etc.) in terms of algorithmic complexity. Many
examples have shown how it can lead to very efficient computations [4,5].

For these reasons it is interesting to study cellular automata as language rec-
ognizers. Because of the parallelism it is very hard to prove non-trivial time lower
bounds for the recognition of languages: there is currently no known language
that can be recognized in linear space that cannot be recognized in linear time.

Also, some techniques that seem simple on sequential models such as Turing
machines can be more complicated on cellular automata. In this article we will
see how “padding techniques” can be used on cellular automata to transfer an
inclusion between two complexity classes to more general classes. This technique
has been widely known and used in the case of Turing machines, but it does not
work immediately on cellular automata (since all cells work at each step, the
cells in the “padded” region also work from the beginning).

The article is structured as follows: in section 2 we give the necessary defi-
nitions and recall some useful properties of cellular automata. Section 3 states
the transfer theorem and proves it by explaining how to make padding work on
one-dimensional cellular automata. Finally, in section 4 we study some conse-
quences of this result, mainly concerning the long time open question of deciding
whether or not there exist languages that can be recognized in linear space but
not in linear time, and how it is linked to a tight equivalence between one-tape
Turing machines and one-dimensional cellular automata.
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2 Definitions and Useful Properties

2.1 Cellular Automata

In this article, we will only consider one-dimensional cellular automata working
on the classical neighborhood.

Definition 1. A cellular automaton (CA) is a pair A = (Q, δ) where Q is a
finite set called set of states containing a special state B, and δ : Q3 → Q is the
transition function such that δ(B,B,B) = B (B is a quiescent state).

For a given automaton A, we call configuration of A any function C : Z → Q.
From the local function δ we can define a global function

Δ :
{
QZ → QZ

C 	→ C′ | ∀x ∈ Z, C′(x) = δ(C(x− 1), C(x), C(x + 1))

Elements of Z are called cells. Given a configuration C, we will say that a cell
c is in state q if C(c) = q.

If at time t ∈ N the CA is in a configuration C, we will say that at time (t+1)
it is in the configuration Δ(C). This defines the evolution of a CA from a con-
figuration. This evolution is completely determined by the initial configuration
C and the automaton.

Definition 2 (Finite Configuration). A configuration C : Z → Q is said to
be finite if there exists x, y ∈ Z (x ≤ y) such that for all n /∈ �x, y�, C(n) = B.

The size of the configuration is the minimal value of (y− x+ 1) for all (x, y)
statisfying the definition.

It is obvious (because the state B is quiescent) that for every finite configu-
ration C, Δ(C) is also finite. In this article we will only consider finite initial
configurations so at all times the configuration of the automaton will be finite.

Definition 3 (Signals). A signal in a CA is a special set of states that “moves”
in a direction at a given speed. For example, a signal s moving at speed 1 to the
right is a pair of states {s, s} such that δ(s, s, s) = s and δ(s, s, s) = s (if a cell
sees that its left neighbor is in state s, it becomes of state s at the next time, so
in some sense the s state has moved right). In this example, s is a neutral state.

To have a signal move at speed 1/k (k ∈ Z+), we will use k + 1 states
{s1, . . . , sk, s}, and the rules

δ(s, si, s) = si+1 i ∈ �1, k − 1�
δ(s, sk, s) = s
δ(sk, s, s) = s1

so that the state si stays on a cell during k steps before moving to the right
(again, all cells that do not hold the signal are in state s).
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Signals are a very useful tool for computations on cellular automata. Given
an automaton A = (Q, δ), adding a signal S = {s1, . . . , sk, s} corresponds to
making a new cellular automaton whose states are Q × S. Any finite number
of signals can be added to an automaton (while still having a finite number of
states). Signals can then evolve according to their move rule (as explained in the
definition) but can also interact the ones with the others when they meet on a
cell (disappear, generate new signals etc.), or even change the main evolution of
the automaton on a given cell when it receives a given signals (and that is what
they are useful for).

Definition 4 (Space-Time Diagram). Given a CA A = (Q, δ) and a config-
uration C, we can represent by a two-dimensional diagram the complete evolution
of the automaton from C. The initial configuration is drawn horizontally on the
bottom line and all the following configurations are drawn successively (time goes
from bottom to top). Such a diagram is called space-time diagram of A from con-
figuration C.
For obvious reasons, we only represent a finite part of a space-time diagram
(finite in both space and time) however since we will only consider finite config-
urations and computations over a finite time we will be able to represent all the
necessary information.

The space-time diagram of a CA is a discrete diagram. However, we will
sometimes represent it as a continuous figure. In this case the signals (some
specific states that move through the configuration) will be represented as line
segments, and they will partition the diagram in polygonal parts.

2.2 Language Recognition

Definition 5 (Word Recognition). We consider a CA A = (Q, δ) and an
accepting state qf ∈ Q such that for all q1, q2 ∈ Q we have δ(q1, qf , q2) = qf (if
a cell is in state qf at one point, it stays in this state forever, such a state is
called persistent). Let w = w0w1 . . . wl−1 be a word on a finite alphabet Σ ⊆ Q.
We define the configuration Cw as follows.

Cw : Z → Q{
x
x
	→
	→

wx

B
if 0 ≤ x < l
otherwise

We will say that the CA A recognizes the word w with accepting state qf in time
tw ∈ N and space sw ∈ N if, starting from the configuration Cw at time 0, the
cell 0 is in state qf at time tw and no cell other than the ones in �0, sw − 1� was
ever in a state other than B.

Definition 6 (Language Recognition). Let A = (Q, δ) be a CA, L ⊆ Σ∗

a language on the alphabet Σ ⊆ Q and qf ∈ Q a persistent state. Given two
functions T : N → N and S : N → N, we will say that the language L is
recognized by A in time T and space S with accepting state qf if for every word
w ∈ Σ∗ of length l, the CA A recognizes w with accepting state qf in time T (l)
and space S(l) if and only if w ∈ L.
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We will denote as CATIME(T ) the class of languages recognizable in time T and
as CASPACE(S) the class of languages recognizable in space S.

2.3 Functions

Definition 7 (Time-Constructible Function). Given a function f : N → N,
we will say that f is time-constructible if there exists a CA A = (Q, δ) and two
states q1, qf ∈ Q such that for every n ∈ N, starting from the initial configuration
Cqn

1
(the unary encoding of n into a finite configuration of A) at time 0, the cell

0 is in state qf for the first time at time f(n).

The above definition simply means that, given an integer n in unary form, the
automaton can “count” f(n) steps and mark the origin when it is done.

Definition 8 (Space-Constructible Function). Given a function f : N →
N, we will say that f is space-constructible if there exists a CA A = (Q, δ)
and two states q1, qf ∈ Q such that for every n ∈ N, starting from the initial
configuration Cqn

1
, after some time all cells ranging from 0 to f(n)− 1 switch to

the state qf , no cell was in this state before and during the whole computation
none of the cells c such that c < 0 or c ≥ f(n) was ever in a state other than B.

This definition means that, on input n (encoded in unary), the automaton will
compute f(n) in unary without using more cells in the process than the ones
needed to write the output (the ones between 0 and f(n)−1). The synchroniza-
tion is not a problem because we can apply the firing squad technique at the
end of the computation (see Proposition 1).

Remark. It is obvious, according to this definition, that any function f that is
space-constructible is such that f(x) ≥ x for all x.

Remark. Any time-constructible function f such that ∀x, f(x) ≥ x is space-
constructible : we can modify the automaton so that it first compresses its input
to a word of half its initial length, and then performs the computation of f using
half the space (all states correspond to two states of the initial automaton). While
this computation occurs, a signal moves at speed 1/2 from the origin to the right.
When the time f(n) is computed on the origin, a new signal appears that moves
to the right at speed 1. These two signals meet at the cell f(n), and no more
space has been used during the computation.

2.4 Basic Properties

Proposition 1 (Firing Squad). It is possible to synchronize a segment of k
adjacent cells (have them enter a specific state for the first time at the same
time). It can be done in time ak + b for any a ≥ 2 and b ≥ 0, starting from the
time when the leftmost cell emits the “synchronization” signal. The rightmost
cell need only be created at time (a− 1)k.

The firing squad problem has been well studied, and many ingenious solutions
have been found. In this article we will need a solution that can be delayed so
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that the synchronization takes exactly ak steps for some integer a ≥ 2 and such
that the rightmost cell can be constructed as late as possible (at time (a− 1)k).
Such a solution is a particular case of the general “delayed” solutions explained
in [7].

Proposition 2. Let f : N → N be a time-constructible function. If for all x ∈ N,
we have f(x) ≥ 3x then the function x 	→ f(x)− x is also time-constructible.

Proof. The first step is to mark the cell n/3. This can be done at time 2n/3
by sending a signal at speed 1/2 to the right from the origin and a signal at
speed 1 to the left from the rightmost letter of the word. Then, with a firing
squad technique between the origin and the cell n/3 (see proposition 1) and a
compression of the information it is possible to start the computation of f(n)
at scale 1/3 from time n. This will mark the time n+ f(n)/3 on the origin, and
from this time, a signal s1 appears and moves to the right at speed 1

Meanwhile, we mark the time 2n on the origin, and from there a signal s2

starts going right at speed 1/2. This signal meets the signal s1 at time 2f(n)/3
on cell f(n)/3 − n (the signals meet only if s2 was generated before s1, which
means that 2n ≤ n + f(n)/3, i.e. 3n ≤ f(n)), and from here a new signal starts
moving towards the origin at speed 1, this last signal will arrive at the origin at
time 2f(n)/3 + f(n)/3− n = f(n)− n.

Proposition 3. Let f : N → N be a time-constructible function and k ≥ 2 an
integer. If for all x ∈ N we have f(x) ≥ 2kx then the function x 	→ f(x)/k is
also time-constructible.

Proof. This construction is simpler than the previous one, all we have to do is
mark the cell f(n)/k at time (k − 1)f(n)/k with the use of a signal moving to
the right at speed 1/k and one going to the left at speed 1, and then with a
firing squad technique start the computation of f(n) at scale 1/k to mark the
origin at time f(n)/k + n. We then use Proposition 2 to construct x 	→ f(x)/k.

The combination of both constructions requires f(x) ≥ 2kx.

Proposition 4 (Turing-Cellular Comparison). Let L be a language in Σ∗.
If L is recognized in time T : N → N and space S : N → N by a Turing machine
using one tape and one head, then it is recognizable in time T and space S by a
cellular automaton.

Moreover, if L is recognized by a cellular automaton in time T and space S
then it is recognized by a one-tape Turing Machine in time T × S and space S.

Proof. This property follows from straightforward simulations of one-tape Turing
machines by cellular automata and vice versa. Details on these simulations can
be found in [9].

Proposition 5. For every language L and every integer k, if L can be recognized
in space x 	→ kx then it can be recognized in space x 	→ x. In other words⋃

k∈N
CASPACE(k. Id) = CASPACE(Id).

The proof is identical to that of the same result in the Turing case.
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Proposition 6. For every language L recognizable in time T and space S on a
cellular automaton, there is a CA that recognizes L in time T ′ ≤ T and space
S′ ≤ S and such that all cells c < 0 remain in the blank state B during all the
computation (for every word w).

The proof of this proposition is identical to the proof that semi-infinite tape
Turing machines are equivalent to bi-infinite tape Turing machines.

3 Transfer Theorem

In this section, we will state and prove the transfer theorem. Some consequences
of this theorem will be discussed in the next section.

Theorem 1. Given two space-constructible functions f, g : N → N if CASPACE
(f) ⊆ CATIME(g) then for any time-constructible function h : N → N such that
∀x, h(x) ≥ 6x we have

CASPACE(f ◦ h) ⊆ CATIME(g ◦ h)

To prove this, we will consider three functions f , g and h that satisfy the hy-
pothesis of Theorem 1 and we will assume that

CASPACE(f) ⊆ CATIME(g)

Moreover we consider a language L over the alphabet Σ that can be recognized
in space f ◦ h. We will show that L can be recognized in time g ◦ h.

3.1 The Language L̃

Lemma 1. The language L̃ = {w#h(|w|)−|w| | w ∈ L}, where # is a new symbol
not in Σ, is recognizable in time g.

Proof. We first show that L̃ is in CASPACE(f). To do so we have to check that
w is in L and that there are exactly the right amount of # symbols. Because L is
in CASPACE(f ◦ h) and h is space-constructible both verifications can be done
(if more space is needed it means that there were not enough #). The conclusion
follows from the hypothesis that CASPACE(f) ⊆ CATIME(g).

From now on, we will assume that we have a CA A that recognizes L̃ in time
g. We will now construct a CA A′ that recognizes L in time g ◦ h.

3.2 Compression of the Space-Time Diagram

The aim of this section is to explain how it is possible to construct the cellu-
lar automaton A′ that will, on input w, simulate the behavior of A on input
w#h(|w|)−|w| without any loss of time. The initial configuration of A is very sim-
ple, and the only information that A′ is missing is the exact location of the cell
(h(|w|) − 1).
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Let us have a look at a typical space-time diagram of A on input ω =
w#h(|w|)−|w| (see figure 1). According to proposition 6 we can consider that
no computation takes place on the negative cells. We will now consider sepa-
rately the area of the space-time diagram that is on top of the initial word w
(the cells on which the letters were initially written) and the rest of the diagram,
starting from the cell |w| (these two areas are separated by a dashed line on the
figure). If we assume that A′ is able to compute correctly all the states on the
column that is immediately to the right of this dashed line (all the states of the
cell |w|), it will mean that it is also capable of computing all the states in the
area corresponding to the cells from 0 to (|w| − 1) because the initial states are
known (the letters of w) and that at each time the states of these cells only
depend on the previous states of these cells and the cell |w|.

w #h(|w|)−|w| BB . . .

Fig. 1. Space-time diagram of A

−|w| 0 h(|w|)
3

h(|w|)
3 2h(|w|)

3

Fig. 2. Construction of the point
(h(|w|)/3, 2h(|w|)/3) at time 2h(|w|)/3
(with shifted coordinates)

To compute the states on the cell |w|, we will operate a geometric transforma-
tion of the rightmost part of the space-time diagram (the part that is represented
on the right of the dashed line) that will preserve this column and let the au-
tomaton A′ construct the missing portion of the initial configuration of A: the
segment of # symbols of length h(|w|) − |w|.

Definition of the compression. Let us shift the system of coordinates on the
diagram so that the new origin is now the cell |w| (the cell that was previously
referred to as c is now the cell (c− |w|)). Let us consider the transformation

σ :

{
N2 → (1

3N)2

(x, y) 	→ (x
3 , y + 2x

3 )

The vertical axis is invariant by σ and the image of the horizontal axis (the
initial configuration) is now a line of slope 2. Figure 3 illustrates the effects
of σ on the right part of the space-time diagram of A. We see that each cell
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σ

Fig. 3. Effects of σ on the right
part of the space-time diagram

Fig. 4. The 3 possible cases when
trying to apply the transition rule
of A after compression by σ

receives, after compression, the states of 3 cells before compression (except for
the origin that keeps one single state). We have alse represented on the figure
the neighborhood of a cell and its successor, both before and after compression.

All we have to do now is show thatA′, on input w, can simulate the behavior of
A by constructing in real-time the image by σ of the right part of the space-time
diagram of A.

How the Simulation Works. Since we have assumed that for all x ∈ N,
h(x) ≥ 6x, the function h/3 is time-constructible (proposition 3) which means
that the origin (still with shifted coordinates) can be marked at time h(|w|)/3
which means we can mark the cell h(|w|)/3 at time 2h(|w|)/3 by sending signals
as illustrated on figure 2 (the black dashed line is a signal that moves at speed
1 whereas the grey dashed line is a signal moving at speed 1/2). The space-time
point (h(|w|)/3, 2h(|w|)/3) is exactly the image by σ of the point (h(|w|), 0) that
happens to be the last cell in state # in the initial configuration of A.

Therefore, even if A′ does not have all the information held by ω in its initial
configuration, it can construct the image by σ of this initial configuration. Indeed,
by propagating a signal to the right at speed 1/2 from the shifted origin (the
right border of the input word) it can write # symbols on the segment that is
the image of the # segment in the initial configuration of A and we have just
seen that A′ is capable of deciding exactly where this segment must end.

We now have to check that A′ can apply the transition rule of A to the
information that is held by the cells after applying σ to the space-time diagram.

The states on the space-time diagram of A can be in one of 3 different situ-
ations after compression by σ as shown by figure 3: upper-left, center or lower-
right. Figure 4 illustrates the situation for each of these cases.
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In each part of the figure we have represented which states must be known in
order to compute the next state on a given position. We see that the information
needed to compute the “next state” on a lower-right position is located on the
current cell and its right neighbor. To compute the next state on a central
position, the cell must look at her right neighbor and also know the next state
on the lower-right position, which, as we have seen, can be computed with the
information that is accessible to the cell. Finally, computing a state in the upper-
left position requires to see a state held by the left neighbor of the cell, and also
computing the next state on the central position.

In all three cases, we have shown that if the space-time diagram of A′ contains
the image by σ of the configuration of A at time t then A′ can compute the image
by σ of the configuration of A at time (t + 1). Since the image of the initial
configuration of A can be recreated by A′, it is possible to compute correctly
everything that happens on the right part of the space-time diagram of A (on
the right of the last letter of the input word).

3.3 End of the Computation

We have seen how A′ can simulate the computation of A on the area that is on
top of the input word without any distortion if it can compute correctly all the
states on the column |w| (back on the original coordinates system), and how this
column can be computed by compressing the space-time diagram of A (but the
compression does not affect the column |w|).

The automaton A on input w can therefore simulate completely the behavior
of A on input ω = w#h(|w|)−|w|, which means that at time g(|ω|) = g ◦ h(|w|) it
can decide whether or not ω is in L̃ and hence whether or not w is in L.

The language L is recognized in time g ◦ h, which concludes the proof of
theorem 1.

4 Linear Time, Linear Space

4.1 The Open Questions

As in the Turing case, it is very hard on cellular automata to prove lower bounds
of complexity. Moreover, very little is known about comparing space and time
complexities. If it is easy to show that for any function f , CATIME(f) ⊆
CASPACE(f), showing that the inclusion is strict (or that it is an equality)
is much harder.

In particular, extensive work has been made on the lower complexity classes:

– Real time: CATIME(Id);
– Linear time:

⋃
k∈N

CATIME(k. Id);
– Linear space:

⋃
k∈N

CASPACE(k. Id);

Space and time speed-up theorems show that the linear class time is equal to
the class CATIME(2 Id) and that the linear time class is equal to CASPACE(Id).
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There is also an immediate sequence of inclusion between these three classes but
it is still unknown if any of these inclusions is strict.

The questions have been first stated by A. R. Smith III in 1972 [10] and have
remained open since. Some significant improvements have been made though,
for example relating the equality of complexity classes to their closure properties
[6] or working on weaker versions of cellular automata [1,2,3]. These questions
are in many ways similar to the well known open question “P = PSPACE ?”.

In this section we will use the theorem 1 to show some consequences of the as-
sumptions that CATIME(Id) = CASPACE(Id) or CATIME(2 Id) = CASPACE
(Id).

4.2 Stronger Version of the Main Theorem

We have the following results:

Lemma 2. Under the hypothesis that CATIME(Id) = CASPACE(Id), every
function f that is space-constructible is also time-constructible.

Proof. We show that the language Lf = {1x#f(x)−x | x ∈ N} is in CASPACE(Id)
and thus in CATIME(Id). Then we can make a cellular automaton that, on input
1x will work as if all symbols on the right of the last ‘1′ were # and continue until
the first (and only) word of the form 1k#∗ is accepted (at time t the automaton
considers that it has received all the relevant information, and therefore knows
whether or not the word 1x#t−x is in Lf). It will happen at time f(x), so f is
time-constructible.

Proposition 7. If CATIME(Id) = CASPACE(Id) then for any space-
constructible function h : N → N we have

CASPACE(h) ⊆ CATIME(h)

Proof. The proof of this proposition is very similar to that of theorem 1. The
only difference is that the hypothesis on h is now weaker because of lemma 2.

4.3 Equivalence of Cellular and Turing Models

For a given function f : N → N, we will denote as DTIME(f) the class of
languages recognizable on a deterministic one-tape Turing machine in time f ,
and DSPACE(f) the class of languages recognizable on a deterministic one-tape
Turing machine in space f . It is known that DSPACE(f) = CASPACE(f). Here
we will only consider deterministic one-tape Turing machines, that we will simply
call Turing machines.

If CASPACE(Id) ⊆ CATIME(2 Id) then, because of Theorem 1 and Proposi-
tion 4, for every time-constructible function f every language L that is recognized
in space f (in the usual Turing sense since space complexities are the same for
CA and Turing machines) can be recognized in time f2, in other words :

DTIME(f) ⊆ DSPACE(f) ⊆ CATIME(2f) ⊆ DTIME(f2)
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Whether there exists or not a function f that contradicts these inclusions is
still an open question. An important consequence of this is that P = PSPACE.
Of course, the fact that CASPACE(Id) ⊆ CATIME(2 Id) implies P = PSPACE
is not new since it is an immediate consequence of the PSPACE-completeness of
TQBF, that is known to be in CASPACE(Id), but the proof we have here does
not require the existence of PSPACE-complete problems.

Remark. For any function f such that ∀x, f(x) ≥ 2x, we have CATIME(f) =
CATIME(2f) (because of a linear acceleration theorem on CA).

However, the most interesting consequence of the inclusion CASPACE(Id) ⊆
CATIME(2 Id) is a very strong equivalence between the cellular and the Turing
computing models obtained with the use of a theorem by M. Paterson:

Theorem 2 (Paterson [8]). For every function f : N → N such that ∀x,
f(x) ≥ x, we have DTIME(f2) ⊆ DSPACE(f).

If CASPACE(Id) ⊆ CATIME(2 Id), then we already know that for every time-
constructible function f ,

DSPACE(f) = CASPACE(f) ⊆ CATIME(2f) ⊆ DTIME(f2)

and from the above theorem, we get

CATIME(2f) = DTIME(f2) = DSPACE(f) = CASPACE(f)

This would mean that any sequential algorithm (on a single-tape Turing ma-
chine) can be speed-up by a quadratic factor when considering it on a parallel
model (cellular automaton). Since we know that this speed-up factor is optimal
(what can be done in time f on a CA can be done in time f2 on a TM), it would
mean that the two models are very tightly equivalent in terms of time complex-
ity, since knowing the exact complexity of a problem on one model would give
the exact complexity on the other model.

Conversely, to show that CASPACE(Id) �⊂ CATIME(2 Id), it would be enough
to find a language that can be recognized in time f2 (for some time-constructible
function f such that ∀x, f(x) ≥ x) on a one-tape Turing machine but not in time
2f on a cellular automaton. However, no such example is known as of today.

5 Conclusion

We have shown in this paper how padding techniques that are broadly known to
work on Turing machines can also work on cellular automata, by transform-
ing the space-time diagram so that the automaton has enough time during
the computation to “recreate” the information that was held by the “padded”
cells. Using this technique we have shown the cellular equivalent to the transfer
theorem.

This theorem enabled us to establish an important link between problems of
separation of space and time complexity classes and problems of parallel compu-
tation (if CASPACE(Id) ⊆ CATIME(2 Id) then every sequential algorithm can
be parallelized with a quadratic speed-up).
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Even though both questions remain open, the implications that we have
seem to indicate that the inclusions do not hold, and open new possibilities to
prove it.
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Abstract. D. Krieger and J. Shallit have proved that every real number greater
than 1 is a critical exponent of some sequence [1]. We show how this result can be
derived from some general statements about sequences whose subsequences have
(almost) maximal Kolmogorov complexity. In this way one can also construct a
sequence that has no “approximate” fractional powers with exponent that exceeds
a given value.

1 Kolmogorov Complexity of Subsequences

Let w = w0w1 . . . be an infinite binary sequence. For any finite set A⊂ IN let w(A) be a
binary string of length #A formed by wi with i ∈ A (in the same order as in w). We want
to construct a sequence w such that strings w(A) have high Kolmogorov complexity for
all simple A. (Informally speaking, Kolmogorov complexity of a string z is the mini-
mal length of a program that generates z for a fixed optimal (universal) programming
language. See [3] for the definition and properties of Kolmogorov complexity. We use
prefix complexity that assumes that all programs are self-delimiting, and denote it by
K, but plain complexity can also be used with minimal changes.)

Theorem 1. Let γ be a positive real number less than 1. Then there exists a 0-1-
sequence w and an integer c such that for any finite set A of cardinality at least c
the inequality

K(A,w(A)|t) 	 γ ·#A

holds for some t ∈ A.

Here K(A,w(A)|t) is conditional Kolmogorov complexity of a pair (A,w(A)) relative
to t.

Proof. This result is a consequence of Lovász local lemma (see, e.g., [4] for its proof):

Lemma. Assume that a finite sequence of events E1, . . . ,Ek is given, for each i some
subset N(i)⊂ {1, . . . ,k} of “neighbors” is fixed, positive reals ε1, . . . ,εk < 1 are chosen
in such a way that

Pr[Ei] � εi ∏
j∈N(i), j �=i

(1− ε j)
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and for every i the event Ei is independent of the family of all E j with j /∈ N(i), j �= i.
Then the probability of the event “not E1 and not E2 and. . . and not Ek” is at least
(1− ε1) · . . . · (1− εk).

The standard compactness argument shows that it is enough to construct an arbitrar-
ily long finite sequence w that satisfies the statement of Theorem 1 for some fixed value
of c (the choice of c will be explained later). Let L be the desired length of this (long)
sequence. For any set A of indices not exceeding L and any binary string z of length #A
such that K(A,z|t) < γ ·#A for all t ∈ A consider the event EA,z = {w ∈ {0,1}L | w(A) =
z} in the probability space that considers w as a sequence of L independent random
bits. The set A is called the support of the event EA,z. We have to prove that the com-
plements of these events (used as E1,E2 . . . in the Lovász local lemma) have non-empty
intersection.

This is done by using Lovász lemma. Let us choose some β between γ and 1. Let εi

be 2−β si where si is the size of support of ith event. For each event EA,z the neighbor
events are events EA′,z′ such that the supports A and A′ have nonempty intersection. Let
us check the assumptions of Lovász lemma.

First, an event EA,z is independent of any family of events whose supports do not
intersect A.

Second, consider an event EA,z (i.e., w(A) = z) and let n be the cardinality of A.
The probability of this event is 2−n. We have to check that 2−n does not exceed 2−β n

multiplied by the product of (1−2−β m) factors for all neighbor events (where m is the
size of the support of the corresponding events):

2−n � 2−β n∏
i

(1−2−β mi)

where m0,m1, . . . are the sizes of the supports of EA,z’s neighboring events.
Each factor corresponds to some neighbor event, i.e., an event whose support has

a non-empty intersection with A. Fix some intersection point for each neigbor event.
Then group the factors in the product according to the intersection points: each group
corresponds to some t ∈ A and is formed by events whose supports contain t.

For any non-negative integer m there are at most 2γm factors that belong to the t-
group and have size m, since there exist at most 2γm objects that have complexity less
than γm (relative to a given t). Then we take a product over all m 	 0 and multiply the
results for all t ∈ A (there are n of them). The condition of Lovász lemma (that we need
to check) now has the form

2−n � 2−β n ∏
m>c

(1−2−β m)2γmn

or (after we remove the common exponent n)

2β−1 � ∏
m>c

(1−2−β m)2γm

Bernoulli inequality (1−h)u 	 1−hu guarantees that this is true if

2β−1 � 1− ∑
m>c

2γm2−β m
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Since the left hand side is less than 1 and the geometric series converges, this inequality
is true for a suitable c. (Let us repeat how the proof goes: we start with β ∈ (γ,1), then
we choose c using the convergence of the series, then for any finite number of events we
apply Lovász lemma, and then we use compactness.) �

The inequality established in this theorem has an useful corollary:

K(w(A)|t) 	 γ ·#A−K(A|t)−O(1),

since K(A,w(A)|t) � K(A|t)+K(w(A)|t)+O(1). For example, if A is an interval, then
K(A|t) = o(#A), so this term (as well as an additive constant O(1)) can be absorbed by
a small change in γ and we obtain the following corollary (“Levin’s lemma”, see [2] for
a discussion and further references): for any γ < 1 there exists a sequence w such that
all its substrings of sufficiently large length n have complexity at least γn.

2 Critical Exponents

Let x be a string over some alphabet, and let y be a prefix of x. Then the string z = x . . .xy
is called a fractional power of x and the ratio |z|/|x| is its exponent. A critical exponent
of an infinite sequnce w is the least upper bound of all exponents of fractional powers
that are substrings of w. D. Krieger and J. Shallit [1] have proved the following result:

Theorem 2. For any real α > 1 there exists an infinite sequence (in some alphabet)
that has critical exponent α .

Informally speaking, when constructing such a sequence, we need to achieve two goals.
First, we have to guarantee (for rational numbers r less than α but arbitrarily close to α)
that our sequence contains r-powers; second, we have to guarantee that it does not
contain q-powers for q > α . Each goal is easy to achieve when considered separately.
For the first one, we can just insert some r-power for every rational r < α . For the
second goal we can use the sequence with complex substrings: since every q-power has
complexity about 1/q of its length (the number of free bits in it), Levin’s sequence does
not contain long q-powers if q > 1/γ . (Due to the asymptotic nature of Kolmogorov
complexity, this guarantees only the absense of sufficiently long powers; short powers
should be treated separately by extending the alphabet. It is easy to see that the alphabet
size necessarily tends to infinity as α → 1.)

The real problem is to combine these two goals. We use the following scheme. First
we fix some repetition pattern to ensure the first requirement (i.e., decide which bits
in a sequence coincide). After that we choose the values of the “free” bits (each free
bit appears in the sequence several times according to the repetition pattern) in such a
way that no other (significant) repetitions arise. To implement this scheme, let us first
prove some general statement about Kolmogorov complexity of subsequences in the
case when some bits are repeated.

3 Complexity for Sequences with Repetitions

Let∼ be an equivalence relation on IN. We assume that all equivalence classes are finite
and the relation itself is computable; moreover, we assume that for a given x ∈ IN one
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can effectively list x’s equivalence class. This relation is used as a repetition pattern: we
consider only sequences w that follows ∼, i.e., only sequences w such that wi = wj if
i ∼ j. For any set A ⊂ IN we consider the number of free bits in A, i.e., the number of
equivalence classes that have a non-empty intersection with A; it is denoted # f A in the
sequel.

There are countably many equivalence classes. Let us assign natural numbers to
them (say, by listing them in the increasing order of minimal elements) and let c(i) be
the index of the equivalence class that contains i. Then every sequence w that follows
the repetition pattern ∼ has the form wi = vc(i) for some sequence v = v0v1v2 . . ..

Theorem 3. Let ∼ be an equivalence relation on IN (as explained above) and let γ ∈
(0,1) be a real number. There exists a sequence w that follows the pattern ∼ and an
integer c with the following properties: for every finite set A with # f A 	 c there exists
t ∈ A such that

K(w(A)|t) 	 γ ·# f A−K(A|t)− logm(t)

where m(t) is the “multiplicity” of t, i.e., the number of bits in its equivalence class.

(Note that if all equivalence classes are singletons, then logm(t) disappears, # f A is the
cardinality of A and we get an already mentioned corollary.)

Proof. Let wi = vc(i) where v = v0v1 . . . is a sequence that satisfies the statement of
Theorem 1 (with the same γ). For any finite A ⊂ IN let B ⊂ IN be the set of all c(i) for
i ∈ A. Then #B = # f A. Theorem 1 guarantees that K(B,v(B)|u) 	 γ ·#B for some u∈ B.
Since u ∈ B, there exists some t ∈ A such that c(t) = u. To specify t when u is known,
we need logm(t) bits, so K(t|u) � logm(t)+ O(1). After t is known, we need K(A|t)
additional bits to specify A and K(w(A)|t) bits to specify w(A). Knowing A and w(A),
we then reconstruct B and v(B). Therefore,

γ ·#B � K(B,v(B)|u) � logm(t)+ K(A|t)+ K(w(A)|t)+ O(1),

which implies the desired inequality (with additional term O(1), which can be compen-
sated by a small change in γ).

4 Construction

We need to prove (for any real α > 1) the existence of a sequence that has fractional
powers of exponents less than α (and arbitrarily close to α) but does not have fractional
powers of exponents greater than α . We start with an easier task. Assume that two
real numbers α and β such that 1 < α < β are given. Let us prove first that there
exists a binary sequence w that contains fractional powers of exponents smaller than
α and arbitrarily close to α but does not contain long fractional powers of exponents
greater than β . (Later we make two improvements: first, we assure that the sequence
has no fractional powers of exponent greater than β and any length; this is achieved by
extending the alphabet. Second, we show how to make α and β equal.)

To construct such a sequence, let r1,r2, . . . be a sequence of rational numbers between
1 and α that converges to α . For each ri = pi/qi we insert a fractional power of exponent
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ri in the sequence: we select some interval of length pi and decide that this interval
should be a fractional power of some string of length qi (and exponent ri). This means
that we declare two indices in this interval equivalent if they differ by a multiple of qi.
(The intervals for different i are disjoint.) We call these intervals active intervals. We
assume that distance between two active intervals is much bigger than the lengths of
both intervals (see below why this is useful and how long this distance should be).

�� �� �� ��

��|��| ��|��|

Fig. 1. Two fractional powers of exponent r1 and r2 are implanted; yi is a prefix of xi (in this
example the exponents are less than 2, so only one full period is shown)

Evidently, any sequence that follows this repetition pattern has critical exponent at
least α .

Let us choose some γ between α/β and 1 (α/β < γ < 1). and apply Theorem 3 with
this γ to the pattern explained above. We get a bit sequence; let us prove that it does not
contain long fractional powers of exponent greater than β . Indeed, it is easy to see that
density of free bits in this pattern is at least 1/α , i.e., for any interval A of length l the
number of free bits in it, # f A, is at least l/α . Indeed, if A intersects two or more active
intervals, then all bits between them are free, and the distance between the intervals is
large compared to interval sizes. Then we may assume that A intersects only one active
interval. All subintervals of the active interval have the same repetitions period, and the
density of free bits is minimal when A is maximal, i.e., coincides with the entire active
interval. The bits outside the active interval are free (no equivalences), so they can only
increase the fraction of free bits.

On the other hand, a fractional power of exponent β and length l has complex-
ity at most l/β + O(log l) (we specify the length of the string and l/β bits that form
the period). For long enough strings we then get a contradiction with the statement of
Theorem 3 since α/β < γ . Indeed, the inequalities

K(w(A)|t) 	 γ ·# f A−K(A|t)− logm(t) 	 (γ/α) ·#A−K(A|t)−O(1)

(note that the multiplicities are bounded) and

K(w(A)) � #A/β + O(log#A)

(here A is an interval) are inconsistent for long intervals A since γ/α > 1/β .
Now we get rid of short fractional powers of exponent greater than β . For this we add

an additional layer of symbols. i.e., extend our alphabet from {0,1} to {0,1}×Σ for
large Σ and take a Cartesian product of our sequence and some auxiliary one. Roughly
speaking, we need an auxiliary sequence that follows (almost) the same repetition pat-
tern but has no other repetitions (not prescribed by the pattern) on short distances. More
formally, we may assume without loss of generality that qi is a multiple of i!. Then
we consider a periodic sequence with any large period m made of m different letters;
adding it will destroy all periods that are not multiple of m, including all short periods,
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but only finitely many of qi (and the latter does not change the critical exponent). The
Cartesian product of these two sequences (ith letter is a pair formed by ith letters of
both sequences) has critical exponent between α and β .

In fact, we get even a stronger result:

Theorem 4. For any α and β such that 1 < α < β there exist a sequence w that has
fractional powers of exponents r for r < α arbitrarily close to α but does not have
“approximate fractional powers” of exponent β or more: there exists some ε > 0 such
that any substring of length n is εn-far from any fractional power in terms of Hamming
distance (we need to change at least εn symbols of the sequence to get a fractional
power of length n).

Indeed, a change of an ε-fraction of all the bits in a sequence of length n increases its
complexity at most by H(ε)n + O(logn) where

H(ε) =−ε logε− (1− ε) log(1− ε)

is Shannon entropy function. Note that H(ε) → 0 as ε → 0. Therefore, we need to
change a constant fraction of bits to compensate for the difference in complexities (be-
tween the lower bound guaranteed by Theorem 3 and the upper bound due to approxi-
mate periodicity). �

5 Critical Exponent: Exact Bound

The same construction (with some refinement) can be used to get a sequence with a
given critical exponent.

Theorem 5. (Krieger – Shallit) For any real number α > 1 there exists a sequence that
has critical exponent α .

(This proof follows the suggestions of D. Krieger who informed the author about the
problem and suggested to apply Theorem 1 to it. See [1] for the original proof. The
author thanks D. Krieger for the explanations and both authors of [1] for the permission
to cite their paper.)

Again, let us consider repetition pattern that guarantees all exponents less than α and
apply Theorem 3 with some γ close to 1. This (as we have seen) prevents powers with
exponents greater that α/γ; the problem is how to get rid of intermediate exponents.

To do this, we should distinguish between two possibilities: (a) an unwanted power
is an extension of the prescribed one (has the same period that unexpectedly has more
repetitions) and (b) an unwanted power is not an extension. The first type of unwanted
powers can be prevented by adding brackets around each active interval (in an additional
layer: we take a Cartesian product of the sequence and this layer).

It remains to explain why unwanted repetitions of the second type do not exist (for γ
close enough to 1). Consider any fractional power with exponent greater than α . There
are two possibilities:

(1) It intersects at least two active intervals. Then it contains all free bits between
these intervals, and (since we assume that the distances are large compared to the length
of intervals) the density of free bits is close to 1, so exponent greater than α is impossible.
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(2) It intersects only one active interval. The same argument (about density of free bits)
shows that if the endpoints of this fractional power deviate significantly from the end-
points of the active interval, then the density of free bits is significantly greater than 1/α
and we again get a contradiction. Therefore, taking γ close to 1 we may guarantee that
the distance between endpoints of the fractional power and endpoints of the correspond-
ing active interval is a small fraction of the length of the active interval. Then we get two
different periods in the region that is the intersection of fractional power and active inter-
val. One (“old”) is inherited from the repetition pattern; the second one (“new”) is due
to the fact that we consider a fractional power. (The periods are different, otherwise we
are in the case (1).) The period lengths are close to each other. Indeed, if the new period
is significantly longer, then the exponent is less than α; if the new period is significantly
shorter, then the complexity bound decreases and we again get a contradiction.

Now note that two periods t1 and t2 in a string guarantee the period t1− t2 near the
endpoints of this string (at the distance equal to the difference between string length
and minimal of these periods). Therefore we get a period that is a small fraction of the
string length at an interval whose length is a non-negligible fraction of the string length.
This again significantly decreases the complexity of the string, and this contradicts the
lower bound of the complexity.

The short fractional powers are prevented exactly as explained above, by an additional
layer with a periodic sequence with large enough period made of different letters. �

Remark. This proof uses some parameters that have to be chosen properly. For a given
α we choose γ that is close enough to 1 and makes the arguments about “sufficiently
small” and “significantly different” things in the last paragraph valid for long strings.
Then we choose the repetition pattern where length of active intervals are multiples of
factorials and the distances between them grow much faster than the lengths of active
intervals. Then we apply Theorem 3 for this pattern. Finally, we look at the length c
provided by this theorem and prevent all shorter periods by an additional layer. Another
layer is used for brackets. These layers destroy unwanted short periods but only finitely
many of prescribed patterns.

Note also that the proof is not really “constructive”: though a repetition pattern
(equivalence relation) can be explicitly described, the values of free bits are chosen
in a non-constructive way.

Acknowlegments. The author thanks the anonymous referee for an extremely careful
reading and suggesting many improvements.
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Generic Complexity of Presburger Arithmetic
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Abstract. Fischer and Rabin proved in [4] that Presburger Arithmetic
has at least double exponential worse-case complexity. In [6] a theory
of generic-case complexity was developed, where algorithmic problems
are studied on “most” inputs instead of all set of inputs. An interesting
question rises about existing of more efficient (say, polynomial) generic
algorithm deciding Presburger Arithmetic on some “large” set of closed
formulas. We prove, however, that there is no even exponential generic
algorithm working correctly on arbitrary “very large” sets of inputs
(so-called strongly generic sets).

1 Introduction

In [6] a theory of generic-case complexity was developed. Generic-case approach
considers an algorithmic problem on “most” of inputs instead of all domain and
ignores its behaviour on the rest of inputs.

This approach is close to well-known average-case complexity (see survey [2])
traditionally used in cryptography, where cryptosystems must be based on prob-
lems from NP which are hard on almost all (random) instances. Moreover, as
noted in [6], a polynomially decidable on average problem (with some additional
condition – so called polinomiality on μ-average on spheres) will be generically
polynomially decidable. On the other hand in [7] it was considered when generic
feasibility of a problem in NP implies its feasibility on average.

But these two approaches are not equivalent. Generic-case complexity can
be applicable to undecidable problems as well as to decidable problems while
average case complexity studies only decidable problems. For example, in [5]
it was shown that classical undecidable Halting Problem for Turing machines
with one-way tape is decidable (even quickly decidable) on a set of almost all
instances with respect to some natural measure of Turing machines. Moreover it
is known that there are NP-complete on average problems which are generically
easily decidable. On the other hand in [7] examples of problems are given which
are generically hard but easy on average.

Generic complexity is very close in spirit to errorless heuristic case complex-
ity [2]. Like the heuristic algorithms, generic algorithms can output incorrect
answers on rare inputs. But generic algorithms must detect when an answer
is wrong (see definitions below). In fact, any generic algorithm is a heuristic
algorithm that can control its correctness.
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In this paper we prove that Presburger Arithmetic remains generically hard
on “very large” sets of formulas (so-called strongly generic sets – see definition
below) with respect to a natural representation of closed formulas by labelled
trees.

Now we give basic definitions of generic-case complexity from [6]. Let I be
the set of all inputs and In be the set of all inputs of size n (sphere of radius n).
For a subset S ⊆ I define the following sequence

ρn(S) =
|S ∩ In|
|In|

, n = 1, 2, 3, . . .

The value ρn(S) is probability to generate an input from S during random and
uniform generation of inputs from sphere In. The asymptotic density of S is the
following limit (if it exists)

ρ(S) = lim
n→∞ ρn(S).

S is called generic if ρ(S) = 1 and negligible if ρ(S) = 0. Clearly, S is generic if
and only if its complement in I is negligible.

Following [6] we call a set S strongly negligible if sequence ρn(S) exponentially
fast converges to 0, i.e. there are constants 0 < σ < 1 and C > 0 such that for
every n

ρn(S) < Cσn.

Now S is called strongly generic if its complement is strongly negligible.
A set S ⊆ I is generically decidable (within polynomial time, exponential time,

etc.) if there exists a set G ⊆ I such that

1. G is generic,
2. G is decidable (within polynomial, exponential time, etc.),
3. S ∩G is decidable (within polynomial, exponential time, etc.).

If G is strongly generic, then S is called strongly generically decidable (within
polynomial, exponential time, etc.) A generic algorithm A for S works on an
input x ∈ I in the following way. At first A decides whether x ∈ G. If x ∈ G
then A can decide S on G, else A says “I don’t know”. So A correctly decides
S on “almost all” inputs (inputs from generic set).

2 Representation of Formulas

Recall that Presburger Arithmetic is the first-order theory of structure 〈N,+〉.
We will consider only closed formulas Φ (further just formulas) satisfying the
following conditions

1. Φ has the natural prenex form, i.e.

Φ = Q1x1Q2x2 . . .Qnxnφ,

where Qi ∈ {∃, ∀} and φ is a quantifier-free formula;
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2. quantifier-free part φ of formula Φ is a Boolean combination of conjunctions
and disjunctions of the following simple atomic formulas

(a) xi = xj ,
(b) xi �= xj ,
(c) xi = xj + xk,
(d) xi �= xj + xk.

It is known that any formula over 〈N,+〉 can be effectively transformed to equiv-
alent formula of such form.

Let Φ be a formula with quantifier-free part φ. One can naturally asso-
ciate with φ a binary tree Tφ that presents the construction of φ from simple
atomic formulas by means of disjunctions and conjunctions. The internal ver-
tices of Tφ are labeled by symbols ∨ and ∧, and the leafs of Tφ are labeled
by simple atomic formulas. Conversely, given a binary tree T like that one can
uniquely reconstruct a quantifier-free formula φT of the form described above.
This gives a one-to-one representation of the quantifier free formulas φ by the
binary trees Tφ. If Tφ has n leafs then at most 3n variables may occur in Tφ,
so we may assume from the beginning that all variables in Tφ belong to the
set x1, . . . , x3n and φ depends on these 3n variables (some of them may be
fictitious).

Now a representation of the formula Φ consists of a binary tree Tφ and a
quantifier prefix on all 3n variables of φ. We will identify formula Φ with its
representation. The size of Φ is the number of leafs in the tree Tφ.

Denote the set of all formulas by F and the set of all formulas of size n
by Fn.

Lemma 1
|Fn| = 25n−1(9n2 + 27n3)nCn,

where Cn = 1
n+1

(
2n
n

)
— n-th Catalan number.

Proof. Any formula of size n consists of a quantifier prefix of length 3n and a
binary tree with n leafs and n − 1 internal vertices. There are 23n variants to
choose a quantifier prefix. There are Cn non-labeled binary trees with n leafs,
where

Cn =
1

n + 1

(
2n
n

)
is n-th Catalan number. Every internal vertex of the tree can be labeled by ∨ or
by ∧, and every leaf can be labeled by any simple atomic formula of 3n variables
(there are exactly 2((3n)3 + (3n)2) such formulas). So we have

23n × 2n−1 × 2n × (9n2 + 27n3)nCn

different formulas of size n. �
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For any formula Φ define the sets

AND(Φ) = {Φ ∧ Ψ, Ψ — arbitrary formula},

OR(Φ) = {Φ ∨ Ψ, Ψ — arbitrary formula},

and the sets

AND(Φ)+ = {Φ ∧ Ψ, Ψ — arbitrary true formula},

OR(Φ)− = {Φ ∨ Ψ, Ψ — arbitrary false formula}.

Lemma 2. For any Φ sets AND(Φ)+ and OR(Φ)− are not strongly negligible.
Moreover, there is a constant C > 0 such that

|AND(Φ)+ ∩ Fn|
|Fn|

>
C

(16n)3k

for any n > k, where k is the size of Φ. The same bound is true for the set
OR(Φ)−.

Proof. We will prove it for AND(Φ)+, for OR(Φ)− it is proving analogously. Let
a formula Φ has a size k. Fix a size n > k. Consider all formulas of the following
form

Q1x1 . . .Q3nx3n(ϕ ∧ ψ), (1)

where ϕ is the quantifier-free part of Φ with x1, . . . , x3k are replaced by 3k
variables from the set x1, . . . , x3n, and quantifiers on these variables are the same
as in Φ, and ψ — arbitrary quantifier-free formula of size n− k not containing
variables from ϕ. Since sets of variables of ϕ and ψ are different, we can rewrite
every formula of type (1) as Φ ∧ Ψ ∈ AND(Φ). Besides size of formula (1) is n.
So the set of such formulas S is a subset of AND(Φ)n.

The number of formulas of type (1) is the number of all possible quantifier-
free parts ψ and quantifier prefixes on 3(n − k) variables of ψ (quantifiers on
variables of ϕ are fixed). It is can be shown analogously to proof of Lemma 1
that

|S| = 25n−4k−1(9n2 + 27n3)n−kCn−k.

Bound the ρn(AND(Φ)n):

|AND(Φ)n|
|Fn|

≥ |S ∩AND(Φ)n|
|Fn|

=
|S|
|Fn|

=

=
25n−4k−1(9n2 + 27n3)n−kCn−k

25n−1(9n2 + 27n3)nCn
=

=
Cn−k

24k(9n2 + 27n3)kCn
>

1
(8n)3k

× Cn−k

Cn
.
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Since

Cn−k

Cn
=

n + 1
n− k + 1

×
(
2(n−k)

n−k

)(
2n
n

) >
n!

(n− k)!
· 2(n− k) . . . (n− k + 1)

2n . . . (n + 1)
=

=
(n . . . (n− k + 1))2

2n . . . (2(n− k) + 1)
>
( n . . . (n− k + 1)

2n . . . (2n− k + 1)

)2

>
1

22k

we have the following lower bound

|AND(Φ)n|
|Fn|

>
C

(16n)3k

with some universal constant C > 0.
Note now that for every formula Φ ∧ Ψ ∈ AND(Φ)n the formula Φ ∧ ¬Ψ

belongs to AND(Φ)n. Indeed, if

Ψ = Q1xi1 . . . Q3nxi3(n−k)ψ(xi1 , . . . , xi3(n−k)),

then
¬Ψ = Q1xi1 . . . Q3(n−k)xi3(n−k)¬ψ(xi1 , . . . , xi3(n−k)),

where ∃ = ∀ and ∀ = ∃. A tree for ¬ψ can be got from a tree for ψ by replacing
of ∧ and ∨ in the internal vertices, and by replacing of simple atomic formulas on
its negations in the leafs. The size of the tree remains the same. It means that
for every formula from AND(Φ)+n there is a unique formula from AND(Φ)−n ,
where

AND(Φ)− = {Φ ∧ Ψ, Ψ — arbitrary false formula},

and overwise. So

|AND(Φ)+n | =
1
2
|AND(Φ)n|.

This implies the lower bound on |AND(Φ)+n |
|Fn| which we need. �

3 Main Result

To prove the main result we construct a generic reduction that transforms
any exponential-time algorithm correctly deciding PA on most formulas into
an exponential-time algorithm that decides PA correctly on every formula. Such
type of reductions for problems in NP and polynomial algorithms was considered
in average-case complexity, for example [1], [3].

Theorem 1. There is no strongly generic set of formulas on which Presburger
Arithmetic is decidable in exponential time.
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Proof. Suppose we have a generic exponential algorithm A deciding Presburger
Arithmetic on some strongly generic set of formulas S (recognizable in exponen-
tial time). There are constants D > 0 and α > 0 such that

|(F \ S) ∩ Fn|
|Fn|

<
D

2αn

for every n. We can find a polynomial p() such that

C

(16n)3k
>

D

2αn

for all n ≥ p(k). Here constant C is from Lemma 2.
Now we can design an algorithm B working in time 2q(n) with some polynomial

q(n) and deciding Presburger Arithmetic on all set of formulas, in contrary to
the result of Fischer and Rabin. This algorithm B works on a formula Φ in the
following way. For every formula from the sets AND(Φ)n and OR(Φ)n, where
n = p(k) and k is the size of Φ, algorithm B checks whether it belongs to S. It
can be done in time 2r(k), where r() is some polynomial, by Lemma 1. If some
disjunction Φ∨Ψ belongs to S, then B launches A on it. If Φ∨Ψ is false, then Φ
is false too and B outputs the correct answer. Analogously, if some conjunction
Φ ∧ Ψ hits in S and it is true, then Φ is true too and B can determine this by
using of A.

Prove that the described algorithm works correctly on any formula Φ. Suppose
Φ is true. By Lemma 2 and by choice of the polynomial p() in the set AND(Φ)+n
there is a conjunction from S on which A can decide its truthness. Analogously
the case of false Φ is considered. �
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Abstract. Local constraints on an infinite sequence that imply global
regularity are of general interest in combinatorics on words. We consider
this topic by studying everywhere α-repetitive sequences, sequences in
which every position has an occurrence of a repetition of order α ≥ 1 of
bounded length. The number of minimal such repetitions, called mini-
mal α-powers, is then finite. A natural question regarding global regular-
ity is to determine the least number of minimal α-powers such that an
α-repetitive sequence is not necessarily ultimately periodic. We solve this
question for 1 ≤ α ≤ 17/8. We also show that Sturmian words are among
the optimal 2 - and 2+-repetitive sequences.

Keywords: Everywhere α-repetitive sequence, α-power, squareful
sequence, overlapful sequence, Sturmian word.

1 Introduction

Let us start with the following observation: Each position in the Fibonacci word

f = 0100101001001010010100100101001001010010100100101001010 . . .

starts a square. More precisely, each position starts a square of period at most 5.
The squares are

00, 0101, 010010, 1010, 100100, 1001010010.

Notice that the number of the minimal squares is 6. In fact, all Sturmian words
start a square at each position, and the number of minimal squares always
equals 6, which we will show in this paper. What happens if a sequence with
squares in every position has at most five minimal squares? We will show that
the sequence is then ultimately periodic. Therefore Sturmian words have optimal
properties also in this sense.

Relations between local regularity and global regularity in infinite sequences
have been considered from various perspectives [5, Ch. 8]. A fundamental result
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by Mignosi, Restivo, and Salemi [6] characterizes ultimately periodic sequences
by considering left repetitions at each position. They proved that a sequence is
ultimately periodic if and only if each sufficiently long prefix of the sequence
contains a repetition of order 1 +ϕ as a suffix, where ϕ denotes the golden ratio
(1 +

√
5)/2. Karhumäki, Lepistö, and Plandowski [4] considered the same situa-

tion, but with an additional condition imposed to the length of the repetitions in
question. They called a sequence (ρ, l)-repetitive, where ρ > 1 is real and l ≥ 1
an integer, if all sufficiently long prefixes of the sequence have a suffix of the
form vσ with |v| ≤ l and σ ≥ ρ. They showed that a (2, 4)-repetitive sequence is
ultimately periodic, while there exist aperiodic (2, 5)-repetitive sequences. Here
we say that a sequence is aperiodic if it is not ultimately periodic.

In this paper we investigate local and global regularity not by restricting
the length of the shortest repetitions, but instead by restricting the number
of distinct such repetitions. Also, as with the example in the beginning of this
paper, we consider right repetitions, instead of left repetitions. Unlike with left
repetitions, the mere existence of right repetitions of large order occurring at
each position does not guarantee ultimate periodicity. Indeed, it is not difficult
to construct a sequence with, say, cubes starting from every position that is
not ultimately periodic. However, if the number of distinct shortest repetitions
is bounded, global regularity emerges. For example, if a sequence has squares
occurring at every position and there are only five different minimal squares, then
the sequence is ultimately periodic. This is the observation that gave rise to the
notion of an everywhere α-repetitive sequence, a sequence whose every position
starts an α-power and the number of distinct minimal α-powers occurring in the
sequence is finite (see the definition of a minimal α-power in the next section).
A little modification of a fundamental result by Mignosi et al. [6] reveals that
any everywhere α-repetitive sequence with α ≥ 1 + ϕ is ultimately periodic,
see Theorem 1. For the sake of brevity, we will sometimes write “α-repetitive”
instead of “everywhere α-repetitive.”

The notion of an everywhere α-repetitive sequence can be approached from
two perspectives. One perspective is to fix an infinite sequence, and ask whether
it is α-repetitive. It is trivial that any sequence is α-repetitive for α = 1. There-
fore we may consider the supremum of all real numbers α ≥ 1 such that the
sequence is everywhere α-repetitive. If the sequence is aperiodic, then the supre-
mum of such numbers is at most 1 +ϕ. Given a real number α strictly less than
the supremum, the set of minimal α-powers that are factors of the sequence is
finite. This leads to the question of how many minimal α-powers there are in
the sequence.

The other perspective is to fix a real number α ≥ 1, and consider the sequences
that are everywhere α-repetitive. In particular, what is the smallest possible
number of minimal α-powers in an aperiodic everywhere α-repetitive sequence?
Denote this value by M(α). For instance, by what was said in the beginning of
this introduction, we have M(2) = 6. Another question then arises: What is the
structure of aperiodic everywhere α-repetitive sequences with precisely M(α)
minimal α-powers? We characterize such sequences for α = 2.
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In this paper we study these questions as follows. In Section 2, we present some
auxiliary definitions and results. In Section 3, we show that the Thue–Morse word
is everywhere 5/3-repetitive, and that the 5/3 is optimal. In Section 4, we con-
sider everywhere 2 -repetitive sequences, which we call squareful. We show that
an aperiodic squareful sequence must have at least six minimal squares, and we
characterize the structure of the aperiodic squareful sequences with exactly six
minimal squares. We show that Sturmian words are among these sequences. We
also mention some corresponding results in the case of 2+-repetitive sequences,
but they are proved only in the full version of this extended abstract. In Sec-
tion 5, we determine the values M(α) for 1 ≤ α ≤ 17/8.

2 Preliminaries

Here we present the necessary definitions and notations, as well as two auxiliary
results. The reader should consult [3] or [5] for any notions left undefined.

Let α ≥ 1 be a real number. A word w is called an α-power if

|w|
p(w)

≥ α, (1)

where |w| denotes the length of w and p(w) denotes the least period of w. The
word w is called an α+-power if the inequality in (1) is strict. For example,
the word 010101 is a 3-power, and in fact, an α-power for any 1 ≤ α ≤ 3.
Furthermore, it is an α+-power for 1 ≤ α < 3. With this terminology, a word is
a 2+-power precisely when it is an overlap.

The word w is a minimal α-power (resp. α+-power) if w itself is an α-power
(resp. α+-power) and no proper prefix of w is an α-power (resp. α+-power). The
word 010101 is an α-power, but not minimal, for 1 ≤ α ≤ 5/2, because 01010 is
a 5/2-power. It is minimal for 5/2 < α ≤ 3, however.

Let z denote an infinite sequence. We say that z is an everywhere α-repetitive
sequence if the following condition holds: Each position in z has an occurrence
of an α-power, and the set of minimal α-powers that are factors of z is finite.
Equivalently, the sequence z is everywhere α-repetitive if and only if there exists
an integer N ≥ 1 such that any factor of z of length N has a prefix that is an
α-power. Trivially, any infinite word is everywhere 1-repetitive. If a sequence is
uniformly recurrent, it is everywhere α-repetitive for some α > 1. Any purely
periodic word is everywhere α-repetitive for all α ≥ 1. The sequence z is called
everywhere α+-repetitive if it is everywhere α + ε-repetitive for some ε > 0.
Two special cases deserve more succinct names: We call everywhere 2-repetitive
sequences squareful, and everywhere 2+-repetitive sequences overlapful. Again,
we sometimes call everywhere α-repetitive sequences just α-repetitive.

We use two infinite fixed points of morphisms in this paper. The Fibonacci
word, denoted by f , is the fixed point of the morphism f : 0 	→ 01, 1 	→ 0. The
“ubiquitous” Thue–Morse word [2] is the infinite fixed point of the morphism
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μ : 0 	→ 01, 1 	→ 10 that begins with the letter 0. We denote it by t. Hence,

f = limn→∞ fn(0) = 01001010010010100101001001010010010100101001 . . . ;
t = limn→∞ μn(0) = 01101001100101101001011001101001100101100110 . . . .

Note that we sometimes call a sequence an (infinite) word, and vice versa; both
terms are commonly used in the literature.

The following theorem is a little modification of the results in [6]. Details can
be found in the full version of this paper.

Theorem 1. If an infinite sequence is everywhere α-repetitive with α ≥ 1 + ϕ,
then it is ultimately periodic. The Fibonacci word is α-repetitive for α < 1 + ϕ.

For a real number 1 ≤ α < 1+ϕ, we denote by M(α) the least positive integer k
such that there exists an aperiodic everywhere α-repetitive sequence with k
distinct minimal α-powers. By the previous theorem, the quantity M(α) always
exists. An aperiodic α-repetitive sequence with exactly M(α) minimal α-powers
is called optimal.

The next lemma may seem self-evident, but it is an essential fact that we will
use later in this paper. It is proved in the full version of this paper.

Lemma 1. For 1 ≤ α < 1 + ϕ, there exists an optimal α-repetitive sequence
over a two-letter alphabet.

If z is an infinite sequence, we let P (z) denote the supremum of the real numbers
α ≥ 1 for which the sequence z is everywhere α-repetitive. If z is purely periodic,
then P (z) clearly equals ∞. If z is aperiodic, then Theorem 1 implies that
1 ≤ P (z) < 1 + ϕ. In the next section we will show that P (t) = 5/3, where t
denotes the Thue–Morse word.

Sturmian words have several equivalent definitions, but for our purpose the
most useful definition is via the balance property: An aperiodic infinite word z
over the alphabet {0, 1} is Sturmian if and only if, for all factors x and y of the
same length, the number of letters 0 in x differs from the number of letters 0
in y by at most 1.

So-called characteristic words form a very important subclass of Sturmian
words. They can be defined as follows. Let (dn)n≥1 be a sequence of integers
with d1 ≥ 0 and dn ≥ 1 for n ≥ 2. The sequence (dn)n≥1 is called directive. We
define auxiliary words sn by

s−1 = 1, s0 = 0, sn = sdn
n−1sn−2 (n ≥ 1).

Then a characteristic word is the infinite word z such that sn is a prefix of z for
all n ≥ 1.

Among aperiodic infinite words, Sturmian words have many optimal proper-
ties, for instance, in terms of subword complexity, or number of return words.
In this paper, we will show that Sturmian words are optimal squareful and over-
lapful. For the many beautiful properties of Sturmian and characteristic words,
we refer to [1,5].
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3 The Thue–Morse Word Is Everywhere 5/3 -Repetitive

To familiarize and motivate the notions defined in the previous section, we show
here that the Thue–Morse word is everywhere 5/3-repetitive, and that the quan-
tity 5/3 is optimal.

Theorem 2. The Thue-Morse word is everywhere 5/3-repetitive. Its minimal
5/3-powers are listed below.

00, 01001, 0101, 0110010110, 0110011, 01101,
11, 10110, 1010, 1001101001, 1001100, 10010.

Proof. It is readily verified that each of the words listed above is a 5/3-power.
It can also be verified that each factor of length 10 of t has a prefix in the list
above. Indeed, the function that, for all integers n ≥ 0, gives the length of the
shortest prefix of t that contains an occurrence of each factor of length n of t
is known, see [1, Sec. 10.10]. Therefore we know that each factor of length 10
occurs in the prefix of length 57 of t. This completes the proof.

Next proposition shows that the 5/3 in the previous proposition is optimal.

Theorem 3. The Thue–Morse word is not everywhere (5/3)+-repetitive.
Therefore,

P (t) =
5
3
.

Proof. It suffices to show that the Thue–Morse word t does not have a (5/3)+-
power as a prefix. To do that, we assume the contrary. Let uu′ be the shortest
prefix of t such that u′ is a prefix of u and

|uu′|
|u| >

5
3
.

Since the word 011 is a prefix of t, we have |u| ≥ 3. Since uu′ is the shortest
(5/3)+-power that is a prefix of t, it follows that u can be written in the form
u = μ(x)1, and u′ can be written in the form u′ = 0μ(y), where x and y are
some finite words. The word u′ is a prefix of u, so we either have that 011 is a
prefix of u′, or u′ is a prefix of 01. In the first case, the word 11 is a prefix of
μ(y), which is impossible for any word y. In the second case, we have

|uu′|
|u| ≤ |u|+ 2

|u| ≤ 5
3
.

This contradiction completes the proof.

4 Squareful Sequences

In this section, we consider some properties of optimal squareful sequences. We
also state some corresponding results on optimal overlapful sequences.



Everywhere α-Repetitive Sequences and Sturmian Words 367

4.1 The Number of Minimal Squares

In the next two lemmas we assume that z is an aperiodic squareful sequence.

Lemma 2. If the word uu is a minimal square in z, then there exists a minimal
square vv, different from uu, in z such that u is a prefix of vv.

Proof. Consider an occurrence of the word uu in z. The latter u in uu starts a
minimal square in z, say xx. The minimality of uu imply that xx is not a prefix
of u. Hence either x = u or u is a prefix of xx. The sequence z is aperiodic, so
for some occurrence of uu, the second case must hold.

Lemma 3. For each letter b occurring in z, there exists at least three distinct
minimal squares in z that start with the letter b.

Proof. Let uu denote a shortest minimal square that starts with the letter b.
Lemma 2 implies that there exists another minimal square vv such that u, and
thus the letter b, is a prefix of vv. The choice of uu implies that u is actually a
prefix of v, and hence we can write v = ut for some nonempty word t.

To derive a contradiction, suppose that the two minimal squares uu and vv
are the only ones starting with the letter b. Then there exists a position in z
that has an occurrence of both words v and uu. Since vv is a minimal square, it
follows that v is a prefix of uu, and further that t is a proper prefix of u. Hence
we can write v = ts for some nonempty word s. But now vv = utts, and we
see that the word tt is a square in z. Since t is a prefix of u, it starts with the
letter b. Therefore either the square tt or one of its prefixes is a minimal square
starting with the letter b, and it is strictly shorter than uu, a contradiction.

Theorem 4. Any aperiodic squareful sequence has at least six minimal squares,
and six is the optimal lower bound.

Proof. If a squareful sequence is aperiodic, it has at least two distinct letters,
so Lemma 3 implies that it must have at least six distinct minimal squares.
That the quantity six is optimal follows from the fact that the Fibonacci word
is squareful, and it has precisely six minimal squares, as is readily verified by
considering its eleven factors of length 10.

Note that, by the proof of the previous theorem, any optimal squareful sequence
is over a two-letter alphabet.

The following theorem is proved in the full version of this paper.

Theorem 5. An aperiodic overlapful sequence has at least twelve minimal over-
laps, and twelve is the optimal lower bound.

4.2 Characterization of Optimal Squareful Sequences

In what follows, the symbol z denotes an optimal squareful sequence; we may
suppose that z consists of letters 0 and 1. Since z is aperiodic, it follows that
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one of the letters, say 0, occurs in blocks of at least two distinct lengths. That
is, there exist integers i and j with j > i > 0 such that the words 10i1 and 10j1
are factors of z. Suppose further that i and j are the least integers with these
properties.

We start with a series of lemmas. We will often use Lemma 3 implying that
both letters 0 and 1 correspond to exactly three distinct minimal squares in z.

Lemma 4. The word 11 does not occur in z.

Proof. There exists one minimal square with a prefix 10i1. Since j > i, Lemma 2
implies that there exist two distinct minimal squares with a prefix 10j. Therefore,
the word 11 cannot occur in z because otherwise 11 would be a fourth minimal
square in z with a prefix 1.

Lemma 5. Let n ≥ 1 be an integer. The word 10n1 is a factor of z if and only
if n equals either i or j.

Proof. Suppose that, contrary to what we want to prove, the sequence z has
a factor 10n1 with n ≥ 1 distinct from i and j. Then z has three distinct
minimal squares with prefixes 10i1, 10j1, and 10n1. In addition, since n > j > i,
Lemma 2 implies that there exists another minimal square with prefix 10n. Hence
we have altogether at least four minimal squares starting with the letter 1, a
contradiction.

Lemma 6. We have j = i + 1.

Proof. The words 00 and 010i−1010i−1 are minimal squares in z. There is also a
third minimal square, denote it by uu, in z such that 010j−1 is a prefix of u. It
follows from Lemma 2 that u, and hence also 010j−1, is a prefix of 010i−1010i−1.
Since j > i, this is possible only if j = i + 1.

According to the previous lemma, we can write i + 1 in place of j.

Lemma 7. There exist an integer k ≥ 0 such that the word

10i+1(10i)n10i+1 (2)

is a factor of z if and only if n equals either k or k + 1.

Proof. By the previous three lemmas, the suffix of z that starts from the first
occurrence of the letter 1 in z can be factorized into words 10i and 10i+1. The
aperiodicity of z implies, therefore, that the word of the form (2) occurs in z for
at least two distinct values of n. Let k and m denote two such distinct integers
with k the smallest possible. We will show that m = k + 1.

Observe first that the minimal squares

10i10i and 10i+1(10i)k10i+1(10i)k

are factors of z. Since the word

10i+1(10i)m10i+1
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is a factor of z, it follows from Lemma 2 that there exist at least two minimal
squares with a prefix 10i+1(10i)m. Since there exist only three minimal squares
with prefix 1, the word 10i+1(10i)m must be a prefix of

10i+1(10i)k10i+1(10i)k.

Since m > k, this is possible only if m = k + 1. The proof is complete.

In the following theorem, the root of a square uu means the word u.

Theorem 6. If a squareful sequence is optimal, then there exist integers i ≥ 1
and k ≥ 0 such that the roots of the minimal squares of the sequence are, up to
renaming the letters,

0, 010i−1, 010i, 10i, 10i+1(10i)k, and 10i+1(10i)k+1. (3)

Proof. Let z denote the optimal squareful sequence we have been considering in
this subsection. That the first four words listed in (3) are roots of minimal squares
in z follows from the observation that the two words 010i10i and 010i+110i are
factors of z. Since the suffix of z starting from the first occurrence of the letter 1
in z can be factorized into words 10i and 10i+1, it follows from Lemma 7 that
the minimal squares

10i+1(10i)k10i+1(10i)k and 10i+1(10i)k+110i+1(10i)k+1

both occur in z (the latter minimal square may be obtained in two ways). There-
fore, the last two words listed in (3) are roots of minimal squares in z. Since z
is optimal, there exist precisely six minimal squares in z, and so we have found
all of them. The proof is complete.

Theorem 7. Suppose that z is an aperiodic sequence. Then z is squareful and
optimal if and only if, up to renaming letters, there exist integers i ≥ 1 and
k ≥ 0 such that z is an element of the language

0∗(10i)∗
(
10i+1(10i)k + 10i+1(10i)k+1

)ω
. (4)

Proof. If z is an optimal squareful sequence, then there exist integers i ≥ 1 and
k ≥ 0 such that the roots of the minimal squares are the ones listed in (3). Write
z = uv, where u and v are chosen so that the block 10i+1 occurs for the first time
in z as a prefix of v. Then u is in the language 0∗(10i)∗. Since the word 10i+1 is
a prefix of v, Lemma 7 implies that v factorizes over the words 10i+1(10i)k and
10i+1(10i)k+1. Therefore, z is in the language (4).

Conversely, if z is an infinite word in the language (4), it is readily verified
that the sequence z is squareful. Furthermore, z has exactly six minimal squares,
their roots are the ones listed in (3), and so z is also optimal. This completes
the proof.
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4.3 Sturmian Words Are Optimal Squareful and Overlapful
Sequences

Now we will show that Sturmian words are optimal squareful sequences. Note,
however, that this property does not characterize Sturmian words, unlike most
other well-known properties of Sturmian words.

Theorem 8. Sturmian words are optimal squareful sequences.

Proof. Let z denote a Sturmian word. Without loss of generality, we may suppose
that the word 11 is not a factor of z. Let i denote the least integer j such that
the word 10j1 is a factor of z. Since 11 does not occur in z, we have i ≥ 1.
Furthermore, since z is balanced, it follows that the maximal integer j such that
10j1 is a factor of z equals i+1. Therefore z is in the language 0∗(10i + 10i+1)ω

First, consider a position of z that is occupied by the letter 0. Since i is
minimal, the letter 0 extends either to 00, to 010i10i, or to 010i010i. Hence,
in z, each position occupied by the letter 0 starts a square, and there are at
most three minimal squares with prefix 0.

Second, consider a position of z that is occupied by the letter 1. Now the
letter 1 extends either to 10i10i or to 10i+11. The first is a minimal square; the
second extension has to be analyzed further.

Let k denote the least integer n ≥ 0 such that the word

10i+1(10i)n10i+1 (5)

is a factor of z. Since z is balanced, the maximal integer n such that the word
in (5) occurs in z equals k + 1. Indeed, otherwise both words

0i+1(10i)k10i+1 and (10i)k+21

are factors of z, have the same length, but differ in the number of letters 1 by 2,
which contradicts the balance property of z.

Hence the word 10i+11 extends either to

10i+1(10i)k10i+1(10i)k or to 10i+1(10i)k+110i+1(10i)k+1

(again, the latter word can be obtained in two ways). Both words are minimal
squares. Hence each position occupied by the letter 1 starts a square, and there
are at most three minimal squares with prefix 1.

We have shown that the Sturmian word z is squareful with at most six minimal
squares. Since Sturmian words are aperiodic, Theorem 4 implies that z has
exactly six minimal squares, and thus z is optimal. This completes the proof.

The following theorem is proved in the full version of this paper.

Theorem 9. Sturmian words are optimal overlapful sequences.
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5 Values of the Function M(α)

Recall that the symbol M(α) denotes the least integer k ≥ 1 such that there
exists an aperiodic everywhere α-repetitive sequence with k minimal α-powers.
In this section, we establish the values of M(α) for 1 ≤ α ≤ 17/8. It is clear that
M(1) = 2.

Theorem 10. For 1 < α ≤ 3/2, we have M(α) = 4.

Proof. Let α > 1, and let z be an optimal α-repetitive sequence. By Lemma 1,
we may assume that z is over the alphabet {0, 1}. Since z is aperiodic, it has at
least two distinct minimal α-powers that start with the letter 0. The same holds
true for the letter 1, and therefore M(α) ≥ 4.

Next suppose that 1 < α ≤ 3/2. We will show that M(α) ≤ 4. Since any 3/2-
repetitive sequence is also α-repetitive, it now suffices to find a 3/2-repetitive
sequence with four minimal 3/2-powers. But the Fibonacci word f has this prop-
erty. Indeed, each factor of f of length 5 has a 3/2-power as a prefix, which is
readily verified; the minimal 3/2-powers are 00, 010, 10010, 101. The proof is
complete.

Theorem 11. For 3/2 < α < 2, we have M(α) = 5.

Proof. Let α > 3/2, and let z be an optimal α-repetitive sequence. By Lemma 1,
we may assume that the sequence z is over the alphabet {0, 1}. Since z is ape-
riodic, one of the words 00 or 11 occurs in z; without loss of generality, we may
suppose that 00 occurs. Let w denote a minimal α-power in z with a prefix 01.
Since α > 3/2, the word w does not equal 010, and hence w is of the form
w = 01u01v, where u and v are finite, possibly empty, words. This implies that
there exists another minimal α-power in z with a prefix 01. Noticing that 00 is a
minimal α-power in z, we have shown that z has at least three minimal α-powers
with prefix 0. Also, z must have at least two minimal α-powers with prefix 1.
Therefore, z has altogether at least five minimal α-powers, and consequently
M(α) ≥ 5.

Next we will show that, for all α with 3/2 < α < 2, there exists an aperiodic
α-repetitive sequence with exactly five minimal α-powers. To this end, choose
an integer i ≥ 1 such that

α ≤ 2i + 3
i + 2

.

Let z be the characteristic word with the directive sequence (dn)n≥1, where
d1 = i and dn = 1 for n ≥ 2. The sequence z being Sturmian, it has six minimal
squares. We have

s5 = 0i10i+110i10i+110i+11,

and from s5 we can find the six minimal squares of z. They are

00, 010i10i−1, 010i+110i, 10i10i, 10i+110i+1, 10i+110i10i+110i.
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Now we see that each position of z has an occurrence of one of the words

00, 010i10i−1, 010i+110i, 10i10i, 10i+110i.

All but the last one of these words are squares. The last word is a (2i+3)/(i+2)-
power. Therefore z is an aperiodic α-repetitive sequence with five minimal α-
powers. This shows that M(α) = 5, and the proof is complete.

Next theorem is only a rephrasing of Theorem 4.

Theorem 12. We have M(2) = 6.

The details of the proof of our next theorem can be found in the full version of
this paper.

Theorem 13. For 2 < α ≤ 17/8, we have M(α) = 12.

Proof (Sketch). If z is an optimal overlapful sequence over the alphabet {0, 1}
with a factor 00, it can be shown that there exists two integers i and j with
j > i ≥ 1 such that each word 01, 001, 10i1, and 10j1 corresponds to at least
three distinct minimal overlaps. Therefore the number of minimal overlaps is
at least 12. Conversely, the Fibonacci word is everywhere 17/8-repetitive with
exactly twelve minimal 17/8-powers.
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Abstract. This paper presents an approach to the analysis of real-time
properties of security protocols, based on the Strand Space formalism
for describing the behaviour of the participants in the protocol. The ap-
proach is compared with a trace-based analysis introduced by Pilegaard
et al. [14]. Interval Logic with durations is used to express and reason
about temporal phenomena. Strand Spaces were chosen as the starting
point for our approach, since the causalities between important events
in protocols are revealed in an illustrative manner by this formalism.
The advantage of the trace-based approach is that it supports inductive
reasoning in connection with the analysis of untimed properties. Interval
Logic is chosen as the real-time formalism, as timing requirements and
timing properties of security protocols are often expressible as interval
properties. As an example, the Kerberos authentication protocol, which
is based on concepts like timestamps and lifetimes, and which requires
freshness of certain messages, is analysed.

Keywords: Security protocols, real-time, interval logic, verification.

1 Introduction

Many security protocols only work correctly to provide the degree of security
expected by their users if certain temporal constraints on their operation are
fulfilled. A typical requirement is that the exchange of messages involved in the
protocol must be completed within a given time. If this does not happen, the
protocol exchange is considered invalid, and the secure service which the protocol
is intended to implement cannot be made available to the user. To analyse and
reason about this type of requirement, we need to use timed models which can
describe both trusted, concurrently executing agents attempting to execute the
protocol, and untrusted intruders trying actively to disturb the execution of the
protocol by deleting, modifying or inserting messages.

Paulson [12] has shown that an approach to the analysis of security protocols
based on inductively defined traces is effective when the goals to be shown are
not time dependent. In [14], Pilgaard et al. reported an attempt at combining
Paulson’s approach with Interval Logics in order to be able to analyse temporal
properties of security protocols. Interval logics with the concept of durations have
been shown (see for example [24,3,21,9]) to be a framework which is well-suited
to reasoning about the temporal properties of systems with concurrent activi-
ties, shared resources and various scheduling disciplines. In [14], these ideas were
extended to deal with concurrently executing agents which construct messages,
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transmit them via a shared network and check the received messages in accor-
dance with given protocols, in the presence of hostile intruders, thus making it
possible to analyse active attacks and availability questions.

In this paper, we consider how this approach can be based on the formalism of
Strand Spaces introduced in [19] instead of traces. In relation to traces, Strand
Spaces only consider causal sequences of events in the behaviour of the protocol
participants, thus reducing the number of possible event sequences and making
it possible to introduce an algebra of events which are permitted according to
the protocol. Our intention here is to show how this powerful formalism can be
combined with temporal reasoning using an interval logic.

2 General Ideas

The fundamental aim of a security protocol is that active agents should exchange
messages via a network in a manner which achieves some security target, such
as confidentiality or authentication, even in the presence of hostile intruders. We
initially describe protocols by Alice-and-Bob specifications. Each step in such a
specification has the form: A → B : M , with the meaning that message M is
sent from agent A to agent B via the network. The specification is a schema in
the sense that M may contain instantiable variables and that A and B can be
instantiated to different agents in different executions of the protocol.

As an example, an Alice-and-Bob specification of (a simplified version) of the
Kerberos Version 5 authentication protocol [6] is shown in Fig. 1. This protocol

1. A → S : A, B, NA

2. S → A : {Ksess, A,L}KBS , {Ksess, NA,L, B}KAS

3. A → B : {Ksess, A,L}KBS , {A, TA, KAsub}Ksess

4. B → A : {TA, KBsub}Ksess

Fig. 1. The Kerberos v5 authentication protocol

enables two parties, A and B, to convince one another, by exchange of informa-
tion with a trusted server S, that they know one another’s identities and know a
shared secret session key, Ksess, determined by S. It also allows them if required
to evaluate a shared integer valued secret key not known to S from the pair of
subkeys (KAsub,KBsub). Here and elsewhere we use the notation that A,B, . . .
are agents, Ni is a nonce produced by agent i, Ti is a timestamp produced by
agent i, Kij is a key known only to agents i and j, and {M}K represents a
message M encrypted with key K.

In the Kerberos protocol, {Ksess, A,L}KBS is known as A’s ticket for B. This
ticket is sent by A to B in order to authenticate A to B. It is characteristic of
the protocol that the ticket has a finite period of validity, often known as its
lifetime, in Fig. 1 designated by L. The lifetime is defined in terms of an end
time and optional start time by the server S, and is incorporated in the ticket
which is passed to A in step 2 of the protocol. In step 3, A passes the ticket



Timed Traces and Strand Spaces 375

on to B, together with the authenticator {A, TA,KAsub}Ksess , which contains a
timestamp TA inserted by A. By decrypting the ticket, B can obtain the session
key Ksess and the lifetime L, and can then use the session key to decrypt the
authenticator and recover the timestamp. The authentication process terminates
correctly if the timestamp lies within the limits specified by L.

3 The Kerberos Protocol in a Strand Space Formalism

Strand Spaces, introduced in [19], offer a framework for describing protocol be-
haviour and proving the correctness of protcols with respect to security specifi-
cations. A strand is a sequence of events, which can be performed by a legitimate
participant in a protocol or by an intruder (in [19] a penetrator). A strand space
is a set of strands together with a graph structure describing causal interactions.
A portion of a strand space which describes a particular (desired or undesired)
execution of a protocol is known as a bundle. An example of a bundle showing
the desired behaviour of the Kerberos protocol is shown in Fig. 2(a). The nodes
of the graphs denote events, and the arrows denote causal relationships, with
single arrows indicating exchange of messages, and double arrows causal rela-
tionships within the strands for the individual participants A, B and S. In the
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Fig. 2. (a) A bundle for the desired behaviour of the Kerberos authentication protocol
(b) A bundle for an undesired behaviour of the Kerberos authentication protocol

strand space approach, it is assumed that an intruder possess a certain set of
encryption keys, KP , and can perform the atomic actions shown in Fig. 3 An
intruder strand consists of a sequence of such actions. Fig. 2(b) shows a bundle
with intruder strands, which illustrates an undesired behaviour of the Kerberos
protocol. The intruder P receives message M2, which is intended for A, and
keeps it for a certain period of time before passing it on to A. In the untimed
model of Strand Spaces, this behaviour looks innocent. However, it may result
in the ticket enclosed in message M2 arriving at A so late that it is no longer
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M: Introduce a text Message, t ∈ T , into the network.
F: Flush (remove) a message from the network.
T: Receive a message and Duplicate it.
C: Concatenate two received messages into one and send it.
S: Separate a composed message into its components and send them.
K: Send a Key, k ∈ KP .
E: Receive a key and a message, Encrypt the message with the key and send it.
D: Receive a key and a message, Decrypt the message with the key and send it.

Fig. 3. Atomic actions which can be performed by intruders

valid, in which case P has successfully carried out a denial-of-service attack. This
undesired scenario can be detected in a timed framework like that described in
[14]. In the following sections we shall establish a connection between that timed
framework and strand spaces.

4 Untimed Model of Network Behaviour

We start by presenting an untimed model for network behaviour, first presented
in [14]. Since the aim of the work described there was to achieve a model of
security protocols which was suited for verification using theorem provers, the
untimed model is based on Paulson’s inductive approach to verification [12].

4.1 Messages

We base the formalization of the notions agents, keys and messages on [12]. A
message is either an agent, a natural number, a nonce, a key, a message hash
value, a message pair or an encrypted message, modelled as follows:

datatype msg = Agent agent | Number nat | Nonce nat | Key key
| Hash msg | MPair msg msg | Crypt key msg

where an agent is either an intruder (in Paulson’s notation “a spy”), a friend or
a server. Paulson assumes an infinite set of cryptographic keys, where each key
has an inverse that reverses its cryptographic effect. Each part of the declaration
can be considered a rule for generating messages. For example, if K is a key and
M a message, then (Crypt K M) is a new message obtained by encryption of M
using K. The datatype msg corresponds to the free algebra of terms in strand
spaces. Note, however, that algebraic properties of terms may be introduced in
strand spaces, but this topic will not be pursued any further in this paper.

4.2 Network Packets

Alice-and-Bob specifications are schemata in several senses. They specify a col-
lection of protocol instances, where for example A, B and S can be instantiated
differently in the various runs of the protocol. But they also specify a desired
run (with no attack) of the protocol, while allowing undesired runs during which
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attacks occur [8]. In order to distinguish desired from undesired protocol runs,
the notion of a packet was introduced in [14]. A packet models what is in fact
sent between two agents: the sender and receiver of the packet. A packet is a
message with information about the names of the sender and receiver. Malicious
agents may lie about their names. In order to take this into account, a name is
modelled by a pair (p, i), where p is denoted the persona and i the (true) identity
of the agent. If p �= i, then the persona is a fake persona, and the name is a fake
name. A network packet has the form: (|s → r : M |), where M is a message, s
is the name of the sender and r is the name of the receiver. If either s or r are
fake names, then the packet is a fake packet.

4.3 Events

A protocol step A → B : M typically involves multiple activities: Firstly, the
events that agent A sends a packet to agent B containing M and that B receives a
packet from A containing M . And secondly, the event – known as a block event –
that B, after receiving the packet, removes it from the network. Thus, for a packet
q = (|(pA, iA) → (pB, iB) : M |), we have the following three kinds of event:

SndA(q) : A sends packet q
RcvB(q) : B receives packet q
BlkB(q) : B blocks packet q

In a send event, it is a requirement that the identity of the message’s sender
must be that of the agent. Apart from this, neither the identities nor the personas
appearing in the packet need to correspond to the agent, since events may involve
fake packets or be received or blocked by agents for which they were not intended.
All such events will be denoted fake events.

A desired run of A → B : M is described by the following event sequence:

SndA(|(A, A) → (B, B) :M |) RcvB(|(A,A) → (B, B) : M |) BlkB(|(A, A) → (B, B) : M |)

In [14] it was shown that with these types of events one can also model the
standard types of active and passive attacks, such as message interception, in-
terruption, theft, replaying, modification and spoofing. It was also made clear
that they are adequate in the sense that all the atomic actions of the strand
space formalism can be expressed.

4.4 Traces

Initially, let us consider a trace based model of a network’s behaviour. The traces
are inductively defined as the least inductive closure of a set of rules, using the
approach of Roscoe, Lowe and Paulson [18,7,12].

Let [e1, . . . , en] denote a list with n > 0 elements, [ ] the empty list, and e#t
the list formed by adding element e to the list t. In the list [e1, . . . , en], e1 is the
most recent event which has happened and en is the oldest event.

A trace should capture the idea that a packet cannot be received before it is
sent or after it is blocked. Therefore, we introduce the notion of a visible packet.
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A packet q is visible in an event list h, written q visible h, if q occurs in the list
and q is not blocked by a more recent element in h.

The set of traces, trace ⊆ event list, is then the least set generated by the
following rules:

[ ] ∈ trace

h ∈ trace

Sndn(q)#h ∈ trace

h ∈ trace q visible h

Rcvn(q)#h ∈ trace

h ∈ trace q visible h

Blkn(q)#h ∈ trace

A trace corresponds to a bundle in strand spaces, as in a trace one can see the
interaction of the various agents.

4.5 Ideal Traces

The set trace includes all possible traces, both desired and undesired ones. In
order to discuss possible attacks, we introduce the notion of ideal traces, where
fake events do not occur, and we require that an agent who receives a packet
will block it immediately afterwards.

The ideal traces are generated inductively in a manner similar to the defini-
tion of trace above. However, with ideal traces we also need to have a concrete
protocol in mind in order to be able to give meaning to the concepts of “desired”
and “undesired” traces. In what follows, we shall refer to the Kerberos protocol
whose specification was given in Fig. 1.

It is convenient to introduce some auxiliary functions:

hd : event list → event
used : event list → P(msg)
↓: event list → agent → event list

which respectively give the first element in a non-empty list of events, the set
of messages occurring in an event list, and the restriction of an event list to a
given agent. ↓ is an infix function. Thus (evs ↓ A) gives the projection of evs
onto A, i.e. the event list obtained from evs by deleting events in which A does
not participate, in the sense that A does not send, receive or block the packet.

The set KER of ideal traces for the Kerberos protocol is a set of event lists:

KER : P(event list)

which is generated by the rules below. The first two rules express the fact that
generation starts from the empty event list and that a visible packet is received
and blocked in “one step”:

[ ] ∈ KER

evs ∈ KER (|(A,A) → (B, B) : M |) visible evs

BlkB (|(A, A) → (B, B) : M |)#RcvB (|(A,A) → (B, B) : M |)#evs ∈ KER

Each of the next four rules is a direct encoding of a step of the Alice-and-Bob
specification. The predicate NA /∈ used evs assures the freshness of the nonce
NA, and by inspection of the last step of A using hd(evs ↓ A) = · · · the next
protocol step of A is known. Similarly for B and S.



Timed Traces and Strand Spaces 379

evs ∈ KER NA /∈ used evs

SndA (|(A,A) → (S, S) : A,B, NA|)#evs ∈ KER

evs ∈ KER hd(evs ↓ S) = BlkS (|(A,A) → (S, S) : A, B, NA|)
SndS (|(S, S) → (A, A) : {Ksess, A,L}KBS , {Ksess, NA,L, B}KAS |)#evs ∈ KER

evs ∈ KER hd(evs ↓ A) = BlkA (|(S, S) → (A,A) : {Ksess, A,L}KBS , {Ksess, NA,L, B}KAS |)
SndA (|(A, A) → (B, B) : {Ksess, A,L}KBS , {A, TA, KAsub}Ksess |)#evs ∈ KER

evs ∈ KER hd(evs ↓ B) = BlkB (|(A,A) → (B, B) : {Ksess, A,L}KBS , {A, TA, KAsub}Ksess |)
SndB (|(B, B) → (A, A) : {TA, KBsub}Ksess |)#evs ∈ KER

Repeated runs of the protocol, with different instantiations of A, B and S, are
modelled by ideal traces generated by the above rules. Fig. 4(a) shows an ideal
trace corresponding to a single run of the entire Kerberos protocol.

Fig. 4(b) shows a trace in the presence of the attack illustrated in Fig. 2(b).

(a) | (b)
t1 = [ SndA (|(A, A) → (S, S) : M1|), | t2 = [ SndA (|(A,A) → (S, S) : M1|),

RcvS (|(A, A) → (S,S) : M1|), | RcvS (|(A, A) → (S, S) : M1|),
BlkS (|(A, A) → (S, S) : M1|), | BlkS (|(A, A) → (S, S) : M1|),
SndS (|(S, S) → (A, A) : M2|), | SndS (|(S, S) → (A, A) : M2|),

| RcvP (|(S, S) → (A, P ) : M2|),
| BlkP (|(S, S) → (A, P ) : M2|),
| SndP (|(S, P ) → (A, A) : M2|),

RcvA (|(S, S) → (A, A) : M2|), | RcvA (|(S, P ) → (A,A) : M2|),
BlkA (|(S, S) → (A, A) : M2|), | BlkA (|(S, P ) → (A,A) : M2|),
SndA (|(A, A) → (B, B) : M3|), | SndA (|(A,A) → (B, B) : M3|),
RcvB (|(A, A) → (B, B) : M3|), | RcvB (|(A,A) → (B, B) : M3|),
BlkB (|(A, A) → (B,B) : M3|), | BlkB (|(A, A) → (B, B) : M3|),
SndB (|(B, B) → (A,A) : M4|), | SndB (|(B, B) → (A, A) : M4|),
RcvA (|(B, B) → (A,A) : M4|), | RcvA (|(B, B) → (A, A) : M4|),
BlkA (|(B,B) → (A,A) : M4|) ] | BlkA (|(B, B) → (A,A) : M4|) ]

Fig. 4. (a) An ideal trace of the Kerberos protocol and (b) A trace in the presence of
the attack by intruder P illustrated in Figure 2(b)

4.6 Attacks

Given the set of all possible traces and the set of desired traces of a given
protocol, we can formalize what constitutes an active attack on a given agent
in the trace-based formalism. The main ideas are as follows; a more detailed
presentation can be found in [13,14]:

Schematic Projections: For a given event list evs and agent A, we define the list
of protocol steps of evs as they are “seen by” A, in the sense that A just sees
the personas occurring in names (which may be forged), but not the identities.
This list of protocol steps is denoted by: evs ↑ A.
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Consistent traces: Event list evs is called consistent with respect to an ideal set
of traces ideal for given agent A, if there exists some trace evs i ∈ ideal which is
identical to evs as seen by A, i.e. evs ↑ A = evsi ↑ A.

Active attacks: Event list evs contains an active attack on a “good agent” A,
given an ideal set of traces ideal , if evs is consistent with ideal for A, and A
takes part in a fake event in evs .

More formally, a schematic projection is a function which for a given event
list, evs, and a given agent, a, can extract a list of protocol steps which that
agent takes part in. The list of steps is denoted a schematic protocol trace, and
has the form:

[ (|a1 → b1 : M1|), (|a2 → b2 : M2|), . . . , (|aq → bq : Mq|) ]

where ai, bi are agent personas and Mi is a message, for 1 ≤ i ≤ q. The schematic
protocol trace for A corresponds to A’s strand.

For example, the schematic projection onto A of the ideal trace t1 shown in
Fig. 4(a), written t1 ↑ A, is:

[ (|A → S : M1|), (|S → A : M2|), (|A→ B : M3|), (|B → A : M4|) ]

Thus the result for a given agent is exactly the corresponding schematic Alice-
and-Bob specification for that agent. When applied to multiple protocol exe-
cutions, with or without interleaving, the resulting schematic trace is always
consistent with the Alice-and-Bob specification.

A trace is consistent with respect to a protocol if, for all good agents partic-
ipating in the trace, the corresponding schematic projections are equal to that
of some ideal execution. If (GAgent evs) identifies the good participants (i.e.
those agents which are not intruders) in a list of events evs, then the notion
of consistency of an event list evs with respect to a set of ideal traces ideal is
formalized by the infix function Ξ, defined by:

evs Ξ ideal =̂ evs ∈ trace∧∀A ∈ (GAgent evs)·(∃evs i ∈ ideal ·(evs i ↑ A = evs ↑ A))

We note for example that the trace t2 shown in Fig. 4(b) is consistent with the
Kerberos protocol, since (t2 ↑ ai = t1 ↑ ai) for all ai ∈ {A,B, S}. However, since
A takes part in the fake event

RcvA (|(S, P ) → (A,A) : M2|)

in t2, then t2 contains an active attack.

5 Interval Logics

To reason about temporal phenomena, we use the Duration Calculus (DC),
which is a real-time logic introduced in [25] as an extension to Interval Temporal
Logic [4]. In DC[22], time is modelled as real numbers Time =̂ R and a real-time
system is modelled by Boolean-valued functions of time
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P : Time → {0, 1} .
Such functions are also called state variables. The intuition is that the system
is in state P at time t iff P (t) = 1. State variables can be combined using the
Boolean connectives to form state expressions. For example, P ∧ ¬Q is a state
expression and the system is in this (combined) state at time t iff it is in state
P and not in state Q at time t.

Timing properties are expressed in a modal logic, where the possible worlds
are bounded and closed time intervals:

Intv = { [b, e] | b, e ∈ Time ∧ b ≤ e }

From a state expression S a term called the duration of S, denoted
∫
S, can be

formed. For a given interval [b, e] this denotes the accumulated time where the
system is in state S in the interval:∫ e

b

S(t)dt

Furthermore, we introduce the terms � and TIME, where for a given interval
[b, e], � denotes the length e− b of the interval, and TIME denotes the time e at
the right-hand end point.

Terms are formed from durations, �, TIME, constants and variables using func-
tions of real arithmetic. From terms, atomic formulas are formed using relations
of real arithmetic, and formulas are constructed from the atomic formulas using
connectives and quantifiers of predicate logic, together with modalities which
will be introduced below. An example of a formula is∫

S = � ∧ � > 0

This formula, commonly abbreviated to 44S55, expresses the fact that “state S
is present (almost) everywhere on a non-point interval”. Terms and formulas in
DC are all interpreted with respect to intervals, i.e. for a given interval [b, e] a
term θ denotes a real number and a formula φ is either true or false.

In Interval Temporal Logic [4,10,25,5], which was the original basis for DC,
there is only one basic modality, which is known as chop. A formula φ� ψ (reads:
“φ chop ψ”) holds on [b, e] iff there exists m ∈ [b, e] such that φ holds on [b,m]
and ψ holds on [m, e]:

φ� ψ︷ ︸︸ ︷
b m e︸ ︷︷ ︸

φ
︸ ︷︷ ︸

ψ

This modality is said to be a contracting modality, since by using chop only sub-
intervals of the original interval can be reached. With contracting modalities only
safety properties can be expressed. In order to be able to express liveness and
fairness properties DC is now based on Neighbourhood Logic (NL) [23,1], which
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has two basic modalities, designated �l (reads: “for some left neighbourhood”)
and �r (reads: “for some right neighbourhood”), defined by:

�lφ holds on [b, e] iff there exists ξ ≥ 0 such that φ holds on [b − ξ, b]
and �rφ holds on [b, e] iff there exists ξ ≥ 0 such that φ holds on [e, e + ξ]

With �l one can reach left neighbourhoods of the beginning point of an interval:

φ︷ ︸︸ ︷ �lφ︷ ︸︸ ︷
b− ξ b e

and with �r one can correspondingly reach right neighbourhood intervals. These
modalities are called expanding modalities, as one can reach intervals outside a
given interval with them. In a first order interval logic with these two modalities,
one has an adequate interval logic in the sense that any other interval modality
(including chop) is expressible [23]. In this paper we will also use modalities to
reach sub-intervals and proper sub-intervals:

�φ =̂ true � φ� true reads: “for some sub-interval: φ”

�� φ =̂ (� > 0) � φ�(� > 0) reads: “for some proper sub-interval: φ”

Furthermore, for each unary modality there is a dual defined in the standard
way. For example �lφ, defined by ¬�l¬φ, with the meaning “for all left neigh-
bourhoods: φ”.

6 Timed Traces and Strand Spaces

We shall connect untimed traces to DC using a technique introduced in [17],
where a special trace variable Tr, called a timed trace, which gives the trace as a
function of time, is introduced. This function is raised to a function on intervals:
Tr : Intv → trace, such that the value of Tr on [a, b] is the trace of events which
is observed at the right end point b. The timed trace must satisfy a collection
of properties to faithfully describe the timed behaviour of the network, e.g. the
trace can only grow as time progresses and only a finite number of new events can
occur in an interval. In order to express these properties and timing properties
of protocols, we introduce some abbreviations.

Suppose h ∈ trace, then Throughouth is a formula which holds for a non-point
interval [a, b], if the trace is equal to h inside [a, b]:

Throughouth =̂ � > 0 ∧�� Tr = h .

The formula Stable expresses that no event has occurred inside an interval:

Stable =̂ ∃h ∈ trace.Throughouth .

We shall assume that only a finite number of events can occur in an interval, i.e.
the variable Tr is finitely variable. Hence the following formulas are axioms:

�lStable and �rStable .
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If h1, h2 ∈ trace, then h1 is called a prefix of h2 (written h1 / h2), if there exist
events e1, . . . , en such that e1# · · ·#en#h1 = h2. The trace grows monotonically
with time:

Tr = h⇒ �r(h / Tr) .

Even though the trace is finitely variable, several events can occur at a given
time point. To capture the occurrence of an event, we let h2− h1 = {e1, . . . , en}
when h1 / h2. Event e occurs “now” if e extends every earlier trace, where
earlier trace are reached by the use of modalities:

Occurs(e) =̂ � = 0 ∧ ∃h.(Tr = h ∧ �l (� > 0 ⇒ �� (e ∈ h− Tr))) .

Note that the two occurrences of Tr refer to different intervals. The above “well-
formedness” properties are general in the sense that they must hold for all pos-
sible systems. Such well-formedness properties are further discussed in [14].

On the other hand, certain properties are system specific. For example, in some
systems processes may communicate in a synchronous manner, while in others
asynchronous communication is the choice. Furthermore, it is system dependent
whether one would have a model allowing many events to occur at a given point
in time. We show that within this simple setting, we can model a variety of
system properties. As an example we show how synchronous and asynchronous
network communication may be described. In the synchronous case it means
that packets are sent and received at the same time

Occurs(SndA(q)) ⇐⇒ Occurs(RcvB(q))

if q is a packet which is sent from A to B. Notice that we here exploit the fact
that events from different agents can occur at the same time.

A minimal network delay δ can be modelled using block events as follows:

(Occurs(RcvB(q)) � true � Occurs(BlkB(q))) ⇒ � ≥ δ ,

and asynchronous communication with a minimal delay may be modelled by:

Occurs(RcvB(q)) ⇒ �l(Occurs(SndA(q)) ∧ � ≥ δ)

7 Timing Requirement in the Kerberos Protocol

The timing requirement of the ideal run of the protocol, described by the bundle
in Fig. 2, can be expressed as follows:

Occurs(SndB(B → A : M4)) =⇒
(

�l(Occurs(SndA(A → B : M2)) � true)
∧ TA ∈ [t1, t2]

)
where TA is the timestamp set by the clock of A, which occurs in M3 and M4,
and the lifetime (t1, t2) comes from the first message M2 of S, i.e. L = [t1, t2].
The condition TA ∈ [t1, t2] expresses that A must initiate the communication
with B during the lifetime of the ticket, and this is all that is required in the
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specification of the protocol [6]. It would, however, be natural to strengthen this
formula to require that B also finishes its task within the lifetime of the ticket

TA ∈ [t1, t2] ∧ TIME ∈ [t1, t2] (1)

to make B less vulnerable to denial of service attacks. Notice that B can actually
check this condition as B “owns” the relevant keys.

Let us suppose for a moment that the protocol instance is aborted as soon as
a violation of the timing condition (1) is experienced by B.

7.1 Sensitivity with Respect to Delays

The Strand Space formalism has the advantage that bundles give an overview
of the desired as well as undesired runs. Consider, for example, the bundle in
Fig. 2(b). Informally, by considering the timing information, A may abort the
protocol instance in the case that A’s local time is later than the endpoint t2 of
L. If this is not the case, the worst case scenario is that B aborts the protocol
instance, as all good participants have wasted their time in this case.

With a model of network delays and execution times in the participants,
we can extract a symbolic expression relating delays, execution times and the
lifetime of tickets, which describes the cases with successful protocol termination.

The delay δP caused by P in the bundle in Fig. 2(b), may be described by:

(Occurs(SndS(S → A : M2)) � true � Occurs(SndP ((S, P ) → A : M2))) =⇒ � = δP

Other delays are expressed similarly.
Suppose that δS and δB are the internal delays in S and B caused by the prepa-

ration of M2 and M4, respectively, and that other delays are negligible. We would
like to extract a condition for the delay caused by P in order to prevent the worst-
case scenario, for example, by using a timeout mechanism in A.

Exploiting the inference system in Sect. 4, one can, in the timeless setting,
derive that certain events have occurred prior to the event eb = SndB(B → A :
M4). In this worst-case scenario, we consider the events ea = SndA(A → B :
M3), ep = SndP ((S, P ) → A : M2), and es = SndS(S → A : M2)).

In the timed setting, it is not difficult to derive formulas for delays between
the events, e.g.

Occurs(eb) =⇒ �l(Occurs(ea) � � = δB)

One can prove that the delay allowed by P depends on the upper bound t2 of the
lifetime as follows t2 ≥ δP + δB, and A should wait no longer than δS + t2 − δB

for the message M2.
This simple example illustrates the way untimed reasoning is combined with

reasoning about timing, and how an implementation of the protocol could take
system parameters into account.

7.2 Drift of Clocks

The protocol is also vulnerable due to drift of clocks, even without the appear-
ance of an attacker. Suppose, for example, that the local clocks of A and B are
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faster than the clock of S. If this drift is not taken into account, then eventually
there will occur a protocol instance, where the lifetime set up by S would end
before the timestamp set by A, and from there on the protocol is useless. This
problem is in practice solved by synchronizing the clocks.

To model clock synchonization, we introduce a new event Clk which can occur
in traces, and to model the drift of clocks we introduce a function dA : R →
R for each participant A. The idea is that if x is the distance to the most
recent occurrence of Clk at time t, then the local time for A, designated by
localTimeA(t), is t + dA(x). The concept is formalized as follows:

� = 0 ∧ TIME = t =⇒
(

localTimeA = t + dA(x)
⇐⇒ �l((Occurs(Clk) � � = x) ∧�� ¬Occurs(Clk))

)
Hence, localTimeA is a temporal variable, which for point intervals denotes the
local time of A.

When a participant, say A, sends a message with timing information, the local
time is used, and we have a framework in which we can analyse the protocol in
order to estimate the frequency of clock synchronizations, based on the protocol
parameters, such as lifetime and delays, and assumptions about the clock drifts.

8 Discussion

The formalism presented in this paper appears to provide a useful framework
for the analysis of temporal properties of security protocols, and supplements
the Strand Spaces approach. A similar analysis is useful for other protocols
whose correctness assumes freshness of nonces, such as the well-known Needham-
Schroeder secret key authentication protocols originally presented in [11] but
subsequently shown incorrect due to a missing freshness property.

For practical analysis, Neighbourhood Logic and Duration Calculus have been
encoded in signed interval logic within the Isabelle/HOL proof assistant. The en-
coding, developed by Rasmussen and Pilegaard [15,16,13], is based on a labelled
natural deduction system. In addition to interval logic, the tool is based on the
use of inductive proof methods over traces of events of the system, inspired by
the work of Paulson [12]. For further details of this work, see [14].
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Abstract. We study the empirical meaning of randomness with respect
to a family of probability distributions Pθ, where θ is a real parameter,
using algorithmic randomness theory. In the case when for a computable
probability distribution Pθ an effectively strongly consistent estimate
exists, we show that the Levin’s a priory semicomputable semimeasure of
the set of all Pθ-random sequences is positive if and only if the parameter
θ is a computable real number. The different methods for generating
“meaningful” Pθ-random sequences with noncomputable θ are discussed.

1 Introduction

We use algorithmic randomness theory to analyze the empirical meaning of ran-
dom data generated by a parametric family of probability distributions when
the parameter value is noncomputable. More correctly, let a parametric family
of probability distributions Pθ (θ is a real number) be given such that an effec-
tively strongly consistent estimate exists for this family. The Bernoulli family
with a real parameter θ is an example of such family. We show that in this case
the Levin’s a priory semicomputable semimeasure of the set of all Pθ-random
sequences is positive if and only if the parameter value θ is a computable real
number.

We say that a property of infinite sequences have an empirical meaning if the
Levin’s a priory semimeasure of the set of sequences possessing this property
is positive. In this respect, the model of the biased coin with “a prespecified”
probability θ of the head is invalid if θ is a noncomputable real number; non-
computable parameters θ can have empirical meaning only in their totality, i.e.,
as elements of some uncountable sets. For example, Pθ-random sequences with
noncomputable θ can be generated by a Bayesian mixture of these Pθ using a
computable prior. In this case, evidently, the semicomputable semimeasure of
the set of all sequences random with respect to this mixture is positive.

We also show that the Bayesian statistical approach is insufficient to cover all
possible “meaningful” cases: a probabilistic machine can be constructed, which
with probability close to one outputs a random θ-Bernoulli sequence, where
the parameter θ is not random with respect to each computable probability
distribution.
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2 Preliminaries

Let Ξ be the set of all finite binary sequences, Λ be the empty sequence, and Ω
be the set of all infinite binary sequences. We write x ⊆ y if a sequence y is an
extension of a sequence x, l(x) is the length of x. A real-valued function P (x),
where x ∈ Ξ, is called semimeasure if

P (Λ) ≤ 1,
P (x0) + P (x1) ≤ P (x) (1)

for all x, and the function P is semicomputable from below; this means that the
set {(r, x) : r < P (x)}, where r is a rational number, is recursively enumerable.
A definition of upper semicomputability is analogous.

Solomonoff proposed ideas for defining the a priori probability distribution on
the basis of the general theory of algorithms. Levin [13], [3] gave a precise form
of Solomonoff’s ideas in a concept of a maximal semimeasure semicomputable
from below (see also Li and Vitányi [7], Section 4.5, Shen et al. [9]). Levin
proved that there exists a maximal to within a multiplicative positive constant
factor semimeasure M semicomputable from below, i.e. for every semimeasure P
semicomputable from below a positive constant c exists such that the inequality

cM(x) ≥ P (x) (2)

holds for all x. The semimeasure M is called the a priory or universal
semimeasure.

A function P is a measure if (1) holds, where both inequality signs ≤ are
replaced on =. Any function P satisfying (1) (with equalities) can be extended
on all Borel subsets of Ω if we define P (Γx) = P (x) in Ω, where x ∈ Ξ and
Γx = {ω ∈ Ω : x ⊆ ω}; after that, we use the standard method for extending P
to all Borel subsets of Ω. By simple set in Ω we mean a union of intervals Γx

from a finite set.
A measure P is computable if it is, at one time, lower and upper

semicomputable.
For technical reazons, for any semimeasure P , we consider the maximal mea-

sure P̄ such that P̄ ≤ P . This measure satisfies

P̄ (x) = inf
n

∑
l(y)=n,x⊆y

P (y).

In general, the measure P̄ is noncomputable (and it is not a probability measure).
By (2), for each lower semicomputable semimeasure P , the inequality cM̄(A) ≥
P̄ (A) holds for every Borel set A, where c is a positive constant.

In the manner of Levin’s papers [4,5,6,13] (see also [12]), we consider combi-
nations of probabilistic and deterministic processes as the most general class of
processes for generating data. With any probabilistic process some computable
probability distribution can be assigned. Any deterministic process is realized
by means of an algorithm. Algorithmic processes transform sequences generated
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by probabilistic processes into new sequences. More precise, a probabilistic com-
puter is a pair (P, F ), where P is a computable probability distribution, and F
is a Turing machine supplied with an additional input tape. In the process of
computation this machine reads on this tape a sequence ω distributed according
to P and produces a sequence ω′ = F (ω) (A correct definition see in [4],[7],
[9],[12]). So, we can compute the probability

Q(x) = P{ω ∈ Ω : x ⊆ F (ω)}

that the result F (ω) of the computation begins with a finite sequence x. It is
easy to see that Q(x) is a semimeasure semicomputable from below.

Generally, the semimeasure Q can be not a probability distribution in Ω, since
F (ω) may be finite for some infinite ω.

The converse result is proved in Zvonkin and Levin [13]: for every semimeasure
Q(x) semicomputable from below a probabilistic computer (L,F ) exists such
that

Q(x) = L{ω|x ⊆ F (ω)},

for all x, where L(x) = 2−l(x) is the uniform probability distribution in the set
of all binary sequences.

Therefore, by (2) M(x) defines an universal upper bound of the probability
of generating x by probabilistic computers.

We refer readers to Li and Vitányi [7] and to Shen et al. [9] for the theory
of algorithmic randomness. We use definition of a random sequence in terms of
universal probability. Let P be some computable measure in Ω. The deficiency
of randomness of a sequence ω ∈ Ω with respect to P is defined as

d(ω|P ) = sup
n

M(ωn)
P (ωn)

, (3)

where ωn = ω1ω2 . . . ωn. This definition leads to the same class of random se-
quences as the original Martin-Löf [8] definition. Let RP be the set of all infinite
binary sequences random with respect to a measure P

RP = {ω ∈ Ω : d(ω|P ) <∞}.

We also consider parametric families of probability distributions Pθ(x), where θ
is a real number; we suppose that θ ∈ [0, 1]. An example of such family is the
Bernoulli family Bθ(x) = θk(1 − θ)n−k, where n is the length of x and k is the
number of ones in it.

We associate with a binary sequence θ1θ2 . . . a real number with the binary
expansion 0.θ1θ2 . . .. When the sequence θ1θ2 . . . is computable or random with
respect to some measure we say that the number 0.θ1θ2 . . . is computable or
random with respect to the corresponding measure in [0, 1].

We consider probability distributions Pθ computable with respect to a pa-
rameter θ. Informally, this means that there exists an algorithm enumerating all
pairs of rational numbers (r1, r2) such that r1 < Pθ(x) < r2. This algorithm uses
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an infinite sequence θ as an additional input; if some pair (r1, r2) was enumer-
ated by this algorithm then only a finite initial fragment of θ was used in the
process of computation (for correct definition, see also Shen et al. [9] and Vovk
and V’yugin [10]).

Analogously, we consider parametric lower semicomputable semimeasures. It
can be proved that there exist a universal parametric lower semicomputable
semimeasure Mθ. This means that for any parametric lower semicomputable
semimeasure Rθ there exists a positive constant C such that CMθ(x) ≥ Rθ(x)
for all x and θ.

The corresponding definition of randomness with respect to a family Pθ is
obtained by relativization of (3) with respect to θ

dθ(ω) = sup
n

Mθ(ωn)
Pθ(ωn)

(see also [3]). This definition leads to the same class of random sequences as the
original Martin-Löf [8] definition relitivized with respect to a parameter θ.

For any θ, let
Iθ = {ω ∈ Ω : dθ(ω) <∞}

be the set of all infinite binary sequences random with respect to the measure
Pθ. In case of Bernoulli family, we call elements of this set θ-Bernoulli sequences.

3 Results

We need some statistical notions (see Cox and Hinkley [2]). Let Pθ be some
computable parametric family of probability distributions. A function θ̂(x) from
Ξ to [0, 1] is called an estimate. An estimate θ̂ is called strongly consistent if for
any parameter value θ

θ̂(ωn) → θ

for Pθ-almost all ω. We suppose that ε and δ are rational numbers. An estimate
θ̂ is called effectively strongly consistent if there exists a computable function
N(ε, δ) such that for any θ for all ε and δ

Pθ{ω ∈ Ω : sup
n≥N(ε,δ)

|θ̂(ωn)− θ| > ε} ≤ δ (4)

The strong law of large numbers Borovkov [1] (Chapter 5)

Bθ

{
sup
k≥n

∣∣∣∣∣1k
k∑

i=1

ωi − θ

∣∣∣∣∣ ≥ ε

}
<

1
ε4n

shows that the function θ̂(ωn) = 1
n

n∑
i=1

ωi is a computable strongly consistent

estimate for the Bernoulli family Bθ.
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Proposition 1. For any effectively strongly consistent estimate θ̂,

lim
n→∞ θ̂(ωn) = θ

for each ω ∈ Iθ.

Proof. Let, for some θ, an infinite sequence ω be Martin-Löf random with respect
to Pθ.

At first, we prove that lim
n→∞ θ̂(ωn) exists. Let for j = 1, 2, . . .,

Wj = {α ∈ Ω : (∃n, k ≥ N(1/j, 2−(j+1)))|θ̂(αn)− θ̂(αk)| > 1/j}.

By (4) for any θ, Pθ(Wj) < 2−j for all j. Define Vi = ∪j>iWj for all i. By
definition, for any θ, Pθ(Vi) < 2−i for all i. Also, any set Vi can be represented
as a recursively enumerable union of intervals of type Γx. To reduce this definition
of Martin-Löf test to the definition of the test (3) define a sequence of uniform
lower semicomputable parametric semimeasures

Rθ,i(x) =
{

2iPθ(x) if Γx ⊆ Vi

0 otherwise

and consider the mixture Rθ(x) =
∞∑

i=1

1
i(i+1)Rθ,i(x).

Suppose that the limit lim
n→∞ θ̂(ωn) does not exist. Then for each sufficiently

large j, |θ̂(ωn)− θ̂(ωk)| > 1/j for infinitely many n, k. This implies that ω ∈ Vi

for all i, and then for some positive constant c,

dθ(ω) = sup
n

Mθ(ωn)
Pθ(ωn)

≥ sup
n

Rθ(ωn)
cPθ(ωn)

= ∞,

i.e., ω is not Martin-Löf random with respect to Pθ.
Suppose that lim

n→∞ θ̂(ωn) �= θ. Then the rational numbers r1, r2 exist such

that r1 < lim
n→∞ θ̂(ωn) < r2 and θ �∈ [r1, r2]. Since the estimate θ̂ is consistent,

Pθ{α : r1 < lim
n→∞ θ̂(αn) < r2} = 0, and we can effectively (using θ) enumerate

an infinite sequence of positive integer numbers n1 < n2 < . . . such that for

W ′
j = ∪{Γx : l(x) ≥ nj , r1 < θ̂(x) < r2},

we have Pθ(W ′
j) < 2−j for all j. Define V ′

i = ∪j>iW
′
j for all i. We have Pθ(V ′

i ) ≤
2−i and ω ∈ V ′

i for all i. Then ω can not be Martin-Löf random with respect to
Pθ. These two contradictions obtained above prove the proposition. &
The following theorem shows that, from the point of view of the philosophy
explained above, Pθ-random sequences with “a prespecified” noncomputable pa-
rameter θ can not be obtained in any combinations of stochastic and determin-
istic processes.
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Theorem 1. Let a computable parametric family Pθ of probability distributions
has an effectively strongly consistent estimate. Then for any θ, M̄(Iθ) > 0 if and
only if θ is computable.

Proof. If θ is computable then the probability distribution Pθ is also computable
and by (2) cM̄(Iθ) ≥ Pθ(Iθ) = 1, where c is a positive constant.

The proof of the converse assertion is more complicated. Let M̄(Iθ) > 0. There
exists a simple set V (a union of a finite set of intervals) and a rational number r
such that 1

2M̄(V ) < r < M̄(Iθ ∪V ). For any finite set X ⊆ Ξ, let X̄ = ∪x∈XΓx.
Let n be a positive integer number. Let us compute a rational approximation

θn of θ up to 1
2n . Using the exhaustive search, we find a finite set Xn of pairwise

incomparable finite sequences of lengths ≥ N(1/n, 2−n) such that

X̄n ⊆ V,
∑

x∈Xn

M(x) > r,

|θ̂(x) − θ̂(x′)| ≤ 1
2n

(5)

for all x, x′ ∈ Xn. If any such set Xn will be found, we put θn = θ̂(x), where
x ∈ Xn is minimal with respect to some natural (lexicographic) ordering of all
finite binary sequences.

Now we prove that for any n the set Xn exists. Since M̄(Iθ ∩ V ) > r, there
exists a closed (in the topology defined by intervals Γx) set E ⊆ Iθ∩V such that
M̄(E) > r. Consider the function

fk(ω) = inf{n : n ≥ k, |θ̂(ωn)− θ| ≤ 1
4n
}.

By Proposition 1 this function is continuous on Ω and, since the set E is compact,
it is bounded on E. Hence, for any k, a finite set X ⊆ Ξ exists consisting of
pairwise incomparable sequences of length ≥ k such that E ⊆ X̄ and |θ̂(x) −
θ̂(x′)| ≤ 1

2n for any x, x′ ∈ X . Since E ⊆ X̄, we have
∑

x∈X

M(x) > r. Therefore,

the set Xn can be found by exhaustive search.

Lemma 1. For any Borel set V ⊆ Ω, M̄(V ) > 0 and V ⊆ Iθ imply Pθ(V ) > 0.

Proof. By definition of Mθ any computable parametric measure Pθ is absolutely
continuous with respect to the measure M̄θ, and so, we have representation

Pθ(X) =
∫
X

dPθ

dM̄θ
(ω)dM̄θ(ω), (6)

where dPθ

dM̄θ
(ω) is the Radon-Nicodim derivative; it exists for M̄θ-almost all ω.

By definition we have for M̄θ-almost all ω ∈ Iθ

dPθ

dM̄θ
(ω) = lim

n→∞
Pθ

M̄θ
(ωn) ≥ lim inf

n→∞
Pθ

M̄θ
(ωn) ≥ Cθ,ω > 0. (7)
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By definition cθM̄θ(X) ≥ M̄(X) for all Borel sets X , where cθ is some positive
constant (depending on θ). Then by (6) and (7) the inequality M̄(X) > 0 implies
Pθ(X) > 0 for each Borel set X . &

We rewrite (4) in a form

En = {ω ∈ Ω : sup
N≥N(1/(2n),2−n)

|θ̂(ωN)− θ| ≥ 1
2n
} (8)

and Pθ(En) ≤ 2−n for all n. We prove that Xn �⊆ En for almost all n. Sup-
pose that the opposite assertion holds. Then there exists an increasing infinite
sequence of positive integer numbers n1, n2 . . . such that Xni ⊆ Eni for all i =
1, 2, . . .. This implies Pθ(Xni) ≤ 2−ni for all i. For any k, define Uk = ∪i≥kXni .
Clearly, we have for all k, M̄(Ūk) > r and Pθ(Ūk) ≤

∑
i≥k

2−ni ≤ 2−nk+1. Let

U = ∩Uk. Then Pθ(U) = 0 and M̄(U) ≥ r > 1
2M̄(V ). From U ⊆ V and

M̄(Iθ ∩ V ) > 1
2M̄(V ) the inequality M̄(Iθ ∩U) > 0 follows. Then the set Iθ ∩U

consists of Pθ-random sequences, Pθ(Iθ ∩ U) = 0 and M̄(Iθ ∩ U) > 0. This is a
contradiction with Lemma 1.

Let Xn �⊆ En for all n ≥ n0. Let also, a finite sequence xn ∈ Xn is defined
such that

Γxn ∩ (Ω \ En) �= ∅.
Then from l(xn) ≥ N( 1

2n , 2
−n) the inequality∣∣∣∣∣∣ 1
l(xn)

l(xn)∑
i=1

(xn)i − θ

∣∣∣∣∣∣ < 1
2n

follows. By (5) we obtain |θn − θ| < 1
n . This means that the real number θ is

computable. Theorem is proved. &
Bayesian mixture of computable (with respect to θ) probability measures Pθ

using a computable prior on θ gives to Pθ-random sequences “the empirical
meaning”. Let Q be a computable probability distribution on θ (i.e., in the set
Ω). Then the Bayesian mixture

P (x) =
∫

Pθ(x)dQ(θ)

is also computable.
Recall that RQ is the set of all infinite sequences Martin-Löf random with

respect to a computable probability measure Q. Obviously, P (∪θ∈RQIθ) = 1,
and then M̄(∪θ∈RQIθ)) > 0. Moreover, it follows from Corollary 4 of Vovk and
V’yugin [10]

Theorem 2. For any computable measure Q a sequence ω is random with re-
spect to the Bayesian mixture P if and only if ω is random with respect to a
measure Pθ for some θ random with respect to the measure Q; in other words,

RP = ∪θ∈RQIθ.
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Notice, that any computable θ is Martin-Löf random with respect to the com-
putable probability distribution concentrated on this sequence.

The following Theorem 3 shows that the Bayesian approach is insufficient to
cover all possible “meaningful” cases: a probabilistic machine can be constructed,
which with probability close to one outputs a random θ-Bernoulli sequence,
where the parameter θ is not random with respect to each computable probability
distribution.

Let P be the set of all computable probability measures in Ω, and let

St = ∪P∈PRP

be the set of all sequences Martin-Löf random with respect to allcomputable
probability measures. We call these sequences - stochastic. Its complement NSt =
Ω \St consists of all sequences nonrandom with respect to all computable prob-
ability measures. We call them nonstochastic.

We proved in V’yugin [11], [12] that M̄(NSt) > 0. Namely, the following
proposition holds1 .

Proposition 2. For any ε, 0 < ε < 1, a lower semicomputable semimeasure Q
can be constructed such that

Q̄(Ω) > 1− ε, (9)
NSt = ∪Q(x)>0Γx. (10)

We show that this result can be extended to parameters of the Bernoulli se-
quences.

Theorem 3. Let Iθ be the set of all θ-Bernoulli sequences. Then

M̄(∪θ∈NStIθ) > 0.

In terms of probabilistic computers, for any ε, 0 < ε < 1, a probabilistic machine
(L,F ) can be constructed, which with probability ≥ 1−ε generates an θ-Bernoulli
sequence, where θ ∈ NSt (i.e., θ is nonstochastic).

Proof. For any ε > 0, 0 < ε < 1, we define a lower semicomputable semimeasure
P such that

P̄ (∪θ∈NStIθ) > 1− ε.

The proof of the theorem is based on Proposition 2. The property (10) can be
rewritten as: Q(ωn) = 0 for all sufficiently large n if and only if ω ∈ St (i.e., ω
is Martin-Löf random with respect to some computable probability measure).

For the measure

R−(x) =
∫

Bθ(x)dQ̄(θ), (11)

1 We also prove in these papers that M(Ω\R̄L) > 0, where R̄L is the set of all sequences
Turing reducible to sequences from RL random with respect to the uniform measure
L. By [13] it holds St ⊆ R̄L. The corresponding strengthening of the Theorem 3 is:
M̄(∪θ∈Ω\R̄L

Iθ) > 0.
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where Bθ is the Bernoulli measure, by (9) we have R−(Ω) > 1− ε, and by (10)
we have R−(∪θ∈StIθ) = 0.

Unfortunately, we can not conclude that cM̄ ≥ R− for some constant c,
since the measure R− is not represented in the form R− = P̄ for some lower
semicomputable semimeasure P . To overcome this problem, we consider some
semicomputable approximation of this measure.

For any finite binary sequences α and x, let B−
α (x) = (θ−)K(1 − θ+)N−K ,

where N is the length of x and K is the number of ones in it, θ− is the left side
of the subinterval corresponding to the sequence α and θ+ is its right side. By
definition, B−

α (x) ≤ Bθ(x) for all θ− ≤ θ ≤ θ+.
Suppose that ε is a rational number. Let Qs(x) be equal to the maximal

rational number r < Q(x) computed in s steps of enumeration of Q(x) from
below. Using (9), we can define for n = 1, 2, . . . and for any x of length n a
computable sequence of positive integer numbers sx ≥ n and a sequence of finite
binary sequences αx,1, αx,2, . . . αx,kx of length ≥ n such that the function P (x)
defined by

P (x) =
kx∑
i=1

B−
αx,i

(x)Qsx(αx,i) (12)

is a semimeasure, i.e., such that condition (1) holds for all x, and such that∑
l(x)=n

P (x) > 1− ε (13)

holds for all n. These sequences exist, since the limit function R− defined by
(11) is a measure satisfying R−(Ω) > 1− ε.

By definition the semimeasure P (x) is lower semicomputable. Then cM(x) ≥
P (x) holds for all x ∈ Ξ, where c is a positive constant.

To prove that P̄ (Ω \ ∪θIθ) = 0 we consider some probability measure Q+ ≥
Q. Since (1) holds, it is possible to define some noncomputable measure Q+

satisfying these properties in many different ways. Define the mixture of the
Bernoulli measures with respect to Q+

R+(x) =
∫

Bθ(x)dQ+(θ). (14)

By definition R+(Ω \∪θIθ) = 0. Using definitions (12) and (14), it can be easily
proved that P̄ ≤ R+. Then P̄ (Ω\∪θIθ) = 0. By (10) we have P̄ (∪θ∈StIθ) = 0. By
(13) we have P̄ (Ω) > 1−ε. Then P̄ (∪θ∈NStIθ) > 0. Therefore, M̄(∪θ∈NStIθ) > 0.
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An Efficient Algorithm for Zero-Testing of a
Lacunary Polynomial at the Roots of Unity
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Vavilova, 40, Moscow 119991, Russia
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Abstract. We present a polynomial time algorithm for the following
problem: to check whether a lacunary polynomial f(x) vanishes at a
given primitive nth root of unity ζn. A priori f(ζn) may be nonzero and
doubly exponentially small in the input size. Only exponential algorithms
were known for this problem. The existence of an efficient procedure
in the case of factored n was conjectured by D. Plaisted in 1984. As
a consequence we show that the problem of the divisibility testing of
a lacunary polynomial by some cyclotomic polynomial belongs to the
complexity class NP.

Keywords: algorithm, cyclotomic polynomial, root of unity, sparse
representation.

Let ζn = e2πi/n be an nth primitive root of unity. A vanishing sum of roots of
unity has the form

n−1∑
j=0

ajζ
j
n = 0 (1)

where the coefficients aj are integers.
There are many results on vanishing sums of roots of unity. Rédei [9] and

Schoenberg [10] described the lattice of vanishing sums (see also Rédei [8], de
Bruijn [1], Lam and Leung [5]). Conway and Jones [2] gave a lower bound on the
size of the support set of a minimal vanishing sum with nonnegative coefficients.
The paper by Lam and Leung [5] contains an exact characterization of the set
of �1-norms of vectors of the coefficients of vanishing sums with nonnegative
coefficients. Steinberger [11] developed a method for construction of minimal
sums with large coefficients.

In this paper we examine the algorithmic aspects of zero-testing of sums of
roots of unity and consider the following problem. Given an integer n, a finite
support set J of natural numbers and a set of integer coefficients aj, j ∈ J check
the equality ∑

j∈J

ajζ
j
n = 0 . (2)
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Due to irreducibility of cyclotomic polynomials Φn(x) the equality (2) is equiv-
alent to the divisibility of a lacunary polynomial

f(x) =
∑
j∈J

ajx
j (3)

by the cyclotomic polynomial Φn(x). Hereinafter we call this problem the cyclo-
tomic test (CT for brevity).

Note that a linear combination of roots of unity with integer coefficients is
an algebraic number. So, the straightforward way to check the equality (2) is
to compute a rational approximation of its left-hand side and then to compare
it with zero. An accuracy of approximation required for correctness of this al-
gorithm is called a separation bound . The standard separation bound (see e.g.
Mignotte [6]) is doubly exponentially small w.r.t. the input size of the problem
CT. It means that the algorithm above uses exponential space and hence, expo-
nential time. Specific separation bounds for linear combinations of roots of unity
are unknown.

It is shown by Plaisted [7] that CT is in co-NP (the related problem is called
SPARSE-POLY-NONROOT there).1

A related and a more general problem is studied by Filaseta and Schinzel [4]:
to check the divisibility of a given lacunary polynomial by some cyclotomic
polynomial. Formally stated this task consists in checking whether a lacunary
polynomial f(x) =

∑
j∈J ajx

j represented by a finite support set J of natural
numbers and a set of integer coefficients aj , j ∈ J , is divisible by some cyclotomic
polynomial. We call this problem the general cyclotomic test (GCT for brevity).
The Plaisted’s result mentioned above implies GCT ∈ Σ2. The running time of
the algorithm in [4] is subexponential

O(exp[(2 + o(1))
√
|J |/ log |J |(log |J |+ log log deg f)] logH(f)),

where H(f) def= maxj∈J |aj | + 1. As a subroutine the procedure in [4] uses a
subexponential algorithm for the cyclotomic test, provided the prime power de-
composition of n is given.

A more sophisticated algorithm for GCT is described in a more recent paper
by Filaseta, Granville, and Schinzel [3]. However, it uses the same subexponential
subroutine for the cyclotomic test. So, this algorithm cannot be applied to prove
that GCT ∈ NP .

Our contribution is a polynomial time algorithm for the cyclotomic test in the
case of a general (not factored) n. As a direct consequence we show that GCT
is in NP .

Now we state our results more formally. A sparse representation of a polyno-
mial f(x) =

∑d
i=0 ajx

j with integer coefficients is a list of pairs (aj , j) for aj �= 0.
Integers in a sparse representation are written in binary. A vector of the coeffi-
cients of a polynomial f(x) is denoted by coef f . A support set supp a of a vector
1 There is even a more resolute statement in [7, p. 132]:“The author believes he has

a method for solving SPARSE-POLY-NONROOT in polynomial time if the prime
factorization of M is given.” To our knowledge this result is unpublished.
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a = (a0, . . . , ad)T is a set {j : aj �= 0}. So the size of a sparse representation of
a polynomial f(x) is O(m(logH(f) + log deg f)), where m = | supp coef f |.

The decision problem CT is stated as follows. The input is a sparse repre-
sentation of a polynomial f(x) and an integer n written in binary. The output
is ‘yes’ if f(ζn) = 0 and ‘no’ otherwise. We associate with the problem CT a
language CT ⊂ {0, 1}∗ in the standard manner.

Note that the cardinality of the support set m and the maximal bit length of
integers contained in the input L = max(logH(f), log deg f, logn) do not exceed
the input size. We will use the parameters m, L and logn in bounds of running
time below.

Theorem 1. CT ∈ P

The decision problem GCT is stated as follows. The input is a sparse represen-
tation of a polynomial f(x). The output is ‘yes’ if there is an integer m such
that Φm(x) | f(x) and ‘no’ otherwise. We also denote by GCT the language
associated with the problem GCT.

As a direct consequence of Theorem 1 we obtain

Theorem 2. GCT ∈ NP

1 Algebraic Facts About Vanishing Sums of Roots of
Unity

Let
n = pt1

1 · pt2
2 · . . . · ptr

r (4)

be the prime power decomposition of n. For a positive integer n let Vn be an
n-dimensional vector space over the field Q of rationals equipped with the canon-
ical basis {e0, e1, . . . , en−1}.

Let ϕ : Vn → Q[ζn] be an evaluation map — a Q-linear map acting on the
basis vectors by the rule

ϕ(ek) = ζk
n . (5)

We denote by Xn the kernel of ϕ.
We follow the paper by Lam and Leung [5] and give a description of Xn using

a tensor decomposition of Vn.
At first, the Chinese remainder theorem implies a decomposition

Vn
∼= V

p
t1
1
⊗ · · · ⊗ Vptr

r
. (6)

The isomorphism acts on the basis vectors by the rule

ei 	→ e
i mod p

t1
1
⊗ · · · ⊗ ei mod ptr

r
. (7)

We also split Vpt by another isomorphism

Vpt ∼= Vp ⊗ Vpt−1 (8)
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which is defined by

ei 	→ ej ⊗ ek, where i = pt−1j + k . (9)

Substituting (8) to (6) and rearranging factors we get a decomposition

Vn
∼=Vp1 ⊗ · · · ⊗ Vpr ⊗ V

p
t1−1
1

⊗ · · · ⊗ Vptr−1
r

=

Q1 ⊗Q2 ⊗ . . .Qr ⊗Qr+1 ⊗ · · · ⊗Q2r .
(10)

Hereinafter we use a notation Qi = Vpi and Qr+i = V
p

ti−1
i

for 1 ≤ i ≤ r.

Define the vector 1̂ ∈ Vp by

1̂ =
p−1∑
j=0

ej . (11)

The next theorem is a weaker form of theorem 2.2 from the paper by Lam and
Leung [5]. (The theorem 2.2 is attributed to Rédei, de Bruijn and Schoenberg
there.)

Theorem 3. Xn = Kerϕ is a sum of subspaces X i
n, where

X i
n = Q1 ⊗ · · · ⊗Qi−1 ⊗Q1̂⊗Qi+1 ⊗ · · · ⊗Q2r, 1 ≤ i ≤ r . (12)

Let us use an inner product in Vn such that the canonical basis is orthonormal
with respect to this product. Then the dual space to Xn can be identified with
the orthogonal complement X⊥

n . In order to describe a basis of X⊥
n we define

‘cuboids’ of dimension r (see the Steinberger’s paper [11]). Let u0, u1 be integer
sequences (uj,0), (uj,1) of length r such that 0 ≤ uj,α ≤ pj − 1 and uj,0 �= uj,1

for any j. A cuboid Q(u0, u1) parameterized by the sequences u0, u1 is a vector
in Q1 ⊗ · · · ⊗Qr such that

Q(u0, u1) =
⊗

j

(
euj,0 − euj,1

)
=
∑

α∈{0,1}r

(−1)‖α‖eu1,α1
⊗ eu2,α2

⊗ · · · ⊗ eur,αr
,

(13)
where ‖α‖ is the Hamming norm of the Boolean vector α (the number of 1’s
in α).

The cuboid space Q is the subspace spanned by cuboids in Q1 ⊗ · · · ⊗Qr.

Theorem 4 (Steinberger, [11]). Let n be a squarefree integer. Then X⊥
n = Q.

Remark 1. A different form of Theorem 4 is contained in papers by Rédei [9]
and by Conway and Jones [2]. See also Titova and Shevchenko [12].

In general case note that the first part Q1 ⊗ . . .⊗Qr of the decomposition (10)
corresponds to the decomposition of the maximal squarefree divisor of n. Taking
into account Theorem 3 we get a generalization of Theorem 4.

Theorem 5. X⊥
n = Q⊗Qr+1 ⊗ · · · ⊗Q2r for any integer n.
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An extended cuboid is a tensor product of a cuboid by any vector from the
canonical basis in Qr+1⊗ · · · ⊗Q2r. In this notation Theorem 5 states that X⊥

n

is spanned by the extended cuboids.
Now we specify a family of bases in the cuboid space.

Lemma 1. Let z be an integer sequence of length r such that 0 ≤ zj ≤ pj − 1.
Then the set Qz of cuboids Q(z, u) for all integer sequences u = (u1, . . . , ur),
0 ≤ ui ≤ pi − 1, ui �= zi, i = 1, . . . , r forms a basis in the cuboid space.

Proof. The vector ⊗jeuj , uj �= zj, is orthogonal to a cuboid Q(z, v) unless
v = u. So, cuboids in the set Qz are linearly independent. On the other hand,
an arbitrary cuboid can be expressed as a linear combination of cuboids taken
from Qz:

Q(x, y) =
⊗

j

(exj − eyj ) =
⊗

j

(−(ezj − exj) + (ezj − eyj )) =

∑
S⊆{0,1}r

(−1)|S|⊗
j

(ezj − eu(S,j)) ,
(14)

where u(S, j) = xj if j ∈ S and u(S, j) = yj otherwise.  !

We use various bases Qz in the proof of Theorem 1 in Sect. 3. In the next section
we will restrict our consideration to the basis Q0 formed by cuboids Q(0r, u).
We call these cuboids the standard cuboids .

2 An Algorithm in the Case of Factored n

In this section we present a polynomial time algorithm for the restricted problem
CTf . In the problem CTf the input consists of a sparse representation of a
polynomial f(x), the binary representation of an integer n and an auxiliary
string w. The output is ‘yes’ if f(ζn) = 0 and the string w is the prime power
decomposition of the integer n. Otherwise, the output is ‘no’.

Lemma 2. CTf ∈ P

Remark 2. An artificial form of the problem CTf needs some justification. If
the binary representation of n were not a part of the input then the algorithm
below would not run in polynomial time since the prime power representation of
an integer can be exponentially shorter than the binary representation for the
same integer.

On the other hand, if n is a part of the input then it takes a polynomial time
to verify whether the string w is the prime power decomposition of n. Indeed,
the size of the prime power decomposition of an integer n is O(log n). For verifi-
cation one needs to multiply O(log n) integers each written in O(log n) bits and
to check primality of each factor. All these operations can be done in polynomial
time.
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Remark 3. In both problems CT and CTf we do not require that n ≥ deg f(x).
A simple preprocessing procedure can be applied to guarantee this condition:
it is sufficient to change each exponent j ∈ supp coef f by the residue modulo
n summing up similar terms. We always assume this preprocessing before run-
ning the main body of an algorithm. Note that the preprocessing requires O(m)
arithmetic operations with O(L)-bit integers.

The rest of this section contains the proof of Lemma 2.
We choose the basis of X⊥

n formed by the standard extended cuboids, i.e.
the tensor products of cuboids Q(0r, u) and vectors from the canonical basis
in Qr+1 ⊗ · · · ⊗ Q2r. Vectors in the basis are naturally indexed by two integer
sequences u, v of length r such that 1 ≤ uj ≤ pj − 1 and 0 ≤ vj ≤ p

tj−1
j − 1 for

any 1 ≤ j ≤ r.
To check the equality f(ζn) = 0 the algorithm checks that the vector a =

coef f is orthogonal to the subspace X⊥
n . It is possible to compute the inner

product of a by any standard extended cuboid in polynomial time since the
components from the complement to suppa do not affect the inner product and
any cuboid’s component can be computed in polynomial time (see Lemma 3).
But the difficulty remains as we need to check all (exponentially many) cuboids.

The idea of the algorithm is simple. Let E be an m×N matrix and a be an
m × 1 column, a = (a1, . . . , am)T . Let rj(E) be the jth row of the matrix E,
and let ck(E) be the kth column of the matrix E. The direct computation

〈a, ck(E)〉 =
∑

j

ajEj,k =
(∑

j

ajrj(E)
)

k
(15)

shows that 〈a, ck(E)〉 = 0 for all k iff∑
j

ajrj(E) = 0. (16)

The latter is equivalent to∑
j

aj〈rj(E), rk(E)〉 = 0 for all k (17)

(note that the vector
∑

j ajrj(E) lies in the subspace spanned by the rows rj(E)).
Equation (17) can be rewritten as aTG = 0, where G = (Gj,k) is the Gram

matrix for the rows of the matrix E, i.e. Gj,k = 〈rj(E), rk(E)〉. Thus the con-
ditions (17) can be verified in polynomial time provided a polynomial time sub-
routine for computing the elements of the Gram matrix is given.

To apply the above observation to the problem CTf we introduce the matrix
E whose columns are restrictions of the extended standard cuboids to supp a.
The matrix elements of the matrix E are indexed by pairs (j, (u, v)), where
j ∈ supp a and (u, v) is an indexing pair for an extended standard cuboid.

We need to show that the elements of the Gram matrix for the rows of the
matrix E can be computed efficiently. We start from an explicit expression for
the matrix elements Ej,(u,v).
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Let τ be a modular decomposition map corresponding to (10):

τ : j 	→ τj = (τj,s)
∣∣2r

s=1
, (18)

where

τj,s =

{
(j mod pts

s − j mod pts−1
s )/pts−1

s , 1 ≤ s ≤ r ,

j mod pts−1
s , r < s ≤ 2r .

(19)

Let wj be the number of non-zero τj,s for 1 ≤ s ≤ r.

Lemma 3. In the notation above Ej,(u,v) = (−1)wj if τj can be obtained from
(u, v) by replacing r − wj elements in u by zeroes. Otherwise, Ej,(u,v) = 0.

Proof. The definition (13) of a cuboid implies that all components of an extended
standard cuboid are in {−1, 0,+1}. Any non-zero component can be obtained
from the indexing pair (u, v) in three steps: (1) choose a subset S of {1, . . . , r};
(2) for each index j ∈ S replace the element uj by 0 to get the sequence u′v of
length 2r; (3) apply τ−1 to the sequence u′v. The resulting index j = τ−1(u′v)
points to the component whose value is (−1)|S|.  !

From Lemma 3 we get the formula for Gj,k = 〈rj(E), rk(E)〉:

Gj,k = (−1)wj+wknj,k , (20)

where nj,k is the number of sequences ν = (ν1, . . . , ν2r) such that

1. 1 ≤ νs ≤ ps − 1 for any 1 ≤ s ≤ r;
2. 0 ≤ νs ≤ pts−1

s − 1 for any r < s ≤ 2r;
3. if τj,s �= 0 then τj,s = νs for any 1 ≤ s ≤ r;
4. if τk,s �= 0 then τk,s = νs for any 1 ≤ s ≤ r;
5. τk,s = νs = τj,s for any r < s ≤ 2r.

These conditions imply the formula

nj,k =
r∏

s=1

nj,k,s

2r∏
s=r+1

δ(τj,s, τk,s) , (21)

where

δ(x, y) =

{
1 if x = y ,

0 otherwise ,
(22)

and

nj,k,s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ps − 1 if τj,s = τk,s = 0 ,

1 if τj,sτk,s = 0 and (τj,s)2 + (τk,s)2 �= 0 ,

1 if τj,s = τk,s �= 0 ,

0 otherwise .

(23)
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It follows from (21–23) that nj,k <
∏s

j=1(pj − 1) < n. As in Remark 2, to find
nj,k one needs to multiply O(log n) integers each written in O(log n) bits.

There are O(m2 logn) arithmetic operations with O(L)-bit integers in the
main body of the algorithm. Since by Remarks 2 and 3 the verification and the
preprocessing are also polynomial we obtain an overall polynomial algorithm for
CTf .

3 Polynomial Time Algorithm for CT

To use the algorithm described in the previous section for the problem CT one
needs to factorize n. It is believed that factorization is a hard computational
task. Instead of the direct use of the algorithm, we modify it maintaining the
same idea of the Gram matrix computation. To simplify the computation we
change basis in the cuboids space.

Consider a partial prime decomposition

n = pt1
1 . . . pt�

� q , (24)

where pi ≤ m and all prime divisors of q are greater than m. (Recall that m is
the number of monomials in the input polynomial f(x).)

Let z be an integer sequence of length r such that zs = 0 for 1 ≤ s ≤ � and
zs �= τj,s, 0 ≤ zs ≤ ps − 1 for all � < s ≤ r, j ∈ supp coef f . Such sequence exists
since we assume that prime divisors of q are greater than m and the cardinality
of a set {τj,s}

∣∣m
j=1

does not exceed m for any s.
Let us change the standard basis Q0 by the basis Qz for the sequence z.

Lemma 4. The Gram matrix for the rows of the matrix E in the basis Qz is
block diagonal: if j − k �= 0 (mod q) then Gj,k = 0.

Lemma 4 is proved by repeating the arguments from Sect. 2. Namely, substi-
tuting the sequence z for 0r one can repeat all calculations from Sect. 2 in the
basis Qz . An analogue of (23) implies that nj,k,s = 0 if j − k �≡ 0 (mod pts

s ),
s > �. Now Lemma 4 follows from the Chinese remainder theorem.

Let S be a set {k : exists j such that aj �= 0 and j ≡ k (mod q)}. By con-
struction, |S| ≤ m. By Lemma 4 the problem CT is decomposed into |S| prob-
lems of type CTf .

The algorithm for the problem CT works in five stages:

1. Find the set p1, . . . , p� of all primes in the range {1, . . . ,m}.
2. Compute the partial decomposition (24).
3. Form the list of polynomials fk(x), k ∈ S. Each polynomial fk consists of

all monomials aix
i of the input polynomial f(x) such that i ≡ k (mod q).

4. For each k ∈ S solve the instance of the problem CTf with the input consist-
ing of the polynomial fk(x), the integer n′ = n/q and the string representing
the prime power decomposition n′ = pt1

1 . . . pt�

� .
5. If all answers at the previous stage are ‘yes’ then the algorithm outputs ‘yes’.

Otherwise it outputs ‘no’.
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The algorithm described above runs in polynomial time. The first stage can
be done by Eratosthenes’ sieve in time polynomial in m. The straightforward
realization of the second stage requires O(m log n) arithmetic operations with
O(log n)-bit integers. The length of the list formed at the third stage is at most m.
So, the third stage requires O(m) arithmetic operations with O(L)-bit integers.
At the fourth stage the algorithm from the Sect. 2 is applied. Note that the
string verification procedure of this algorithm can be omitted.

Thus the proof of Theorem 1 is complete.

4 Concluding Remarks

Recently we proved that GCT is computationally hard unless NP ⊆ BPP. This
result will appear in the full version of the paper.

Our technique seems to be inapplicable to the more general problem of testing
the inequality |f(ζn)| > ε (a rational ε is a part of the input; ε is represented
by a pair of integers written in binary). The inequality testing is related to the
problem of obtaining nontrivial lower bounds for a nonzero value of a lacunary
polynomial at a root of unity. Recall that any implication ‘if f(ζn) �= 0 then
|f(ζn)| > exp(−| poly(m,L, logn)|)’ immediately leads to the straightforward
polynomial algorithm for CT as well as for the inequality testing.

Another generalization of the problem involved is to represent a polynomial by
an algebraic circuit (a straight-line program). This succinct representation makes
the problem harder. The complexity status of this problem is also unknown.

Acknowledgments. We are grateful to Igor Shparlinski and Dima Grigoriev
for the interest to the paper. We are thankful to the unknown referees for their
detailed reviews which help to improve the text.
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Abstract. This is an extended abstract of my talk on generic complex-
ity of undecidable problems. It turns out that some classical undecidable
problems are, in fact, strongly undecidable, i.e., they are still undecidable
on every strongly generic (i.e., ”very very large”) subset of inputs. For
instance, the classical Halting Problem for Turing machines is strongly
undecidable. Moreover, we prove an analog of the Rice’s theorem for
strongly undecidable problems, which provides plenty of examples of
strongly undecidable problems. On the other hand, it has been shown
recently that many of these classical undecidable problems are easily de-
cidable on some generic (i.e., ”very large”) subsets of inputs. Altogether,
these results lead to an interesting hierarchy of undecidable problems
with respect to the size of subsets of inputs where the problems are still
undecidable - a frequency analysis of hardness.

We construct here some natural super-undecidable problems, i.e.,
problem which are undecidable on every generic (not only strongly
generic) subset of inputs. In particular, there are finitely presented semi-
groups with super-undecidable word problem. To construct strongly- and
super-undecidable problems we introduce a method of generic amplifica-
tion (an analog of the amplification in complexity theory).

1 Introduction

1.1 Motivation

In this paper we discuss algorithmic complexity of undecidable problems. We
do not study them as in abstract recursion theory, say, trying to place them
in the upper echelons of the hierarchy of Turing degrees. To the contrary, we
approach them from a very practical computational view-point - we study their
algorithmic behavior on ”most” or ”typical” inputs. This approach originated in
asymptotic and computational algebra, and is called now ”generic complexity”
(see, [2,3,9,10]). Generic complexity allows one to study naturally the computa-
tional behavior of undecidable problems - impossible task in the worst-case or
the average case complexities. In fact, the generic complexity provides a unifying
framework for studying, and comparing, computational complexity of decidable
and undecidable problems. It turned out, for example, that the famous halting
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problem for Turing machines (with a one-way infinite tape) is easily decidable
on most inputs - on the so-called ”generic” sets of inputs [8]. This result gener-
ated a thorough study of several other undecidable problems, in particular, in
groups [4] and semigroups [16]. Again, it has been shown that they are easy on
some generic sets of inputs. Here we discuss undecidable problems that are still
undecidable on arbitrary generic sets. Moreover, we give a method on how to
amplify the undecidability of a given problem onto generic sets.

1.2 Generic Complexity

Let D be an algorithmic problem with a set of inputs I. We assume that the
set I comes equipped with a ”size” function s : I → N. Typically, the size s(w)
of an input w ∈ I is the length of a description of w (that is fixed in advance).
We also assume that there are only finitely many elements in I that have a
given size n ∈ N, so the spheres In = {w ∈ I | s(w) = n}, as well as the balls
Bn = {w ∈W | s(w) ≤ n}, are finite. To distinguish ”large” and ”small” subsets
of I one needs either a measure μ on I, or, better still, an ensemble μ = {μn}n∈N

of measures on the spheres In (or on the balls Bn). For a detailed discussion on
generic complexity we refer to [7].

Fix an ensemble μ = {μn} of spherical measures for I, if not said otherwise
we assume that μn is the uniform distribution on the finite set In. Stratification
I = ∪n∈NIn together with the ensemble μ allow one to measure size of subsets
of I via asymptotic densities. For a subset R ⊆ I the asymptotic (spherical)
density ρμ(R) is defined by the following limit (if it exists)

ρμ(R) = lim
n→∞μn(R ∩ In)

Here
μn(R ∪ In) =

|R ∩ In|
|In|

is the n-th frequency, or probability, to hit an element from R in the sphere In.
For uniform distributions we denote ρμ(R) simply by ρ(R).

A subset R ⊆ I is called generic if ρ(R) = 1 and negligible if ρ(R) = 0.
Moreover, we say that R has asymptotic density ρ(R) with a super-polynomial
convergence rate if

|ρ(R)− μn(R ∩ In)| = o(n−k)

for any k ∈ N. Now, a subset R ⊆ I is called strongly generic if ρ(R) = 1
with the superpolynomial convergence rate. The set R is strongly negligible if
its complement I − R is strongly generic. Similarly, one can define exponential
convergence rates and exponential generic (negligible) sets.

Now one can define generic complexity of algorithms. Let A be a partial
decision algorithm for a problem D. Denote by TA the time function of the
algorithm A, so for an input w ∈ I the value TA(w) is the number of steps
required for A to halt on w (if it is finite), or ∞ if A does not halt on w.
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A function f : N → R is a generic time upper bound for A if the set

HA,f = {w ∈ I | TA(w) ≤ f(s(w))}

is generic in I with respect to the spherical asymptotic density ρ. Similarly, f(n)
is a strongly generic (exponentially generic, etc.) time upper bound for A if the
set HA,f is strongly generic (has exponential convergence rate, etc.).

A partial decision algorithm A for D generically solves the problem D if
the halting set HA of A is generic in I with respect to the spherical asymptotic
density ρ. If such a partial decision algorithmA exists we say thatD is generically
decidable.

As we have mentioned above the standard halting problem for Turing ma-
chines (with a one-way infinite tape), being undecidable, is nevertheless generi-
cally decidable. To study undecidable problems which are undecidable on ”large”
sets of inputs we need the following terminology.

We say that an undecidable problem D is strongly undecidable if it is unde-
cidable on every strongly generic subset of inputs from I. More precisely, in this
case for every strongly generic (with respect to ρ) subset I ′ ⊆ I the restriction
of D onto I ′ is still undecidable. Among strongly undecidable problems there are
even ”more undecidable” ones - we say D is super-undecidable if its undecidable
on any generic subset of I. Furthermore, D is termed absolutely undecidable if it
is undecidable on every non-negligible subset from I.

1.3 Overview of Results

In Section 2 we introduce the required terminology for the Halting Problem (HP)
for Turing machines and indicate why HP is generically decidable when the tape
is one-ended (for a complete proof see [8]).

Following [18], we show that the Halting Problem is, in fact, strongly unde-
cidable. Then we prove a “strongly undecidable” analog of the Rice’s theorem,
which provides plenty of examples of strongly undecidable problems. We would
like to emphasize here that these results do not depend on a particular model of
Turing machines.

In Section 3 we discuss generic amplification - a method that allows one to
construct a strongly (super-strongly) undecidable problem from a given unde-
cidable problem, thus amplifying the hardness of the initial problem. The main
tool here is termed “cloning”. A cloning from a set I into a set J is a function
C : I → P (J) from I into the set of all subsets P (J) of J such that

∀x, y ∈ I (x �= y → C(x) ∩ C(y) = ∅) .

A clone C(S) of a subset S ⊆ I is just union of clones of members of S, so
C(S) = ∪x∈SC(x). Similarly, if D = (L, I) is a decision problem in I then a de-
cision problem C(D) = (C(L), J) in J is called the clone of D in J relative to C.

A cloning C from I to J is effective if there is an algorithm that for every
x ∈ I computes an effective enumeration of all elements in the clone C(x),
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and it is non-negligible, (non-strongly-negligible), if for every x ∈ I the clone
C(x) is non-negligible (non-strongly-negligible) in J . Theorem 4 is the main
technical result of the paper. It states that if C is an effective non-strongly-
negligible (non-negligible) cloning from I to J and D = (L, I) is undecidable
problem in I then it is clone C(D) = (C(L), J) is strongly undecidable (super-
undecidable) problem in J . In the same section we construct several effective
non-negligible clonings thus providing plenty of examples of super-undecidable
problems. Although these clonings are easy to construct, they often change the
nature of the original decision problem, for example, the cloning of the word
problem in a given group, or the decidability problem of a first-order theory,
becomes a membership problem for some obscure language in a binary alphabet.
In the rest of the paper we construct some particular clonings that preserve the
nature of the original problem.

There are several famous finitely presented semigroups with undecidable word
problem (see, for example, [12,17,20,13], or a survey [1]). However, it has been
shown in [16] that their Word Problems have polynomial time generic case com-
plexity. In Section 4 we show how one can amplify the generic complexity of
finitely presented semigroups with undecidable word problem. Namely, for a
finitely presented semigroup S we construct a semigroup Sx whose word prob-
lem is an effective non-negligible clone of the word problem of S. It follows
that if the word problem in S is undecidable then the word problem in Sx is
super-undecidable.

Tseitin semigroup T has a presentation with 5 generators, 7 relations and
undecidable word problem [20]. In this case the semigroup Tx with super-
undecidable word problem has 6 generators and 13 relators whose total length
is equal to 49.

We would like to mention here that we do not know any examples of finitely
presented groups with super-undecidable word problem.

2 Halting Problem for Turing Machines

The halting problem for Turing machines is one of the basic undecidable prob-
lems.

Recall that a Turing machine has a finite number n of states Qn =
{q1, . . . , qn}, with q1 designated as the start state, plus a separate designated
state q0, which is not in Qn. We assume that all Turing machines with n states
have the same set of states Qn. A Turing machine program is a function

p : Qn × {0, 1} → (Qn ∪ {q0})× {0, 1} × {L,R}.

The transition p(q, i) = 〈r, j, R〉, for example, directs that when the head is in
state q reading symbol i, it should change to state r, write symbol j, and move
one cell to the right. The computation of a program proceeds by iteratively
performing the instructions of such transition rules, halting when the final state
q0 is reached.
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If the machine operates on a one-way infinite tape and attempts to move left
from the left-most cell, then the head falls off the tape and all computation
ceases. In this case we say that the machine ”breaks”.

If a particular model of Turing machines is fixed (one-way infinite tape, two
tapes, etc.) then we do not distinguish between Turing machines and Turing
machine programs.

Definition 1. The Empty Tape Halting Problem is the set H of programs p of
Turing machines that halt or break when computing on a tape initially filled with
0s.

Let P be a set of all Turing machine programs. By size of a program p ∈ P we
understand the number of states s(p) in p. This gives a size function s : P → N.
The sphere Pn consists of all programs with n states.

The most natural method for measuring the size of a set of Turing machine
programs is that of asymptotic density ρ relative to the ensemble {μn} of the
uniform distributions on spheres Pn. Thus, for a set B ⊆ P of Turing machine
programs

ρ(B) = lim
n→∞

|B ∩ Pn|
|Pn|

,

if this limit exists. We define generic and strongly generic sets of programs rel-
ative to the asymptotic density ρ.

The following result was obtained in [8], it holds for the model of Turing
machines with a one-way infinite tape. The proof is sensitive to this particular
computational model. The question whether the result holds for arbitrary model
of Turing machines is open.

Theorem 1 (Generic decidability of the Empty Tape Halting
Problem). There is a set B of Turing machine programs such that

1) B is generic.
2) B is polynomial time decidable.
3) The restriction H∩B of the empty tape halting problem H on B is polynomial

time decidable.

However, Rybalov recently showed in [18] that the classical Halting Problem
is strongly undecidable, i.e., it is not decidable on any strongly generic subset.
This result does not depend on a model of Turing machines. The proof is quite
instructive and we sketch it here.

Let δ be an effective coding of all Turing machines by strings in the alphabet
{1}, so given δ(M) one can recover M ; conversely, given a machine M one can
effectively compute δ(M). We also assume that for a string x ∈ {1}∗ one can
effectively determine if x = δ(M) for some Turing machine M or not.

Definition 2. (The classical Halting Problem) The Halting Problem is the set
HP of programs p of Turing machines that halt on the input δ(p).
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By definition HP is decidable on a strongly generic subset S ⊆ P if there is a
partial computable function f : {1}∗ → {0, 1} such that S ⊆ Dom(f) and if
f(δ(M)) = 1 then M halts on δ(M), and if f(δ(M)) = 0 then M does not halt
on δ(M), and also f(x) is undefined if x �= δ(M) for any Turing machine M .
In this case, we say that f is a strongly generic decision function for HP . In
particular, it follows that the domain Dom(f) is a strongly generic recursively
enumerable set on which HP is decidable.

Let M be a Turing machine with k non-final states {q1, . . . , qk}. For a given
n ≥ k one can construct a new machine M∗ on n states with the following
program:

2k fixed instructions of M

⎧⎨⎩
(q1, 0) → . . . ,
. . .
(qk, 1) → . . . ,

arbitrary 2(n− k) instructions

⎧⎨⎩
(qk+1, 0) → . . . ,
. . .
(qn, 1) → . . . .

It is easy to see that M∗ computes the same function as M does, because the
new states are not attainable from the states of M , so M∗ never executes any
of the new instructions. Denote by C(M) the set of all Turing machines M∗

described above.
The following lemma is straightforward.

Lemma 1. For any Turing machine M the set C(M) is not strongly negligible.

Theorem 2. [18] The Halting Problem HP is strongly undecidable, i.e., it is
undecidable on every strongly generic subset of programs.

Proof. We follow here the classical proof of undecidability of the Halting Prob-
lem. Suppose, to the contrary, that there exists a strongly generic set S on which
HP is decidable. Then there exists a partial decision function f : {1}∗ → {0, 1}
for HP such that S ⊆ Dom(f). We may assume that S = Dom(f). It is easy to
see then that the following function is partial computable

h(x) =
{

undefined , if f(x) = 1, or f(x) is undefined,
1, if f(x) = 0.

Denote by Mh a Turing machine that computes h. Notice, that the set P −S
is strongly negligible, so by Lemma 1 the set C(Mh) is not a subset of P − S,
hence, there is a machine M∗

h from S ∩ C(Mh) computing h. Now let’s look
at the result of computation of M∗

h on the input δ(M∗
h). Observe, first, that

f(δ(M∗
h)) is defined since M∗

h ∈ S. If M∗
h halts on δ(M∗

h) then f(δ(M∗
h)) = 1,

hence h(δ(M∗
h)) is undefined, so M∗

h does not halt on δ(M∗
h) - contradiction. If

M∗
h does not halt on δ(M∗

h) then f(δ(M∗
h)) = 0, so h(δ(M∗

h)) = 1, which implies
that M∗

h halts on δ(M∗
h) - contradiction. This shows that such S does not exists,

as claimed.
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It turned out that the classical Rice’s theorem admits the following improvement.
Let C be a class of all partial computable functions of the type f : {1}∗ →

{0, 1}. A subclass F of C is proper if F �= ∅ and F �= C.

Theorem 3. [Myasnikov, Rybalov] Let F be a proper class of partial computable
functions. Then the problem whether or not a given Turing machine computes a
function from F is strongly undecidable.

3 Generic Amplification of Undecidable Problems

In this section we discuss generic amplification - a method that allows one to
construct a strongly (super-strongly) undecidable problem from a given unde-
cidable problem, thus amplifying the hardness of the problem to an arbitrary
strongly generic (generic) set. The main tool of the generic amplification method
is ”cloning”, we described it below.

Let I and J be sets. A cloning of I in J is a function C : I → P (J) from I
into the set of all subsets P (J) of J such that

∀x, y ∈ I (x �= y → C(x) ∩ C(y) = ∅) .

For a subset S ⊆ I its clone C(S) is defined as union of clones of elements
in S:

C(S) = ∪x∈SC(x).

Similarly, if D = (L, I) is a decision problem in I then a decision problem C(D) =
(C(L), J) in J is called the clone of D in J relative to C. Since C(x)∩C(y) = ∅
for x �= y one has the following fundamental property of cloned problems:

x ∈ L⇐⇒ C(x) ⊆ C(L) ⇐⇒ C(x) ∩ C(L) �= ∅ (1)

We say that a cloning C from I to J is effective if there is an algorithm E(x, i)
that for every x ∈ I computes an effective enumeration of the clone C(x), i.e.,

C(x) = {E(x, 0), E(x, 1), . . . , }. (2)

Among effective clonings one can consider polynomial, super-polynomial, expo-
nential time clonings, or, more generally, effective clonings with a given time
bound.

One can view an effective cloning C from I to J as a total computable function
E : I × N → J such that C(x) ∩ C(y) = ∅ for x �= y where the clone C(x) of x
is defined by (2).

To amplify a worst-case hardness of a given problem D in I into a generically
hard distributional problem C(D) in J one needs to have a notion of genericity
of subsets of J . To this end, we assume that the set J is equipped with a fixed
size function s : J → N and generic subsets of J are defined with respect to the
asymptotic density.

A cloning C : I → P (J) is called non-negligible, (non-strongly-negligible, etc.),
if for every x ∈ I the clone C(x) is non-negligible (non-strongly-negligible, etc.)
in J .
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Example 1. Let I = J = {0, 1}∗. Define a function E : I × N → I by

E(a1 . . . an−1an, i) = a10 . . . an−10an1bin(i),

where ak ∈ {0, 1} and bin(i) is the binary expression of the natural number i.
We claim that E gives rise to a polynomial time computable non-negligible

cloning from I to I. Indeed, in this case, if x = a1 . . . an−1an, then, according
to 2),

C(x) = {a10 . . . an−10an1bin(i) | i ∈ N}
so C(x) ∩ C(y) = ∅ for x �= y, hence C is cloning from I to I. Clearly, C
is effective, moreover, E is polynomial time computable. Observe, that for the
spherical uniform distribution μn on the sphere In = {w ∈ I | |w| = n} one has
for n ≥ 2|x|+ 1:

μn(C(x) ∩ In) =
2n−2|x|−1

2n
=

1
22|x|+1

> 0.

Therefore,

ρ(C(x)) =
1

22|x| > 0

and C(x) is non-negligible for any x.

The following result allows one to construct strongly and super-undecidable
problems.

Theorem 4. [Myasnikov, Rybalov] Let I, J be sets and C : I → P (J) an ef-
fective cloning. Then for every undecidable problem D with inputs from I the
following holds:

1) if C is non-negligible then C(D) is generically decidable in J then D is super-
undecidable (undecidable on every generic subset of I).

2) if C is non-strongly-negligible then the clone C(D) is strongly undecidable
(undecidable on every strongly generic subset).

Corollary 1. Let I = {0, 1}∗ and C the cloning from Example 1. Then for
every undecidable problem D = (L, I) its clone problem C(D) = (C(L), I) is
super-undecidable.

4 Finitely Presented Semigroups with Super-Undecidable
Word Problems

There are several famous finitely presented semigroups with undecidable word
problem (see, for example, [12,20,13], or a survey [1]). However, it has been shown
in [16] that their Word Problems have polynomial time generic case complexity.
The main reason for this phenomenon is that to interpret a hard problem (say,
the Halting Problem for Turing machines) one brings into the finite presentation
of a semigroup a lot of ”garbage” (extra generators and relators that serve to
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simulate the Turing machine computation) that makes the Word problem easy on
most inputs. In this section we show how one can amplify the generic complexity
of finitely presented semigroups with undecidable word problem. Namely, we
describe a general method to construct finitely presented semigroups with super-
undecidable word problems. More precisely, for a finitely presented semigroup S
we construct a semigroup Sx whose word problem is an effective non-negligible
clone of the word problem of S.

Let
S = 〈a1, . . . , an|r1 = s1, . . . , rk = sk〉

be a finitely presented semigroup with a set of generators A = {a1, . . . , an} and
a set of defining relations R = {r1 = s1, . . . , rk = sk}.

Denote by WPS the word problem in the semigroup S, so

WPS = {(u, v) ∈ A∗ ×A∗ | u = v in S}.

For a letter x �∈ A put

Sx = 〈A, x|R, x = xa1, . . . , x = xan, x = xx〉.

Then Sx is also a finitely presented semigroup. Denote Ax = A ∪ {x}.

Lemma 2. For any w1, w2 ∈ A∗ and v1, v2 ∈ A∗
x the following hold:

1) w1 = w2 in S ⇔ w1 = w2 in Sx,
2) w1 = w2 in S ⇔ w1xv1 = w2xv2 in Sx.

Corollary 2. The canonical embedding A → Ax extends to an embedding of
semigroups S → Sx.

Lemma 3. Let I = A∗ ×A∗ and J = A∗
x ×A∗

x. For (u, v) ∈ I put

C(u, v) = {(uxp, vxq) | p, q ∈ A∗
x}.

Then C is an effective non-negligible cloning.

Lemma 4. For any finitely presented semigroup S the word problem in Sx is
the C-clone of the word problem in S:

WPSx = C(WPS).

Proof. It follows immediately from Lemma 2.

Theorem 5 (Myasnikov, Rybalov). If the word problem in S is undecidable
then the word problem in Sx is super-undecidable.

Proof. By Lemma 3 C is an effective non-negligible cloning. By Lemma 4
WPSx = C(WPS). Now by Theorem 4 if the word problem WPS is undecidable
then the word problem WPSx = C(WPS) is super-undecidable, as claimed.
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5 Tseitin Semigroup

In 1956, Tseitin constructed a semigroup T presented by 5 generators and 7
relations with undecidable word problem.

Theorem 6 (Tseitin). Let T be a semigroup presented by the generators
a, b, c, d, e and defining relations

ac = ca, ad = da, bc = cb, bd = db, ce = eca, de = edb, cca = ccae.

Then the Word Problem in T is undecidable.

However, it was shown in [16] that the Word Problem in T is generically easy.

Proposition 1. The Word Problem in Tseitin T semigroup is decidable in lin-
ear time on a generic set of inputs.

By Theorem 5 the semigroup Tx from Section 4 has super-undecidable . Observe,
that Tx has 6 generators and 13 relators whose total length is equal to 49.

Problem 1. Is there a finitely presented group with generically undecidable word
problem?
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Koucký, Michal 92
Krokhin, Andrei 182
Kuivinen, Fredrik 182

Kulikov, Alexander S. 194
Kulkarni, Raghav 115
Kutzkov, Konstantin 194

Levin, Mark Sh. 205
Lifshits, Yury 82, 216, 227
Limaye, Nutan 115
Lisitsa, Alexei 237
Lohrey, Markus 249
Lysenko, Alexei 259

Mahajan, Meena 115, 269
Manjarrez Sanchez, Jorge R. 281
Martinez, Jose 281
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