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Summary. Nets and (t, s)-sequences are standard sources of quasirandom points
for quasi-Monte Carlo methods. Connections between nets and error-correcting codes
have been noticed for a long time, and these links have become even more pronounced
with the development of the duality theory for digital nets. In this paper, we further
explore these fascinating connections. We present also a recent construction of digital
(t, s)-sequences using global function fields and new general constructions of nets
and (t, s)-sequences.

1 Introduction and Basic Definitions

Low-discrepancy point sets and sequences are the workhorses of quasi-Monte
Carlo methods. Currently, the most powerful methods for the construction of
low-discrepancy point sets and sequences are based on the theory of (t,m, s)-
nets and (t, s)-sequences. This paper describes further contributions to this
theory.

The concept of a (t,m, s)-net is a special case of the notion of a uniform
point set introduced in [Nie03]. As usual in the area, we follow the convention
that a point set is a “multiset” in the sense of combinatorics, i.e., a set in
which multiplicities of elements are allowed and taken into account. We write
Is = [0, 1]s for the s-dimensional unit cube.

Definition 1. Let (X,B, µ) be an arbitrary probability space and let E be a
nonempty subset of B. A point set P = {x1, . . . ,xN} of N ≥ 1 elements of X
is called (E , µ)-uniform if

1
N

N∑
n=1

χE(xn) = µ(E) for all E ∈ E ,

where χE denotes the characteristic function of E.
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Definition 2. Let s ≥ 1, b ≥ 2, and 0 ≤ t ≤ m be integers and let λs be the
probability measure on Is induced by the s-dimensional Lebesgue measure.
Let J (s)

b,m,t be the collection of all subintervals J of Is of the form

J =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < b
di for 1 ≤ i ≤ s and with λs(J) = bt−m.

Then a (J (s)
b,m,t, λs)-uniform point set consisting of bm points in Is is called a

(t,m, s)-net in base b.

It is important to note that the smaller the value of t for given b, m, and
s, the larger the family J (s)

b,m,t of intervals in Definition 2, and so the stronger
the uniform point set property in Definition 1. The number t is often called
the quality parameter of a (t,m, s)-net in base b.

For the definition of a (t, s)-sequence, we need a few preliminaries. Given a
real number x ∈ [0, 1], let

x =
∞∑

j=1

yj b
−j with all yj ∈ Zb := {0, 1, . . . , b− 1}

be a b-adic expansion of x, where the case yj = b− 1 for all but finitely many
j is allowed. For any integer m ≥ 1, we define the truncation

[x]b,m =
m∑

j=1

yj b
−j .

It should be emphasized that this truncation operates on the expansion of x
and not on x itself, since it may yield different results depending on which
b-adic expansion of x is used. If x = (x(1), . . . , x(s)) ∈ Is and the x(i), 1 ≤ i ≤ s,
are given by prescribed b-adic expansions, then we define

[x]b,m = ([x(1)]b,m, . . . , [x(s)]b,m).

Definition 3. Let s ≥ 1, b ≥ 2, and t ≥ 0 be integers. A sequence x0,x1, . . .
of points in Is is a (t, s)-sequence in base b if for all integers k ≥ 0 and m > t
the points [xn]b,m with kbm ≤ n < (k + 1)bm form a (t,m, s)-net in base b.
Here the coordinates of all points xn, n = 0, 1, . . ., are given by prescribed
b-adic expansions.

As before, we are interested in small values of t in the construction of
(t, s)-sequences. We call t the quality parameter of a (t, s)-sequence in base b.
For general background on (t,m, s)-nets and (t, s)-sequences, we refer to the
monograph [Nie92] and the recent survey article [Nie05].

The rest of the paper is organized as follows. In Section 2, we recall the dig-
ital method for the construction of (t,m, s)-nets and (t, s)-sequences. Section 3
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presents a review of the duality theory for digital nets and its connections with
the theory of error-correcting codes. Recent constructions of digital nets using
duality theory and other links with coding theory are described in Section 4.
The recent construction in [MN] of digital (t, s)-sequences using differentials
in global function fields is presented in Section 5, together with upper bounds
on the well-known quantity dq(s). Sections 6 and 7 contain new ideas on
how to generalize the digital method for the construction of (t,m, s)-nets and
(t, s)-sequences, respectively.

2 Digital Nets and Digital (t, s)-Sequences

Most of the known constructions of (t,m, s)-nets and (t, s)-sequences are based
on the so-called digital method introduced in [Nie87, Section 6]. In order to
describe the digital method for the construction of (t,m, s)-nets in base b, we
need the following ingredients. First of all, let integers m ≥ 1, s ≥ 1, and b ≥ 2
be given. Then we choose the following:

(i) a commutative ring R with identity and card(R) = b;
(ii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and 1 ≤ j ≤ m;
(iii) m×m matrices C(1), . . . , C(s) over R.

Now let r ∈ Rm be an m-tuple of elements of R and define

p
(i)
j (r) = η(i)j (c(i)

j · r) ∈ Zb for 1 ≤ i ≤ s, 1 ≤ j ≤ m,

where c(i)
j is the jth row of the matrix C(i) and · denotes the inner product.

Next we put

p(i)(r) =
m∑

j=1

p
(i)
j (r) b−j ∈ [0, 1] for 1 ≤ i ≤ s

and
P (r) = (p(1)(r), . . . , p(s)(r)) ∈ Is.

By letting r range over all bm possibilities in Rm, we arrive at a point set P
consisting of bm points in Is.

Definition 4. If the point set P constructed above forms a (t,m, s)-net in base
b, then it is called a digital (t,m, s)-net in base b. If we want to emphasize that
the construction uses the ring R, then we speak also of a digital (t,m, s)-net
over R.

The quality parameter of a digital (t,m, s)-net over R depends only on the
so-called generating matrices C(1), . . . , C(s) over R. A convenient algebraic
condition on the generating matrices to guarantee a certain value of t is known
(see [Nie92, Theorem 4.26]), and a generalization of this condition will be given
in Theorem 7 below.
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For (t, s)-sequences the order of the terms is important, and so in the
constructions care has to be taken that the points are obtained in a suitable
order. We present the digital method for the construction of (t, s)-sequences
in base b in the form given in [NX96b, Section 2] which is somewhat more
general than the original version in [Nie87, Section 6]. Let integers s ≥ 1 and
b ≥ 2 be given. Then we choose the following:

(i) a commutative ring R with identity and card(R) = b;
(ii) bijections ψr : Zb → R for r = 0, 1, . . ., with ψr(0) = 0 for all sufficiently

large r;
(iii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and j ≥ 1;
(iv) ∞ × ∞ matrices C(1), . . . , C(s) over R.

For n = 0, 1, . . . let

n =
∞∑

r=0

ar(n) br (1)

be the digit expansion of n in base b, where ar(n) ∈ Zb for all r ≥ 0 and
ar(n) = 0 for all sufficiently large r. We put

n = (ψr(ar(n)))∞r=0 ∈ R∞. (2)

Next we define

y
(i)
n,j = η(i)j (c(i)

j · n) ∈ Zb for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1,

where c(i)
j is the jth row of the matrix C(i). Note that the inner product c(i)

j ·n
makes sense since n has only finitely many nonzero coordinates. Then we put

x(i)
n =

∞∑
j=1

y
(i)
n,j b

−j for n ≥ 0 and 1 ≤ i ≤ s.

Finally, we define the sequence S consisting of the points

xn = (x(1)
n , . . . , x

(s)
n ) ∈ Is for n = 0, 1, . . . .

Definition 5. If the sequence S constructed above forms a (t, s)-sequence
in base b, then it is called a digital (t, s)-sequence in base b. If we want to
emphasize that the construction uses the ring R, then we speak also of a digital
(t, s)-sequence over R.

As in the case of digital (t,m, s)-nets, the quality parameter of a digital (t, s)-
sequence over R depends only on the generating matrices C(1), . . . , C(s) over
R. A convenient algebraic condition on the generating matrices to guarantee
a certain value of t is known (see [NX96b, Lemma 7 and Remark 4]), and a
generalization of this condition will be given in Theorem 8 below.

The standard low-discrepancy sequences used nowadays in quasi-Monte
Carlo methods, such as the sequences of Sobol’ [Sob67], Faure [Fau82], and
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Niederreiter [Nie88] as well as the sequences obtained by Niederreiter and
Xing using algebraic-geometry methods (see [NX01, Chapter 8] for an expo-
sition of the latter constructions), are all digital (t, s)-sequences. There are
interesting generalizations and variants of (digital) (t, s)-sequences which we
will not discuss here; see for instance Dick [Dic06b], [Dic06a] and Larcher and
Niederreiter [LN95].

3 Codes and Duality Theory

It is known since the first paper [Nie87] on the general theory of (t,m, s)-
nets and (t, s)-sequences that there are interesting links between digital nets
and error-correcting codes. Recently, these links have become more pro-
nounced with the development of a duality theory for digital nets which
puts digital nets squarely into a framework of a distinctly coding-theoretic
nature.

We recall the rudiments of coding theory. We refer to MacWilliams and
Sloane [MWS77] for a full treatment of coding theory and to Ling and
Xing [LX04] for an introduction to the area. Let Fq be the finite field with
q elements, where q is an arbitrary prime power. For an integer n ≥ 1, we
consider the n-dimensional vector space Fn

q over Fq. The number of nonzero
coordinates of a ∈ Fn

q is the Hamming weight w(a). Then d(a,b) = w(a − b)
for a,b ∈ Fn

q defines the Hamming metric. The vector space Fn
q , endowed

with the Hamming metric, is the Hamming space Fn
q . A linear code over Fq

is a nonzero Fq-linear subspace C of the Hamming space Fn
q . The minimum

distance δ(C) of C is defined by

δ(C) = min {d(a,b) : a,b ∈ C, a �= b}.

It is easy to see that we also have

δ(C) = min
a∈C\{0}

w(a).

One of the principal aims of coding theory is to construct linear codes C over
Fq with a large minimum distance δ(C) for given n and k = dim(C), or with
a large relative minimum distance δ(C)

n for a given information rate k
n .

We now describe the duality theory for digital nets developed by Nieder-
reiter and Pirsic [NP01]. We mention in passing that a completely different
application of coding theory to multidimensional numerical integration occurs
in the recent paper of Kuperberg [Kup06].

We first have to generalize the definition of the Hamming space. Let m ≥ 1
and s ≥ 1 be integers; they will have the same meaning as m and s in a digital
(t,m, s)-net over Fq. The following weight function Vm on Fms

q was introduced
by Niederreiter [Nie86] and later used in an equivalent form in coding theory
by Rosenbloom and Tsfasman [RT97]. We start by defining a weight function
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v on Fm
q . We put v(a) = 0 if a = 0 ∈ Fm

q , and for a = (a1, . . . , am) ∈ Fm
q with

a �= 0 we set
v(a) = max {j : aj �= 0}.

Then we extend this definition to Fms
q by writing a vector A ∈ Fms

q as the
concatenation of s vectors of length m, that is,

A = (a(1), . . . ,a(s)) ∈ Fms
q with a(i) ∈ Fm

q for 1 ≤ i ≤ s,
and putting

Vm(A) =
s∑

i=1

v(a(i)).

Note that dm(A,B) = Vm(A − B) for A,B ∈ Fms
q defines a metric on Fms

q

which for m = 1 reduces to the Hamming metric on Fs
q.

Definition 6. The minimum distance δm(N ) of a nonzero Fq-linear subspace
N of Fms

q is given by

δm(N ) = min
A∈N\{0}

Vm(A).

Now let the m × m matrices C(1), . . . , C(s) over Fq be the generating
matrices of a digital net P . Set up an m × ms matrix M as follows: for
1 ≤ j ≤ m, the jth row of M is obtained by concatenating the jth columns of
C(1), . . . , C(s). Let M ⊆ Fms

q be the row space of M and let M⊥ be its dual
space as in coding theory, that is,

M⊥ = {A ∈ Fms
q : A · M = 0 for all M ∈ M}.

Then we have the following results from [NP01].

Theorem 1. Let m ≥ 1 and s ≥ 2 be integers. Then, with the notation above,
the point set P is a digital (t,m, s)-net over Fq if and only if

δm(M⊥) ≥ m− t+ 1.

Corollary 1. Let m ≥ 1 and s ≥ 2 be integers. Then from any Fq-linear
subspace N of Fms

q with dim(N ) ≥ ms − m we can construct a digital
(t,m, s)-net over Fq with

t = m+ 1 − δm(N ).

Note that N in Corollary 1 plays the role of M⊥ in Theorem 1. Since M
as the row space of an m×ms matrix has dimension at most m, we must have

dim(N ) = dim(M⊥) = ms− dim(M) ≥ ms−m,
which explains the condition on dim(N ) in Corollary 1.

It is of interest to note that the line of research started by Rosenbloom
and Tsfasman [RT97] in coding theory was continued in that area. Some
of the theorems obtained in this direction can be translated into results on
digital nets. Typical coding-theoretic papers on this topic are Dougherty and
Skriganov [DS02] and Siap and Ozen [SO04].
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4 Digital Nets Inspired by Codes

Corollary 1 is a powerful tool for the construction of digital nets. It was
already used in the paper [NP01] that introduced duality theory, where it
was applied to obtain an analog of the classical (u, u + v) construction of
codes. An improved version of the (u, u+ v) construction for digital nets was
given by Bierbrauer, Edel, and Schmid [BES02]. A considerable generalization
of this construction was obtained by Niederreiter and Özbudak [NO04] who
designed an analog of the matrix-product construction of codes. This yields
the following result.

Theorem 2. Let h be an integer with 2 ≤ h ≤ q. If for k = 1, . . . , h there
exists a digital (tk,mk, sk)-net over Fq and if s1 ≤ · · · ≤ sh, then there exists
a digital (t,

∑h
k=1mk,

∑h
k=1 sk)-net over Fq with

t = 1 +
h∑

k=1

mk − min
1≤k≤h

(h− k + 1)(mk − tk + 1).

The (u, u + v) construction of digital nets is the special case h = 2 of
Theorem 2. The matrix-product construction of codes and digital nets affords
a way of combining given linear codes, respectively digital nets, to produce
a new linear code, respectively digital net. Another principle of this type
is obtained by the Kronecker-product construction which is well known in
coding theory. Kronecker-product constructions of digital nets were proposed
by Bierbrauer, Edel, and Schmid [BES02] and Niederreiter and Pirsic [NP02].

Further links between coding theory and digital nets can be established
by considering special families of linear codes and searching for their analogs
in the realm of digital nets. For instance, an important special type of linear
code is a cyclic code, i.e., a linear code that is invariant under cyclic shifts. An
analog for digital nets was introduced by Niederreiter [Nie04] who adopted the
viewpoint that cyclic codes can be defined by prescribing roots of polynomials
(compare with [LN94, Section 8.2]). For integers m ≥ 1 and s ≥ 2, consider
the vector space

P = {f ∈ Fqm [x] : deg(f) < s}
of polynomials over the extension field Fqm of Fq. Note that dim(P) = ms as
a vector space over Fq. We fix an element α ∈ Fqm and define

Pα = {f ∈ P : f(α) = 0}.
It is clear that Pα is an Fq-linear subspace of P with dim(Pα) = ms−m as a
vector space over Fq. For each i = 1, . . . , s, we choose an ordered basis Bi of
Fqm over Fq. Next we set up a map τ : P → Fms

q in the following way. Take
f ∈ P and write this polynomial explicitly as

f(x) =
s∑

i=1

γi x
i−1
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with γi ∈ Fqm for 1 ≤ i ≤ s. For each i = 1, . . . , s, let ci(f) ∈ Fm
q be the

coordinate vector of γi with respect to the ordered basis Bi. Then we define

τ : f ∈ P �→ (c1(f), . . . , cs(f)) ∈ Fms
q .

It is obvious that τ is an Fq-linear isomorphism from P onto Fms
q . Finally, let

Nα be the image of the subspace Pα under τ . Since τ is an isomorphism, we
have

dim(Nα) = dim(Pα) = ms−m
as a vector space over Fq. Thus, we can apply Corollary 1 to the Fq-linear
subspace Nα of Fms

q . The resulting digital net is called a cyclic digital net
over Fq relative to the bases B1, . . . , Bs. A theorem guaranteeing the exis-
tence of good cyclic digital nets was recently shown by Pirsic, Dick, and
Pillichshammer [PDP06].

A powerful family of linear codes is that of algebraic-geometry codes. A
general framework for constructing digital nets by means of algebraic curves
over finite fields, or equivalently by global function fields, was developed by
Niederreiter and Özbudak [NO02]. The basic construction in [NO02] uses
a global function field F with full constant field Fq (see Section 5 for the
definition of these terms) and a divisor G of F . An Fq-linear subspace N
of Fms

q is defined as the image of the Riemann-Roch space L(G) under an
Fq-linear map from L(G) to Fms

q derived from the local expansions of elements
of L(G) at distinct places Q1, . . . , Qs of F . Under suitable conditions, we can
invoke Corollary 1 to arrive at a digital (t,m, s)-net over Fq for some t.

We end this section by describing a recent construction of digital nets due
to Pirsic, Dick, and Pillichshammer [PDP06]. For an integer m ≥ 1 consider,
as earlier in this section, the extension field Fqm of Fq. Then, for an integer
s ≥ 2, we take the s-dimensional vector space Q := Fs

qm over Fqm which has
dimension ms as a vector space over Fq. Now fix α ∈ Q with α �= 0 and put

Qα = {γ ∈ Q : α · γ = 0}.
Clearly, Qα is an Fqm -linear subspace of Q of dimension s− 1, and so Qα has
dimension ms−m as a vector space over Fq. Since Q and Fms

q are isomorphic
as vector spaces over Fq, we get in this way an Fq-linear subspace Nα of Fms

q

of dimension ms−m as a vector space over Fq. Thus, we can apply Corollary 1
to obtain a digital (t,m, s)-net over Fq for some t. A digital net produced by
this construction is called a hyperplane net. An analysis of how hyperplane
nets, cyclic digital nets, and other types of digital nets are related among each
other was carried out by Pirsic [Pir05].

5 Constructing Digital (t, s)-Sequences
from Differentials

There are altogether four known constructions of digital (t, s)-sequences based
on general global function fields, all of them due to Niederreiter and Xing.
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A systematic account of these constructions is given in Niederreiter and
Xing [NX96a]. In this section, we describe the first new construction of digital
(t, s)-sequences using global function fields since 1996. It is also the first
construction using differentials in global function fields. This construction is
due to Mayor and Niederreiter [MN].

Let F be a global function field with constant field Fq, that is, F is a finite
extension of the rational function field Fq(x). We assume that Fq is the full
constant field of F , which means that Fq is algebraically closed in F . We refer
to the book of Stichtenoth [Sti93] for general background and terminology on
global function fields.

Let PF be the set of places of F and ΩF the set of differentials of F , that is,

ΩF = {f dz : f ∈ F, z is a separating element for F}.
For any ω ∈ ΩF and separating element z, we can write ω = f dz with a
unique f ∈ F . If ω ∈ Ω∗

F is a nonzero differential, then for every Q ∈ PF let
ω = fQ dtQ, where tQ ∈ F is a local parameter at Q (and hence a separating
element). Then we can associate ω with the divisor

(ω) :=
∑

Q∈PF

νQ(fQ)Q,

where νQ is the normalized valuation of F corresponding to the place Q. For
any divisor G of F , we define

Ω(G) = {ω ∈ Ω∗
F : (ω) ≥ G} ∪ {0}.

Note that Ω(G) is a finite-dimensional vector space over Fq.
Now let the dimension s ≥ 1 in the construction of a digital (t, s)-sequence

be given. We assume that F contains at least one rational place Q∞; recall
that a rational place is a place of degree 1. Choose a divisor D of F with
deg(D) = −2 and Q∞ not in the support of D (such a divisor always exists).
Furthermore, let Q1, . . . , Qs be s distinct places of F with Qi �= Q∞ for
1 ≤ i ≤ s, and put ei = deg(Qi) for 1 ≤ i ≤ s.

The Riemann-Roch theorem can be used to show that dim(Ω(D)) = g + 1,
dim(Ω(D+Q∞)) = g, and dim(Ω(D+(2g+1)Q∞)) = 0, where g is the genus
of F . Hence there exist integers 0 = n0 < n1 < · · · < ng ≤ 2g such that

dim(Ω(D + nuQ∞)) = dim(Ω(D + (nu + 1)Q∞)) + 1 for 0 ≤ u ≤ g.
Now we choose

ωu ∈ Ω(D + nuQ∞) \Ω(D + (nu + 1)Q∞) for 0 ≤ u ≤ g.
It is easily seen that {ω0, ω1, . . . , ωg} is a basis of Ω(D). For i = 1, . . . , s,
consider the chain

Ω(D) ⊂ Ω(D −Qi) ⊂ Ω(D − 2Qi) ⊂ . . .
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of vector spaces over Fq. By starting from the basis {ω0, ω1, . . . , ωg} of Ω(D)
and successively adding basis vectors at each step of the chain, we obtain for
each integer n ≥ 1 a basis

{ω0, ω1, . . . , ωg, ω
(i)
1 , ω

(i)
2 , . . . , ω

(i)
nei

}
of Ω(D − nQi). Now let z ∈ F be a local parameter at Q∞. For r = 0, 1, . . .
we put

zr =

{
zr dz if r �∈ {n0, n1, . . . , ng},
ωu if r = nu for some u ∈ {0, 1, . . . , g}.

Note that νQ∞((zr)) = r for all r ≥ 0. For 1 ≤ i ≤ s and j ≥ 1, we have
ω

(i)
j ∈ Ω(D−kQi) for some k ≥ 1 and also Q∞ not in the support of D−kQi,

hence νQ∞((ω(i)
j )) ≥ 0. Thus, we have local expansions at Q∞ of the form

ω
(i)
j =

∞∑
r=0

a
(i)
r,j zr for 1 ≤ i ≤ s and j ≥ 1,

where all coefficients a(i)r,j ∈ Fq. For 1 ≤ i ≤ s and j ≥ 1, we define the sequence

of elements c(i)r,j ∈ Fq, r = 0, 1, . . ., by considering the sequence of elements a(i)r,j ,
r = 0, 1, . . ., and then deleting the terms with r = nu for some u ∈ {0, 1, . . . , g}.
Then we put

c(i)
j = (c(i)0,j , c

(i)
1,j , . . .) ∈ F∞

q for 1 ≤ i ≤ s and j ≥ 1.

Finally, for each i = 1, . . . , s, we let C(i) be the ∞ × ∞ matrix over Fq whose
jth row is c(i)

j for j = 1, 2, . . . . We write SΩ(Q∞, Q1, . . . , Qs;D) for a sequence
obtained from the generating matrices C(1), . . . , C(s) by the digital method
(compare with Section 2). The following result was shown by Mayor and
Niederreiter [MN].

Theorem 3. Let F be a global function field with full constant field Fq and
with at least one rational place Q∞. Let D be a divisor of F with deg(D) = −2
and Q∞ not in the support of D. Furthermore, let Q1, . . . , Qs be distinct places
of F with Qi �= Q∞ for 1 ≤ i ≤ s. Then SΩ(Q∞, Q1, . . . , Qs;D) is a digital
(t, s)-sequence over Fq with

t = g +
s∑

i=1

(ei − 1),

where g is the genus of F and ei = deg(Qi) for 1 ≤ i ≤ s.
We report now on further results from the paper [MN]. We use the standard

notation dq(s) for the least value of t such that there exists a digital (t, s)-
sequence over Fq.



Nets, (t, s)-Sequences, and Codes 93

Example 1. Let q = 5 and s = 32. Let F be the global function field given by
F = F5(x, y1, y2) with

y21 = x(x2 − 2), y52 − y2 =
x4 − 1
y1 − 1

.

Then F has 32 rational places Q∞, Q1, . . . , Q31 and genus g = 11. Fur-
thermore, F has at least one place Q32 of degree 2 lying over the place
x2 +2x− 2 of F5(x). We can choose D = −2Q1. Now we consider the sequence
SΩ(Q∞, Q1, . . . , Q32;D) and apply Theorem 3. We have ei = 1 for 1 ≤ i ≤ 31
and e32 = 2, therefore t = 12. Hence we obtain d5(32) ≤ 12, which is an im-
provement on the previously best bound d5(32) ≤ 13 given in [Nie05, Table 1].
This improved value has already been entered into the database at

http://mint.sbg.ac.at

for parameters of (t,m, s)-nets and (t, s)-sequences (see [SS06] for a description
of this database).

Theorem 4. For every odd prime p and every dimension s ≥ 1, we have

dp(s) ≤ p+ 3
p− 1

s+
p− 5
p− 1

.

Theorem 5. For every odd prime p and every dimension s ≥ 1, we have

dp2(s) ≤ 2
p− 1

s+ 1.

Theorem 6. For every prime power q and every dimension s ≥ 1, we have

dq3(s) ≤ q(q + 2)
2(q2 − 1)

s.

Theorems 4, 5, and 6 are derived from Theorem 3 by using towers of global
function fields that were constructed in the last few years (see [MN] for the
details).

Very recently, Niederreiter and Özbudak [NO07] used differentials in global
function fields and the duality theory for digital nets to give a new construction
of (T, s)-sequences in the sense of [LN95]. In various cases, this construction
yields low-discrepancy sequences with better discrepancy bounds than previous
constructions.

6 A General Construction of Nets

We present a method of constructing (t,m, s)-nets which generalizes the digital
method in Section 2. The idea is to move away from linear algebra and to
allow for nonlinearity in the construction. This is motivated by the well-known
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fact in coding theory that there are good parameters of nonlinear codes that
cannot be achieved by linear codes (see [LX04, Section 5.6]). One would hope
for a similar phenomenon for nets, namely that there are parameters of nets
attainable by “nonlinear” constructions, but not by the digital method in
Section 2.

As in Section 2, let integers m ≥ 1, s ≥ 1, and b ≥ 2 be given. We recall
that Zb = {0, 1, . . . , b− 1} denotes the set of digits in base b. Then we choose
the following:

(i) a set R with card(R) = b;
(ii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and 1 ≤ j ≤ m;

(iii) maps φ(i)
j : Rm → R for 1 ≤ i ≤ s and 1 ≤ j ≤ m.

Now let r ∈ Rm and define

p(i)(r) =
m∑

j=1

η
(i)
j (φ(i)

j (r)) b−j ∈ [0, 1] for 1 ≤ i ≤ s

and
P (r) = (p(1)(r), . . . , p(s)(r)) ∈ Is.

By letting r range over all bm possibilities in Rm, we arrive at a point set P
consisting of bm points in Is.

Theorem 7. The point set P constructed above forms a (t,m, s)-net in base
b if and only if for any nonnegative integers d1, . . . , ds with

∑s
i=1 di = m− t

and any f (i)
j ∈ R, 1 ≤ j ≤ di, 1 ≤ i ≤ s, the system of m− t equations

φ
(i)
j (z1, . . . , zm) = f (i)

j for 1 ≤ j ≤ di, 1 ≤ i ≤ s, (3)

in the unknowns z1, . . . , zm over R has exactly bt solutions.

Proof. Assume that (3) satisfies the given condition. According to Definition 2,
we have to show that every interval J of the form

J =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < b
di for 1 ≤ i ≤ s and with

∑s
i=1 di = m− t

contains exactly bt points of the point set P . For 1 ≤ i ≤ s, let

ai =
di∑

j=1

ai,j b
di−j

be the digit expansion in base b, where all ai,j ∈ Zb. For the points P (r) of P ,
we have P (r) ∈ J if and only if
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p(i)(r) ∈ [aib
−di , (ai + 1)b−di) for 1 ≤ i ≤ s.

This is equivalent to

η
(i)
j (φ(i)

j (r)) = ai,j for 1 ≤ j ≤ di, 1 ≤ i ≤ s,
which is, in turn, equivalent to

φ
(i)
j (r) = (η(i)j )−1(ai,j) for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

where (η(i)j )−1 denotes the inverse map of η(i)j . By hypothesis, the last system
of equations has exactly bt solutions r ∈ Rm, and so P forms a (t,m, s)-net in
base b. This shows the sufficiency part of the theorem. The converse is proved
by similar arguments. �

Remark 1. The digital method for the construction of nets described in Sec-
tion 2 is the special case of the present construction where R is a commutative
ring with identity and the maps φ(i)

j are linear forms in m variables over R.
It can be argued that the construction principle in the present section is also
a digital method since the coordinates of the points of the net are obtained
digit by digit. We propose to refer to the nets produced by the method in this
section also as digital (t,m, s)-nets in base b or as digital (t,m, s)-nets over R.
The nets in Section 2 could then be called linear digital (t,m, s)-nets in base
b or linear digital (t,m, s)-nets over R, to emphasize that they are obtained
by the use of linear forms φ(i)

j .

The construction principle described above is too general to be useful in
practice, so it is meaningful to consider situations in which we can introduce
some structure. If we choose for R a finite field Fq, then each map φ(i)

j : Fm
q →

Fq can be represented by a polynomial over Fq in m variables and of degree
less than q in each variable (see [LN97, Section 7.5]). We assume that the maps
φ

(i)
j , 1 ≤ i ≤ s, 1 ≤ j ≤ m, are so represented. Then, by using the concept of

an orthogonal system of polynomials in Fq (see [LN97, Definition 7.35]), we
obtain the following consequence of Theorem 7.

Corollary 2. Let the point set P be obtained by the construction in this
section with R = Fq. Then P is a (t,m, s)-net in base q if and only if for
any nonnegative integers d1, . . . , ds with

∑s
i=1 di = m− t the polynomials φ(i)

j ,
1 ≤ j ≤ di, 1 ≤ i ≤ s, form an orthogonal system in Fq.

There are several useful criteria for orthogonal systems of polynomials in Fq.
One such criterion, due to Niederreiter [Nie71] and given in Proposition 1 below,
is in terms of permutation polynomials over Fq. We recall that a polynomial
over Fq (in one or several variables) is called a permutation polynomial over
Fq if it attains each value of Fq equally often (see [LN97, Chapter 7] for the
theory of permutation polynomials).
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Proposition 1. Let 1 ≤ h ≤ m be integers and let g1, . . . , gh ∈ Fq[z1, . . . , zm].
Then g1, . . . , gh form an orthogonal system of polynomials in Fq if and only
if for all b1, . . . , bh ∈ Fq not all 0, the polynomial b1g1 + · · · + bhgh is a
permutation polynomial over Fq.

It follows, in particular, that every polynomial occurring in an orthogonal
system of polynomials in Fq is a permutation polynomial over Fq. In view of
Corollary 2, this shows that a necessary condition for the polynomials φ(i)

j ,
1 ≤ i ≤ s, 1 ≤ j ≤ m, to yield a (t,m, s)-net in base q is that each polynomial
φ

(i)
j with 1 ≤ i ≤ s and 1 ≤ j ≤ m− t is a permutation polynomial over Fq.

Example 2. Let q be an arbitrary prime power and let m ≥ 1 be an integer. We
start from a permutation polynomial g over Fqm in one variable, for instance,
g(z) = γzk with γ ∈ F∗

qm and an integer k ≥ 1 satisfying gcd(k, qm − 1) = 1
(see [LN97, Section 7.2]). Let B = {β1, . . . , βm} be an ordered basis of Fqm

over Fq, and for each α ∈ Fqm let (c1(α), . . . , cm(α)) ∈ Fm
q be the coordinate

vector of α with respect to B. Then there exist polynomials g1, . . . , gm ∈
Fq[z1, . . . , zm] such that

g(α) =
m∑

j=1

gj(c1(α), . . . , cm(α))βj for all α ∈ Fqm .

Since g is a permutation polynomial over Fqm , it follows that g1, . . . , gm form
an orthogonal system of polynomials in Fq. Now we put R = Fq and s = 2 in
the construction in this section, and we define the polynomials

φ
(1)
j = gj for 1 ≤ j ≤ m,
φ

(2)
j = gm−j+1 for 1 ≤ j ≤ m.

Then it is clear that for any integers d1 ≥ 0 and d2 ≥ 0 with d1 + d2 = m,
the polynomials φ(1)

1 , . . . , φ
(1)
d1
, φ

(2)
1 , . . . , φ

(2)
d2

form an orthogonal system in Fq.
Thus, by Corollary 2, we obtain a digital (0,m, 2)-net over Fq (in the sense of
Remark 1). This net can be viewed as a scrambled version of the well-known
two-dimensional Hammersley net in base q.

7 A General Construction of (t, s)-Sequences

In this section, we present an analog of the construction principle in Section 6
for (t, s)-sequences. Let integers s ≥ 1 and b ≥ 2 be given. Then we choose the
following:
(i) a set R with card(R) = b and a distinguished element o ∈ R;
(ii) bijections ψr : Zb → R for r = 0, 1, . . ., with ψr(0) = o for all sufficiently
large r;
(iii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and j ≥ 1;
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(iv) maps φ(i)
j : F → R for 1 ≤ i ≤ s and j ≥ 1, where F is the set of all

sequences of elements of R with only finitely many terms �= o.
For n = 0, 1, . . ., we define n by (1) and (2) and observe that n ∈ F . Next we
define

y
(i)
n,j = η(i)j (φ(i)

j (n)) ∈ Zb for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1.

Then we put

x(i)
n =

∞∑
j=1

y
(i)
n,j b

−j for n ≥ 0 and 1 ≤ i ≤ s.

Finally, we define the sequence S consisting of the points

xn = (x(1)
n , . . . , x

(s)
n ) ∈ Is for n = 0, 1, . . . .

Theorem 8. The sequence S constructed above is a (t, s)-sequence in base b
if and only if for any integer m > t, any nonnegative integers d1, . . . , ds with∑s

i=1 di = m− t, and any f (i)
j ∈ R, 1 ≤ j ≤ di, 1 ≤ i ≤ s, the system of m− t

equations

φ
(i)
j (z0, z1, . . .) = f (i)

j for 1 ≤ j ≤ di, 1 ≤ i ≤ s, (4)

has the following property: if the values of the variables zm, zm+1, . . . are fixed
in R in such a way that zr = o for all sufficiently large r, then the resulting
system in the unknowns z0, z1, . . . , zm−1 over R has exactly bt solutions.

Proof. In order to prove the sufficiency, we proceed by Definition 3. For given
integers k ≥ 0 and m > t, we consider the point set Pk,mconsisting of the
points [xn]b,m with kbm ≤ n < (k + 1)bm. We have to show that Pk,m is a
(t,m, s)-net in base b. Let J be an interval of the form

J =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < b
di for 1 ≤ i ≤ s and with

∑s
i=1 di = m− t.

Then we have to prove that J contains exactly bt points of Pk,m. For 1 ≤ i ≤ s,
let

ai =
di∑

j=1

ai,j b
di−j

be the digit expansion in base b, where all ai,j ∈ Zb. For the points of Pk,m

we have [xn]b,m ∈ J if and only if

[x(i)
n ]b,m ∈ [aib

−di , (ai + 1)b−di) for 1 ≤ i ≤ s.
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This is equivalent to

y
(i)
n,j = ai,j for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

which is, in turn, equivalent to

φ
(i)
j (n) = (η(i)j )−1(ai,j) for 1 ≤ j ≤ di, 1 ≤ i ≤ s. (5)

Recall that the range for n is kbm ≤ n < (k + 1)bm. In this range, the digits
ar(n) of n in (1) are prescribed for r ≥ m, whereas the ar(n) with 0 ≤ r ≤ m−1
can vary freely over Zb. This means that the coordinates ψr(ar(n)) of n in (2)
are fixed for r ≥ m and they can vary freely over R for 0 ≤ r ≤ m− 1. Thus,
the system (5) of m − t equations is of the form (4), and so by the given
property, (5) has exactly bt solutions. This means that J contains exactly bt

points of Pk,m. Hence the proof of sufficiency is complete. The converse is
shown by similar arguments. �

Remark 2. The digital method for the construction of (t, s)-sequences described
in Section 2 is the special case of the present construction where R is a
commutative ring with identity, the distinguished element o is the zero element
of R, and the maps φ(i)

j are linear forms over R. In analogy with Remark 1,
we propose to refer to the (t, s)-sequences produced by the method in this
section also as digital (t, s)-sequences in base b or as digital (t, s)-sequences
over R. The (t, s)-sequences in Section 2 could then be called linear digital
(t, s)-sequences in base b or linear digital (t, s)-sequences over R.

The construction principle described above is again too general to be useful
in practice, so one will have to focus on interesting special cases such as R
being a finite field (see Section 6).

In Sections 6 and 7, we have not really gone much beyond the description of
new construction principles for (t,m, s)-nets and (t, s)-sequences, respectively.
The challenge for future research on this topic is to find choices for the maps
φ

(i)
j in these constructions that are not all linear forms and that yield good (and

maybe even record) values of the quality parameter t. A source for optimism in
this quest is the analogy with coding theory (compare with the first paragraph
of Section 6).
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