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Summary. We study approximation of functions belonging to Sobolev spaces W r
p (Q)

by randomized algorithms based on function values. Here 1 ≤ p ≤ ∞, Q = [0, 1]d,
and r, d ∈ N. The error is measured in Lq(Q), with 1 ≤ q < ∞, and we assume
r/d > 1/p − 1/q, guaranteeing that W r

p (Q) is embedded into Lq(Q). The optimal
order of convergence for the case that W r

p (Q) is embedded even into C(Q) is well-

known. It is n−r/d+max(1/p−1/q,0) (n the number of function evaluations). This rate
is already reached by deterministic algorithms, and randomization gives no speedup.

In this paper we are concerned with the case that W r
p (Q) is not embedded into

C(Q) (but, of course, still into Lq(Q)). For this situation approximation based on
function values was not studied before. We prove that for randomized algorithms
the above rate also holds, while for deterministic algorithms no rate whatsoever is
possible. Thus, in the case of low smoothness, Monte Carlo approximation algorithms
reach a considerable speedup over deterministic ones (up to n−1+ε for any ε > 0).

We also give some applications to integration of functions and to approximation
of solutions of elliptic PDE.

1 Introduction

Denote N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }, let d ∈ N, and let Q = [0, 1]d

be the d-dimensional unit cube. For 1 ≤ p ≤ ∞, let Lp(Q) be the space of
real-valued p-integrable functions, endowed with the norm

‖f‖Lp(Q) =
(∫

Q

|f(x)|pdx
)1/p

if p <∞, and
‖f‖L∞(Q) = ess supx∈Q|f(x)|.
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For r ∈ N the Sobolev space W r
p (Q) consists of all functions f ∈ Lp(Q) such

that for all α = (α1, . . . , αd) ∈ Nd
0 with |α| :=

∑d
j=1 αj ≤ r, the generalized

partial derivative Dαf belongs to Lp(Q). The norm on W r
p (Q) is defined as

‖f‖W r
p (Q) =

⎛⎝∑
|α|≤r

‖Dαf‖p
Lp(Q)

⎞⎠1/p

if p <∞, and
‖f‖W r∞(Q) = max

|α|≤r
‖Dαf‖L∞(Q).

Let C(Q) denote the space of continuous functions on Q, equipped with the
supremum norm. Let 1 ≤ q < ∞. By the Sobolev embedding theorem (see
[Ada75], [Tri78]), for

r/d > 1/p− 1/q (1)

W r
p (Q) ⊂ Lq(Q), and there is a constant c > 0 such that for each f ∈W r

p (Q)

‖f‖Lq(Q) ≤ c‖f‖W r
p (Q). (2)

Consequently, the embedding operator Jpq : W r
p (Q) → Lq(Q) defined by

Jpqf = f is bounded. We shall study optimal approximation of Jpq by ran-
domized algorithms which use n function values.

For n ∈ N we consider the class Aran
n of randomized algorithms which are

of the form A = (Aω)ω∈Ω , where

Aω(f) = ϕω(f(x1,ω), . . . , f(xn,ω)) , (3)

(Ω,Σ,P) is a probability space, for each ω ∈ Ω, xi,ω is an element of Q and ϕω

is a mapping from Rn to Lq(Q), with the property that for each f ∈W r
p (Q),

the mapping

ω ∈ Ω → Aω(f) = ϕω(f(x1,ω), . . . , f(xn,ω))

is a random variable with values in Lq(Q) (that is, Σ-to-Borel measurable).
Since elements of W r

p (Q) are equivalence classes of functions, relation (3)
needs more explanation when W r

p (Q) is not embedded into C(Q), and hence
function values are, in general, not defined for such classes. We impose a
further condition on the elements of Aran

n , let us call it consistency of the
algorithm. We assume that whenever f1 and f2 are representatives of the same
class f ∈W r

p (Q), then

ϕω(f1(x1,ω), . . . , f1(xn,ω)) = ϕω(f2(x1,ω), . . . , f2(xn,ω)) P − a.s.

This means that Aω(f1) and Aω(f2) coincide almost surely, and in this sense
we can take (3) as the definition of the random variable Aω(f). A sufficient
condition for consistency is obviously the following: For all i, the mapping
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ω → xi,ω is Lebesgue measurable and for each subset Q0 ⊂ Q of Lebesgue
measure zero we have

P{ω ∈ Ω : xi,ω ∈ Q0} = 0,

or equivalently, the distribution of the xi,ω is absolutely continuous with respect
to the Lebesgue measure.

The class Aran
n contains the subclass of randomized linear algorithms – they

are of the form above with linear ϕω, thus

Aω(f) =
n∑

i=1

f(xi,ω)ψi,ω, (4)

for certain ψi,ω ∈ Lq(Q).
Given any 1 ≤ s <∞, the error of an algorithm A ∈ Aran

n is defined as

e(s)(Jpq, A,BW r
p (Q)) = sup

f∈BW r
p (Q)

(E ‖f −Aω(f)‖s
Lq(Q))

1/s, (5)

where E is the expectation with respect to P and BW r
p (Q) denotes the unit

ball of W r
p (Q). The randomized n-th minimal error is defined as

erann (Jpq, BW r
p (Q)) = inf

A∈An

e(1)(Jpq, A,BW r
p (Q)) .

Hence, no randomized algorithm that uses at most n function values can
provide a smaller error than erann (Jpq, BW r

p (Q)). We have chosen the s = 1 case
for the minimal error, which is convenient for the sequel. Statements for other
s can be read from the proofs below.

In terms of information-based complexity theory [TWW88], [Nov88], we
consider randomized nonadaptive algorithms using standard information. In
terms of [NT06], the erann can be viewed as randomized sampling numbers.

In the case that W r
p (Q) is embedded into C(Q), the order of erann is well-

known:

erann (Jpq, BW r
p (Q)) � n−r/d+max(1/p−1/q,0), (6)

where we used the following notation: for sequences (an) and (bn) of nonnegative
reals we write an � bn if there are constants c1, c2 > 0 and an n0 ∈ N such
that c1an ≤ bn ≤ c2an for all n ≥ n0. Furthermore note that we often use the
same symbols c, c1, . . . for possibly different constants, also in sequences of
relations.

The upper bound of (6) can be reached by deterministic methods, for
example by piecewise polynomial approximation (see, e.g. [Cia78]). The lower
bounds were shown in [Was89] (p = q = ∞), [Nov88] (1 ≤ p ≤ ∞, q = ∞),
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and [Mat91] (1 ≤ p, q ≤ ∞). Recall from [Ada75] that W r
p (Q) is embedded

into C(Q) iff
p = 1 and r/d ≥ 1

or
1 < p <∞ and r/d > 1/p

or
p = ∞.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7)

In this paper we are concerned with the case that (7) does not hold. Together
with (1), this means we assume

1 ≤ p, q <∞
and

1 − 1/q < r/d < 1 if p = 1,
1/p− 1/q < r/d ≤ 1/p if 1 < p <∞.

⎫⎪⎪⎬⎪⎪⎭ (8)

Note that we demanded from the beginning that W r
p (Q) is embedded into

Lq(Q) (otherwise the operator Jpq would not even be defined). So here we
study the case that W r

p (Q) is embedded into Lq(Q) but not into C(Q). In
this case approximation based on function values was not studied before. In
the deterministic case there is a certain reason for this: function values are
not defined any longer! However, this can easily be overcome. Namely, let us
consider approximation on BW r

p (Q) ∩ C(Q), a dense subset of BW r
p (Q). Now

function values are defined, and the question arises which rate can be reached
on the basis of Sobolev smoothness. It turns out that in the deterministic
setting no rate whatsoever is possible on BW r

p (Q) ∩C(Q). We discuss this issue
in section 4.

However, also the analysis of the randomized setting was restricted to
the case (7) of embedding into C(Q). In section 2 we present a randomized
algorithm which reaches the rate (6) also in the case (8) of non-embedding
into C(Q). Hence, in contrast to the situation of embedding (7), randomized
algorithms turn out to be superior to deterministic ones. We comment on this
in more detail in section 4.

Some applications to randomized integration of functions from W r
p (Q) and

to approximation of solution operators of elliptic partial differential equations
are given in Section 3.

2 Randomized Approximation

The following is the main result of this paper. We state it for 1 ≤ p ≤ ∞,
1 ≤ q <∞, since the proof works for all these cases, and thus shows that the
method proposed also partly recovers the upper bound from (6) (having in
mind though that the new part is the case in which (8) holds).
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Theorem 1. Let r, d ∈ N, 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and assume r/d >
1/p− 1/q. Then

erann (Jpq, BW r
p (Q)) � n−r/d+max(1/p−1/q,0). (9)

We proceed as follows. Under the assumptions of Theorem 1, we develop a
general scheme for randomized approximation of functions. Its convergence is
then analysed in Proposition 1. Based on this, the proof of Theorem 1 is given
at the end of this section.

Let (Ω,Σ,P) be a probability space, and for each ω ∈ Ω let Pω be any
operator from C(Q) to Lq(Q) of the form

Pωf =
κ∑

j=1

f(xj,ω)ψj,ω (f ∈ C(Q))

with xj,ω ∈ Q and ψj,ω ∈ Lq(Q). We assume that the mappings

ω → xj,ω, ω → ψj,ω

are random variables, the distributions of the xj being absolutely continuous
with respect to the Lebesgue measure, that

(E |f(xj,ω)|q)1/q ≤ c‖f‖W r
p (Q) (f ∈W r

p (Q)), (10)

ess supω∈Ω‖ψj,ω‖Lq(Q) ≤ c (11)

for j = 1, . . . , κ, and that for all g ∈ Pr−1(Q), the space of polynomials on Q
of degree not exceeding r − 1,

Pωg = g P − a.s. (12)

Families with such properties are easily constructed. For example, fix
0 < δ < 1 and let

P (1)f =
κ∑

j=1

f(zj)ψj (13)

be for d = 1 the Lagrange interpolation operator of appropriate degree and
for d > 1 its tensor product, with (zj)κ

j=1 the uniform grid on [0, 1 − δ]d, and
(ψj)κ

j=1 the respective Lagrange polynomials, considered as functions on Rd.
Put Ω1 = [0, δ]d, Σ1 the σ-algebra of Lebesgue measurable sets and P1 the
normalized on [0, δ]d Lebesgue measure. For ω1 ∈ Ω1 = [0, δ]d and f ∈ C(Q)
put

xj,ω1 = zj + ω1, (14)
ψj,ω1(x) = ψj(x− ω1) (x ∈ Q), (15)

and (
P (1)

ω1
f
)

(x) =
κ∑

j=1

f(zj + ω1)ψj(x− ω1). (16)
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Then we have for f ∈W r
p (Q)

(E |f(xj,ω1)|q)1/q =

(
δ−d

∫
[0,δ]d

|f(zj + y)|qdy
)1/q

≤ δ−d/q‖f‖Lq(Q) ≤ cδ−d/q‖f‖W r
p (Q),

which shows that (10) is satisfied. It is readily checked that conditions (11)
and (12) hold, as well.

Let l ∈ N0 and let

Q =
2dl⋃
i=1

Qi

be the partition of Q into 2dl cubes of sidelength 2−l and of disjoint interior.
Let xi denote the point in Qi with minimal coordinates. Define the operators
Ei and Ri on Lq(Q) by setting for f ∈ Lq(Q) and x ∈ Q

(Eif)(x) = f(xi + 2−lx)

and

(Rif)(x) = χQi
(x)f(2l(x− xi)) =

{
f(2l(x− xi)) if x ∈ Qi

0 otherwise.

For ω ∈ Ω set

Pl,ωf =
2dl∑
i=1

RiPωEif =
2dl∑
i=1

κ∑
j=1

f(xi + 2−lxj,ω)Riψj,ω (17)

(observe that we use the same random variables xj,ω for all i). It easily follows
from the assumptions on (Pω)ω∈Ω that (Pl,ω)ω∈Ω is an algorithm from Aran

m ,
where m = κ2dl. In fact it is a linear algorithm.

Proposition 1. Let r, d ∈ N, 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and assume r/d >
1/p−1/q. Let (Pω)ω∈Ω be as above satisfying (10), (11), (12), and let (Pl,ω)ω∈Ω

for l ∈ N0 be given by (17). Then there is a constant c > 0 such that for all
l ∈ N0 and f ∈W r

p (Q)

(E ‖f − Pl,ωf‖q
Lq(Q))

1/q ≤ c 2−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q). (18)

Proof. It follows from (10) and (11) that for f ∈W r
p (Q)

(E ‖Pωf‖q
Lq(Q))

1/q ≤
⎛⎝E

(
κ∑

j=1

|f(xj,ω)|‖ψj,ω‖Lq(Q)

)q
⎞⎠1/q

≤ c
κ∑

j=1

(E |f(xj,ω)|q)1/q ≤ c‖f‖W r
p (Q). (19)



Randomized Approximation of Sobolev Embeddings 451

We denote

|f |r,p,Q =

⎛⎝∑
|α|=r

‖Dαf‖p
Lp(Q)

⎞⎠1/p

if p <∞ and
|f |r,∞,Q = max

|α|=r
‖Dαf‖L∞(Q).

Next we apply Theorem 3.1.1 from [Cia78]: there is a constant c > 0 such that
for all f ∈W r

p (Q)

inf
g∈Pr−1(Q)

‖f − g‖W r
p (Q) ≤ c|f |r,p,Q. (20)

It follows from (2), (12), (19), and (20) that

(E ‖f − Pωf‖q
Lq(Q))

1/q = inf
g∈Pr−1(Q)

(E ‖(f − g) − Pω(f − g)‖q
Lq(Q))

1/q

≤ c inf
g∈Pr−1(Q)

‖f − g‖W r
p (Q) ≤ c|f |r,p,Q. (21)

Clearly,
‖Rif‖Lq(Q) = 2−dl/q‖f‖Lq(Q) (f ∈ Lq(Q)). (22)

From (21) and (22) we obtain for all f ∈W r
p (Q),

(E ‖f − Pl,ωf‖q
Lq(Q))

1/q =

⎛⎝E
∥∥∥ 2dl∑

i=1

(RiEif −RiPωEif)
∥∥∥q

Lq(Q)

⎞⎠1/q

=

⎛⎝E
2dl∑
i=1

‖Ri(Eif − PωEif)‖q
Lq(Q)

⎞⎠1/q

=

⎛⎝2−dl
2dl∑
i=1

E ‖Eif − PωEif‖q
Lq(Q)

⎞⎠1/q

≤ c
⎛⎝2−dl

2dl∑
i=1

|Eif |qr,p,Q

⎞⎠1/q

≤ c 2max(1/p−1/q,0)dl

⎛⎝2−dl
2dl∑
i=1

|Eif |pr,p,Q

⎞⎠1/p
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and furthermore,⎛⎝2−dl
2dl∑
i=1

|Eif |pr,p,Q

⎞⎠1/p

=

⎛⎝2−dl
2dl∑
i=1

∑
|α|=r

∫
Q

|Dαf(xi + 2−lx)|p dx
⎞⎠1/p

= 2−rl

⎛⎝ 2dl∑
i=1

∑
|α|=r

∫
Qi

|Dαf(y)|p dy
⎞⎠1/p

= 2−rl|f |r,p,Q ≤ 2−rl‖f‖W r
p (Q).

(with the usual modifications for p = ∞). Combining the last two inequalities
gives

(E ‖f − Pl,ωf‖q
Lq(Q))

1/q ≤ c 2−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q),

which concludes the proof.

Proof of Theorem 1. Let n ∈ N and put

l =
⌈

log2 n

d

⌉
. (23)

Then (Pl,ω)ω∈Ω belongs to Aran
m with m = κ2dl ≤ cn, so Proposition 1 together

with (23) gives the upper bound in (9). The lower bound follows from standard
techniques of information-based complexity (reduction to the average case on
subsets formed by smooth bump functions) and is identical to that given in
[Mat91] (see also [Nov88], [Hei93]). We omit it here.

3 Some Applications

First we consider integration. Let Q = [0, 1]d and let I :W r
p (Q) → R be the

integration operator

If =
∫

Q

f(x)dx.

Corollary 1. Let r, d ∈ N, 1 ≤ p <∞, and put p̄ = min(p, 2). Then

erann (I,BW r
p (Q)) � n−r/d−1+1/p̄.

This result was shown by Novak for p ≥ 2 and for p < 2 and r/d ≥
1/p − 1/2, that is, for the case that W r

p (Q) is embedded into L2(Q), see
[Nov88], 2.2.9, and also the references therein for previous work. Our analysis
supplies the remaining cases and a new technique: Novak used a result of [EZ60]
on stochastic quadratures. For spaces embedded into C(Q), another proof
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was given in [Hei93] using deterministic approximation as variance reduction
(separation of the main part). What we present below might be viewed as a
stochastic analogon of the latter.

Proof of Corollary 1. Fix 0 < δ < 1 and let (Ω1, Σ1,P1) be as defined above,
following relation (13). Let n ∈ N, let l be given by (23), and let P (1)

l,ω1
for

ω1 ∈ Ω1 be as defined in (13-17), that is, for f ∈W r
p (Q) and x ∈ Q,

(
P

(1)
l,ω1
f
)

(x) =
2dl∑
i=1

κ∑
j=1

f(xi + 2−l(zj + ω1))χQi
(x)ψj(2l(x− xi) − ω1). (24)

Finally, let yk,ω2 (k = 1, . . . , n) be independent, uniformly distributed on
Q random variables over some probability space (Ω2, Σ2,P2). Define the
algorithm

(
A

(2)
ω2

)
ω2∈Ω2

to be the usual Monte Carlo method

A(2)
ω2

(g) =
1
n

n∑
k=1

g(yk,ω2). (25)

It is known that for g ∈ Lp(Q)(
E ω2 |Ig −A(2)

ω2
(g)|p̄
)1/p̄

≤ 22/p̄−1n−1+1/p̄‖g‖Lp(Q) (26)

(see [Hei93] for the case 1 ≤ p < 2). Now we put

(Ω,Σ,P) = (Ω1, Σ1,P1) × (Ω2, Σ2,P2)

and define an algorithm A = (Aω)ω∈Ω by setting for ω = (ω1, ω2) and f ∈
W r

p (Q)

Aω(f) = IP (1)
l,ω1
f +A(2)

ω2
(f − P (1)

l,ω1
f).

On the basis of (24) and (25) measurability and consistency readily follow,
and we have A ∈ Aran

m for m = κ2dl + n ≤ cn. Moreover,

If −Aω(f) = I(f − P (1)
l,ω1
f) −A(2)

ω2
(f − P (1)

l,ω1
f).

Using Fubini’s theorem, (26), and Proposition 1 for q = p, we derive(
E |If −Aω(f)|p̄)1/p̄

=
(
E ω1E ω2

∣∣∣I (f − P (1)
l,ω1
f
)

−A(2)
ω2

(
f − P (1)

l,ω1
f
)∣∣∣p̄)1/p̄

≤ cn−1+1/p̄

(
E ω1

∥∥∥f − P (1)
l,ω1
f
∥∥∥p̄

Lp(Q)

)1/p̄

≤ cn−1+1/p̄

(
E ω1

∥∥∥f − P (1)
l,ω1
f
∥∥∥p

Lp(Q)

)1/p

≤ cn−1+1/p̄−r/d‖f‖W r
p (Q),
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concluding the proof of the upper bound. The lower bound is already contained
in [Nov88], 2.2.9, Proposition 1.

Now we turn to elliptic problems. First results on the randomized infor-
mation complexity of elliptic partial differential equations were obtained in
[Hei06b]. The results above have some direct consequences for certain instances
of this problem. Let d,m ∈ N, d ≥ 2, let Q1 ⊂ Rd be a bounded C∞ domain
(see, e.g., [Tri78] for the definition), and let L be an elliptic differential operator
of order 2m on Q1, that is

Lu =
∑

|α|≤2m

aα(x)Dαu(x), (27)

with boundary operators

Bju =
∑

|α|≤mj

bjα(x)Dαu(x), (28)

where j = 1, . . . ,m, mj ≤ 2m− 1 and aα ∈ C∞(Q1) and bjα ∈ C∞(∂Q1) are
complex-valued infinitely differentiable functions. Consider the homogeneous
boundary value problem

Lu(x) = f(x) (x ∈ Q0
1) (29)

Bju(x) = 0 (x ∈ ∂Q1). (30)

We asssume that (L, {Bj}) is regularly elliptic (see [Tri78], 5.2.1/4, for the
definition), and that 0 is not in the spectrum of L, considered as an unbounded
operator in Lq(Q1) with domain of definition W 2m

q,{Bj}(Q1), where the latter
denotes the subspace ofW 2m

q (Q1) consisting of those f which satisfy (30). This
implies that L is an isomorphism from W 2m

q,{Bj}(Q1) to Lq(Q1) for 1 < q <∞,
see [Tri78], Theorem 5.5.1(b). Now we put S = L−1Jpq, considered as an
operator into W 2m

q (Q1), that is,

S :W r
p (Q1)

Jpq−→ Lq(Q1)
L−1

−→W 2m
q (Q1).

Hence S is the solution operator for the elliptic problem (29–30), where we
consider the problem of approximating the full solution u, the right-hand side
f is supposed to belong to W r

p (Q1), and the error is measured in the norm of
W 2m

q (Q1).

Corollary 2. Let r, d ∈ N, 1 ≤ p ≤ ∞, 1 < q < ∞, and r/d > 1/p − 1/q.
Then

erann (S,BW r
p (Q1)) � n−r/d+max(1/p−1/q,0). (31)

Proof. Using local charts (like, e.g., in [Hei06b]) it is easy to extend Theorem
1 to smooth domains Q1 in place of Q = [0, 1]d. It is also clear that the case
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of complex-valued functions is a direct consequence of the real case. From this
and the above-mentioned fact that L−1 is an isomorphic embedding of Lq(Q1)
into W 2m

q (Q1) the upper bound follows.
So does the lower bound if we verify that algorithms with values in

L−1(Lq(Q1)) =W 2m
q,{Bj}(Q1), a subspace of W 2m

q (Q1) containing S(W r
p (Q1)),

cannot be better (up to a constant) than algorithms with values in W 2m
q (Q1).

This, however, follows, e.g., from the fact that W 2m
q,{Bj}(Q1) is complemented

in W 2m
q (Q1), see [Tri78], Theorem 5.5.2(b), completing the proof.

A similar approach (in the sense of using isomorphism properties to reduce
approximation of solution operators to approximation of embeddings) was
presented in [DNS06a, DNS06b] for the deterministic setting, with q = 2.
There, however, more general classes of operators and, besides function values,
also arbitrary linear functionals are considered.

4 Deterministic Approximation

We already mentioned that for those r, d and p for which W r
p (Q) is embedded

into C(Q), the order of the randomized n-th minimal error coincides with
that of the deterministic one. If the embedding does not hold, that is, if (8) is
satisfied, the situation is different. First of all, since function values are not
well-defined, we replace BW r

p (Q) by the (dense) subset BW r
p (Q) ∩C(Q). In this

section we show that, although now function values are defined, the Sobolev
smoothnessW r

p (Q) does not lead to any rate at all for the deterministic setting.
That is, the deterministic n-th minimal error is bounded from below by a
positive constant.

Put F = BW r
p (Q) ∩ C(Q), let n ∈ N and let Adet

n be the class of all
deterministic algorithms for the approximation of Jpq on F , which are of the
form

A(f) = ϕ(f(x1), . . . , f(xn)), (32)

where xi ∈ Q (i = 1, . . . , n) and ϕ : Rn → Lq(Q) is an arbitrary mapping.
The error on F is defined as

e(Jpq, A, F ) = sup
f∈F

‖S(f) −A(f)‖Lq(Q).

The deterministic n-th minimal error is defined as

edet
n (Jpq, F ) = inf

A∈Adet
n

e(Jpq, A, F ).

Proposition 2. Let 1 ≤ p, q <∞ and r/d > 1/p− 1/q. Assume that either

r

d
<

1
p

(33)
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or
r

d
=

1
p

and 1 < p <∞. (34)

Then
edet

n (Jpq, BW r
p (Q) ∩ C(Q)) � 1. (35)

For the proof we need the following lemma. Let B (0, #) denote the closed ball
in Rd of radius # around 0.

Lemma 1. Assume that (33) or (34) holds. Then there is a sequence of
functions

(fm)∞m=1 ⊂W r
p (Rd) ∩ C∞(Rd)

such that for all m

fm(0) = 1, supp fm ⊆ B
(

0,
1
m

)
, (36)

and
lim

m→∞ ‖fm‖W r
p (Rd) = 0. (37)

Proof. In case of (34) this is a combination of well-known facts from function
space theory. Let ψ ∈ C∞(Rd) be such that ψ ≥ 0,

ψ(x) =

{
1 if |x| ≤ 1

2 ,

0 if |x| ≥ 1,

and ∫
Rd

ψ(x)dx = 1.

Put

g(x) =

{
ψ(x) ln ln 3

|x| if 0 < |x| < 1,
0 if |x| ≥ 1.

Then
‖g‖W r

p (Rd) <∞, supp g ⊆ B(0, 1), lim
x→0

g(x) = +∞, (38)

see [Ada75], Example 5.26. Furthermore, setting

hm = ψm ∗ g with ψm(x) = mdψ(mx) (x ∈ Rd, m ∈ N),

we get, using Lemma 3.15 of [Ada75] and (38),

hm ∈ C∞(Rd), supphm ⊆ B(0, 2), hm(0) > 0 (m ∈ N),

sup
m∈N

‖hm‖W r
p (Rd) <∞, lim

m→∞hm(0) = +∞.



Randomized Approximation of Sobolev Embeddings 457

Finally we define fm by

fm(x) = hm(0)−1hm(2mx) (x ∈ Rd, m ∈ N).

Relation (34) implies

‖fm‖W r
p (Rd) ≤ hm(0)−1‖hm(2m · )‖W r

p (Rd) ≤ chm(0)−1 → 0,

while (36) is obviously fulfilled by definition. This completes the proof in the
case of (34).

If (33) holds, we choose ψ as above and put

fm(x) = ψ(mx) (x ∈ Rd, m ∈ N).

Clearly, (36) is satisfied, and it follows from (33) that

‖fm‖W r
p (Rd) ≤ cmr−d/p → 0 (m→ ∞).

Proof of Proposition 2. The upper bound follows from the fact that Jpq is
bounded. To prove the lower bound, let x1, . . . , xn be any fixed distinct points
in Q. For m ∈ N consider the function vm ∈ C(Q) given by

vm(x) =
(
1 + n‖fm‖W r

p (Rd)

)−1
(

1 −
n∑

i=1

fm(x− xi)

)
(x ∈ Q).

We have
‖vm‖W r

p (Q) ≤ 1 (39)

and, using (37),

‖vm‖Lq(Q) ≥
∫

Q

vm(x)dx

=
(
1 + n‖fm‖W r

p (Rd)

)−1
(

1 −
n∑

i=1

∫
Q

fm(x− xi)dx

)

≥
(
1 + n‖fm‖W r

p (Rd)

)−1 (
1 − n‖fm‖W r

p (Rd)

)
→ 1 (40)

as m→ ∞. Finally, by (36), for m large enough,

vm(xi) = 0 (i = 1, . . . , n). (41)

Now (39–41) combined with standard results from information-based complex-
ity theory [TWW88], Ch. 3.1, prove Proposition 2.

Proposition 2 was independently obtained by Novak and Woźniakowski (unpub-
lished notes).
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5 Comments

Comparing the rates in Theorem 1 and in Proposition 2 for the case (8) of
non-embedding into C(Q), we see that on BW r

p (Q) ∩C(Q) randomization gives
a speedup over the deterministic setting of

erann (Jpq, BW r
p (Q) ∩ C(Q))

edet
n (Jpq, BW r

p (Q) ∩ C(Q))
� n−r/d+max(1/p−1/q,0),

which is non-trivial in all cases, since r/d > max(1/p− 1/q, 0) by assumption.
If p = 1, the maximal exponent of the speedup is r/d, reached for q = 1, and
r/d can be arbitrarily close to 1. If 1 < p <∞, the maximal exponent of the
speedup is again r/d and can now be as large as 1/p, reached for q ≤ p.

Let us also mention that the lower bounds presented here for the randomized
setting hold true for the more general case of adaptive (standard) information,
as introduced e.g. in [Hei06a]. Similarly for the deterministic case. The latter
follows from general results [TWW88].

As is readily seen from its proof, Proposition 2 remains true if Jpq is replaced
by I of Corollary 1, the parameter q and the condition r/d > 1/p− 1/q being
omitted. Furthermore, the argument used in the proof of Corollary 2 shows
that we can also replace Jpq in Proposition 2 by S.
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