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Preface

This volume represents the refereed proceedings of the Seventh International
Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, which was held at Ulm University, Germany, from 14–18 Au-
gust 2006. The program of this conference was arranged by an international
committee consisting of Ivan Dimov (Bulgarian Academy of Sciences), Henri
Faure (CNRS Marseille), Paul Glasserman (Columbia University), Stefan
Heinrich (co-chair, University of Kaiserslautern), Fred Hickernell (Illinois In-
stitute of Technology), Alexander Keller (co-chair, University of Ulm), Pierre
L’Ecuyer (Université de Montréal), Michael Mascagni (The Florida State
University), Peter Mathé (Weierstrass Institute for Applied Analysis and
Stochastics), Harald Niederreiter (co-chair, National University of Singapore),
Erich Novak (Friedrich-Schiller-Universität Jena), Art Owen (Stanford Uni-
versity), Klaus Ritter (TU Darmstadt), Ian Sloan (University of New South
Wales), Denis Talay (INRIA Sophia Antipolis), and Henryk Woźniakowski
(Columbia University).

The local arrangements were in the hands of the PhD students Sabrina
Dammertz, Holger Dammertz, Matthias Raab, Carsten Wächter, the students
Bernhard Finkbeiner, Leonhard Grünschloss, Daniela Hauser, Johannes Hanika,
Christian Kempter, Manuel Kugelmann, Sehera Nawaz, Daniel Seibert, and
our secretary Claudia Wainczyk, all at the computer graphics group of Ulm
University.

This conference continued the tradition of biennial MCQMC conferences
which was begun at the University of Nevada in Las Vegas, Nevada, USA, in
June 1994 and followed by conferences at the University of Salzburg, Austria,
in July 1996, the Claremont Colleges in Claremont, California, USA, in June
1998, Hong Kong Baptist University in Hong Kong, China, in November 2000,
the National University of Singapore, Republic of Singapore, in November
2002, and at the Palais des Congrès in Juan-les-Pins, France, in June 2004.

The proceedings of these previous conferences were all published by
Springer-Verlag, under the titles Monte Carlo and Quasi-Monte Carlo Meth-
ods in Scientific Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Monte
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Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter, P. Hellekalek,
G. Larcher and P. Zinterhof, eds.), Monte Carlo and Quasi-Monte Carlo Meth-
ods 1998 (H. Niederreiter and J. Spanier, eds.), Monte Carlo and Quasi-Monte
Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell and H. Niederreiter, eds.),
Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.),
and Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and
D. Talay, eds.). The next MCQMC conference will be held in Montréal, Canada,
in July 2008.

The program of the conference was rich and varied with over 120 talks
being presented. Highlights were the invited plenary talks given by Ronald
Cools (Katholieke Universiteit Leuven), Sergei Mikhailovitch Ermakov (Saint-
Petersburg State University), Alan Genz (Washington State University),
Frances Kuo (The University of New South Wales), Thomas Müller-Gronbach
(Otto-von-Guericke-Universität Magdeburg), Harald Niederreiter (National
University of Singapore), Gilles Pagès (Universités Paris VI et VII - CNRS),
Karl Sabelfeld (Weierstraßinstitut für angewandte Analysis und Stochastik),
and Peter Shirley (University of Utah) as well as the special sessions that were
organized by designated chairpersons. The papers in this volume were carefully
screened and cover both the theory and the applications of Monte Carlo and
quasi-Monte Carlo methods.

We gratefully acknowledge generous financial support of the conference
by the German Science Foundation (DFG) and the financial backup by the
mental images GmbH, Berlin.

We also thank the anonymous reviewers for their reports and many others
who contributed enormously to the excellent quality of the conference pre-
sentations and to the high standards for publication in these proceedings by
careful review of the abstracts and manuscripts that were submitted.

Leonhard Grünschloß provided invaluable help with editing the proceedings.
Finally, we want to express our gratitude to Springer-Verlag for publishing
this volume.

Ulm, Alexander Keller
August 2007 Stefan Heinrich

Harald Niederreiter
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A Belgian View on Lattice Rules

Ronald Cools1 and Dirk Nuyens2

1 Dept. of Computer Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Heverlee,
Belgium
Ronald.Cools@cs.kuleuven.be

2 Dept. of Computer Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Heverlee,
Belgium
Dirk.Nuyens@cs.kuleuven.be

1 Introduction

The problem we consider is the approximation of multivariate integrals over
the s-dimensional unit cube

I[f ] :=
∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xs) dx1 · · · dxs =
∫

[0,1)s

f(x) dx.

We are interested in approximations of the form

Q[f ] :=
n∑

j=1

wjf(y(j)) (1)

with weights wj ∈ R and points y(j) ∈ [0, 1)s.
Many people call this a quadrature problem, although strictly speaking the

word “quadrature” refers to the 1-dimensional case, i.e., measuring an area.
By only using this key word in a search, one misses a whole world of relevant
literature. The more appropriate word is “cubature”. In written English, it
appears already in the 17th century to refer to measuring a volume.3 Because
one speaks about an s-dimensional cube, it is natural to use the same word in
connection with measuring s-dimensional volumes, i.e., integrals. So, if s = 1
then Q is called a quadrature formula and if s ≥ 2 then Q is called a cubature
formula.

We are particularly interested in cubature formulas where the points y(j)

and weights wj are chosen independent of the integrand f . It is usually difficult
and time consuming to construct such cubature formulas, but the result is
usually hard coded in programs or tables.

3 An equivalent exists in other languages, e.g., in German “Kubatur” and in Dutch
“kubatuur”.
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In the taxonomy of cubature formulas one can distinguish two major classes:
polynomial based methods (e.g., methods exact for algebraic or trigonometric
polynomials) and number theoretic methods (e.g., quasi-Monte Carlo methods
and even Monte Carlo methods based on pseudo random number generators).
As in zoology, some species are difficult to classify. Lattice rules are a family
of cubature formulas that are studied as members of both classes, depending
on the background of the researcher. They are in the focus of this text.

Definition 1. An s-dimensional lattice rule is a cubature formula which can
be expressed in the form

Q[f ] =
1

d1d2 . . . dt

d1∑
j1=1

d2∑
j2=1

. . .

dt∑
jt=1

f

({
j1z1

d1
+
j2z2

d2
+ . . .+

jtzt

dt

})
,

where t and di ∈ N \ {0} and zi ∈ Zs for all i.

The notation {·} denotes to take the fractional part componentwise.
An alternative definition is given below. This already shows that lattice

rules can be approached in different ways.

Definition 2. A multiple integration lattice Λ is a subset of Rs which is
discrete and closed under addition and subtraction and which contains Zs as a
subset. A lattice rule is a cubature formula where the n points are the points of
a multiple integration lattice Λ that lie in [0, 1)s and the weights are all equal
to 1/n.

We must emphasize that a lattice rule has different representations of the
form given in Definition 1. The minimal number of sums (i.e., the minimal
number of generating vectors zi) required is called the rank of the lattice rule.
Even if the number of generators is fixed, the rules can still be represented
using different generating vectors. Many papers only consider lattice rules of
rank 1. A rank-1 lattice rule is generated by one vector z and has the form

Q[f ] =
1
n

n∑
j=1

f

({
jz
n

})
.

The view on lattice rules presented in this text is strongly biased. It reflects
how the first author got into contact with lattice rules, and how he started
looking at them from the view on multivariate integration he had at that time.
(For a different view on lattice rules, which also includes other kinds of quasi-
Monte Carlo point sets, we refer to [LL02].) In Section 2 an overview of quality
and construction criteria for lattice rules is given, biased towards what is less
known in the qMC-world, i.e., the target audience of this volume. In Section 3
we will briefly describe recent approaches for constructing lattice rules, making
it clear that the choice of quality criterion determines the required construction
effort. In Section 4 we will point to techniques to make lattice rules work in
practice and in Section 5 we will illustrate that lattice rules are used from
2-dimensions to high dimensions. Final remarks are given in Section 6.
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2 Quality Criteria

2.1 Rules Exact for Polynomials

There are many quality criteria to specify and classify cubature formulas in
general, and lattice rules in particular. Trigonometric polynomials play an
important role in the world of lattice rules. Algebraic polynomials play a role
in connection with more “classical” cubature formulas. In this section we will
point to some similarities.

Let h = (h1, h2, . . . , hs) ∈ Zs and |h| :=
∑s

j=1 |hj |. An algebraic polynomial
is a finite sum of the form

p(x) =
∑
h∈Zs

ahxh =
∑
h∈Zs

ah

s∏
j=1

x
hj

j , with hj ≥ 0.

A trigonometric polynomial is a finite sum of the form

t(x) =
∑
h∈Zs

ahe
2πih·x =

∑
h∈Zs

ah

s∏
j=1

e2πixjhj .

The degree of a polynomial is defined as maxah �=0 |h|. The space of all algebraic
polynomials in s variables of degree at most d is denoted by Ps

d. The space of
all trigonometric polynomials in s variables of degree at most d is denoted by
Ts

d. We will use the symbol Vs
d to refer to one of the vector spaces Ps

d or Ts
d.

The dimensions of the vector spaces of polynomials are

dim Ps
d =
(
s+ d
d

)
and dim Ts

d =
s∑

j=0

(
s
j

)(
d
j

)
2j .

The right hand sides are polynomials in d of degree s.
A very old quality criterion for cubature formulas comes from demanding

that the formula gives the exact value of the integral for polynomials.

Definition 3. A cubature formula Q has algebraic (trigonometric) degree d if
it is exact for all polynomials of algebraic (trigonometric) degree at most d.

Once this criterion is put forward, it is natural to ask how many points are
needed in a cubature formula to obtain a specified degree of precision. This
is obviously related to the dimension of the space for which the formula
reproduces the exact value of the integral.

Theorem 1. If a cubature formula is exact for all polynomials of Vs
2k, then

the number of points n ≥ dim Vs
k.

A proof of this result for algebraic degree is given in [Rad48] for s = 2 and
in [Str60] for general s. For trigonometric degree it is presented in [Mys87].
So, the required number of points increases exponentially with the dimension.
Furthermore a “large” part of the weights in a cubature formula have to be
positive.
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Theorem 2. If a cubature formula is exact for all polynomials of Vs
d and

has only real points and weights, then it has at least dim Vs
k positive weights,

k = �d
2�.

This result is proven in [Mys81] for algebraic degree and [Coo97] for trigono-
metric degree. The combination of the two previous theorems implies that
formulas attaining the lower bound of Theorem 1 have only positive weights.
For trigonometric degree, we even know more [BC93].

Corollary 1. If a cubature formula of trigonometric degree 2k has n = dim Ts
k

points, then all weights are equal.

One cannot expect that the lower bound of Theorem 1 can be attained for
odd degrees 2k + 1, since in that case it is equal to the bound for degree 2k.
For algebraic degree, there exists an improved lower bound for odd degrees
that takes into account information on the symmetry of the integration region.
The first such result was derived for centrally symmetric regions such as a cube.
For surveys of achievements in this particular area we refer to [Coo97, CMS01].
A similar result holds for the trigonometric degree case. Let Gk be the span of
trigonometric monomials of degree ≤ k with the same parity as k.

Theorem 3. The number of points n of a cubature formula for the integral
over [0, 1)s which is exact for all trigonometric polynomials of degree at most
d = 2k + 1 satisfies

n ≥ 2 dimGk.

This result is mentioned in [Nos85] and a complete proof appears in [Mys87].
Structures do not only play a role in the derivation of lower bounds; their

role in constructing cubature formulas is even more important. Imposing
structure on the points and weights is used since the beginning of history to
reduce the complexity of the construction problem for cubature formulas. The
basic structure for lattice rules is “shift symmetry”. In the trigonometric case
this structure plays the same role as “central symmetry” in the algebraic case.

Definition 4. A cubature formula is called shift symmetric if it is invariant
with respect to the group of transformations{

x �→ x,x �→
{
x +
(

1
2
, . . . ,

1
2

)}}
.

Hence, the multiple integration lattice Λ of a shift symmetric cubature formula
satisfies {

x +
(

1
2
, . . . ,

1
2

)
| x ∈ Λ

}
= Λ.

This structure was exploited to derive the following result [BC93].

Theorem 4. If a shift symmetric cubature formula of degree 2k + 1 has n =
2 dimGk points, then all weights are equal.
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In the algebraic case it is proven that formulas attaining the lower bound
for odd degrees for centrally symmetric regions are also centrally symmetric.
For the trigonometric case it was conjectured in [Coo97].

The results of Corollary 1 and Theorem 4 motivate us to restrict searches for
cubature formulas of trigonometric degree to equal weight cubature formulas.
Hence the general form (1) simplifies to

Q[f ] =
1
n

n∑
j=1

f(y(j)). (2)

Formulas for which the lower bounds in Theorems 1 and 3 are sharp,
are only known for degrees 1, 2 and 3 in all dimensions, for all degrees in 2
dimensions, and for degree 5 in 3 dimensions. We refer to [Coo97, Lyn03] for a
detailed survey. Almost all known formulas of trigonometric degree that attain
these lower bounds are (shifted) lattice rules. The only exceptions are derived
in [CS96].

Theorem 5. The following points(
Cp +

j

2(k + 1)
, Cp +

j + 2p
2(k + 1)

)
for j = 0, . . . , 2k + 1,

p = 0, . . . , k,

with C0 = 0 and C1, . . . , Ck arbitrary, are the points of a cubature formula for
the integral over [0, 1)2 of trigonometric degree 2k + 1.

We are not aware of successful efforts to construct cubature formulas of
trigonometric degree that are not (shifted) lattice rules. In Section 3 we will
mention recent construction methods for lattice rules with the trigonometric
degree criterion, not necessarily attaining the known lower bounds.

Most of the results summarized above were obtained using reproducing
kernels, see [Aro50]. A reproducing kernel K is in general a function of two
s-dimensional variables with the property that an evaluation of a function
f can be written as the inner product of f with K. If we work in a finite
dimensional space of polynomials, then a reproducing kernel can be written
using orthogonal polynomials. The trigonometric case is easier to work with
than the algebraic case because orthonormal polynomials are readily available.
Indeed, the trigonometric monomials form an orthonormal sequence. A further
simplifying aspect of the trigonometric case is that the reproducing kernel
can be written as a function of one s-dimensional variable. For s = 2 and Ts

d

it has a simple form which was exploited in [CS96] to obtain formulas with
the lowest possible number of points, including lattice rules and others (see
Theorem 5).

2.2 On Route to Other Quality Criteria

So far, we focused on integrating polynomials. What do we know if we apply
a cubature formula to a function that is not a polynomial? To answer this
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question, let us assume the integrand function f can be expanded into an
absolutely convergent multiple Fourier series:

f(x) =
∑
h∈Zs

f̂(h) e2πih·x with f̂(h) :=
∫

[0,1)s

f(x) e−2πih·x dx.

Then the approximation error of an equal weight cubature formula (2) is
given by

Q[f ] − I[f ] =
1
n

n∑
j=1

⎛⎝ ∑
h∈Zs\{0}

f̂(h) e2πih·y(j)

⎞⎠
=
∑

h∈Zs\{0}

⎛⎝f̂(h)
1
n

n∑
j=1

e2πih·y(j)

⎞⎠.
Observe that

1
n

n∑
j=1

e2πih·y(j)
=

{
1 if h · y(j) ∈ Z,

0 if h · y(j) �∈ Z.

So, if our equal weight cubature formula is a lattice rule, many terms in the
expression for the error vanish. This brings us to a very important tool to
investigate the error of a lattice rule and a well known theorem by Sloan and
Kachoyan [SK87].

Definition 5. The dual of the multiple integration lattice Λ is

Λ⊥ := {h ∈ Zs : h · x ∈ Z ∀x ∈ Λ}.

Theorem 6. Let Λ be a multiple integration lattice. Then the corresponding
lattice rule Q has an error

Q[f ] − I[f ] =
∑

h∈Λ⊥\{0}
f̂(h).

Remember that our analysis in this section assumes that the integrand can
be expanded in an absolutely convergent multiple Fourier series. So, lattice
rules look interesting for periodic functions. Not surprisingly, the trigonometric
degree can be defined in terms of the dual lattice.

Definition 6. The trigonometric degree of a lattice rule Q is

d(Q) := min
h∈Λ⊥\{0}

⎛⎝ s∑
j=1

|hj |
⎞⎠− 1.
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For many years this criterion was only used in Russia for construction. Some
references are [Mys85, Mys90, Rez90, Nos85, Nos88, Tem91, Sem96, Sem97,
Osi04, OP04].

Another popular criterion for lattice rules that can also be defined in terms
of the dual lattice is the Zaremba index or figure of merit.

Definition 7. The Zaremba index or figure of merit is

ρ(Q) := min
h∈Λ⊥\{0}

(
h1h2 · · ·hs

)
with h := max(1, |h|).

The Zaremba index was used in a computer search for good lattice rules in
three and four dimensions by Maisonneuve [Mai72], and also in, e.g., [BP85].
The now classical survey [Lyn89] already presented both the Zaremba index
and the trigonometric degree (there it is called “overall degree”) in the form
of the above definitions.

We will now sketch the origin of the Zaremba index. For c > 0 and fixed
α > 1, let Eα

s (c) be the class of functions f whose Fourier coefficients satisfy

|f̂(h)| ≤ c

(h1h2 · · ·hs)α
.

This is essentially a class of functions of a certain smoothness, given by α. The
worst possible function in class Eα

s (1) is

fα(x) :=
∑
h∈Zs

1
(h1h2 · · ·hs)α

e2πih·x.

Now define Pα(Q) as the error of the lattice rule Q for the function fα:

Pα(Q) :=
∑

h∈Λ⊥\{0}

1
(h1h2 · · ·hs)α

. (3)

When α is an even integer Pα(Q) is easy to compute because in that case fα
can be written as a product of Bernoulli polynomials. It was introduced by
Korobov [Kor59] who showed the existence of lattice rules for which Pα(Q) is
O(n−α+ε), ε > 0, or O(n−α(log(n))αs) in [Kor60].

It follows easily that the larger ρ(Q) is, the smaller we expect Pα(Q) to
be; the h which achieve the minimum in the definition of ρ(Q) make up the
largest value in the sum for Pα(Q). A lower bound on Pα(Q) can easily be
derived from the definitions as

2
ρ(Q)α

≤ Pα(Q)

but the real use of ρ(Q) is in deriving upper bounds, see, e.g., [Nie78, Nie92]
for an overview.



10 R. Cools and D. Nuyens

Another related criterion is given by

R(Q) :=
∑

h∈Λ⊥\{0}
−n

2 <hj≤n
2

1
(h1h2 · · ·hs)

.

Here, Fourier coefficients which are already at a certain distance from the
origin are not considered anymore. This has the benefit that no smoothness
parameter α has to be chosen. In other words: R(Q) is a modified version of
Pα, chosen in such a way that α can be set to one. A similar lower bound as
for Pα(Q) is given by

1
ρ(Q)

≤ R(Q).

Recent searches based on R(Q) were done by Joe [Joe04] and Sinescu and Joe
[JS07]. These searches are in fact searches for the “star discrepancy” by using
a nice relationship in terms of R(Q). (Loosely speaking, a point set has low
discrepancy if the points are fairly well uniformly distributed in relation to the
number of points used, see, e.g., [Nie78, Nie92].) For large n it can be inferred
that large values of ρ(Q) will give small values of both R(Q) and Pα(Q).

In a Korobov space with smoothness α the value of Pα(Q) is the square of
the worst-case error. The worst-case error of a cubature rule Q in a space F
is given by

e(Q,F) = sup
f∈F

‖f‖F≤1

|I(f) −Q(f)|.

Such a Korobov space is a reproducing kernel Hilbert space (see [Aro50]). As
was already mentioned, a reproducing kernel Hilbert space is a function space
for which the evaluation of a function can be written as the inner product with
the reproducing kernel K. This reproducing kernel is in general a function
of two variables, but when the function space is periodic the kernel can in
fact be written as a function in one variable. Such a kernel is then called
shift-invariant. For a shift-invariant kernel K and a rank-1 lattice the squared
worst-case error is given by

e2(Q,K) = −
∫

[0,1)s

K(x,0) dx +
1
n

n∑
j=1

K

({
jz
n

}
,0
)
,

see, e.g., [Hic98a]. So if one knows the reproducing kernel, one can obtain an
explicit formula for the worst-case error in the space under consideration.

A very important and recent ingredient in these reproducing kernel Hilbert
spaces are weights which are used to denote the importance of certain sets of
variables. (Note that these weights are different from the ones in the cubature
formula (1).) The most simple and useful form of the kernel is the kernel for a
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shift-invariant and tensor-product weighted reproducing kernel Hilbert space.
In this case the kernel can be written as

K(x,y) =
s∏

k=1

(1 + γk ω({xk − yk})).

The weights γk ≥ 0 are used to denote the importance of the different dimen-
sions. For a rank-1 rule the typical form for the squared worst-case error in
such a weighted space is then

e2s(z) = −1 +
1
n

n∑
j=1

s∏
k=1

(
1 + γk ω

({
jzk
n

}))
, (4)

where we assumed that
∫ 1

0
ω(x) dx = 0.

The use of reproducing kernel Hilbert spaces has created a very elegant
theory in which all kinds of discrepancies can be defined in terms of the worst-
case error in a certain space (see, e.g., [Hic98a, Hic98b]). Moreover, it enables
the study of the error in non-periodic spaces, see, e.g., [SKJ02a, SKJ02b].

3 Recent Constructions

In Section 2 we presented lower bounds for the number of points that is
required in a cubature formula to attain a specified trigonometric degree. The
theorems are not constructive and—as mentioned in Section 2—formulas that
attain the known bounds are only known for small s or d. The construction
of lattice rules is done by searches. The parameters in such a search are the
number of points, the number of generating vectors and the components of
these vectors. Obviously the complete search space is huge. Furthermore, the
cost to verify that a lattice rule has trigonometric degree d is proportional to
ds. Consequently only “moderate” dimensions are feasible for this criterion for
this reason only.

Practical constructions of lattice rules start with restricting the search
space. A popular restriction is to consider only rank-1 lattice rules with one
generating vector, hence only s components have to be determined. Actually,
most authors only consider so-called rank-1 simple rules, where the first
component of the generating vector is equal to 1. Then only s− 1 components
have to be determined.

The search space can be even further reduced by considering only generator
vectors of the form

z(�) = (1, �, �2 mod n, . . . , �s−1 mod n), 1 < � < n. (5)

This is the form of so-called Korobov rules [Kor60].
In the remainder of this section we will sketch two recent successful types

of searches. They use a different quality criterion and have their own way to
restrict the search space.
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3.1 Rules of Exact Trigonometric Degree

Many searches for lattice rules use the generator matrix of the dual lattice.
We will first properly introduce this concept. Recent searches impose some
structure on this matrix.

Any s-dimensional lattice Λ can be specified in terms of s linearly indepen-
dent vectors {a1,a2, . . . ,as}. These vectors are known as generators of Λ. (In
addition to the t vectors in Definition 1, one can always take s− t unit vectors.)
Associated with the generators is an s× s generator matrix A whose rows are
a1,a2, . . . ,as. All lattice points x are of the form x =

∑s
i=1 λiai = λA for

some λ ∈ Zs.
The dual lattice Λ⊥ has generator matrix B = (A−1)T . Some authors

use this as the definition of a dual lattice, instead of Definition 5. They are
equivalent. It can be shown that the number of points n = |detA|−1 = |detB|.

Recent searches in low dimensions are based on the following argument
by [CL01]: “It is reasonable to believe that the lattice Λ of an optimal lattice
rule will have Λ⊥ with many elements on the boundary of S(Os, d+ 1)”. Here
S(Os, d + 1) denotes a magnification of the unit octahedron Os by a factor
d+ 1. Their searches only consider lattice rules whose dual has s generators
lying on the boundary of S(Os, d + 1). The corresponding lattice rules are
called K-optimal rules.

The cost for searching this space mainly depends on the number of gen-
erator matrices that must be considered; this is O(ds2−s). Most of these can
be eliminated quickly but for a minute proportion one has to verify their
trigonometric degree, at a cost over ds−1. This leads to a complexity bounded
above by ds2−1. This is a pessimistic bound, but it indicates the fundamental
problem of this approach. In [CL01] it was used for 3 and 4 dimensions. In
[LS06] the results of a ‘Seti@home’-type of search is described for 5 dimensions,
limited to d ≤ 11.

One can impose structure on the generator matrix of the dual lattice to
reduce the number of free parameters in the search. In [LS04, CG03] the search
was restricted to (skew-)circulant generator matrices. This reduces the cost to
O(d2s−2) and was very successful in 4–6 dimensions. This approach also lead
to closed expressions for lattice rules of arbitrary degrees. A more detailed
summary of this approach is presented in [CN06]

We will conclude this part with a digression: linking the search for lattice
rules to the field known as “geometry of numbers”. To compare the number of
points of different lattice rules of the same degree we require a proper scaling.
The packing factor provides this.

Definition 8. The packing factor is

ρ̂(n) :=
(d+ 1)s

s!n
.

The packing factor is a measure of the efficiency of a rule and provides a
convenient way for making pictures because 0 ≤ ρ̂(n) ≤ 1.
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Actually, ρ̂(n) is bounded above by what people working in the area of
“geometry of numbers” call the density of the densest lattice packing of the
crosspolytope (octahedron) θ(Os) [GL87]. This provides a better lower bound
for lattice rules for trigonometric degree than those of Theorems 1 and 3:

n ≥ (d+ 1)s

s!θ(Os)
.

The problem is however that θ(Os) is only known for s = 1, 2 and 3: θ(O1) =
θ(O2) = 1, θ(O3) = 18

19 . This last result is due to Minkowski [Min67] and was
already used in [Fro77] to construct lattice rules.

Lattice rules provide constructive lower bounds for θ(Os). From a lattice
rule with n points having degree d follows

θ(Os) ≥ (d+ 1)s

s!n
.

The currently best known bounds for θ(Os), s = 4, 5 and 6 all follow from
known lattice rules [OP04, Coo06].

3.2 Rules Minimizing a Worst-Case Error

The introduction of weights in the function space, e.g., as in (4), makes it
practically impossible to hard code the cubature rules in tables since there are
an infinite number of weighted function spaces to choose from. The weights
give the flexibility to tune the function space, but at a price. Luckily, for
shift-invariant spaces we are able to construct lattice rules just in time by a
fast algorithm.

If one wants to search lattice rules which minimize Pα(Q), R(Q) or any
other weighted worst-case error for a given function space, then again the
search space has to be limited in one way or another. In this section the
focus will be on rank-1 rules. A traditional approach was to consider Korobov
rules (5), but more recently, the component-by-component construction [SR02]
has opened many more possibilities. Since the publication of [SR02] a lot of
results concerning component-by-component construction were obtained, both
on the existence and on the construction side, see, e.g., [SKJ02a, SKJ02b,
DK04a, Kuo03, CKN06].

Instead of trying to find an optimal generating vector of a predefined
form, the components of the generating vector are now searched, and fixed,
component by component. In this way the complexity of the search is reduced
from O(ns κ(n, s)) to O(sn κ(n, s)) where κ(n, s) is the cost of calculating the
worst-case error by formula (4). By inspection we find that κ(n, s) = O(sn)
and thus the total cost is O(s2n2). However, simply considering the product
as a cumulative product, since the previous components of z are fixed, reduces
the construction cost to O(sn2) at the expense of O(n) memory. This allows
for moderately larger values of s and n than for the exactness criteria, but
really large values are still infeasible unless more advanced arguments are used.
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In [DK04a, DK04b] Dick and Kuo conceive a modified method to find
lattice rules with “millions of points”, for which n needs to be a product of few
primes. But even without modifying the search it turns out to be possible to
construct lattice rules with millions of points and in thousands of dimensions.
This was first shown by the authors for n prime in [NC06a] and later extended
for any composite n [NC06b]. This fast algorithm allows for the construction
of lattice rules on a just in time basis.

The fast algorithm works by exploiting some structural properties in the
worst-case error formula. Starting from (4) it can be observed that the ω
function is evaluated on a multiplicative algebraic structure modulo n

ω

({
jz

n

})
= ω
(
j · z mod n

n

)
.

By rewriting (4) as a matrix-vector product it can be shown that a matrix-
vector multiplication with a matrix with the above structure can be done in
O(n logn) using fast Fourier transforms, see [NC06b]. Therefore, construction
takes only O(sn log(n)) using O(n) memory.

4 Toward Using Lattice Rules

Many texts start with saying that lattice rules are for integrating periodic
functions. The different quality criteria we mentioned before make that clear.
The traditional line of thought is that one first has to transform the region
to the unit cube and then periodize the function. Periodization is further
discussed in Section 4.1.

However, it is nowadays known that lattice rules can successfully be applied
to non-periodic functions as well, see, e.g., [SKJ02a, SKJ02b]. In Section 4.2 we
describe a recent trend in which lattice rules are even used as a sequence. Both
these new insights reduce the historical differences between low discrepancy
sequences and lattice rules.

4.1 Periodizing Transformations

A non-periodic function on the unit cube can be transformed by a periodizing
transform φ:∫

[0,1)s

f(x1, . . . , xs) dx =
∫

[0,1)s

f(φ(x1), . . . , φ(xs))φ′(x1) · · ·φ′(xs) dx.

Using a periodizing transformation is equivalent to using a transformed point
set, y(j) �→ (φ(y(j)1 ), . . . , φ(y(j)s )), with weights wj =

∏s
k=1 φ

′(y(j)k ) in (1).
There are several practical problems with periodization. Many periodizing

transformations exist. They are mainly used in one dimension and selecting
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the right transform for a given function is not trivial. It seems that the factor
(log(n))αs in the theoretical convergence, as mentioned in Section 2.2, is often
very well visible and this gets worse for higher s. Consequently more initial
points are needed to achieve the O(n−α).

The periodizing transformations lead to machine dependent cubature rules.
When n gets larger, calculations have to be done in higher precision. Indeed,
IEEE double precision is not enough since different points map to the same
floating point representation even for relatively small n; the floating point
cube [0, 1]s is not symmetric. Furthermore, when s gets higher the weights at
the boundaries get very small. Insiders know these problems already a long
time. In the recent paper [HR06] this is nicely analyzed.

It follows that periodization is only applicable in low dimensions and with
few points. But even then the transformation can give a transformed integrand
which is much harder to integrate than before, see [Hic02] for a theoretical
discussion and an alternative, and [HR06] for an example. Summarized, peri-
odization is a powerful tool in the hands of an expert but in the hands of the
unwary it is a dangerous tool!

4.2 Lattice Sequences

In practice one wants to have an error estimate for the approximation. The
traditional approach is to use multiple randomly shifted copies of one lattice
rule and then using the standard error of the multiple results as a stochastic
error estimate [CP76]. However, recent interest is in lattice sequences. These are,
not surprisingly, sequences of lattice rules, of which the points are embedded.
That is

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λ� ⊂ · · · . (6)

In this way it becomes possible to obtain an error estimate, e.g., by using the
difference of two successive approximations.

Different schemes for this embedding exist. Joe and Sloan [JS92, SJ94]
introduced so-called copy rules for this purpose. This idea has been extended in
low dimensions to so-called augmented lattice sequences, see, e.g. [HR99, RH02].
A different approach is by using a number of points which is a power of a given
integer base. This was done by [HHLL01] and the theoretical existence of good
extensible lattice rules was given in [HN03]. Also in [CKN06] and [DPW] such
good lattice sequences were successfully constructed.

For such lattice sequences one uses the property that a lattice rule with
bm points consists of b smaller lattice rules with bm−1 points, which in turn
all consist of b smaller lattice rules with bm−2 points, and so on. By ordering
the points of the biggest lattice rule in a specific way, while keeping the
embedding (6) it is even possible to stop anywhere and still have a reasonable
good uniform distribution. This fixes one of the historical problems with lattice
rules: one can keep on adding points until the error estimate is sufficiently
small. An example in two dimensions is given in Figure 1.
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n = 27 = 33 n = 64 = 2 × 33 + 32 + 1 n = 81 = 34

Fig. 1. A lattice sequence in base 3. The first image shows a full lattice using
27 points. The next image shows an extension of this lattice to 64 points, since this
is not a power of 3, the resulting point set is not a full lattice. If we keep on adding
points we arrive at the last figure with 81 points, again a full lattice. For a good
lattice sequence the intermediate points are well distributed.

5 Lattice Rules in Action

In most recent papers on lattice rules, the emphasis is in high dimensions.
Let us point out that they are useful and indeed used also in low dimensions,
starting from two.

Several general purpose, black-box integration routines for 2-dimensional
integration are based on lattice rules. DITAMO [RdD81] is based on the
product rectangle rule in combination with the IMT periodizing transformation.
d2lri and r2d2lri [HR99, RH02] use augmented lattice rules combined with
a periodizing transformation. All these routines are based on sequences of
embedded rules and error estimators derived from these. A nice application
of 2-dimensional lattice rules is described in [Rev95]. Lattice rules also found
applications in the area of computer graphics, see, e.g., [Kel04, DKD08, DK08].

An example of lattice rules in action on a 5-dimensional example is presented
in [CN06]. There the result of a lattice rule of high trigonometric degree,
constructed along the lines described in Section 3.1, is compared to the result
of a lattice rule minimizing some worst-case error, constructed along the
lines described in Section 3.2 (and constructed to be a good lattice sequence
as described in Section 4). Good results were obtained without the use of
periodization and both rules were used as a sequence. Lattice rules and
sequences also find applications in much higher dimensions, see, e.g., [CKN06,
KDSWW] for examples in 100 and more dimensions.

During the conference several speakers presented results on lattice rules
in low and high dimensions. Some of these are included in this volume, e.g.,
[DKD08, DK08, SJ08].
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6 Final Remarks

The situation of construction methods for lattice rules can be summarized
as follows. Searches for lattice rules using the “classical” criteria are doomed
to fail for increasing dimensions, not only because the search space is too
big but also because the cost for evaluating these criteria is too high. The
component-by-component algorithm, relying on the worst-case error for a
reproducing kernel Hilbert space beats this curse of dimensionality. It allows
the construction of lattice rules very quickly even if n and s are large.

But work remains to be done. For the component-by-component construc-
tion, tuning of the function space using the weights must be done so that a
given problem belongs to (or is close to) the underlying reproducing kernel
Hilbert space. More experience with reliable, cheap and deterministic error
estimators for sequences, especially in high dimensions, would be interesting.
Currently the usage of a low number of randomizations seems to be the pre-
ferred method. We are not aware of any extensive tests for error estimation in
high dimensions.

Note that lattice rules are useful for low and high dimensions, and are not
only for integrating periodic functions. Furthermore different quality criteria
can be useful. Finally the difference between lattice rules and “classical” low
discrepancy sequences evaporates. Lattice rules with large n can be constructed
easily and can be used as low discrepancy sequences.

We would like to express our hope that some readers want to apply lattice
rules in practical problems. We hope that their experiences are positive and
that their reports find their way in the growing literature on lattice rules.

7 Tourist Information

It is beyond any doubt that the biggest monument in the world devoted to a
lattice is the Atomium4 in Brussels, Belgium. This monument was designed for
the Brussels World’s Fair that took place in 1958 (Expo ’58). The Atomium
consist of 9 balls symbolizing a unit cell of the body centered cubic lattice
crystal structure of iron magnified 165 × 109 times.
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1 Introduction

The Monte-Carlo method is known to be used for solving problems of very dif-
ferent nature. Equation solving constitutes one of the very important classes of
problems. A stochastic process which can be effectively simulated by computer
is usually associated with the equation under consideration. Then some func-
tional of process trajectories is constructed in order to obtain an unbiased
estimation of the required value which can be either solution of the equation or
some functional of the solution. And finally, one of the laws of large numbers
or limit theorems is used. Stochastic methods usually permit to apply a simple
software implementation, they are easily adapted for parallel computer systems
and can also effectively use a priori information about the exact problem’s
solution (i.e. methods of variance reduction). The well-known disadvantage of
the stochastic methods is a comparatively low speed of the error decrease as
the number of independent process realizations grows. There are a lot of works
aimed at overcoming this disadvantage. The works concerning application
of the deterministic methods in computational schemes (Quasi Monte-Carlo
Method - QMC) are among them. It is important to notice that the QMC
methods preserve the parallel structure of classical stochastic algorithms. It
seems that the parallelism of algorithms is one of the most important problems
in the modern theory of the Monte-Carlo methods. Another important problem
is in comparison of computational complexities of stochastic algorithms and
similar deterministic algorithms. Investigations in these fields of MC theory
might be important to find out the structure of modern computational sys-
tems. This article includes a brief revue of the author’s and his colleague’s
investigations in these and related fields. Generalizations of some results and
their analysis from the point of view of parallelism are presented for the first
time.

∗ The work is supported by the RFBJ grant No01-05-00865a
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2 Classes of Discussed Equations

The following equations are considered

ϕ = f +
∞∑

l=1

Kl(ϕ, . . . , ϕ) (modµ), (1)

where ϕ and f are functions of x ∈ X, they are integrable with respect to
measure µ at x ∈ X ∈ R, µ is probability measure defined on σ-algebra of
subsets of X. Operator K is defined by expression

Kl(ϕ, . . . , ϕ)(x) =
∫
µl(dx1, . . . , dxl)kl(x, x1, . . . , xl)

l∏
j=1

ϕ(xj), (2)

where µl(dx1, . . . , dxl) = ⊗l
j=1µ(dxj).

(modµ) in equality (1) means that this equality takes place for every
x ∈ supp µ. Further Kl(ϕ, . . . , ϕ) denotes operator similar to one defined in
(2) but with kernel |kl|, where |kl| is absolute value of kl.

Further we will discuss in details several particular cases of equation (1).
In particular linear equation will be concerned.

3 Linear Case

In this section we’ll consider

ϕ = f + Kϕ (modµ) (3)

that in the case of discrete measure µ turns out to be a system of linear
algebraic equations (S.L.A.E). The problem of the S.L.A.E solving is known
to be one of the most important tasks of computational mathematics. We’ll
see further that the problem of solving (1) can be reduced to solving of (3).
Due to this fact equation (3) deserves special attention.

The most widespread methods for solving (3) based on the Markov chain
modeling were suggested by J. v. Neumann and Ulam [For50]. The scheme of
the Markov chain connection with (3) we will further call the N.U.Scheme. The
simplest variant of this scheme consists of the following operations. Fist we
choose parameters of the Markov chain: the density of initial distribution p0(x)
(correspondingly to measure µ) and transition density p(x, y) that satisfies
condition ∫

p(x, y)µ(dy) = 1 − g(x) (modµ), 0 ≤ g(x) ≤ 1.
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The chosen densities p0 and p must also satisfy the concordance conditions:

• p0(x) > 0, if h(x) �= 0
• p(x, y) > 0, if k(x, y) �= 0, where k is a kernel of operator K
• g(x) > 0, if f(x) �= 0

It is obvious that g(x) can be chosen in such a way that almost all trajectories
will be finite. Then we simulate the Markov chain with chosen parameters and
compute the functional estimate by collisions:

Js(wτ ) =
h0k0,1 . . . kτ−1,τfτ
p00p0,1 . . . pτ−1,τgτ

, (4)

where h(x0) = h0, k(xi, xj) = ki,j , f(xi) = fi and similar denotations are
used in the case of p00 and pi,j . We also presume k−1,0 = p−1,0 = 1; τ =
0, 1, . . ., wτ = x0 → x1 → · · · → xτ is the chain’s trajectory (see [Erm75]).
Then the following theorem is valid under assumption of integral (h, ϕ) =∫
h(x)ϕ(x)µ(dx) existence. Here h = h(x) is a given integrable at X function.

Theorem 1. In order that the Js(wτ ) be an unbiased estimate of functional
(h, ϕ) the following conditions are necessary and sufficient:

1. Concordance conditions hold true,
2. Convergence of majorant iterative process

ϕn+1 = Kϕn+1 + |f | (5)

takes place.

Remark 1. In case when µ is a discrete measure p0 is a vector and p = P =
‖pi,j‖ is a matrix of transition probabilities.

Remark 2. Js(wτ ) is not the unique unbiased estimate. There are infinitely
many of such estimates. We’ll point out another estimate that is comparatively
simple in computation:

Js(w′
τ ) =

τ∑
l=1

h0

p00

k0,1 . . . kl−1,l

p0,1 . . . pl−1,l
· fl, (6)

Noticing that (h, ϕ) = (ϕ∗, f), where ϕ∗ is the solution of equation ϕ∗ =
K∗ϕ∗ + h, K∗ and K are conjugate operators in the sense of Lagrange (in the
given case k∗(x, y) = k(y, x)), we state that conjugate estimates for Js(wτ )
and Js(w′

τ ) are also unbiased. For example the conjugate estimate to (6) is:

Js(w′′
τ ) =

τ∑
l=1

f0
p00

k0,1 . . . kl−1,l

p0,1 . . . pl−1,l
· hl (7)

Concordance conditions are different for every type of estimate and therefore
the densities (p0, p) that define corresponding Markov chains are different for
estimates (4), (6), (7) in the general case.
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4 Estimates of Comparative Complexity
in the Simplest Case

It is wellknown that the stochastic methods can be more useful for estimation
of separate functionals (h, ϕ) and for solving of equations in complicated space
regions and so on. A number of papers ([Dan95] - [Erm01a]) have shown
that the Monte-Carlo method can be more effective than the deterministic
methods also in case of soling S.L.A.E, but only for high-dimensional systems.
We’ll prove several new statements confirming this point of view below. Let’s
consider system

X = AX + F, X = (x1, . . . , xn)T , F = (f1, . . . , fn)T , A = ‖ai,j‖n
i,j=1.

We presume ρ(|A|) < 1, where ρ is spectral radius, and suppose Xm =
m∑

l=1

AlF .

When m goes to infinity Xm → XT – exact estimate of the system. Let’s fix
m and vector H = (h1, . . . , hn) and notice that

J∗
s,m =

r∑
l=1

fi0
p0i0

ai0,i1 . . . ail−1,il

p0i0pi0,i1 . . . pil−1,il

· hil
, (8)

where r = m if τ > m and r = τ if τ ≤ m, p0 and P are an initial distribution
and a matrix of transition probabilities both satisfying concordance conditions.
Thus (8) is an unbiased estimate of (H,Xm). Let’s choose such confidence
level p and such number of independent trajectory chains N that the mean

error 1
N

N∑
j=1

J∗
s,m(j) − (Xm, H) = δ(m,N) will belong the confidence interval

|δ(m,N)| < ε, where ε = |(H,XT − Xm)|. Then we estimate the number
of computational operations d(n) needed for direct computation of value

(H,
m∑

l=0

AlF ), and the number of computational operations p(n) needed for its

estimation with the Monte-Carlo method.
Here we suppose that modeling of the discrete distributions is performed

with the use of

a) the bisectional method
b) the Walker method with some necessary preliminary calculations. The

method demands O(ν(n))2 operations [Wal97].

Concerning matrix A we suppose that the average number of nonzero elements
in row is ν(n). Then the next theorem is valid.

Theorem 2. It exits such constants C1, C2 and C3 that the next inequality
takes place: In the case a)

p(n)
d(n)

≤ C1
Nlog2ν(n)
nν(n)

(9)
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In the case b)

p(n)
d(n)

= C2
ν(n)
m

+ C3
N

nν(n)
(10)

The theorem’s proof:

To proceed from
l∑

k=0

AkF to
l+1∑
k=0

AkF one obviously needs 2ν(n) · n + n

operations. Thus one needs m(2ν(n) · n+ n) operations to compute Xm. Then
we can conclude that to compute the average of estimates (8) one needs:

in case a) (log2ν(n) + 3)τ ·N ≤ mNlog2ν(n) operations (we neglect logical
and transmit operations). Thus

p(n)
d(n)

=
mNlog2ν(n)
mn(2ν(n) + 1)

=
N

n

log2ν(n)
2ν(n) + 1

in case b) it is known [Wal97] that the working time for efficient modeling
of each distribution takes (ν(n))2c1 operations, and therefore c1n(ν(n))2

operations as a whole. Then one need one operation of the use of a random
number’s generator and one operation of comparison – c2 operations. Hence,
p(n) = c1n(ν(n))2 + c2mN and

p(n)
d(n)

=
c1n(ν(n))2 + c2mN
mn(2ν(n) + 1)

=
c1(ν(n))2

m(2ν(n) + 1)
+

c2N

(2ν(n) + 1)n

Then (9) and (10) are evident.

Corollary 1. Suppose N and m are fixed values. Then fraction p(n)/d(n)
tends to zero when n tends to infinity in case ‘a’. In case ‘b’ this fraction tends
to c/m where c is some absolute constant.

In such a way, when sufficiently large systems are under consideration, the
Monte-Carlo method can be less laborious than the iterations method. From
expressions (9) and (10) one can deduct, that the previous statement is true if
n is commensurable with N . The well-known proportion N ∼ 1/ε2 obviously
remains valid.

One might find detailed analysis of these results under other assumptions
about iterations processes and error’s ε behavior in the papers [Dan95] -
[Erm01a].

5 Parallelism

We have just considered a problem of comparison of complexity in some classes
of deterministic and stochastic algorithms. It is natural to deduce, that one
can recommend stochastic algorithms for estimation of solution of systems
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with rather high dimensions and when no high accuracy is required. But for
all that we have not took into account such a important property of the
Monte-Carlo algorithms as natural parallelism. This property becomes more
and more important in view of the fast computer engineering development. The
property of parallelism, which we mention as natural, is peculiar to algorithms
of integral’s evaluation with the use of quadrature formulas. In our case it is

(u, h) ∼ 1
N

N∑
j=1

J(ωj
τ ),

where J(ωj
τ ) is one of estimates (4) - (8) calculated at j-th independent

realization of the Markov chain. But this case requires absolute integrability of
the estimate or existence of the iterative solution of majorant equation (5). This
condition can be rather strict. If iterative process ϕn+1 = Kϕn+|f | is divergent
while the process ϕn+1 = Kϕn + f converge, the following approach could be
used. At first, we calculate step by step ϕ1 = Kf + f , ϕ2 = K(Kf + f) + f ,
etc.; the calculation must be done with sufficient accuracy by the Monte-Carlo
method. Convergence of the majorant equation isn’t required in this case, but
one needs two other restrictions:

1. the value of ϕm must be stored before calculation of ϕm+1 for every m
(synchronization)

2. the number of realizations of estimate ϕm can be very large.

Below we will discuss several problems connected with the mentioned points.
Let’s consider the case of S.L.A.E. The general case of linear operator K can be
considered analogically provided we take into account works [Erm01b],[Erm02],
[Ada04]. Suppose Xm+1 = AXm + F (as in the previous case), but one uses
the Monte-Carlo method to multiply matrix A by the vector for every m. Then
one obtains:

Ξm+1 = ÃΞm + F (11)

where Ã is random matrix independent from Ξm, E(ÃΞm | Ξm) = AΞm and
ÃΞm is the average of N independent results of simulations. In the general
case N can depend on m but we are considering more simple situation. For
error’s vector εm+1 = Ξm+1 −Xm+1 one obtains

εm+1 = Aεm +∆(Xm + εm)

where ∆ = Ã−A. Provided equality Eεm = 0,m = 0, 1, . . . it is easy to obtain
a recurrent dependence for covariance of matrix εm. Namely

Covεm+1 = E(εm+1, ε
T
m+1) = ACovεmAT + E(∆Covεm∆T ) +∆XmX

T
m∆

T

(12)

We call the algorithm of ÃΞm computation stochastically stable if the norm
of matrix Covεm remains bounded with the growth of m. The following theorem
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is a natural conclusion from the previous notices, especially from equality (12).
Note that equality (12) one can interpret as equality

−−−→
Cm+1 = A−→

Cm +
−→
D ,

where
−→
Cm is n2-vector composed from columns of Covεm, A is n2 ×n2 matrix

determined by (12) and
−→
D is a vector independent from

−→
Cm.

Theorem 3. If a spectral radius of matrix A is strictly less than one then
such integer number N exists that the algorithm of Ξm+1 computation is
stochastically stable.

The proof is an obvious consequence of two facts. The first one consists that
elements of matrix E(∆Covεm∆T ) are of the same order as 1

N and ÃΞn is
calculated as an average of N simulated estimates of Ξn. The second fact
consists that the spectral radius of matrix continuously depends on its elements.

Let’s suppose now that one knows N0 that provides stochastic stability of
the algorithm. If one repeats independent calculations (with the use of different
random numbers) of estimates Xm while m is sufficiently large then one will
be able to estimate the final result as an average of these independent values.

Algorithm (11) also possesses the property of largegranular natural par-
allelism which is characterized by parameter N0. It should be noticed that
the Theorem 5.1 is rather close to the results described in works [Erm01b] -
[Ada04], where the property of stochastic stability was examined in application
to difference schemes. These works suggested some methods of N0 estimation.
One succeeds in construction of an effective algorithm with parallel struc-
ture for difference schemes connected with hyperbolic equations in partial
derivatives.

6 Biased and Unbiased Estimates

As we have just observed, the parallelism of the algorithms considered in the
previous point is strongly connected with unbiasedness of the solution estimates.
Here the unbiasedness implies the possibility of solution representation as an
average of some distribution (an integral with discrete measure) which is equal
to the possibility of approximate representation as a sum. Construction of
the unbiased estimated is more complicated in nonlinear case. The difficulties
are connected with the following circumstances. Suppose F(x) is a nonlinear

function, ξN = 1
N

N∑
j=1

ξj , where ξj are independent realizations of random

value ξ and a = Eξ, σ2 = V arξ. Then EF(ξN ) �= F(a). Presuming necessary
smoothness of function F one obtain

F(a) + F ′
(a)(ξN − a) +

F ′′
(a)

2!
(ξN − a)2 + · · ·
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and

EF(ξN ) = F(a) +
F ′′

(a)
2!

· σ
2

N
+O
(
N−3/2

)
(13)

One can neglect unbiasedness in equation (13) with the growth of N since

E (F(ξN ) − F(a))2 ∼ (F ′
(a))2

σ2

N
+O
(
N−3/2

)
.

Let’s suppose however that we dispose of N1 independent processors for
calculation of ξ(l)N1

, l = 1, . . . , N1 and F (l) = F(ξ(l)N1
), then average 1

N1
F (l) will

have the following bias:

F ′′
(a)
2

E

(
N

−3/2
1

N1∑
l=1

(ξ(l)N1
− a)2)

)
+O
(
N

−3/2
1

)
=

F ′′
(a)

2!
· σ

2

N1
+O
(
N

−3/2
1

)
This fact implies that the calculations with the small degree of accuracy but
with the use of great number (N1) of independent processors might lead to
the great value of bias. One can also conclude importance of construction of
unbiased estimates. Further we will discuss the methods of their construction
for solving of equations with polynomial nonlinearity in the form (1).

7 Equations with the Polynomial Nonlinearity

For equations written in the form

ϕ(x) = f(x) +
M∑
l=1

∫
kl(x, y1, . . . , yl)

l∏
j=1

(ϕ(yj)µ(dyj)) (modµ)

one can construct an analogue of estimate (4) provided existence of the iterative
solution of the majorant equation

ϕ(x) = |f(x)| +
M∑
l=1

∫
|kl(x, y1, . . . , yl)|

l∏
j=1

(ϕ(yj)µ(dyj))

The corresponding estimate is constructed over a trajectory of the branching
Markov chain, time is considered discrete and every particle might possess
0, 1, . . . ,M descendants at every consequent moment. Description of the corre-
sponding computational algorithm can be found in book [Erm89]. The analogue
of dual estimate (6) in nonlinear case is also discussed in this book. The corre-
sponding algorithm also has properties of natural parallelism similar to the
linear case.

Unfortunately, the analogue of the linear case with direct use of branching
processes takes place only for the simplest estimate (4).



MCQMC Algorithms for Solving some Classes of Equations 31

The problem can be solved by another way of construction of branching
trajectory. Let’s discuss the simplest case M = 2 in details. One can notice
that equation

ϕ = f + K1ϕ+ K2ϕϕ (14)

can be rewritten in form

ψl+1(x, x1, . . . , xl) = f(x)ψl(x1, . . . , xl)+
∫
k1(x, y)ψl+1(y, x1, . . . , xl)µ(dy)+

+
∫ ∫

k2(x, y, z)ψl+2(y, z, x1, . . . , xl)µ(dy)µ(dz), (15)

where ψl(x1, . . . , xl) =
l∏

j=1

ϕ(xj), l = 0, 1, 2, . . .. It follows from the definition

of ψ that

ψl(x1, . . . , xl) = ψl(xi1 , . . . , xil
), (16)

where i1, .., il is an arbitrary permutation of indexes 1, . . . , l.
Linear system (15) has matrix

A =

⎛⎜⎜⎝
K1 K2 0 0 .
f K1 K2 0 .
0 f K1 K2 .
. . . . .

⎞⎟⎟⎠
and right part (f, 0, 0, . . .)T .

The N.U.scheme applications determines the form of the Markov chain
transition probability matrix:

P =

⎛⎜⎜⎝
p1(x, y) p2(x, y, z) 0 0 .
p0(x) p1(x, y) p2(x, y, z) 0 .

0 p0(x) p1(x, y) p2(x, y, z) .
0 0 p0 . .

⎞⎟⎟⎠ (17)

Elements of this matrix satisfy concordance conditions and equation

p0(x) +
∫
p1(x, y)µ(dy) +

∫ ∫
p2(x, y, z)µ(dy)µ(dz) = 1.

The process under consideration can be described as the process of particles
“birth-death”. A row of matrix (17) describes behavior of L particle group in
point of time t. One of the particles is randomly chosen with equal probabilities.
If it is located in point x in point of time t, then in the point of time t+1 it can

(1) either die with probability p0(x),
(2) or go to point y with probability p1(x) =

∫
p1(x, y)µ(dy),
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(3) or give birth to two particles in points y and z with probability p2(x) =
1−p0(x)−p1(x). In this case the particles y, z are distributed with density
p2(x, y, z)/p2(x).

The other particles don’t change their coordinates while time changes from
t to t + 1. One can obviously choose such p0 that all particles will die with
probability 1 after a finite number of iterations.

Since h(x) is given, the estimates of functional (h, ϕ) are constructed
analogously to the above-mentioned linear case (system (15) is linear).

The same reasoning can be applied to a system dual to (15), this system
will be characterized by matrix AT and right part (h(x), 0, 0, . . .). Similar
considerations concerning AT lead to a model of “collision” process with two
particles which can stick together.

Since our constructed estimated are unbiased, they can be used in a scheme
analogical to the one considered in section 4 of this article. This approach
permits construction of “large granular” parallel algorithm.

8 Some Notes about the Quasi-Monte Carlo

The recent results concerning the modified method’s application to the very
simple case of solving of linea algebraic systems are presented below.

It should be noticed that quasi-random sequences could be used in the
scheme of the Monte-Carlo methods and in this case they preserve parallelism
which is a very important advantage the methods.

Let’s notice several peculiar properties of the Quasi Monte-carlo methods
application to solving of linear algebraic systems.

Suppose we have fixed some integer s ≥ 1. Then estimate (6) can be
presented in form

min(s,τ)∑
k=0

hi0

p0i0

ai0,i1 . . . aik−1,ik

pi0,i1 . . . pik−1,ik

· fik
+

τ∑
k=s+1

hi0

p0i0

ai0,i1 . . . aik−1,ik

pi0,i1 . . . pik−1,ik

· fik
.

Let’s denote the first sum by S1 and the second by S2. Due to the definition
the second sum will be considered equal to zero if s = τ . Then one obtains

ES1 =
s∑

k=1

HAkF and ES2 =
∞∑

k=s+1

HAkF . The last component (ES1) can

be considered as an integral over trajectories with length s. Therefore the
uniformly distributed in the s-dimensional hypercube quasi-random numbers
can be used foe modeling the first s points of the Markov chain’s trajectory.
If the trajectory length is greater than s then pseudorandom numbers can
be used for modeling other points of the trajectory. In this case the error
decreases like c1 lnsN

N + c2√
N

. This approach was suggested before in a number o
papers concerning the Quasi Monte-Carlo application to solving of the integral
equations.
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Researches in article [Erm06] showed that one can improve the results by
lnsN times with the use of the “large granular” modification of the methods
for linear system’s solving (section (4) of this article). Indeed we use only one-
dimensional quasirandom sequences for solving of S.L.A.E. In the general case of
integral equation one needs r-dimensional points if X ∈ Rr Note in conclusion
that properties of parallelism and possibility of use of the QMC methods made
the MC method a very powerful tool in computational mathematics (even for
solving some classes of classical computational problems).
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Summary. A review and comparison is presented for the use of Monte Carlo and
Quasi-Monte Carlo methods for multivariate Normal and multivariate t distribution
computation problems. Spherical-radial transformations, and separation-of-variables
transformations for these problems are considered. The use of various Monte Carlo
methods, Quasi-Monte Carlo methods and randomized Quasi-Monte Carlo methods
are discussed for the different problem formulations and test results are summarized.

1 Introduction

Modern statistical computations often require multivariate probabilities. For
continuous distributions, these probabilities are defined by multivariate in-
tegrals of multivariate density functions over application specific integration
regions. The most important multivariate continuous distribution is the multi-
variate normal distribution. This review will consider the multivariate normal
(MVN) distribution for hyper-rectangular integration regions. This type of
MVN distribution is defined [To90] by

Φ(a,b,Σ) =
1√|Σ|(2π)m

b1∫
a1

b2∫
a2

· · ·
bm∫

am

e−
1
2xtΣ−1

xdx, (1)

where x = (x1, x2, . . . , xm)t, −∞ ≤ a < b ≤ ∞, dx = dxmdxm−1 · · · dx1, and
Σ is a symmetric positive definite m×m (covariance) matrix.

A second multivariate distribution which will be considered is the multi-
variate t (MVT) distribution. For a hyper-rectangular integration region, the
MVT distribution is defined [To90] by

T(a,b,Σ, ν) =
Γ (ν+m

2 )

Γ (ν
2 )(νπ)

m
2
√|Σ|

b1∫
a1

b2∫
a2

· · ·
bm∫

am

(1 +
xtΣ−1x
ν

)−
ν+m

2 dx. (2)
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An equivalent MVT form (see [Co54]), which is useful for numerical computa-
tion, is given as an integral of an MVN distribution, by

T(a,b,Σ, ν) =
21− ν

2

Γ (ν
2 )

∞∫
0

sν−1e−
s2
2 Φ(

sa√
ν
,
sb√
ν
,Σ)ds. (3)

There are now highly accurate and fast methods available for MVN and
MVT probability computations when m < 4, but simulation methods are
usually required for higher dimensional problems. The purpose of this paper is
to describe how Monte Carlo (MC), quasi-Monte Carlo (QMC), and randomized
QMC (MCQMC) methods can be used for efficient approximation of MVN and
MVT probabilities. Most currently available simulation methods are designed
for approximate integration over the unit hyper-cube Cm = [0, 1]m. Therefore,
an important aspect of the construction of efficient MCQMC methods for MVN
and MVT computations is the transformation of the MVN and MVT problems
in the standard forms (1), (2), (3), into integrals over Cm. A significant part of
this paper will be the description of transformation methods for these problems.
The discussion will begin with a description of transformations based on an
initial transformation to a spherical-radial coordinate system. This will be
followed a discussion of transformations that result in a separation of the
variables.

All of the transformations described in this paper begin with a transfor-
mation which uses the Cholesky decomposition of the covariance matrix. Let
Σ = LLt, where is L is the m ×m lower triangular Cholesky factor for Σ.
This Cholesky factor is then used to change variables from x to y with x = Ly,
so that equation (1) becomes

Φ(a,b,Σ) =
1√

(2π)m

∫
a≤Ly≤b

e−
yty
2 dy (4)

where xtΣ−1x = yty, with dx = Ldy =
√|Σ|y. There is a similar expression

for the MVT distribution (2) which becomes

T(a,b,Σ, ν) =
Γ (ν+m

2 )
Γ (ν

2 )(νπ)
m
2

∫
a≤Ly≤b

(1 +
yty
ν

)−
ν+m

2 dx. (5)

2 Spherical-Radial Methods

This section considers the use of an additional transformation which will be
called a “spherical-radial” transformation. The MVN case will be considered
first. The “spherical-radial” transformation methods for MVN problems were
first described and analyzed in detail by Deák (see [De80, De86, De90]).
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2.1 The MVN Spherical-Radial Transformation

By letting y = rz, with ||z||2 = 1, so that yty = r2 and dy = rm−1drdz, and
reorganizing the normalization constant, equation (4) becomes

Φ(a,b,Σ) =
Γ (m

2 )
2π

m
2

∫
||z||2=1

21−m
2

Γ (m
2 )

∫
a≤rLz≤b

rm−1e−
r2
2 drdz

=
Γ (m

2 )
2π

m
2

∫
||z||2=1

21−m
2

Γ (m
2 )

ρu(a,b,L,z)∫
ρl(a,b,L,z)

rm−1e−
r2
2 drdz,

where ρl(a,b, L, z) and ρu(a,b, L, z) are distances from the origin to points
where a vector in the z direction intersects the integration region. If we let
v = Cz, the limits for the r-variable integration are given by

ρl(z) = max{0,max
vi>0

{ai/vi},max
vi<0

{bi/vi}}

and
ρu(z) = max{0,min{min

vi>0
{bi/vi},min

vi<0
{ai/vi}}}.

If the origin is inside the integration region then ρl(a,b, L, z) = 0. The equation
for Φ(a,b,Σ) can be rewritten as

Φ(a,b,Σ) =
Γ (m

2 )
2π

m
2

∫
||z||2=1

F (a,b, L, z)dz, (6)

where F (a,b, L, z) is given by

F (a,b, L, z) =
21−m

2

Γ (m
2 )

ρu(a,b,L,z)∫
ρl(a,b,L,z)

rm−1e−
r2
2 dr.

Given a, b, L and z, F (a,b, L, z) can be computed using differences of uni-
variate χ distribution function values, with χν(u) defined by

χν(u) =
21−m

2

Γ (m
2 )

u∫
0

sν−1e−
s2
2 ds.

This is a standard statistical distribution which can be computed with standard
statistical software. The problem of estimating Φ(a,b,Σ) reduces to the
problem of integration of F over Um, the surface of the unit m-sphere. A
simple N-point Monte-Carlo method would use

Φ(a,b,Σ) ≈ 1
N

N∑
i=1

F (a,b, L, zi),

where the points zi are chosen randomly (see [Dv86]) from the surface of Um.
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In order to easily use quasi-random point sets, a transformation from Cm−1

to Um is needed. A good transformation for this is given in the book by Fang
and Wang [FW94]. This transformation from a point w ∈ Cm−1 to a z ∈ Um,
is defined by

zm−2i+2(w) = sin(2πwm−2i+1)

√
1 − w

2
m−2i

m−2i

i−1∏
k=1

w
1

m−2k

m−2k

zm−2i+1(w) = cos(2πwm−2i+1)

√
1 − w

2
m−2i

m−2i

i−1∏
k=1

w
1

m−2k

m−2k

for i = 1, 2, . . . l, where l = �m
2 � − 1, and ending with

z2(w) = sin(2πw1)
l∏

k=1

w
1

m−2k

m−2k and z1(w) = cos(2πw1)
l∏

k=1

w
1

m−2k

m−2k,

when m is even, or ending with

z3(w) = (2w1 − 1)
l∏

k=1

w
1

m−2k

m−2k,

z2(w) = 2 sin(2πw2)
√
w1(1 − w1)

l∏
k=1

w
1

m−2k

m−2k

and

z1(w) = 2 cos(2πw2)
√
w1(1 − w1)

l∏
k=1

w
1

m−2k

m−2k,

when m is odd. This transformation has a constant Jacobian, so an MC
algorithm for the MVN problem, based on uniform Cm−1 points, uses

Φ(a,b,Σ) ≈ 1
N

N∑
k=1

F (a,b, L, z(wk)), (7)

with all wi,k ∼ Uniform(0, 1). A QMC algorithm for the MVN problem replaces
the MC {wk} point set with an appropriately chosen QMC point set. Another
transformation, with a simpler formula, but an extra integration variable and a
higher computational cost, uses w ∈ Cm followed by z = Φ−1(w)/||Φ−1(w)||2,
with Φ−1(w) applied component-wise (see [Dv86]).

2.2 MVT Spherical-Radial Transformation

The use of spherical-radial transformations for MVT computations have been
discussed and analyzed by Somerville ([So97, So98a, So98b, So99]) and Genz
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and Bretz ([GB00, GB01, GB02]). After the spherical-radial transformation
y = rz, with ||z||2 = 1, equation (2) becomes

T(a,b,Σ, ν) =
Γ (m

2 )
2π

m
2

∫
||z||2=1

2Γ (ν+m
2 )

Γ (m
2 )Γ (ν

2 )ν
m
2

∫
a≤rLz≤b

rm−1

(1 + r2

ν )
ν+m

2

drdz

=
Γ (m

2 )
2π

m
2

∫
||z||2=1

2Γ (ν+m
2 )

Γ (m
2 )Γ (ν

2 )ν
m
2

ρu(a,b,L,z)∫
ρl(a,b,L,z)

rm−1

(1 + r2

ν )
ν+m

2

drdz,

which can be rewritten as

T(a,b,Σ, ν) =
Γ (m

2 )
2π

m
2

∫
||z||2=1

G(a,b, L, ν, z)dz.

with G(a,b, L, ν, z) defined by

G(a,b, L, ν, z) =
2Γ ( ν+m

2 )
Γ (m

2 )Γ (ν
2 )ν

m
2

ρu(a,b,L,z)∫
ρl(a,b,L,z)

rm−1

(1 + r2

ν )
ν+m

2

dr. (8)

This function can be computed using the univariate distribution

g(u) =
2Γ ( ν+m

2 )
Γ (m

2 )Γ (ν
2 )ν

m
2

∫ u

0

rm−1

(1 + r2

ν )
ν+m

2

dr.

This is a standard statistical distribution (related to the “F” distribution,
and often transformed to a Beta distribution), which can be computed using
standard statistical software.

If the transformation from Cm−1 given in the previous section is used, then
MC or QMC approximations to T(a,b,Σ, ν) are given by

T(a,b,Σ, ν) ≈ 1
N

N∑
k=1

G(a,b, L, ν, z(wk)), (9)

for a selected set of MC or QMC points {wk}, with each wk ∈ Cm−1.
An alternate spherical radial approximation method can be based on the

definition for T(a,b,Σ, ν) given by equation (3). After the spherical-radial
transformation is used with this equation,

T(a,b,Σ, ν) =
21− ν

2

Γ (ν
2 )

∞∫
0

sν−1e−
s2
2
Γ (m

2 )
2π

m
2

∫
||z||2=1

F (
sa√
ν
,
sb√
ν
, L, z)dzds.
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Then MC or QMC approximations to T(a,b,Σ, ν) are given by

T(a,b,Σ, ν) ≈ 1
N

N∑
k=1

F (
χ−1

ν (wkm)a√
ν

,
χ−1

ν (wkm)b√
ν

, L, ν, z(wk)). (10)

Because of the extra s integration variable, the wk points in this formula have
an extra component wkm ∈ [0, 1], which is transformed to the s interval [0,∞)
using the inverse χν transformation.

The use of various types of antithetic variates, developed by Deák [De90],
and described in the previous section for MVN problems, can also be used
for spherical radial computations for MVT problems if the G and F functions
in equations (9) and (10) are replaced by the appropriate antithetic variable
sums.

3 Separated-Variable Methods

Separated-variable methods for MVN problems were first studied by Genz
[Ge92], Geweke [Ge91] and Hajivassiliou [Ha93, HMR96], and later by Vijver-
berg [Vi96, Vi97, Vi00]. These methods start by using the Cholesky decompo-
sition coefficients li,j to produce explicit integration limits for the y variables,
given by

b′i(y1, . . . , yi−1) = (bi −
i−1∑
j=1

li,jyj)/li,i,

and

a′i(y1, . . . , yi−1) = (ai −
i−1∑
j=1

li,jyj)/li,i,

for i = 1, 2, . . . ,m.

3.1 MVN Separated-Variable Methods

In the MVN case, equation (4) becomes

Φ(a,b,Σ) =
1√

(2π)m

b′1∫
a′
1

e−
y2
1
2

b′2(y1)∫
a′
2(y1)

e−
y2
2
2 · · ·

b′m(y1,...,ym−1)∫
a′

m(y1,...,ym−1)

e−
y2

m
2 dy.

Then, the univariate normal distribution Φ(y), defined by

Φ(y) =
1√
2π

y∫
−∞

e−
s2
2 ds,
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is used to transform the y variables to z variables using yi = Φ−1(zi) for
i = 1, . . . ,m. Now,

Φ(a,b,Σ) =

Φ(b′1)∫
Φ(a′

1)

Φ(b′2(Φ
−1(z1)))∫

Φ(a′
2(Φ

−1(z1)))

· · ·
Φ(b′m(Φ−1(z1),...,Φ

−1(zm−1)))∫
Φ(a′

m(Φ−1(z1),...,Φ−1(zm−1)))

dz.

A final set of transformations to [0, 1] w variables is defined by

zi = di(w1, . . . , wi−1) + (ei(w1, . . . , wi−1) − di(w1, . . . , wi−1))wi,

so that dzi = (ei − di)dwi, with

ei(w1, . . . , wi−1) = Φ((bi −
i−1∑
j=1

li,jΦ
−1(dj + (ej − dj)wj))/li,i)

and

di(w1, . . . , wi−1) = Φ((ai −
i−1∑
j=1

li,jΦ
−1(dj + (ej − dj)wj))/li,i),

for i = 1, 2, . . . ,m. The result is a formula for Φ(a,b,Σ) as an integral over
Cm given by

Φ(a,b,Σ) = (e1 − d1)
1∫

0

(e2(w1) − d2(w1))

· · ·
1∫

0

(em(w1, . . . , wm−1) − dm(w1, . . . , wm−1))

1∫
0

dw.

Note: the innermost integral is 1 exactly, so this is an m-1-dimensional inte-
gration problem. MC or QMC approximations to Φ(a,b,Σ) can computed
using

Φ(a,b,Σ) ≈ 1
N

N∑
i=k

D(wk), (11)

where

D(w) = (e1 − d1) · · · (em(w1, . . . , wm−1) − dm(w1, . . . , wm−1)),

and the {wk} point set is an MC or QMC point set from Cm−1.
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3.2 MVT Separated-Variable Methods

Separated-variables for MVT problems were first carefully studied by Genz
and Bretz [GB99, GB01, GB02]. In this case, if explicit a′ and b′ limits are
introduced in equation (5),

T(a,b,Σ, ν) = K(m)
ν

b′1∫
a′
1

b′2(y1)∫
a′
2(y1)

· · ·
b′m(y1,...,ym−1)∫

a′
m(y1,...,ym−1)

(1 +
yty
ν

)−
ν+m

2 dy,

with K(m)
ν = Γ (ν+m

2 )/Γ (ν
2 )(νπ)

m
2 . The variables are still not separated, but

the formula

(1 +

∑m
j=1 y

2
j

ν
) = (1 +

y21
ν

)(1 +
y22

ν + y21
) · · · (1 +

y2m

ν +
∑m−1

j=1 y
2
j

)

can be used to rewrite T(a,b,Σ, ν) as

T(a,b,Σ, ν) = K(m)
ν

b′1∫
a′
1

1

(1 + y2
1
ν )

m+ν
2

b′2(y1)∫
a′
2(y1)

1

(1 + y2
2

ν+y2
1
)

m+ν
2

· · ·
b′m(y1,...,ym−1)∫

a′
m(y1,...,ym−1)

1

(1 + y2
m

ν+
∑m−1

j=1 y2
j

)
m+ν

2

dy

This formula motivates (see [GB99]) an extra set of transformations

yi = ui

√
ν +
∑i−1

j=1 y
2
j

ν + i− 1
, with dyi = dui

√
ν +
∑i−1

j=1 y
2
j

ν + i− 1
, i = 1, . . . ,m.

After defining the rescaled limits

ãi = a′i

√
ν + i− 1

ν +
∑i−1

j=1 y
2
j

, and b̃i = b′i

√
ν + i− 1

ν +
∑i−1

j=1 y
2
j

, for i = 1, . . . ,m,

the resulting separated-variable form equation for T(a,b,Σ, ν) is

T(a,b,Σ, ν) =

b̃1∫
ã1

K
(1)
ν

(1 + u2
1

ν )
1+ν
2

· · ·
b̃m(y1,...,ym−1)∫

ãm(y1,...,ym−1)

K
(1)
ν+m−1

(1 + u2
m

m+ν−1 )
m+ν

2

du.
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The transformations ui = t−1
ν+i−1(zi), for i = 1, . . . ,m, where tν(u) is the

standard univariate Student-t distribution defined by

tν(u) = K(1)
ν

u∫
−∞

(1 +
s2

ν
)−

1+ν
2 ds.

can then be used to transform to [0, 1] variables. Then, T(a,b,Σ, ν) becomes

T(a,b,Σ, ν) =

tν(b̃1)∫
tν(ã1)

· · ·
tν+m−1(b̃m(t−1

ν (z1),...,t
−1
ν+m−2(zm−1)))∫

tν+m−1(ãm(t−1
ν (z1),...,t

−1
ν+m−2(zm−1)))

dz.

Finally, the transformations to the wi’s are given by zi = d̃i +(ẽi − d̃i)wi, with

d̃i(w1, . . . , wi−1) = tν+m−1(ãm(t−1
ν (z1(w1)), . . . , t−1

ν+i−2(zi−1(wi−1))))

and

ẽi(w1, . . . , wi−1) = tν+m−1(b̃m(t−1
ν (z1(w1)), . . . , t−1

ν+i−2(zi−1(wi−1)))),

for i = 1, 2, . . . ,m, so that

T(a,b,Σ, ν) = (ẽ1 − d̃1)
1∫

0

(ẽ2(w1) − d̃2(w1))

· · · (ẽm(w1 . . . wm−1) − d̃m(w1 . . . wm−1))

1∫
0

dw.

Note: the innermost integral is again 1 exactly, so this is also an m-1-
dimensional integration problem. MC or QMC approximations to T(a,b,Σ, ν)
can computed using

T(a,b,Σ, ν) ≈ 1
N

N∑
i=k

E(wk), (12)

where

E(w) = (ẽ1 − d̃1) · · · (ẽm(w1, . . . , wm−1) − d̃m(w1, . . . , wm−1)),

and {wk} is an MC or QMC point set from Cm−1.
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An alternate separated-variable approximation method, based on alternate
definition for T(a,b,Σ, ν) given by equation (3), can also be described. After
the separated-variable transformation is used with this equation,

T(a,b,Σ, ν) =
21− ν

2

Γ (ν
2 )

∞∫
0

sν−1e−
s2
2

b̂1(s)∫
â1(s)

e−
y2
1
2 · · ·

b̂m(s,y1,...,ym−1)∫
âm(s,y1,...,ym−1)

e−
y2

m
2 dyds,

with

âi(s, y1. . . . , yi−1) =
s√
ν

(ai −
i−1∑
j=1

ci,jyj)/ci,i,

and

b̂i(s, y1. . . . , yi−1) =
s√
ν

(bi −
i−1∑
j=1

ci,jyj)/ci,i.

Then, using ẑi = d̂i + (êi − d̂i)wi,

T(a,b,Σ, ν) =
21− ν

2

Γ (ν
2 )

∞∫
0

sν−1e−
s2
2 (ê1(s,w) − d̂1(s,w))

1∫
0

· · · (êm(s,w) − d̂m(s,w))

1∫
0

dwds,

where
d̂i(s,w) = Φ(âm(s, Φ−1(ẑ1(w1)), . . . , Φ−1(ẑi−1(wi−1)))),

and
êi(s,w) = Φ(b̂m(s, Φ−1(ẑ1(w1)), . . . , Φ−1(ẑi−1(wi−1)))).

for i = 1, 2, . . . ,m. The innermost w component integral has value one, so
the T integral is determined as an m-dimensional integral. An MC or QMC
algorithm for this formulation of the MVT problem uses

T(a,b,Σ, ν) ≈ 1
N

N∑
k=1

m∏
i=1

(êi(χ−1(wm,k),w) − d̂i(χ−1(wm,k),w)) (13)

4 MCQMC Algorithms for MVN and MVT

There have been many types of Monte Carlo and quasi-Monte Carlo methods
that have been used for the transformed integrands described in the previous
sections. The use of Monte Carlo methods will be discussed first.



Statistical Distribution MCQMC 45

4.1 MC Algorithms for MVN and MVT Computations

All of the transformed problems discussed so far, can be approximated using
MC methods for integrals of the form

I(f) =
∫ 1

0

∫ 1

0

. . .

∫ 1

0

f(v)dv, (14)

with f is appropriately chosen, and v has length m or m− 1. Simple antithetic
variate methods, where f(v) is replaced by (f(v) + f(1 − v))/2 will usually
improve convergence.

The use of more sophisticated types of antithetic variates was described
Deák [De90] for the spherical-radial transformed MVN algorithms. Let Z be an
m×m uniformly random (with Haar measure, see Stewart [St90]) orthogonal
matrix with columns {zj}, and define

Sn(Z) =
1

2n
(
m
n

) ∑
s

∑
1≤j1<···<jn≤m

F (a,b, L,
∑n

l=1 slzjl√
n

),

where s = (s1, s2, . . . , sn) = (±1, . . . ,±1) and the outer sum is taken over the
2n possible sign combinations for the components of s. The sample points
used by Sn(Z) are very evenly spread over the surface of the unit m-sphere.
For MVN problems, Deák found that the larger values for the parameter
n (which must satisfy n ≤ m) can provide values for Sn with significantly
smaller variances. But the larger the n value, the higher the computational
cost for Sn, so these two features of the Sn sums must be balanced, for
practical computations. Deák recommended values of n = 1, 2 or 3 for typical
computations. MVN estimates based on Sn are obtained using

Φ(a,b,Σ) ≈ 1
N

N∑
k=1

Sn(Zk). (15)

These methods can also be written in the form given by equation (14), because
each random orthogonal matrix can be generated from a sequence of m(m−1)

2

Uniform(0, 1) numbers (see [FW94]), but v will have length m(m−1)
2 . These

Deák antithetic variate methods can also be used for MVT spherical-radial
transformed algorithms.

The standard error can be used to provide an error estimate for all of
the algorithms for MC methods. To standardize notation, let ŜN denote an
approximation to Φ or T obtained using N integrand values {f(vk)}N

k=1,with

ŜN =
1
N

N∑
k=1

f(vk).
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The standard error σ2
N , for ŜN , is defined using

σ2
N =

1
N(N − 1)

N∑
k=1

(f(vk) − ŜN )2.

The error estimate ε̂ = 3σN provides an approximate confidence level of 99%.
One problem with the SR transformation algorithms is that F (a,b, L, ν, z)

(or G(a,b, L, ν, z)) as a function of z, although continuous, is not very smooth,
because of sharp corners of the integration region defined by a ≤ rLz ≤ b.
This problem can produce approximations with large variation and slower
convergence for SR algorithms for MVN and MVT problems (see [Ge93]),
[GB02]). For some combinations of a and b, (e.g. if 0 < a < b) many F or G
values will be zero, and this can cause further reductions in the efficiency of
the SR algorithms.

Prioritization of Variables

The MVN and MVT problems defined initially by equations (1), (2), and (3),
actually have m! equivalent definitions each, based on the m! possible ways
that the variables can be permuted. The choice of a particular permutation
determines the Cholesky factor L for Σ and, after all of the transformations
have be completed for a particular method, could affect the overall variation
in the function that is used for simulation in the equations (7), (9), (10), (11),
(12), and (13). Schervish [Sc84] originally suggested that the computation of
MVN probabilities should be easier for numerical integration methods if the
variables are reordered (and appropriate rows and columns of Σ are permuted)
so that the innermost integrals have the larger integration intervals. This
sorting heuristic often has the effect that the innermost integrals have expected
value closer to one, thereby reducing the overall variation in the integrand.
Gibson, Glasbey and Elston [GG94], suggested an improved prioritization of
the variables, which will now be briefly described.

Using the MVN problem definition given by equation ((4)), the first
(outermost) integration variable is chosen by selecting a variable i where
min1≤i≤m{Φ(bi/

√
σi,i) − Φ(ai/

√
σi,i)} is achieved. The limits and rows and

columns of Σ for variables 1 and i are interchanged. Then the first column
of the Cholesky decomposition L of Σ is computed using l1,1 = √

σ1,1 and
li,1 = σi,1/l1,1, for i = 2, . . . ,m, and the expected value for the y1 is determined
using

y1 =
( b1∫

a1

se−
s2
2√

2π
ds

)
/
(
Φ(b1) − Φ(a1)

)
.

Note: this weighted 1-d Normal integral has an easy analytic evaluation

using
b∫

a

se−
s2
2 ds = e−

a2
2 − e− b2

2 . Given this expected value for y1, the second
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integration variable is chosen by selecting a variable i where

min
2≤i≤m

{
Φ
( bi − li,1y1√

σi,i − l2i,1

)
− Φ
( ai − li,1y1√

σi,i − l2i,1

)}
is achieved. The integration limits, rows and columns of Σ, and rows of L for
variables 2 and i are interchanged. Then the second column of L is computed
using l2,2 =

√
σ2,2 − l22,1 and li,2 = (σi,2 − l2,1li,1)/l2,2, for i = 3, . . . ,m, and

the expected value for y2 is computed using

y2 =
( b̃2∫

ã2

se−
s2
2√

2π
ds

)
/
(
Φ(b′2) − Φ(a′2)

)
.

At a general stage j, given the expected values for y1, y2, . . . , yj−1, the jth
integration variable is chosen by selecting a variable i, where

min
j≤i≤m

{
Φ
( bi −∑j−1

k=1 li,kyk√
σi,i −∑j−1

k=1 l
2
i,k

)
− Φ
( ai −∑j−1

k=1 li,kyk√
σi,i −∑j−1

k=1 l
2
i,k

)}
is achieved. The integration limits, rows and columns of Σ, and rows of L for
variables j and i are interchanged. Then the jth column of L is computed

using lj,j =
√
σj,j −∑j−1

k=1 l
2
j,k and li,j = (σi,j −∑j−1

k=1 lj,kli,k)/lj,j , for i =
j + 1, . . . ,m, and yj is computed using

yj =
( b̃2∫

ã2

se−
s2
2√

2π
ds

)
/
(
Φ(b′j) − Φ(a′j)

)
.

The completem−1 stage process has overall cost O(m3), which is not significant
compared to the rest of the computation cost for the methods discussed here,
and is therefore a relatively cheap preconditioning step that can be used with
the algorithms.

With this variable sorting method, the variables are sorted so that the
innermost integrals have the largest expected integration intervals. This method
uses a, b and Σ in the sorting process, and it should therefore further increases
the likelihood that the innermost integrals have values close to one and improve
the convergence of the numerical integration methods. Numerical experiments
have shown that variable permutations can often significantly reduce the
overall variation of the final integrand for many MVN problems. The Gibson,
Glasbey and Elston method can be generalized to MVT problems, and this
generalization was described in detail in [GB02].
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4.2 QMC Algorithms for MVN and MVT Computations

Tests by Beckers and Haegemans [BH92], and by Genz [Ge93], for MVN
problems demonstrated that the performance of MC MVN methods could
usually be improved if the sets of (pseudo-)random numbers used by the
MC methods were replaced by appropriate sets of quasi-random numbers. In
order to construct QMC MVN and MVT methods, the Uniform(0, 1) random
numbers for the MC methods are replaced by appropriately chosen sets of
Quasi(0, 1) random numbers. However, simple QMC methods do not provide
the statistically robust (standard) error estimates that MC methods provide, so
some type of randomization is needed for practical QMC algorithms. There have
been tests by many researchers investigating the combination of different QMC
algorithms with different randomizations (see [BH92, Ge93, GB02, GDS02,
HH97, HMR96, HH97, SA04], also [LL00] for finance problems). The most
comprehensive tests comparing different QMC methods for MVN problems
were completed by Sandor and Andras [SA04], mostly for small sample size,
but m as large as 50, where lattice rule QMC methods had the best overall
performance.

The extensive Genz and Bretz [GB02] MVT tests focussed on comparing
separated-variable and spherical-radial methods with various types of MC and
QMC algorithms. The MCQMC(!) methods that generally had the best overall
performance over the range of dimensions 5-20, used approximations to I(f)
in the form

ŜN,P =
1
N

N∑
i=1

1
2P

P∑
j=1

(f(|2{pj + wi} − 1|) + f(1 − |2{pj + wi} − 1|))

≡ 1
N

N∑
i=1

QP (wi). (16)

In this definition, {x} denotes the vector obtained by taking the fractional
part of each of the components of x, the random shifts wi have components
wk,i ∼ Uniform(0, 1) and the point set {pj}P

j=1, for prime P, is a set of good
lattice rule points (see [SJ94]). The formula (16) uses simple antithetic variates,
and the “periodizing” transformation |2x−1|, where 1 = (1, 1, . . . , 1)t, (because
lattice rules have better convergence properties for periodic integrands. The
standard error σN for these approximation (16) can be determined using

σ2
N =

1
N(N − 1)

N∑
i=1

(QP (wi) − ŜN,P )2.

N is usually small (say 8-10), because the most significant performance im-
provement for the ŜN,P type of approximation comes from the use of the
QMC method, where an approximate O(1/P ) error behavior is predicted and
often observed. With this choice for N , ασN , with α in the 3-4 range, usually
provides a robust error estimate for ŜN,P .
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The MVN tests by Genz [Ge93] and MVT tests by Genz and Bretz [GB02]
showed that the performance of MCQMC methods based on separated-variable
transformations have much better performance than the methods that use the
spherical-radial transformations, although Somerville [So99] has provided some
spherical-radial implementations which are very effective for some specialized
(multiple comparison problem) MVT computations. The [GB02] tests used sets
of 100 random MVT problems with randomly generated correlation matrices,
random integration limits (where −∞ < a < 0 < b <∞), random integer ν’s
∈ [1, 10

√
m] and m = 4 − 20. The tests with “automatic” algorithms based

on (16) (with prioritized variables) requested an accuracy level ε and then
determined the time needed for a particular algorithm to produce a result
at that accuracy level (as estimated by the algorithm). The overall result
was that MCQMC separated-variable algorithms were usually significantly
more efficient than spherical-radial MCQMC algorithms, with differences that
became more pronounced with increasing m and decreasing ε. For example,
at accuracy level ε = 10−3, the separated-variable-normal transformation
(13) algorithm was approximately twice as fast for m = 6 compared to the
spherical-radial (8) algorithm, and for m = 20, the separated-variable-normal
algorithm was approximately 10 times faster. These algorithms used 3.5σ8

for error estimates, and the reliability of the algorithms was also tested, with
average correct digits approximately 30% more than requested correct digits.
Spherical-radial algorithms with more complicated symmetrizations based on
(15), with n = 1 and n = 2, were significantly less efficient than those which
used equation (8) for the m’s tested (m = 4−20). The Genz and Bretz [GB02]
MVT tests also showed that the MCQMC algorithms which used the alternate
MVT definition (3) (instead of (2)) were more efficient, in spite of the extra
integration variable, because the m-1 different Φ−1 values for each integration
point for (3) require significantly less time (1/2-1/5) than the t−1 values for
the (2) form of the MVT problem. Similar results (but limited to m ≤ 14)
were reported for the MVN problem by Genz [Ge93]. Results for a simple
acceptance-rejection (“hit or miss”) algorithm were also provided with both
sets of tests ([Ge93] and [GB02]) but this method was very inefficient compared
to other methods tested. There have not been any significant tests completed
for problems where m is very large (e.g. m = 100 − 1000), where it would
be interesting to investigate whether the predicted approximate O(1/P ) time
complexity is achieved. With currently available software it is now possible
to compute typical MVN and MVT probabilities with m ≤ 20 to 3-5 digit
accuracy in less than a second of computer workstation time.

Software implementations in Matlab, Fortran 77 and Fortran 90 for MVN
and MVT probabilities for MCQMC separated-variable algorithms which use
the formula (16) are available from the Genz website at

www.math.wsu.edu/faculty/genz .
This includes software for problems where the covariance matrix Σ is singular,
and related problems where the integration region is defined by a set of linear
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inequalities. These problems were not considered in this paper, but efficient
separated-variable methods can also be applied to these problems [GK99].

5 Concluding Remarks

Two methods, spherical-radial and separated-variable, were considered for the
transformation of MVN and MVT probabilities for hyper-rectangular regions
to problems that could be posed as multi-dimensional integrals over a unit
hyper-cube. Test results were reviewed, which showed that the separated-
variable transformed MVN and MVT probabilities can be most efficiently
approximated with QMC methods using lattice rules. For practical calculation,
which require robust error estimates, these QMC methods must be combined
with MC methods; the results are efficient MCQMC methods for MVN and
MVT probabilities. An interesting question for current research is whether
recent work on efficient methods for the construction of lattice rules for weighted
function spaces (see e.g. [Sl02, NC06]) could lead to the construction of better
lattice rules for MVN and MVT problems.
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Budapest, Chapter 7, 1990.

[Dv86] L. Devroye. ‘Non-Uniform Random Variate Generation’ Springer-Verlag,
Berlin, 1986.

[FW94] K.-T. Fang and Y. Wang. Number-Theoretic Methods in Statistics, Chap-
man and Hall, London, pp. 167–170, 1994.

[GDS02] H. I. Gassmann, I. Deák, and T. Szántai. ‘Computing Multivariate Normal
Probabilities: a New Look’, J. Comp. Graph. Stat. 11, pp. 920–949, 2002.

[Ge92] A. Genz. ‘Numerical Computation of the Multivariate Normal Probabili-
ties’, J. Comput. Graph. Stat. 1, pp. 141–150, 1992.

[Ge93] A. Genz. ‘A Comparison of Methods for Numerical Computation of
Multivariate Normal Probabilities’, Computing Science and Statistics 25,
pp. 400–405, 1993.

[GB99] A. Genz and F. Bretz. Numerical Computation of Multivariate t Proba-
bilities with Application to Power Calculation of Multiple Contrasts, J.
Stat. Comp. Simul. 63, pp. 361–378, 1999.



Statistical Distribution MCQMC 51

[GB00] A. Genz and F. Bretz. ‘Numerical Computation of Critical Values for
Multiple Comparison Problems’, in Proceedings of the Statistical Com-
puting Section, American Statistical Association, Alexandria, VA, pp.
84–87, 2000.

[GB01] A. Genz and F. Bretz. ‘Critical Point and Power Calculations for the
Studentised Range Test’, J. Stat. Comp. Simul. 71, pp. 85–97, 2001.

[GB02] A. Genz and F. Bretz. ‘Comparison of Methods for the Computation of
Multivariate t Probabilities’, J. Comp. Graph. Stat. 11, pp. 950–971.

[GK99] A. Genz and K. S. Kwong. ‘Numerical Evaluation of Singular Multivariate
Normal Distributions’, J. Stat. Comp. Simul. 68, pp. 1–21, 1999.

[Ge91] J. Geweke. ‘Efficient Simulation from the Multivariate Normal and
Student-t Distributions Subject to Linear Constraints’, Computing Sci-
ence and Statistics 23, pp. 571–578, 1991.

[GG94] G. J. Gibson, C. A. Glasbey, and D. A. Elston. ‘Monte-Carlo Evaluation
of Multivariate Normal Integrals and Sensitivity to Variate Ordering’, in
Proceedings of the Third International Conference in Numerical Methods
and Applications, World Scientific, Singapore, pp. 120–126, 1994.

[Ha93] V. Hajivassiliou. ‘Simulating Normal Rectangle Probabilities and Their
Derivatives: The effects of Vectorization’, The International Journal of
Supercomputer Applications 7, pp. 231–253, 1993.

[HMR96] V. Hajivassiliou, D. McFadden, and O. Rudd. ‘Simulation of Multivariate
Normal Rectangle Probabilities and Their Derivatives: Theoretical and
Computational Results’, Journal of Econometrics, 72, pp. 85–134, 1996

[HH97] F. J. Hickernell and H. S. Hong. ‘Computing Multivariate Normal Proba-
bilities Using Rank-1 Lattice Sequences’, in Proceedings of the Workshop
on Scientific Computing (Hong Kong), (G. H. Golub, S. H. Lui, F. T.
Luk, and R. J. Plemmons, eds.), Springer-Verlag, Singapore, pp. 209–215,
1997.

[HHLL00] F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. ‘Extensible
Lattice Sequences for QMC Quadrature’ SIAM Journal of Scientific and
Statistical Computing 22, pp. 1117–1138, 2000.

[LL00] C. Lemieux and P. L’Ecuyer. ‘A Comparison of Monte Carlo, Lattice
Rules and Other Low-Discrepancy Point Sets’, in Monte Carlo and
Quasi-Monte Carlo methods 1998, (H. Niederreiter and J. Spanier Eds.),
Springer, Berlin, pp. 326–340, 2000.

[NC06] D. Nuyens and R. Cools. ‘Fast Component-By-Component Construction
of Rank-1 Lattice Rules in Shift-Invariant Reproducing Kernel Hilbert
Spaces’ Math. Comp. 75, pp. 903–920, 2006.

[SA04] Z. Sandor and P. Andras. ‘Alternative Sampling Methods for Estimating
Multivariate Normal Probabilities’, Journal of Econometrics, 120, pp.
207–234, 2004.

[Sc84] M. Schervish. ‘Multivariate Normal Probabilities with Error Bound’,
Applied Statistics 33, pp. 81–87, 1984.

[Sl02] I. H. Sloan. ‘QMC Integration – Beating Intractability by Weighting
the Co-ordinate Directions’ in Monte Carlo and Quasi-Monte Carlo
Methods 2000 (K. T. Fang, F. J. Hickernell, and H. Niederreiter, eds.),
Springer-Verlag, Berlin, pp. 103–123, 2002.

[SJ94] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration, Oxford
University Press, Oxford, 1994.



52 A. Genz

[So97] P. N. Somerville. ‘Multiple Testing and Simultaneous Confidence Intervals:
Calculation of Constants’ Comp. Stat. & Data Analysis 25, pp. 217–223,
1997.

[So98a] P. N. Somerville. ‘Numerical Computation of Multivariate Normal and
Multivariate-t Probabilities Over Convex Regions’, J. Comput. Graph.
Stat. 7, pp. 529–545, 1998.

[So98b] P. N. Somerville. ‘A Fortran 90 Program for Evaluation of Multivariate
Normal and Multivariate t Integral over Convex Regions’, Journal of
Statistical Software 3, 1998, available at http://www.jstatsoft.org.

[So99] P. N. Somerville. ‘Critical Values for Multiple Testing and Comparisons:
One Step and Step Down Procedures’ J. Stat. Plan. & Inf., 82, pp. 129–
138, 1999.

[So01] P. N. Somerville. ‘Numerical Computation of Multivariate Normal and
Multivariate t Probabilities over Ellipsoidal regions. Journal of Statistical
Software 6, 2001, available at http://www.jstatsoft.org.

[St90] G. W. Stewart. ‘The Efficient Generation of Random Orthogonal Matrices
with An Application to Condition Estimation’, SIAM J. Numer. Anal.
17, pp. 403–409, 1980.

[To90] Y. L. Tong. The Multivariate Normal Distribution, Springer-Verlag,
New York, 1990.

[Vi96] W. P. M. Vijverberg. ‘Monte Carlo Evaluation of Multivariate Student’s
t Probabilities’, Economics Letters 52, pp. 1–6, 1996.

[Vi97] W. P. M. Vijverberg. ‘Monte Carlo Evaluation of Multivariate Normal
Probabilities’,Journal of Econometrics 76, pp. 281–307, 1997.

[Vi00] W. P. M. Vijverberg. ‘Rectangular and Wedge-shaped Multivariate Nor-
mal Probabilities’, Economics Letters 68, pp. 13–20, 2000.



Minimal Errors for Strong and Weak
Approximation of Stochastic Differential
Equations

Thomas Müller-Gronbach1 and Klaus Ritter2

1 Fakultät für Mathematik und Informatik, FernUniversität Hagen, Lützowstraße
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Summary. We present a survey of results on minimal errors and optimality of
algorithms for strong and weak approximation of systems of stochastic differential
equations. For strong approximation, emphasis lies on the analysis of algorithms that
are based on point evaluations of the driving Brownian motion and on the impact
of non-commutativity, if present. Furthermore, we relate strong approximation to
weighted integration and reconstruction of Brownian motion, and we demonstrate that
the analysis of minimal errors leads to new algorithms that perform asymptotically
optimal. In particular, these algorithms use a path-dependent step-size control. For
weak approximation we consider the problem of computing the expected value of
a functional of the solution, and we concentrate on recent results for a worst-case
analysis either with respect to the functional or with respect to the coefficients of the
system. Moreover, we relate weak approximation problems to average Kolmogorov
widths and quantization numbers as well as to high-dimensional tensor product
problems.

1 Introduction

Construction and analysis of algorithms for stochastic differential equations
started with the work of Maruyama [Mar55] in 1955, and by now it is a
very active field of research at the intersection of numerical analysis and
stochastic processes with numerous applications in different areas. We refer to
the monographs [KP99, Mil95] as well as to the survey papers [Pla99, Tal95].

A partial list of recent developments includes equations that are driven
by fractional noise, see [BT05, Lin95, Neu06, NN06], stochastic delay dif-
ferential equations, see, e.g., [BB00, BS05, HMG06, HMY04, KP00, TT87],
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jump-diffusions, see, e.g., [Gar04, GM04, HK06, KP02, LL00, Mag98], condi-
tional sampling, see [HSV06, HSVW05, SVW04], and quantization, see, e.g.,
[Der03, Der04, DFMS03, DMGR06, DS06, LP02, LP04, LP06, Pag07, PP05].
Furthermore, stochastic partial differential equations are studied since about
10 years from an algorithmic point of view, see, e.g., [DG01, GK96, GN97,
Hau03, MGR07a, MGR07b, MGRW07].

As a typical result, upper bounds for the error e(A) of specific algorithms A
in terms of their computational cost c(A) are obtained. In this paper, however,
we focus on minimal errors

eN (A) = inf{e(A) : A ∈ A, c(A) ≤ N}

that are achievable for broad classes A of algorithms. The sequence of minimal
errors eN (A) quantifies the intrinsic difficulty of the computational problem
under investigation, and it only depends on the class A and the definition of
the error and the cost. We refer to [TWW88] for a general abstract theory
together with many applications to specific numerical problems.

Asymptotic results for (eN (A))N∈N, say1

eN (A) � N−α

for some exponent α > 0, consist of an upper and a lower bound. The upper
bound states that for a suitable sequence of algorithms AN ∈ A there are
constants γi ≥ 0 such that

c(AN ) ≤ γ1 ·N and e(AN ) ≤ γ2 ·N−α

for every N ∈ N. The lower bound states that there exists a constant γ > 0
such that

c(A) ≤ N ⇒ e(A) ≥ γ ·N−α

holds for every algorithm A ∈ A and every N ∈ N.
Minimal errors constitute a benchmark for any specific algorithm A ∈ A

by comparing e(A) with eN (A) for N = �c(A)�. Furthermore, the definition
of optimality of algorithms as well as weak or strong asymptotic optimality of
sequences of algorithms is based on this concept. We add that the analysis of
minimal errors sometimes leads to new algorithms, too. See, e.g., Section 3.3.

Actually, two different kinds of numerical problems arise for stochastic
differential equations

dX(t) = a(X(t)) dt+ b(X(t)) dW (t). (1)

Strong approximation deals with approximation of the trajectories of the
solution process X, i.e., approximation of a random function, while weak
1 By definition, xN � yN for sequences of positive real numbers xN and yN , if

γ1 · xN ≤ yN ≤ γ2 · xN holds for every N ∈ N with constants γi > 0.
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approximation aims at approximation of deterministic quantities that only
depend on the distribution of X. As an important instance of the latter
problem we study the approximation of expectations E(h(X)) for functionals
h : C([0, 1],Rd) → R.

The proof of lower bounds for strong approximation relies on the fact that
every algorithm may only use partial information about the trajectories of the
driving Brownian motion W , e.g., its values at a finite number of points. For
weak approximation it is partial information about the equation, i.e., about
the drift coefficient a and the diffusion coefficient b, or partial information
about the functional h that enables the proof of lower bounds.

For illustration we discuss a strong approximation problem, where minimal
errors have been studied for the first time in the context of stochastic differential
equations. Consider a scalar equation

dX(t) = a(X(t)) dt+ dW (t) (2)

with a deterministic initial value X(0) = x0 ∈ R and a scalar Brownian motion
W . Suppose that we wish to approximate the solution X at t = 1, and assume
that the drift coefficient a : R → R satisfies (at least) a global Lipschitz
condition.

The simplest approximation is provided by the strong Euler scheme AE
N (W )

with constant step-size 1/N , where

AE
N : C([0, 1],R) → R

is defined by AE
N (w) = xN with

xn = xn−1 + a(xn−1)/N + w(n/N) − w((n− 1)/N)

for n = 1, . . . , N and any trajectory w ∈ C([0, 1],R) of W . Since (2) is a
stochastic differential equation with additive noise, the Euler scheme with
step-size 1/N satisfies(

E|X(1) −AE
N (W )|2)1/2 ≤ γ ·N−1 (3)

for some unspecified constant γ = γ(a, x0) ≥ 0.
Clearly,

AE
N (W ) = φN (W (1/N), . . . ,W (1))

with a mapping φN : RN → R, and the question arises whether a different
choice of φN may reduce the error. In the sequel we thus consider every
mapping AN : C([0, 1],R) → R of the form

AN (w) = φN (w(1/N), . . . , w(1))
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with an arbitrary measurable mapping φN : RN → R as an algorithm for
approximation of X(1), which s a whole build the class Aequi. The error and
the cost of AN are defined by

e(AN ) =
(
E|X(1) −AN (W )|2)1/2

, (4)

as for the Euler scheme, and

c(AN ) = N. (5)

Then the optimal choice of φN is given by the conditional expectation

φc
N (y) = E(X(1) | (W (1/N), . . . ,W (1)) = y),

i.e.,
e(Ac

N ) = eN (Aequi)

for Ac
N (w) = φc

N (w(1/N), . . . , w(1)).
In 1980 Clark and Cameron determined the strong asymptotic behaviour

of the minimal errors for the class Aequi, see also Section 3.1.

Theorem 1 ([CC80]). Suppose that the drift coefficient in equation (2) sat-
isfies a ∈ C3(R) with bounded derivatives a′, a′′, a′′′. Put

C =

(
1
12

·
∫ 1

0

E

(
a′(X(t)) · exp

(∫ 1

t

a′(X(u)) du
))2

dt

)1/2

.

If C = C(a, x0) > 0 then2

eN (Aequi) ≈ C ·N−1.

Remark 1. From Theorem 1 and (3) we immediately get the weak asymptotic
optimality

e(AE
N ) � eN (Aequi)

of the Euler scheme with constant step-size 1/N , if C > 0. We add that the
constant C is in fact positive in all non-trivial cases; more precisely, C = 0 iff
X(1) = g(W (1)) for some measurable mapping g : R → R.

Remark 2. The class Aequi is defined by the requirement that all trajectories
of W may only be evaluated at equidistant points. Since no restriction except
measurability is imposed on φN , we do not care whether algorithms from Aequi

are actually implementable on a computer. Moreover, if so, our definition of
cost does not take into account any computational overhead besides evaluation
of W . However, smaller classes Aequi or a more detailed definition of cost could
2 By definition, xN ≈ yN for sequences of positive real numbers xN and yN , if

limN→∞ xN/yN = 1.
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only yield larger minimal errors, and the asymptotic lower bound C ·N−1 for
the minimal error would still be valid.

On the other hand, if we also include the number of evaluations of the
drift coefficient a and the total number of all further arithmetic operations
in the definition of the cost, then the cost of the Euler scheme would only be
changed by a small multiplicative constant. Consequently, the same holds true
for the upper bound γ ·N−1 for the minimal error, which follows from (3).

2 Deterministic and Randomized Algorithms

The analysis of minimal errors requires a formal definition of the class of
algorithms under investigation. To this end we essentially consider the real
number model of computation, which is used at least implicitly in most
considerations of computational problems for stochastic differential equations;
for convenience we proceed slightly more general. We refer to [Nov95] for a
general study of the real number model in numerical analysis.

For both problems, strong and weak approximation, there is some under-
lying class F of functions, which constitutes the problem instances, and a
mapping S : F → G, which takes f ∈ F to the corresponding solution S(f) ∈ G
of the computational problem. For strong approximation, F = C([0, 1],Rm)
is the class of trajectories of the driving Brownian motion W , and we use
G = Rd or G = Lp([0, 1],Rd) depending on whether we want to approximate
the trajectories of X at a single point, say t = 1, or globally on [0, 1]. For weak
approximation, F is a class of drift and diffusion coefficients or a class of func-
tionals on C([0, 1],Rd), and we take G = R. To cover both cases we consider
any class F of functions on some set X with values in a finite-dimensional real
vector space Y.

We assume that every algorithm may evaluate the elements f ∈ F at a
finite number of sequentially chosen points from a subset X0 ⊆ X, which is
modeled by an oracle in the real number model. A deterministic sequential
evaluation is formally defined by a point

ψ1 ∈ X0

and a sequence of mappings

ψn : Yn−1 → X0, n ≥ 2.

For every f ∈ F the evaluation starts at the point ψ1, and after n evaluations
the values

y1 = f(ψ1)

and

y� = f(ψ�(y1, . . . , y�−1)), � = 2, . . . , n,
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are known. A decision to stop or to further evaluate f is made after each step,
and this is formally described by a sequence of mappings

χn : Yn → {STOP,GO}, n ≥ 1.

The total number of evaluations is given by

ν(f) = min{n ∈ N : χn(y1, . . . , yn) = STOP},

which is finite for every f ∈ F by assumption. Finally, an output

A(f) = φν(f)(y1, . . . , yν(f))

is defined by a sequence of mappings

φn : Yn → G, n ≥ 1.

Up to some measurability assumptions, which will be stated in Sections 3
and 4, every such mapping A : F → G will be considered as a deterministic
algorithm, with algorithm being understood in a broad sense, and the resulting
class of mappings is denoted by Adet(X0). For convenience, we identify A with
the point ψ1 and the sequences of mappings ψn, χn, and φn.

The computational cost c(A, f) of applying A to f is defined by

c(A, f) = ν(f) · s(X0). (6)

In most cases we simply take

s(X0) = 1,

which means that we only count the number of evaluations of f . However,
for the weak approximation problem that is studied in Section 4.1 we have
X = C([0, 1],Rd) and X0 � X is any finite-dimensional subspace. In this case
it is reasonable to take

s(X0) = dim(X0),

which captures that a basis representation of the points ψ�(y1, . . . , y�−1) ∈ X0

is submitted to the oracle.
For G = R a randomized (or Monte Carlo) broad sense algorithm based on

sequential evaluation is formally defined by a probability space (Ω,A, P ) and
a mapping

A : Ω × F → R

such that

(i) A(ω, ·) ∈ Adet(X0) for every ω ∈ Ω,
(ii) A(·, f) is measurable for every f ∈ F ,
(iii) ω �→ c(A(ω, ·), f) is measurable for every f ∈ F .
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We refer to [NY83, Was89] for this and an equivalent definition of randomized
algorithms, which captures the assumption that randomized algorithms have
access to perfect random number generators. By Aran(X0) we denote the class
of all mappings A with properties (i)–(iii) on any probability space. Clearly,

Adet(X0) � Aran(X0).

It might seem that these classes of algorithms are too large and that c(A, f)
is too small, as it only takes into account a fraction of the actual cost of a
computation. See, however, Remarks 2 and 12 and Section 3.3.

3 Strong Approximation

In this section we consider d-dimensional autonomous systems of stochastic
differential equations (1) with drift and diffusion coefficients

a : Rd → Rd and b : Rd → Rd×m,

and initial value x0 ∈ Rd. Hence the solution X is a d-dimensional process
and we have an m-dimensional driving Brownian motion W . For simplicity,
we assume throughout that

(I) both a and b are Lipschitz continuous,
(II) all components ai of a and bi,j of b are differentiable with Lipschitz

continuous derivatives

∇ai =
( ∂
∂x1

ai, . . . ,
∂

∂xd
ai

)
and ∇bi,j =

( ∂
∂x1

bi,j , . . . ,
∂

∂xd
bi,j

)
,

respectively.

Condition (I) assures the existence and uniqueness of a strong solution of
(1), and condition (II) is a standard assumption for the analysis of strong
approximation problems. These assumptions suffice to derive all of the stated
results except for Theorem 2, which deals with one-point approximation of
scalar equations.

We study approximation of X(1) in Section 3.1 and global approximation
of X on the interval [0, 1] in Section 3.2. For both problems we drop the
assumption from the introductory example in Section 1 that all trajectories
of the Brownian motion W must be evaluated with a fixed step-size. Instead,
we consider all algorithms that are based on a finite number of sequential
evaluations of these trajectories. Except for measurability conditions we do
not impose any further restrictions, so that we cover any step-size control
used in practice. The discussion of minimal errors in Sections 3.1 and 3.2 is
complemented by remarks on asymptotically optimal algorithms in Section 3.3.
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3.1 One-Point Approximation

Deterministic and randomized algorithms have been introduced in Section 2
in a general setting. Specifically for one-point approximation we take

F = C(X,Y)

with
X = [0, 1] and Y = Rm,

because the trajectories w of W in equation (1) are elements of this space F .
Since w(0) = 0 we put

X0 = ]0, 1] .

Furthermore, we take
G = Rd,

since we aim at approximation of S(W ) = X(1).
We consider the corresponding class Adet = Adet(X0) of algorithms. Hence

the sequence (ψn)n∈N determines the evaluation sites for every w ∈ F , and
the total number of evaluations to be made is determined by the sequence
(χn)n∈N of stopping rules. Finally, (φn)n∈N is used to obtain the Rd-valued
approximation A(w) to the corresponding trajectory of the solution X at t = 1.
For technical reasons we require measurability of all mappings ψn, χn, and φn.

Analogously to (4), the error of A ∈ Adet is defined by

e(A) =
(
E|X(1) −A(W )|2)1/2

,

where | · | denotes the euclidean norm, and for the definition of the cost we
take the expected number of evaluations of W , i.e.,

c(A) = E(c(A,W ))

with s(X0) = 1, see (6) and compare (5). Thus we perform an average-case
analysis of deterministic algorithms, see [Rit00, TWW88].

Motivated by the introductory example on one-point approximation in
Section 1 we first treat the case of scalar autonomous equations (1), i.e.,
d = m = 1. Put

M(t) = exp
(∫ 1

t

(
a′ − 1/2 · (b′)2) (X(u)) du+

∫ 1

t

b′(X(u)) dW (u)
)

and
Y1(t) =

(
ba′ − ab′ − 1/2 · b2b′′) (X(t)) ·M(t),

provided that b is sufficiently smooth. Note that Y1(t) is the product of
an Itô-Taylor coefficient function, evaluated at X(t), and the mean-square
derivative M(t) of X(1) w.r.t. the state at time t. Furthermore, b(X(t)) ·M(t)
coincides with the first order Malliavin derivative DtX(1), see, e.g., [Nua06].
In particular, Y1(t) = d

dtDtX(1) holds in the case of equation (2).
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Theorem 2 ([MG04]). Assume d = m = 1 in (1) and suppose that the drift
coefficient a : R → R and the diffusion coefficient b : R → R are bounded and
have continuous bounded derivatives up to order three. Put

C1 =
1√
12

·
(∫ 1

0

E|Y1(t)|2/3 dt

)3/2

.

If C1 = C1(a, b, x0) > 0 then

eN (Adet) ≈ C1 ·N−1.

For details concerning the following two remarks we also refer to [MG04].
We add that Theorem 2 holds true under weaker assumptions concerning a
and b, and the strong asymptotic behaviour of the minimal errors is known in
the non-autonomous case, too.

Remark 3. Algorithms from the class Aequi � Adet, which was already dis-
cussed in Section 1 for equation (2), are defined by constant mappings
ψn = n/N , χ1 = . . . = χN−1 = GO, and χN = STOP. It turns out that

eN (Aequi) ≈ Cequi
1 ·N−1

with

Cequi
1 =

1√
12

·
(∫ 1

0

E|Y1(t)|2 dt
)1/2

if the latter constant is positive. In the particular case of b = 1 we recover the
constant from Theorem 1.

An intermediate case Aequi � Afix � Adet was considered by Cambanis
and Hu in 1996, who essentially studied all algorithms of the form

AN (W ) = φN (W (t1), . . . ,W (tN ))

for any fixed choice of knots 0 < t1 < · · · < tN ≤ 1, i.e., for χ as previously
and any choice of constant mappings ψ1, . . . , ψN , see [CH96]. Here we have

eN (Afix) ≈ Cfix
1 ·N−1

with

Cfix
1 =

1√
12

·
(∫ 1

0

(
E|Y1(t)|2

)1/3
dt

)3/2

if this constant is positive.
The superiority of Adet over Aequi and Afix is thus expressed by the ratio

of the respective asymptotic constants, and this ratio quantifies in particular
the potential of an optimal path-dependent step-size control, see also Section
3.3. In most cases we have

Cequi
1 > Cfix

1 > C1 > 0,
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and sometimes the ratio Cfix
1 /C1 is large. For instance, if a = 1, b(x) = σ · x,

and x0 = 1, we obtain

Cequi
1 = 1/

√
12 · (exp(σ2) − 1)1/2,

Cfix
1 = 1/

√
12 ·

√
27/σ2 · (exp(σ2/3) − 1)3/2,

C1 = 1/
√

12 · 27/σ2 · (1 − exp(−σ2/9))3/2,

so that Cfix
1 /C1 grows exponentially as a function of σ2.

Remark 4. It turns out that approximation of X(1) is strongly connected
to an integration problem for the Brownian motion W with the random
weight (Y1(t))t∈[0,1]. Here we only give a precise formulation of this fact in
the elementary case of a Langevin equation, namely for a(x) = x, b = 1, and
x0 = 0, where

Y1(t) = exp(1 − t)
is actually deterministic and

X(1) =W (1) −
∫ 1

0

Y1(t) ·W (t) dt.

Integration problems for stochastic processes are well-studied in the case
of deterministic weight functions, see [Rit00] for results and references. Basic
ideas carry over to the case of random weights, and this allows the construction
of easily implementable algorithms that enjoy strong asymptotic optimality,
see Section 3.3.

Under the assumptions of Theorem 2, the order of convergence of the mini-
mal errors eN (Adet) is at least N−1 for scalar equations (1). This is no longer
true, in general, for systems of equations. If the dimension m of the driving
Brownian motion W in (1) is larger than one then the asymptotic behaviour
of the minimal errors eN (Adet) for one-point approximation crucially depends
on whether the diffusion coefficient b satisfies the so-called commutativity
condition.

To be more precise, put

b(j) =

⎛⎜⎝b1,j

...
bd,j

⎞⎟⎠ and ∇b(j) =

⎛⎜⎝∇b1,j

...
∇bd,j

⎞⎟⎠
for j = 1, . . . ,m. Then b has the commutativity property if

∇b(j1) · b(j2) = ∇b(j2) · b(j1) (7)

holds for all 1 ≤ j1 < j2 ≤ m. Roughly speaking, this condition assures that
the trajectories of the solution X depend continuously on the trajectories of
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the driving Brownian motion W . Clearly, (7) holds if W is one-dimensional,
i.e., if m = 1.

To study the impact of non-commutativity we consider the Rd-valued
processes given by

devj1,j2(t) =
(∇b(j1) · b(j2) − ∇b(j2) · b(j1))(X(t))

as well as the d× d-dimensional random field

Φ = (Φ(t, s))0≤t≤s≤1,

that satisfies the matrix stochastic differential equations

dΦ(t, s) = ∇a(X(s)) · Φ(t, s) ds+
m∑

j=1

∇b(j)(X(s)) · Φ(t, s) dWj(s)

with initial values Φ(t, t) equal to the d× d-dimensional identity matrix Idd.
The processes devj1,j2 measure the deviation from commutativity along the
trajectories of X, and the field Φ serves as a measure of the variability of the
solutionX on [t, 1] w.r.t. its state at time t. Note that the process (Φ(t, 1))t∈[0,1]

coincides with the process M in Theorem 2 in the case d = m = 1.
We quantify the effect of deviation from commutativity by the random

field

ϑ(t, s) =
(∑

j1<j2

|Φ(t, s) · devj1,j2(t)|2
)1/2

, 0 ≤ t ≤ s ≤ 1.

Theorem 3 ([MG02a]). Put Y2(t) = ϑ(t, 1) and

C2 =
1
2

·
∫ 1

0

E(Y2(t)) dt.

If C2 = C2(a, b, x0) > 0 then3

1/
√

3 · C2 ·N−1/2 � eN (Adet) � C2 ·N−1/2.

For details of the following remarks we refer to [MG02a].

Remark 5. For one-point approximation in the non-commutative case, the
asymptotic behaviour of the minimal errors for subclasses of Adet is studied
as well. We briefly discuss the class Aequi of algorithms that use the same

3 By definition, xN � yN for sequences of positive real numbers xN and yN , if
lim supN→∞ xN/yN ≤ 1.
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equidistant evaluation sites for every trajectory of W , see Remark 3 for the
formal definition. We have

eN (Aequi) ≈ Cequi
2 ·N−1/2

with

Cequi
2 =

1
2

·
(∫ 1

0

E(Y 2
2 (t)) dt

)1/2

if the latter constant is positive.
Minimal errors for one-point approximation in the non-commutative case

have first been studied in [CC80], where the class Aequi is considered for the
specific 2-dimensional system

dX1(t) = dW1(t), dX2(t) = X1(t) dW2(t),

with initial value x0 = 0. Here the corresponding random field ϑ satisfies
ϑ(t, s) = 1 for all 0 ≤ t ≤ s ≤ 1, and we obtain C2 = Cequi

2 = 1/2.
We further mention [Rum82], where the order of convergence N−1/2 of the

minimal errors for a subclass A � Aequi of Runge-Kutta algorithms is derived
in the case of systems (1) with Cequi

2 > 0.

Remark 6. If the constant C2 in Theorem 3 is positive, then the order of
convergence of the minimal errors is only N−1/2, and, consequently, one-point
approximation is as hard as L2-approximation in this case, see Theorem 4.

On the other hand, assume that the diffusion coefficient b satisfies the
commutativity condition (7). Then the field ϑ vanishes, which implies C2 = 0,
and the order of convergence of the minimal errors turns out to be at least
N−1. In fact, (7) guarantees that the strong Milstein scheme with constant
step-size 1/N yields an algorithm AM

N ∈ Aequi with

c(AM
N ) = N and e(AM

N ) ≤ γ ·N−1

for some unspecified constant γ = γ(a, b, x0) > 0. Lower bounds for the
minimal errors are unknown in this situation, except for the particular case
d = m = 1, see Theorem 2.

3.2 Global Approximation

In addition to assumptions (I) and (II) from page 59 we assume that

(III) P (b(X(t)) �= 0) > 0 for some t ∈ [0, 1]

to exclude deterministic equations.
As in the case of one-point approximation we take

F = C([0, 1],Rm) and X0 = ]0, 1]
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in the definition of the class of algorithms Adet = Adet(X0). However, in
contrast to one-point approximation we now aim at approximation of S(W ) =
X globally on the interval [0, 1]. Here we restrict considerations to the problem
of L2-approximation, i.e., we take

G = L2([0, 1],Rd)

equipped with the norm

‖g‖L2 =
(∫ 1

0

|g(t)|2 dt
)1/2

.

Hence the measurable sequences (ψn)n∈N and (χn)n∈N associated with an
algorithm A ∈ Adet determine the location and the number of evaluation sites
for every trajectory w ∈ F of W , as previously, while the measurable sequence
(φn)n∈N yields a function A(w) ∈ G, which serves as an approximation to the
corresponding trajectory of X on the interval [0, 1].

For the definition of the error of A we consider the pathwise L2-distance
‖X −A(W )‖L2 and average over all trajectories, i.e.,

e(A) =
(
E‖X −A(W )‖2

L2

)1/2
.

The cost of A is given by the expected number of evaluations of W , as in the
case of one-point approximation.

There are two factors that determine the asymptotic behaviour of the
minimal errors eN (Adet) for L2-approximation, namely the smoothness of the
solution X in the mean square sense and the impact of non-commutativity, if
present.

To be more precise with respect to the first issue, we note that the compo-
nents Xi of X satisfy

E
(|Xi(t+ δ) −Xi(t)|2

∣∣X(t) = x
)

= |bi|2(x) · δ + o(δ), (8)

where bi = (bi,1, . . . , bi,m) denotes the i-th row of the diffusion coefficient b.
Hence X is Hölder continuous of order 1/2 in the mean square sense, and
locally, in time and space, the smoothness of X is determined by

‖b‖2(X(t)) =
( d∑

i=1

|bi|2(X(t))
)1/2

.

To take non-commutativity into account, we use the random field ϑ, see
Section 3.1, to define the process Ψ by

Ψ(t) =
∫ 1

t

ϑ2(t, s) dt,

which accumulates the effect of a deviation from commutativity at time t over
the interval [t, 1].
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Theorem 4 ([HMGR01, MG02a]). Put

C3 =
1√
6

·
∫ 1

0

E(Y3(t)) dt,

where
Y3(t) =

(‖b‖2
2(X(t)) + 3/2 · Ψ(t)

)1/2
,

Then
1/

√
3 · C3 ·N−1/2 � eN (Adet) � C3 ·N−1/2.

Moreover, if the diffusion coefficient b satisfies the commutativity condition
(7) then Ψ = 0 and

eN (Adet) ≈ C3 ·N−1/2.

For details concerning the following three remarks we refer to [HMGR01,
MG02a, MG02b]

Remark 7. As in the case of one-point approximation we compare the classes of
algorithms Adet and Aequi for L2-approximation with respect to the asymptotic
behaviour of the corresponding minimal errors. For the latter class we have

eN (Aequi) ≈ Cequi
3 ·N−1/2

with

Cequi
3 =

1√
6

·
(∫ 1

0

E(Y 2
3 (t)) dt

)1/2

.

Consider, for instance, the equation

dX(t) =
m∑

j=1

σj ·X(t) dWj(t)

with σ = (σ1, . . . , σm) ∈ Rm and initial value x0 = 1. Hence d = 1 and a = 0
and the diffusion coefficient b(x) = x · σ satisfies the commutativity condition
(7). Here we have

Y3(t) = |σ| ·X(t) = |σ| · exp(−|σ|2 · t/2 + σ ·W (t)),

which yields

Cequi
3 =

1√
6

· (exp(|σ|2) − 1)1/2 and C3 =
1√
6

· |σ|.

Thus, Cequi
3 /C3 grows exponentially as a function of |σ|2.
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Remark 8. Due to Theorem 4 the order of convergence of the minimal errors
for L2-approximation is not affected by a deviation from commutativity, which
is in sharp contrast to the respective result for one-point approximation, see
Theorem 3 and Remark 6.

If the diffusion coefficient b satisfies the commutativity condition then, by
the second part of Theorem 4, the asymptotic constant Cdet is completely
determined by the process (b(X(t)))t∈[0,1], which comprises the local smooth-
ness of X in the mean square sense, see (8). In this case it turns out that
L2-approximation of X is closely related to an L2-reconstruction problem for
W with the random weight b(X(t)). Here we only illustrate this fact by the
simple two-dimensional system

dX1(t) = dt, dX2(t) = σ(X1(t)) dW2(t),

with initial value x0 ∈ R2 and σ ∈ C2(R) with bounded derivatives σ′ and σ′′.
Hence d = m = 2,

a(x) =
(

1
0

)
and b(x) =

(
0 0
0 σ(x1)

)
for x ∈ R2, and L2-approximation of X is equivalent to L2-reconstruction of
the process

b(X(t)) ·W (t) = σ(t) ·W2(t).

We add that reconstruction problems for stochastic processes are well-
studied in the case of deterministic weight functions, see [Rit00] for results and
references. Basic principles can be utilized also for the case of random weights,
which leads to algorithms for L2-approximation that are easy to implement
and achieve the upper bound in Theorem 4, see Section 3.3

Remark 9. Results on minimal errors are also available for Lp-approximation
with p �= 2. We briefly discuss the case p = ∞, for which the issue of non-
commutativity turns out to be irrelevant.

The respective class of algorithms Adet = Adet(X0) is defined as for L2-
approximation, the only change being that we takeG = L∞([0, 1],Rd) equipped
with the norm ‖ · ‖L∞ , where the maximum norm on Rd is used as well.
Furthermore, we define the error of an algorithm A ∈ Adet by

e(A) =
(
E‖X −A(W )‖2

L∞

)1/2
.

Recall that the local mean square smoothness of the components Xi of the
solution X is determined by the respective processes (|bi|(X(t)))t∈[0,1], and
consider the process

Y4(t) = max
i=1,...,d

|bi|(X(t))

Then the minimal errors satisfy

eN (Adet) ≈ C4 · (N/ lnN)−1/2
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with

C4 =
1√
2

· E
(∫ 1

0

Y 2
4 (t) dt

)1/2

.

For the subclass Aequi we obtain

eN (Aequi) ≈ Cequi
4 · (N/ lnN)−1/2

with

Cequi
4 =

1√
2

·
(
E sup

t∈[0,1]

Y 2
4 (t)
)1/2

.

We illustrate the superiority of Adet over Aequi by comparing the respective
asymptotic constants for the particular scalar equation

dX(t) = σ ·X(t) dW (t)

with σ > 0 and initial value x0 = 1. Here we obtain

C4 ≤ 1/
√

2 · σ · (σ + 2),

and
Cequi

4 = σ · (3 exp(σ2) · Φ(3σ/2) − Φ(σ/2)
)
,

where Φ denotes the standard normal distribution function.

The general framework introduced in Section 2 can easily be extended
to cover algorithms for strong approximation that use multiple Itô integrals,
additionally to point evaluations of the driving Brownian motion W . For
instance, Itô-Taylor schemes of higher order are of this type. In this case we
take a suitable space Λ of functionals

λ : C([0, 1],Rm) → R

in the definition of the class Adet(Λ) instead of Dirac functionals, which
correspond to Adet(X0) for X0 = ]0, 1]. Accordingly, the sequence of mappings

ψn : R(n−1)·m → Λ, n ≥ 2,

associated with an algorithm A ∈ Adet(Λ) determines the functionals λ ∈ Λ
that are applied by A to a trajectory of W , and the expected number of
functional evaluations of W is used to define the cost of A.

Results on minimal errors for such classes of algorithms are only available
for the problem of L2-approximation in case of a scalar equation (1), see
[HMG04, HMGR02].

Simulation of the joint distribution of multiple Itô integrals is an open
problem, in general, and therefore it is sometimes suggested to use suitable
approximations in practice. The latter are usually based on point evaluations
of W . Then, however, one actually uses an algorithm from the class Adet(X0),
and the lower bounds for the minimal errors from Theorems 2 to 4 apply.
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3.3 Optimal Algorithms

The analysis of minimal errors in the Sections 3.1 and 3.2 can be used to
construct algorithms that are easy to implement and achieve the corresponding
upper bounds for the minimal errors.

Recall that each of the asymptotic constants C = Ci from Theorems 2 to 4
and Remark 9 is determined by a space-time average of the respective process
Y = Yi, which suggests that, in the case C > 0, the number and the location
of evaluation sites for a trajectory of W should be adjusted to the size of the
corresponding trajectory of Y . This idea can in fact be employed to obtain
algorithms AN ∈ Adet that satisfy

c(AN ) ≈ N and e(AN ) � C · αN ,

where αN specifies the corresponding order of convergence of the minimal errors
eN (Adet). We thus have strong asymptotic optimality, modulo the constant√

3 in the case of Theorems 3 and 4.
The algorithms AN use a step-size control and basically work as follows,

see [HMGR01, MG02a, MG02b, MG04] for the details. First, we evaluate the
trajectory w ofW at a coarse grid, and we compute a discrete approximation y
to the respective trajectory of the process Y . The approximation y determines
the number and the location of the additional evaluation sites for w such that,
roughly speaking, the step-size is proportional to y−β , where β > 0 depends
on the respective approximation problem. The resulting observations are then
used to compute a discrete approximation to the corresponding trajectory
of the solution X, which, in case of global approximation, is extended to a
function on [0, 1] by piecewise linear interpolation.

To be more precise, for one-point approximation of scalar equations we
choose β = 2/3 and we apply a suitably modified Wagner-Platen scheme.
In the case of one-point approximation or L2-approximation of systems of
equations we use β = 1 and we employ a modified Milstein scheme. Finally,
for L∞-approximation we take β = 2 and we use a modified Euler scheme.

We stress that for the algorithms AN , the number of evaluations of the
drift and diffusion coefficients a and b and their partial derivatives as well
as the total number of all further arithmetic operations is proportional to N
with a small multiplicative constant. Hence the conclusions from Remark 2
are valid, too, for Adet instead of Aequi.

4 Weak Approximation

In this section we consider autonomous systems (1) of stochastic differential
equations with drift and diffusion coefficients

a : Rd → Rd and b : Rd → Rd×d
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and initial value x0 ∈ Rd. Accordingly, the Brownian motion W as well as the
solution process X both take values in Rd.

As an important instance of weak approximation we assume that expecta-
tions E(h(X)) of functionals

h : C([0, 1],Rd) → R

w.r.t. the distribution of X have to be computed. In contrast to strong ap-
proximation we thus have to approximate deterministic quantities. To this
end, however, randomness is frequently used as a computational tool. For
instance, in a straightforward approach one uses a Monte Carlo simulation of
a suitable approximation to the process X, which constitutes a link to strong
approximation. On the other hand, deterministic algorithms are used for weak
approximation as well, e.g., for solving an equivalent parabolic equation. We
stress that minimal errors enable a comparison of deterministic and randomized
algorithms.

We study two variants of the weak approximation problem. For the variable
functional problem we only know that h belongs to some class F of functionals
and we may evaluate the functionals h ∈ F at suitable elements from the path
space, while a, b, and x0 and, as a consequence the distribution of X, are
considered to be fixed. Here the mapping S : F → G with G = R is given by

S(h) = E(h(X)).

For the variable drift problem the functional h, b, and x0 are considered
to be fixed, while a is only known to belong to some class F of functions and
partial information about the drift coefficient consists in a finite number of
function values. Of course, the latter does not determine the distribution of X
exactly. To stress its dependence on a we sometimes denote X by Xa. The
mapping S : F → G with G = R is given by

S(a) = E(h(Xa)).

For both variants we present a worst-case analysis on classes F of drift
coefficients f = a or functionals f = h, respectively. Such classes are typically
defined by smoothness properties and growth conditions.

The (maximal) error and the (maximal) cost of any algorithm A ∈ Adet(X0)
are defined by

e(A) = sup
f∈F

|S(f) −A(f)|

and
c(A) = sup

f∈F
c(A, f),

see (6). For randomized algorithms A ∈ Aran on any underlying probability
space (Ω,A, P ) we define the (maximal) error and the (maximal) cost by
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e(A) = sup
f∈F

(∫
Ω

|S(f) −A(ω, f)|2 dP (ω)
)1/2

and
c(A) = sup

f∈F

∫
Ω

c(A(ω, ·), f) dP (ω).

See, e.g., [Nov88, TWW88, Was89].

4.1 The Variable Functional Problem

In the definition of the classes Adet(X0) and Aran(X0) for this problem we take

X = C([0, 1],Rd) and Y = R,

and we allow X0 to be any finite-dimensional subspace of X. Hence every
algorithm A ∈ Aran(X0) for approximation of E(h(X)) may evaluate the
functionals h : X → Y at points x ∈ X0, where X0 may be chosen arbitrarily,
but it is fixed for a specific algorithm. By definition the cost for each evaluation
of any functional h equals dim(X0) for every choice of X0, i.e., we take

s(X0) = dim(X0)

in (6). We study minimal errors on the classes

Adet =
⋃

dim(X0)<∞
Adet(X0)

and
Aran =

⋃
dim(X0)<∞

Aran(X0).

For a, b, and x0 being fixed and any given class F of integrable functionals
h the computation of E(h(X)) is a quadrature problem w.r.t. the distribution
of X on the space X. A simple deterministic algorithm A ∈ Adet is given by a
quadrature formula

A(h) =
n∑

i=1

βi · h(xi)

with a fixed choice of knots xi ∈ X and coefficients βi ∈ R, in which case
X0 = span{x1, . . . , xn}. A simple randomized algorithm is given by the classical
Monte Carlo method

A(ω, h) =
1
n

·
n∑

i=1

h(Xi(ω))

with i.i.d. random elements Xi that take values in a finite-dimensional subspace
of X. In general we cannot take independent copies Xi of X, since the latter
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does not have a finite-dimensional support, except for trivial cases. Instead,
one may take independent copies of a weak Itô-Taylor scheme with constant
step-size 1/k and piecewise linear interpolation, see, e.g., [KP99]. In this case
X0 consists of piecewise linear functions [0, 1] → Rd with breakpoints �/k, and
dim(X0) = d · (k + 1).

Specifically, we consider the class F = Lip(1) of Lipschitz continuous
functionals h : X → Y with Lipschitz constant at most one. Thus h ∈ Lip(1)
iff

|h(x) − h(y)| ≤ ‖x− y‖X

holds for all x, y ∈ X, where ‖ · ‖X denotes the supremum norm. For the
corresponding minimal errors we have the following asymptotic bounds.

Theorem 5 ([DMGR06]). Suppose that for equation (1) the drift coefficient
a is Lipschitz continuous and the diffusion coefficient b has bounded first and
second order derivatives. Furthermore, assume that b is of class C∞ in some
neighborhood of the initial value x0 and det b(x0) �= 0. Then

eN (Adet) � (lnN)−1/2

and4

N−1/4 · (lnN)−3/4 � eN (Aran) � N−1/4 · (lnN)1/4

for F = Lip(1).

See [DMGR06] for details concerning the following remarks.

Remark 10. The minimal errors for the quadrature problem on Lip(1) are
closely related to the average Kolmogorov widths and the quantization numbers
for the stochastic process X. The n-th quantization number

qn = inf
x1,...,xn∈X

E

(
min

�=1,...,n
‖X − x�‖X

)
and the k-th average Kolmogorov width

dk = inf
dim(X0)=k

E

(
min
x̃∈X0

‖X − x̃‖X

)
are minimal average errors of best approximation, either from n-point sets or
from k-dimensional subspaces. It turns out that

eN (Adet) � min
n·k≤N

max(qn, dk) (9)

4 By definition, xN � yN for sequences of positive real numbers xN and yN , if
xN ≤ γ · yN holds for every N ∈ N with a constant γ > 0.
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and

eN (Aran) � min
n·k≤N

max
(
n1/2 sup

m≥4n
(qm−1 − qm), dk

)
. (10)

The lower bound (9) is easily verified as follows. Let N ∈ N and consider
any algorithm A ∈ Adet(X0) such that c(A) ≤ N . Put k = dim(X0), and note
that A uses at most n = �N/k� evaluations for every functional h ∈ F . We
may assume for simplicity that n actually is the number of evaluations for
every h. Put x1 = ψ1 and x� = ψ�(0, . . . , 0) for � = 2, . . . , n, where ψ1, . . . , ψn

specify the sequential selection of evaluation sites by A, see Section 2, and
consider the functional

h(x) = min
�=1,...,n

‖x− x�‖X.

Observe that ±h ∈ Lip(1) and A(h) = A(−h), since every evaluation of ±h
performed by the algorithm A yields the value zero. It follows that

e(A) ≥ S(h) ≥ qn.

For the functional
h(x) = min

x̃∈X0

‖x− x̃‖X

we analogously get
e(A) ≥ S(h) ≥ dk.

We conclude that e(A) ≥ max(qn, dk) for some n, k ∈ N such that n · k ≤ N .
For the same reason average Kolmogorov widths also appear in the lower

bound (10). Here the first term, which involves consecutive differences of
quantization numbers, is obtained by means of Bakhvalov’s Theorem.

Let us stress that the lower bounds (9) and (10) for the minimal errors of
deterministic and randomized algorithms are valid for every random element
with values in a Banach space X. See [DMGR06] for applications of this fact to
the quadrature problem for F = Lip(1) and Gaussian random elements X. In
the latter case it is known that the asymptotic behaviour of the Kolmogorov
widths and quantization numbers is closely related to the asymptotic behaviour
of the small ball function

φ(ε) = P (‖X‖X ≤ ε)

for ε tending to zero. In view of (9) and (10) the study of small ball functions
therefore leads to lower bounds for the quadrature problem.

Remark 11. Quantization of random vectors X that take values in finite-
dimensional spaces X has been studied since the late 1940’s, and we refer to
the monograph [GL00] for an up-to-date account. For stochastic processes,
i.e., for random elements X taking values in infinite-dimensional spaces X,
quantization is studied since about ten years. Results are known for Gaussian
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processes, see, e.g., [Der03, DFMS03, DS06, LP02, LP04], and for diffusion
processes, see [Der04, DMGR06, LP06]. In particular, under the assumptions
from Theorem 5,

qn � (lnn)−1/2. (11)

Average Kolmogorov widths and their relation to further scales of approxi-
mation quantities for stochastic processes are studied in, e.g., [Cre02, MW96,
Mat90, Sun92]. In particular, for the Brownian motionW the weak asymptotic
behaviour of dk is determined in [Mai93], and the same asymptotics

dk � k−1/2 (12)

holds for diffusion processes under the assumptions from Theorem 5.
The bound for eN (Adet) from Theorem 5 thus follows from (9) and (11).

For eN (Aran) the lower bound from Theorem 5 essentially follows from (10),
(11), and (12).

Remark 12. The upper bound for eN (Aran) from Theorem 5 is achieved by a
Monte Carlo Euler scheme with suitably chosen numbers k of equidistant time-
steps and n of replications. Consider independent random vectors Z(1), . . . , Z(k)

that are standard-normally distributed on Rd. Furthermore, put X(0)
k (ω) = x0,

and let Xk(ω) denote the piecewise linear interpolation of the values

X
(�)
k (ω) = X(�−1)

k (ω) + a
(
X

(�−1)
k (ω)

)
/k + b

(
X

(�−1)
k (ω)

)
· Z(�)(ω)/

√
k

at the breakpoints �/k. With i.i.d. copies Xk,1, . . . , Xk,n we define

Aran
k,n(ω, h) =

1
n

·
n∑

i=1

h(Xk,i(ω)). (13)

Given N ∈ N we take

k = �N1/2 · (lnN)1/2�, n = �N1/2 · (lnN)−1/2�,
and we put Aran

N = Aran
k,n. For every fixed value of d we clearly have

c(Aran
N ) � N,

and by exploiting the link to strong approximation one obtains

e(Aran
N ) � N−1/4 · (lnN)1/4,

see Remark 9. In view of the corresponding lower bound we conclude that the
sequence of randomized algorithms Aran

N is optimal, up to at most a factor
γ · lnN with γ = γ(a, b, x0) > 0.

For this algorithm Aran
N , the number of evaluations of the drift and diffusion

coefficients a and b, the number of calls of a random number generator for the
standard normal distribution, and the total number of all further arithmetical
operations is proportional to c · d2 ·N with a small constant c > 0. Hence the
conclusions from Remark 2 are valid, too, for the variable functional problem
of weak approximation.
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Remark 13. The analysis of the variable functional problem, which we have
presented so far, is non-uniform w.r.t. to a, b, and x0, since algorithms may
be particularly tuned to a specific equation and constants may depend on a,
b, and x0, too. However, the upper bound for the error e(Aran

N ) of the Monte
Carlo Euler algorithm does not change if the supremum over the class

F = Lip(1) × Fa × Fb × [−1, 1]

with Fa and Fb being the classes of Lipschitz continuous mappings a : Rd → Rd

and b : Rd → Rd×d with Lipschitz constant at most one is considered in the
definition of the error e(A) of randomized algorithms. The more restrictive
assumptions from Theorem 5 concerning a and b are only needed in the proof
of the lower bounds, and here a non-uniform result is even stronger than a
uniform one.

Remark 14. According to Theorem 5, randomized algorithms are far superior
to deterministic ones for weak approximation in the worst-case on Lip(1).
Moreover, deterministic algorithms seem to be not suited at all, since (lnN)−1/2

tends to zero too slowly. However, deterministic algorithms are successfully
used in practice for computational problems with certain functionals from
Lip(1). We refer in particular to [PP05] for applications of quantization and
corresponding deterministic algorithms to the valuation of path-dependent
options in mathematical finance. It thus seems interesting to identify classes
of functionals F � Lip(1) that on the one hand contain sufficiently many
practically relevant functionals but on the other hand lead to substantially
smaller upper bounds for suitable deterministic algorithms.

One such instance of a class F consists of the functionals

h(x) = h1(x(1)) · exp
(∫ 1

0

h2(x(s)) ds
)
, (14)

which appear in the Feynman-Kac formula and only have a mild dependence on
the whole path via the integral term. Here it is reasonable to study algorithms
that may separately evaluate the functions hi : Rd → R. In the Brownian
motion case, i.e., for a = 0 and b = Idd, corresponding minimal errors for
deterministic and randomized algorithms have been determined in [Kwa05,
KL03, PWW00].

Suppose, for instance, that F consists of all functionals h of the form (14)
with hi being Lipschitz continuous with Lipschitz constant at most one and
vanishing outside [−1, 1]d, then the minimal errors are of order N−1/d for
deterministic algorithms and of order N−1/d−1/2 for randomized algorithms.
In terms of orders of minimal errors we see that randomized algorithms
are far superior to deterministic ones for large dimensions d. We refer to
[Kwa05, KL03, PWW00] for further results dealing with different scales of
smoothness classes. See also Remark 16.

Clearly, the quadrature problem for Lip(1) is a linear problem in the sense
of [TWW88, Sec. 4.5], and general results for linear problems apply in the
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analysis of minimal errors. We stress that we no longer have a linear problem,
if functionals of the form (14) are considered, since in this case S(h) depends
non-linearly on h2.

4.2 The Variable Drift Problem

In the variable drift problem we consider a system (1) with m = d, a fixed
initial value x0 ∈ Rd and the fixed diffusion coefficient

b =
√

2 · Idd,

but with a drift coefficient a that is only known to belong to some class
F of functions from Rd to Rd. Furthermore, we assume that the functional
h : C([0, 1],Rd) → R is fixed and actually only depends on the value of Xa at
t = 1, i.e.,

h(X) = g(Xa(1))

for some fixed mapping g : Rd → R. Observe that S(a) depends non-linearly
on a.

To model the sequential evaluation of a we take

X0 = X = Y = Rd,

and we study minimal errors on the corresponding classes Adet = Adet(X0)
and Aran = Aran(X0) with s(X0) = 1 in the definition of the cost, see (6).
Lower bounds for the minimal errors reflect the intrinsic uncertainty about
the distribution of Xa(1) that is due to the partial information about a.

According to the Feynman-Kac formula the computation of E(g(Xa(1)))
is equivalent to solving the linear parabolic initial value problem

∆u+
d∑

j=1

aj · ∂u
∂xj

=
∂u

∂t
,

u(0, ·) = g

at the single point (1, x0), i.e.,

S(a) = u(1, x0).

This fact immediately suggests numerous promising deterministic algorithms
A ∈ Adet, e.g., finite difference schemes.

As an elementary randomized algorithm Ak,n ∈ Aran we mention the Monte
Carlo Euler scheme

Aran
k,n(ω, a) =

1
n

·
n∑

i=1

g
(
X

(k)
k,i (ω)

)
, (15)
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where n is the number of replications and k denotes the number of time-steps,
see (13).

For r ∈ N0 and 0 < α ≤ 1 we let Cr,α denote the Hölder class of functions
a : Rd → Rd whose r-th order partial derivatives ã satisfy

|ã(x) − ã(y)| ≤ |x− y|

for all x, y ∈ Rd. For the corresponding minimal errors on the classes

F r,α = {a ∈ Cr,α : supp a ⊆ [−1, 1]d}

we have the following asymptotic bounds.

Theorem 6 ([PR06]). Suppose that the function g : Rd → R is continuous,
non-constant, and satisfies the growth condition

sup
x∈Rd

|g(x)| · exp(−β · |x|2) <∞

for every β > 0. Then, for every ε > 0,

N−(r+α)/d � eN (Adet) � N−(r+α)/d+ε

and
N−(r+α)/d−1/2 � eN (Aran) � N−(r+α)/d−1/2+ε.

See [PR06] for details concerning the following remarks.

Remark 15. Note that the lower bounds from Theorem 6 coincide with the
asymptotic behaviour of the minimal errors for the integration problem on
the class F r,α, see [Nov88, Prop. 1.3.9 and 2.2.9]. Actually, the proof of the
lower bounds for the variable drift problem relies on the fact that S(a) may be
represented as a rapidly convergent series of weighted integrals of increasing
dimension, where the integrands are tensor products of the components of a.
This enables, in particular, the use of Bakhvalov’s Theorem to derive lower
bounds for eN (Aran) in the variable drift problem, although the latter is a
non-linear problem. In this way one obtains a general theorem that relates
minimal errors for the integration problem and the variable drift problem
under general assumptions on the underlying function class F .

The lower bounds are also valid for algorithms that use partial derivatives
of a up to the order r. This is of interest, since higher-order weak Itô-Taylor
schemes need to evaluate partial derivatives of the drift and the diffusion
coefficients.

Remark 16. To provide upper bounds for the minimal errors and to construct
corresponding algorithms one truncates the series representation for S(a)
and approximates the remaining tensor products of components of a. The
latter problems altogether are almost as easy as approximation of a single
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component, if Smolyak formulas are used. It thus turns out that solving the
variable coefficient problem is almost as easy as L∞-approximation of the single
components aj . Furthermore, the randomized algorithm uses the deterministic
one for variance reduction. For this approach we also refer to the analysis of
the variable functional problem in [Kwa05, KL03, PWW00], see Remark 14.

We add that optimality, up to the factor Nε, can also be achieved in this
way for classes of functions with unbounded support, provided that certain
growth properties hold for a or its local Hölder constants.

However, implementation of any of these almost optimal algorithms would
require extensive pre-computing. A straight-forward approach leads to more
than N quadrature problems, which do not depend on the components aj and
must be solved in advance.

Remark 17. In computational practice randomized algorithms are often pre-
ferred to deterministic ones, unless the dimension d is small. Large values of d
naturally arise, e.g., in computational finance, when (1) is used to model the
risk-neutral dynamics of the prices of d assets and g denotes the discounted
payoff of a European option with maturity t = 1. In this case S(a) is the value
of the option at time t = 0.

We present a simple consequence of the lower bound for the minimal error
eN (Adet) on the classes F r,α. Consider the Monte Carlo Euler scheme Aran

k,n, see
(15). Under moderate assumptions on the smoothness and the growth of the
coefficients a and b as well as of g the bias of this algorithm is proportional to
the step-size 1/k, see, e.g., [KP99]. Relating the step-size 1/k and the number
of replications n in an optimal way, we get a randomized algorithm Aran

N with
error

e(Aran
N ) ≤ γ1 ·N−1/3 (16)

for some constant γ1 > 0 and with computational cost proportional to N . For
b =

√
2 · Idd this holds true on classes F r,α at least if r + α > 2. On the other

hand, we have the lower bound

eN (Adet) ≥ γ2 · n−(r+α)/d

with some constant γ2 > 0 according to Theorem 6. We thus conclude that
asymptotically the simple and easily implementable algorithm Aran

N is preferable
to every deterministic algorithm of the same computational cost, if

d > 3 (r + α).

For instance, if r + α is close to 2, this superiority already holds for d ≥ 7.
We add that multi-level Monte Carlo Euler schemes are introduced in

[Gil06], which significantly improve the upper bound (16). Under suitable
assumptions on the drift and diffusion coefficients a and b as well as on the
function g these algorithms achieve errors of order lnN · N−1/2 at a cost
proportional to N .
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Summary. Nets and (t, s)-sequences are standard sources of quasirandom points
for quasi-Monte Carlo methods. Connections between nets and error-correcting codes
have been noticed for a long time, and these links have become even more pronounced
with the development of the duality theory for digital nets. In this paper, we further
explore these fascinating connections. We present also a recent construction of digital
(t, s)-sequences using global function fields and new general constructions of nets
and (t, s)-sequences.

1 Introduction and Basic Definitions

Low-discrepancy point sets and sequences are the workhorses of quasi-Monte
Carlo methods. Currently, the most powerful methods for the construction of
low-discrepancy point sets and sequences are based on the theory of (t,m, s)-
nets and (t, s)-sequences. This paper describes further contributions to this
theory.

The concept of a (t,m, s)-net is a special case of the notion of a uniform
point set introduced in [Nie03]. As usual in the area, we follow the convention
that a point set is a “multiset” in the sense of combinatorics, i.e., a set in
which multiplicities of elements are allowed and taken into account. We write
Is = [0, 1]s for the s-dimensional unit cube.

Definition 1. Let (X,B, µ) be an arbitrary probability space and let E be a
nonempty subset of B. A point set P = {x1, . . . ,xN} of N ≥ 1 elements of X
is called (E , µ)-uniform if

1
N

N∑
n=1

χE(xn) = µ(E) for all E ∈ E ,

where χE denotes the characteristic function of E.
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Definition 2. Let s ≥ 1, b ≥ 2, and 0 ≤ t ≤ m be integers and let λs be the
probability measure on Is induced by the s-dimensional Lebesgue measure.
Let J (s)

b,m,t be the collection of all subintervals J of Is of the form

J =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < b
di for 1 ≤ i ≤ s and with λs(J) = bt−m.

Then a (J (s)
b,m,t, λs)-uniform point set consisting of bm points in Is is called a

(t,m, s)-net in base b.

It is important to note that the smaller the value of t for given b, m, and
s, the larger the family J (s)

b,m,t of intervals in Definition 2, and so the stronger
the uniform point set property in Definition 1. The number t is often called
the quality parameter of a (t,m, s)-net in base b.

For the definition of a (t, s)-sequence, we need a few preliminaries. Given a
real number x ∈ [0, 1], let

x =
∞∑

j=1

yj b
−j with all yj ∈ Zb := {0, 1, . . . , b− 1}

be a b-adic expansion of x, where the case yj = b− 1 for all but finitely many
j is allowed. For any integer m ≥ 1, we define the truncation

[x]b,m =
m∑

j=1

yj b
−j .

It should be emphasized that this truncation operates on the expansion of x
and not on x itself, since it may yield different results depending on which
b-adic expansion of x is used. If x = (x(1), . . . , x(s)) ∈ Is and the x(i), 1 ≤ i ≤ s,
are given by prescribed b-adic expansions, then we define

[x]b,m = ([x(1)]b,m, . . . , [x(s)]b,m).

Definition 3. Let s ≥ 1, b ≥ 2, and t ≥ 0 be integers. A sequence x0,x1, . . .
of points in Is is a (t, s)-sequence in base b if for all integers k ≥ 0 and m > t
the points [xn]b,m with kbm ≤ n < (k + 1)bm form a (t,m, s)-net in base b.
Here the coordinates of all points xn, n = 0, 1, . . ., are given by prescribed
b-adic expansions.

As before, we are interested in small values of t in the construction of
(t, s)-sequences. We call t the quality parameter of a (t, s)-sequence in base b.
For general background on (t,m, s)-nets and (t, s)-sequences, we refer to the
monograph [Nie92] and the recent survey article [Nie05].

The rest of the paper is organized as follows. In Section 2, we recall the dig-
ital method for the construction of (t,m, s)-nets and (t, s)-sequences. Section 3
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presents a review of the duality theory for digital nets and its connections with
the theory of error-correcting codes. Recent constructions of digital nets using
duality theory and other links with coding theory are described in Section 4.
The recent construction in [MN] of digital (t, s)-sequences using differentials
in global function fields is presented in Section 5, together with upper bounds
on the well-known quantity dq(s). Sections 6 and 7 contain new ideas on
how to generalize the digital method for the construction of (t,m, s)-nets and
(t, s)-sequences, respectively.

2 Digital Nets and Digital (t, s)-Sequences

Most of the known constructions of (t,m, s)-nets and (t, s)-sequences are based
on the so-called digital method introduced in [Nie87, Section 6]. In order to
describe the digital method for the construction of (t,m, s)-nets in base b, we
need the following ingredients. First of all, let integers m ≥ 1, s ≥ 1, and b ≥ 2
be given. Then we choose the following:

(i) a commutative ring R with identity and card(R) = b;
(ii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and 1 ≤ j ≤ m;
(iii) m×m matrices C(1), . . . , C(s) over R.

Now let r ∈ Rm be an m-tuple of elements of R and define

p
(i)
j (r) = η(i)j (c(i)

j · r) ∈ Zb for 1 ≤ i ≤ s, 1 ≤ j ≤ m,

where c(i)
j is the jth row of the matrix C(i) and · denotes the inner product.

Next we put

p(i)(r) =
m∑

j=1

p
(i)
j (r) b−j ∈ [0, 1] for 1 ≤ i ≤ s

and
P (r) = (p(1)(r), . . . , p(s)(r)) ∈ Is.

By letting r range over all bm possibilities in Rm, we arrive at a point set P
consisting of bm points in Is.

Definition 4. If the point set P constructed above forms a (t,m, s)-net in base
b, then it is called a digital (t,m, s)-net in base b. If we want to emphasize that
the construction uses the ring R, then we speak also of a digital (t,m, s)-net
over R.

The quality parameter of a digital (t,m, s)-net over R depends only on the
so-called generating matrices C(1), . . . , C(s) over R. A convenient algebraic
condition on the generating matrices to guarantee a certain value of t is known
(see [Nie92, Theorem 4.26]), and a generalization of this condition will be given
in Theorem 7 below.
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For (t, s)-sequences the order of the terms is important, and so in the
constructions care has to be taken that the points are obtained in a suitable
order. We present the digital method for the construction of (t, s)-sequences
in base b in the form given in [NX96b, Section 2] which is somewhat more
general than the original version in [Nie87, Section 6]. Let integers s ≥ 1 and
b ≥ 2 be given. Then we choose the following:

(i) a commutative ring R with identity and card(R) = b;
(ii) bijections ψr : Zb → R for r = 0, 1, . . ., with ψr(0) = 0 for all sufficiently

large r;
(iii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and j ≥ 1;
(iv) ∞ × ∞ matrices C(1), . . . , C(s) over R.

For n = 0, 1, . . . let

n =
∞∑

r=0

ar(n) br (1)

be the digit expansion of n in base b, where ar(n) ∈ Zb for all r ≥ 0 and
ar(n) = 0 for all sufficiently large r. We put

n = (ψr(ar(n)))∞r=0 ∈ R∞. (2)

Next we define

y
(i)
n,j = η(i)j (c(i)

j · n) ∈ Zb for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1,

where c(i)
j is the jth row of the matrix C(i). Note that the inner product c(i)

j ·n
makes sense since n has only finitely many nonzero coordinates. Then we put

x(i)
n =

∞∑
j=1

y
(i)
n,j b

−j for n ≥ 0 and 1 ≤ i ≤ s.

Finally, we define the sequence S consisting of the points

xn = (x(1)
n , . . . , x

(s)
n ) ∈ Is for n = 0, 1, . . . .

Definition 5. If the sequence S constructed above forms a (t, s)-sequence
in base b, then it is called a digital (t, s)-sequence in base b. If we want to
emphasize that the construction uses the ring R, then we speak also of a digital
(t, s)-sequence over R.

As in the case of digital (t,m, s)-nets, the quality parameter of a digital (t, s)-
sequence over R depends only on the generating matrices C(1), . . . , C(s) over
R. A convenient algebraic condition on the generating matrices to guarantee
a certain value of t is known (see [NX96b, Lemma 7 and Remark 4]), and a
generalization of this condition will be given in Theorem 8 below.

The standard low-discrepancy sequences used nowadays in quasi-Monte
Carlo methods, such as the sequences of Sobol’ [Sob67], Faure [Fau82], and
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Niederreiter [Nie88] as well as the sequences obtained by Niederreiter and
Xing using algebraic-geometry methods (see [NX01, Chapter 8] for an expo-
sition of the latter constructions), are all digital (t, s)-sequences. There are
interesting generalizations and variants of (digital) (t, s)-sequences which we
will not discuss here; see for instance Dick [Dic06b], [Dic06a] and Larcher and
Niederreiter [LN95].

3 Codes and Duality Theory

It is known since the first paper [Nie87] on the general theory of (t,m, s)-
nets and (t, s)-sequences that there are interesting links between digital nets
and error-correcting codes. Recently, these links have become more pro-
nounced with the development of a duality theory for digital nets which
puts digital nets squarely into a framework of a distinctly coding-theoretic
nature.

We recall the rudiments of coding theory. We refer to MacWilliams and
Sloane [MWS77] for a full treatment of coding theory and to Ling and
Xing [LX04] for an introduction to the area. Let Fq be the finite field with
q elements, where q is an arbitrary prime power. For an integer n ≥ 1, we
consider the n-dimensional vector space Fn

q over Fq. The number of nonzero
coordinates of a ∈ Fn

q is the Hamming weight w(a). Then d(a,b) = w(a − b)
for a,b ∈ Fn

q defines the Hamming metric. The vector space Fn
q , endowed

with the Hamming metric, is the Hamming space Fn
q . A linear code over Fq

is a nonzero Fq-linear subspace C of the Hamming space Fn
q . The minimum

distance δ(C) of C is defined by

δ(C) = min {d(a,b) : a,b ∈ C, a �= b}.

It is easy to see that we also have

δ(C) = min
a∈C\{0}

w(a).

One of the principal aims of coding theory is to construct linear codes C over
Fq with a large minimum distance δ(C) for given n and k = dim(C), or with
a large relative minimum distance δ(C)

n for a given information rate k
n .

We now describe the duality theory for digital nets developed by Nieder-
reiter and Pirsic [NP01]. We mention in passing that a completely different
application of coding theory to multidimensional numerical integration occurs
in the recent paper of Kuperberg [Kup06].

We first have to generalize the definition of the Hamming space. Let m ≥ 1
and s ≥ 1 be integers; they will have the same meaning as m and s in a digital
(t,m, s)-net over Fq. The following weight function Vm on Fms

q was introduced
by Niederreiter [Nie86] and later used in an equivalent form in coding theory
by Rosenbloom and Tsfasman [RT97]. We start by defining a weight function
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v on Fm
q . We put v(a) = 0 if a = 0 ∈ Fm

q , and for a = (a1, . . . , am) ∈ Fm
q with

a �= 0 we set
v(a) = max {j : aj �= 0}.

Then we extend this definition to Fms
q by writing a vector A ∈ Fms

q as the
concatenation of s vectors of length m, that is,

A = (a(1), . . . ,a(s)) ∈ Fms
q with a(i) ∈ Fm

q for 1 ≤ i ≤ s,
and putting

Vm(A) =
s∑

i=1

v(a(i)).

Note that dm(A,B) = Vm(A − B) for A,B ∈ Fms
q defines a metric on Fms

q

which for m = 1 reduces to the Hamming metric on Fs
q.

Definition 6. The minimum distance δm(N ) of a nonzero Fq-linear subspace
N of Fms

q is given by

δm(N ) = min
A∈N\{0}

Vm(A).

Now let the m × m matrices C(1), . . . , C(s) over Fq be the generating
matrices of a digital net P . Set up an m × ms matrix M as follows: for
1 ≤ j ≤ m, the jth row of M is obtained by concatenating the jth columns of
C(1), . . . , C(s). Let M ⊆ Fms

q be the row space of M and let M⊥ be its dual
space as in coding theory, that is,

M⊥ = {A ∈ Fms
q : A · M = 0 for all M ∈ M}.

Then we have the following results from [NP01].

Theorem 1. Let m ≥ 1 and s ≥ 2 be integers. Then, with the notation above,
the point set P is a digital (t,m, s)-net over Fq if and only if

δm(M⊥) ≥ m− t+ 1.

Corollary 1. Let m ≥ 1 and s ≥ 2 be integers. Then from any Fq-linear
subspace N of Fms

q with dim(N ) ≥ ms − m we can construct a digital
(t,m, s)-net over Fq with

t = m+ 1 − δm(N ).

Note that N in Corollary 1 plays the role of M⊥ in Theorem 1. Since M
as the row space of an m×ms matrix has dimension at most m, we must have

dim(N ) = dim(M⊥) = ms− dim(M) ≥ ms−m,
which explains the condition on dim(N ) in Corollary 1.

It is of interest to note that the line of research started by Rosenbloom
and Tsfasman [RT97] in coding theory was continued in that area. Some
of the theorems obtained in this direction can be translated into results on
digital nets. Typical coding-theoretic papers on this topic are Dougherty and
Skriganov [DS02] and Siap and Ozen [SO04].
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4 Digital Nets Inspired by Codes

Corollary 1 is a powerful tool for the construction of digital nets. It was
already used in the paper [NP01] that introduced duality theory, where it
was applied to obtain an analog of the classical (u, u + v) construction of
codes. An improved version of the (u, u+ v) construction for digital nets was
given by Bierbrauer, Edel, and Schmid [BES02]. A considerable generalization
of this construction was obtained by Niederreiter and Özbudak [NO04] who
designed an analog of the matrix-product construction of codes. This yields
the following result.

Theorem 2. Let h be an integer with 2 ≤ h ≤ q. If for k = 1, . . . , h there
exists a digital (tk,mk, sk)-net over Fq and if s1 ≤ · · · ≤ sh, then there exists
a digital (t,

∑h
k=1mk,

∑h
k=1 sk)-net over Fq with

t = 1 +
h∑

k=1

mk − min
1≤k≤h

(h− k + 1)(mk − tk + 1).

The (u, u + v) construction of digital nets is the special case h = 2 of
Theorem 2. The matrix-product construction of codes and digital nets affords
a way of combining given linear codes, respectively digital nets, to produce
a new linear code, respectively digital net. Another principle of this type
is obtained by the Kronecker-product construction which is well known in
coding theory. Kronecker-product constructions of digital nets were proposed
by Bierbrauer, Edel, and Schmid [BES02] and Niederreiter and Pirsic [NP02].

Further links between coding theory and digital nets can be established
by considering special families of linear codes and searching for their analogs
in the realm of digital nets. For instance, an important special type of linear
code is a cyclic code, i.e., a linear code that is invariant under cyclic shifts. An
analog for digital nets was introduced by Niederreiter [Nie04] who adopted the
viewpoint that cyclic codes can be defined by prescribing roots of polynomials
(compare with [LN94, Section 8.2]). For integers m ≥ 1 and s ≥ 2, consider
the vector space

P = {f ∈ Fqm [x] : deg(f) < s}
of polynomials over the extension field Fqm of Fq. Note that dim(P) = ms as
a vector space over Fq. We fix an element α ∈ Fqm and define

Pα = {f ∈ P : f(α) = 0}.
It is clear that Pα is an Fq-linear subspace of P with dim(Pα) = ms−m as a
vector space over Fq. For each i = 1, . . . , s, we choose an ordered basis Bi of
Fqm over Fq. Next we set up a map τ : P → Fms

q in the following way. Take
f ∈ P and write this polynomial explicitly as

f(x) =
s∑

i=1

γi x
i−1
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with γi ∈ Fqm for 1 ≤ i ≤ s. For each i = 1, . . . , s, let ci(f) ∈ Fm
q be the

coordinate vector of γi with respect to the ordered basis Bi. Then we define

τ : f ∈ P �→ (c1(f), . . . , cs(f)) ∈ Fms
q .

It is obvious that τ is an Fq-linear isomorphism from P onto Fms
q . Finally, let

Nα be the image of the subspace Pα under τ . Since τ is an isomorphism, we
have

dim(Nα) = dim(Pα) = ms−m
as a vector space over Fq. Thus, we can apply Corollary 1 to the Fq-linear
subspace Nα of Fms

q . The resulting digital net is called a cyclic digital net
over Fq relative to the bases B1, . . . , Bs. A theorem guaranteeing the exis-
tence of good cyclic digital nets was recently shown by Pirsic, Dick, and
Pillichshammer [PDP06].

A powerful family of linear codes is that of algebraic-geometry codes. A
general framework for constructing digital nets by means of algebraic curves
over finite fields, or equivalently by global function fields, was developed by
Niederreiter and Özbudak [NO02]. The basic construction in [NO02] uses
a global function field F with full constant field Fq (see Section 5 for the
definition of these terms) and a divisor G of F . An Fq-linear subspace N
of Fms

q is defined as the image of the Riemann-Roch space L(G) under an
Fq-linear map from L(G) to Fms

q derived from the local expansions of elements
of L(G) at distinct places Q1, . . . , Qs of F . Under suitable conditions, we can
invoke Corollary 1 to arrive at a digital (t,m, s)-net over Fq for some t.

We end this section by describing a recent construction of digital nets due
to Pirsic, Dick, and Pillichshammer [PDP06]. For an integer m ≥ 1 consider,
as earlier in this section, the extension field Fqm of Fq. Then, for an integer
s ≥ 2, we take the s-dimensional vector space Q := Fs

qm over Fqm which has
dimension ms as a vector space over Fq. Now fix α ∈ Q with α �= 0 and put

Qα = {γ ∈ Q : α · γ = 0}.
Clearly, Qα is an Fqm -linear subspace of Q of dimension s− 1, and so Qα has
dimension ms−m as a vector space over Fq. Since Q and Fms

q are isomorphic
as vector spaces over Fq, we get in this way an Fq-linear subspace Nα of Fms

q

of dimension ms−m as a vector space over Fq. Thus, we can apply Corollary 1
to obtain a digital (t,m, s)-net over Fq for some t. A digital net produced by
this construction is called a hyperplane net. An analysis of how hyperplane
nets, cyclic digital nets, and other types of digital nets are related among each
other was carried out by Pirsic [Pir05].

5 Constructing Digital (t, s)-Sequences
from Differentials

There are altogether four known constructions of digital (t, s)-sequences based
on general global function fields, all of them due to Niederreiter and Xing.
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A systematic account of these constructions is given in Niederreiter and
Xing [NX96a]. In this section, we describe the first new construction of digital
(t, s)-sequences using global function fields since 1996. It is also the first
construction using differentials in global function fields. This construction is
due to Mayor and Niederreiter [MN].

Let F be a global function field with constant field Fq, that is, F is a finite
extension of the rational function field Fq(x). We assume that Fq is the full
constant field of F , which means that Fq is algebraically closed in F . We refer
to the book of Stichtenoth [Sti93] for general background and terminology on
global function fields.

Let PF be the set of places of F and ΩF the set of differentials of F , that is,

ΩF = {f dz : f ∈ F, z is a separating element for F}.
For any ω ∈ ΩF and separating element z, we can write ω = f dz with a
unique f ∈ F . If ω ∈ Ω∗

F is a nonzero differential, then for every Q ∈ PF let
ω = fQ dtQ, where tQ ∈ F is a local parameter at Q (and hence a separating
element). Then we can associate ω with the divisor

(ω) :=
∑

Q∈PF

νQ(fQ)Q,

where νQ is the normalized valuation of F corresponding to the place Q. For
any divisor G of F , we define

Ω(G) = {ω ∈ Ω∗
F : (ω) ≥ G} ∪ {0}.

Note that Ω(G) is a finite-dimensional vector space over Fq.
Now let the dimension s ≥ 1 in the construction of a digital (t, s)-sequence

be given. We assume that F contains at least one rational place Q∞; recall
that a rational place is a place of degree 1. Choose a divisor D of F with
deg(D) = −2 and Q∞ not in the support of D (such a divisor always exists).
Furthermore, let Q1, . . . , Qs be s distinct places of F with Qi �= Q∞ for
1 ≤ i ≤ s, and put ei = deg(Qi) for 1 ≤ i ≤ s.

The Riemann-Roch theorem can be used to show that dim(Ω(D)) = g + 1,
dim(Ω(D+Q∞)) = g, and dim(Ω(D+(2g+1)Q∞)) = 0, where g is the genus
of F . Hence there exist integers 0 = n0 < n1 < · · · < ng ≤ 2g such that

dim(Ω(D + nuQ∞)) = dim(Ω(D + (nu + 1)Q∞)) + 1 for 0 ≤ u ≤ g.
Now we choose

ωu ∈ Ω(D + nuQ∞) \Ω(D + (nu + 1)Q∞) for 0 ≤ u ≤ g.
It is easily seen that {ω0, ω1, . . . , ωg} is a basis of Ω(D). For i = 1, . . . , s,
consider the chain

Ω(D) ⊂ Ω(D −Qi) ⊂ Ω(D − 2Qi) ⊂ . . .
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of vector spaces over Fq. By starting from the basis {ω0, ω1, . . . , ωg} of Ω(D)
and successively adding basis vectors at each step of the chain, we obtain for
each integer n ≥ 1 a basis

{ω0, ω1, . . . , ωg, ω
(i)
1 , ω

(i)
2 , . . . , ω

(i)
nei

}
of Ω(D − nQi). Now let z ∈ F be a local parameter at Q∞. For r = 0, 1, . . .
we put

zr =

{
zr dz if r �∈ {n0, n1, . . . , ng},
ωu if r = nu for some u ∈ {0, 1, . . . , g}.

Note that νQ∞((zr)) = r for all r ≥ 0. For 1 ≤ i ≤ s and j ≥ 1, we have
ω

(i)
j ∈ Ω(D−kQi) for some k ≥ 1 and also Q∞ not in the support of D−kQi,

hence νQ∞((ω(i)
j )) ≥ 0. Thus, we have local expansions at Q∞ of the form

ω
(i)
j =

∞∑
r=0

a
(i)
r,j zr for 1 ≤ i ≤ s and j ≥ 1,

where all coefficients a(i)r,j ∈ Fq. For 1 ≤ i ≤ s and j ≥ 1, we define the sequence

of elements c(i)r,j ∈ Fq, r = 0, 1, . . ., by considering the sequence of elements a(i)r,j ,
r = 0, 1, . . ., and then deleting the terms with r = nu for some u ∈ {0, 1, . . . , g}.
Then we put

c(i)
j = (c(i)0,j , c

(i)
1,j , . . .) ∈ F∞

q for 1 ≤ i ≤ s and j ≥ 1.

Finally, for each i = 1, . . . , s, we let C(i) be the ∞ × ∞ matrix over Fq whose
jth row is c(i)

j for j = 1, 2, . . . . We write SΩ(Q∞, Q1, . . . , Qs;D) for a sequence
obtained from the generating matrices C(1), . . . , C(s) by the digital method
(compare with Section 2). The following result was shown by Mayor and
Niederreiter [MN].

Theorem 3. Let F be a global function field with full constant field Fq and
with at least one rational place Q∞. Let D be a divisor of F with deg(D) = −2
and Q∞ not in the support of D. Furthermore, let Q1, . . . , Qs be distinct places
of F with Qi �= Q∞ for 1 ≤ i ≤ s. Then SΩ(Q∞, Q1, . . . , Qs;D) is a digital
(t, s)-sequence over Fq with

t = g +
s∑

i=1

(ei − 1),

where g is the genus of F and ei = deg(Qi) for 1 ≤ i ≤ s.
We report now on further results from the paper [MN]. We use the standard

notation dq(s) for the least value of t such that there exists a digital (t, s)-
sequence over Fq.
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Example 1. Let q = 5 and s = 32. Let F be the global function field given by
F = F5(x, y1, y2) with

y21 = x(x2 − 2), y52 − y2 =
x4 − 1
y1 − 1

.

Then F has 32 rational places Q∞, Q1, . . . , Q31 and genus g = 11. Fur-
thermore, F has at least one place Q32 of degree 2 lying over the place
x2 +2x− 2 of F5(x). We can choose D = −2Q1. Now we consider the sequence
SΩ(Q∞, Q1, . . . , Q32;D) and apply Theorem 3. We have ei = 1 for 1 ≤ i ≤ 31
and e32 = 2, therefore t = 12. Hence we obtain d5(32) ≤ 12, which is an im-
provement on the previously best bound d5(32) ≤ 13 given in [Nie05, Table 1].
This improved value has already been entered into the database at

http://mint.sbg.ac.at

for parameters of (t,m, s)-nets and (t, s)-sequences (see [SS06] for a description
of this database).

Theorem 4. For every odd prime p and every dimension s ≥ 1, we have

dp(s) ≤ p+ 3
p− 1

s+
p− 5
p− 1

.

Theorem 5. For every odd prime p and every dimension s ≥ 1, we have

dp2(s) ≤ 2
p− 1

s+ 1.

Theorem 6. For every prime power q and every dimension s ≥ 1, we have

dq3(s) ≤ q(q + 2)
2(q2 − 1)

s.

Theorems 4, 5, and 6 are derived from Theorem 3 by using towers of global
function fields that were constructed in the last few years (see [MN] for the
details).

Very recently, Niederreiter and Özbudak [NO07] used differentials in global
function fields and the duality theory for digital nets to give a new construction
of (T, s)-sequences in the sense of [LN95]. In various cases, this construction
yields low-discrepancy sequences with better discrepancy bounds than previous
constructions.

6 A General Construction of Nets

We present a method of constructing (t,m, s)-nets which generalizes the digital
method in Section 2. The idea is to move away from linear algebra and to
allow for nonlinearity in the construction. This is motivated by the well-known
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fact in coding theory that there are good parameters of nonlinear codes that
cannot be achieved by linear codes (see [LX04, Section 5.6]). One would hope
for a similar phenomenon for nets, namely that there are parameters of nets
attainable by “nonlinear” constructions, but not by the digital method in
Section 2.

As in Section 2, let integers m ≥ 1, s ≥ 1, and b ≥ 2 be given. We recall
that Zb = {0, 1, . . . , b− 1} denotes the set of digits in base b. Then we choose
the following:

(i) a set R with card(R) = b;
(ii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and 1 ≤ j ≤ m;

(iii) maps φ(i)
j : Rm → R for 1 ≤ i ≤ s and 1 ≤ j ≤ m.

Now let r ∈ Rm and define

p(i)(r) =
m∑

j=1

η
(i)
j (φ(i)

j (r)) b−j ∈ [0, 1] for 1 ≤ i ≤ s

and
P (r) = (p(1)(r), . . . , p(s)(r)) ∈ Is.

By letting r range over all bm possibilities in Rm, we arrive at a point set P
consisting of bm points in Is.

Theorem 7. The point set P constructed above forms a (t,m, s)-net in base
b if and only if for any nonnegative integers d1, . . . , ds with

∑s
i=1 di = m− t

and any f (i)
j ∈ R, 1 ≤ j ≤ di, 1 ≤ i ≤ s, the system of m− t equations

φ
(i)
j (z1, . . . , zm) = f (i)

j for 1 ≤ j ≤ di, 1 ≤ i ≤ s, (3)

in the unknowns z1, . . . , zm over R has exactly bt solutions.

Proof. Assume that (3) satisfies the given condition. According to Definition 2,
we have to show that every interval J of the form

J =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < b
di for 1 ≤ i ≤ s and with

∑s
i=1 di = m− t

contains exactly bt points of the point set P . For 1 ≤ i ≤ s, let

ai =
di∑

j=1

ai,j b
di−j

be the digit expansion in base b, where all ai,j ∈ Zb. For the points P (r) of P ,
we have P (r) ∈ J if and only if
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p(i)(r) ∈ [aib
−di , (ai + 1)b−di) for 1 ≤ i ≤ s.

This is equivalent to

η
(i)
j (φ(i)

j (r)) = ai,j for 1 ≤ j ≤ di, 1 ≤ i ≤ s,
which is, in turn, equivalent to

φ
(i)
j (r) = (η(i)j )−1(ai,j) for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

where (η(i)j )−1 denotes the inverse map of η(i)j . By hypothesis, the last system
of equations has exactly bt solutions r ∈ Rm, and so P forms a (t,m, s)-net in
base b. This shows the sufficiency part of the theorem. The converse is proved
by similar arguments. �

Remark 1. The digital method for the construction of nets described in Sec-
tion 2 is the special case of the present construction where R is a commutative
ring with identity and the maps φ(i)

j are linear forms in m variables over R.
It can be argued that the construction principle in the present section is also
a digital method since the coordinates of the points of the net are obtained
digit by digit. We propose to refer to the nets produced by the method in this
section also as digital (t,m, s)-nets in base b or as digital (t,m, s)-nets over R.
The nets in Section 2 could then be called linear digital (t,m, s)-nets in base
b or linear digital (t,m, s)-nets over R, to emphasize that they are obtained
by the use of linear forms φ(i)

j .

The construction principle described above is too general to be useful in
practice, so it is meaningful to consider situations in which we can introduce
some structure. If we choose for R a finite field Fq, then each map φ(i)

j : Fm
q →

Fq can be represented by a polynomial over Fq in m variables and of degree
less than q in each variable (see [LN97, Section 7.5]). We assume that the maps
φ

(i)
j , 1 ≤ i ≤ s, 1 ≤ j ≤ m, are so represented. Then, by using the concept of

an orthogonal system of polynomials in Fq (see [LN97, Definition 7.35]), we
obtain the following consequence of Theorem 7.

Corollary 2. Let the point set P be obtained by the construction in this
section with R = Fq. Then P is a (t,m, s)-net in base q if and only if for
any nonnegative integers d1, . . . , ds with

∑s
i=1 di = m− t the polynomials φ(i)

j ,
1 ≤ j ≤ di, 1 ≤ i ≤ s, form an orthogonal system in Fq.

There are several useful criteria for orthogonal systems of polynomials in Fq.
One such criterion, due to Niederreiter [Nie71] and given in Proposition 1 below,
is in terms of permutation polynomials over Fq. We recall that a polynomial
over Fq (in one or several variables) is called a permutation polynomial over
Fq if it attains each value of Fq equally often (see [LN97, Chapter 7] for the
theory of permutation polynomials).
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Proposition 1. Let 1 ≤ h ≤ m be integers and let g1, . . . , gh ∈ Fq[z1, . . . , zm].
Then g1, . . . , gh form an orthogonal system of polynomials in Fq if and only
if for all b1, . . . , bh ∈ Fq not all 0, the polynomial b1g1 + · · · + bhgh is a
permutation polynomial over Fq.

It follows, in particular, that every polynomial occurring in an orthogonal
system of polynomials in Fq is a permutation polynomial over Fq. In view of
Corollary 2, this shows that a necessary condition for the polynomials φ(i)

j ,
1 ≤ i ≤ s, 1 ≤ j ≤ m, to yield a (t,m, s)-net in base q is that each polynomial
φ

(i)
j with 1 ≤ i ≤ s and 1 ≤ j ≤ m− t is a permutation polynomial over Fq.

Example 2. Let q be an arbitrary prime power and let m ≥ 1 be an integer. We
start from a permutation polynomial g over Fqm in one variable, for instance,
g(z) = γzk with γ ∈ F∗

qm and an integer k ≥ 1 satisfying gcd(k, qm − 1) = 1
(see [LN97, Section 7.2]). Let B = {β1, . . . , βm} be an ordered basis of Fqm

over Fq, and for each α ∈ Fqm let (c1(α), . . . , cm(α)) ∈ Fm
q be the coordinate

vector of α with respect to B. Then there exist polynomials g1, . . . , gm ∈
Fq[z1, . . . , zm] such that

g(α) =
m∑

j=1

gj(c1(α), . . . , cm(α))βj for all α ∈ Fqm .

Since g is a permutation polynomial over Fqm , it follows that g1, . . . , gm form
an orthogonal system of polynomials in Fq. Now we put R = Fq and s = 2 in
the construction in this section, and we define the polynomials

φ
(1)
j = gj for 1 ≤ j ≤ m,
φ

(2)
j = gm−j+1 for 1 ≤ j ≤ m.

Then it is clear that for any integers d1 ≥ 0 and d2 ≥ 0 with d1 + d2 = m,
the polynomials φ(1)

1 , . . . , φ
(1)
d1
, φ

(2)
1 , . . . , φ

(2)
d2

form an orthogonal system in Fq.
Thus, by Corollary 2, we obtain a digital (0,m, 2)-net over Fq (in the sense of
Remark 1). This net can be viewed as a scrambled version of the well-known
two-dimensional Hammersley net in base q.

7 A General Construction of (t, s)-Sequences

In this section, we present an analog of the construction principle in Section 6
for (t, s)-sequences. Let integers s ≥ 1 and b ≥ 2 be given. Then we choose the
following:
(i) a set R with card(R) = b and a distinguished element o ∈ R;
(ii) bijections ψr : Zb → R for r = 0, 1, . . ., with ψr(0) = o for all sufficiently
large r;
(iii) bijections η(i)j : R→ Zb for 1 ≤ i ≤ s and j ≥ 1;
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(iv) maps φ(i)
j : F → R for 1 ≤ i ≤ s and j ≥ 1, where F is the set of all

sequences of elements of R with only finitely many terms �= o.
For n = 0, 1, . . ., we define n by (1) and (2) and observe that n ∈ F . Next we
define

y
(i)
n,j = η(i)j (φ(i)

j (n)) ∈ Zb for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1.

Then we put

x(i)
n =

∞∑
j=1

y
(i)
n,j b

−j for n ≥ 0 and 1 ≤ i ≤ s.

Finally, we define the sequence S consisting of the points

xn = (x(1)
n , . . . , x

(s)
n ) ∈ Is for n = 0, 1, . . . .

Theorem 8. The sequence S constructed above is a (t, s)-sequence in base b
if and only if for any integer m > t, any nonnegative integers d1, . . . , ds with∑s

i=1 di = m− t, and any f (i)
j ∈ R, 1 ≤ j ≤ di, 1 ≤ i ≤ s, the system of m− t

equations

φ
(i)
j (z0, z1, . . .) = f (i)

j for 1 ≤ j ≤ di, 1 ≤ i ≤ s, (4)

has the following property: if the values of the variables zm, zm+1, . . . are fixed
in R in such a way that zr = o for all sufficiently large r, then the resulting
system in the unknowns z0, z1, . . . , zm−1 over R has exactly bt solutions.

Proof. In order to prove the sufficiency, we proceed by Definition 3. For given
integers k ≥ 0 and m > t, we consider the point set Pk,mconsisting of the
points [xn]b,m with kbm ≤ n < (k + 1)bm. We have to show that Pk,m is a
(t,m, s)-net in base b. Let J be an interval of the form

J =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < b
di for 1 ≤ i ≤ s and with

∑s
i=1 di = m− t.

Then we have to prove that J contains exactly bt points of Pk,m. For 1 ≤ i ≤ s,
let

ai =
di∑

j=1

ai,j b
di−j

be the digit expansion in base b, where all ai,j ∈ Zb. For the points of Pk,m

we have [xn]b,m ∈ J if and only if

[x(i)
n ]b,m ∈ [aib

−di , (ai + 1)b−di) for 1 ≤ i ≤ s.



98 H. Niederreiter

This is equivalent to

y
(i)
n,j = ai,j for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

which is, in turn, equivalent to

φ
(i)
j (n) = (η(i)j )−1(ai,j) for 1 ≤ j ≤ di, 1 ≤ i ≤ s. (5)

Recall that the range for n is kbm ≤ n < (k + 1)bm. In this range, the digits
ar(n) of n in (1) are prescribed for r ≥ m, whereas the ar(n) with 0 ≤ r ≤ m−1
can vary freely over Zb. This means that the coordinates ψr(ar(n)) of n in (2)
are fixed for r ≥ m and they can vary freely over R for 0 ≤ r ≤ m− 1. Thus,
the system (5) of m − t equations is of the form (4), and so by the given
property, (5) has exactly bt solutions. This means that J contains exactly bt

points of Pk,m. Hence the proof of sufficiency is complete. The converse is
shown by similar arguments. �

Remark 2. The digital method for the construction of (t, s)-sequences described
in Section 2 is the special case of the present construction where R is a
commutative ring with identity, the distinguished element o is the zero element
of R, and the maps φ(i)

j are linear forms over R. In analogy with Remark 1,
we propose to refer to the (t, s)-sequences produced by the method in this
section also as digital (t, s)-sequences in base b or as digital (t, s)-sequences
over R. The (t, s)-sequences in Section 2 could then be called linear digital
(t, s)-sequences in base b or linear digital (t, s)-sequences over R.

The construction principle described above is again too general to be useful
in practice, so one will have to focus on interesting special cases such as R
being a finite field (see Section 6).

In Sections 6 and 7, we have not really gone much beyond the description of
new construction principles for (t,m, s)-nets and (t, s)-sequences, respectively.
The challenge for future research on this topic is to find choices for the maps
φ

(i)
j in these constructions that are not all linear forms and that yield good (and

maybe even record) values of the quality parameter t. A source for optimism in
this quest is the analogy with coding theory (compare with the first paragraph
of Section 6).
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Summary. In this paper, we present an overview of the recent developments of
functional quantization of stochastic processes, with an emphasis on the quadratic
case. Functional quantization is a way to approximate a process, viewed as a Hilbert
-valued random variable, using a nearest neighbour projection on a finite code-
book. A special emphasis is made on the computational aspects and the numerical
applications, in particular the pricing of some path-dependent European options.

1 Introduction

Functional quantization is a way to discretize the path space of a stochastic
process. It has been extensively investigated since the early 2000’s by several
authors (see among others [LP02], [LP06b], [DS06], [DFMS03], [LP04], etc).
It first appeared as a natural extension of the Optimal Vector Quantization
theory of (finite-dimensional) random vectors which finds its origin in the early
1950’s for signal processing (see [GG92] or [GL00]).

Let us consider a Hilbertian setting. One considers a random vector X
defined on a probability space (Ω,A,P) taking its values in a separable Hilbert
space (H, (.|.)

H
) (equipped with its natural Borel σ-algebra) and satisfying

E|X|2 < +∞. When H is an Euclidean space (Rd), one speaks about Vector
Quantization. When H is an infinite dimensional space like L2

T
:= L2([0, T ], dt)

(endowed with the usual Hilbertian norm |f |L2
T

:= (
∫ T

0
f2(t)dt)

1
2 ) one speaks

of functional quantization (denoted L2
T

from now on). A (bi-measurable)
stochastic process (Xt)t∈[0,T ] defined on (Ω,A,P) satisfying |X(ω)|L2

T
< +∞

P(dω)-a.s. can always be seen, once possibly modified on a P-negligible set,
as an L2

T
-valued random variable. Although we will focus on the Hilbertian

framework, other choices are possible for H, in particular some more general
Banach settings like Lp([0, T ], dt) or C([0, T ],R) spaces.
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This paper is organized as follows: in Sections 2 we introduce quadratic
quantization in a Hilbertian setting. In Section 3, we focus on optimal quan-
tization, including some extensions to non quadratic quantization. Section 4
is devoted to some quantized cubature formulae. Section 5 provides some
classical background on the quantization rate in finite dimension. Section 7
deals with functional quantizations of Gaussian processes, like the Brown-
ian motion, with a special emphasis on the numerical aspects. We present
here what is, to our guess, the first large scale numerical optimization of
the quadratic quantization of the Brownian motion. We compare it to the
optimal product quantization, formerly investigated in [PP05b]. In section,
we propose a constructive approach to the functional quantization of scalar
or multidimensional diffusions (in the Stratanovich sense). In Section 9, we
show how to use functional quantization to price path-dependent options
like Asian options (in a heston stochastic volatility model). We conclude by
some recent results showing how to derive universal (often optimal) func-
tional quantization rate from time regularity of a process in Section 10
and by a few clues in Section 11 about the specific methods that produce
some lower bounds (this important subject as many others like the connec-
tions with small deviation theory is not treated in this numerically oriented
overview. As concerns statistical applications of functional quantization we
refer to [TK03, TPO03].

Notations. • an ≈ bn means an = O(bn) and bn = O(an); an ∼ bn means
an = bn + o(an).

• If X : (Ω,A,P) → (H, | . |
H

) (Hilbert space), then ‖X‖2 = (E|X|2
H

)
1
2 .

• �x� denotes the integral part of the real x.

2 What is Quadratic Functional Quantization?

Let (H, ( .|. )
H

) denote a separable Hilbert space. Let X ∈ L2
H

(P) i.e. a ran-
dom vector X : (Ω,A,P) �−→ H (H is endowed with its Borel σ-algebra)
such that E |X|2

H
< +∞. An N-quantizer (or N-codebook) is defined as a

subset
Γ := {x1, . . . , xN

} ⊂ H
with card Γ = N . In numerical applications, Γ is also called grid. Then, one
can quantize (or simply discretize) X by q(X) where q : H �→ Γ is a Borel
function. It is straightforward that

∀ω∈ Ω, |X(ω) − q(X(ω))|
H

≥ d(X(ω), Γ ) = min
1≤i≤N

|X(ω) − xi|H

so that the best pointwise approximation of X is provided by considering for
q a nearest neighbour projection on Γ , denoted Proj

Γ
. Such a projection is
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in one-to-one correspondence with the Voronoi partitions (or diagrams) of H
induced by Γ i.e. the Borel partitions of H satisfying

Ci(Γ ) ⊂
{
ξ∈ H : |ξ − xi|H = min

1≤j≤N
|ξ − xj |H

}
= Ci(Γ ), i = 1, . . . , N,

where Ci(Γ ) denotes the closure of Ci(Γ ) in H (this heavily uses the Hilbert
structure). Then

Proj
Γ
(ξ) :=

N∑
i=1

xi1Ci(Γ )(ξ)

is a nearest neighbour projection on Γ . These projections only differ on the
boundaries of the Voronoi cells Ci(Γ ), i = 1, . . . , N . All Voronoi partitions have
the same boundary contained in the union of the median hyperplanes defined
by the pairs (xi, xj), i �=j. Figure 1 represents the Voronoi diagram defined by
a (random) 10-tuple in R2. Then, one defines a Voronoi N -quantization of X
by setting for every ω∈ Ω,

X̂Γ (ω) := ProjΓ (X(ω)) =
N∑

i=1

xi1Ci(Γ )(X(ω)).

One clearly has, still for every ω∈ Ω, that

|X(ω) − X̂Γ (ω)|
H

= dist
H

(X(ω), Γ ) = min
1≤i≤N

|X(ω) − xi|H .

The mean (quadratic) quantization error is then defined by

e(Γ,X,H) = ‖X − X̂Γ ‖2 =

√
E
(

min
1≤i≤N

|X − xi|2H
)
. (1)

Fig. 1. A 2-dimensional 10-quantizer Γ = {x1, . . . , x10} and its Voronoi diagram.
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The distribution of X̂Γ as a random vector is given by the N -tuple (P(X ∈
Ci(Γ )))1≤i≤N of the Voronoi cells. This distribution clearly depends on the
choice of the Voronoi partition as emphasized by the following elementary
situation: if H = R, the distribution of X is given by P

X
= 1

3 (δ0 + δ1/2 + δ1),
N = 2 and Γ = {0, 1} since 1/2 ∈ ∂C0(Γ )∩∂C1(Γ ). However, if P

X
weights

no hyperplane, the distribution of X̂Γ depends only on Γ .

As concerns terminology, Vector Quantization is concerned with the finite
dimensional case – when dimH < +∞ – and is a rather old story, going back
to the early 1950’s when it was designed in the field of signal processing and
then mainly developed in the community of Information Theory. The term
functional quantization, probably introduced in [Pag00, LP02], deals with the
infinite dimensional case including the more general Banach-valued setting.
The term “functional” comes from the fact that a typical infinite dimensional
Hilbert space is the function space H = L2

T
. Then, any (bi-measurable) process

X : ([0, T ] × Ω,Bor([0, T ]) ⊗ A) → (R, Bor(R)) can be seen as a random
vector taking values in the set of Borel functions on [0, T ]. Furthermore,
((t, ω) �→ Xt(ω))∈ L2(dt⊗ dP) if and only if (ω �→ X.(ω))∈ L2

H(P) since∫
[0,T ]×Ω

X2
t (ω) dtP(dω) =

∫
Ω

P(dω)
∫ T

0

X2
t (ω) dt = E |X.|2L2

T

.

3 Optimal (Quadratic) Quantization

At this stage we are lead to wonder whether it is possible to design some
optimally fitted grids to a given distribution P

X
i.e. which induce the lowest

possible mean quantization error among all grids of size at most N . This
amounts to the following optimization problem

e
N

(X,H) := inf
Γ⊂H,card(Γ )≤N

e(Γ,X,H). (2)

It is convenient at this stage to make a correspondence between quantizers
of size at most N and N -tuples of HN : to any N -tuple x := (x1, . . . , xN )
corresponds a quantizer Γ := Γ (x) = {xi, i = 1, . . . , N} (of size at most N).
One introduces the quadratic distortion, denoted DX

N
, defined on HN as a

(symmetric) function by

DX
N

: HN −→ R+

(x1, . . . , xN
) �−→ E

(
min

1≤i≤N
|X − xi|2H

)
.

Note that, combining (1) and the definition of the distortion, shows that

DX
N

(x1, . . . , xN
) = E

(
min

1≤i≤N
|X − xi|2H

)
= E
(
d(X,Γ (x))2

)
= ‖X − X̂Γ (x)‖2

2
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Fig. 2. Two N-quantizers (and their Voronoi diagram) related to bi-variate normal
distribution N (0; I2) (N = 500); which one is the best?

so that,

e
N

(X,H) = inf
(x1,...,x

N
)∈HN

√
DX

N
(x1, . . . , xN

).

The following proposition shows the existence of an optimalN -tuple x(N,∗)∈
HN such that e

N
(X,H) =

√
DX

N
(x(N,∗)). The corresponding optimal quantizer

at level N is denoted Γ (N,∗) := Γ (x(N,∗)). In finite dimension we refer to [Pol82]
(1982) and in infinite dimension to [CAM88] (1988) and [Par90] (1990); one
may also see [Pag93], [GL00] and [LP02]. For recent developments on existence
and pathwise regularity of optimal quantizer see [GLP07].

Proposition 1. (a) The function DX
N

is lower semi-continuous for the product
weak topology on HN .

(b) The function DX
N

reaches a minimum at a N -tuple x(N,∗) (so that Γ (N,∗)

is an optimal quantizer at level N).

– If card(supp(PX)) ≥ N , the quantizer has full size N (i.e. card(Γ (N,∗)) =
N) and e

N
(X,H) < e

N−1(X,H).

– If card(supp(PX)) ≤ N , e
N

(X,H) = 0.

Furthermore lim
N
e

N
(X,H) = 0.

(c) Any optimal (Voronoi) quantization at level N , X̂Γ (N,∗)
satisfies

X̂Γ (N,∗)
= E(X |σ(X̂Γ (N,∗)

)) (3)

where σ(X̂Γ (N,∗)
) denotes the σ-algebra generated by X̂Γ (N,∗)

.
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(d) Any optimal (quadratic) quantization at level N is a best least square (i.e.
L2(P)) approximation of X among all H-valued random variables taking at
most N values:

e
N

(X,H)

= ‖X − X̂Γ (N,∗)‖2 = min{‖X − Y ‖2 , Y : (Ω,A) → H, card(Y (Ω)) ≤ N}.

Proof (sketch of): (a) The claim follows from the l.s.c. of ξ �→ |ξ|
H

for the
weak topology and Fatou’s Lemma.
(b) One proceeds by induction on N . If N = 1, the optimal 1-quantizer is
x(N,∗) = {EX} and e2(X,H) = ‖X − EX‖2 .

Assume now that an optimal quantizer x(N,∗) = (x(N,∗)
1 , . . . , x(N,∗)

N
) does

exist at level N .
– If card(supp(P)) ≤ N , then theN+1-tuple (x(N,∗), x(N,∗)

N
) (among other

possibilities) is also optimal at level N + 1 and e
N+1(X,H) = e

N
(X,H) = 0.

– Otherwise, card(supp(P)) ≥ N + 1, hence x(N,∗) has pairwise distinct
components and there exists ξN+1∈ supp(P

X
) \ {x(N,∗)

i , i = 1, . . . , N} �= ∅.
Then, with obvious notations,

DX
N+1

((x(N,∗), ξ
N+1)) < D

X
N

(x(N,∗)).

Then, the set FN+1 :=
{
x∈ HN+1 |DX

N+1
(x) ≤ DX

N+1
((x(N,∗), ξ

N+1))
}

is non

empty, weakly closed since DX
N+1

is l.s.c.. Furthermore, it is bounded in HN+1.
Otherwise there would exist a sequence x(m)∈ HN+1 such that |x(m),im

|
H

=
maxi |x(m),i|H → +∞ as m→ ∞. Then, by Fatou’s Lemma, one checks that

lim inf
m→∞ DX

N+1
(x(m)) ≥ DX

N
(x(N,∗)) > DX

N+1
((x(N,∗), ξ

N+1)).

Consequently FN+1 is weakly compact and the minimum of DX
N+1

on FN+1 is
clearly its minimum over the whole space HN+1. In particular

e
N+1(X,H) ≤ DX

N+1
((x(N,∗), ξ

N+1)) < eN
(X,H).

If card(supp(P)) = N + 1, set x(N+1,∗) = supp(P) (as sets) so that t X =
X̂Γ (N+1,∗)

which implies e
N+1(X,H) = 0.

To establish that e
N

(X,H) goes to 0, one considers an everywhere dense
sequence (zk)k≥1 in the separable space H. Then, d({z1, . . . , zN

}, X(ω)) goes
to 0 as N → ∞ for every ω ∈ Ω. Furthermore, d({z1, . . . , zN

}, X(ω))2 ≤
|X(ω) − z1|2H ∈ L1(P). One concludes by the Lebesgue dominated convergence
Theorem that DX

N
(z1, . . . , zN ) goes to 0 as N → ∞.

(c) and (d) Temporarily set X̂∗ := X̂Γ (N,∗)
for convenience. Let Y : (Ω,A) → H

be a random vector taking at most N values. Set Γ := Y (Ω). Since X̂Γ is a
Voronoi quantization of X induced by Γ ,



Functional Quantization 107

|X − X̂Γ |
H

= d(X,Γ ) ≤ |X − Y |
H

so that
‖X − X̂Γ ‖2 ≤ ‖X − Y ‖2 .

On the other hand, the optimality of Γ (N,∗) implies

‖X − X̂∗‖2 ≤ ‖X − X̂Γ ‖2 .

Consequently

‖X − X̂∗‖2 ≤ min {‖X − Y ‖2 , Y : (Ω,A) → H, card(Y (Ω)) ≤ N} .

The inequality holds as an equality since X̂∗ takes at most N values. Further-
more, considering random vectors of the form Y = g(X̂) (which take at most
as many values as the size of Γ (N,∗)) shows, going back to the very definition
of conditional expectation, that X̂∗ = E(X | X̂∗) P-a.s. ♦

Item (c) introduces a very important notion in (quadratic) quantization.

Definition 1. A quantizer Γ ⊂ H is stationary (or self-consistent) if (there
is a nearest neighbour projection such that X̂Γ = Proj

Γ
(X) satisfying)

X̂Γ = E
(
X | X̂Γ

)
. (4)

Note in particular that any stationary quantization satisfies EX = EX̂Γ .
As shown by Proposition 1(c) any quadratic optimal quantizer at level

N is stationary. Usually, at least when d ≥ 2, there are other stationary
quantizers: indeed, the distortion function DX

N
is | . |

H
-differentiable at N -

quantizers x∈ HN with pairwise distinct components and

∇DX
N

(x) = 2

(∫
Ci(x)

(xi − ξ)P
X
(dξ)

)
1≤i≤N

= 2
(
E(X̂Γ (x) −X)1{X̂Γ (x)=xi}

)
1≤i≤N

.

hence, any critical points of DX
N

is a stationary quantizer.

Remarks and comments. • In fact (see Theorem 4.2, p. 38, [GL00]), the
Voronoi partitions of Γ (N,∗) always have a PX -negligible boundary so that (4)
holds for any Voronoi diagram induced by Γ .
• The problem of the uniqueness of optimal quantizer (viewed as a set) is
not mentioned in the above proposition. In higher dimension, this essentially
never occurs. In one dimension, uniqueness of the optimal N -quantizer was
first established in [Fle64] with strictly log-concave density function. This was
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successively extended in [Kie83] and [Tru82] and lead to the following criterion
(for more general “loss” functions than the square function):
If the distribution of X is absolutely continuous with a log-concave density
function, then, for every N ≥ 1, there exists only one stationary quantizer of
size N , which turns out to be the optimal quantizer at level N .

More recently, a more geometric approach to uniqueness based on the Moun-
tain Pass Lemma first developed in [LP96] and then generalized in [Coh98])
provided a slight extension of the above criterion (in terms of loss functions).

This log-concavity assumption is satisfied by many families of probability
distributions like the uniform distribution on compact intervals, the normal
distributions, the gamma distributions. There are examples of distributions
with a non log-concave density function having a unique optimal quantizer for
every N ≥ 1 (see e.g. the Pareto distribution in [FP04]). On the other hand
simple examples of scalar distributions having multiple optimal quantizers at
a given level can be found in [GL00].
• A stationary quantizer can be sub-optimal. This will be emphasized in
Section 7 for the Brownian motion (but it is also true for finite dimensional
Gaussian random vectors) where some families of sub-optimal quantizers – the
product quantizers designed from the Karhunen-Lov̀e basis – are stationary
quantizers.
• For the uniform distribution over an interval [a, b], there is a closed form
for the optimal quantizer at level N given by Γ (N,∗) = {a+ (2k − 1) b−a

N , k =
1, . . . , N}. This N -quantizer is optimal not only in the quadratic case but also
for any Lr-quantization (see a definition further on). In general there is no such
closed form, either in 1 or higher dimension. However, in [FP04] some semi-
closed forms are obtained for several families of (scalar) distributions including
the exponential and the Pareto distributions: all the optimal quantizers can be
expressed using a single underlying sequence (ak)k≥1 defined by an induction
ak+1 = F (ak).
• In one dimension, as soon as the optimal quantizer at level N is unique (as
a set or as an N -tuple with increasing components), it is generally possible
to compute it as the solution of the stationarity equation (3) either by a zero
search (Newton-Raphson gradient descent) or a fixed point (like the specific
Lloyd I procedure, see [Kie82]) procedure.
• In higher dimension, deterministic optimization methods become intractable
and one uses stochastic procedures to compute optimal quantizers. The main
topic of this paper being functional quantization, we postponed the short
overview on these aspects to Section 7, devoted to the optimal quantization of
the Brownian motion. But it is to be noticed that all efficient optimization
methods rely on the so-called splitting method which increases progressively
the quantization level N . This method is directly inspired by the induction
developed in the proof of claim (b) of Proposition 1 since one designs the
starting value of the optimization procedure at size N + 1 by “merging” the
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optimizedN -quantizer obtained at levelN with one further point of Rd, usually
randomly sampled with respect to an appropriate distribution (see [PP03] for
a discussion).
• As concerns functional quantization, e.g. H = L2

T
, there is a close connection

between the regularity of optimal (or even stationary) quantizers and that of
t �→ Xt form [0, T ] into L2(P). Furthermore, as concerns optimal quantizers of
Gaussian processes, one shows (see [LP02]) that they belong to the reproducing
space of their covariance operator, e.g. to the Cameron-Martin space H1 =
{∫ .

0
ḣsds, ḣ∈ L2

T
} when X =W . Other properties of optimal quantization of

Gaussian processes are established in [LP02].

Extensions to the Lr(P)-quantization of random variables. In this
paper, we focus on the purely quadratic framework (L2

T
and L2(P)-norms),

essentially because it is a natural (and somewhat easier) framework for the
computation of optimized grids for the Brownian motion and for some first
applications (like the pricing of path-dependent options, see section 9). But a
more general and natural framework is to consider the functional quantization
of random vectors taking values in a separable Banach space (E, | . |

E
). Let

X : (Ω,A,P) → (E, | |
E
), such that E |X|r

E
< +∞ for some r ≥ 1 (the case

0 < r < 1 can also be taken in consideration).
The N -level (Lr(P), | . |

E
)-quantization problem for X∈ Lr

E
(P) reads

e
N,r

(X,E) := inf
{
‖X − X̂Γ ‖

r
, Γ ⊂ E, card(Γ ) ≤ N

}
.

The main examples for (E, | . |
E
) are the non-Euclidean norms on Rd, the

functional spaces Lp
T
(µ) := Lp([0, T ], µ(dt)), 1 ≤ p ≤ ∞, equipped with its

usual norm, (E, | . |
E
) = (C([0, T ]), ‖ . ‖sup), etc. As concerns, the existence of

an optimal quantizer, it holds true for reflexive Banach spaces (see Pärna
(90)) and E = L1

T
, but otherwise it may fail even when N = 1 (see [GLP07]).

In finite dimension, the Euclidean feature is not crucial (see [GL00]). In the
functional setting, many results originally obtained in a Hilbert setting have
been extended to the Banach setting either for existence or regularity results
(see [GLP07]) or for rates see [Der05b], [DS06], [LP04], [LP06a].

4 Cubature Formulae: Conditional Expectation
and Numerical Integration

Let F : H −→ R be a continuous functional (with respect to the norm | . |
H

)
and let Γ ⊂ H be an N -quantizer. It is natural to approximate E(F (X)) by
E(F (X̂Γ )). This quantity E(F (X̂Γ )) is simply the finite weighted sum

E (F (X̂Γ )) =
N∑

i=1

F (xi)P(X̂Γ = xi).
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Numerical computation of E (F (X̂Γ )) is possible as soon as F (ξ) can be
computed at any ξ ∈ H and the distribution (P(X̂ = xi))1≤i≤N of X̂Γ

is known. The induced quantization error ‖X − X̂Γ ‖2 is used to control the
error (see below). These quantities related to the quantizer Γ are also called
companion parameters.

Likewise, one can consider a priori the σ(X̂Γ )-measurable random variable
F (X̂Γ ) as a good approximation of the conditional expectation E(F (X) | X̂Γ ).

4.1 Lipschitz Functionals

Assume that the functional F is Lipschitz continuous on H. Then∣∣∣E(F (X) | X̂Γ ) − F (X̂Γ )
∣∣∣ ≤ [F ]LipE(|X − X̂Γ | | X̂Γ )

so that, for every real exponent r ≥ 1,

‖E(F (X) | X̂Γ ) − F (X̂Γ )‖
r
≤ [F ]Lip‖X − X̂Γ ‖

r

(where we applied conditional Jensen inequality to the convex function u �→ ur).
In particular, using that EF (X) = E(E(F (X) | X̂Γ )), one derives (with r = 1)
that ∣∣∣EF (X) − EF (X̂Γ )

∣∣∣ ≤ ‖E(F (X) | X̂Γ ) − F (X̂Γ )‖1

≤ [F ]Lip‖X − X̂Γ ‖1 .

Finally, using the monotony of the Lr(P)-norms as a function of r yields∣∣∣EF (X) − EF (X̂Γ )
∣∣∣ ≤ [F ]Lip‖X − X̂Γ ‖1 ≤ [F ]Lip‖X − X̂Γ ‖2 . (5)

In fact, considering the Lipschitz functional F (ξ) := d(ξ, Γ ), shows that

‖X − X̂Γ ‖1 = sup
[F ]Lip≤1

∣∣∣EF (X) − EF (X̂Γ )
∣∣∣ . (6)

The Lipschitz functionals making up a characterizing family for the weak
convergence of probability measures on H, one derives that, for any sequence
of N -quantizers ΓN satisfying ‖X − X̂Γ N ‖1 → 0 as N → ∞,∑

1≤i≤N

P(X̂Γ N

= xN
i ) δxN

i

(H)
=⇒ P

X

where
(H)
=⇒ denotes the weak convergence of probability measures on (H, | . |H).
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4.2 Differentiable Functionals with Lipschitz Differentials

Assume now that F is differentiable on H, with a Lipschitz continuous differ-
ential DF , and that the quantizer Γ is stationary (see Equation (4)).

A Taylor expansion yields∣∣∣F (X) − F (X̂Γ ) −DF (X̂Γ ).(X − X̂Γ )
∣∣∣ ≤ [DF ]Lip |X − X̂Γ |2.

Taking conditional expectation given X̂Γ yields∣∣∣E(F (X) | X̂Γ)−F (X̂Γ)−E
(
DF (X̂Γ).(X−X̂Γ) | X̂Γ

)∣∣∣
≤ [DF ]LipE(|X−X̂Γ |2| X̂Γ).

Now, using that the random variable DF (X̂Γ ) is σ(X̂Γ )-measurable, one has

E
(
DF (X̂Γ ).(X − X̂Γ )

)
= E
(
DF (X̂Γ ).E(X − X̂Γ | X̂Γ )

)
= 0

so that ∣∣∣E(F (X) | X̂Γ ) − F (X̂Γ )
∣∣∣ ≤ [DF ]LipE

(
|X − X̂Γ |2 | X̂Γ

)
.

Then, for every real exponent r ≥ 1,∥∥∥E(F (X) | X̂Γ ) − F (X̂Γ )
∥∥∥

r

≤ [DF ]Lip‖X − X̂Γ ‖2
2r
.

In particular, when r = 1, one derives like in the former setting∣∣∣EF (X) − EF (X̂Γ )
∣∣∣ ≤ [DF ]Lip‖X − X̂Γ ‖2

2
. (7)

In fact, the above inequality holds provided F is C1 with Lipschitz differential
on every Voronoi cell Ci(Γ ). A similar characterization to (6) based on these
functionals could be established.

Some variant of these cubature formulae can be found in [PP03] or [GLP06]
for functions or functionals F having only some local Lipschitz regularity.

4.3 Quantized Approximation of E(F (X) | Y )

Let X and Y be two H-valued random vector defined on the same proba-
bility space (Ω,A,P) and F : H → R be a Borel functional. The natural
idea is to approximate E(F (X) |Y ) by the quantized conditional expectation
E(F (X̂) | Ŷ ) where X̂ and Ŷ are quantizations of X and Y respectively.

Let ϕ
F

: H → R be a (Borel) version of the conditional expectation i.e.
satisfying

E(F (X) |Y ) = ϕ
F
(Y ).
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Usually, no closed form is available for the function ϕ
F

but some regularity
property can be established, especially in a (Feller) Markovian framework.
Thus assume that both F and ϕ

F
are Lipschitz continuous with Lipschitz

coefficients [F ]Lip and [ϕ
F
]Lip. Then

E(F (X)|Y )−E(F (X̂)|Ŷ ) = E(F (X)|Y )−E(F (X)|Ŷ )+E(F (X)−F (X̂)|Ŷ ).

Hence, using that Ŷ is σ(Y )-measurable and that conditional expectation is
an L2-contraction,

‖E(F (X) |Y ) − E(F (X) | Ŷ )‖2 = ‖E(F (X)|Y ) − E(E(F (X̂)|Y )|Ŷ )‖2

≤ ‖ϕ
F
(Y ) − E(F (X)|Ŷ )‖2

= ‖ϕ
F
(Y ) − E(ϕ

F
(Y )|Ŷ )‖2

≤ ‖ϕ
F
(Y ) − ϕ

F
(Ŷ )‖2 .

The last inequality follows form the definition of conditional expectation
given Ŷ as the best quadratic approximation among σ(Ŷ )-measurable random
variables. On the other hand, still using that E( . |σ(Ŷ )) is an L2-contraction
and this time that F is Lipschitz continuous yields

‖E(F (X) − F (X̂) | Ŷ )‖2 ≤ ‖F (X) − F (X̂)‖2 ≤ [F ]Lip‖X − X̂‖2 .

Finally,

‖E(F (X) |Y ) − E(F (X̂) | Ŷ )‖2 ≤ [F ]Lip‖X − X̂‖2 + [ϕ
F
]Lip‖Y − Ŷ ‖2 .

In the non-quadratic case the above inequality remains valid provided
[ϕ

F
]Lip is replaced by 2[ϕ

F
]Lip.

5 Vector Quantization Rate (H = Rd)

The fact that e
N

(X,Rd) is a non-increasing sequence that goes to 0 as N
goes to ∞ is a rather simple result established in Proposition 1. Its rate of
convergence to 0 is a much more challenging problem. An answer is provided
by the so-called Zador Theorem stated below.

This theorem was first stated and established for distributions with compact
supports by Zador (see [Zad63, Zad82]). Then a first extension to general prob-
ability distributions on Rd is developed in [BW82]. The first mathematically
rigorous proof can be found in [GL00], and relies on a random quantization
argument (Pierce Lemma).

Theorem 1. (a) Sharp rate. Let r > 0 and X ∈ Lr+η(P) for some η > 0.

Let P
X

(dξ) = ϕ(ξ) dξ
⊥
+ ν(dξ) be the canonical decomposition of the distribu-

tion of X (ν and the Lebesgue measure are singular). Then (if ϕ �≡ 0),
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e
N,r

(X,Rd) ∼ J̃r,d ×
(∫

Rd

ϕ
d

d+r (u) du
) 1

d + 1
r

×N− 1
d as N → +∞. (8)

where J̃r,d ∈ (0,∞).

(b) Non asymptotic upper bound (see e.g. [LP06a]). Let d ≥ 1. There
exists Cd,r,η ∈(0,∞) such that, for every Rd-valued random vector X,

∀N ≥ 1, e
N,r

(X,Rd) ≤ Cd,r,η‖X‖r+ηN
− 1

d .

Remarks. • The real constant J̃r,d clearly corresponds to the case of the
uniform distribution over the unit hypercube [0, 1]d for which the slightly more
precise statement holds

lim
N
N

1
d e

N,r
(X,Rd) = inf

N
N

1
d e

N,r
(X,Rd) = J̃r,d.

The proof is based on a self-similarity argument. The value of J̃r,d depends
on the reference norm on Rd. When d = 1, elementary computations show
that J̃r,1 = (r + 1)−

1
r /2. When d = 2, with the canonical Euclidean norm, one

shows (see [New82] for a proof, see also [GL00]) that J̃2,d =
√

5
18

√
3
. Its exact

value is unknown for d ≥ 3 but, still for the canonical Euclidean norm, one
has (see [GL00]) using some random quantization arguments,

J̃2,d ∼
√
d

2πe
≈
√

d

17, 08
as d→ +∞.

• When ϕ ≡ 0 the distribution of X is purely singular. The rate (8) still
holds in the sense that limN N

1
d e

r,N
(X,Rd) = 0. Consequently, this is not

the right asymptotics. The quantization problem for singular measures (like
uniform distribution on fractal compact sets) has been extensively investigated
by several authors, leading to the definition of a quantization dimension in
connection with the rate of convergence of the quantization error on these sets.
For more details we refer to [GL00, GL05] and the references therein.

• A more naive way to quantize the uniform distribution on the unit hypercube
is to proceed by product quantization i.e. by quantizing the marginals of the
uniform distribution. If N = md, m ≥ 1, one easily proves that the best
quadratic product quantizer (for the canonical Euclidean norm on Rd) is the
“midpoint square grid”

Γ sq,N =
(

2i1 − 1
2m

, . . . ,
2id − 1

2m

)
1≤i1,...,id≤m

which induces a quadratic quantization error equal to√
d

12
×N− 1

d .

Consequently, product quantizers are still rate optimal in every dimension d.
Moreover, note that the ratio of these two rates remains bounded as d ↑ ∞.
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6 Optimal Quantization and QMC

The principle of Quasi-Monte Carlo method (QMC) is to approximate the
integral of a function f : [0, 1]d → R with respect to the uniform distribution

on [0, 1]d, i.e.
∫

[0,1]d
f dλd =

∫
[0,1]d

f(ξ1, . . . , ξd)dξ1 · · · dξd (λd denotes the

Lebesgue measure on [0, 1]d), by the uniformly weighted sum

1
N

N∑
k=1

f(xk)

of values of f at the points of a so-called low discrepancy N -tuple (x1, . . . , xN
)

(or set). This N -tuple can the first N terms of an infinite sequence.
If f has finite variations denoted V (f) – either in the measure sense

(see [BL94, PX88]) or in the Hardy and Krause sense (see [Nie92] p.19) – the
Koksma-Hlawka inequality provides an upper bound for the integration error
induced by this method, namely∣∣∣∣∣ 1N

N∑
k=1

f(xk) −
∫

[0,1]d
f dλd

∣∣∣∣∣ ≤ V (f)Disc∗
N

(x1, . . . , xN
)

where

Disc∗
N

(x1, . . . , xN
) := sup

y∈[0,1]d

∣∣∣∣∣ 1N
N∑

k=1

1{xk∈[[0,y]]} − λd([[0, y]])

∣∣∣∣∣
(with [[0, y]]=

∏d
k=1[0, y

i], y = (y1, . . . , yd)∈ [0, 1]d).
The error modulus Disc∗

N
(x1, . . . , xN

) denotes the discrepancy at the origin
of the N -tuple (x1, . . . , xN ). For every N ≥ 1, there exists [0, 1]d-valued
N -tuples x(N) such that

Disc∗
N

(x(N)) ≤ Cd
(logN)d−1

N
, (9)

where Cd ∈ (0,∞) is a real constant only depending on d. This result can
be proved using the so-called Hammersely procedure (see e.g. [Nie92], p. 31).
When x(N) = (x1, . . . , xN

) is made of the first N terms of a [0, 1]d-valued
sequence (xk)k≥1, then the above upper bound has be replaced by C ′

d
(log N)d

N
(C ′

d ∈ (0,∞)). Such a sequence x = (xk)k≥1 is said to be a sequence with low
discrepancy (see [Nie92] an the references therein for a comprehensive theo-
retical overview, but also [BL94, PX88] for examples supported by numerical
tests). When one only has Disc∗

N
(x1, . . . , xN

) → 0 as N → ∞, the sequence is
said to be uniformly distributed in [0, 1]d.

It is widely shared by QMC specialists that these rates are (in some sense)
optimal although this remains a conjecture except when d = 1. To be precise
what is known and what is conjectured is the following:
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– Any [0, 1]d-valued N -tuple x(N) satisfies D∗
N (x(N)) ≥ BdN

−1(logN)β(d)

where β(d) = d−1
2 if d ≥ 2 (see [Rot54] and also [Nie92] and the references

therein), β(1) = 0 and Bd > 0 is a real constant only depending on d; the
conjecture is that β(d) = d− 1.

– Any [0, 1]d-valued sequence (xk)k≥1 satisfies D∗
N (x(N)) ≥

BdN
−1(logN)β′(d) for infinitely many N , where β′(d) = d

2 if d ≥ 2 and
β′(1) = 1 and B′

d > 0 is a real constant only depending on d; the conjecture is
that β(d) = d. This follows from the result for N -tuple by the Hammersley
procedure (see e.g. [BL94]).

Furthermore, as concerns the use of Koksma-Hlawka inequality as an error
bound for QMC numerical integration, the different notions of finite variation
(which are closely connected) all become more and more restrictive – and
subsequently less and less “natural” as a regularity property of functions –
when the dimension d increases. Thus the Lipschitz continuous function f
defined by f(ξ1, ξ2, ξ3) := (ξ1 + ξ2 + ξ3) ∧ 1 has infinite variation on [0, 1]3.

When applying Quasi-Monte Carlo approximation of integrals with “stan-
dard” continuous functions on [0, 1]d, the best known error bound, due to
Proinov, is given by the following theorem.

Theorem 2. (Proinov [Pro88]) (a) Assume Rd is equipped with the �∞-norm
|(u1, . . . , ud)|∞ := max1≤i≤d |ui|. Let (x1, . . . , xN

)∈ ([0, 1]d)N . For every con-
tinuous function f : [0, 1]d → R,∣∣∣∣∣

∫
[0,1]d

f(u)du− 1
N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ Kd ωf ((Disc∗
N

(x1, . . . , xN
))

1
d )

where ωf (δ) := supx,y∈[0,1]d,|x−y|∞≤δ |f(x) − f(y)|, δ∈ (0, 1), is the uniform
continuity modulus of f (with respect to the �∞-norm) and Cd ∈ (0,∞) is a
universal constant only depending on d.

(b) If d = 1, Kd = 1 and if d ≥ 2, Kd ∈ [1, 4].

Remark. Note that if f is Lipschitz continuous, then ωf (δ) = [f ]Lipδ where
[f ]Lip denotes the Lipschitz coefficient of f (with respect to the �∞-norm).

First, this result emphasizes that low discrepancy sequences or sets do suffer
from the curse of dimensionality when a QMC approximation is implemented
on functions having a “natural” regularity like Lipschitz continuity.

One also derives from this theorem an inequality between (L1(P), �∞)-
quantization error of the uniform distribution U([0, 1]d) and the discrepancy
at the origin of a N -tuple (x1, . . . , xN

), namely

‖ |U − Û{x1,...,x
N
}|�∞‖1 ≤ Kd(Disc∗N (x1, . . . , xN

))
1
d
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since the function ξ �→ min1≤k≤N |xk − ξ|∞ is clearly �∞-Lipschitz continuous
with Lipschitz coefficient 1. The inequality also follows from the characterization
established in (6) (which is clearly still true for non Euclidean norms). Then
one may derive some bounds for Euclidean norms (and in fact any norms)
on Rd (probably not sharp in terms of constant) since all the norms are
strongly equivalent. However the bounds for optimal quantization error derived
from Zador’s Theorem (O(N− 1

d )) and those for low discrepancy sets (see (9))
suggest that overall, optimal quantization provides lower error bounds for
numerical integration of Lipschitz functions than low discrepancy sets, at least
for for generic values of N . (However, standard computations show that for
midpoint square grids (with N = md points) both quantization errors and
discrepancy behave like 1

m = N− 1
d ).

7 Optimal Quadratic Functional Quantization
of Gaussian Processes

Optimal quadratic functional quantization of Gaussian processes is closely
related to their so-called Karhunen-Loève expansion which can be seen in some
sense as some infinite dimensional Principal Component Analysis (PCA) of a
(Gaussian) process. Before stating a general result for Gaussian processes, we
start by the standard Brownian motion: it is the most important example in
view of (numerical) applications and for this process, everything can be made
explicit.

7.1 Brownian Motion

One considers the Hilbert spaceH = L2
T

:= L2([0, T ], dt), (f |g)2 =
∫ T

0

f(t)g(t)dt,

|f |L2
T

=
√

(f |f)2 . The covariance operator C
W

of the Brownian motion
W = (Wt)t∈[0,T ] is defined on L2

T
by

C
W

(f) := E ((f,W )2W ) =

(
t �→
∫ T

0

(s ∧ t)f(s)ds
)
.

It is a symmetric positive trace class operator which can be diagonalized in
the so-called Karhunen-Loève (K-L) orthonormal basis (eWn )n≥1 of L2

T
, with

eigenvalues (λn)n≥1, given by

eWn (t) =

√
2
T

sin
(
π(n− 1

2
)
t

T

)
, λn =

(
T

π(n− 1
2 )

)2

, n ≥ 1.

This classical result can be established as a simple exercise by solving the
functional equation C

W
(f) = λf . In particular, one can expand W itself on

this basis so that
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W
L2

T=
∑
n≥1

(W |eWn )2 e
W
n .

Now, the orthonormality of the (K-L) basis implies, using Fubini’s Theroem,

E((W |eWk )2(W |eW� )2) = (eWk |C
W

(eW� ))2 = λ�δk�

where δk� denotes the Kronecker symbol. Hence the Gaussian sequence
((W |eWn )2)n≥1 is pairwise non-correlated which implies that these random vari-
ables are independent. The above identity also implies that Var((W |eWn )2) = λn.
Finally this shows that

W
L2

T=
∑
n≥1

√
λn ξn e

W
n (10)

where ξn := (W |eWn )2/
√
λn, n ≥ 1, is an i.i.d. sequence of N (0; 1)-distributed

random variables. Furthermore, this K-L expansion converges in a much
stronger sense since supt∈[0,T ] |Wt −∑n

k=1

√
λkξke

W
k (t)| → 0 P-a.s. and

‖ sup
[0,T ]

|Wt −
∑

1≤k≤n

√
λkξke

W
k (t)|‖2 = O

(√
logn/n

)
(see e.g. [LP05]). Similar results (with various rates) hold true for a wide class
of Gaussian processes expanded on “admissible” basis (see e.g. [LP07]).

Theorem 3. ([LP02] (2002) and [LP04] (2003)) Let ΓN , N ≥ 1, be a se-
quence of optimal N -quantizers for W .
(a) For every N ≥ 1, span(ΓN ) = span{eW1 , . . . , eWd(N)} with d(N) = Ω(logN).

Furthermore ŴΓ N

and W − ŴΓ N

are independent.

(b) e
N

(W,L2
T
) = ‖W − ŴΓ N ‖2 ∼ T

√
2

π

1√
logN

as N → ∞.

Remark. • The fact, confirmed by numerical experiments (see Section 7.3
Figure 6), that d(N) ∼ logN holds as a conjecture.
• Denoting Π

d
the orthogonal projection on span{eW1 , . . . , eWd }, one derives

from (a) that ŴΓ N

= ̂Π
d(N)(W )

ΓN

(optimal quantization at level N) and

‖W − ŴΓ N ‖2
2

= ‖Πd(N)(W ) − ̂Π
d(N)(W )

ΓN ‖2
2

+ ‖W −Πd(N)(W )‖2
2

= eN
(
Zd(N),Rd(N)

)2
+
∑

n≥d(N)+1

λn

where Zd(N)
d= Πd(N)(W ) ∼

d(N)⊗
k=1

N (0;λk).
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7.2 Centered Gaussian Processes

The above Theorem 3 devoted to the standard Brownian motion is a particular
case of a more general theorem which holds for a wide class of Gaussian
processes

Theorem 4. ([LP02] (2002) and [LP04] (2004)) Let X = (Xt)t∈[0,T ] be a
Gaussian process with K-L eigensystem (λX

n , e
X
n )n≥1 (with λ1 ≥ λ2 ≥ . . .

is non-increasing). Let ΓN , N ≥ 1, be a sequence of quadratic optimal N-
quantizers for X. Assume

λX
n ∼ κ

nb
as n→ ∞ (b > 1).

(a) span(ΓN ) = span{eX1 , . . . , eXdX(N)} and dX(N) = Ω(logN).

(b) e
N

(X,L2
T
) = ‖X − X̂Γ N‖2 ∼ √

κ
√
bb(b− 1)−1 (2 logN)−

b−1
2 .

Remarks. • The above result admits an extension to the case λX
n ∼ ϕ(n)

as n → ∞ with ϕ regularly varying, index −b ≤ −1 (see [LP04]). In [LP02],
upper or lower bounds are also established when

(λX
n ≤ ϕ(n), n ≥ 1) or (λX

n ≥ ϕ(n), n ≥ 1).

• The sharp asymptotics dX(N) ∼ 2
b logN holds as a conjecture.

Applications to classical (centered) Gaussian processes.
• Brownian bridge: Xt :=Wt − t

TWT , t∈ [0, T ] and eXn (t) =
√

2/T sin
(
πn t

T

)
,

λn =
(

T
πn

)2
, so that e

N
(X,L2

T
) ∼ T

√
2

π (logN)−
1
2 .

• Fractional Brownian motion with Hurst constant H∈ (0, 1)

eN (WH , L2
T
) ∼ TH+ 1

2 c(H)(logN)−H

where c(H) =
(

Γ (2H) sin(πH)(1+2H)
π

) 1
2( 1+2H

2π

)H
and Γ (t) denotes the Gamma

function at t > 0.

• Some further explicit sharp rates can be derived from the above theorem
for other classes of Gaussian stochastic processes (see [LP04], 2004) like the
fractional Ornstein-Uhlenbeck processes, the Gaussian diffusions, a wide class
Gaussian stationary processes (the quantization rate is derived from the high
frequency asymptotics of its spectral density, assumed to be square integrable
on the real line), for the m-folded integrated Brownian motion, the fractional
Brownian sheet, etc.

• Of course some upper bounds can be derived for some even wider classes of
processes, based on the above first remark (see e.g. [LP02], 2002).
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Extensions to r, p �= 2 When the processes have some self-similarity properties,
it is possible to obtain some sharp rates in the non purely quadratic case:
this has been done for fractional Brownian motion in [DS06] using some quite
different techniques in which self-similarity properties plays there a crucial
role. It leads to the following sharp rates, for p∈ [1,+∞] and r∈ (0,∞)

e
N,r

(WH , Lp
T
) ∼ TH+ 1

2 c(r,H)(logN)−H , c(r,H)∈ (0,+∞).

7.3 Numerical Optimization of Quadratic Functional Quantization

Thanks to the scaling property of Brownian motion, one may focus on the
normalized case T = 1. The numerical approach to optimal quantization of the
Brownian motion is essentially based on Theorem 3 and the remark that follows:
indeed these results show that quadratic optimal functional quantization of a
centered Gaussian process reduces to a finite dimensional optimal quantization
problem for a Gaussian distribution with a diagonal covariance structure.
Namely the optimization problem at level N reads

(ON ) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e

N
(W,L2

T
)2 := e

N
(Zd(N),Rd(N))2 +

∑
k≥d(N)+1

λk

where Zd(N)
d=

d(N)⊗
k=1

N (0, λk).

Moreover, if βN := {βN
1 , . . . , β

N
N } denotes an optimal N -quantizer of Zd(N),

then, the optimal N -quantizer ΓN of W reads ΓN = {xN
1 , . . . , x

N
N} with

xN
i (t) =

∑
1≤�≤d(N)

(βN
i )�eW� (t), i = 1, . . . , N. (11)

The good news is that (ON ) is in fact a finite dimensional quantization
optimization problem for each N ≥ 1. The bad news is that the problem is
somewhat ill conditioned since the decrease of the eigenvalues of W is very
steep for small values of n: λ1 = 0.40528 . . . , λ2 = 0.04503 · · · ≈ λ1/10. This is
probably one reason for which former attempts to produce good quantization
of the Brownian motion first focused on other kinds of quantizers like scalar
product quantizers (see [PP05b] and Section 7.4 below) or d-dimensional block
product quantizations (see [Wil05] and [LPW07]).

Optimization of the (quadratic) quantization of Rd-valued random vector
has been extensively investigated since the early 1950’s, first in 1-dimension,
then in higher dimension when the cost of numerical Monte Carlo simulation
was drastically cut down (see [GG92]). Recent application of optimal vector
quantization to numerics turned out to be much more demanding in terms of
accuracy. In that direction, one may cite [PP03], [MBH06] (mainly focused on
numerical optimization of the quadratic quantization of normal distributions).
To apply the methods developed in these papers, it is more convenient to
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rewrite our optimization problem with respect to the standard d-dimensional
distribution N (0; Id) by simply considering the Euclidean norm derived from
the covariance matrix Diag(λ1, . . . , λd(N)) i.e.

(ON ) ⇔

⎧⎪⎪⎨⎪⎪⎩
N -optimal quantization of

d(N)⊗
k=1

N (0, 1)

for the covariance norm |(z1, . . . , zd(N))|2 =
∑d(N)

k=1 λkz
2
k.

The main point is of course that the dimension d(N) is unknown. However
(see Figure 6), one clearly verifies on small values of N that the conjecture
(d(N) ∼ logN) is most likely true. Then for higher values of N one relies
on it to shift from one dimension to another following the rule d(N) = d,
N ∈ {ed, . . . , ed+1 − 1}.

A Toolbox for Quantization Optimization: A short Overview

Here is a short overview of stochastic optimization methods to compute optimal
or at least locally optimal quantizers in finite dimension. For more details we
refer to [PP03] and the references therein. Let Z d= N (0; Id).

Competitive Learning Vector Quantization (CLV Q). This procedure is a recur-
sive stochastic approximation gradient descent based on the integral represen-
tation of the gradient ∇DZ

N (x), x∈ Hn (temporarily coming back to N -tuple
notation) of the distortion as the expectation of a local gradient i.e.

∀xN ∈ HN , ∇DZ
N (xN ) = E(∇DZ

N (xN , ζ)), ζk i.i.d., ζ1
d= N (0, Id)

so that, starting from xN(0)∈ (Rd)N , one sets

∀ k ≥ 0, xN(k + 1) = xN(k) − c

k + 1
∇DZ

N (xN(k), ζk+1)

where c∈ (0, 1] is a real constant to be tuned. As set, this looks quite formal
but the operating CLV Q procedure consists of two phases at each iteration:

(i) Competitive Phase: Search of the nearest neighbor xN(k)i∗(k+1) of ζk+1

among the components of xN(k)i, i = 1, . . . , N (using a “winning convention”
in case of conflict on the boundary of the Voronoi cells).

(ii) Cooperative Phase: One moves the winning component toward ζk+1

using a dilatation i.e. xN(k + 1)i∗(k+1) = Dilatationζk+1,1− c
k+1

(xN(k)i∗(k+1)).
This procedure is useful for small or medium values of N . For an exten-

sive study of this procedure, which turns out to be singular in the world of
recursive stochastic approximation algorithms, we refer to [Pag97]. For general
background on stochastic approximation, we refer to [KY03, BMP90].
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The randomized “Lloyd I procedure”. This is the randomization of the station-
arity based fixed point procedure since any optimal quantizer satisfies (4):

ẐxN(k+1) = E(Z | ẐxN(k)), xN(0) ⊂ Rd.

At every iteration the conditional expectation E(Z | ẐxN(k)) is computed using
a Monte Carlo simulation. For more details about practical aspects of Lloyd I
procedure we refer to [PP03]. In [MBH06], an approach based on genetic
evolutionary algorithms is developed.

For both procedures, one may substitute a sequence of quasi-random
numbers to the usual pseudo-random sequence. This often speeds up the rate
of convergence of the method, although this can only be proved (see [LSP90])
for a very specific class of stochastic algorithm (to which CLV Q does not
belong).

The most important step to preserve the accuracy of the quantization as
N (and d(N)) increase is to use the so-called splitting method which finds
its origin in the proof of the existence of an optimal N -quantizer: once the
optimization of a quantization grid of size N is achieved, one specifies the
starting grid for the size N + 1 or more generally N + ν, ν ≥ 1, by merging
the optimized grid of size N resulting from the former procedure with ν
points sampled independently from the normal distribution with probability
density proportional to ϕ

d
d+2 where ϕ denotes the p.d.f. of N (0; Id). This rather

unexpected choice is motivated by the fact that this distribution provides the
lowest in average random quantization error (see [Coh98]).

As a result, to be downloaded on the website [PP05a] devoted to
quantization:

www.quantize.maths-fi.com

◦ Optimized stationary codebooks for W : in practice, the N -quantizers βN

of the distribution ⊗d(N)
k=1 N (0;λk), N=1 up to 10 000 (d(N) runs from 1 up

to 9).
◦ Companion parameters:

– distribution of ŴΓ N

: P(ŴΓ N

= xN
i ) = P(ẐβN

d(N) = β
N
i ) (← in Rd(N)).

– The quadratic quantization error: ‖W − ŴΓ N ‖2 .

7.4 An Alternative: Product Functional Quantization

Scalar Product functional quantization is a quantization method which pro-
duces rate optimal sub-optimal quantizers. They were used e.g. in [LP02] to
provide exact rate (although not sharp) for a very large class of processes. The
first attempts to use functional quantization for numerical computation with
the Brownian motion was achieved with these quantizers (see [PP05b]). We
will see further on their assets. What follows is presented for the Brownian
motion but would work for a large class of centered Gaussian processes.
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(d(N) = 2). Top: βN depicted in R2. Bottom: the optimized N-quantizer Γ N .
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Fig. 6. Optimal functional quantization of the Brownian motion. N �→
log N (eN (W, L2

T
))2, N ∈ {6, . . . , 160}. Vertical dashed lines: critical dimensions

for d(N), e2 ≈ 7, e3 ≈ 20, e4 ≈ 55, e5 ≈ 148.

Let us consider again the expansion of W in its K-L basis:

W
L2

T=
∑
n≥1

√
λn ξn e

W
n

where (ξn)n≥1 is an i.i.d. sequence N (0; 1)-distributed random variables (keep
in mind this convergence also holds a.s. uniformly in t∈ [0, T ]). The idea is
simply to quantize these (normalized) random coordinates ξn: for every n ≥ 1,
one considers an optimal Nn-quantization of ξn, denoted ξ̂(Nn)

n (Nn ≥ 1). For
n > m, set Nn = 1 and ξ̂(Nn)

n = 0 (which is the optimal 1-quantization). The
integer m is called the length of the product quantization. Then, one sets

Ŵ
(N1,...,Nm, prod)
t :=

∑
n≥1

√
λn ξ̂

(Nn)
n eWn (t) =

m∑
n=1

√
λn ξ̂

(Nn)
n eWn (t).

Such a quantizer takes
∏m

n=1Nn ≤ N values.

If one denotes by αM = {αM
1 , . . . , α

M
M} the (unique) optimal quadratic

M -quantizer of the N (0; 1)-distribution, the underlying quantizer of the above
quantization Ŵ (N1,...,Nm, prod) can be expressed as follows (if one introduces
the appropriate multi-indexation): for every multi-index i := (i1, . . . , im) ∈∏m

n=1{1, . . . , Nn}, set

x
(N)
i (t) :=

m∑
n=1

√
λn α

(Nn)
in

eWn (t) and ΓN1,...,Nm,prod :=

{
x

(N)
i , i∈

m∏
n=1

{1, . . . , Nn}
}
.

Then the product quantization Ŵ (N1,...,Nm, prod) can be rewritten as

Ŵ
(N1,...,Nm, prod)
t =

∑
i

1{W∈Ci(Γ N1,...,Nm,prod)}x
(N)
i (t).



124 G. Pagès

where the Voronoi cell of x(N)
i is given by

Ci(ΓN1,...,Nm,prod) =
m∏

n=1

(α(Nn)

in− 1
2
, α

(Nn)

in+ 1
2
)

with α(M)

i± 1
2

:=
α

(M)
i + α

(M)
i±1

2 , α0 = −∞, αM+1 = +∞.

Quantization Rate by Product Quantizers

It is clear that the optimal product quantizer is the solution to the optimal
integral bit allocation

min
{
‖W−Ŵ (N1,...,Nm, prod)‖2 , N1, . . . , Nm ≥ 1, N1×· · ·×Nm ≤N,m≥1

}
.

(12)
Expanding ‖W − Ŵ (N1,...,Nm, prod)‖2

2
= ‖|W − Ŵ (N1,...,Nm, prod)|L2

T
‖2

2
yields

‖W − Ŵ (N1,...,Nm, prod)‖2
2

=
∑
n≥1

λn‖ξ̂(Nn)
n − ξn‖2

2
(13)

=
m∑

n=1

λn(e2
Nn

(N (0; 1),R) − 1) +
T 2

2
(14)

since
∑
n≥1

λn = E
∑
n≥1

(W | eWn )2
2

= E
∫ T

0

W 2
t dt =

∫ T

0

t dt =
T 2

2
.

Theorem 5. (see [LP02]) For every N ≥ 1, there exists an optimal scalar
product quantizer of size at most N (or at level N), denoted Ŵ (N, prod), of the
Brownian motion defined as the solution to the minimization problem (12).
Furthermore these optimal product quantizers make up a rate optimal sequence:
there exists a real constant cW > 0 such that

‖W − Ŵ (N, prod)‖2 ≤ cWT

(logN)
1
2
.

Proof (sketch of). By scaling one may assume without loss of generality
that T = 1. Combining (13) and Zador’s Theorem shows

‖W − Ŵ (N1,...,Nm, prod)‖2
2
≤ C
(

m∑
n=1

1
n2N2

n

)
+
∑

n≥m+1

λn

≤ C ′
(

m∑
n=1

1
n2N2

n

+
1
m

)

with
∏

nNn ≤ N . Setting m := m(N) = [logN ] and Nk =
[

(m!N)
1
m

k

]
≥ 1,

k = 1, . . . ,m, yields the announced upper-bound. ♦
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Remarks. • One can show that the length m(N) of the optimal quadratic
product quantizer satisfies

m(N) ∼ logN as N → +∞.

• The most striking fact is that very few ingredients are necessary to make
the proof work as far as the quantization rate is concerned. We only need
the basis of L2

T
on which W is expanded to be orthonormal or the random

coordinates to be orthogonal in L2(P). This robustness of the proof has been
used to obtain some upper bounds for very wide classes of Gaussian processes
by considering alternative orthonormal basis of L2

T like the Haar basis for
processes having self-similarity properties (see [LP02]), or trigonometric basis
for stationary processes (see [LP02]). More recently, combined with the non
asymptotic Zador’s Theorem, it was used to provide some connections between
mean regularity of stochastic processes and quantization rate (see Section 10
and [LP06a]).
• Block quantizers combined with large deviations estimates were used to
provide the sharp rate obtained in Theorem 3 in [LP04].
• d-dimensional block quantization is also possible, possibly with varying block
size, providing a constructive approach to sharp rate, see [Wil05] and [LPW07].
• A similar approach can also provide some Lr(P)-rates for product quantiza-
tion with respect to the sup-norm over [0, T ], see [LP05].

How to use Product Quantizers for Numerical Computations?

For numerics one can assume by a scaling argument that T = 1. To use
product quantizers for numerics we need to have access to the quantizers (or
grid) at a given level N , their weights (and the quantization error). All these
quantities are available with product quantizers. In fact the first attempts to
use functional quantization for numerics (path dependent option pricing) were
carried out with product quantizers (see [PP05b]).

• The optimal product quantizers (denoted Γ (N,prod)) at level N are explicit,
given the optimal quantizers of the scalar normal distribution N (0; 1). In
fact the optimal allocation of the size Ni of each marginal has been already
achieved up to very high values of N . Some typical optimal allocation (and
the resulting quadratic quantization error) are reported in the table below.

N Nrec Quant. Error Opti. Alloc.
1 1 0.7071 1
10 10 0.3138 5-2
100 96 0.2264 12-4-2

1 000 966 0.1881 23-7-3-2
10 000 9 984 0.1626 26-8-4-3-2-2
100 000 97 920 0.1461 34 – 10 – 6 – 4 – 3 – 2 – 2
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• The weights P(Ŵ (N, prod) = xi) are explicit too: the normalized coordinates
ξn of W in its K-L basis are independent, consequently

P(Ŵ (N, prod) = xi) = P(ξ̂(Nn)
n = α(Nn)

in
, n = 1, . . . ,m(N))

=
m(N)∏
n=1

P(ξ̂(Nn)
n = α(Nn)

in
)︸ ︷︷ ︸

1D (tabulated) weights

.

• Equation (14) shows that the (squared) quantization error of a product
quantizer can be straightforwardly computed as soon as one knows the eigen-
values and the (squared) quantization error of the normal distributions for
the Ni’s.

The optimal allocations up to N = 12 000 can be downloaded on the
website [PP05a] as well as the necessary 1-dimensional optimal quantizers (in-
cluding the weights and the quantization error) of the scalar normal distribution
(up to a size of 500 which quite enough for this purpose).

For numerical purpose we are also interested in the stationarity property
since such quantizers produce lower (weak) errors in cubature formulas.

Proposition 2. (see [PP05b]) The product quantizers obtained from the K-L
basis are stationary quantizers (although sub-optimal).

Proof. Firstly, note that

ŴN,prod =
∑
n≥1

√
λn ξ̂

(Nn)
n en(t)

so that σ(ŴN,prod) = σ(ξ̂(Nk)
k , k ≥ 1). Consequently

E(W | ŴN,prod) = E(W |σ(ξ̂(Nk)
k , , , k ≥ 1))

E(W | ŴN,prod) =
∑
n≥1

√
λn E
(
ξn |σ(ξ̂(Nk)

k , k ≥ 1)
)
eWn

i.i.d.=
∑
n≥1

√
λn E
(
ξn | ξ̂(Nn)

n

)
eWn

=
∑
n≥1

√
λn ξ̂

(Nn)
n eWn = Ŵ . ♦

Remarks. • This result is no longer true for product quantizers based on
other orthonormal basis.
• This shows the existence of non optimal stationary quantizers.
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Fig. 7. Product quantization of the Brownian motion: the Nrec-quantizer Γ (N, prod).
N = 10: Nrec = 10 and N = 50: Nrec = 12 × 4 = 48.
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Fig. 8. Product quantization of the Brownian motion: the Nrec-quantizer Γ (N, prod).
N = 100: Nrec = 12 × 4 × 2 = 96.

7.5 Optimal vs Product Quadratic Functional Quantization
(T = 1)

◦ (Numerical) Optimized Quantization: By scaling, we can assume
without loss of generality that T = 1. We carried out a huge optimization
task in order to produce some optimized quantization grids for the Brownian
motion by solving numerically (ON ) for N = 1 up to N = 10 000.

e
N

(W,L2
T
)2 ≈ 0.2195

logN
, N = 1, . . . , 10 000.

This value (see Figure 9 (left)) is significantly greater than the theoretical
(asymptotic) bound given by Theorem 3 which is

lim
N

logNe
N

(W,L2
T
)2 =

2
π2

= 0.2026...

Our guess, supported by our numerical experiments, is that in fact N �→
logNe

N
(W,L2

T
)2 is possibly not monotonous but unimodal.



128 G. Pagès

105104103102101
5

10

15

20

25

30

35

40

45

Product Quantization

Optimized Quantization

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000 100000

Taux de dØcroissance de la distortion en fonction de N

N --> 1/min( Distortion(k) , k <= N)
4*log(x)
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◦ Optimal Product quantization: as displayed on Figure 9 (right),
one has approximately

min
{
‖ |W − Ŵ |L2

T
‖2

2
, 1 ≤ N1 · · ·Nm ≤ N, m ≥ 1

}
= ‖W − Ŵ (N, prod)‖2

2
≈ 0.245

logN
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◦ Optimal d-dimensional block product quantization: let us briefly
mention this approach developed in [Wil05] in which product quantization is
achieved by quantizing some marginal blocks of size 1, 2 or 3. By this approach,
the corresponding constant is approximately 0.23, i.e. roughly in between
scalar product quantization and optimized numeric quantization.

The conclusion, confirmed by our numerical experiments on option pricing
(see Section 9), is that

– Optimal quantization is significantly more accurate on numerical experi-
ments but is much more demanding since it needs to keep off line or at least
to handle large files (say 1 GB for N = 10 000).

– Both approaches are included in the option pricer Premia (MATHFI
Project, Inria). An online benchmark is available on the website [PP05a].

8 Constructive Functional Quantization of Diffusions

8.1 Rate Optimality for Scalar Brownian Diffusions

One considers on a probability space (Ω,A,P) an homogenous Brownian
diffusion process:

dXt = b(Xt)dt+ ϑ(Xt) dWt, X0 = x0∈ R,

where b and ϑ are continuous on R with at most linear growth (i.e. |b(x)| +
|σ(x)| ≤ C(1 + |x|)) so that at least a weak solution to the equation exists.

To devise a constructive way to quantize the diffusion X, it seems natural
to start from a rate optimal quantization of the Brownian motion and to
obtain some “good” (but how good?) quantizers for the diffusion by solving
an appropriate ODE. So let ΓN = (wN

1 , · · · , wN
N ), N ≥ 1, be a sequence

of stationary rate optimal N -quantizers of W . One considers the following
(non-coupled) Integral Equations:

dx
(N)
i (t) =

(
b(x(N)

i (t)) − 1
2
ϑθ′(x(N)

i (t))
)
dt+ ϑ(t, x(N)

i (t)) dwN
i (t). (15)

Set

X̃x(N)

t =
N∑

k=1

x
(N)
i (t)1{Ŵ Γ N =wN

i }.

The process X̃x(N)
is a non-Voronoi quantizer (since it is defined using the

Voronoi diagram of W ). What is interesting is that it is a computable quan-
tizer (once the above integral equations have been solved) since the weights
P(ŴΓ N

= wN
i ) are known. The Voronoi quantization defined by x(N) induces

a lower quantization error but we have no access to its weights for numerics.
The good news is that X̃x(N)

is already rate optimal.
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Theorem 6. ([LP06b] (2006)) Assume that b is differentiable, ϑ is positive
twice differentiable and that b′ − bϑ′

ϑ − 1
2ϑϑ

′′ is bounded. Then

e
N

(X,L2
T
) ≤ ‖ X − X̃x(N)‖2 = O((logN)−

1
2 ).

If furthermore, ϑ ≥ ε0 > 0, then e
N

(X,L2
T
) ≈ (logN)−

1
2 .

Remarks. • For some results in the non homogenous case, we refer to
[LP06b]. Furthermore, the above estimates still hold true for the (Lr(P), Lp

T
)-

quantization, 1 < r, p < +∞ provided ‖|W − ŴΓ N |Lp
T
‖r = O((logN)−

1
2 ).

• This result is closely connected to the Doss-Sussman approach (see e.g.
[Dos77]) and in fact the results can be extended to some classes multi-
dimensional diffusions (whose diffusion coefficient is the inverse of the gradient
of a diffeomorphism) which include several standard multi-dimensional financial
models (including the Black-Scholes model).

• A sharp quantization rate e
N,r

(X,Lp
T
) ∼ c(logN)−

1
2 for scalar elliptic

diffusions is established in [Der05b, Der05a] using a non constructive approach,
1 ≤ p ≤ ∞.

Example: Rate optimal product quantization of the Ornstein-Uhlenbeck
process.

dXt = −kXtdt+ ϑdWt, X0 = x0.

One solves the non-coupled integral (linear) system

xi(t) = x0 − k
∫ t

0

xi(s) ds+ ϑwN
i (t),

where ΓN := {wN
1 , . . . , w

N
N }, N ≥ 1 is a rate optimal sequence of quantizers

wN
i (t) =

√
2
T

∑
�≥1

"i,�
T

π(�− 1/2)
sin
(
π(�− 1/2)

t

T

)
, i∈ IN .

If ΓN is optimal for W then "i,� := (βN
i )�, i = 1, . . . , N , 1 ≤ � ≤ d(N) with

the notations introduced in (11). If ΓN is an optimal product quantizer (and
N1, . . . , N�, . . . denote the optimal size allocation), then "i,� = α(N�)

i�
, where

i := (i1, . . . , i�, . . .)∈
∏

�≥1{1, . . . , N�}. Elementary computations show that

xN
i (t) = e−ktx0 + ϑ

∑
�≥1

χ
(N�)
i�

c̃� ϕ�(t)

with c̃� =
T 2

(π(�− 1/2))2 + (kT )2

and ϕ�(t) :=

√
2
T

(
π

T
(�−1/2) sin

(
π(�−1/2)

t

T

)
+ k
(
cos
(
π(�−1/2)

t

T

)
−e−kt

))
.



Functional Quantization 131

8.2 Multi-Dimensional Diffusions for Stratanovich SDE’s

The correcting term − 1
2ϑϑ

′ coming up in the integral equations suggest to
consider directly some diffusion in the Stratanovich sense

dXt = b(t,Xt) dt+ ϑ(t,Xt) ◦ dWt X0 = x0∈ Rd, t∈ [0, T ].

(see e.g. [RY99] for an introduction) where W = (W 1, . . . ,W d) is a d-
dimensional standard Brownian Motion.

In that framework, we need to introduce the notion of p-variation: a
continuous function x : [0, T ] → Rd has finite p-variations if

V arp,[0,T ](x) := sup

⎧⎨⎩
(

k−1∑
i=0

|x(ti) − x(ti+1)|p
) 1

p

,

0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T, k ≥ 1

}
< +∞.

Then dp(x, x′) = |x(0) − x′(0)| + V arp,[0,T ](x − x′) defines a distance on
the set of functions with finite p-variations. It is classical background that
V arp,[0,T ](W (ω)) < +∞ P(dω)-a.s. for every p > 2.

One way to quantize W at level (at most) N is to quantize each compo-
nent W i at level � d

√
N�. One shows (see [LP04]) that ‖W − (Ŵ 1,� d√

N�, . . . ,
Ŵ d,� d√

N�)‖2 = O((logN)−
1
2 ).

Let Cr
b ([0, T ]×Rd) r > 0, denote the set of �r�-times differentiable bounded

functions f : [0, T ] × Rd → Rd with bounded partial derivatives up to order
�r� and whose partial derivatives of order �r� are (r − �r�)-Hölder.

Theorem 7. (see [PS07]) Let b, ϑ∈ C2+α
b ([0, T ] × Rd) (α > 0) and let ΓN =

{wN
1 , . . . , w

N
N

}, N ≥ 1, be a sequence of N-quantizers of the standard d-
dimensional Brownian motion W such that ‖W − ŴΓ N ‖2 → 0 as N → ∞.
Let

X̃x(N)

t :=
N∑

i=1

x
(N)
i (t)1{Ŵ=wN

i }

where, for every i∈ {1, . . . , N}, x(N)
i is solution to

ODEi ≡ dx(N)
i (t) = b(t, x(N)

i (t))dt+ ϑ(t, x(N)
i (t))dwN

i (t), x
(N)
i (0) = x.

Then, for every p∈ (2,∞),

V arp,[0,T ](X̃x(N) −X) P−→ 0 as N → ∞.
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Remarks. • The keys of this results are the Kolmogorov criterion, stationarity
(in a slightly extended sense) and the connection with rough paths theory
(see [Lej03] for an introduction to rough paths theory, convergence in p-
variation, etc).
• In that general setting we have no convergence rate although we conjecture
that X̃x(N)

remains rate optimal if ŴΓ N

is.
• There are also some results about the convergence of stochastic integrals of

the form
∫ t

0

g(ŴN
s ) dB̂N

s →
∫ t

0

g(Ws) ◦ dBs, with some rates of convergence

when W = B or W and B independent (depending on the regularity of the
function g, see [PS07]).

9 Applications to Path-Dependent Option Pricing

The typical functionals F defined on (L2
T
, | . |L2

T
) for which E (F (W )) can be

approximated by the cubature formulae (5), (7) are of the form

F (ω) := ϕ

(∫ T

0

f(t, ω(t))dt

)
1{ω∈C([0,T ],R)}

where f : [0, T ] ×R → R is locally Lipschitz continuous in the second variable,
namely

∀ t∈ [0, T ], ∀u, v∈ R, |f(t, u) − f(t, v)| ≤ Cf |u− v|(1 + g(|u|) + g(|v|))
(with g : R+ → R+ is increasing, convex and g(supt∈[0,T ] |Wt|)∈ L2(P)) and
ϕ : R → R is Lipschitz continuous. One could consider for ω some càdlàg
functions as well. A classical example is the Asian payoff in a Black-Scholes
model

F (ω) = exp(−rT )

(
1
T

∫ T

0

s0 exp(σω(t) + (r − σ2/2)t)dt−K
)

+

.

9.1 Numerical Integration (II): log-Romberg Extrapolation

Let F : L2
T

−→ R be a 3 times | . |L2
T
-differentiable functional with bounded

differentials. Assume Ŵ (N), N ≥ 1, is a sequence of a rate-optimal stationary
quantizations of the standard Brownian motion W . Assume furthermore that

E
(
D2F (Ŵ (N)).(W − Ŵ (N))⊗2

)
∼ c

logN
as N → ∞ (16)

and
E |W − Ŵ (N)|3L2

T

= O
(
(logN)−

3
2

)
. (17)
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Then, a higher order Taylor expansion yields

F (W ) = F (Ŵ (N)) +DF (Ŵ (N)).(W − Ŵ (N))

+
1
2
D2F (Ŵ (N)).(W − Ŵ (N))⊗2

+
1
6
D2(ζ).(W − Ŵ (N))⊗3, ζ∈ (Ŵ (N),W ),

EF (W ) = EF (Ŵ (N)) +
c

2 logN
+ o
(
(logN)−

3
2+ε
)
.

Then, one can design a log-Romberg extrapolation by considering N, N ′,
N < N ′ (e.g. N ′ ≈ 4N), so that

E(F (W )) =
logN ′×E(F (Ŵ (N ′))) − logN ′×E(F (Ŵ (N)))

logN ′ − logN

+ o
(
(logN)−

3
2+ε
)
.

For practical implementation, it is suggested in [Wil05] to replace logN by
the more consistent “estimator” ‖W − Ŵ (N)‖−2

2
.

In fact Assumption (16) holds true for optimal product quantization when
F is polynomial function F , d0F = 2. Assumption (17) holds true in that case
as well (see [GLP06]). As concerns optimal quantization, these statements are
still conjectures.

Note that the above extrapolation or some variants can be implemented
with other stochastic processes in accordance with the rate of convergence of
the quantization error.

9.2 Asian Option Pricing in a Heston Stochastic Volatility Model

In this section, we will price an Asian call option in a Heston stochastic
volatility model using some optimal (at least optimized) functional quantiza-
tion of the two Brownian motions that drive the diffusion. This model has
already been considered in [PP05b] in which functional quantization was imple-
mented for the first time with some product quantizations of the Brownian
motions. The Heston stochastic volatility model was introduced in [Hes93]
to model stock price dynamics. Its popularity partly comes from the exis-
tence of semi-closed forms for vanilla European options, based on inverse
Fourier transform and from its ability to reproduce some skewness shape of
the implied volatility surface. We consider it under its risk-neutral probability
measure.

dSt = St(r dt+
√
vtdW

1
t ), S0 = s0 > 0, (risky asset)

dvt = k(a− vt)dt+ ϑ√vt dW 2
t , v0 > 0 with d<W 1,W 2>t = ρ dt, ρ∈ [−1, 1].
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where ϑ, k, a such that ϑ2/(4ak) < 1. We consider the Asian Call payoff with
maturity T and strike K. No closed form is available for its premium

AsCallHest = e−rT E

(
1
T

∫ T

0

Ssds−K
)+

.

We briefly recall how to proceed (see [PP05b] for details): first, one projects
W 1 on W 2 so that W 1 = ρW 2 +

√
1 − ρ2 W̃ 1 and

St = s0 exp
(
(r − 1

2
v̄t)t+ ρ

∫ t

0

√
vsdW

2
s

)
exp
(√

1 − ρ2
∫ t

0

√
vsdW̃

1
s

)
= s0 exp

(
t

(
(r − ρak

ϑ
) + v̄t(

ρk

ϑ
− 1

2
)
)

+
ρ

ϑ
(vt − v0)

)
× exp

(√
1 − ρ2

∫ t

0

√
vsdW̃

1
s

)
.

The chaining rule for conditional expectations yields

AsCallHest(s0,K) = e−rT E

⎛⎝E
⎛⎝( 1
T

∫ T

0

Ssds−K
)+

|σ(W 2
t , 0 ≤ t ≤ T )

⎞⎠⎞⎠ .
Combining these two expressions and using that W̃ 1 and W 2 are independent
show that AsCallHest(s0,K) is a functional of (W̃ 1

t , vt) (as concerns the squared
volatility process v, only v

T
and
∫ T

0
vsds are involved).

Let ΓN = {wN
1 , . . . , w

N
N

} be an N -quantizer of the Brownian motion. One
solves for i = 1, . . . , N , the differential equations for (vt)

dyi(t) = k
(
a− yi(t) − ϑ

2

4k

)
dt+ ϑ

√
yi(t) dwN

i (t), yi(0) = v0, (18)

using e.g. a Runge-Kuta scheme. Let yn,N
i denote the approximation of yi

resulting from the resolution of the above ODEi (1/n is the time discretization
parameter of the scheme). Set the (non-Voronoi) N -quantization of (vt, St) by

ṽn,N
t =

∑
i

yn,N
i (t)1Ci(Γ N )(W

2) (19)

S̃n,N
t =

∑
1≤i,j≤N

sn,N
i,j (t)1Ci(Γ N )(W̃

1)1Cj(Γ N )(W
2) (20)

with sn,N
i,j (t) = s0 exp

(
t

(
(r − ρak

ϑ
) + yn,N

j (t)(
ρk

ϑ
− 1

2
)
)

+
ρ

ϑ
(yn,N

j (t) − v0)
)

× exp
(√

1 − ρ2
∫ t

0

√
yn,N

j (s) dwN
i (s)
)

and yn,N
j (t) =

1
t

∫ t

0

yn,N
j (s) ds.
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Fig. 10. N -quantizer of the Heston squared volatility process (vt) (N = 400) resulting
from an (optimized) N-quantizer of W .

Note this formula requires the computation of a quantized stochastic integral∫ t

0

√
yn,N

j (s)dwN
i (s) (which corresponds to the independent case).

The weights of the product cells {W̃ 1∈ Ci(ΓN ), W 2∈ Cj(ΓN )} is given by

P(W̃ 1∈ Ci(ΓN ), W 2∈ Cj(ΓN )) = P(W̃ 1∈ Ci(ΓN ))P(W 2∈ Cj(ΓN ))

owing to the independence. For practical implementations different sizes of
quantizers can be considered to quantize W̃ 1 and W 2.

We follow the guidelines of the methodology introduced in [PP05b]: we
compute the crude quantized premium for two sizes N and N ′, then proceed
a space Romberg log-extrapolation. Finally, we make a K-linear interpolation
based on the (Asian) forward moneyness s0erT 1−e−rT

rT ≈ s0erT (like in [PP05b])
and the Asian Call-Put parity formula

AsianCallHest(s0,K) = AsianPutHest(s0,K) + s0
1 − e−rT

rT
−Ke−rT .

The anchor strikes Kmin and Kmax of the extrapolation are chosen symmetric
with respect to the forward moneyness. At Kmax, the Call is deep out-of-the-
money: one uses the Romberg extrapolated FQ computation; at Kmin the
Call is deep in-the-money: on computes the Call by parity. In between, one
proceeds a linear interpolation in K (which yields the best results, compared
to other extrapolations like the quadratic regression approach).

◦ Parameters of the Heston model: s0 = 100, k = 2, a = 0.01, ρ = 0.5,
v0 = 10%, ϑ = 20%.

◦ Parameters of the option portfolio: T = 1, K = 99, · · · , 111 (13 strikes).
◦ The reference price has been computed by a 108 trial Monte Carlo

simulation (including a time Romberg extrapolation of the Euler scheme with
2n = 256).
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Fig. 11. Quantized diffusions based on optimal functional quantization: Pricing
by K-Interpolated-log-Romberg extrapolated-FQ prices as a function of K: absolute
error with (N, M) = (400, 100), (N, M) = (1000, 100), (N, M) = (3200, 400). T = 1,
s0 = 50, K ∈ {99, . . . , 111}. k = 2, a = 0.01, ρ = 0.5, ϑ = 0.1.

◦ The differential equations (18) are solved with the parameters of the
quantization cubature formulae ∆t = 1/32, with couples of quantization levels
(N,M) = (400, 100), (1000, 100), (3200, 400).

Functional Quantization can compute a whole vector (more than 10) option
premia for the Asian option in the Heston model with 1 cent accuracy in
less than 1 second (implementation in C on a 2.5 GHz processor).

Further numerical tests carried out or in progress with the B-S model
and with the SABR model (Asian, vanilla European options) show the same
efficiency. Furthermore, recent attempt to quantize the volatility process and
the asset dynamics at different level of quantizations seem very promising
in two directions: reduction of the computation time and increase of the
robustness of the method to parameter change.

9.3 Comparison: Optimized Quantization vs (Optimal) Product
Quantization

The comparison is balanced and probably needs some further in situ experi-
ments since it may depend on the modes of the computation. However, it seems
that product quantizers (as those implemented in [PP05b]) are from 2 up to
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Fig. 12. Quantized diffusions based on optimal functional quantization: Pricing by
K-Interpolated-log-Romberg extrapolated-FQ price as a function of K: convergence
as ∆t → 0 with (N, M) = (3200, 400) (absolute error). T = 1, s0 = 50, K ∈
{99, . . . , 111}. k = 2, a = 0.01, ρ = 0.5, ϑ = 0.1.
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Fig. 13. Quantized diffusions based on optimal product quantization: Pricing by
K-linear interpolation of Romberg log-extrapolations as un function of K (absolute
error) with (M, N) = (96, 966), (966, 9984). T = 1, s0 = 50, k = 2, a = 0.01, ρ = 0.5,
ϑ = 0.1. K ∈ {44, . . . , 56}.

4 times less efficient than optimal quantizers within our range of application
(small values of N). On the other hand, the design of product quantizer from
1-dim scalar quantizers is easy and can be made from some light elementary
“bricks” (the scalar quantizer up to N = 35 and the optimal allocation rules).
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Thus, the whole set of data needed to design all optimal product quantizers
up to N = 10 000 is approximately 500 KB whereas one optimal quantizer
with size 10 000 ≈ 1 MB. . .

10 Universal Quantization Rate and Mean Regularity

The following theorem points out the connection between functional quantiza-
tion rate and mean regularity of t �→ Xt from [0, T ] to Lr(P).

Theorem 8. ([LP06a] (2005)) Let X = (Xt)t∈[0,T ] be a stochastic process. If
there is r∗∈ (0,∞) and a∈ (0, 1] such that

X0 ∈ Lr∗
(P), ‖Xt −Xs‖Lr∗ (P) ≤ CX |t− s|a,

for some positive real constant CX > 0, then

∀ p, r∈ (0, r∗), eN,r(X,Lp
T
) = O((logN)−a).

The proof is based on a constructive approach which involves the Haar basis
(instead of K-L basis), the non asymptotic version Zador Theorem and product
functional quantization. Roughly speaking, we use the unconditionality of the
Haar basis in every Lp

T
(when 1<p <∞) and its wavelet feature i.e. its ability

to “code” the path regularity of a function on the decay rate of its coordinates.

Examples (see [LP06a]): • d-dimensional Itô processes (includes d-dim
diffusions with sublinear coefficients) with a = 1/2.
• General Lévy process X with Lévy measure ν with square integrable big
jumps. If X has a Brownian component, then a = 1/2, otherwise if β(X) > 0
where β(X) := inf

{
θ :
∫ |y|θν(dy)<+∞}∈ (0, 2) (Blumenthal-Getoor index

of X), then a = 1/β(X). This rate is the exact rate i.e.

eN,r(X,Lp
T
) ≈ (logN)−a

for many classes of Lévy processes like symmetric stable processes, Lévy
processes having a Brownian component, etc (see [LP06a] for further examples).
• When X is a compound Poisson processes, then β(X) = 0 and one shows,
still with constructive methods, that

eN (X) = O(e−(log N)ϑ

), ϑ∈ (0, 1),

which is in-between the finite and infinite dimensional settings.

11 About Lower Bounds

In this overview, we gave no clue toward lower bounds although most of the
rates we mentioned are either exact (≈) or sharp (∼) (we tried to emphasize
the numerical aspects). Several approaches can be developed to get some lower
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bounds. Historically, the first one was to rely on subadditivity property of the
quantization error derived from self-similarity of the distribution: this works
with the uniform distribution over [0, 1]d but also in an infinite dimensional
framework (see e.g. [DS06] for the fractional Brownian motion).

A second approach consists in pointing out the connection with the Shannon-
Kolmogorov entropy (see e.g. [LP02]) using that the entropy of a random
variable taking at most N values is at most logN .

A third connection can be made with small deviation theory (see [DFMS03],
[GLP03] and [LP06a]). Thus, in [GLP03], a connection is established between
(functional) quantization and small ball deviation for Gaussian processes. In
particular this approach provides a method to derive a lower bound for the
quantization rate from some upper bound for the small deviation problem. A
careful reading of the proof of Theorem 1.2 in [GLP03] shows that this small
deviation lower bound holds for any unimodal (w.r.t. 0) non zero process. To
be precise: assume that P

X
is Lp

T
-unimodal i.e. there exists a real ε0 > 0 such

that

∀x∈ Lp
T
, ∀ ε∈ (0, ε0], P(|X − x|Lp

T
≤ ε) ≤ P(|X|Lp

T
≤ ε).

For centered Gaussian processes (or processes “subordinated” to Gaussian
processes) this follows from the Anderson Inequality (when p ≥ 1). If

G(− log(P(|X|Lp
T

≤ ε))) = Ω(1/ε) as ε→ 0

for some increasing unbounded function G : (0,∞) → (0,∞), then

∀ c > 1, lim inf
N

G(log(cN))e
N,r

(X,Lp
T
) > 0, r∈ (0,∞). (21)

This approach is efficient in the non quadratic case as emphasized in [LP06a]
where several universal bounds are shown to be optimal using this approach.
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quantification, 2000, Univ. Paris 6, 1998.

[Der05a] S. Dereich. The coding complexity of diffusion processes under supremum
norm distortion, pre-print, 2005.

[Der05b] S. Dereich. The coding complexity of diffusion processes under Lp[0, 1]-
norm distortion, pre-print, 2005.

[DFMS03] S. Dereich, F. Fehringer, A. Matoussi, and M. Scheutzow. On the link
between small ball probabilities and the quantization problem for Gaus-
sian measures on Banach spaces, J. Theoretical Probab., 16, pp. 249–265,
2003.

[DFP04] S. Delattre, J.-C. Fort, and G. Pagès. Local distortion and µ-mass of the
cells of one dimensional asymptotically optimal quantizers, Communica-
tions in Statistics, 33(5), 1087–1118, 2004.
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XXXVII, Lecture Notes in Mathematics 1832, Stringer, Berlin, 1–59,
2003.

[LP02] H. Luschgy and G. Pagès. Functional quantization of Gaussian processes,
Journal of Functional Analysis, 196(2), 486–531, 2002.

[LP04] H. Luschgy and G. Pagès. Sharp asymptotics of the functional quantiza-
tion problem for Gaussian processes, The Annals of Probability, 32(2),
1574–1599, 2004.

[LP05] H. Luschgy and G. Pagès. High-resolution product quantization for
Gaussian processes under sup-norm distortion, pre-pub LPMA-1029,
forthcoming in Bernoulli, 2005.

[LP06a] H. Luschgy and G. Pagès. Functional Quantization Rate and mean
regularity of processes with an application to Lévy Processes, pre-print
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Summary. In this paper I present some new approaches to the random field sim-
ulation, and show in four different examples how this simulation technique works.
The first example deals with a transport in turbulent flows, where the Lagrangian
trajectories are described by a stochastic differential equation whose drift term
involves the Eulerian velocity as a random field with a given spectral tensor. Studies
of the second example concern with the flows in porous medium governed by the
Darcy equation with random hydraulic conductivity. Elasticity system of elliptic
Lamé equations with random loads is considered in the third example. Finally, in
the fourth example we solve a nonlinear Smoluchowski equation which is used to
model the process of crystal growth.

1 Introduction

Stochastic approach becomes more and more popular in all branches of science
and technology, especially in problems where the data are highly irregular
(in deterministic sense). In such problems it is very difficult and expensive to
carry out measurements to extract the desired data. As important examples
we mention the turbulent flow simulation [MY81]), and construction of flows
through porous media [Gel93], [Dag89]. The temporal and spatial scales of
the input parameters in this class of problems are varying enormously, and
the behaviour is very complicated, so that there is no chance to describe it
deterministically. In the stochastic approach, one needs to know a few number
of parameters, like the mean and correlation tensor, whose behaviour in time
and space is much more regular, so that usually, it is easier to extract them
through measurements.

In most applications, it is assumed that the random fields are Gaussian, or
that they can be obtained by a functional transformation of Gaussian fields.
Generally, it is very difficult to construct efficient simulation methods for
inhomogeneous random fields even if they are Gaussian. Therefore, the most
developed methods deal with homogeneous or quasi-homogeneous random
fields, i.e., the characteristic scales of the variations of the means of the field
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are considerably larger than the correlation scale. There are highly intensive
studies and literature concerned with the simulation of homogeneous and
quasi-homogeneous random fields. We have no intension to give here a detailed
overview of the simulation methods even for homogeneous random fields, we
just refer to the book [Sab91], and to some important papers we used [Mik83],
[PS95], [Shi71], [EM94], [EM95], [SRR01], as well as to our recent paper [KS06]
which includes an overview in this field.

In many practical problems (e.g., in underground hydrology, see [Dag89],
[Gel93]) only data obtained through spatial averaging is at hand, for instance,
statistical characteristics obtained by spatial averages, or over a family of
Lagrangian trajectories generated in one fixed sample of the field (e.g., see
[Dag90], [DFJ03] ). If the random field is ergodic (which in practice is very
often true), then the ensemble averages can be well approximated by the
appropriate space averages. This is very important when a boundary value
problem with random parameters is solved: then in contrast to the ensemble
averaging, we have to solve the problem only once, and then make the relevant
space averaging. In practical calculations, to increase the efficiency, it is
sometimes reasonable to combine both the space and ensemble averaging, e.g.,
see [KSSV03], [KS05].

The paper is organized as follows. In section 2 we give a bit more detailed
description of the four problems we mentioned above in the Abstracts. In
section 3 we describe the simulation methods based on the spectral and Fourier-
wavelet representations. Section 4 deals with the important case when the
fluctuations are small, and the method of small perturbations can be applied.
To find out the applicability limits of this method, we develop a general method
which works in the general case of large fluctuations. Finally, in Section 5 we
discuss a technique which we call a Double Randomization Method.

2 Four Examples of Random Field Applications

Random fields provide a useful mathematical framework for representing
disordered heterogeneous media in theoretical and computational studies. Here
we give four different examples where the random fields serve as natural models
for the relevant processes.

Example 1: Fully developed turbulent flows. The velocity field representing
the turbulent flow is modelled as a random field v(x, t) with statistics encoding
important empirical features, and the temporal dynamics of the position X(t)
and velocity V(t) = dX

dt of immersed particles is then governed by

m dV(t) = − γ
(
V(t) − v(X(t), t)

)
dt+
√

2kBTγ dW(t),

where m is particle mass, γ is its friction coefficient, kB is Boltzmann’s con-
stant, T is the absolute temperature, and W(t) is a random Wiener process
representing molecular collisions. We mention here that it was Kolmogorov
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(e.g., see details in [MY81]) who has developed an elegant stochastic theory of
the fully developed turbulence.

Example 2: Transport through porous media, such as groundwater aquifers,
in which the hydraulic conductivity K(x) is modelled as random field reflecting
the empirical variability of the porous medium. The Darcy flow rate q(x)
in response to pressure applied at the boundary is governed by the Darcy
equation

q(x) = −K(x) grad φ(x),
div q = 0.

Of course, this equation is solved under some boundary conditions, which
automatically implies that the solution cannot be a homogeneous random field.
But naturally assuming that the influence of the correlations decreases with the
distance, it is quite plausible to expect that in 3-4 correlation lengths far from
the boundary the solution can be considered as approximately homogeneous.
This hypothesis is accepted by many authors, see for instance [Dag90], [Gel93],
and confirmed in many calculations, see for example our recent paper [KS05].

Example 3: Elasticity problems. One has to solve the Lamé equation

µ∆u + (λ+ µ) grad divu = f

where u is the displacement vector, and µ and λ are the elastic Lamé coefficients,
and f is a random vector load.

Example 4: Smoluchowski coagulation equations. Our fourth example deals
with a nonlinear coagulation dynamics. Smoluchowski equation describes the
size spectrum of particles which collide pairwise with frequencies proportional
to the kernel of this equation, and grow due to aggregation of the colliding
particles. This equation has a nice probabilistic interpretation and the relevant
stochastic simulation methods are well developed (e.g., see [KS03b], [SLP07].
We are interested in the case when the kernel of the Smoluchowski equation
is random. Such an example was considered in our paper [KS00] where we
studied the influence of the intermittency in the process of turbulent coagulation
regime.

Here we consider another example related to growth of atom islands
[KPS06]. In the processes of crystal growth, the kinetics of an ensemble
of atom islands that diffuse on the surface and irreversibly merge as they touch
each other can be described by the set of Smoluchowski equations

dnk

dt
=

1
2

∑
i+j=k

Kijninj − nk

∞∑
j=1

Kjknj .

Here nj is the number of islands containing j units (atoms, or vacancies of
atoms) per unit area.



146 K. Sabelfeld

The kernels describing the frequency of atom collisions depend on the
sizes of colliding particles, but also on the underlying surface. We consider
the so-called diffusion regime, where the atom diffusion motion has a finite
correlation length. It means, for different surfaces, with different correlation
lengths, the dispersion of the atoms will be different, see illustration of this
situation in Figure 1 where a kind of clustering can be seen in the right panel.
So we deal here with the Smoluchowski equation with random kernel.

What should be calculated in these four examples?

In the first example, important characteristics is 〈c(x)〉, the average concen-
tration of particles which is in fact a one-particle statistics. More complicated
is the fluctuation of concentration, which is a two-particle statistics related to
the mean square separation 〈ρ2(t)〉.

Take two particles initially separated by say r0, and moving in a homoge-
neous gaussian random velocity field. For illustration, we show in Figure 2 a
sample of the vector velocity field, when the correlation length is equal to 1
(left panel) and to 0.5 (right panel). The question is how it behaves 〈ρ2(t)〉 as
a function of time? This is an important function which is used to describe
the mean square size of a diffusing cloud of particles (e.g., see [MY81], [TD05],
[KS05]).

(a) (b)

Fig. 1. Atom diffusion on different surfaces
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Fig. 2. Samples of an incompressible gaussian isotropic 2D random field, for a
correlation length equal to 1 (left panel) and 0.5 (right panel)
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In the second example, for flows in porous media: even the simplest statis-
tical characteristics, the mean flow, is a non-trivial function to be calculated
since you cannot simply average the equation with the random coefficient.
More general Lagrangian statistical characteristics are necessary, to evaluate
the mean concentration and its flux. For tracking the trajectories in the ex-
tremely heterogeneous velocity field, one needs a multiscale resolution through
a stochastic synthesis of random fields (e.g., see [EM95], [KKS07]). In Figure 3
we show a sample of the hydraulic conductivity.

Elasticity problem. Standard statistical characteristics are the mean dis-
placements 〈ui〉, the second moments 〈u2

i 〉, and the probability that the dis-
placements exceed some critical value: Prob(ui > ucr).

The same statistics are evaluated for the strain and stress tensors

εij = (ui,j + uj,i)/2, τij = 2µεij + λδijdivu.

Smoluchowski coagulation equation. In the general spatially inhomogeneous
case when the colliding particles are in a host flow, the governing equations
are [KS03b]:

dX(t) = V(t)dt,
dVi(t) = ai(X(t),V(t))dt+ σij(X(t), t)dBj(t)
dNl

dt
=

1
2

∑
i+j=l

KijNiNj −
∑
i≥1

KliNlNi.

Fig. 3. A hydraulic conductivity modelled as a lognormal random field
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Important quantities are the average of the mean size 〈n̄(t)〉, as well as
the average size spectrum 〈nk(t)〉. More complicated functionals: what are the
average and variance of the random time when the solution is exploded? (the
so-called gelation phenomenon, e.g., see [Wag06]).

3 Random Field Simulation Methods

Under quite general conditions, a real-valued Gaussian homogenous random
field u(x) can be represented through a stochastic Fourier integral [MY81]:

u(x) =
∫

IRd

e2πik·xE1/2(k)W̃ (dk)

where W̃ (dk) is a complex-valued white noise random measure on IRd, with
W̃ (B) = W̃ (−B), 〈W̃ (B)〉 = 0, and 〈W̃ (B)W̃ (B′)〉 = µ(B ∩B′) for Lebesgue
measure µ and all Lebesgue-measurable sets B, B′. The spectral density
E(k) is a nonnegative even function representing the strength (energy) of the
random field associated to the wavenumber k, meaning the length scale 1/|k|
and direction k/|k|.

Multiscale random fields will have a multiscale spectral density, meaning
that E(k) will have substantial contributions over a wide range of wavenumbers
kmin " |k| " kmax, with kmax/kmin # 1. This poses a challenge for efficient
simulation.

More generally, we deal with real-valued homogeneous Gaussian l-dimen-
sional vector random fields u(x) = (u1(x), . . . , ul(x))T , x ∈ IRd with a given
correlation tensor B(r):

Bij(r) = 〈ui(x + r)uj(x)〉, i, j = 1, . . . l,

or with the corresponding spectral tensor F :

Fij(k) =
∫
IRd

e−i 2π k·rBij(r) dr, Bij(r) =
∫
IRd

ei 2π r·kFij(k) dk, i, j = 1, . . . l.

We assume that the condition
∫

IRd

|Bjj(r)| dr <∞ is satisfied which ensures

that the spectral functions Fij are uniformly continuous with respect to k.
Here Bjj is the trace of B.

Let Q(k) be an l × n-matrix defined by

Q(k)Q∗(k) = F (k), Q(−k) = Q̄(k).

Here the star stands for the complex conjugate transpose which is equivalent
to taking two operations, the transposeT , and the complex conjugation of each
entry.
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Then the spectral representation of the random field is written as follows

u(x) =
∫
IRd

ei 2π kxQ(k)Z(dk)

where the column-vector Z = (Z1, . . . Zn)T is a complex-valued homogeneous
n-dimensional white noise on IRd with a unite variance and zero mean:

〈Z(dk)〉 = 0, 〈Zi(dk1) Z̄j(dk2)〉 = δij δ(k1 − k2) dk1 dk2

satisfying the condition Z(−dk) = Z̄(dk).

Series expansions.

The random field is constructed in the form

u(x) =
∑
α∈A

Gα(x) ξα

where Gα(x) is a system of deterministic functions (or possibly matrices), ξα
is a family of random variables (possibly vectors) A is a countable (finite or
not) index set.

Our purpose is to construct the system Gα and the family ξα so that the
random field has the desired spectral tensor.

Let us choose the system of scalar functions ϕα(k) as a set of generally
complex valued even functions (ϕα(−k) = ϕ̄α(k)) which are orthonormal and
complete in L2(IRd) equipped with the scalar product (f, g) =

∫
IRd f(k)ḡ(k) dk:

(ϕα, ϕβ) =
∫

IRd

ϕα(k)ϕ̄β(k) dk = δαβ , α, β ∈ A,

where δαβ is the Kronecker symbol.
We expand ei 2π k·xQ(k) as a function of k in the system of orthonormal

functions ϕα(k):

ei 2π k·xQ(k) =
∑
α∈A

Gα(x)ϕα(k), Gα(x) =
∫
IRd

ei 2π kxQ(k)ϕ̄α(k) dk.

We now substitute this into the spectral representation, and obtain the
expansion with

ξα =
∫
IRd

ϕα(k)Z(dk), α ∈ A.

Notice that ξα are mutually independent standard Gaussian random vectors
since

〈ξα ξ∗
β〉 = I

∫
IRd

ϕα(k)ϕ̄β(k) dk = I δαβ ,
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where I is a n × n identity matrix. Thus we have constructed an expansion
with independent Gaussian random vectors.

Fourier-wavelet expansions for a homogeneous Gaussian vector random process
u(x) = (u1(x), . . . , ul(x))T , x ∈ IR with a given spectral tensor F (k).

We assume that F = QQ∗, where Q(k) is l × n−dimensional matrix
satisfying the condition Q(−k) = Q̄(k). The orthonormal system of functions
ϕα is constructed as follows. Let φ(x) and ψ(x), x ∈ IR be orthonormal scaling
and wavelet functions, respectively, and

φmj(x) = 2m/2φ(2m x− j), ψmj(x) = 2m/2ψ(2m x− j),

where m, j = . . . ,−2,−1, 0, 1, 2, . . .. It is known (e.g., see [Chu92], [Mey90]
that the system of functions

{φm0j}∞j=−∞,
{

{ψmj}∞j=−∞, m ≥ m0

}
is, for an arbitrary fixed integer m0, a complete set of orthonormal functions
in L2(IR), and moreover, by Parseval equality, the relevant Fourier transforms
of these functions

{φ̂m0j}∞j=−∞,
{

{ψ̂mj}∞j=−∞, m ≥ m0

}
compose also a complete set of orthonormal functions in L2(IR).

Thus we choose the family ϕα as described above.
We find that

u(x) =
∞∑

j=−∞
G

(φ)
m0j(x) ξj +

∞∑
m=m0

∞∑
j=−∞

G
(ψ)
mj (x)ξmj ,

where ξj , ξmj is a family of mutually independent standard real valued

Gaussian random vectors of dimension n, and G(φ)
mj(x), G

(ψ)
mj (x) are l × n-

dimensional matrices defined by

G
(φ)
mj(x) =

∞∫
−∞

ei 2π kxQ(k) ¯̂
φmj(k) dk, G

(ψ)
mj (x) =

∞∫
−∞

ei 2π kxQ(k) ¯̂
ψmj(k) dk.

It is clear that

φ̂mj(k) = 2−m/2 e−i 2π k j 2−m

φ̂(2−m k),

ψ̂mj(k) = 2−m/2 e−i 2π k j 2−m

ψ̂(2−m k).

Now we can define the analog of Gα by substituting ϕ̄α(k)
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G
(φ)
mj(x) =

∞∫
−∞

ei 2π kxQ(k) φ̂mj(−k) dk =

∞∫
−∞

e−i 2π kxQ̄(k) φ̂mj(k) dk

=

∞∫
−∞

e−i 2π kxQ̄(k) 2−m/2 e−i 2π k j 2−m

φ̂(2−m k) dk

=

∞∫
−∞

e−i 2π k′(2mx+j) 2m/2Q̄(2mk′)φ̂(k′) dk′.

Analogously,

G
(ψ)
mj (x) =

∞∫
−∞

e−i 2π k′(2mx+j) 2m/2Q̄(2mk′)ψ̂(k′) dk′.

For convenience, we define

F (φ)
m (y) =

∞∫
−∞

e−i 2π ky 2m/2Q̄(2mk)φ̂(k) dk,

F (ψ)
m (y) =

∞∫
−∞

e−i 2π ky 2m/2Q̄(2mk)ψ̂(k) dk,

hence
G

(φ)
m0j(x) = F (φ)

m0
(2m0x+ j), G

(ψ)
mj (x) = F (ψ)

m (2mx+ j),

and finally,

u(x) =
∞∑

j=−∞
F (φ)

m0
(2m0x+ j) ξj +

∞∑
m=m0

∞∑
j=−∞

F (ψ)
m (2mx+ j) ξmj .

Let us consider an l-dimensional random field u(x), x ∈ IRd defined by the
stochastic integral:

u(x) =
∫
IRd

H(x,k)W(dk),

where (1) H : IRd × IRd1 → Cl×n is a matrix such that H(x, ·) ∈ L2(IRd1) for
each x ∈ IRd; (2) W(·) = WR(·) + iWI(·), where WR(·) and WI(·) are two
independent n−dimensional homogeneous Gaussian white noises on IRd1 with
unit variance. Here C is the set of complex numbers.

Let us describe the randomized evaluation of the stochastic integral. Let
p : IRd1 → [0,∞) be a probability density on IRd1 :

∫
p(k) dk = 1, and let
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k1, . . . ,kn0 be independent equally distributed random points in IRd1 with the
density p(k). Assume that ζ1, . . . , ζn0

is a family of mutually independent
standard Gaussian complex random vectors of dimension n (i.e., ζj = ξj + i ηj

with independent, n−dimensional real valued standard Gaussian random
vectors ξi and ηi). Then the random field

un0(x) =
1√
n0

n0∑
j=1

1√
p(kj)

H(x,kj)ζj

has the same correlation tensor as u(x), provided p(k) satisfies the condition

p(k) > 0, if ∃x ∈ IRd : H(x,k) �= 0.

In practical calculations, to guarantee an equal presentation of different
spectral regions, one uses a stratified randomization technique. Let us describe it
briefly. Let {∆i}N

i=1 be a subdivision of the spectral space IRd1 : IRd1 = ∪N
i=1∆i,

and ∆i ∩∆j = ∅ if i �= j. This generates the representation of the random
field u(x) as a sum of independent random fields:

u(x) =
N∑

i=1

ui(x), ui(x) =
∫
∆i

H(x,k)W(dk).

Let pi : ∆i → [0,∞) (i = 1, . . . , N) be a probability density on ∆i:∫
∆i
p(k) dk = 1 satisfying the condition pi(k) > 0, for k ∈ ∆i if ∃x ∈

IRd : H(x,k) �= 0. Then using the randomized representation for ui(x) we get
a stratified randomization model for u(x):

uN,n0(x) =
N∑

i=1

1√
n0

n0∑
j=1

1√
pi(kij)

H(x,kij)ζij .

Here {kij}n0
j=1 ⊂ ∆i, i = 1, . . . , N are mutually independent random points

such that for fixed i the random points kij , j = 1, . . . are all distributed with
the same density pi(k), and ζij , i = 1, . . . , N ; j = 1, . . . , n0 are mutually inde-
pendent, and independent of {kij}n0

j=1 i = 1, . . . , N family of n−dimensional
complex valued standard Gaussian random variables.

By the construction, for any N and n0, the random field uN,n0(x) has the
same correlation tensor as that of u(x). As the Central Limit Theorem says, by
increasing n0 (N fixed) the field uN,n0(x) is convergent to a gaussian random
field. So the stratified randomization model uN,n0(x) can be considered as an
approximation to u(x). More details about the convergence of this type of
models can be found in [Kur95].

Now we present the simulation formulae for the important case when the
vector random field is isotropic.
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Isotropic random fields

A homogeneous d-dimensional vector-valued random field u(x), x ∈ IRd is
called isotropic if the random field UT u(Ux) has the same finite-dimensional
distributions as those of the random field u(x) for any rotation matrix U ∈
SO(d) [MY81]. The spectral density tensor of an isotropic random field has
the following general structure [MY81]:

F(k) =
1

2Ad kd−1

{
E1(k)P(1)(k) + E2(k)P(2)(k)

}
where k = |k|, Ad is the area of the unit sphere in IRd, E1 and E2 are the
transverse and longitudinal radial spectra (scalar even nonnegative functions),
and the projection tensors are defined componentwise as:

P
(1)
ij (k) = δij − kikj

k2
, P

(2)
ij (k) =

kikj

k2
, i, j = 1, . . . , d,

with δij defined as the usual Kronecker delta symbol.
This representation of the random field can be used to simplify the imple-

mentation of the Randomization Method and has also been used to construct a
multi-dimensional isotropic version of the Fourier-wavelet method. We describe
each briefly in turn.

The isotropic spectral representation can be associated with the Helmholtz
decomposition of the random field: u(x) = u(1)(x) + u(2)(x) where u(1) and
u(2) are, respectively, the incompressible and potential parts of u with spectral
density tensors

F(1)(k) =
1

2Ad kd−1
E1(k)P(1)(k), F(2)(k) =

1
2Ad kd−1

E2(k)P(2)(k),

respectively.
Each of the random fields, u(1)(x) and u(2)(x), can be simulated as inde-

pendent Gaussian random fields. The Cholesky factorizations

F(i)(k) = pi(k)Q(i) Q(i)∗,

take the special form

p1(k) =
d∑

i=1

F
(1)
ii (k) =

(d− 1)E1(k)
2Ad kd−1

, p2(k) =
d∑

i=1

F
(2)
ii (k) =

E2(k)
2Ad kd−1

.

Note in particular that pi(k) = pi(k), which generally greatly simplifies the sim-
ulation of random wavenumbers according to the probability distributions pi.

The matrices Q(1) and Q(2) are to be chosen in any way such that

1
d− 1

P (1)(k) = Q(1)(k)Q(1)∗(k), P (2)(k) = Q(2)(k)Q(2)∗(k).
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One convenient explicit choice in three dimensions is [Sab91]

Q(1)(k) =
1√
2

⎛⎜⎜⎜⎜⎝
0 k3

k −k2
k

−k3
k 0 k1

k

k2
k −k1

k 0

⎞⎟⎟⎟⎟⎠ , Q(2)(k) =

⎛⎜⎜⎜⎜⎝
k1
k 0 0

k2
k 0 0

k3
k 0 0

⎞⎟⎟⎟⎟⎠ .
Because pi(k) = pi(k) in the isotropic case, it is natural to choose the

spectral subdivision ∆ =
n∑

i=1

∆i to be radially symmetric: ∆i = {k : ai ≤
|k| ≤ bi}. Using these tensors we obtain the following simulation formula for
the incompressible part of an isotropic three-dimensional random vector field:

u(1)(x) =
n∑

i=1

σ
(1)
i√
n0

n0∑
j=1

[(
Ω

(1)
ij × ξij

)
cos(θ(1)ij ) +

(
Ω

(1)
ij × ηij

)
sin(θ(1)ij )

]
where (σ(1)

i )2 =
∫

∆i
p1(k) dk = 1

2

∫ bi

ai
E1(k) dk, Ω

(1)
ij , i = 1, . . . , n; j =

1, . . . , n0 is a family of mutually independent random vectors distributed
uniformly on the unit sphere in IR3; ξij and ηij , i = 1, . . . , n; j = 1, . . . , n0 are
mutually independent families of three-dimensional standard Gaussian random
vectors; θ(1)ij = 2πk(1)

ij (Ω(1)
ij ·x); and for each i = 1, . . . , n, the k(1)

ij , j = 1, . . . , n0

is a sequence of independent random wavenumbers sampled from the interval
(ai, bi) according to the probability density function proportional to E1(k).

The potential component u(2) is simulated in three dimensions through
the representation

u(2)(x) =
n∑

i=1

σ
(2)
i√
n0

n0∑
j=1

[
ξij Ω

(2)
ij cos(θ(2)ij ) + ηij Ω

(2)
ij sin(θ(2)ij )

]
.

Here, unlike in the previous simulation formula, the ξij and ηij , i =
1, . . . , n; j = 1, . . . , n0 are families of scalar standard Gaussian random
variables, which are all mutually independent. The remaining inputs are
constructed analogously: (σ(2)

i )2 =
∫

∆i
p2(k) dk = 1

2

∫ bi

ai
E2(k) dk; Ω

(2)
ij is a

family of mutually independent random vectors distributed uniformly on the
unit sphere in IR3; θ(2)ij = 2πk(2)

ij (Ω(2)
ij · x); and for each i = 1, . . . , n, the

k
(2)
ij , j = 1, . . . , n0 is a sequence of independent random wavenumbers sam-

pled in the interval (ai, bi) from the probability density function which is
proportional to the function E2(k).

4 Small Perturbation Analysis

Here we show how the random field simulation can be used in the framework
of small perturbation method, which works when the fluctuations are small.
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4.1 Darcy Equation

We consider a steady flow through heterogeneous porous formation. For time-
independent flow condition and saturated porous media the specific discharge
is determined by the Darcy law:

q(x) = θ(x)u(x) = −K(x)∇(ϕ(x))

where q is the so-called Darcy’s velocity, or specific discharge, u is the pore
velocity, θ, the porosity, ϕ, the hydraulic potential ϕ = p

ρg + z, p is the fluid
pressure, z is the height, ρ - the density, andK - the hydraulic conductivity. The
functions K and θ are key parameters of the flow. Experimental measurements
show high heterogeneous behaviour ofK in space with the following remarkable
property [Dag90] : when consideringK as a random field, its distribution is well
approximated by the lognormal law. Therefore, in models, the hydraulic log-
conductivity Y = lnK is commonly considered as a statistically homogeneous
random field with gaussian distribution N(mY , σY ). Here mY = 〈Y 〉, and σY

is the standard deviation.
Let CY Y (r) = 〈Y ′(x)Y ′(x + r)〉 be the auto-correlation function, where

r is the separation vector. We analyse the case when Y is statistically
homogeneous and isotropic with the exponential auto-correlation function
CY Y (r) = σ2

Y exp(−r/IY ) where r = |r|, IY is a given correlation length.
We deal also with a random field with gaussian form of the covariance:

CY Y (r) = σ2
Y exp(−

r2

l2Y
).

The porosity θ is also often considered in some models as a random field.
However its variability is in the problems we tackle generally much smaller
than that of K. We assume θ(x) = θ = 1.

Thus q is a random field obtained as the solution to the following diffusion
equation:

divq = div {−K(x)∇(ϕ(x))} =
∂

∂xi

(
−K(x)

∂ϕ

∂xi

)
= 0.

Here and in what follows, we use the summation convention on repeated indices.
For details, see our papers [KS03a], [KS05].

We consider two cases: (1) The fluctuations of K (say, measured via the
intensity of fluctuations) are small, and (2) general case of fluctuations.

Small random perturbations about the mean values for the potential

ϕ = <ϕ>+ ϕ′ = H + h,

and for the specific discharge components:

qi = <qi>+ q′i, i = 1, 2, 3.
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Let

Y ′(x) =
∫ ∫ ∫

exp(i(k,x))dZY (k), h(x) =
∫ ∫ ∫

exp(i(k,x))dZh(k),

where k = (k1, k2, k3) is the wave number vector, x = (x1, x2, x3) is the
position vector, and the integration is over three-dimensional wave number
space. We use the notation KG = exp(〈Y 〉), and Ji = −∂H/∂xi for the mean
hydraulic gradient in xi-direction.

The correlation tensor {Bij} and the spectral tensor {Sij} are related
through the equality

Bij(r) =
∫

R3
Sij(k)ei(r,k)dk.

The auto-covariance for the isotropic field has the spectrum

SY Y (k) = I3Y σ
2
Y /[π

2(1 + I2Y k
2)2]

where k = |k|.
Note that the spectrum of the field with the gaussian covariance function

has also a gaussian form:

SY Y (k) =
σ2

Y l
3
Y

π5/2
exp(− l

2
Y k

2

4
), IY = lY

√
π/2.

The following relation can be derived [Dag90], [KS05]

∇2h = Ji(∂Y ′/∂xi).

From this we come to the expression for the spectral tensor entries

Sqiqj
(k) = 〈dZqi

dZqj
〉 = K2

GJmJn(δim − kikm

k2
)(δjn − kjkn

k2
)SY Y (k).

In Figure 4 we show trajectories of 5000 particles moving in a porous
medium simulated as a random field with the given spectral tensor.

In Figure 5 we present the results of calculations of the Eulerian velocity
auto-correlation functions Cuiui

(r/If ). The spectrum Sff (k) is chosen in the
form which corresponds to the exponential decorrelation.

Figure 5 shows the range of applicability of the small perturbation method.
This can be seen by comparing the results we obtained by the small perturbation
method (and spectral model) and by direct numerical solution of the Darcy
equation by a SOR method. Here we plot the dimensionless functions Cu1u1

(left panel) and Cu2u2 (right panel) in longitudinal direction r′1 = r1/If , for
σf = 0.3, 0.6 and σf = 1. The left panel: as expected, the relative difference
between the results is rapidly increasing with the growth of the fluctuation
intensity, i.e., as σf increases. So, for r′1 = 1, this difference behaves like 4%,
18% and 62% for σf = 0.3, 0.6 and 1, respectively.
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Fig. 4. Trajectories of 5000 particles started at t′ = 0 at the origin, and finished at
t′ = 30: σ2

Y = 1 (left panel). In the right panel we show the resulting cloud.
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Fig. 5. The dimensionless functions Cu1u1(r/If ) (left panel) and Cu2u2(r/If ) (right
panel) in longitudinal direction at different values σf in comparison against results
of the small perturbation method (spectral model).

Right panel: the relative difference between the two methods (again, for
r′1 = 1) is less than 7%, 25% and 78% for σf = 0.3, 0.6 and 1, respectively.

Thus the curves shown in Figure 5 present a clear picture about the region
where the small perturbation approach can be applied, and how fast this
approximation fails as the fluctuation intensity increases.

4.2 Lamé Equation

In this section we deal with an elasticity problem governed by an elliptic
system of Lamé equations with stochastic elastic parameter and random loads.
Suppose a homogeneous isotropic medium G ⊂ IRn with a boundary Γ is
given, whose state in the absence of body forces is governed by the classical
static equation, the Lamé equation:

∆u(x) + α grad divu(x) = 0, x ∈ G,
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where u(x) = (u1(x1, . . . , xn), . . . , un(x1, . . . , xn)) is a vector of displacements
whose components are real-valued regular functions. The elastic constant α
α = λ+µ

µ is expressed through the Lamé constants of elasticity λ and µ.
It can be expressed through the Poisson ratio ν = λ/2(λ + µ) as follows:
α = 1/(1 − 2ν). The Poisson ratio characterizes the relative amount of the
change of the transverse to longitudinal displacements. It is known that due
to thermodynamical reasons ν is bounded between −1 ≤ ν < 0.5. This implies
for α: 1/3 ≤ α <∞. So there are materials with negative values of ν (α varies
in 1/3 ≤ α ≤ 1), and materials with ν ≈ 0.5. The last case is very difficult for
conventional deterministic methods.

In what follows, we present in this section mainly the results obtained by
the small perturbation method. General case of large fluctuations is analysed
in our recent paper [SSL].

We consider two different cases:
(I) The fluctuations appear in the elasticity constant α in the Lamé equation

∆u + α∇(divu) = 0

so that under the assumption of small random perturbations about mean
values

ui = <ui>+ u′i, α = <α>+ α′.

The boundary conditions are deterministic: u|Γ = uγ .
(II) The loads f are random, while the constant α is fixed:

∆u + α∇(divu) = f ; α = const, u|Γ = uγ .

We deal with statistically homogeneous random fields, hence we can use
the Fourier-Stieltjes representations, in particular,

u′j(x) =
∫ ∫

exp(i(k,x))dZuj
(k),

α′(x) =
∫ ∫

exp(i(k,x))dZα(k)

where k = (k1, k2) is the wave number vector, x = (x1, x2) is the position
vector, and the integration is over 2D wave number space.

Due to the small fluctuation assumption, we ignore the products of fluctu-
ations, and from this we obtain

∆u′+ < α > ∇(divu′) + α′∇(div < u >) = 0.

We assume that <α> = A = const and ∇(div < u >) = B = const, then
using the above Fourier-Stiltjes representation yields

−k2dZuj
−Akj(k1dZu1 + k2dZu2) +BjdZα = 0.
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From this one finds

dZu1 =
B1k

2 +B1Ak
2
2 −B2Ak1k2

k4(1 +A)
dZα

dZu2 =
B2k

2 +B2Ak
2
1 −B1Ak1k2

k4(1 +A)
dZα,

which implies
Sujul

(k)dk = 〈dZuj
dZul

〉.
In the case of random loads, we do not need the assumption of small

perturbations. Indeed,

∆u′ + α∇(divu′) = f ′; α = A = const.

Thus
−k2dZuj

−Akj(k1dZu1 + k2dZu2) = dZfj
.

dZu1 =
Ak1k2dZf2 −Ak2

2dZf1 − k2dZf1

k4(1 +A)

dZu2 =
Ak1k2dZf1 −Ak2

1dZf2 − k2dZf2

k4(1 +A)
,

Sujul
(k)dk = 〈dZuj

dZul
〉.

In Figure 6 we show two samples of the first component of the displacement
vector, where in the left panel the correlation length is 5 times larger than
that presented in the right panel.
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Fig. 6. Samples of displacements u′
1. Left picture: Iα = 1.5, right picture: Iα = 0.3.

The number of harmonics N = 100.
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5 Random Walk Methods and Double Randomization

Assume we have to solve a PDE which includes a random field σ, say in a
right-hand side, in coefficients, or in the boundary conditions:

Lu = f, u|Γ = uγ .

To solve this problem directly by constructing the ensemble of solutions via
conventional numerical methods like finite elements or finite difference schemes
is a hard task, which is not realistic for most practical problems. If however
one of the Random Walk Methods can be applied, then a technique we call a
Double Randomization Method is very useful. Let us describe it shortly.

Suppose we have constructed a stochastic method for solving this problem,
for a fixed sample of σ. This implies, e.g., that an unbiased random estimator
ξ(x|σ) is defined so that for a fixed σ,

u(x, σ) = 〈ξ(x|σ)〉

where 〈·〉 stands for averaging over the random trajectories of the stochastic
method (e.g., a diffusion process, a Random Walk on Spheres, or a Random
Walk on Boundary).

Let us denote by Eσ the average over the distribution of σ.
The double randomization method is based on the equality:

Eσ u(x, σ) = Eσ〈ξ(x|σ)〉.

The algorithm for evaluation of Eσ u(x, σ) then reads:

1. Choose a sample of the random field σ.

2. Construct the random walk over which the random estimator ξ(x|σ) is
calculated.

3. Repeat 1. and 2. N times, and take the arithmetic mean.

Suppose one needs to evaluate the covariance of the solution. Let us denote
the random trajectory by ω. It is not difficult to show that

〈u(x, σ)u(y, σ)〉 = E(ω1,ω2,σ)[ξω1(x, ω)ξω2(y, ω)].

The algorithm for calculation of 〈u(x, σ)u(y, σ)〉 follows from this relation:

1. Choose a sample of the random field σ.

2. Having fixed this sample, construct two conditionally independent trajecto-
ries ω1 and ω2, starting at x and y, respectively, and evaluate ξω1(x, ω)ξω2(y, ω).

3. Repeat 1. and 2. N times, and take the arithmetic mean.
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Remark. Note that for the correlation function (or tensor, in the vector case,
for example, the Lamé equation), we can derive a closed equation. Indeed,
assume that we have a linear equation with random right-hand side and zero
boundary values

Lu = f, x ∈ D, u|Γ = 0,

where the random field f (not necessarily homogeneous) has Bf (x, y) as its
correlation function (tensor).

The solution u can be represented through the Green formula

u(x) =
∫
D

G(x, y)f(y)dy

where G(x, y) is the volume Green function for the domain D.
Under certain smoothness conditions we can derive that the correlation

function (tensor) Bu(x, y) = 〈u(x)u(y)〉 satisfies the iterated equation

Lx LyBu(x, y) = Bf (x, y)

with boundary conditions Bu|x∈Γ = 0, LxB(x, y)|y∈Γ = 0. Here Lx implies
that the operator L acts with respect to the variable x, for fixed y.

This can be derived as follows. First, using the above Green formula, and
taking the expectation, we obtain

Bu(x, y) = 〈u(x)u(y)〉 =
∫
D

∫
D

G(x, y′)G(y, y′′)〈f(y′)f(y′′)〉 dy′dy′′.

This expression coincides obviously with the Green formula representation of
the solution of the above iterated equation.

For systems of PDEs the relevant expressions are more complicated. Let
us consider our system of Lamé equations. We denote the correlation tensor
of the solution by B(u)(x, y) = 〈u(x)uT (y)〉, and the correlation tensor of the
body forces by B(f)(x, y) = 〈f(x) fT (y)〉. Let L = ∆+α grad div be the Lamé
operator. The Lamé operator L acts on a matrix W column-wise. This means,
the matrix equation LW = B (B is a matrix) is a pair of Lamé equations
written for the relevant first and second columns of matrices W and B.

After some evaluations we arrive at

B(u)(x, y) =
∫
D

∫
D

G(x, y′)B(f)(y′, y′′)GT (y, y′′)dy′dy′′. (1)

It is also possible to write down a differential relation between the input
matrix B(f)(y′, y′′) and the correlation matrix of the solutionB(u)(x, y). Indeed,
introduce a tensor V (x, y), and write the following pair of coupled systems

LxB
(u)(x, y) = V T (x, y), B(u)(x, y)|x∈Γ = 0, (2)

Ly V (x, y) = [B(f)(x, y)]T , V (x, y)|y∈Γ = 0. (3)
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To prove that (1) solves the system (2),(3) it is enough to notice that the
representation (1) can be obtained by a successive application of the Green
formula representation of the solutions to (2),(3).

The system of equations (2),(3) can be written as one system of 4-th order.
Indeed, using the definition L̂ V = LV T we apply the operator L̂y to both
sides of (2) . This yields

L̂yLxB
(u)(x, y) = [B(f)(x, y)]T

with boundary conditions

B(u)(x, y)|x∈Γ = 0, LxB
(u)(x, y)|y∈Γ = 0.

The Double Randomization technique is often used in Monte Carlo methods
also when solving deterministic PDEs. Let us show one example, - this technique
is used in the “Global Random Walk” method we suggested in [Sab91].

Let us consider a boundary value problem

Lu(x) = f, x ∈ D, u|∂D = 0.

Here L is e.g., the Laplace, or the Lamé operator.
The solution can be represented as an expectation taken over random

points ỹ distributed in G with an arbitrary probability density (such that
f(y) �= 0 for y where G(x, y)f(y) �= 0)

u(x) =
∫
D

G(x, y)f(y)dy = Eỹ [G(x, ỹ)f(ỹ)/p(ỹ)]

where G(x, y) is the Green function:

LG(x, y) = δ(x− y), x, y ∈ D, G(x, y)|x→Γ = 0.

Thus we come to an unbiased estimator for our solution:

ζx = G(x, ỹ)f(ỹ)/p(ỹ)

and ỹ is a random point distributed in D with a density p(y) (p(y) �= 0 for
y : G(x, y)f(y) �= 0.

Now, the function G(x, ỹ) itself, is represented as an expectation taken over
trajectories of a random process, say, the Random Walk on Spheres (RWS)
process. Indeed, let

G(x, y) = E(x, y) +W (x, y)

where E(x, y) is the fundamental solution (explicitly known for our operators),
and hence the function W (x, y) is uniquely defined by

Lw(x) = 0, x ∈ D, w|x→Γ = −E(·, y).
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So we get the desired representation by using the probabilistic representation
of the last problem:

W (x, y) = 〈−E(xγ , y)〉.
Thus we have the probabilistic representation G(x, y) = E(x, y) + 〈−E(xγ , y)〉.

The direct evaluation of the double expectation gives the solution in one
point x:

1. Choose a random point ỹ in D according to the density p.

2. Start a trajectory of RWS from the point x, and evaluate the estimator
along this trajectory ζ(1)x = G(x, ỹ)f(ỹ)/p(ỹ).

3. Repeat N times p. 1−2, and take the arithmetic mean of ζ(i)x .

It is however possible to calculate the solution simultaneously in an arbitrary
set of points x1, . . . , xm, using the symmetry property of the Green functions.

Indeed, assume, we wish to evaluate the solution in points x1, . . . , xm. Due
to the symmetry of G(x, ỹ), we place the unit sources in these points, and the
random points ỹ are considered now as the points where the solution should
be found, i.e., the trajectories are started now from ỹ.

The global algorithm then reads:

1. Choose random points ỹi, i = 1, . . . , N in D according to the density p.

2. Start trajectories of RWS from the sampled points ỹi, and evaluate
ζ
(i)
j = G(ỹi, xj)f(ỹi)/p(ỹi), simultaneously for all j = 1, . . . ,m, and take the

arithmetic mean of ζ(i)j , i = 1, . . . N . 1
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Monte Carlo and Quasi-Monte Carlo Methods
for Computer Graphics

Peter Shirley, Dave Edwards, and Solomon Boulos

University of Utah

Summary. Some computer graphics applications, such as architectural design,
generate visually realistic images of computer models. This is accomplished by either
explicitly or implicitly solving the light transport equations. Accurate solutions
involve high-dimensional equations, and Monte Carlo (MC) techniques are used
with an emphasis on importance sampling rather than stratification. For many
applications, approximate solutions are adequate, and the dimensionality of the
problem can be reduced. In these cases, the distribution of samples is important, and
quasi-Monte Carlo (QMC) methods are often used. It is still unknown what sampling
schemes are best for these lower dimensional graphics problems, or what “best” even
means in this case. This paper reviews the work in MC and QMC computer graphics,
and poses some open problems in the field.

1 Introduction

Computer graphics researchers have long attempted to generate images with
the realism of photographs. There are three steps in this process:

1. build or scan a geometric model of a scene, and associate material proper-
ties, such as spectral albedo, with each object;

2. simulate the transport of light energy to compute the amount of light
hitting each sensor element;

3. generate a displayable image from the sensor element responses.

This pipeline is discussed in more detail in the overview paper by Greenberg
et al. [GTS+97]. The first step is usually called “modeling” or “geometric
modeling”, and is a field of study in its own right. Mortenson’s book is a fine
up-to-date introduction to modeling [Mor07]. The last step is called “tone
mapping”, and is analogous to photo development. More details on tone
mapping methods can be found in Reinhard et al.’s book [RWPD05]. This
paper addresses the middle step: solving the light transport equations either
implicitly or explicitly. Our intended audience is MC and QMC researchers who
want an overview of the computational issues faced by graphics researchers,
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including problems in the field that are still unsolved. In Section 2 we review
the light transport research in computer graphics. Section 3 is an overview of
the unsimplified, high-dimensional problem, in which importance sampling is
more effective than stratification. In Section 4 we discuss previous work on
the simplified, low-dimensional problem, where well-distributed samples are
critical. Finally, in Section 5 we list some open problems in sample generation for
graphics. Readers interested in more detail on the use of MC in graphics should
consult Veach’s dissertation [Vea97] which also summarized much standard
classic MC work, or one of the general books on rendering [PH04, DBB06].
A detailed discussion of QMC in rendering can be found in Keller’s recent
paper [Kel06].

2 Light Transport for Computer Graphics

Almost all graphics practitioners make several assumptions to simplify the
implementation of rendering software:

• light obeys geometric optics, so interference, polarization, diffraction, and
other wave effects need not be modeled;

• light travels and interacts with surfaces instantaneously, so no phosphores-
cence is simulated;

• all wavelengths are independent, so there is no fluorescence.

Several researchers have explored softening these assumptions: some rendering
software can simulate fluorescence [Gla94, WTP01], phosphorescence [Gla94],
polarization [WTP01, WTU+04], thin-film interference [SM90, GMN94], and
small-scale diffraction [Sta99].

Rendering programs often use a simplified model of light transport. For
example, simulated light might be allowed to reflect only once between a
light source and the viewer, a constraint that removes indirect lighting. This
simplification lowers the dimensionality of the problem, and makes stratification
and low-discrepancy sampling more beneficial. A similar constraint takes
advantage of the fact that many real-world scenes have a median surface
albedo of approximately 20%. For these scenes, allowing only a few reflections
along a light path can still result in an image with low visual error. The low
dimensionality of such cases makes QMC techniques attractive.

However, for some scenes, such as white-painted rooms, light paths with
many reflections can carry significant energy. Extreme cases include scenes
with participating media, which scatter light as it propagates between surfaces.
Some of these media, such as clouds, have a very high scattering albedo,
possibly requiring hundreds of dimensions for an accurately rendered image.
There is an ongoing debate in the graphics community over whether these
difficult cases should be handled with brute-force Monte Carlo rendering, as
advocated by our work [MBJ+06], or by lowering the dimensionality of the
physics [JMLH01].
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3 Previous Work on the Full Problem

The most straightforward way to compute the effects of light transport is
to explicitly simulate the transport of photon-like particles from the light
to the sensor. At each interaction between a particle and a surface, the
particle may be absorbed or scattered. If a particle reaches an element on
the sensor, it contributes to the final image. Sensor elements that receive
more light correspond to brighter pixels in the image. Appel investigated this
approach for direct lighting in the 1960s [App68], but this technique has only
recently become computationally feasible for non-trivial scenes. A complete
implementation was first applied in Pattanaik’s dissertation [Pat93].

Ray tracing is used to determine which surface a particle hits. This method
computes the intersection of a geometrical ray and a set of surfaces describing
the scene, and determines which intersection is closest to the ray origin.
A tree-building preprocessing step allows this intersection to be computed
in time proportional to the logarithm of the number of surfaces for most
scenes [SAG+05].

Although a relative error as high as 2% is acceptable for most rendering
applications, simulating photon-like particles without optimizations is too slow,
due to the number of photons required to produce a converged image. This
problem may be alleviated by several optimizations. The most critical of these
is importance sampling, which was first applied by Cook [CPC84, Coo86] and
first used in the formal MC sense a few years later [KA91, SW91]. Importance
sampling is used to make particles more likely to scatter toward the simulated
camera lens, greatly reducing the computation time for some scenes. A number
of other classic MC optimizations have been successfully applied by graphics
researchers. Most of this optimization research occurred in the 1990s, and is
nicely summarized in Veach’s dissertation [Vea97].

Several approaches have used biased methods to reduce the number of
simulated photons. These techniques store the locations where particles interact
with surfaces, and then use density estimation to obtain a smooth lighting
function, which can be projected into image space using ray tracing or some
other technique. This approach has been applied successfully by Jensen in his
photon mapping technique [Jen01], and by Walter et al. in their world-space
system [WHSG97].

For some scenes, tracing particles from the light is not effective. For example,
outdoor scenes involve such a vast distribution of light energy that most
particles will not contribute to the final image. For such scenes, tracing light
backwards from the sensor to the light sources is more effective than direct
photon simulation. These backward tracing approaches require the solution
of adjoint equations; details of these adjoint methods have been outlined by
several researchers [Pat93, Chr03]. Our own approach to the rendering problem
is based on adjoint techniques, and amounts to exchanging the light source
and sensor properties in a scene, and then proceeding with a forward particle
tracing algorithm as described above [MBJ+06].
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For some scenes, neither particle tracing nor adjoint particle tracing work
well. These include scenes such as swimming pools, where light is focused twice
by the same specular surface (e.g., the water-air boundary for a pool) to produce
a refracted image of a caustic pattern. In these cases, researchers have rewritten
the rendering integral equation as an integral over light paths, with an implicit
limit on the number of reflections along the path. Veach and Guibas [VG94],
and Lafortune and Willems [LW93] applied Monte Carlo techniques to this
formulation to render images of several difficult configurations. A more recent
system by Kollig and Keller is the simplest complete bidirectional system yet
described [KK06].

Veach and Guibas noted that most energy in path space is confined to
relatively small subsets of the path domain. They developed a variant of the
Metropolis method, which they dubbed Metropolis light transport [VG97].
Their method was extended by Pauly et al. to render participating me-
dia [PKK00]. Although it is a promising method, Metropolis light transport has
been modified and extended by few researchers [KSKAC02, SKBS04, CTE05,
Tal05]. We believe this is due to the difficulty of implementing the algorithm,
rather than intrinsic shortcomings of the technique.

4 Previous Work on Simplified Problem

A common simplification to full light transport is to allow light paths with
only a few reflections, which greatly reduces the dimensionality of the problem.
Another simplification was introduced by Cook et al. [CPC84]; for each pixel
the system computes a nine-dimensional integral over pixel area, camera
lens area, time, light source location, and reflection direction. Cook [Coo86]
later described a stratified Monte Carlo technique for estimating the nine-
dimensional integral using four sets of two-dimensional samples and one set of
one-dimensional samples. The number of samples in these sets was the same
constant value for every pixel. The lower-dimensional sets were combined into
one nine-dimensional set using a variety of techniques including magic squares,
which are the first hint of QMC in the graphics literature. It is important to
note that some of the domains Cook sampled are not square: for example, the
lens samples lie within a disk. Schlick used especially constructed permutations
to sample in higher dimensions in similar spirit to Cook but with a more
general view [Sch91].

Shirley was the first researcher to apply classical QMC techniques to
computer graphics [Shi91]. He computed the star and box discrepancy of several
types of two-dimensional antialiasing patterns, and showed that patterns with
lower discrepancy produced more accurate renderings. In this case, accuracy
was measured using RMS and maximum differences between an ideal reference
image and an image rendered using a given pixel-sampling pattern. This
work also indicated that classic discrepancy might not be a useful indicator
of image quality in the presence of importance sampling, depending on the
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transformation between the unit square and the domain of interest. Chiu and
Shirley later developed MC sampling techniques with similar properties to
some QMC nets [CSW94].

Mitchell also proposed a deterministic sampling method based on frequency-
space properties, rather than low discrepancy [Mit91]. His method constructs
a blue-noise point set by incrementally adding points to a two-dimensional
pattern. In each iteration, the algorithm generates several candidate points,
and then adds the point with the highest minimum distance to all points
already in the pattern. Mitchell also presented a similar method for generating
higher-dimensional samples, which could be used to render motion blur in
dynamic scenes. Mitchell’s method for incremental point set generation is also
known as best-candidate sampling [PH04].

Heinrich and Keller were the first to use classic QMC points, specifically the
Halton and Hammersley sequences, for rendering [HK94a, HK94b]. Like Shirley,
they found that discrepancy is an indicator of rendering quality. Heinrich and
Keller presented a method for antialiasing using low-discrepancy patterns,
rather than samples on a regular grid. They found that QMC sampling often
converges faster to a reference image than pseudorandom sampling [HK94b],
and that the Halton sequence is very useful for adaptive sampling techniques.
These classic sequences proved much more useful for graphics by adding Faure’s
permutations [Fau92, Kel98].

Mitchell and Dobkin published three papers, one also with Eppstein, on
a variant of discrepancy based on arbitrarily oriented edges through the
square [Mit92, DM93, DEM96]. They claimed that this isotropic discrepancy
measure is useful for computer graphics, since it corresponds to the common
case in which object silhouettes pass through a pixel. Their articles include
several tables of different discrepancy values for various sampling patterns.
They also presented an incremental method for generating samples, which is
similar to the best candidate algorithm, but optimizes based on discrepancy,
rather than minimum distance. Mitchell summarized some of this work, and
ran some simple experiments, in a SIGGRAPH 2001 course [Mit01]. He showed
that points optimized with respect to arbitrary edge discrepancy resulted in
less RMS error than Hammersley points for a zone plate image. The generality
of these results remains unknown.

Ohbuchi and Aono performed a practical comparison of QMC sam-
pling [OA96]. They compared several methods for sampling two-dimensional
area light sources for rendering, including pseudorandom points, stratified sam-
ples, and the Sobol and Halton sequences. The Sobol and Halton sequences were
chosen because they allow incremental adaptive sampling. The QMC-based
samples yielded better qualitative and quantitative results than pseudorandom
sampling, although stratified random samples were almost as effective. They
also presented an algorithm for adaptive sampling by iteratively adding light
source samples until the difference in pixel color between two iterations is
less than a threshold value. In their experiments, adaptive sampling with the
Halton sequence produced low-error images faster than any other method.
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Szirmay-Kalos and Purgathofer performed an approximate analysis of
Monte Carlo and quasi-Monte Carlo rendering that they tested experimen-
tally [SKP98]. The authors use this analysis to show that, QMC sampling
is no worse than pseudorandom sampling, and is often much more accurate
for rendering, since the fraction of strata containing discontinuities is often
small. However, in higher dimensions, the benefits of QMC sampling are not as
pronounced. They tested their error analysis using MC and QMC integration
on discontinuous two- and three-dimensional functions, and found that QMC
estimates were more accurate than MC estimates, especially at higher numbers
of samples. Finally, they used QMC and MC sampling to render a scene for
which the value of the rendering integral is known. For light paths with one or
two reflections, the QMC estimate was more accurate than the MC estimate.
However, when more reflections were allowed the two sampling methods exhibit
about the same amount of error. These results agree with the authors’ analysis
that MC and QMC sampling will exhibit approximately the same amount of
error for higher-dimensional problems.

Kollig and Keller developed one of the first complete rendering systems
with QMC sampling [KK02]. Their software combines QMC techniques, bidi-
rectional path tracing, and multiple importance sampling to efficiently render
scenes with global illumination effects. The authors claim that QMC point
sets are well-suited to rendering, since lower dimensions of QMC point sets
exhibit better distribution, and lower dimensions of the particle simulation
tend to have a higher visual impact. Kollig and Keller also describe several
methods for randomizing QMC samples, allowing unbiased estimates while
maintaining the advantages of low discrepancy sampling. Finally, they men-
tion techniques for creating high-dimensional sample points by concatenating
randomized instances of low-dimensional samples, a technique the authors call
“padded replications sampling”. Padded samples are not guaranteed to have
low discrepancy, but they still produce high-quality images in practice.

Keller’s SIGGRAPH course notes are probably the best comprehensive
description of a QMC-based rendering system [Kel03]. Although most of the
information in the notes can be found in his other papers, these notes bring
many important concepts together in one place. They also provide a detailed
description of trajectory splitting in particle simulations, which is a useful
technique for creating efficient sample sets when branching is allowed along
the light paths. In more recent papers, Keller suggests that the most effective
sampling methods for rendering are those that combine low discrepancy and
blue noise properties [Kel04, Kel06]. He concludes that rank-1 lattice points
can offer these advantages, and are simple to implement as well.

5 Open Problems in Sample Generation for Graphics

In this section we review the most important open problems in generating sam-
ples for the simplified light transport problem. Effective sampling is increasingly
important, especially since improvements in hardware have made interactive
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ray tracing feasible, and good sampling techniques can provide higher-quality
images without requiring additional rendering time.

Most computer graphics applications are designed with a sampling mod-
ule that generates points on the hypercube. It is usually straightforward
to test different sampling strategies by viewing hypercube sampling as a
“black box” and exchanging different sampling strategies (e.g., MC or QMC)
without changing any of the rendering engine code [SSB91]. Usually, the
number of samples per pixel is known in advance, and ranges from around
9 to 400.

Most programs require the ability to sample non-square domains and/or
non-uniform densities. This is usually handled by transforming points on
the hypercube using a bijective function that produces points with the
appropriate density on the desired domain. Usually the domain is a two-
dimensional manifold with simple boundaries. A detailed description of this
process is in Arvo’s notes [Arv01], which follow the classic multidimensional
inversion method of MC with examples from specific domains that arise in
graphics.

For programs that simulate a camera lens, a disk must be sampled. For this
two approaches are popular. The first is to transform uniformly distributed
points (ξ0, ξ1) ∈ [0, 1]2 to polar coordinates on the disk via the mapping
θ = 2πξ0 and r = R

√
ξ1. The Jacobian of this function has a constant

determinant, and thus the method produces uniformly distributed points on
the disk. A potential problem with this mapping is that it may decrease or
remove some of the spatial properties of the distribution on the unit square,
due to stretching. There are infinitely many constant Jacobian mappings from
square to disk, and some may be more effective than the one described above.
Shirley and Chiu proposed one such mapping [SC97] that has been empirically
shown to reduce error [KMH95]. Little theory exists that addresses the effect
of different mappings on error.

There are several basic questions that remain open:

1. Should samples on non-square domains be generated on the hypercube and
transformed, or should they be generated directly on their native domain?

2. For pixel sampling, what is the appropriate measure of sample set quality?
For example, is edge discrepancy more predictive than other discrepancy
measures?

3. How should the human perceptual system be factored into sample set design
for graphics? Perceptual factors are often used to justify minimum-distance
or blue noise sampling.

4. Should numeric optimization be used to generate sample sets?
5. Is there much to be gained from better sampling, or are we already in the

diminishing return stage?
6. How should the sample sets of neighboring pixels relate to each other?

Unfortunately, these questions are all fairly hard to answer. Some formal
questions that are also currently unanswered include:
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1. How does one generateN samples on a disk with minimal edge-discrepancy?
2. How does one generate N samples on the 3D cube with minimal 3D

edge-discrepancy?
3. How does one take M2N “good” samples on the square, and divide them

into M2 sets of N “good” samples?

The answer to the first question would be useful for generating samples on
camera lenses, and the answer to the second question would be useful for
images of moving objects. The answer to the third question would be helpful
in tile-based sampling as advocated by Keller and Heidrich [KH01]. We use a
similar tile-based architecture to avoid the costs of runtime sample generation,
and agree with Keller and Heidrich’s claim that it works well [BEL+07].

6 Summary

Some graphics problems are high-dimensional, and in these cases, impor-
tance sampling is the only important optimization. Other problems are low-
dimensional, and sample distribution can greatly influence performance. Such
graphics problems have four characteristics that are noteworthy for QMC
researchers attempting to design appropriate sampling schemes: first, a high
relative error is tolerable, and thus only a small number of samples is needed
for each pixel; second, a separate integral estimation is performed for each
pixel, and the perceptual nature of the error is important; third, non-square
domains are often sampled; finally, the domain of integration is often at least
seven-dimensional (two dimensions for screen, lens, and light samples, and one
for time), but significant variation usually occurs in only two or three of these
dimensions for a given pixel. Finding the best method for generating samples
for such applications remains an open problem.
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Summary. Elliptic boundary value problem (BVP) for the stationary diffusion
equation is considered. Within [BM03], we estimate the solution and its spatial
derivatives by solving a system of local integral equations. We propose to use the
Poisson-Boltzmann Green function instead of the Laplacian one. This enables us to
obtain a convergent Neumann series for a wider class of equations.

1 Introduction

In this paper, we consider one of the classical problems of mathematical
physics which often arises when studying potential theory, heat and electric
conductivity, fluid dynamics, elasticity theory, geophysics, etc. Our main
objective is to estimate the solution to the elliptic BVP as well as its spatial
derivatives (Section 1).

For local estimation of the desired values we construct statistical algorithms,
which are more suitable as compared to deterministic ones, especially, for
the problems with complex geometries. In addition, statistical methods are
well adapted to the up-to-date computing technique with a high degree of
parallelization.

There are several statistical approaches to solving the problem: random
walk on boundaries, simulation of diffusion trajectories by means of a system
of stochastic differential equations, random walk inside the domain using the
Green functions. We used the latter approach and constructed new statistical
algorithms with the help of the central and the non-central Laplacian Green
functions for the ball in [BM03]. However, algorithms proposed have some
disadvantages. For example they fail to solve problems with large in absolute
value negative coefficient c(r).

This restriction does not have any physical interpretation but is required
for convergence of the corresponding Neumann series. On the other hand, the
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algorithms, which use the central Poisson-Boltzmann Green function and its
normal derivative are well-known. We offer to combine two approaches and
to use the non-central Poisson-Boltzmann Green function for constructing a
system of local integral equations (Section 2). As a result, we managed to
extend a class of equations that can be solved by this algorithm. We give a
detailed description of the algorithm in Section 3.

It is shown that under certain conditions the integral problem is equivalent
to the differential one. We obtain the deterministic error order and investigate
the estimator variance in Section 4.

We give some additional remarks concerning the algorithm in Section 5
and present numerical results in Section 6.

2 Differential Problem and Notations

Let us consider the Dirichlet problem

∆u(r) − c(r)u(r) +
(
v(r),∇u(r)) = −g(r), r ∈ Ω ⊂ R3 (1)

u(s) = ψ(s), s ∈ Γ = ∂Ω (2)

in the domain Ω with simply connected and piecewise smooth boundary Γ .
Suppose that the functions v(·), c(·) ∈ Cδ(R3), i.e. satisfy the Hölder condition
in R3 with exponent δ, c(·) > 0, g(·) ∈ Cδ(Ω), and ψ(·) is a continuous function
on Γ . Under the conditions stated above there exists a unique and smooth
solution u ∈ C2+δ

loc (Ω) ∩ C(Ω) to problem (1) – (2) (see, e.g., [Kry96]).
We are interested in estimating the solution u(r) and its gradient ∇u(r) at

some point r ∈ Ω.
Hereinafter the following notation is used:

Dκ = ∆ − κ2 – a stationary diffusion operator. We suggest to rewrite
equation (1) isolating this operator on the left-hand side:

Dκu(r) ≡ ∆u(r)− κ2u(r) = −(κ2 − c(r))u(r)− (v(r),∇u(r))− g(r) (3)

B(r0, R) = {r′ ∈ R3 : |r0 − r′| � R(r0) = const} – the largest ball centered at
r0 and contained in Ω;

R = R(r0) = dist(r0, Γ ) – the radius of this ball;
S(r0, R) = ∂B(r0, R) = {r′ ∈ R3 : |r0 − r′| = R(r0)} – the corresponding

sphere;
Rmax = max

r∈Ω
R(r); c0 – a constant such that c0R2

max < 6;

p(r) =
(

1 − c0R
2(r)
6

)
; # =

R

|r′ − r0| ; V = r′ − r; W = #(r′ − r0)− r − r0
#

;

Γε = {r′ ∈ Ω : ∃r ∈ Γ, |r − r′| � ε} – ε-strip of the boundary Γ ;
ω – the unit vector corresponding to the vector function v, i.e.

(
v(r),∇u(r)) =

|v(r)| ∂u
∂ω

(r) and v(r) = |v(r)| · ω(r);
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aω(r, r′) = cos(V̂, ω(r)) – the cosine of the angle between ω and V = r′ − r;
−c∗ is a minimum eigenvalue of the Laplace operator in Ω;
Gκ

r0
(r, r′) – the non-central Green function for the operator Dκ in the ball
B(r0, R), which is the solution to the Dirichlet problem

DκGκ
r0

(r, r′) = δ(r′ − r), Gκ
r0

(r, r′)
∣∣
r∈S(r0,R)

= 0,

where δ(·) is the Dirac delta function. The explicit form of the function
Gκ

r0
and its derivatives, used for estimating the solution to (1) – (2), is

presented below.

3 System of Integral Equations and Algorithm
for its Solution

Integral equations for the function u(r) from (3) and

its spatial derivative
∂u

∂ω
(r) can be obtained using the

mean-value theorem. We propose to use the non-central
Green functions Gκ

r0
(r, r′) for the stationary diffusion

operator Dκ in the ball B(r0, R). As a result, we obtain
the following equations (similar to [BM03, Mikh93]) for
r, r0 ∈ Ω \ Γε:

u1(r) = −
∫

S(r0,R)

∂Gκ
r0

∂nr′
(r, r′)u1(r′)dSr′ +

∫
B(r0,R)

Gκ
r0

(r, r′)g(r′)dr′

+
∫

B(r0,R)

Gκ
r0

(r, r′)
[
|v(r′)|∂u1

∂ω
(r′) + (κ2 − c(r′))u1(r′)

]
dr′, (4)

∂u1

∂ω
(r) = −

∫
S(r0,R)

∂

∂ω

(
∂Gκ

r0

∂nr′

)
(r, r′)u1(r′)dSr′ +

∫
B(r0,R)

∂Gκ
r0

∂ω
(r, r′)g(r′)dr′

+
∫

B(r0,R)

∂Gκ
r0

∂ω
(r, r′)

[
|v(r′)|∂u1

∂ω
(r′) + (κ2 − c(r′))u1(r′)

]
dr′. (5)

Here nr′ is the outer normal to the sphere S(r0, R). We set u1 ≡ u for r ∈ Γε.
Now let us write down the functions used in equations (4), (5) and specify

the probability density functions proportional to them.
We can obtain the non-central Green function Gκ

r0
(r, r′) by the method of

images [FLS64]:

Gκ
r0

(r, r′) =
1
4π

[
sinh {κ(R− |V |)}

sinh {κR} |V | − sinh {κ (R− |W |)}
sinh {κR} |W |

]
. (6)
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The normal derivative
∂Gκ

r0

∂nr′
for r′ ∈ S(r0, R), i.e. for |r′ − r0| = R, has the

following form:

∂Gκ
r0

∂nr′
(r, r′)

∣∣∣∣
|r′−r0|=R

=
1
4π

|r0 − r|2 −R2

R sinh{κR}
[
κ cosh{κ(R− |V |)}

|V |2 (7)

+
sinh{κ(R− |V |)}

|V |3
]
.

The non-central spatial derivative
∂Gκ

r0

∂ω
of the Green function has the following

form:

∂Gκ
r0

∂ω
(r, r′) =

cos(V̂, ω)
4π

[
κ|V | cosh{κ(R− |V |)} + sinh{κ(R− |V |)}

sinh{κR}|V |2
]

(8)

−cos(Ŵ, ω)
4π#

[
κ|W | cosh{κ(R− |W |)} + sinh{κ(R− |W |)}

sinh{κR}|W |2
]
,

Further, we use the central Green function for the operator Dκ, i.e. values
of function u1 (4) and its gradient (5) at an arbitrary point r are represented
as a sum of integrals over the sphere and the ball centered at the same point
(r0 = r). Note that it is necessary to use non-central Green function (6) for
obtaining the derivatives mentioned above. The forms of the central (i.e. for

r → r0) functions (6), (7), (8) and the function
∂

∂ω

(
∂Gκ

r0

∂nr′

)
are the following:

Gκ
r (r, r′) =

1
4π

sinh {κRV }
sinh {κR} |V | , (9)

∂Gκ
r

∂nr′
(r, r′)

∣∣∣∣
|V |=R

= − 1
4πR2

(
κR

sinh{κR}
)
, (10)

∂Gκ
r

∂ω
(r, r′) =

aω(r, r′)
4π sinh{κR}

[
κ cosh{κRV }

|V | +
sinh{κRV }

|V |2 − κ|V |
R2

]
, (11)

where RV = R− |V |,
∂

∂ω

(
∂Gκ

r

∂nr′

)
(r, r′)

∣∣∣∣
|V |=R

= −aω(r, r′)
4πR2

κR

sinh{κR} · 3
R
. (12)

Note, as the operator Dκ tends to the Laplace operator ∆ when κ → 0,
functions (9) – (12) converge to the corresponding Green functions for the
Laplace operator:

G0
r (r, r′) =

1
4π

[
1

|r′ − r| − 1
R

]
,

∂G0
r

∂nr′
(r, r′)

∣∣∣∣
|r′−r|=R

= − 1
4πR2

,
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∂G0
r

∂ω
(r, r′) =

aω(r, r′)
4π

[
1

|r′ − r|2 − |r′ − r|
R3

]
,

∂

∂ω

(
∂G0

r

∂nr′

)
(r, r′)

∣∣∣∣
|r′−r|=R

= −3aω(r, r′)
4πR3

.

Functions (10), (12) are proportional to the probability density FS on the
sphere and functions (9), (11) are proportional to the probability densities F0

and F1 on the ball:

Gκ
r (r, r′) =

R2

6
· C01(κR) · F0(r, r′), (13)

− ∂G
κ
r

∂nr′
(r, r′) = C00(κR) · FS(r, r′), (14)

∂Gκ
r

∂ω
(r, r′) = aω(r, r′)

3R
4

· C11(κR) · F1(r, r′), (15)

− ∂

∂ω

(
∂Gκ

r

∂nr′

)
(r, r′) = aω(r, r′)

3
R

· C10(κR) · FS(r, r′). (16)

Here R = R(r), and the functions Ckl (k, l ∈ {0, 1}) are defined on the positive
semi-axis [0,+∞) and monotonically decrease from 1 to 0; we give their explicit
form in Subsection 4.2. The function FS is the probability density of uniform
distribution on the sphere:

FS(ϕ, θ)dS =
dϕ
2π

· sin(θ)dθ
2

,

where θ ∈ (0, π), ϕ ∈ (0, 2π), ρ = |r′ − r| ∈ (0, R) are coordinates of the
local (with the origin at the point r) spherical coordinate system with the
differential of volume dr′ = sin(θ)ρ2dθdϕdρ. The probability densities F0 and
F1 are factorable in this coordinate system:

Fj(r, r′)dr′ = FS(ϕ, θ)dϕdθ · F ρ
j (ρ)dρ, j = 0, 1;

and the factors F ρ
j (ρ) outside the angular density have the following form:

F ρ
0 (ρ) =

6C−1
01 (κR)

R2 sinh {κR}ρ sinh {κ(R− ρ)}, (17)

F ρ
1 (ρ) =

4C−1
11 (κR)

R2 sinh{κR}
[
κρ cosh{κ(R− ρ)} + sinh{κ(R− ρ)} − κρ

3

R2

]
. (18)

The simulation of the random variables with probability density functions (17)
and (18) is described in Subsection 4.3.

To construct statistical algorithms, equations (4) and (5) are combined
below into a unified integro-algebraic equation with allowance for (13) – (16).
We introduce a special extension of a set of phase coordinates by the discrete
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variable j which can take only two values: j = 0 or j = 1. Moreover, it

is reasonable to consider the variable
R(r)

3
∂u1

∂ω
(r) instead of

∂u1

∂ω
(r). Let

w = (r, j) ∈ R3 × {0, 1} be a point of a new phase space. We define the
following functions:

U(w) ≡ U(r, j) =

⎧⎨⎩u1(r), j = 0;
R(r)

3
∂u1

∂ω
(r), j = 1.

If we choose the parameter c0 such that c0R2
max < 6, then the variable

p(r) =
(

1 − c0R
2(r)
6

)
has a probability interpretation and we can use it

below for the randomization of the unified equation:

U(r, j) = p(r)
∫

S(r,R)

FS(r, r′)U(r′, 0)Qj0(r, r′)dSr′ +G(r, j) (19)

+ (1 − p(r))
∫

B(r,R)

Fj(r, r′)
[
pc
1Q

c
j1(r, r

′)U(r′, 1) + pc
0Q

c
j0(r, r

′)U(r′, 0)
]
dr′,

where pc
0 = pc

0(r, r
′) and pc

1 = pc
1(r, r

′) are, also, some probabilities: pc
0 +pc

1 = 1.
We explain the way of defining them in Subsection 4.2. In addition, we give
the explicit form of the weights Qk0, Qc

kl (k, l ∈ {0, 1}) and the form of the
function G(w) in Subsection 4.2 as well.

We construct the statistical estimator ζ(w0) for U(w0) according to (19)
as follows.
Algorithm. [The initial weight Q0 = 1, the initial point w0 = (r0, j0)]

1 QnG(wn) is added to the counter, n = 0, 1, . . .
2a With probability p(rn), a uniformly distributed (i.e. with density FS(rn, r′))

point rn+1 is generated on the sphere S(rn)
2a1 jn+1 takes value 0
2a2 the weight Qn is multiplied by Qjn0: Qn+1 = Qn ·Qjn0

2b With complementary probability 1−p(rn), the next point rn+1 is generated
in the ball B(rn) with the density Fjn

(rn, r′)
2b1 jn+1 takes value 1 with probability pc

1(rn, rn+1), and value 0 with
probability pc

0(rn, rn+1)
2b2 the weight Qn is multiplied by Qc

jnjn+1
: Qn+1 = Qn ·Qc

jnjn+1

3 Check the termination condition, written below:

When simulating the introduced random walk on spheres and balls, with the
path falling into Γε at a step with a random number N , the chain terminates
and the estimator for U(wN ) (see Subsection 4.1) multiplied by the weight
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QN is added to the counter. As a result, we obtain the following estimator for
U(w0):

ζ(w0) =
N−1∑
n=0

QnG(wn) +QNU(wN ).

4 Realization of the Algorithm

First of all, let us notice that calculation of the distance R(r) on every step
could be fairly time-consuming in the domains with complex boundaries. Since
representations (4) and (5) hold for an arbitrary ball contained in Ω, then it
is possible to use not maximal balls but those with easy-to-compute radii d(r)
inside the domain. So, the radii R(r) have to be used only in the immediate
neighborhood of the boundary. This procedure will increase the number of
transitions in the chain but could decrease the computer costs of the algorithm.

4.1 Estimation of the Solution U(w) in Γε

Since the values of U(w) in Γε are unknown, the corresponding estimators are
obtained as follows. For jN = 0, one can set

U(rN , 0) = u1(rN ) = ψ(r∗N ), where r∗N ∈ Γ, rN ∈ Γε, |rN − r∗N | = R(rN ),

i.e. the point r∗N is the closest one on Γ to the point rN in Γε.
Assuming the first derivatives of the solution to be finite in Ω, and therefore

R(r)
3
∂u1

∂ω
(r) = O(ε) for r ∈ Γε,

one can approximately set U(rN , 1) = 0 for jN = 1. As a result, we obtain the
feasible but biased estimator ζε(w0) for U(w0).

4.2 Coefficients of Equation (19)

The weights Qk0, Qc
kl from equation (19) have the following form:

Q00(r, r′) =
C00(κR(r))
p(r)

, Q10(r, r′) =
aωC10(κR(r))

p(r)
,

Qc
01(r, r

′) =
3|v(r′)|C01(κR(r))

pc
1c0R(r′)

, Qc
11(r, r

′) =
9aω|v(r′)|C11(κR(r))

2pc
1c0R(r′)

,

Qc
00(r, r

′) =
C01(κR(r))(κ2 − c(r′))

pc
0c0

, Qc
10(r, r

′) =
3aωC11(κR(r))(κ2 − c(r′))

2pc
0c0

.
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One can set pc
1 = pc

0 = 0.5, but it is more efficient to set these probabilities
proportional to the functions |v| and |κ2 − c|:

pc
1 =

3|v(r′)|
R(r′)pcv

, pc
0 =

|κ2 − c(r′)|
pcv

, where pcv =
3|v(r′)|
R(r′)

+ |κ2 − c(r′)|.

The weights Qk0, Qc
kl differ from those introduced for the analogous method,

which was proposed in [BM03] for the Laplace operator (κ ≡ 0), in factors
Ckl, which have the following form:

C00(x) = C10(x) =
x

sinh(x)
,

C01(x) =
6
x2

(1 − C00(x)) ,

C11(x) =
4
3

(
tanh(x/2)
x/2

− C00(x)
4

)
.

The functions C00 = C10, C01, C11 monotonically decrease from 1 to 0.
The functions G(w) should be estimated on every step during random walk

on spheres and balls inside Ω \ Γε. These functions have the following forms
(depending on the coordinate j):

G(r, 0) = C01(κR(r))
R2(r)

6

∫
B(r,R)

F0(r, r′)g(r′)dr′,

G(r, 1) = C11(κR(r))
R2(r)

4

∫
B(r,R)

F1(r, r′)g(r′)aω(r, r′)dr′.

We can estimate the functions G(r, 0) and G(r, 1) by “single random sample”
method [EM82], i.e. using only one sample coordinate r1 = (ϕ1, θ1, ρ1) for
estimating the whole integral on every step. But it seems reasonable to use
several points obtained from r1 by the deterministic method for variance
reduction. Note that if α is a uniform random variable on (0, 1), then the
random variable ϕ1 = 2πα has the same distribution as 2πα+ φ (mod 2π) for
some angle φ. Moreover, a random variable µ1 = cos(θ1) = 2α − 1 has the
same distribution as −µ1. Therefore, using four angles φ = 0, π/4, π/2, 3π/4
and two variables ±µ1, we obtain eight points instead of a single point r1, and
averaging over these points results in a lesser variance.

4.3 Sampling from Probability Density Functions F ρ
j (ρ)

We can use the von Neumann rejection method [Neu51, EM82] for sampling
probability densities (17) and (18). We can select a majorant function for (17)
in two ways:

g0(ρ) ≡ ρ sinh {κ(R− ρ)}
sinh {κR} � ρ exp(−κρ) ≡ g1(ρ) � R exp(−κρ) ≡ g2(ρ).



RWA for Estimating the Derivatives of Solution to the Elliptic BVP 189

If the function g1, which is proportional to the gamma distribution with
parameters (2, κ), is also sampled by the rejection method (i.e. rejecting the
values of ρ which are greater than R), then the ratio of the corresponding
computational costs is the following:

S1

S2
=

R∫
0

g1(ρ)dρ

R∫
0

g0(ρ)dρ
·

∞∫
0

g1(ρ)dρ

R∫
0

g1(ρ)dρ

/ R∫
0

g2(ρ)dρ

R∫
0

g0(ρ)dρ
=

1
κR(1 − e−κR)

.

Therefore, if S2 < S1 (it holds when κR < 1.3499764854), then we use the
majorant function g2, otherwise g1.

For probability density (18) we have

κρ cosh{κ(R− ρ)} + sinh{κ(R− ρ)} − κρ
3

R2
� (κR+ 1) cosh{κ(R− ρ)}.

If α is a uniform random variable on (0, 1) and a variable η is the solution to
the equation sinh{κ(R− η)} = α sinh{κR}, then η has the probability density
Aκ,R cosh{κ(R− ρ)} on (0, R).

5 Theorems

All the theorems in this section follow from the respective statements proved
in [BM03], just by taking into account the fact that the weights in the cor-
responding Neumann series are multiplied by the factors Ckl (k, l ∈ {0, 1})
which are less than 1.

Theorem 1. Let for any r ∈ Ω, the following assumptions hold:

|κ2 − c(r)| + 3
|v(r)|
R(r)

� 2
3
c0, (20)

c0 <
6
π2
c∗ % 0.6079c∗.

Then there exists a unique bounded solution to integral equation (19). This
solution admits a representation as Neumann series and equals the solution to
BVP (1) – (2):

U(r, 0) = u(r), U(r, 1) =
R(r)

3
∂u

∂ω
(r).

If v ≡ 0, then we can replace (20) for |κ2 − c(r)| � c0.
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Note that there is no restriction for the coefficient c(r) itself in (20), whereas
an analogous assumption from [BM03] has the following form:

|c(r)| + 3
|v(r)|
R(r)

� 2
3
c0.

So, the usage of the Green function for the operator Dκ as compared to
the Green function for the Laplace operator enables us to solve problem (1)
with a large (in absolute value) negative coefficient c(r) that is close to some
constant κ2.

Theorem 2. If the first derivatives of u(r) are finite in Ω, then

Eζε(r, 0) = uε(r) and |u(r) − uε(r)| = O(ε), ε > 0, r ∈ Ω.

Moreover,

Eζε(r, 1) = fε(r) and
∣∣∣∣R(r)

3
∂u

∂ω
(r) − fε(r)

∣∣∣∣ = O(ε), ε > 0, r ∈ Ω.

Theorem 3. If c0 < 0.4881c∗ and g ≡ 0, then the variance Vζε is finite for
any ε > 0.

To study the variance finiteness for g �≡ 0, we write down equation (19) by
analogy with [BM03] in the following form:

U(w) = p

⎡⎢⎣ ∫
S(r,R)

FS(r, r′)U(r′, 0)Qj0dSr′ +
G(w)
p

⎤⎥⎦
+(1 − p)

∫
B(r,R)

Fj(r, r′)[pc
1U(r′, 1)Qc

j1 + pc
0U(r′, 0)Qc

j0]dr
′.

According to it the functionG(r, j) is calculated only for the step (r, j) → (r′, 0),
i.e. on the sphere, but with the weight p(r)−1. In other words, we use a new
function G̃(r, j) instead of G(r, j):

G̃(ri, ji) =

⎧⎪⎨⎪⎩
0, when ji+1 = 1;[
1 − c0R

2(ri)
6

]−1

G(ri, ji), when ji+1 = 0.

Thus, we obtain one more estimator ζε,1 for which Eζε,1 = Eζε.

Theorem 4. If c0 < 0.4881c∗ and g �≡ 0, then the variance Vζε,1 is finite for
any ε > 0.
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6 Some additional Remarks

6.1 Estimating a Derivative of u along an Arbitrary Direction µ

To estimate a derivative of u along an arbitrary direction µ (which may differ

from the direction of ω), we should use a representation for
R(r)

3
∂u1

∂µ
similar

to (5) at the first step of the algorithm:

Uµ(r) ≡ R(r)
3
∂u1

∂µ
(r) = p(r)

∫
S(r,R)

FS(r, r′)Qµ0(r, r′)U(r′, 0)dSr′ (21)

+ (1 − p(r))
∫

B(r,R)

F1(r, r′)
[
pc
1Q

c
µ1U(r′, 1) + pc

0Q
c
µ0U(r′, 0)

]
dr′ +Gµ(r).

After the first step we apply the simulation algorithm associated with the unit
vector ω(r). In particular, for the estimators {ζµ(r)}µ=x,y,z of the solution
gradient gradu(r), the following representation is valid

ζµ(r) = 3
(
Gµ(r) +Qµ(w1)ζ(w1)

)
/R(r), µ = x, y, z,

where ζ(w1) is the estimator for U(w1) and w1 ≡ (r1, j1) is a phase state point
after the first Markov chain transition according to (21). Since the coefficients
Gµ(r) and Qµ(w1) are known after this first transition, we can estimate all
three components of the gradient vector simultaneously, i.e. using the same
trajectories.

6.2 Another Randomization

Another integral representation for u(r) from (3) is known [ENS89] when v ≡ 0
and 0 � c(r) � κ2:

u(r) = q
∫

S(r,R)

FS(r, r′)u(r′)dSr′ (22)

+(1 − q)
∫

B(r,R)

F0(r, r′)
[
u(r′)

(κ2 − c(r′))
κ2

+
g(r′)
κ2

]
dr′.

Here q = C00(κR(r)) is used for randomization instead of c0 and the function
g(r′) is calculated only for sufficiently rare transitions into the ball B(r,R).

Let us rewrite (19) similar to (22):

U(w) =
(

1 − c0R
2(r)
6

) ∫
S(r,R)

FS(r, r′)U(r′, 0)Qj0dSr′ (23)

+
c0R

2(r)
6

∫
B(r,R)

Fj(r, r′)
[
pc
1Q

c
j1U(r′, 1) + pc

0Q
c
j0U(r′, 0) + g(r′)Qj(r, r′)

]
dr′,
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where additional factors Qj have the following form

Q0(r, r′) =
C01(κR(r))

c0
, Q1(r, r′) =

3
2
C11(κR(r))

c0
aω(r, r′).

Actually, to use this representation means to compute the integrals G(rn, jn)
just taking a single random sample rn+1, which has been already sampled
from the probability density function Fj(rn, r′) in the transition rn → rn+1.
According to (23) we obtain one more estimator ζε,2 with Eζε = Eζε,2.

We can adjust the algorithm based on (22) for estimating the solution
gradient gradu(r) by using the representation similar to (21) at the first step.

6.3 Mixed Boundary Conditions

Let us consider problem (1) with the Dirichlet boundary condition (2) given
for a part of the boundary Γ1 ⊂ Γ only. The Neumann condition is given for
the other part Γ2 = Γ \ Γ1:

(∇u(s), γ(s)) + α(s)u(s) = ψ(s), s ∈ Γ2, (24)

where ∀s ∈ Γ2 (γ(s),n(s)) � γ > 0, α(s) � Cα > 0, n(s) is the outer normal
at the point s.

We suggest to use approximation of condition (24) in Γ2ε with desired
accuracy (see [Mak01]). Let dγ(r) be the distance between r and Γ2 along the
vector field γ, and let π(r) be the projection of the point r ∈ Γ2ε onto Γ2 along
the vector field γ. Then the following representation holds in Γ2ε:

u(r) =
1 + α · dγ(r)

1 + α · (dγ(r) + ε)
u(r − εγ) +

ε

1 + α · (dγ(r) + ε)
ψ(π(r)) + O(ε2),

and we can randomize it for a specified probability p̃(r) as follows

u(r) = p̃(r) · z(r)
p̃(r)

· u(r − εγ) + (1 − p̃(r)) · 0 · u(r) + ψ̃(r).

According to the latter we should continue the algorithm when the trajectory
gets into Γ2ε with jn = 0 in the following way.
Algorithm with reflection. [The current point wn = (rn, 0), rn ∈ Γ2ε]

1 Qnψ̃(π(rn)) is added to the counter
2a With probability p̃(rn), the next point rn+1 = rn − εnγn is reflected back

to Ω \ Γε

2a1 jn+1 takes value 0

2a2 the weight is changed as follows: Qn+1 = Qn · z(rn)
p̃(rn)

2b With probability 1 − p̃(rn), the chain terminates (the trajectory is
absorbed).
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We can take, for example, p̃(r) = z(r) < 1. The considerations from
Subsection 4.1 are still valid, so when the trajectory gets into Γε with jn = 1
it is absorbed, too.

The average number of reflections is of order O(ε−1) for this scheme [Mak01],
therefore the total deterministic error remains of order O(ε).

7 Numerical Results

The total error δT of the statistical methods is equal to the sum of the
deterministic part δd and the statistical one δs. Let M be the number of the
simulated trajectories, then

δT = δd + δs = Cdε+ Cs
σ(ζ)√
M
,

where σ(ζ) is a mean square error of the estimator ζ. We should choose
M ∼ ε−2 according to this equality.

The average number of transitions in a “random walk on spheres” chain
was obtained with the help of the renewal theory (see, e.g., [EM82, ENS89])
for a wide class of boundaries Γ , including those of the convex domains:
EN ∼ | ln(ε)|.

Let us demonstrate the efficiency of the proposed algorithm by estimating
the solution and its gradient for test problem (1) – (2) in the domain Ω =
[−1; 1]3 with the known solution u(r) ≡ u(x, y, z) = x · exp(y) · sin(πz/4) and
the following coefficients:

c(r) = κ2 + sin
(
x− y

z + 2

)
, v(r) = (R(r)/3, 0, 0), κ = 2.12.

The functions g(r) and ψ(s) can be determined explicitly by using u(r),
c(r) and v(r). Table 1 shows the numerical results obtained at the point

Table 1. The total and statistical errors of the estimator ζε,2 from Subsec-
tion 6.2 for the solution u(r0) = −0.26273362 and the gradient gradu(r0) =
(1.05093449,−0.26273362,−0.24943491). The parameter c0 = 4.0.

M ε δT ± σ(ζ)√
M

for u(r0) EN M ε δT ± σ(ζ)√
M

for
∂u

∂x
(r0) EN

105 10−2 (4.973 ± 7.887) · 10−4 10.38 104 10−3 (2.461 ± 0.213) · 10−2 17.80
107 10−3 (2.295 ± 8.006) · 10−5 17.84 106 10−4 (2.059 ± 0.211) · 10−3 25.23

M ε δT ± σ(ζ)√
M

for
∂u

∂y
(r0) EN M ε δT ± σ(ζ)√

M
for

∂u

∂z
(r0) EN

104 10−3 (3.048 ± 0.211) · 10−2 17.80 104 10−3 (5.770 ± 0.203) · 10−2 17.80
106 10−4 (2.970 ± 0.210) · 10−3 25.23 106 10−4 (3.020 ± 0.205) · 10−3 25.23
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r0 = (−0.25, 0.50, 0.88). These numerical results confirm the predicted error
order O(ε+M−1/2). Note that we estimate all the three derivatives using one
set of trajectories (as described in Subsection 6.1).

In conclusion, let us point to the fact that the usage of the operator Dκ in
comparison with the Laplace operator extends a class of solvable problems (1)
by the ones with a large (in absolute value) negative coefficient c(r) that is
close to some constant value κ2.
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Summary. For a fractional Brownian motion BH on [0, 1], we consider approxima-
tions of BH by piecewise polynomial splines. Asymptotics of minimal average error
rates are established and found to be of order k−H , where k is the number of free
knots used in the spline approximation.

1 Main Result

Let H ∈]0, 1[ and let BH be a fractional Brownian motion (fBM) on [0, 1],
i.e., BH is a mean zero Gaussian process with continuous paths such that
BH

0 = 0 and
E (BH

t −BH
s )2 = |t− s|2H .

Note that for H = 1/2, this just boils down to classical Brownian motion. The
approximation and simulation of BH is a field of ongoing study and interest.
Optimal linear approximation schemes were studied in [KL02], [AT03] and
[DZ04]. We will study a certain type of nonlinear approximation; namely, we
will study how well BH can be approximated by random splines with freely
chosen knots. More specifically, denote, for k, r ∈ N0, with Φr

k the set of all
splines on [0, 1] with at most k free knots and polynomial degree r. For any
random process X and k, r ∈ N0, q ∈]0,∞[, p ∈ [1,∞], we set

ek(X, r, q, p) := inf
{
(E ‖X −Xk‖q

Lp
)1/q : Xk has a.s. paths in Φr

k

}
.

In other words, ek(X, r, q, p) measures the q–th moment of the smallest error
(measured in Lp norm) achievable by approximating X with a random spline
from Φr

k. (We restrict to the case of p ≥ 1, e.g. the case where Lp is normed
and not quasi–normed, since we shall rely on the triangle inequality.)

In the following, we are interested in the weak asymptotics of ek(BH , r, q, p)
as k → ∞. For two sequences ak, bk of nonnegative real numbers we write
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ak � bk iff limk ak/bk, and ak � bk iff ak � bk � ak. For H = 1/2, it was
found in [KP05], [CMGR98] that

ek(B1/2, r, q, p) � k−1/2 (1)

for all r, q, p. The aim of this paper is to generalize this result to fractional
Brownian motion:

Theorem 1. Let H, p, q, r be as above, and assume p <∞. Then

ek(BH , r, p, q) � k−H .

Since it is well-known (see, e.g., [Rit00, p. 115, Proposition 34], [KL02],) that
linear approximations already achieve this rate, this shows in particular that
nonlinear spline approximation of fBM is not vastly superior to linear spline
approximation. This is in stark contrast e.g. to piecewise smooth processes
discussed in [CA97], [CDGO02], but also to non-Gaussian Lévy processes. An
intuitive explanation is that not only the increments of BH are stationary
but the local smoothness properties of its paths are rather time-homogenous,
which distinguishes BH from piecewise smooth and from non-Gaussian Lévy
processes.

2 fBM and RLfBM

The main difference between BM and fBM is the independence of increments.
Since this natural property is the main ingredient of the proof for (1), we need
a way to control the “influence of the past” for fBM in an explicit form. The
Riemann–Liouville fractional Brownian Motion, a close relative for the fBM,
is ideally suited for this task. It is easily verified that that for a Brownian
Motion W the stochastic integral

RH
t :=

∫ t

0

(t− s)H−1/2 dWs

is well–defined for every t ≥ 0, and that the resulting process RH = (RH
t )t≥0 is

a continuous Gaussian process. RH is called the Riemann–Liouville fractional
Brownian Motion (RLfBM) and is H-self-similar; i.e., for any c > 0 we have

(RH
ct)t≥0

d= cH(RH
t )t≥0.

The reason we introduce the RLfBM is that this process is at the same
time convenient for analytic study and “close” to the fBM in a suitable way.
Namely, we have the following connection, see [LS05, Chapter 6]:
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Fact 1 It is true that BH
t

d= CH

(
RH

t +MH
t

)
, where

MH
t =
∫ ∞

0

(
(t+ s)H−1/2 − sH−1/2

)
dW̃s

with W̃ an independent copy of W and

CH =
[sin(πH)Γ (1 + 2H)]1/2

Γ ( 1
2 +H)

.

Furthermore, MH has a.s. C∞ paths.

Thus, it is not surprising that approximation problems for fBM frequently
turn out to be equivalent to the same problems for RLfBM. It follows immedi-
ately by considering e.g. piecewise constant interpolation with equidistant knots
that ek(MH , 0,∞, q) ≤ ck−1. Note that adding or subtracting a “smoother”
process doesn’t really matter in approximation issues; to be more precise:

Lemma 1. Assume that ν < σ, that X,Y, Z are processes such that X = Y +Z,
and that ek(Z, r, p, q) � k−σ. Then

lim
k→∞

kνek(X, r, p, q) = lim
k→∞

kνek(Y, r, p, q),

and
lim

k→∞
kνek(X, r, p, q) = lim

k→∞
kνek(Y, r, p, q).

Proof. Fix any ρ ∈ (ν, σ). Define k1 = �kν/ρ� and k2 = k − k1. If q ≥ 1, then,
by triangle inequality,

ek(X, r, p, q) ≤ ek2(Y, r, p, q) + ek1(Z, r, p, q).

Since k−σ
1 = o(k−ν) and k2 ∼ k, this entails

lim
k
kνek(X, r, p, q) ≤ lim

k1
kν
1ek1(Y, r, p, q).

If q < 1, then one proceeds analogously with

ek(X, r, p, q)q ≤ ek2(Y, r, p, q)
q + ek1(Z, r, p, q)

q

and derives
lim

k
kqνek(X, r, p, q)q ≤ lim

k1
kqν
1 ek1(Y, r, p, q)

q.

The remaining inequalities are proved in exactly the same manner. &'
We will provide now an explicit lower bound for the strong asymptotics of

ek(BH , r, p, q) in terms of RLfBM.
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Let Πr denote the space of polynomials of degree at most r. Define the
stopping time

τH,r,p := inf
{
t > 0 : inf

π∈Πr

‖RH − π‖Lp[0,t] > 1
}

and set
CH,r,p := (E τH,r,p)−(H+1/p).

Theorem 2. Let H, p, q, r as above, and assume p <∞. Then CH,r,p > 0 and

lim kHek(BH , r, p, q) ≥ 2−(H+1/p)CH,r,p.

This result yields Theorem 1 (since the proof of the upper bound follows
from the known linear approximation rates [Rit00, p. 115, Proposition 34]).
Moreover, it gives an asymptotical bound independent from q, vanishing as
H → 1 and exploding as H → 0. It is thus a reasonable candidate for a possible
two–sided estimate in strong asymptotics.

3 Increments and Stopping of the RLfBM

The RLfBM does not have stationary or independent increments unless H =
1/2; however, there is a very convenient separation of the influence of the past
(as observed in [LS05]). Let first a > 0 be a fixed number, and define

RH
a,t :=

∫ a+t

a

(a+ t− s)H−1/2 dWs =
∫ t

0

(t− r)H−1/2 d(Wa+r −Wa)

as well as
Sa,t := RH

a+t −RH
a,t =

∫ a

0

(a+ t− s)H−1/2 dWs.

Denote the canonical augmentation of the natural filtration of W by F =
(Ft)t≥0. Then it is easy to see that RH

a,t is a RLfBM independent of Fa and
that Sa,t is Fa–measurable for all t (see [LS05, p. 733]).

We need a generalization of this. For a finite stopping time τ with respect
to F , we denote

Fτ :=
{
A : ∀ t ≥ 0 : A ∩ {τ ≤ t} ∈ Ft

}
the σ-algebra of events determined prior to τ . Recall also that for a family
(ξi)i∈I of random variables σ(ξi : i ∈ I) is the smallest of all σ-algebras A
such that all ξi are measurable w.r.t. A.

Lemma 2. For any fixed t, the process (RH
a,t)a≥0 is progressively (Fa+t)a≥0

– measurable, and

RH
τ,t =

∫ t

0

(t− r)H−1/2 d(Wr+τ −Wτ ) , a.s.. (2)
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In particular, σ(RH
τ,s : s ≥ 0) ⊆ σ(Ws+τ −Wτ : s ≥ 0). Further, for any fixed t,

the process (Sa,t)a≥0 is progressively (Fa)a≥0–measurable. In particular, Sτ,t

is Fτ–measurable and consequently independent of σ(RH
τ,s : s ≥ 0).

Proof. Fix t ≥ 0. Then Sa,t is even continuous in a, and consequently, RH
a,t is

as well. Since RH
a,t is measurable w.r.t. Fa+t, and Sa,t w.r.t. Fa, it follows that

both are progressively measurable w.r.t. to Fa+t, resp. Fa (see, e.g., [KS91,
Proposition 1.1.13]). This entails immediately that Sτ,t is Fτ–measurable
([KS91, Proposition 1.2.18]). Equation (2) is easily verified if τ attains only a
finite number of values, and the general case follows by standard approximation
arguments. &'

We recall now some notation and facts from [CMGR98]. Let f ∈ C[0,∞[,
p ∈ [1,∞] fixed, and 0 < u < v. Define

δ[u,v](f) := inf
π∈Πr

‖f − π‖Lp[u,v],

and set, for ε > 0, inductively τ0,ε(f) = 0 and

τj,ε(f) = inf{t > τj−1,ε(f) : δ[τj−1,ε(f),t](f) > ε}.

Lemma 3. We have 0 < CH,r,p <∞.

Proof. Note that CH,r,p = (E τ1,1(RH))−(H+1/p). Let us remark that τ1,1(RH)>
t entails δ[0,t](RH) ≤ 1; consequently, by the H-self-similarity, we derive that

P (τ1,1(RH) > t) ≤ P (δ[0,t](RH) ≤ 1) = P (δ[0,1](RH) ≤ t−(H+1/p)). (3)

Next, the following estimate is true (see Proposition 16 in [CMGR98]).

Fact 2 Let X be a centered Gaussian random vector taking values in a normed
space (E, ‖ · ‖) and let Π be an r-dimensional subspace of E. Then

P

(
inf

π∈Π
‖X − π‖ ≤ ε

)
≤ (4λ/ε)r · P (‖X‖ ≤ 2ε) + P (‖X‖ ≥ λ− ε)

for all λ ≥ ε > 0.

We use this fact with X = RH , E = Lp[0, 1], and Π = Πr. It is known that

− log P (‖RH‖Lp[0,1] ≤ ε) � ε−1/H ; as ε→ 0,

see e.g.[LS05], and

− log P (‖RH‖Lp[0,1] ≥ λ) � λ2; as λ→ ∞
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(the general rate of Gaussian large deviations, see [Lif95]). By choosing, say,
λ = ε−1/H and combining three estimates one derives that

− log P (δ[0,1](RH) ≤ ε) � ε−H .

From (3) we infer that

P (τ1,1(RH) > t) = o(exp(−ct))
and hence 0 < E τ1,1(RH) <∞. &'

For k ∈ N given, we now define

γk(f) = inf{ε > 0 : τk,ε(f) ≥ 1}.
The intuition suggests that on each of the k intervals [τi,γk

(f), τi+1,γk
(f)]

dissecting [0, 1], f can be approximated by a polynomial with the same Lp-
error γk, and hence k1/p · γk(f) is a reasonable guess for a ’close-to-optimal’
error estimate. Indeed, one can show ([CMGR98, Proposition 5]):

Proposition 1. Let X be a process such that for all k,

sup
ε>0
τk,ε(X) = ∞, inf

ε>0
τk,ε(X) = 0 , a.s.. (4)

Then we have for p = ∞ that

ek(X, r, p, q) =
(
E γq

k(X)
)1/q

.

For p <∞, we still have

k1/p
(
E γq

2k(X)
)1/q

≤ ek(X, r, p, q) ≤ k1/p
(
E γq

k(X)
)1/q

.

It is straightforward to prove that RH satisfies (4); consequently, for proving
Theorem 2 it is sufficient to determine lower bounds for the asymptotics of
E γk(RH)q as k → ∞. However,

P (γk(RH) ≥ ε) = P (τk,ε(RH) ≤ 1)

= P (ε(H+1/p)−1
τk,1(RH) ≤ 1) = P ((τk,1)−(H+1/p)(RH) ≥ ε)

by the H-self-similarity. In other words, γk(RH) d= τ−ρ
k,1 (RH) with ρ = H+1/p.

In particular,
E γq

k(RH) = E τ−qρ
k,1 (RH). (5)

Let us shorten τk = τk,1(RH). We are thus interested in a lower bound for

E τ−qρ
k =

∫ ∞

0

P (τk < ε−1/ρq)dε.

We shall go on by using stochastic domination. Recall that a positive
random variable X is said to stochastically dominate another one, Y , in short
Y " X, iff P (Y ≥ t) ≤ P (X ≥ t) for all t > 0.

The following lemma is simple yet crucial for our progress.
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Lemma 4. Assume that X,Y, Z are positive random variables such that
P (X ≥ t|Z) ≥ P (Y ≥ t|Z) a.s.. Then Y + Z " X + Z.

Proof.

P (Y + Z ≥ t) =
∫ ∞

0

P (Y ≥ t− s|Z = s) dPZ(s)

≤
∫ ∞

0

P (X ≥ t− s|Z = s) dPZ(s) = P (X + Z ≥ t). &'

Proposition 2. Let R(i) be a sequence of independent RLfBM and η(i) =
τ1(R(i)). Then

τk(RH) "
∑
i≤k

η(i).

In particular,

E τk(RH)−ρq ≥ E
(∑

i≤k

η(i)
)−ρq

.

Proof. We shall prove by backward induction on j = k, . . . , 0 that

τk " τj +
∑

j<i≤k

η(i). (6)

The induction step is done if we can show

τj +
∑

j<i≤k

η(i) " τj−1 + η(j) +
∑

j<i≤k

η(i). (7)

We wish to apply Lemma 4; set Z = τj−1 +
∑

j<i≤k η
(i), Y = (τj − τj−1) and

X = η(j). Then (7) can be rewritten as Y + Z " X + Z. Thus, once we have
proven that, with A = σ(Z),

P (X ≥ t|A) ≥ P (Y ≥ t|A) a.s., (8)

the claim (7) and thus (6) follows, and thus the Proposition is proven. So let
us turn to the proof of (8). Recall that Πr denotes the space of polynomials
of degree at most r; we also denote Lp/Πr[a, b] the quotient space of Lp[a, b]
after the polynomials and QΠr

the corresponding canonical quotient mapping.
We have

d(x,Πr) := inf
π∈Πr

‖x− π‖Lp[a,b] =
∥∥QΠr

(x)
∥∥

Lp/Πr[a,b]

for any x ∈ Lp. Next recall that (due to the continuity of δ in time)

Y < t ⇔ ∥∥QΠr
RH
∥∥

Lp/Πr[τj−1,τj−1+t]
> 1.

However,
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∥∥QΠr
RH
∥∥

Lp/Πr[τj−1,τj−1+t]
= inf

π∈Πr

(∫ t

0

|RH
τj−1+s − π(s)|pds

)1/p

=
∥∥QΠr

(RH
τj−1,· + Sτj−1,·)

∥∥
Lp/Πr[0,t]

.

In what follows, we will need a version of the Anderson inequality. Recall that
this inequality ([Lif95, p. 135, Theorem 9]) yields:

Fact 3 If U is a centered Gaussian element of a Banach space E, and V is
independent of U , then

P (‖U + V ‖ > s) ≥ P (‖U‖ > s) , ∀s ≥ 0.

We shall need a slightly generalized version:

Proposition 3. Let U be a centered Gaussian element of a Banach space E,
V independent of U , and A a σ-algebra independent of U . Then

P (‖U + V ‖ > s|A) ≥ P (‖U‖ > s), a.s., ∀s ≥ 0.

Proof. Without loss of generality, we can assume that the underlying probabil-
ity space is in convenient product form, i.e., Ω = Ω1 ×Ω2, P = P 1 × P 2 with
U(ω1, ω2) = U(ω1), V (ω1, ω2) = V (ω2) and A = Ω1 × Ã. We consider some
A = Ω1 × Ã ∈ A and have, using the original Anderson inequality,∫

A

1‖U+V ‖>s dP (ω) =
∫

Ã

(∫
Ω1

1‖U(ω1)+V (ω2)‖>s dP 1(ω1)
)

dP 2(ω2)

=
∫

Ã

P 1(‖U + V (ω2)‖ > s) dP 2(ω2)

≥
∫

Ã

P 1(‖U‖ > s) dP 2(ω2)

=
∫

A

1‖U‖>s dP (ω).

But this entails our claim. &'
Back to the proof of Proposition 2. Recall (Lemma 2) that QΠr

RH
τj−1,· is a

centered Gaussian process independent of σ(Ws∧τj−1 : s ≤ τj−1) and conse-
quently of A; since it is also independent of Sτj−1,·, we may apply Proposition
3 to derive

P (Y < t|A) = P (
∥∥QΠr

(RH
τj−1,·) +QΠr

(Sτj−1,·)
∥∥

Lp/Πr[0,t]
> 1|A)

≥ P (
∥∥QΠr

(RH
τj−1,·)

∥∥
Lp/Πr[0,t]

> 1).

Now we turn the table around:∥∥QΠr
(RH

τj−1,·)
∥∥

Lp/Πr[0,t]
> 1 ⇔ τ1(RH

τj−1,·) < t,
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hence

P (Y < t|A) ≥ P (τ1(RH
τj−1,·) < t) = P (η(j) < t|A) = P (X < t|A).

(Here we used that RH
τj−1,· is again a RLfBM and the independence of η(j).)

We have found that (8) is indeed correct, which was all what remained to do
for proving Proposition 2. &'

We now finish the proof of Theorem 2. Recall the last necessary ingredient,
a result about sums of independent variables, see [CMGR98, Proposition 15].

Fact 4 Let (ξi)i∈N be an i.i.d. sequence of non-negative random variables. Put

Sk = 1/k ·
k∑

i=1

ξi.

Then for every α > 0,

lim
k→∞

E (S−α
k ) ≥ (E (ξ1))−α.

By applying this fact with α = qρ and ξi = η(i), we obtain

lim
k→∞

kqρ · E
(∑

i≤k

η(i)
)−qρ

≥ Cq
H,r,p . (9)

By combining Proposition 1, identity (5), Proposition 2, and inequality (9) we
obtain

lim
k→∞

kqHek(RH , r, p, q)q ≥ lim
k→∞

kqρE γq
2k

= lim
k→∞

kqρE τ−qρ
2k (RH)

≥ 2−qρ lim
k→∞

(2k)qρ · E
(∑

i≤2k

η(i)
)−qρ

≥ 2−qρCq
H,r,p.

By Lemma 1, we get

lim
k→∞

kHek(BH , r, p, q) ≥ 2−ρCH,r,p ,

as claimed in Theorem 2. &'
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Summary. Rank-1 lattices are available in any dimension for any number of lattice
points and because their generation is so efficient, they often are used in quasi-Monte
Carlo methods. Applying the Fourier transform to functions sampled on rank-1
lattice points turns out to be simple and efficient if the number of lattice points is a
power of two. Considering the Voronoi diagram of a rank-1 lattice as a partition of
the simulation domain and its dual, the Delauney tessellation, as a mesh for display
and interpolation, rank-1 lattices are an interesting alternative to tensor product
lattices. Instead of classical criteria, we investigate lattices selected by maximized
minimum distance, because then the Delauney tessellation becomes as equilateral as
possible. Similar arguments apply for the selection of the wave vectors. We explore
the use of rank-1 lattices for the examples of stochastic field synthesis and a simple
fluid solver with periodic boundary conditions.

1 Introduction

Many simulations are evaluated on Cartesian tensor product lattice structures
although their sampling efficiency is not optimal [PM62]. Rank-1 lattices allow
for a better sampling efficiency when selected carefully. We develop and review
the basic tools like meshing, fast Fourier transform, lattice cell access, and
interpolation for simulation on rank-1 lattices. In addition we give insight how
to choose suitable rank-1 lattice parameters. We illustrate our new techniques
for generating ocean waves as stochastic field and a simple fluid dynamics
simulation. The most prominent example is the simulation of the ocean surface
[AR86, Tes00] by random fields as used in the movies Titanic, Waterworld, or
The Devil’s Advocate [Ent]. The same principle has been applied to modeling of
turbulent wind fields and various other phenomena [SF91, SF93, Sta95, Sta97].
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2 Rank-1 Lattices

A discrete subset of Rs that contains Zs and is closed under addition and
subtraction is called a lattice [SJ94]. Rank-1 lattices

Ln,g :=
{
l

n
g +∆ : ∆ ∈ Zs; l = 0, . . . , n− 1

}
are defined by using only one suitable generator vector g ∈ Ns for a fixed
number n ∈ N. Often it is more useful to consider their restriction

Ln,g ∩ [0, 1)s =
{
xl :=

l

n
g mod 1 : l = 0, . . . , n− 1

}
to the s-dimensional unit torus [0, 1)s (see the example in Figure 1). A notable
advantage of rank-1 lattices over tensor product lattices is that they exist for
any number n of points in any dimension s.

An s×s matrix V is called basis of the lattice Ln,g, if Ln,g = {x = V l : l ∈
Zs}. Of all possible bases the Minkowski-reduced bases [AEVZ02] are the most
useful for our purpose. Such a basis contains the s shortest linearly independent
vectors and can be found by a computer search over all n points xl using
their shortest distance to the origin on the unit torus. These vectors actually
describe the Delauney tessellation and can be used for accessing neighboring
lattice points.

1

1

Fig. 1. Illustration of the geometry of rank-1 lattices for an example in s = 2
dimensions with n = 32 points and the generator vector g =

(
1
7

)
(see the solid arrow

from the origin). The solid lines depict the Voronoi diagram. Each cell is generated
by a lattice point and contains the points of the unit torus, which are closer to this
lattice point than to any other. In addition the lattice points are the centroids of
the Voronoi cells. The dashed lines represent the dual graph, which is the Delauney
tessellation.
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2.1 Fast Fourier Transform

The fast Fourier transform is a versatile tool in simulation. Usually the trans-
form has to be performed for each coordinate once. Instead of the standard
tensor product algorithm, rank-1 lattices in s dimensions allow for transforming
the data using only the one-dimensional Fourier transform [LH03], which is
simpler to implement and a little bit more efficient for the same number of
lattice points.

For this purpose the set Kn := {k0, . . . ,kn−1} ⊂ Zs of wave vectors has to
be selected such that each wave vector

kj ∈ Zj := {k ∈ Zs : k · g ≡ j (mod n)}, (1)

where g is the generator vector of the rank-1 lattice Ln,g under consideration.
Hence,

kj · xl = kj · l
n
g = (j + rjn)

l

n
=
jl

n
+ rj l

for some integer rj ∈ Z. Given Fourier coefficients f̂(kj), synthesizing a function
f on the lattice Ln,g by

f(xl) =
n−1∑
j=0

f̂(kj)e2πikj ·xl =
n−1∑
j=0

f̂(kj)e2πi( jl
n +rj l) =

n−1∑
j=0

f̂(kj)e2πi jl
n (2)

in fact turns out to be a one-dimensional finite Fourier series independent of
the dimension s, because rj l is integer and therefore e2πirj l = 1.

For n being a power of two, the fast inverse Fourier transform can synthesize
the function in all lattice points most efficiently. Given a function f(xl) the
fast Fourier transform can be used for the analysis, too:

f̂(kj) =
1
n

n−1∑
l=0

f(xl)e−2πi jl
n .

2.2 Choosing the Wave Vectors

There are infinitly many choices of wave vectors as defined by the sets Zj in
equation (1). Understanding the connection between the wave vectors and the
structure of a rank-1 lattice helps to choose the best wave vectors for a given
problem and provides a way to construct these wave vectors.

The dual lattice

L⊥
n,g := {k ∈ Zs : k · g ≡ 0 (mod n)} = Z0

of a rank-1 lattice Ln,g has the basis U = (V −1)T . Now the set Kn of wave
vectors is U periodic [PM62], i.e. it has the property that the sets
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K ′
n := Kn + U l l ∈ Zs

are valid sets of n wave vectors with K ′
n ∩Kn = ∅ as well. Consequently, any

tile that results in a monohedral tiling of Zs (see the illustration in Figure 2)
with periodicity U can be used as a set of wave vectors [LH03].

Once such a tiling is chosen all integer vectors in the interior of one cell are
the wave vectors. Note that the choice of the tiling is arbitrary and the elements
of a single tile are not necessarily connected. However, one can use known
spectral properties of the function that should be synthesized or analyzed. If no
spectral properties are known a reasonable assumption for practical problems is
an isotropic spectrum (i.e. no preferred direction) and that low frequencies are
most important. This results in choosing the wave vectors in the fundamental
(i.e. including the origin) Voronoi cell of L⊥

n,g, which is illustrated in Figure 3.

Fig. 2. Examples of monohedral tilings of the 2-dimensional plane with the dual
lattice and its basis. The arrows show the Minkowski-reduced basis vectors.

Fig. 3. Dual lattice (circles) of a rank-1 lattice with n = 256 and g =
(

1
30

)
. The set

of wave vectors Kn (solid disks) in the fundamental Voronoi cell is highlighted.
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1

1

rect. lattice
η = 78.5%

1

1

g =
(

1
42

)
η = 46.3%

1

1

g =
(

1
67

)
η = 56.7%

1

1

g =
(

1
89

)
η = 69.8%

1

1

g =
(

1
33

)
η = 87.3%

1

1

hex. lattice
η = 90.7%

Fig. 4. Sampling efficiency η of different lattices with n = 144. Note that the Fibnacci
lattice with g =

(
1
89

)
is not the best choice with respect to sampling efficiency.

The above assumptions also provide a criterion for choosing the generator
vector g of the rank-1 lattice: Choose g so that the in-circle of the fundamental
Voronoi cell of the dual lattice is maximized. This is equivalent to maximizing
the sampling efficiency

η :=
R

P

as defined by Petersen [PM62], where R is the volume of the in-circle of
the Voronoi region and P is the volume of the fundamental Voronoi cell.
The sampling efficiency measures how many of the important frequencies are
actually captured by sampling with a given lattice.

For rank-1 lattices this ratio can be maximized by choosing the generator
vector such that the minimal distance between any two points of the dual
lattice is maximized. Figure 4 shows the Voronoi diagrams of different rank-1
lattices, where a Cartesian tensor product and hexagonal lattice are shown
for comparison. The hexagonal lattice is optimal with respect to the sampling
efficiency in two dimensions and maximizing the minimum distance in a rank-1
lattice yields a good approximation. With increasing number of points the
sampling efficiency of rank-1 lattices approaches the sampling efficiency of the
hexagonal lattice.

Of course, if other spectral properties are known the rank-1 lattice search
can be adapted for a better approximation of this kind of functions.

3 Applications in Computer Graphics

We illustrate the idea of simulation on rank-1 lattices by implementing two
examples from the domain of computer graphics and animation in the new
framework.

3.1 Spectral Synthesis of Ocean Waves

Along the method used by Tessendorf [Tes00], a periodic ocean tile (see
Figure 5) is realized as a stochastic field using Fourier synthesis on a rank-1
lattice. Using the Fourier coefficients
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Low resolution mesh

Low resolution shaded mesh
n = 1024,g =

(
1

271

)

High resolution shaded mesh
n = 16384,g =

(
1

1435

)

Fig. 5. Left: Synthesized periodic 50m×50m tiles in two resolutions. Right: Modeling
a larger piece of the ocean by tiling the periodic patches.

ĥ(k, t) := ĥ0(k)eiω(k)t + ĥ∗0(−k)e−iω(k)t

the height field

h(xl, t) :=
n−1∑
j=0

ĥ(kj , t)e2πi jl
n

becomes periodic in time t and real. For deep water the speed of a wave is
given by the dispersion relation ω(k) =

√
g‖k‖, where g is the gravitational

constant. Based on observations from oceanography waves can be modeled
statistically independent and normally distributed. Therefore, the amplitudes

ĥ0(k) :=
1√
2
(ξr + iξi)

√
Ph(k)

are realized using Gaussian random numbers ξr and ξi modulated by a spectrum.
Out of many alternatives we chose the Phillips spectrum

Ph(k) := A
e
− 1

(‖k‖L)2

k4
|k · w|2

A Phillips constant
L = v2

g Largest wave for windspeed v
w wind direction

which considers parameters like wind speed and direction. For the sake of
completeness we mention that the gradient vector of the height field can be
computed using the Fourier transform as well. This yields more precise normals
for shading as those computed by finite differences.
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Implementation

The synthesis of stochastic fields on rank-1 lattices consists of the following
choices and decisions:

Number n of lattice points: Although rank-1 lattices exist for any number
of points in any dimension, the fast Fourier transform is most efficient for
n being a power of 2.

Generator vector g: In order to maximize the sampling efficiency we select
a generator g that maximizes the minimum distance of the dual lattice.
If the generator vector has Korobov form, i.e. g = (1, a, a2, a3, . . .), the
spectral test [Knu77] can be used to efficiently compute the minimum
distance for each candidate a. While not true in general, for dimension
s = 2 and n as a power of 2, one of the two components of the generator
vector g =

(
a1
a2

)
has to be odd (w.l.o.g. gcd(a1, n) = 1). Otherwise points

would coincide resulting in an obviously useless minimum distance of 0.
Then for every j with gcd(j, n) = 1 every vector xj = jg mod n is a
generator vector of the same lattice (generator of the cyclic group), too,
and there must exist an l ∈ {1, 3, 5, . . . , n − 1} with xl =

(
1
a

)
. Thus a

generator vector in Korobov form exists that obtains maximized minimum
distance and the spectral test can be used. A list of all parameters for
2-dimensional maximized minimum distance rank-1 lattices is found in
Table 1.

Basis V: V is determined as a Minkowski-reduced basis, which defines the
Delauney triangulation that is used as the triangle mesh. Table 1 lists
these basis vectors, however, multiplied by n. Given a generator vector in
Korobov form, the first coordinate of each of these integer basis vectors
is the increment or decrement to find the index of a neighboring lattice
point.

Wave vectors Kn: We enumerate all wave vectors in a conservative bound-
ing box of the fundamental Voronoi cell of the dual lattice and select the
shortest ones. As a simple conservative convex hull we chose the axis-
aligned bounding box determined by the direct lattice point neighbors of
the origin. A much more involved approach is to compute the fundamental
Voronoi cell in the dual lattice and rasterize it on the integer lattice.

3.2 Stable Simulation of Fluids

The stable fluids algorithm by Stam [Sta99] is a practical way of simulating
incompressible fluids for animation. Note that the algorithm focuses on realtime
simulation rather than on precision. The simulation is based on the Navier-
Stokes equations

div v = 0 (3)
∂v

∂t
= −(v · ∇)v + ν∆v + f (4)
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i n = 2i generator g basis vectors V = (v1v2)
2 4 (1, 2) (2, 0), (1, 2)
3 8 (1, 3) (2, -2), (1, 3)

(1, 5) (2, 2), (1, -3)
4 16 (1, 4) (4, 0), (1, 4)

(1, 12) (4, 0), (1, -4)
5 32 (1, 7) (4, -4), (5, 3)

(1, 9) (4, 4), (3, -5)
(1, 23) (4, -4), (3, 5)
(1, 25) (4, 4), (5, -3)

6 64 (1, 28) (7, 4), (2, -8)
(1, 36) (7, -4), (2, 8)

7 128 (1, 12) (11, 4), (1, 12)
(1, 116) (11, -4), (1, -12)

8 256 (1, 30) (9, 14), (17, -2)
(1, 226) (9, -14), (17, 2)

9 512 (1, 200) (18, 16), (23, -8)
(1, 312) (18, -16), (23, 8)

10 1024 (1, 271) (34, -2), (15, -31)
(1, 495) (2, -34), (31, -15)
(1, 529) (2, 34), (31, 15)
(1, 753) (34, 2), (15, 31)

11 2048 (1, 592) (45, 16), (7, 48)
(1, 1456) (45, -16), (7, -48)

12 4096 (1, 70) (59, 34), (58, -36)
(1, 4026) (59, -34), (58, 36)

13 8192 (1, 1530) (91, -34), (75, 62)
(1, 6662) (91, 34), (75, -62)

14 16384 (1, 1435) (57, -125), (137, -13)
(1, 6291) (125, -57), (13, -137)
(1, 10093) (125, 57), (13, 137)
(1, 14949) (57, 125), (137, 13)

15 32768 (1, 15936) (183, -64), (146, 128)
(1, 16832) (183, 64), (146, -128)

16 65536 (1, 25962) (260, -88), (53, -270)
(1, 39574) (260, 88), (53, 270)

17 131072 (1, 49531) (172, -348), (217, 323)
(1, 62899) (348, -172), (323, 217)
(1, 68173) (348, 172), (323, -217)
(1, 81541) (172, 348), (217, -323)

18 262144 (1, 1990) (527, 154), (395, -382)
(1, 260154) (527, -154), (395, 382)

19 524288 (1, 86592) (775, -64), (442, 640)
(1, 437696) (775, 64), (442, -640)

20 1048576 (1, 195638) (134, 1092), (879, -662)
(1, 852938) (134, -1092), (879, 662)

21 2097152 (1, 193293) (1226, -958), (217, 1541)
(1, 715835) (958, 1226), (1541, -217)
(1, 1381317) (958, -1226), (1541, 217)
(1, 1903859) (1226, 958), (217, -1541)

22 4194304 (1, 1120786) (363, -2170), (1699, 1398)
(1, 3073518) (363, 2170), (1699, -1398)

23 8388608 (1, 1671221) (1807, -2533), (3097, 301)
(1, 3288547) (2533, 1807), (301, -3097)
(1, 5100061) (2533, -1807), (301, 3097)
(1, 6717387) (1807, 2533), (3097, -301)

24 16777216 (1, 7605516) (2903, -3308), (1414, 4168)
(1, 9171700) (2903, 3308), (1414, -4168)

25 33554432 (1, 1905545) (405, -6211), (5582, -2754)
(1, 14462279) (6211, 405), (2754, 5582)
(1, 19092153) (6211, -405), (2754, -5582)
(1, 31648887) (405, 6211), (5582, 2754)

26 67108864 (1, 22282116) (6391, -6052), (8436, 2512)
(1, 44826748) (6391, 6052), (8436, -2512)

27 134217728 (1, 58928436) (9147, 8444), (2740, -12144)
(1, 75289292) (9147, -8444), (2740, 12144)

28 268435456 (1, 86198508) (682, 17592), (15577, 8204)
(1, 182236948) (682, -17592), (15577, -8204)

29 536870912 (1, 8370742) (11737, 21958), (24885, 814)
(1, 528500170) (11737, -21958), (24885, -814)

30 1073741824 (1, 78999493) (10221, -33695), (24071, 25699)
(1, 284281075) (33695, 10221), (25699, -24071)
(1, 789460749) (33695, -10221), (25699, 24071)
(1, 994742331) (10221, 33695), (24071, -25699)

31 2147483648 (1, 940574718) (38453, 31638), (8176, -49120)
(1, 1206908930) (38453, -31638), (8176, 49120)

Table 1. Parameters of all maximized minimum distance lattices in two dimensions
with n = 2i points for i = 2, . . . , 31. Note that the basis vectors are given in integer
precision and have to be divided by the number of lattice points.
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for incompressible fluids, where v is the velocity field, ν the viscosity, and f
are the external forces. The solution strategy is to simulate equation (4) and
remove the divergence (3) at the end of each time step by using a projection
based on the Helmholtz-Hodge decomposition w = v+∇q, which states that a
vector field w can be decomposed into a divergence free part v and the gradient
of a scalar field q. The velocity field for the next time step t+∆t is computed
in four steps [Sta99]:

1. The external forces are added: v1(xl) := v(xl) +∆t · f(xl)
2. The advection is computed by tracing back a particle back in time starting

from point xl according to the velocity field. The position p(xl,−∆t) is
computed by dividing the time step ∆t into smaller time steps and per-
forming the Euler rule for each of the small time steps (see the illustration).
The velocities v2(xl) := v1(p(xl,−∆t)) are linearly interpolated using the
closest lattice points. Due to linear interpolation the method is named
stable, because the computed velocities never can exceed the old ones in
magnitude.

3. The diffusion by the Laplace operator is efficiently computed as low pass
filter in the Fourier domain. The Fourier coefficients are computed by

v̂2(kj) :=
n−1∑
l=0

v2(xl)e−2πi jl
n

and filtered

v̂3(kj) :=
v̂2(kj)

1 + ν∆t · (kj · kj)
.

4. The divergence is removed using the projection

v̂4(kj) := v̂3(kj) − (kj · v̂3(kj))kj

(kj · kj)

and the velocity field at time step t+∆t is synthesized by

v4(xl) :=
n−1∑
j=0

v̂4(kj)e2πi jl
n .
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Fig. 6. Left: The four images are subsequent snapshots of the stable fluid simulation
on a rank-1 lattice. The arrows indicate the external forces applied to the periodic
fluid. The fluid transports the background image and the effects of advection and
diffusion, i.e. blur, are clearly visible. Right: Snapshot of a wind field simulation in
three dimensions for the lattice L32768,g with g = (1, 10871, 108712), where smoke is
transported in a velocity field.

Implementation

The stable fluids scheme has been implemented for two- and three-dimensional
velocity fields as illustrated in Figure 6. The Fourier transformation techniques
are the same as in the previous application example, except that they have to
be performed for each component of the vector fields.

For linear interpolation (as required in step 2 of the algorithm) on a rank-1
lattice, the Minkowski-reduced basis V is used to access neighboring lattice
points.

Scaling all lattice points by n results in integer coordinates for all xl and the
basis V .

Frame: Representing the velocity field v in the basis V avoids a transforma-
tion during interpolation. In this case external forces usually have to be
transformed into the basis V .

Accessing lattice cells: The backtracking step requires to compute the in-
dex of a lattice cell containing a given point, which is simple if the lattice
is given in Korobov form: Multiplying the basis matrix V by the integer
parts of the coordinates of the point modulo n yields a lattice point in
Cartesian coordinates. Obviously the first component is the lattice point
or cell index. Neighboring lattice points for interpolation now are found as
described in the previous example.
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4 Conclusion

Spectral synthesis and simulation on rank-1 lattices can be implemented
efficiently. Independent of the dimension s only a one dimensional Fourier
transform is needed. Additionally the approximation can be more accurate
than on a tensor product lattice [LH03, KSW04, DKKS]. It is also notable that
the isotropic measure of maximized minimum distance can replace the classical
measures like e.g. discrepancy (see the sampling efficiency of the Fibonacci
lattice in Figure 4) often used in connection with rank-1 lattices. This measure
also provides best visual quality.

In the future we like to extend our ideas to hierarchical approaches using
lattice sequences and explore optimizations for anisotropic spectra. Moreover
we will explore non-periodic boundaries.
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Summary. Considering uniform points for sampling, rank-1 lattices provide the
simplest generation algorithm. Compared to classical tensor product lattices or
random samples, their geometry allows for a higher sampling efficiency. These
considerations result in a proof that for periodic Lipschitz continuous functions,
rank-1 lattices with maximized minimum distance perform best. This result is then
investigated in the context of image synthesis, where we study anti-aliasing by rank-1
lattices and using the geometry of rank-1 lattices for sensor and display layouts.

1 Introduction

Image synthesis can be considered as an integro-approximation problem

I(k, l) :=
∫

Is

f(x, k, l)dx ≈ 1
n

n−1∑
i=0

f(xi, k, l), (1)

where the two-dimensional image function I(k, l) is given by a parametric
integral. Since usually analytic solutions are hardly accessible, we are interested
in efficient numerical schemes to approximate the image function. Thinking of
(k, l) as pixel coordinates on the screen, the above algorithm simultaneously
computes a color for each pixel on the screen by averaging samples of the
integrand at positions xi. We consider two important aspects:

Sampling: In computer graphics the accumulation buffer [HA90] along with
several extensions and improvements [Kel97, KH01, SIP06] is the most
efficient implementation of integro-approximation as it can take advantage
of the vast performance of rasterization hardware. In the original article
[HA90] sampling points xi generated by Lloyd relaxation were found to
perform best. This implies that sampling points should have maximized
minimum distance.
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Display: Modern displays use either rectangular or hexagonal arrangements
of pixels. Again, due to a larger minimum distance hexagonal arrange-
ments expose a much better visual quality than rectangular arrangements,
nevertheless, image synthesis is currently still dominated by the first.

As we will show in the following, rank-1 lattices selected by maximized minimum
distance approximate hexagonal lattices. However, rank-1 lattices are simpler
to generate and exist for any number of points in any dimension. We investigate
the application of such lattices in two dimensions for anti-aliasing and display
and sensor technology.

2 Geometry of Rank-1 Lattices

A lattice L is a discrete subset of Rs which is closed under addition and
subtraction. Given an s-dimensional lattice basis {b1, . . . ,bs}, the lattice can
be generated by all integer linear combinations

L(b1, . . . ,bs) :=

⎧⎨⎩
s∑

j=1

λjbj : λ1, . . . , λs ∈ Z

⎫⎬⎭. (2)

Of all possible bases the Minkowski-reduced bases, which contain the s shortest
linearly independent vectors of L [AEVZ02], are the most useful for our
purpose.

Instead of using s basis vectors the points xi of a rank-1 lattice
[Nie92b, SJ94]

Ln,g :=
{
xi :=

i

n
g mod 1 : i = 0, . . . , n− 1

}
in the unit cube are easily generated by using only one suitable generator
vector g ∈ Ns for a fixed number n ∈ N of points. Korobov lattices Ln,a are
a special class of rank-1 lattices. Their generator vector has the form g =
(1, a, a2, . . . , as−1). The Fibonacci lattices are an instance of a two-dimensional
Korobov lattice. Based on the Fibonacci sequence Fk := Fk−1 + Fk−2 with
F2 := F1 := 1, the number of points is set to n = Fk, k ≥ 2 and the generator
vector is defined as g = (1, Fk−1). Figure 1 shows a Fibonacci lattice in the unit
square with n = F9 = 34 points and the generator vector g = (1, F8) = (1, 21).

The generator vector g of a rank-1 lattice can be chosen such that the
resulting point set is of low discrepancy [SJ94]. Then the elements of this point
set are called good lattice points. But only very few explicit constructions for
good lattice points exist. Similar to the Fibonacci lattices Niederreiter and
Borosh [BN83, Nie86] showed that good two-dimensional lattice points can be
explicitly constructed for n being a power of two.

Obviously the quality of rank-1 lattices is significantly influenced by their
integer generator vector g. For lattices in Korobov form the search is reduced
to only one parameter a.
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Fig. 1. The n = 34 points of the Fibonacci lattice L34,21 with generator vector
g = (1, 21).

2.1 Shifted Rank-1 Lattices

Considering shifted rank-1 lattices

L∆
n,g :=

{
xi :=

i

n
g + ∆ mod 1 : ∆ ∈ Rs; i = 0, . . . , n− 1

}
there exists a trivial, but nevertheless interesting connection to (t,m, s)−nets
in basis b [Nie92b].

(0, 2, 2)-nets in base b only exhibit three kinds of elementary intervals[ i
b
,
i+ 1
b

)
×
[j
b
,
j + 1
b

)
for 0 ≤ i, j < b,[ i

b2
,
i+ 1
b2

)
×
[
0, 1
)

for 0 ≤ i < b, and[
0, 1
)

×
[ i
b2
,
i+ 1
b2

)
for 0 ≤ i < b,

whereof each must contain exactly one of the n = b2 points of the shifted
rank-1 lattice due to t = 0. The latter two kinds of intervals guarantee perfect
one-dimensional projections. Independent of the shift ∆, this is obtained by
requiring gcd(n, gi) = 1, i ∈ {1, . . . , s}. Possible shift coordinates are given by
the one-dimensional projections of the lattice points. It is sufficient to search
shifts in only one of the elementary intervals, such that the t = 0 condition is
fulfilled. An illustration for L∆

25,7 with ∆ = ( 2
25 ,

2
25 ) is found in Figure 2 and

further parameters are listed in Table 1.
Like (0, 2, 2)−nets the resulting lattices share both the properties of jittered

grid and Latin hypercube samples but can be computed faster due to a simpler
algorithm.

2.2 Maximized Minimum Distance Rank-1 Lattices

In computer graphics sampling patterns with blue noise spectral properties are
used in analogy to the principle of maximized minimum distance apparent in
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1

1

Fig. 2. Example of a shifted rank-1 lat-
tice L∆

25,7 with ∆ = ( 2
25

, 2
25

) that is a
(0, 2, 2)-net in basis b = 5.

b n = b2 a n · ∆ ∈ [0, b)2]

2 4 1 (1, 0)

3 9 2 (1, 1)

5 25 7 (2, 2)

7 49 6 (5, 1)

11 121 36 (5, 5)

13 169 70 (6, 6)

17 289 80 (2, 4)

19 361 100 (14, 15)

23 529 120 (0, 2)

29 841 150 (7, 8)

31 961 210 (7, 9)

Table 1. Parameters for shifted rank-1
lattices in Korobov form that are (0, 2, 2)-
nets in base b. The rational shift ∆ is
scaled by n for integer precision.

1

1

rect. lattice

1

1

L144,42

1

1

L144,19

1

1

L144,89

1

1

L144,33

1

1

hex. lattice

Fig. 3. In the sequence of Korobov lattices L144,a the minimum distance increases
from left to right. For comparison the rectangular lattice is added to the left, whereas
the hexagonal lattice is the rightmost of the image sequence.

nature. For example the photo receptors in the retina are distributed according
to this scheme [Yel83] in order to reduce aliasing.

Similarly we can select rank-1 lattice generator vectors that maximize the
minimum distance, which leads to the notion of maximized minimum distance
lattices. The task of calculating the minimum distance in a lattice is a well
known problem in lattice theory, namely the shortest vector problem [AEVZ02].
Since a lattice is closed under addition and subtraction the difference between
two lattice points yields another point in the lattice. Therefore the minimum
distance corresponds to the length of the shortest vector in the lattice. This
quantity can be computed by searching the closest point to the origin, which
means to consider all lattice points except x0 = 0.

For s = 2 the sequence of rank-1 lattices with increasing minimum distance
approximates the hexagonal lattice in the limit, which is illustrated in Figure 3
for n = 144 points.

In [CR97] Cools and Reztsov define a family

Ln,g =
{

i

2FmMm
(Mm, Fm) mod 1 : 0 ≤ i < 2FmMm

}
(3)
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of rank-1 lattices by using the sequence of convergents{
Fm

Mm

}∞

m=1

=
2
1
,
5
3
,
7
4
,
19
11
, . . .

of the continued fraction equal to
√

3. Since these lattices are constructed to
exactly integrate trigonometric polynomials of a hexagonal spectrum, they
actually represent maximized minimum distance lattices. As the construction
only covers lattices for n = 2FmMm points, for other n the generator vector
was determined by computer search.

Computer Search

Searching for maximized minimum distance rank-1 lattices represents a com-
putationally expensive problem, since there are (n− 1)s possibilities for the
generator vector g = (g1, . . . , gs), where gi ∈ {1, . . . , n − 1}. However, for
s = 2 an exhaustive search is feasible. In order to avoid rounding errors due
to floating point imprecision all computations are done in integer arithmetic
allowing for exact results.

One possibility to reduce the search space is to consider only rank-1 lattices
in Korobov form, which are uniquely determined by the tuple (n, a) (see
Section 2). A very efficient way to search for maximized minimum distance
lattices in Korobov form for s = 2 is given by the spectral test [Knu81], which
measures the quality of linear congruential random number generators by
determining the t-dimensional accuracy νt. It can be shown that this quantity
corresponds to the length of the shortest vector in the dual lattice

L⊥
n,g := {h ∈ Zs : h · g ≡ 0 (mod n)}.

Since the length of the shortest vector in L⊥ equals the length of the shortest
vector in L multiplied by n, the spectral test delivers the minimum mutual
distance between two lattice points for one a ∈ {1, . . . , n− 1} on [0, n)2. As
the searching algorithm is performed on [0, n)2, the two-dimensional accuracy
ν2 delivers the sought quantity, i.e. the length of the shortest vector in the
lattice Ln,a.

Additionally, the search space can be restricted by demanding that n and
gi are relatively prime, i.e. gcd(n, gi) = 1. This means that the resulting lattice
points will be stratified equidistantly on each coordinate axis. So the resulting
rank-1 lattice is an instance of a Latin hypercube sample and the minimum
distance can be bounded to mindist ≥ 1

n .
However, the condition gcd(n, gi) = 1 prevents to find the best lattice with

regard to maximized minimum distance in some cases. This also applies to
searching maximized minimum distance lattices in Korobov form. For example
the maximized minimum distance of the lattices of equation 3 cannot be
achieved in Korobov form.
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1

1

b1 b2

(a) L56,9

mindist =
√

40
56

1

1

b1

b2

(b) L56,21

mindist =
√

58
56

1

1

b1

b2

(c) L56,(4,7)

mindist =
√

64
56

Fig. 4. Maximized minimum distance lattices for n = 56: (a) Rank-1 lattice searched
under the restriction of gcd(n, a) = 1 in Korobov form. (b) Rank-1 lattice in Korobov
form. (c) Rank-1 lattice selected without restrictions.

Figure 4 compares the maximized minimum distance lattices for n = 56
selected in Korobov form (a), for gcd(n, a) = 1 in Korobov form (b) and by
using the lattice family of [CR97] (c).

3 Quasi-Monte Carlo Error Bounds

The functions in computer graphics are square integrable due to finite energy
and bounded. However, they are only piecewise continuous, where the discon-
tinuities are difficult to identify. Often the structure of the high-dimensional
integrals in image synthesis comprises several 2 − 3 dimensional integral oper-
ators, as it is the case for sampling the pixel area, the lens area, motion blur,
depth of field, scattering events, etc. Consequently the sampling points can
be padded using low-dimensional stratified patterns in a very efficient way, as
Kollig and Keller have shown in [KK02].

The classical quasi-Monte Carlo error bound is given by the Koksma-Hlawka
inequality [Nie92b], which bounds the integration error by the product of the
discrepancy of the sampling points and the variation of the integrand in the
sense of Hardy and Krause. However, the variation in the sense of Hardy and
Krause already becomes infinite in the case of non-axis aligned discontinuities,
thus being inapplicable to functions in computer graphics.

The error of a lattice rule [SJ94] can be formulated in terms of the Fourier
coefficients of the integrand f requiring f to be periodic and to belong to the
function class whose Fourier coefficients decay sufficiently fast with increasing
frequency. Since these conditions usually do not hold for the setting of computer
graphics, we cannot use this error bound either.

The notion of (M, µ)-uniformity introduced by Niederreiter [Nie03] sup-
ports partitions which are not axis aligned and relies on the stratification
properties of the sampling points. The deterministic error bound based on this
concept can easily be generalized to integro-approximation [Kel06]. Using the
probability space ([0, 1)s,B, λs), where B corresponds to the Borel-sets and λs
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to the s-dimensional Lebesgue-measure, this bound also applies in the context
of computer graphics. However, the error cannot be separated into a property
of the integrand and the sampling pattern any longer.

3.1 Error Bound for Lipschitz Functions

Although the classical error bounds do not fit in the setting of computer
graphics (as seen above), quasi-Monte Carlo methods achieve good results in a
vast number of numerical experiments. The main reason is that the integrands
are often piecewise continuous, while the discontinuities cannot be captured by
the classical error bounds. Thus they cannot explain the observed convergence.
We now examine an error bound for Lipschitz continuous, periodic functions
with respect to parametric integration thereby completing Niederreiter’s work
[Nie03] for the special case of rank-1 lattices.

Given a Minkowski-reduced basis of a rank-1 lattice Ln,g the basis vectors
induce the Delaunay tessellation of the lattice and its dual, the Voronoi diagram.
In order to derive the error bound we need the following

Definition 1 The radius r(n,g) of a rank-1 lattice is the smallest circumcircle
of the fundamental Voronoi cell with respect to some suitable norm.

This quantity corresponds to the dispersion [Nie92b]

dn(Ln,g; Is) = sup
x∈Is

min
1≤i≤n

d(x,xi)

of a rank-1 lattice as well as the notion of the covering radius in coding theory.
Figure 5 shows the Voronoi diagram along with the circumcircle of radius
r(32, (1, 7)) of the Korobov lattice L32,7.

Based on the results of [DFG99] and by taking advantage of the geometrical
properties of rank-1 lattices the proof is very simple and resembles the proofs
of the paper [Nie03].

b1 b2

Fig. 5. Voronoi diagram of the lattice L32,7 including the basis vectors in the
sense of a Minkowski-reduced basis. The circumcircle of radius r(n,g) encloses the
fundamental Voronoi cell.
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Theorem 1. Let f be a Lipschitz function periodic on [0, 1]s+s′
, with

‖f(x1,y) − f(x2,y)‖ ≤ L‖x1 − x2‖,
and Lipschitz constant L independent of x1, x2 and y, where dimx1 =
dimx2 = s and dimy = s′. Further let Pn = {x0, . . . ,xn−1} be a rank-1
lattice. Then ∥∥∥∥∥

∫
[0,1]s

f(x,y)dx − 1
n

n−1∑
i=0

f(xi,y)

∥∥∥∥∥ ≤ L · r(n,g)

for some suitable norm, where r(n,g) is the radius of Pn.

Proof. Let M = {M0, · · · ,Mn−1} be the partition of Is by the Voronoi dia-
gram of a rank-1 lattice. Then in a first step the quadrature error can be
estimated similar to [DFG99]:

∥∥∥∥∥
∫

[0,1]s
f(x,y)dx − 1

n

n−1∑
i=0

f(xi,y)

∥∥∥∥∥ =

∥∥∥∥∥
n−1∑
i=0

∫
Mi

(f(x,y) − f(xi,y))dx

∥∥∥∥∥
≤

n−1∑
i=0

∫
Mi

||f(x,y) − f(xi,y)||dx

≤ L
n−1∑
i=0

∫
Mi

||x − xi||dx (4)

= L · n
∫

M0

||x||dx (5)

≤ L · n · λs(M0) sup
‖x‖≤r(n,g)

||x||

= L · n · 1
n

· r(n,g) = L · r(n,g) (6)

Since the Mi are of identical shape and volume and due to the point symmetry
of the lattice, we can choose xi as x0 = 0 in equation (4) which then can
further be simplified resulting in equation (5). �

Obviously the error bound results as a product of a property of the integrand
and a property of the sampling pattern again. Omitting the parameter y in
Theorem 1 yields the integration error bound.

Let Ω ⊂ Rs, M = {M0, · · · ,Mn−1} an arbitrary tessellation of Ω, and
{Ai}n−1

i=0 the volumes of {Mi}n−1
i=0 . Then equation (4) represents the special

case of the error estimation of [DFG99]∣∣∣∣∣
∫

Ω

f(x)dx −Ai

n−1∑
i=0

f(xi)

∣∣∣∣∣ ≤ L
n−1∑
i=0

∫
Mi

||x − xi||dx (7)
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for rank-1 lattices, where Ai = 1
n . It can be proved that this error bound is

minimized by choosing {xi}n−1
i=0 and {Mi}n−1

i=0 such that the {Mi}n−1
i=0 are the

Voronoi sets for the xi and the xi are the mass centroids of the Voronoi sets at
the same time [DFG99]. This means that rank-1 lattices are a suitable choice
to minimize the integration error for Lipschitz continuous functions, since
these conditions apply to these point sets due to their geometrical properties.

The theoretical rate of the new bound O(n−1/s) is already known from the
field of information based complexity and approximation theory. It obviously
is cursed by the dimension, which is hidden in the radius r(n,g). However, the
important issue about this theorem is not the rate as we consider s = 2, but
that it yields a criterion for lattice search using the primal instead of the dual
lattice by means of the following corollary:

Corollary 1. Maximizing the minimum distance

dmin(Pn) := min
0≤i<n

‖xi‖

in a rank-1 lattice decreases the radius r(n,g) and thus the integration error.

This corollary can be derived by the following observation. The minimum
distance dmin(Pn) in a rank-1 lattice corresponds to two times the radius
of the in-circle of the fundamental Voronoi cell. Maximizing the minimum
distance in a rank-1 lattice thus increases this radius. The Voronoi cells, being
of equal size and constant volume, approximate a sphere the more, the bigger
the minimum distance becomes. Consequently the gap between the radius of
the circumcircle and the in-circle of the Voronoi cells decreases. This means
that r(n,g) decreases as dmin(Pn) increases, which is stated in the corollary.
Although there are similarities to sphere packings, it is important to note that
this argument is not built upon them.

4 Applications

Based on the theoretical considerations of the previous sections we now inves-
tigate the effect of maximized minimum distance rank-1 lattices for integro-
approximation for image synthesis and explore their geometrical properties in
the context of display technology.

4.1 Anti-Aliasing by Rank-1 Lattices

A disadvantage of all current display technology that relies on regular structures
to present images is that correlations between the function to be displayed
and the pixel structure can be perceived as distorting artifacts. In order to
avoid these so-called aliases, various sampling patterns have been investigated.
It is common belief that at moderate sampling rates n random sampling
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points xi with maximized minimum distance perform best, since aliases are
mapped to noise, but low frequency details are reproduced clearly. Nevertheless,
increasing the number of sample points can cause aliases to reappear as the
noise vanishes. In fact these artifacts cannot be completely avoided because of
the correlation of a deterministic display and a deterministic function, but they
can be ameliorated by filtering parts of the image. However, using only a box
filter, i.e. integrating over the pixel area by averaging samples, always causes
aliasing to appear in an even converged image. This is illustrated in Figure 8
for the simple example of rendering an infinite checker board. As we are looking
for the most efficient sampling patterns and as random sampling cannot always
prevent aliasing, we investigate rank-1 lattices for image synthesis.

What Maximized Minimum Distance Lattices Can Do

A typical test function for anti-aliasing is given by

Z2 : [0, 1)2 → [0, 1]

(x, y) �→ 1
2
(
1 + sin

(
1600 · (x2 + y2

)))
.

Figure 6 shows the results of rendering this function by stratified sampling,
the Larcher-Pillichshammer points (LP) [LP01, KK02], and the maximized
minimum distance lattice L1048576,195638 in combination with a b-spline filter of
degree 3. Whereas in Figure 6 (a) the aliasing is covered by noise, Moiré patterns
become clearly visible in 6 (b). The best result is achieved by the maximized
minimum distance lattice, which acts as a filter due to its nice Fourier properties
[SJ94]. So aliasing artifacts are attenuated considerably. In fact the maximized
minimum distance lattice L1048576,195638 with approximately 4 samples per
pixel achieves a similar quality to [SSA05], where 900 samples per pixel with
a density proportional to a cubic b-spline filter we used to render almost the
same test function.

(a)
Jittered grid

(b) LP points (c) L1048576,195638

Fig. 6. Rendering the test function by integro-approximation with 512 × 512 × 4
samples, which means that there are about 4 samples per pixel. This figure should
be viewed on screen, since otherwise the differences between the images can hardly
be observed due to resampling and printing.
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Speed of Convergence

In the following we compare the test patterns of Figure 7 with respect to
their convergence. The sampling patterns are applied both for the integration
problem (i.e. per pixel) and for the integro-approximation setting (i.e. over
the whole quadratic screen). The test scene is given by the checker board of
Figure 8(a).

In order to analyze the convergence of the test patterns, the L2-norm of a
converged reference image to the corresponding test image is computed for an
increasing number of sampling points per pixel. Then the resulting value is
diagrammed in the error graph, displaying the number of samples on the x-
and the error norm on the y-axes. Both axis are scaled logarithmically. The
reference image, shown in Figure 8(b), was computed by applying a jittered
grid sampling pattern with 1024× 1024 samples at each pixel. Obviously there
are still aliasing artifacts in this image resulting from the problem of rendering
a deterministic function on a deterministic display.

It is important to note that there are two different visual artifacts in image
8(a). The first one results from the case of only one edge lying in a single
pixel. At low sampling rates these edges appear very jagged. Increasing the
sampling rate solves this problem, though. Walking towards the horizon of the
checker board, the single cells of the checker board get smaller and smaller.
Therefore, many small cells, i.e. many edges fall within one pixel near the
horizon as shown in Figures 8(e) and (f), yielding the aliasing structures in
the converged image. Thus, we compute the error graphs only for the lower
half of the checker board scene, where the convergence to the correct image is
guaranteed.

Integration

We start by applying the test patterns (Figure 7) per pixel. For each pixel n
rays are shot from the camera into the screen and the resulting color values

(a) Regular
grid

(b) Jittered
grid

(c) LP (d) LP rand (e) Shifted
L16,4

(f) Shifted
L16,3

Fig. 7. As sampling pattern the regular and jittered grid, the Larcher-Pillichshammer
(LP) and randomized Larcher-Pillichshammer points, and rank-1 lattices are used.
We analyze both the maximized minimum distance rank-1 lattices in Korobov form
and the lattices resulting from the condition gcd(n, a) = 1. Additionally, the lattices
are shifted such that the bounding box of the lattice points is centered within the
pixel.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8. (a) Aliasing due to the discrete representation of the checker board. (b) Ref-
erence image used to determine the L2 error. (c)-(f) Magnification of the highlighted
areas of (b), comprising 2 × 2 pixels each: (c) Roughly the same number of light and
dark gray checker board cells cover this area averaging to half gray in (b). (d) The
light and dark gray cells do not cover the same area in the pixels leading to aliasing.
(e) The light and dark gray cells do not cover the same area in the pixels leading to
aliasing. (f) Two pixels are completely covered by one dark gray cell, whereas an
edge between two cells runs through the other two.
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are averaged by means of the box filter. Although the regular grid possesses a
worse discrepancy than the Larcher-Pillichshammer or lattice points, we notice
that it performs extremely well, even surpassing them for certain n. This can
be explained by the discrepancy being an anisotropic measure in fact. The
large error spikes in Figure 9 arise from the factorization of n, since it is not
always possible to find a good one. Jittered grid sampling turns aliasing into
noise, and thus, the error proceeds on a lower level. However, this sampling
pattern suffers from the same factorization problem as the regular grid.

The idea of using rank-1 lattices for computing the pixel integral is already
mentioned in [Nie92a], however, not with respect to maximized minimum
distance. Examining the maximized minimum distance lattices, we observe
that postulating gcd(n, a) = 1 sometimes severely restricts the search space;
e.g. for n = 4 we get the pixel diagonal as sampling pattern which clearly is
not a good distribution. Altogether the error curves expose a relatively strong
oscillation. This is due to the structure of the lattice points featuring families
of hyperplanes which are sometimes aligned to the checker board edges in such
a way that these cannot be captured. As the Larcher-Pillichshammer points do
not suffer from this, clearly scene dependent, problem, they offer a relatively
smooth error curve.
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 n
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m
.

Number of samples per pixel.

regular grid
jittered grid

LP
LP rand

MMDL shift BB
MMDL shift BB gdc(n,a)=1

Fig. 9. Comparison of the regular and jittered grid, the Larcher-Pillichshammer
points, shifted maximized minimum distance lattices and the maximized minimum
distance lattices with gcd(n, a) = 1.
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Fig. 10. Comparing the Larcher-Pillichshammer points and maximum minimum
distance lattices scaled to the whole screen.

Integro-Approximation

Next we use the Larcher-Pillichshammer points and maximized minimum
distance lattices over the whole quadratic screen (xRes = yRes), i.e. these
sampling patterns are scaled from [0, 1)2 to [0, xRes) × [0, yRes). To obtain a
certain number n of samples per pixel, the number of sampling points has to be
chosen as xRes ·yRes ·n. Since the Larcher-Pillichshammer pattern for n = 2m

points represents a (0,m, 2)-net in base b = 2, we can guarantee a certain
number of samples per pixel if the screen resolution is chosen as a power of 2.
If the number of sampling points equals xRes · yRes ·k = 2m for k = 1, we can
take each pixel as an elementary interval of volume b−m = 2−m = 1

xRes · 1
yRes .

For k > 1, each pixel contains k elementary intervals of volume 1
xRes · 1

yRes · 1
k .

So each pixel is sampled by the same number of points, with each pixel being
sampled by a different pattern at the same time. Considering the correlation
between the pixels, the scaled Larcher-Pillichshammer points obtain an even
smoother error curve than in the integration setting, as can be seen in Figure 12.
This is even true for the case n �= 2m.

In contrast to the Larcher-Pillichshammer points, the rank-1 lattices cannot
achieve the same number of sampling points per pixel and the image becomes
quite noisy, especially for low sampling rates. Moreover, there are again ori-
entations in the checker board, which fall exactly between two hyperplanes,
resulting in an oscillating integration error. This also affects the comparison to
the integration setting. So, in contrast to the Larcher-Pillichshammer points,
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Fig. 11. Comparison integration/integro-approximation for the rank-1 lattices.
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Fig. 12. Comparison integration/integro-approximation for the Larcher-
Pillichshammer points.
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the error graph for the integro-approximation problem is slightly worse than
the one of the integration setting, which is illustrated in Figure 11.

Altogether, the test patterns converge to the reference image, which still
exposes aliasing in the case of using the box filter for integration. The Larcher-
Pillichshammer and maximized minimum distance sampling patterns show the
fastest convergence rate, with the first outperforming the latter for this test
scene.

4.2 Images on Rank-1 Lattices

A raster display is typically formed from a matrix of pixels representing the
whole screen. Whereas a pixel is usually represented as a square on the integral
raster being defined by the display resolution, we now structure the pixel layout
by the Voronoi diagram of a maximized minimum distance rank-1 lattice, i.e.
the single picture elements are represented as the cells which are induced by
the Voronoi diagram of the rank-1 lattice points.

This kind of display technology has several advantages. Since rank-1 lattices
are available for any number n of points, the number of pixels can be chosen
freely. As seen in Section 2.2 maximizing minimum distance approximates
a hexagonal grid in the limit yielding almost hexagonal picture elements.
The concept of hexagonal pixels has already been studied in the context of
hexagonal image processing ([MS05]) and is used in the SmartSlab LED panels
(www.metropolismag.com). Moreover, this pixel layout permits optically better
results than rank-2 lattices, as for example a smoother representation of curved
objects. This can be seen in Figure 13, where the original image (middle) has
been computed in reduced resolution, once on a traditional rank-2 lattice and
once on a maximized minimum distance rank-1 lattice. At the same time,
image processing algorithms are simplified in comparison to hexagonal lattices.
In the same way image processing algorithms which are based upon the fast

Traditional display, 48 × 48
pixels

Original image, 512 × 512
pixels

Rank-1 lattice display,
48 × 48 pixels

Fig. 13. Comparison of rank-2 (left) and maximized minimum distance rank-1 lattice
(right) displays at identical pixel resolution for approximating the high resolution
image in the middle.



Image Synthesis by Rank-1 Lattices 233

Fourier transform become simpler and can be implemented in a slightly more
efficient way [DKD07].

This concept can technically be realized in a number of ways: One possibility
consists in making up the display of point light sources, like for example RGB
LEDs, which are arranged in the center of each Voronoi cell. Composing the
display of area light sources which cover the single picture elements yields a
technique for TFT and LCD displays, respectively. This may be realized by
means of OLEDs for instance. Moreover, the layout of the sensors, i.e. the
photosites, of a CCD (Charge-Coupled Device) camera can take the form of
a rank-1 lattice cell. Further applications are given by projector technology,
3d-Displays, etc.

2n Display Modules, Sensors, and Images

Since rank-1 lattices can be tiled seamlessly, it is possible to compose a display
of k modules each of which having the same number of lattice cells. This is
illustrated in Figure 14.

The idea of 2n display modules consists in choosing the number of picture
elements for one display module as a power of 2. This has the advantage that
the single cells easily can be addressed by means of a demultiplexer. If the
number k of modules is set to a power of 2 as well, the single modules can be
controlled the same way.

Such displays can be produced quite cheaply by fabricating small modules
of the same layout and the same number of lattice cells which can easily be
assembled to a display of desired resolution. More generally, the concept of 2n

displays perfectly fits all aspects of computer technology, taking advantage of
memory layout, cache lines, addressing, etc.

Fig. 14. The display is composed of 4 modules each of which contains 256 cells.
Left: Quadratic layout of the single modules, i.e. the rank-1 lattice is searched on
the unit square. Right: Rectangular layout, i.e. the rank-1 lattice is searched on a
rectangular domain by means of a corresponding weighted norm.
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576/576

576/576

576/576

576/576

Fig. 15. Examples for rasterizing a triangle and a circle on the lattice L576,155.

Storing images according to this scheme leads to the concept of 2n images
which equally benefit from the advantages of 2n displays. The O(2n) memory
requirements ideally fit paging (memory alignment). As a further example stor-
ing a sequence of textures as 20 · · · 2n images naturally supports MipMapping
and allows for a simple fast Fourier transforms [DKD07] processing.

Rasterization

Mathematical (ideal) primitives, such as lines, triangles, or circles areusually
described in terms of 2-dimensional vertices on a Cartesian grid. In order to
render them correctly a so-called rasterizer approximates them by assigning
the appropriate colors to sets of pixels [FvDFH96]. The rasterizer converts the
two-dimensional vertices in screen space into pixels on the display.

Changing the pixel layout by the introduction of rank-1 lattice displays also
yields new algorithms for rasterization. Instead of rasterizing on a rectangular
grid, the rasterization is now performed on the Voronoi cells of a maximized
minimum distance rank-1 lattice, as illustrated in Figure 15.

The basic idea for converting the traditional rasterization algorithms to
rank-1 lattices simply consists in changing the basis in which the rasterization
is performed. This means that the rasterizer switches from the Cartesian
coordinate system to that coordinate system which is formed by the basis
of the corresponding rank-1 lattice. Whereas this method can be simulated
on traditional raster displays by means of a software solution, it can even
be performed on current graphics hardware in the following way: Since the
rasterizer is only capable of operating on rectangular grids, in a first step the
scene has to be transformed into the lattice basis, which in fact corresponds
to a shear of the rectangular grid. After this change of frame the rasterization
can be performed on the graphics hardware as usual. In order to display the
rasterized scene, the resulting image has to be transformed back into the pixel
basis. Performing the rasterization directly on a rank-1 lattice would have
yielded the same result.
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5 Conclusion

We examined maximized minimum distance rank-1 lattices in the context of
integro-approximation and display technology. We derived an error bound for
the class of Lipschitz continuous, periodic functions. Numerical experiments
proved that these lattices perform quite well in image synthesis. However, the
visual results are mixed: On the one hand extreme performance and quality
gains were observed, on the other hand the convergence rate heavily depends
on the function class, as the checker board example showed. Due to their
algorithmical simplicity, maximized minimum distance rank-1 lattices are very
promising with regard to data layout and image processing at a power of 2
pixels.
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1 Introduction

Stochastic differential equations (SDEs) are applied in many disciplines like
physics, biology or mathematical finance in order to describe dynamical systems
disturbed by random effects. Approximation methods for the strong as well as
for the weak time discrete approximation have been proposed in recent years
(see, e.g., [BB00, DR06, KP99, KMS97, Mil95, MT04, New91, Roe04, Roe06b,
TVA02] and the literature therein) converging with some given order at the
discretization points. However, there is still a lack of higher order continuous
time approximation methods guaranteeing uniform orders of convergence not
only at the discretization points but also at any arbitrary time point within the
approximation interval. Classical time discrete methods are inefficient in this
case where the number of output points has to be very large because this forces
the step size to be very small. Therefore, we develop a continuous extension of
the class of stochastic Runge–Kutta (SRK) methods introduced in [Roe06c]
for the weak approximation which provides continuous time approximations of
the solution of Stratonovich SDE systems with uniform order two in the weak
sense. Such methods are also called dense output formulas [HNW93]. The main
advantage of the presented continuous extension of the SRK methods is their
negligible additional computational complexity compared to the time discrete
SRK methods. Especially, we are interested in continuous sample trajectories
of the applied SRK method. For example, an SRK method with continuous
sample trajectories allows the use of an individual discretization for each sample
trajectory which needs not necessarily to contain some common discretization
points for all trajectories in order to be able to calculate the expectation at
these common time points. Further, in future research SRK methods with
continuous sample trajectories may be applied for the numerical treatment of
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stochastic delay differential equations like in the deterministic setting where
continuous Runge–Kutta methods are already successfully applied.

Let (Ω,F ,P) be a probability space with a filtration (Ft)t≥0 and let
I = [t0, T ] for some 0 ≤ t0 < T <∞. We consider the solution X = (X(t))t∈I
of a d-dimensional Stratonovich stochastic differential equation system

dX(t) = a(t,X(t)) dt+ b(t,X(t)) ◦ dW (t). (1)

Let X(t0) be the Ft0-measurable initial condition such that for some l ∈ N
holds E(‖X(t0)‖2l) <∞ where ‖ · ‖ denotes the Euclidean norm if not stated
otherwise. Here, W = ((W (t)1, . . . ,W (t)m))t≥0 is an m-dimensional Wiener
process w.r.t. (Ft)t≥0. SDE (1) can also be written in integral form

X(t) = X(t0) +
∫ t

t0

a(s,X(s)) ds+
m∑

j=1

∫ t

t0

bj(s,X(s)) ◦ dW (s)j (2)

for t ∈ I with some drift function a : I × Rd → Rd and a diffusion function
b : I × Rd → Rd×m. The jth column of the d×m-matrix function b = (bi,j) is
denoted by bj for j = 1, . . . ,m. Further, the second integral w.r.t. the Wiener
process has to be interpreted as a Stratonovich integral.

The solution (X(t))t∈I of a Stratonovich SDE with drift a and diffusion b
is also a solution of a corresponding Itô SDE and therefore also a generalized
diffusion process, however with the modified drift

ãi(t, x) = ai(t, x) +
1
2

d∑
j=1

m∑
k=1

bj,k(t, x)
∂bi,k

∂xj
(t, x) (3)

for i = 1, . . . , d, provided that b is sufficiently differentiable, i.e.

X(t) = X(t0) +
∫ t

t0

a(s,X(s)) ds+
m∑

j=1

∫ t

t0

bj(s,X(s)) ◦ dW (s)j (4)

= X(t0) +
∫ t

t0

ã(s,X(s)) ds+
m∑

j=1

∫ t

t0

bj(s,X(s)) dW (s)j . (5)

We suppose that the drift ã : I×Rd → Rd and the diffusion b : I×Rd → Rd×m

are measurable functions satisfying a linear growth and a Lipschitz condition

‖ã(t, x)‖ + ‖b(t, x)‖ ≤ C (1 + ‖x‖) (6)
‖ã(t, x) − ã(t, y)‖ + ‖b(t, x) − b(t, y)‖ ≤ C ‖x− y‖ (7)

for all x, y ∈ Rd and all t ∈ I with some constant C > 0. Then the conditions
of the Existence and Uniqueness Theorem are fulfilled for the Stratonovich
SDE (2) (see, e.g., Theorem 4.5.3 [KP99]).

In the following, let Cl
P (Rd,R) denote the space of all g ∈ Cl(Rd,R) with

polynomial growth, i.e. there exist a constant C > 0 and r ∈ N, such that
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|∂i
xg(x)| ≤ C(1+ ‖x‖2r) for all x ∈ Rd and any partial derivative of order i ≤ l

(see [KP99], p. 153). Then g belongs to Ck,l
P (I × Rd,R) if g ∈ Ck,l(I × Rd,R)

and g(t, ·) ∈ Cl
P (Rd,R) holds uniformly in t ∈ I, i.e., the constants C and r

do not depend on t.
Let Ih = {t0, t1, . . . , tN} be a discretization of the time interval I = [t0, T ]

such that
0 ≤ t0 < t1 < . . . < tN = T (8)

and define hn = tn+1 − tn for n = 0, 1, . . . , N − 1 with the maximum step size

h = max
0≤n≤N−1

hn.

Next to the concepts of strong or mean–square convergence which are used
for good pathwise approximations of the solution process X, there is also the
weak convergence which is applied if one is interested in the approximation
of distributional properties of the solution process X. In the present paper,
we will focus on weak convergence of some family of approximation processes
Y h = (Y h(t))t∈Ih

with some prescribed order p to the solution X of the
considered SDE and we write Y = Y h in the following.

Definition 1. A family of approximation processes Y converges weakly with
order p to the solution process X as h → 0 if for each f ∈ C2(p+1)

P (Rd,R)
there exists a constant Cf , which does not depend on h, and a finite h0 > 0
such that

sup
t∈Ih

|E(f(X(t))) − E(f(Y (t)))| ≤ Cf h
p (9)

holds for each h ∈ ]0, h0[ .

Let Xt0,Xt0 denote the solution of the stochastic differential equation (2)
in order to emphasize the initial condition. For simplicity of notation, in
this section it is supposed that Ih denotes an equidistant discretization, i.e.
h = (tN − t0)/N . In the following, we consider one-step approximations of the
type

Y t,x(t+ θ h) = A(t, x, h, θ; ξ), (10)

where ξ is a vector of random variables, with moments of sufficiently high
order, θ ∈ [0, 1] is a parameter and A is a vector function of dimension d which
is continuous in θ. We define for tn+1 = tn + h recursively the sequence

Y (t0) = X(t0),
Y (tn+1) = A(tn, Y (tn), h, 1; ξn), n = 0, 1, . . . , N − 1,

(11)

where X(t0), ξ0, . . . , ξN−1 are independent.
Since we are interested in obtaining a continuous global weak approxi-

mation Y = (Y (t))t∈I , we need an extension of the convergence theorem
due to Milstein (Theorem 9.1 [Mil95], see also [MT04] p. 100) which specifies
the relationship between the local and the global approximation order. The
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following theorem due to the authors (see [DR06]) guarantees uniform weak
convergence with some prescribed order p and can be applied to any one step
approximation method of type (10).

Theorem 1. Suppose the following conditions hold:

(i) The coefficients ãi and bi,j are continuous, satisfy a Lipschitz condition
(7) and belong to Cp+1,2(p+1)

P (I × Rd,R) for i = 1, . . . , d, j = 1, . . . ,m.
(ii) For sufficiently large r (see, e.g., [DR06, Mil95, MT04] for details) the

moments E(‖Y (tn)‖2r) exist for tn ∈ Ih and are uniformly bounded with
respect to N and n = 0, 1, . . . , N .

(iii) Assume that for all f ∈ C2(p+1)
P (Rd,R) there exists a K ∈ C0

P (Rd,R)
such that the following local error estimations

|E(f(Xt,x(t+ h))) − E(f(Y t,x(t+ h)))| ≤ K(x)hp+1 (12)
|E(f(Xt,x(t+ θh))) − E(f(Y t,x(t+ θh)))| ≤ K(x)hp (13)

are valid for x ∈ Rd, t, t+ h ∈ I and θ ∈ [0, 1].

Then for all t ∈ [t0, T ] the following global error estimation

|E(f(Xt0,X(t0)(t))) − E(f(Y t0,X(t0)(t)))| ≤ Chp (14)

holds for all f ∈ C2(p+1)
P (Rd,R), where C is a constant, i.e. the method (11)

has a uniform order of accuracy p in the sense of weak approximation.

Remark 1. In contrast to the original theorem due to Milstein [Mil95, MT04]
now the order of convergence specified in equation (14) is not only valid in
the discretization times t ∈ Ih. Provided that the additional condition (13)
is fulfilled, the global order of convergence (14) holds also uniformly for all
t ∈ [t0, T ].

In the following, we assume that the coefficients ãi and bi,j satisfy assump-
tion (i) of Theorem 1. Further, assumption (ii) of Theorem 1 is always fulfilled
for the class of stochastic Runge–Kutta methods considered in the present
paper provided that E(‖X(t0)‖2r) <∞ holds for sufficiently large r ∈ N (see
[Roe06a, Roe06c] for details). Clearly, in the case of some deterministic initial
value X(t0) = x0 ∈ Rd there exist all moments of ‖X(t0)‖.

2 Continuous Stochastic Runge–Kutta Methods

We introduce now a continuous extension of the class of stochastic Runge–Kutta
methods due to Rößler [Roe06c] applicable to Stratonovich SDE systems (2).
The main advantage of this class of SRK methods compared to other known
SRK methods is that the number of evaluations of the diffusion functions bj for
each step does not depend on the dimension m of the driving Wiener process.
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Thus, this class of SRK methods has significantly reduced computational
complexity (see [Roe06c] for details). Therefore, we extend this class of SRK
methods by substituting the fixed weights αi = ᾱi, β

(1)
i = β̄(1)

i and β(2)
i = β̄(2)

i

for some continuous weight functions

αi : [0, 1] → R, β
(1)
i : [0, 1] → R, β

(2)
i : [0, 1] → R, (15)

in order to obtain second order continuous SRK (CSRK) schemes for the
uniform weak approximation of the solution of the Stratonovich SDE system
(2). We define the d-dimensional approximation process Y by the explicit
continuous SRK method of s stages with Y (t0) = X(t0) and

Y (tn + θ hn) =Y (tn) +
s∑

i=1

αi(θ) a(tn + c(0)i hn, H
(0)
i )hn

+
s∑

i=1

m∑
k=1

β
(1)
i (θ) bk(tn + c(1)i hn, H

(k)
i ) Î(k),n

+
s∑

i=1

m∑
k=1

β
(2)
i (θ) bk(tn + c(2)i hn, Ĥ

(k)
i )
√
hn

(16)

for θ ∈ [0, 1] and n = 0, 1, . . . , N − 1 with stage values

H
(0)
i =Y (tn) +

s∑
j=1

A
(0)
ij a(tn + c(0)j hn, H

(0)
j )hn

+
s∑

j=1

m∑
l=1

B
(0)
ij b

l(tn + c(1)j hn, H
(l)
j ) Î(l),n

H
(k)
i =Y (tn) +

s∑
j=1

A
(1)
ij a(tn + c(0)j hn, H

(0)
j )hn

+
s∑

j=1

B
(1)
ij b

k(tn + c(1)j hn, H
(k)
j ) Î(k),n

+
s∑

j=1

m∑
l=1
l �=k

B
(3)
ij b

l(tn + c(1)j hn, H
(l)
j ) Î(l),n

Ĥ
(k)
i =Y (tn) +

s∑
j=1

A
(2)
ij a(tn + c(0)j hn, H

(0)
j )hn

+
s∑

j=1

m∑
l=1
l �=k

B
(2)
ij b

l(tn + c(1)j hn, H
(l)
j )

Î(k,l),n√
hn

for i = 1, . . . , s and k = 1, . . . ,m. Here, α(θ), β(1)(θ), β(2)(θ), c(1), c(2) ∈ Rs

for θ ∈ [0, 1] and A(q), B(r) ∈ Rs×s for q ∈ {0, 1, 2} and r ∈ {0, 1, 2, 3} with
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A
(q)
ij = B

(r)
ij = 0 for j ≥ i, q �= 2 and r �= 2 are the vectors and matrices of

coefficients of the explicit CSRK method. We choose c(q) = A(q)e with a vector
e = (1, . . . , 1)T [Roe06a, Roe06c]. In the following, the product of vectors is
defined component-wise.

The random variables of the CSRK method (16) are defined by

Î(k,l),n =

{
Î(k),n Ĩ(l),n if l < k
−Î(l),n Ĩ(k),n if k < l

(17)

for 1 ≤ k, l ≤ m with independent random variables Î(k),n and Ĩ(l),n for 1 ≤
k ≤ m, 1 ≤ l ≤ m− 1 and n = 0, 1, . . . , N − 1. Thus, only 2m− 1 independent
random variables are needed for each step. The random variables Î(k),n are
three point distributed with P(Î(k),n = ±√

3hn) = 1
6 and P(Î(k),n = 0) = 2

3

while the random variables Ĩ(k),n are defined by a two point distribution with
P(Ĩ(k),n = ±√

hn) = 1
2 (see [Roe06c] for details).

The coefficients of the SRK method (16) can be represented by an extended
Butcher array taking the form

c(0) A(0) B(0)

c(1) A(1) B(1) B(3)

c(2) A(2) B(2)

α(θ)T β(1)(θ)T β(2)(θ)T

The algorithm works as follows: First, the random variables Î(k),n and Ĩ(l),n
have to be simulated for 1 ≤ k ≤ m and 1 ≤ l ≤ m− 1 w.r.t. the current step
size hn. Next, based on the approximation Y (tn) and the random variables,
the stage values H(0), H(k) and Ĥ(k) are calculated. Then we can determine
the continuous approximation Y (t) for arbitrary t ∈ [tn, tn+1] by varying θ
from 0 to 1 in formula (16). Thus, only a very small additional computational
effort is needed for the calculation of the values Y (t) with t ∈ I \ Ih. This is
the main advantage in comparison to the application of an SRK method with
very small step sizes.

In order to obtain a continuous order two CSRK approximation we firstly
have to calculate order conditions for the coefficients of the CSRK method.
Therefore, we apply the colored rooted tree analysis proposed in [Roe06a] to
the CSRK method (16). Thus, by applying Theorem 6.4 in [Roe06a] we yield
the order conditions presented in Theorem 5.1 in [Roe06c], however now we
have to substitute the weights by the continuous functions (15). Then, we
obtain for the colored rooted trees of order up to 1.5 the new conditions

1. α(θ)T e h = θ h 2. (β(1)(θ)T e)2 h = θ h

3. β(2)(θ)T e
√
h = 0 4. β(1)(θ)TB(1)e h = 1

2 θ h

5. β(2)(θ)TA(2)e h3/2 = 0 6. β(2)(θ)T (B(2)e)2 h3/2 = 0



Continuous Runge-Kutta Methods for Stratonovich SDEs 243

due to conditions (12) and (13). Further, for all colored trees up to order 2.5
condition (12) has to be fulfilled for θ = 1 and we can deduce these order
conditions from the ones calculated in Theorem 5.1 [Roe06c].

Theorem 2. Let ai ∈ C2,4
P (I × Rd,R) and bi,j ∈ C2,5

P (I × Rd,R) for i =
1, . . . , d, j = 1, . . . ,m. If the coefficients of the continuous stochastic Runge–
Kutta method (16) fulfill the equations

1. α(θ)T e = θ 2. (β(1)(θ)T e)2 = θ 3. β(2)(θ)T e = 0

4. β(1)(θ)TB(1)e = 1
2θ 5. β(2)(θ)TA(2)e = 0 6. β(2)(θ)T (B(2)e)2 = 0

for θ = 1 then the method attains order 1 for the uniform weak approximation
of the solution of the Stratonovich SDE (2). Further, if ai ∈ C3,6

P (I × Rd,R)
and bi,j ∈ C3,7

P (I × Rd,R) for 1 ≤ i ≤ d, 1 ≤ j ≤ m, if equations 1.-6. hold
for arbitrary θ ∈ [0, 1] and if in addition the equations

7. α(1)TA(0)e = 1
2 8. α(1)T (B(0)(B(1)e)) = 1

4

9. α(1)T (B(0)e)2 = 1
2 10. (β(1)(1)T e)(α(1)TB(0)e) = 1

2

11. (β(1)(1)T e)(β(1)(1)TA(1)e) = 1
2 12. β(1)(1)T (B(1)(A(1)e)) = 1

4

13. β(1)(1)T ((B(1)e)(A(1)e)) = 1
4 14. β(1)(1)TB(3)e = 1

2

15. β(1)(1)T (B(3)(B(3)e)) = 0 16. (β(2)(1)TB(2)e)2 = 1
4

17. β(1)(1)T (B(1)e)3 = 1
4 18. β(1)(1)T (B(1)(B(1)e)2) = 1

12

19. β(1)(1)T (B(1)(B(3)e)2) = 1
4 20. β(1)(1)T (A(1)(B(0)e)) = 0

21. β(2)(1)T (A(2)e)2 = 0 22. β(2)(1)T (A(2)(A(0)e)) = 0

23. β(1)(1)T (B(1)(B(1)(B(1)e))) = 1
24 24. β(2)(1)T (A(2)(B(0)e)) = 0

25. β(2)(1)T (A(2)(B(0)e)2) = 0 26. β(2)(1)T (B(2)e)4 = 0

27. β(2)(1)T (B(2)(B(1)e))2 = 0 28. β(2)(1)T (B(2)(B(3)e))2 = 0

29. β(1)(1)T ((B(1)e)(B(3)e)2) = 1
4 30. β(2)(1)T ((A(2)e)(B(2)e)2) = 0

31. (β(1)(1)T e)(β(1)(1)T (B(1)e)2) = 1
3

32. (β(1)(1)T e)(β(1)(1)T (B(3)e)2) = 1
2

33. β(1)(1)T (B(1)(B(3)(B(1)e))) = 1
8

34. β(1)(1)T (B(3)(B(3)(B(3)e))) = 0

35. β(1)(1)T (B(3)(B(1)(B(3)e))) = 0

36. β(2)(1)T (A(2)(B(0)(B(1)e))) = 0

37. (β(1)(1)T e)(β(1)(1)T ((B(3)e)(B(1)e))) = 1
4

38. (β(1)(1)T e)(β(1)(1)T (B(1)(B(1)e))) = 1
6
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39. (β(1)(1)T e)(β(1)(1)T (B(3)(B(1)e))) = 1
4

40. (β(1)(1)T e)(β(1)(1)T (B(1)(B(3)e))) = 1
4

41. β(1)(1)T ((B(1)e)(B(1)(B(1)e))) = 1
8

42. β(1)(1)T ((B(1)e)(B(3)(B(1)e))) = 1
8

43. β(1)(1)T ((B(3)e)(B(1)(B(3)e))) = 1
4

44. β(1)(1)T ((B(3)e)(B(3)(B(3)e))) = 0

45. β(1)(1)T (B(3)((B(3)e)(B(1)e))) = 0

46. β(2)(1)T ((B(2)(A(1)e))(B(2)e)) = 0

47. β(2)(1)T ((B(2)e)(B(2)(B(1)e))) = 0

48. β(2)(1)T ((B(2)e)(B(2)(B(3)e))) = 0

49. β(2)(1)T ((B(2)e)(B(2)((B(1)e)2))) = 0

50. β(2)(1)T ((B(2)e)(B(2)((B(3)e)2))) = 0

51. β(2)(1)T ((B(2)e)(B(2)((B(1)e)(B(3)e)))) = 0

52. β(2)(1)T ((B(2)e)(B(2)(B(1)(B(1)e)))) = 0

53. β(2)(1)T ((B(2)e)(B(2)(B(3)(B(1)e)))) = 0

54. β(2)(1)T ((B(2)e)(B(2)(B(3)(B(3)e)))) = 0

55. β(2)(1)T ((B(2)e)(B(2)(B(1)(B(3)e)))) = 0

are fulfilled and if c(i) = A(i)e for i = 0, 1, 2, then the continuous stochastic
Runge–Kutta method (16) attains order 2 for the uniform weak approximation
of the solution of the Stratonovich SDE (2).

Remark 2. Based on the order conditions presented in Theorem 2 it is of special
interest to find coefficients which define SRK schemes with minimized error
constants. Further, we need s ≥ 4 for an explicit second order CSRK method
(see [Roe04, Roe06c]) due to the order conditions.

Since s = 4 stages are needed for the Stratonovich SRK methods (16), it
is possible to calculate schemes of a higher deterministic order pD than the
stochastic order of convergence pS . Then, the SRK method converges at least
with order p = pS for SDEs, however with order pD ≥ pS if it is applied to
an ODE without any diffusion. In this case, the SRK method (2) reduces to
a deterministic RK method where the deterministic part is represented by
the coefficients A(0) and α(θ). In the following, we will denote the order of
convergence by the tuple (pS , pD).
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In contrast to the calculation of coefficients for time discrete SRK methods
considered in [Roe06c], we additionally have to look for some weight functions
αi, β

(1)
i , β

(2)
i ∈ C([0, 1],R) fulfilling the order conditions of Theorem 2 for

1 ≤ i ≤ s. However, let ᾱi, β̄
(1)
i , β̄

(2)
i ∈ R denote some constant weights of

a time discrete SRK method fulfilling the order two conditions calculated
in Theorem 5.1 in [Roe06c] for 1 ≤ i ≤ s, which coincide with the order
conditions of Theorem 2 for θ = 1. Then, we simply have to look for some
weight functions for the CSRK method (16) which fulfill conditions 1.-6. of
Theorem 2 for all θ ∈ [0, 1] with the boundary conditions

αi(0) = 0, αi(1) = ᾱi, (18)

β
(1)
i (0) = 0, β

(1)
i (1) = β̄(1)

i , (19)

β
(2)
i (0) = 0, β

(2)
i (1) = β̄(2)

i , (20)

for 1 ≤ i ≤ s. Thus, we can extend each time discrete SRK method to a
continuous SRK method by replacing the weights ᾱi, β̄

(1)
i , β̄

(2)
i ∈ R by some

weight functions fulfilling conditions 1.-6. of Theorem 2 and the boundary
conditions (18)–(20) and by retaining all the remaining coefficients of A(q) and
B(r) for q ∈ {0, 1, 2} and r ∈ {0, 1, 2, 3}.

As an example, we extend the time discrete order two SRK schemes RS1
and RS2 calculated in [Roe06c] to continuous SRK schemes. For RS1 which
attains order (2, 2) with s = 4 stages we have the weights ᾱ = [0, 0, 1

2 ,
1
2 ],

β̄(1) = [18 ,
3
8 ,

3
8 ,

1
8 ] and β̄(2) = [0,− 1

4 ,
1
4 , 0], see also Table 1 for the remaining

coefficients of RS1. From condition 1. of Theorem 2 follows

α1(θ) = θ − α2(θ) − α3(θ) − α4(θ)

and the boundary condition (18) implies that αi(0) = 0 for 1 ≤ i ≤ 4,
α1(1) = α2(1) = 0 and α3(1) = α4(1) = 1

2 has to be fulfilled. Therefore, we can

0
0 0 0
1 1 0 1

4
3
4

0 0 0 0 0 0 0
0
0 0 2

3
0

1 1 0 1
12

1
4

1
4

3
4

1 1 0 0 − 5
4

1
4

2 1
4

3
4

0
0
0 0 1
0 0 0 −1 0
0 0 0 0 0 0 0

0 0 1
2
θ 1

2
θ
√

θ − 7
8
θ 3

8
θ 3

8
θ 1

8
θ 0 − 1

4
θ 1

4
θ 0

Table 1. CSRK scheme CDRS1 with order pD = pS = 2.
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choose α1(θ) = α2(θ) = 0 and α3(θ) = α4(θ) = 1
2θ for θ ∈ [0, 1]. Considering

β(1)(θ) we obtain from conditions 2. and 4. that

β
(1)
1 (θ) = ±

√
θ − β(1)

2 (θ) − β(1)
3 (θ) − β(1)

4 (θ)
2
3
β

(1)
2 (θ) +

1
3
β

(1)
3 (θ) + β(1)

4 (θ) =
1
2
θ

and boundary condition (19) yields that β(1)
i (0) = 0 for 1 ≤ i ≤ 4, β(1)

1 (1) =
β

(1)
4 (1) = 1

8 and β(1)
2 (1) = β

(1)
3 (1) = 3

8 . Here, we can choose e.g. β(1)
1 (θ) =√

θ − 7
8θ, β

(1)
2 (θ) = β(1)

3 (θ) = 3
8θ and β(1)

4 (θ) = 1
8θ for θ ∈ [0, 1]. Finally, we

obtain due to conditions 3. and 6. that

β
(2)
1 (θ) + β(2)

2 (θ) + β(2)
3 (θ) + β(2)

4 (θ) = 0

β
(2)
2 (θ) + β(2)

3 (θ) = 0

and the remaining boundary condition (20) results in β(2)
i (0) = 0 for 1 ≤ i ≤ 4,

β
(2)
1 (1) = β

(2)
4 (1) = 0, β(2)

2 (1) = − 1
4 and β(2)

3 (1) = 1
4 . Then, we can choose

β
(2)
1 (θ) = β

(2)
4 (θ) = 0, β(2)

2 (θ) = − 1
4θ and β(2)

3 (θ) = 1
4θ for θ ∈ [0, 1]. We

obtain the continuous SRK scheme CDRS1 of order (2, 2) with the coefficients
presented in Table 1. Here, we have to point out that there are some degrees
of freedom in choosing the coefficient functions.

Analogously, we obtain for the SRK scheme RS2 of order (3, 2) with the
weights ᾱ = [ 14 ,

1
4 ,

1
2 , 0] and with β̄(1) and β̄(2) equal to the weights of RS1,

respectively, a continuous extension. The remaining coefficients for RS2 are
presented in Table 2. We only have to determine the weight functions αi for
1 ≤ i ≤ 4 for the continuous SRK scheme CDRS2 if we use for β(1)

i and β(2)
i

the same weight functions as calculated for CDRS1. Now, the weight functions
αi have to fulfill the condition 1. of Theorem 2 with the boundary conditions

0
2
3

2
3

0
2
3

1
6

1
2

1
4

3
4

0 0 0 0 0 0 0
0
0 0 2

3
0

1 1 0 1
12

1
4

1
4

3
4

1 1 0 0 − 5
4

1
4

2 1
4

3
4

0
0
0 0 1
0 0 0 −1 0
0 0 0 0 0 0 0

θ − 3
4
θ2 1

4
θ2 1

2
θ2 0

√
θ − 7

8
θ 3

8
θ 3

8
θ 1

8
θ 0 − 1

4
θ 1

4
θ 0

Table 2. CSRK scheme CDRS2 with order pD = 3 and pS = 2.
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αi(0) = 0, αi(1) = ᾱi, (21)

for 1 ≤ i ≤ 4. However, in order to calculate a CSRK scheme of order pD = 3,
condition (13) of Theorem 1 has to be fulfilled additionally with p = 3 in the
case that the CSRK scheme is applied to an ODE. Therefore, condition 7. of
Theorem 2, which is the well known deterministic order 2 condition (see, e.g.,
[HNW93]), has to be fulfilled not only for θ = 1 but also for each θ ∈ [0, 1]. As
a result of this, the condition

α(θ)TA(0)e =
1
2
θ2 (22)

has to be considered in addition. Then, we obtain from (22) and 1. of Theorem 2
that the conditions

α1(θ) = θ − α2(θ) − α3(θ) − α4(θ) (23)

α2(θ) =
3
4
θ2 − α3(θ) (24)

and from (21) that the boundary conditions αi(0) = 0 for 1 ≤ i ≤ 4, α1(1) =
α2(1) = 1

4 , α3(1) = 1
2 and α4(1) = 0 have to be fulfilled. Therefore, we can

choose α1(θ) = θ− 3
4θ

2, α2(θ) = 1
4θ

2, α3(θ) = 1
2θ

2 and α4(θ) = 0 for θ ∈ [0, 1].
See also Table 2 for all coefficients of the continuous SRK scheme CDRS2.

3 Numerical Example

In the following, we approximate some moments of test equations by a Monte
Carlo simulation based on the approximations of the introduced CSRK methods
and analyze the empirical order of convergence. Therefore, we approximate
E(f(Y (t))) for t ∈ I by the sample average uM,h = 1

M

∑M
m=1 f(Y

(m)(t)) of
independent simulated realizations Y (m), m = 1, . . . ,M , of the considered
approximation Y and we choose M = 108. Then, the mean error is given
as µ̂ = uM,h − E(f(X(t))) (see, e.g., [KP99] Sec. 9.4). First, the solution
E(f(X(t))) is considered as a mapping from I to R with t �→ E(f(X(t))).
Since we are interested in a dense output, we apply the CSRK method with
some fixed step size h and then calculate the intermediate points by varying
the parameter θ ∈ [0, 1]. In the following simulations, we consider the cases
θ ∈ {0.1, 0.2, . . . , 0.9}.

The first considered test equation is a non–linear SDE (see (4.4.45) [KP99])

dX(t) =
√
X(t)2 + 1 dt+

√
X(t)2 + 1 ◦ dW (t), X(0) = 0. (25)

For this equation, we choose f(x) = p(arsinh(x)) with the polynomial p(z) =
z3−6z2+8z. Since the solution is given byX(t) = sinh(t+W (t)), one calculates
that E(f(X(t))) = t3 − 3t2 + 2t. The expectation is considered on the interval
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I = [0, 2] as a function of the time t ∈ I. So, we are not only interested in the
expectation of the solution process at a certain fixed time point but on the
whole trajectory on I. For the approximation, we apply the CSRK schemes
CDRS1 and CDRS2 with step size h = 0.25. The approximation results as
well as the errors are plotted along the whole time interval I in the left hand
side of Figure 1, respectively.

The second test equation is a non-linear SDE system for d = m = 2 with
non-commutative noise given by

d
(
X1(t)
X2(t)

)
=
(− 5

4X
1(t) + 9

4X
2(t)

9
4X

1(t) − 5
4X

2(t)

)
dt

+

(√
3
4 (X1(t) −X2(t))2 + 3

20

0

)
◦ dW 1(t)

+

⎛⎝− 1
2

√
(X1(t) −X2(t))2 + 1

5√
(X1(t) −X2(t))2 + 1

5

⎞⎠ ◦ dW 2(t),

(26)

with initial value X(0) = ( 1
10 ,

1
10 )T . First of all, we approximate the first

moment of the solution on I = [0, 1] with step size h = 0.125. The exact
solution can be calculated as E(X1(t)) = 1

10 exp(t) with f(x1, x2) = x1. The
approximations calculated with the CSRK schemes CDRS1 and CDRS2 are
presented in the left hand side of Figure 2 and the corresponding errors
are printed below. We also approximate the second moment which can be
calculated as E((X1(t))2) = 3

50 exp(2t)− 1
10 exp(−t)+ 1

20 with f(x1, x2) = (x1)2

on I = [0, 1]. The corresponding results for the CSRK schemes CDRS1 and
CDRS2 are presented in the left hand side of Figure 3.

Next, SDE (25) and SDE (26) are applied for the investigation of the
order of convergence. Therefore, the trajectories are simulated with step sizes
2−2, . . . , 2−4 for SDE (25) and with step sizes 2−1, . . . , 2−3 for SDE (26). As
an example, we consider the error µ̂ at time t = 1.4 for SDE (25) and at t = 0.2
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p=1.92 for CDRS2
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Fig. 1. Schemes CDRS1 and CDRS2 for SDE (25).
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Fig. 2. Schemes CDRS1 and CDRS2 for SDE (26) w.r.t. E(X1(t)).
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Fig. 3. Schemes CDRS1 and CDRS2 for SDE (26) w.r.t. E((X1(t))2).

for SDE (26), which are not discretization points. The results are plotted on
the right hand side of Figure 1, Figure 2 and Figure 3 with double logarithmic
scale w.r.t. base two. On the axis of abscissae, the step sizes are plotted against
the errors on the axis of ordinates. Consequently one obtains the empirical
order of convergence as the slope of the printed lines. In the case of SDE (25)
we get the order p ≈ 1.92 both for CDRS1 and for CDRS2. In the case of
SDE (26) we get for the approximation of E(X1(t)) the order p ≈ 2.03 for
CDRS1 and p ≈ 2.68 for CDRS2. For the approximation of E((X1(t))2) we
obtain p ≈ 1.88 for CDRS1 and p ≈ 1.99 for CDRS2.

The good empirical orders of convergence confirm our theoretical results.
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with scalar noise. BIT, 46, No.1, 97–110 (2006)
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Summary. Multiple Recursive Generators (MRGs) have become the most popular
random number generators recently. They compute the next value iteratively from the
previous k values using a k-th order recurrence equation which, in turn, corresponds to
a k-th degree primitive polynomial under a prime modulus p. In general, when k and
p are large, checking if a k-th degree polynomial is primitive under a prime modulus p
is known to be a hard problem. A common approach is to check the conditions given
in Alanen and Knuth [1964] and Knuth [1998]. However, as mentioned in Deng [2004],
this approach has two obvious problems: (a) it requires the complete factorization
of pk − 1, which can be difficult; (b) it does not provide any early exit strategy
for non-primitive polynomials. To avoid (a), one can consider a prime order k and
prime modulus p such that (pk − 1)/(p − 1) is also a prime number as considered in
L’Ecuyer [1999] and Deng [2004]. To avoid (b), one can use a more efficient iterative
irreducibility test proposed in Deng [2004].

In this paper, we survey several leading probabilistic and deterministic methods
for the problems of primality testing and irreducibility testing. To test primality
of a large number, it is known that probabilistic methods are much faster than
deterministic methods. On the other hand, a probabilistic algorithm in fact has a
very tiny probability of, say, 10−200 to commit a false positive error in the test result.
Moreover, even when such an unlikely event had happened, for a specific choice of k
and p, it can be argued that such an error has a negligible effect on the successful
search of a primitive polynomial. We perform a computer search for large-order DX
generators proposed in Deng and Xu [2003] and present many such generators in
the paper for ready implementation. An extensive empirical study shows that these
large-order DX generators have passed the stringent Crush battery of the TestU01
package.

1 Introduction

Until recently, the most popular classical generators have been the Linear
Congruential Generators (LCGs) which were proposed by Lehmer [1951]. LCGs
are known to have several shortcomings such as a relatively short cycle by
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today’s standard, questionable empirical performances, and lack of higher-
dimensional uniformity. Since the quality of the random number generators
determines the quality of any simulation study, it is important to find generators
with better properties.

In Section 2, we discuss the Multiple Recursive Generators (MRGs), which
may have taken the role of the classical LCG as the most popular generators.
A maximum-period MRG has a nice property of equi-distribution over a high-
dimensional space. A system of portable and efficient large-order MRGs with a
same nonzero coefficient in the recurrence equation has been proposed by Deng
and Xu [2003] and later extended by Deng [2005]. In this paper, several search
algorithms for a large-order MRG are discussed and compared. The key step
in these algorithms is to check if a given k-th degree polynomial is a primitive
polynomial or not. In Section 3, we discuss the main issue of primitivity
checking of a polynomial. We show that this problem can be converted into
two easier problems: (1) irreducibility testing of a polynomial and (2) primality
testing of a large integer. For both problems (1) and (2), we describe, discuss,
and compare several leading methods. In Section 4, we tabulate a class of DX
generators of large-order k found by the search algorithm described in Section
3. The largest order k of the DX-k generators found is k = 10007 with the
period length approximately 1093384. To evaluate the performance of these
generators, we conduct an extensive empirical study. The results presented
demonstrate that these large-order DX generators have passed the stringent
Crush battery of the TestU01 package.

2 Multiple Recursive Generators

Multiple recursive generators (MRGs) have become one of the most commonly
used random number generators in a computer simulation. MRGs are based
on the k-th order linear recurrence

Xi = (α1Xi−1 + · · · + αkXi−k) mod p, i ≥ k, (1)

for any initial seeds (X0, . . . , Xk−1), not all of them being zero. Here the
modulus p is a large prime number and Xi can be transformed using Ui = Xi/p.
To avoid the possibility of obtaining 0 or 1, Deng and Xu [2003] recommended
Ui = (Xi + 0.5)/p. It is well-known that the maximum period of an MRG is
pk − 1, which is reached if its characteristic polynomial

f(x) = xk − α1x
k−1 − · · · − αk, (2)

is a primitive polynomial. When k = 1, MRG is a linear congruential generator
(LCG) as proposed by Lehmer [1951]. In this case, f(x) = x−B is a primitive
polynomial of degree one whenever B is a primitive root in a finite field of
order p.
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One nice property for a maximum period MRG is that it is equidistributed
up to k dimensions as stated in Lidl and Niederreiter [1994, Theorem 7.43]:
every m-tuple (1 ≤ m ≤ k) of integers between 0 and p−1 appears exactly the
same number of times (pk−m) over its entire period pk − 1, with the exception
of the all-zero tuple which appears one time less (pk−m − 1).

2.1 Efficient Search Algorithm

A set of necessary and sufficient conditions under which f(x) as defined in
(2) is a primitive polynomial has been given in Alanen and Knuth [1964] and
Knuth [1998]:

AK(i) A = (−1)k−1αk must be a primitive element mod p. That is,
A(p−1)/q �= 1 mod p for any prime factor q of p− 1.

AK(ii) xR = (−1)k−1αk mod f(x), where R = (pk − 1)/(p− 1).
AK(iii) For each prime factor q of R, the degree of xR/q mod f(x) is positive.

While Condition AK(i) is straightforward to check, Conditions AK(ii)
and AK(iii) can be difficult to verify when k or p is large. For example,
to verify Condition AK(iii), one needs to find a complete factorization of
R = (pk − 1)/(p − 1). Given the current technology, it is extremely hard to
factor a general integer of 200 (or more) digits. To avoid the difficulty of
factoring R(k, p) = (pk − 1)/(p − 1), one searches for p so that R(k, p) is a
prime number. Clearly, k has to be an odd prime number. This idea was used
first in L’Ecuyer, Blouin and Couture [1993] for k ≤ 7 and later in L’Ecuyer
[1999] for k ≤ 13. Deng [2004] formally proposed a class of prime numbers of
the form R(k, p) and it is called Generalized Mersenne Prime (GMP). This
approach is based on the well-known fact that a primality check of a huge
number is easier than its factorization.

When k is large, Condition AK(ii) is highly inefficient because there is no
early exit strategy when f(x) is not a primitive polynomial. The computing
time to compute xR mod f(x) is constant, for any k-th degree polynomial
f(x). Since the chance of finding a primitive polynomial is less than 1/k, lots
of computing time is wasted. Deng [2004] proposed a much more efficient
algorithm with a built-in early exit strategy:
Algorithm GMP Given a prime order k, choose a prime modulus p such
that R(k, p) = (pk − 1)/(p− 1) is also a prime number. Let f(x) be as in (2).

(i) αk must be a primitive element mod p. If this condition is met, then go to
the next step.

(ii) Initially, let g(x) = x. For i = 1, 2, 3, . . . , �k/2�, do
a) g(x) = g(x)p mod f(x);
b) d(x) = gcd(f(x), g(x) − x);
c) if d(x) �= 1, then f(x) cannot be a primitive polynomial.

If all the loops in Step (ii) have been passed, then f(x) is a primitive
polynomial.



254 L.-Y. Deng

According to our experience, an average increase of O(k) folds of searching
efficiency has been observed when k is large.

3 Checking Primitive Polynomials

Let Zp = {0, 1, 2, . . . , p− 1} be a finite field of p elements. We know that if
f(x) is a k-th degree primitive polynomial over Zp, then f(x) is an irreducible
polynomial over Zp. However, the converse is not true. If f(x) is a k-th degree
irreducible polynomial over Zp, we can then use f(x) to define the finite
field Fpk of pk elements. Specifically, each element θ in Fpk can be uniquely
represented as a polynomial with degree less than k:

θ =
k−1∑
i=0

gix
i, gi ∈ Zp.

The addition and multiplication operations over Fpk are simply the polyno-
mial addition and multiplication under the modulus f(x). Furthermore, an
irreducible polynomial f(x) can become a k-th degree primitive polynomial
if x (more precisely x mod f(x) when k = 1) is a primitive element over Fpk .
That is, we need to show that the smallest e > 0 such that xe = 1 mod f(x)
is G = pk − 1. One quick way to show this is to verify xG/q �= 1 for any
prime factor q of G and xG = 1 mod f(x). This observation can be useful
to explain the conditions AK(i), AK(ii), and AK(iii) required. As explained
earlier, one of the bottlenecks is that we need a complete factorization of pk −1
or R = (pk − 1)/(p− 1). As pointed out in L’Ecuyer [1999] and Deng [2004],
one can avoid this problem by requiring R to be a prime number. Therefore, we
convert the problem of checking primitive polynomial into two easier problems:
the problem of checking irreducible polynomial of f(x) and the problem of
checking the primality of R. We discuss these two problems next.

3.1 Checking Irreducible Polynomials

There are two types of tests for checking irreducible polynomial: determin-
istic and probabilistic. The most popular deterministic test is the iterative
irreducibility test as stated in Crandall and Pomerance [2000, Theorem 2.2.8,
page 88]. The iterative irreducibility test was used in Algorithm GMP. As
explained in Deng [2005], one can use the known identity

xpi − x =
∏

f monic irreducible, deg(f)|i
f(x) mod p. (3)

See Lidl and Niederreiter [1994, Theorem 3.20, page 84]. When i = 1, the
identity in (3) becomes
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xp − x =
p−1∏
a=0

(x− a) mod p

which is the product of all monic linear polynomials. If gcd(f(x), xp − x) �= 1,
then f(x) has at least one linear factor. Thus, f(x) is not irreducible and
therefore cannot be a primitive polynomial. In this case, f(x) failed the first
iteration of Algorithm GMP. Otherwise, we next check whether f(x) has any
common factor with xp2 − x which is the product of all monic 1st and 2nd
degree irreducible polynomials. The process is similarly repeated as described
in Algorithm GMP.

Using the identity in (3), Shoup [1994] gave another set of conditions for a
k-th degree irreducible polynomial f(x). Since the value of k discussed in this
paper is a prime number, somewhat simpler conditions can be used:

(i) gcd(xp − x, f(x)) = 1 and
(ii) xpk

= x mod f(x).

Condition (i) is checking that f(x) has no linear factor. Condition (ii) has a
similar computational complexity as Condition AK(ii) and both do not have
an efficient early exit strategy. Condition (i) is partially effective because it
can provide an early exit only for those f(x) with linear factors.

In addition to these deterministic tests, we consider a randomized test
next.

Trace Map Test

The trace map test as considered in Gathen and Shoup [1992] is a probabilistic
irreducibility test. For a review on the properties of a trace map, see Lidl and
Niederreiter [1994].

Let θ be an element in the finite field Fpk and let

Tr(θ) = θ + θp + θp
2
+ · · · + θpk−1

. (4)

Choose a random polynomial θ = g(x), where deg(g) < k, if Tr(g) is in Zp,
then declare f(x) as irreducible. According to Shoup [1994], the probability of
making a false positive error is less than 1/p which is smaller than 10−9 for
p = 231 − c. While Tr(g) can be computed recursively and more efficiently, it
is still very time-consuming when both k and p are large.

In our opinion, the trace map test is not as efficient as the iterative
irreducibility test for large k and p because there is no early exit strategy for
non-irreducible polynomials. In addition, it is not a deterministic test and there
is a slight probability of making a false positive claim. We can further reduce this
error probability by running several independent tests. Iterative irreducibility
test is quite sensitive to the tiny error (either hardware or software) in the
computation of g(x) = g(x)p mod f(x) and/or d(x) = gcd(f(x), g(x) − x)
during the long iterations in the search process. Depending on the size of k,
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the successful search time can be up to several weeks of the computing time.
Therefore, the computer hardware reliability can become an issue of concern.
According to our own experience, some hardware computing errors occurred
and they did caused some false positive results. Indeed, if a computing error
occurred in the iterated loop of the iterative irreducibility test, it would tend
to falsely pass the condition given in the iterative irreducibility test. On the
other hand, to pass the trace map test, one needs to satisfy the condition
Tr(g) ∈ Zp. A hardware or software error will make the condition Tr(g) ∈ Zp

less (not more) likely to be met. This is because Tr(g) in the equation (4) is
the summation of k terms of gpi

, i = 0, 1, · · · k − 1. Possible computing error
on individual terms tends to cause the total less likely to satisfy the condition
Tr(g) ∈ Zp. Therefore, the trace map test can be very helpful to double check
(to minimize the effect of the tiny possibility of computing errors) for an
irreducible polynomial obtained from the deterministic iterative irreducibility
test.

3.2 Primality Test for Large Integers

Like the irreducible polynomial check, there are two types of integer primality
tests. The first type is a probabilistic test which can be highly efficient but there
is a tiny probability of making an error. The second type is a deterministic
test which can be time-consuming but the conclusion is definite. There was
no general polynomial-time algorithm available until Agrawal, Kayal and
Saxena announced their discovery in 2002. The algorithm is known as the
AKS algorithm and its formal proof is given in Agrawal, Kayal and Saxena
[2004]. However, AKS algorithm is still not yet practical for a large prime
number. Next, we describe our effort to find p for a given prime order k such
that R(k, p) is a probable prime using the randomized test.

For each prime order k, we first find a prime modulus p for probable-
prime of R(k, p) = (pk − 1)/(p − 1). We then verify the primality of R(k, p)
using probabilistic tests via some commercial packages such as Maple and
MATHEMATICA. We further perform industrial prime test as proposed in
Damgrard, Landrock, and Pomerance [1993]. See also Algorithm 3.4.7 in
Crandall and Pomerance [2000, page 126] for industrial prime test. They also
discussed that the probability of making false positive error can be made to
be much smaller than 10−200. This error probability is much smaller than
the computer software error or the hardware error. Therefore, according to
Crandall and Pomerance [2000, page 127], it can be safely accepted as a “prime”
in all but the most sensitive practical applications.

In addition to choosing p for which (pk − 1)/(p − 1) is also a prime, we
require that both p and Q = (p−1)/2 are prime numbers. Here, Q is commonly
called a Sophie-Germain prime number.

The search time of p listed in Table 1 is random and it is, in general, an
increasing function of k. In total, several months of CPU times were spent to
search for the p as listed in Table 1.
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Table 1: List of k, c and p = 231 − c for which (pk − 1)/(p − 1) is a prime.

k c p = 231 − c log10(p
k − 1)

5003 1259289 2146224359 46686

6007 9984705 2137498943 56045

7001 610089 2146873559 65332

8009 5156745 2142326903 74731

9001 7236249 2140247399 83984

10007 431745 2147051903 93384

Effect of Primality Test on Search Algorithm

Even if an unlikely mistake were made, for a specific choice of k and p, it has
a negligible effect on the successful search of primitive polynomial. If R(k, p)
is not a prime, then we need to check condition AK(iii) as required. Let us
assume that R(k, p) = H ×Q, where Q is the “smaller” prime factor. From
some elementary number theory, one can see that the chance of satisfying
condition AK(ii) but not condition AK(iii) is roughly proportional to 1/Q. The
current computer factorization programs are capable of finding a factor of 50
(or more) digits. Therefore, in the unlikely event R(k, p) is not a prime number,
we only have a tiny chance (say, 10−50 or less) to mis-classify a non-primitive
polynomial. For all practical purpose, once the irreducibility test is passed
and R(k, p) is shown as a probable prime, we can safely assume that we have
found a primitive polynomial.

4 Table of Large Order DX-k Generators

4.1 DX-k-s Generators

Deng and Lin [2000] proposed Fast MRG (FMRG) which is a maximal period
MRG with minimal number terms of nonzero coefficient. FMRG is almost as
efficient as the classical LCG. Deng and Xu [2003] and Deng [2005] proposed
DX generators as a system of portable, efficient, and maximal period MRGs
where coefficients of the nonzero multipliers are the same:

1. DX-k-1 (α1 = 1, αk = B).

Xi = Xi−1 +BXi−k mod p, i ≥ k. (5)

2. DX-k-2 (α1 = αk = B).

Xi = B(Xi−1 +Xi−k) mod p, i ≥ k. (6)

3. DX-k-3 (α1 = α�k/2� = αk = B).

Xi = B(Xi−1 +Xi−�k/2� +Xi−k) mod p, i ≥ k. (7)
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4. DX-k-4 (α1 = α�k/3� = α�2k/3� = αk = B).

Xi = B(Xi−1 +Xi−�k/3� +Xi−�2k/3� +Xi−k) mod p, i ≥ k. (8)

Here the notation (x) is the ceiling function of a number x, returning the
smallest integer ≥x. For the class DX-k-s, s is the number of terms with
coefficient B.

4.2 List of DX-k-s Generators

Using Table 1 and Algorithm GMP, it is straightforward to find the DX-k-s
generators. In Table 2, we list DX-k generators with B < 230.

As a simple illustration, we find DX-10007-s generator from Table 2, with
k = 10007, and p = 2147051903. For s = 2, we have

Xi = 1073702542(Xi−1 +Xi−10007) mod p.

For s = 4, we have

Xi = 1073730725(Xi−1 +Xi−3336 +Xi−6672 +Xi−10007) mod p.

All of the DX-10007 generators listed in Table 2 have the same period length
approximately 1093384. If the generating speed is the main concern, then we
recommend DX-k-2 generators. Otherwise, we recommend DX-k-4 generators
for their better lattice structure over dimensions larger than k. Similarly, if
the memory space is the major concern, then we recommend smaller values of
k such as DX-47 proposed in Deng [2005]. Otherwise, we recommend using the
largest possible value of k like the DX-10007 generators for its high-dimensional
equi-distribution property and its extremely long period.

As explained in Deng [2005], such DX generators with B < 230 can be
implemented using 64-bit data types/operations. Without using such data
type, a portable implementation of MRGs can be used at the expense of slight
generating inefficiency. See Deng [2005] for details.

If 64-bit data types/operations are unavailable, under IEEE double precision
standard, one can use upper limits for B as considered in Deng and Xu [2003]
for DX-k-s generators:

B < 2e, where e = 20, when s = 1, 2; e = 19, when s = 3, 4. (9)

Table 2: List of k, p and B < 230 for DX-k-s.
k p s = 1 s = 2 s = 3 s = 4

5003 2146224359 1073727083 1073741516 1073730698 1073740466

6007 2137498943 1073738651 1073715261 1073729141 1073738504

7001 2146873559 1073709808 1073728419 1073738188 1073735327

8009 2142326903 1073717208 1073726014 1073733016 1073719175

9001 2140247399 1073737583 1073717540 1073733156 1073732451

10007 2147051903 1073726195 1073702542 1073723329 1073730725
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Table 3: List of k, p and min B and B < 2e in (9) for DX-k-s generators.

min B B < 2e

k s = 1 s = 2 s = 3 s = 4 s = 1 s = 2 s = 3 s = 4

5003 15851 10302 6616 8461 1041088 1039973 506762 487092

6007 932 8158 608 35 1046897 1015366 519071 519501

7001 12685 78782 171 28492 1026965 1014115 521869 506984

8009 41317 39951 35208 20374 1041446 1046062 519082 518174

9001 542 17053 5474 8057 1045508 1040383 515350 523991

10007 44166 26540 13759 9520 1042089 1042654 515671 493723

In addition, we also search for the smallest B such that DX-k-s achieving
the maximum period and we list these DX generators found in Table 3.

Following a similar discussion in Deng [2005], we remark that the DX
generators under “minB” in Table 3 are not recommended but they can be
useful to determine the “power” of empirical tests. So far, no general purpose
empirical tests have been found to fail such DX generators with small values
of B.

4.3 Empirical Evaluations

There are several well-known empirical test packages for testing a random
number generator: (1) DIEHARD proposed in Marsaglia [1996], (2) NIST
package and (3) TestU01 test suite which was developed by Professor L’Ecuyer
with the source code from http://www.iro.umontreal.ca/~lecuyer/. See
L’Ecuyer and Simard [2006] for more details. It is by far the most comprehensive
test suite. There are three predefined test modules in TestU01:

1. Small crush: it has 15 tests and it takes less than 1/2 minute of computing
time.

2. Crush: it has 144 tests and its running time is about 1.5 hours.
3. Big crush: it is most comprehensive with 160 tests and it may require

more than 12 hours of computing time.

We apply Crush battery of tests in TestU01 with five different starting
seeds: 1, 12, 123, 1234 and 12345 and we use an LCG whose multiplier is
the same as B to generate the required k initial seeds. In total, there are
72 (= 6(k) × 3(B) × 4(s)) DX generators found in Table 2 and Table 3.
Therefore, we obtain 51840 (= 72 × 144 × 5) p-values. The number of tests
with p-values less than 0.001 are tabulated in Table 4.

Table 4: Results of Crush test on DX generators (51840 p-values).

p-value <10−3 <10−4 <10−5 <10−6 <10−7

counts 57 9 2 1 0
percentage 0.001033 0.000163 0.000036 0.000018 0.000000
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As we can see from Table 4, none of these 51840 tests produces p-values
that are smaller than 10−7. The percentage of tests producing p-values which
are below 10−3 is 0.001033 which is very close to its nominal value of 0.001. In
addition, none of these 51840 tests produces p-values that are too close to 0 or
1. We believe all 72 DX generators listed in Table 2 and Table 3 have passed
the Crush test.

5 Open Problem: Generalized Lucas-Lehmer Test?

The Lucas-Lehmer test is an efficient deterministic primality test for determin-
ing if a Mersenne number Mk = 2k − 1 is a prime number. It is based on the
sequence Si = S2

i−1 − 4 mod Mk, i ≥ 1, S0 = 4. According to Lucas-Lehmer
test, Mk is a prime number if and only if Sk−2 = 0 mod Mk. See, for example,
Crandall and Pomerance [2000].

The problem is whether it is possible to find an efficient deterministic
primality test (like a generalized version of the Lucas-Lehmer test) for a
generalized Mersenne number R(k, p) = (pk − 1)/(p− 1), where both p and k
are prime numbers. Clearly, Mk = R(k, 2). To the best of our knowledge, it is
still an open problem.

As mentioned earlier, for a general integer n, AKS algorithm is a famous
polynomial-time (some polynomial of ln(n)) for testing whether n is a prime
number. Currently, AKS algorithm and other deterministic primality tests
are not (yet) practical for a very large R(k, p) where both k and p are large.
The above open problem has some useful applications in the area of random
number generation as described in this paper.
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Summary. DX-k, proposed by Deng and Xu [2003], is a special class of Multiple
Recursive Generators (MRGs) where all nonzero coefficients of the k-th order recur-
rence are equal. In particular, a DX-k generator requires only up to four nonzero
coefficients in its recurrence equation, hence is very efficient in computation. However,
a random number generator with few nonzero coefficients has a drawback that, when
the k-dimensional state vector is close to the zero vector, the subsequent numbers
generated may stay within a neighborhood of zero for quite many of them before
they can break away from this near-zero land, a property apparently not desirable in
the sense of randomness. Consequently, two generated sequences using the same DX
generator with nearly identical initial state vectors may not depart from each other
quickly enough. To avoid the above potential problem, we consider MRGs with very
few zero coefficients. To make such generators efficient and portable, we propose se-
lecting the same nonzero value for all coefficients (with at most one exception) in the
recurrence equation. With this feature, the proposed generators can be implemented
efficiently via a higher-order recurrence of few zero coefficients. Note that the new
class of generators is an opposite of the DX generators in terms of the number of
nonzero coefficients. Several such generators with the maximum period have been
found via computer search and presented in the paper for ready implementation.

1 Introduction

Multiple Recursive Generators (MRGs) are popular random number generators
(RNGs) that each generates pseudo random numbers based on a k-th order
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linear recurrence equation with a large prime modulus p. When k = 1, MRGs
reduce to Lehmer’s [1951] Linear Congruential Generators (LCGs).

Deng and Xu [2003] proposed a special class of efficient and portable MRGs
with modulus p and order k, called the DX-k-s generators, in which all of the
s (up to 4) nonzero coefficients of the recurrence equation are equal. With
the advantage that only a single multiplication is needed in computing the
recurrence equation, a DX-k-s generator usually generates random numbers
faster than an MRG of a general form. One potential problem with the DX-k-s
generators is that the recovery from a poor state may be fairly slow. More
specifically, when the k-dimensional state vector for the recurrence is close
to the zero vector, the subsequent numbers generated may stay within a
neighborhood of zero for quite many of them before they can break away
from this near-zero land, a property apparently not desirable in the sense of
randomness. This is due to the fact that only few nonzero terms are used in the
recurrence. This undesirable effect can be somewhat diminished by considering
more nonzero terms, such as s = 3 or s = 4. While we could have considered
even larger values of s for further improvement, unfortunately it would be
harder to maintain the efficiency and portability of the generators at the same
time.

To overcome the above potential problem, in this paper, we propose another
class of efficient and portable MRGs that have many nonzero coefficients in the
recurrence, a complete opposite of the DX-k-s generators in terms of the number
of nonzero coefficients. To achieve the computational efficiency and maintain
the portability, we impose a special structure on the nonzero coefficients such
that the generators can be efficiently implemented by a recurrence equation
of order k + 1 in which there are only few nonzero coefficients. Using the
efficient search algorithm proposed by Deng [2004], we have obtained a list of
maximum-period generators with order k up to 10007.

2 MRG and DX Generators

2.1 Multiple Recursive Generator (MRG)

An MRG generates the next number, Xi, recursively based on a linear congru-
ential combination of the components of the most recent k-dimensional state
vector (Xi−k, · · · , Xi−1):

Xi = α1Xi−1 + · · · + αkXi−k mod p , i ≥ k, (1)

where the modulus p is a large prime and the multipliers α1, · · · , αk are integers
between 0 and p−1, inclusively. Here, k is a positive integer called the order of
the MRG. The initial values (X0, · · · , Xk−1) are called the seeds and they can
be arbitrarily chosen as long as not all of them are zero. Xi can be converted
into a real value between 0 and 1 by either Ui = Xi/p or, as recommended by
Deng and Xu [2003], Ui = (Xi + 0.5)/p.
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The characteristic polynomial of the MRG defined by the recurrence equa-
tion (1) is f(x) = xk − α1x

k−1 − · · · − αk. The largest possible period of an
MRG is p k − 1, which is achieved if and only if the characteristic polynomial
f(x) is a primitive polynomial modulo p. Alanen and Knuth [1964] and Knuth
[1998] described some conditions for a polynomial to be a primitive polynomial.
However, it is difficult to check their conditions directly in practice, especially
when the values of k and p are large. Alternatively, Deng [2004] proposed an
efficient algorithm that bypasses the difficulty of factoring a large number
and provided an early exit strategy for a failed search to achieve a better
efficiency. We remark that the idea of bypassing factoring a large number was
first suggested by L’Ecuyer, Blouin, and Couture [1993].

The MRGs with the maximum period of pk − 1 enjoy the nice property of
equi-distribution up to k dimensions, i.e., every m-tuple (m ≤ k) of integers
between 0 and p− 1 appears exactly the same number of times over its entire
period p k − 1 with the exception that the all-zero tuple appears one time less.
See Lidl and Niederreiter [1994] for further details.

2.2 DX Generators

When the order k becomes large, generating numbers from a general MRG can
be slow. To improve the efficiency of MRGs, researchers have considered the
recurrence equations with only a small number of nonzero terms. Deng [2005]
proposed a class of DX-k-s-t generators, where k is the order of the generator,
s specifies the number of nonzero terms with the equal coefficient B, and t
indicates how far back the first nonzero term is in the recurrence equation. If
efficiency is a major consideration, Deng [2005] recommended the DX-k-s-2
generator with αt = αk = B, 1 ≤ t < k, which is

Xi = B(Xi−t +Xi−k) mod p, i ≥ k. (2)

Otherwise, Deng [2005] recommended the DX-k-s-4 generator with αt =
α�k/3� = α�2k/3� = αk = B, 1 ≤ t < (k/3), which is

Xi = B(Xi−t +Xi−�k/3� +Xi−�2k/3� +Xi−k) mod p, i ≥ k, (3)

where the notation (x) is the ceiling function of a number x, returning the
smallest integer ≥ x. Since it requires only one multiplication and a small
number of additions to compute the recurrence equation, the DX generators
are efficient.

2.3 Lattice Structure

For LCGs and low-order MRGs, it is common to evaluate the performance using
the lattice structure criterion. More specifically, we study the structure of the d
consecutive elements of the sequence, {(Xi, Xi+1, · · · , Xi+d−1) | i = 0, 1, · · · },
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produced by a random number generator, or equivalently by its uniform(0,1)
counterpart, {(Ui, Ui+1, · · · , Ui+d−1) | i = 0, 1, · · · }. If the generated se-
quence is indeed a realization of a sequence of truly independent uniform
random variables, then these d-tuples should be uniformly distributed over
the d-dimensional cube. For LCGs, Marsaglia [1968] was the first to show
that successive overlapping sequences of d random numbers fall on at most
(d !m)1/d hyperplanes, where m is the modulus chosen. This shortcoming may
yield grossly wrong results for certain applications, such as in the Monte Carlo
multiple-integration method. For an MRG, when d > k, all the d consecutive
points lie on some parallel hyperplanes in the d-dimensional space. Therefore,
the corresponding d-dimensional lattice structure can be an important property
for an MRG.

One quantitative measure of the lattice structure is the spectral test corre-
sponding to the maximum-distance between two adjacent parallel hyperplanes.
Clearly, we would prefer the generator with the smaller maximum-distance
because no points in between these adjacent hyperplanes can be generated. In
theory, a good uniform random number generator should produce points that
fill evenly the whole space. A smaller maximum-distance can avoid large slices
of empty space so that the generated number sequences can be more uniformly
distributed over the whole space. L’Ecuyer [1997] pointed out that a necessary
but not sufficient condition for an MRG to have a good lattice structure (over
dimensions larger than k) is that the sum of squares of all coefficients,

∑k
i=1 α

2
i ,

is large. However, this condition will not have any effect on the equidistribution
property over dimensions less than k for the maximum-period MRGs. A similar
condition for a “good” RNG was given in Deng, Lin, Wang, and Yuan [1997]
from a statistical justification viewpoint. Consequently, among various DX-k-s
generators, we prefer the ones with a large order k and large values of s and B.

2.4 Potential Problems of DX Generators

L’Ecuyer [1997] proposed to perform spectral tests on points of subsequences
taken from nonsuccessive indices. With that, L’Ecuyer and Touzin [2004]
analyzed some special cases of DX-k-s generators with s = 1, 2. They chose
some specific subsequences such as Sk = {(Ui, Ui+k−1, Ui+k) | i = 0, k +
1, 2(k + 1), · · · } and then performed low-dimensional spectral tests. Their
empirical study showed that some DX-k-s generators have bad lattice structures
especially for those with s = 1, 2 and a small nonzero coefficient such as B = 23.
As pointed out in Deng [2005], for a given selection of subsequence Sk, we can
avoid the bad-lattice problem by considering t > 1, larger values of s, and/or
larger values of B in the DX-k-s-t generators. On the other hand, if the specific
generator used is known, one can construct a specific subsequence with a bad
lattice structure. For illustration, we give two examples. For an LCG with
known prime modulus p, we can construct from the original sequence a bad
subsequence of variates that are (p− 1)/q apart, where q is a small factor of
(p− 1). It is easy to see that the period length of the subsequence is reduced
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to q. Similarly, for a maximum-period MRG of order k, we can find a bad
subsequence containing variates that are (pk − 1)/q apart, where q is a factor
of pk − 1.

Like most other popular random number generators, DX generators can
suffer from the effect of extremely bad initializations. For two distinct but
extremely close initialization vectors, DX generators may require long iterations
for their output sequences to become far apart. For an initial vector very close
to the zero vector, the numbers in the sequence produced by DX generators
may stay within a neighborhood of zero for quite many of them before getting
away far enough from zero, indicating these numbers are not quite random.
This effect was first observed by Panneton, L’Ecuyer, and Matsumoto [2006] for
MT19937, a popular generator proposed by Matsumoto and Nishimura [1998].
MT19937 is based on a linear recurrence of order k = 19937 and modulo p = 2.
It has a period of 219937 − 1 ≈ 106001.6 and the equi-distribution property up
to 623 dimensions.

Let ei = (0, 0, · · · , 0, 1, 0, · · · , 0) be the i-th unit vector in the k-dimensional
Euclidean space. For the original DX-k-s generators proposed by Deng and
Xu [2003] (i.e., the DX-k-s-t generators with t = 1), the worst initial vector
is ek−1 = (0, 0, · · · , 0, 1, 0). When s = 1, the generator produces k − 2 zeros
followed by k − 1 values of B. If s = 2, it produces k − 2 zeros followed by
B,B2, B3, · · · . For s = 3 or 4, it produces a sequence starting with k/(s− 1)
zeros. For s = 1 or s = 2, choosing a larger value of t in DX-k-s-t generators
can be helpful in getting the generated numbers more quickly away from the
near-zero land.

Notice that the “bad initialization effect” occurs only for certain almost-
identical k-dimensional seed vectors. Unless chosen purposely, it is extremely
unlikely for two streams of random sequences to have their k-dimensional state
vectors almost identical at any stage. Thus, the practical significance of the
bad initialization effect is still unclear due to its extremely rare occurrence. As
reported in Deng [2005], DX-k-s-t generators passed several stringent empirical
tests without any problems. Nevertheless, it is still desirable to find a class
of generators that do not suffer from the above-described “bad initialization
effect” without losing the properties of portability and efficiency.

In the next section, we extend the DX generators to a general class of
efficient and portable MRGs with many nonzero terms.

3 A General Class of Efficient Generators

The DX-k-s-t generators are efficient because there are only few nonzero terms
in the recurrence equations and they have the same coefficient. To construct
a class of efficient generators, one can consider a special class of MRGs that
have at most two different nonzero coefficients, say, A and B. Define two index
sets, SA = {j | αj = A} and SB = {j | αj = B}. Since A �= B, SA ∩ SB = ∅.
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A generator in this general class has the following form:

Xi = A
∑

j∈SA

Xi−j +B
∑

j∈SB

Xi−j mod p. (4)

Clearly, one simple way to make this class of generators efficient is to
have only few elements in both SA and SB. Indeed, DX-k-s-t generators are
constructed using this principle. Notice that s = #(SB), the number of indices
in the set SB .

When the numbers of the indices in SA and/or SB are large (i.e., #(SA)
and/or #(SB) are large), it is still possible to find an efficient implementation
for some generators as in (4). The idea is to impose a special structure on both
SA and SB so that the equation (4) can be rewritten as a simpler higher-order
recurrence equation. Two classes of such generators are discussed next.

3.1 DL Generators

Li [2005] considered a class of DL generators as in (4) corresponding to
SA = {1, 2, 3, · · · , t− 1} and SB = {t, t+ 1, · · · , k}, 1 ≤ t < k. Specifically, a
DL generator is defined as:

Xi = A(Xi−1 + · · · +Xi−t+1) +B(Xi−t + · · · +Xi−k) mod p, (5)

for i > k. Note that the t here plays a similar role as the t in DX-k-s-t. Utilizing
higher-order recurrence, DL generators can be implemented efficiently as:

Xi = Xi−1 +A(Xi−1 −Xi−t) +B(Xi−t −Xi−(k+1)) mod p, i ≥ k+ 1, (6)

where X0, X1, · · · , Xk−1 are the initial seeds and Xk is computed according to
equation (5). Li [2005] and Deng, Li, and Shiau [2005] considered and tabulated
this general class of DL generators for the order k ≤ 1709.

From the above equation, we can see that only two multiplications and
several additions/subtractions are needed for calculating the next value. To
further improve the efficiency and portability, we can take the coefficient A =
0,−1, 1, or −B to reduce one multiplication and several addition/subtraction
operations. In particular, when A = 0, it leads to a simpler form:

Xi = B(Xi−t +Xi−t−1 + · · · +Xi−k) mod p, i ≥ k, t ≥ 1. (7)

For simplicity, we consider and study in this paper this special case of A = 0
and t = 1 and refer to it as the DL-k generators. Such DL generators can be
implemented efficiently by:

Xi = Xi−1 +B(Xi−1 −Xi−(k+1)) mod p, i ≥ k + 1. (8)

It is interesting to note that two generators considered in Marsaglia [1996]
are special cases of DL-k generators of a very small order (k = 3) with
B = 210, p = 232 − 5 and B = 220, p = 232 − 209.
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As we can see from (8), the (k + 1)-th order recurrence equation for the
DL-k generator has a simple structure similar to that of the DX-k-s-2 generator.
As discussed before, its lattice structure over dimensions larger than k may not
be great. However, the order k under discussion in this paper is already so large
that this imperfection is probably of no practical significance. Nevertheless, in
the next subsection, we present another special class of generators (4) that
has better lattice structure than the DL-k generators.

3.2 The New DS Generators

In this paper, in addition to the DL-k generators (8), we consider a new class
of generators with many nonzero coefficients:

Xi = B
k∑

j=1

Xi−j −DXi−d mod p. (9)

By introducing parameters B, D for the multipliers and d for the index, we
expand the search parameter space for the maximum-period generators in
the new class. Furthermore, the complexity of the recurrence equation for the
corresponding generators is increased as well. We refer to this class of MRGs
as the DS generators. Like DL generators, DS generators can be efficiently
implemented via the following (k + 1)-th order recurrence:

Xi = Xi−1 +B(Xi−1 −Xi−k−1) −D(Xi−d −Xi−(d+1)) mod p, i ≥ k + 1,
(10)

where X0, X1, · · · , Xk−1 are the initial seeds and Xk is computed by equa-
tion (9).

There are several special cases of interest for the DS generators. When
D = 0, the DS generator is the same as the DL generators with A = 0 and
t = 1 (i.e., the DL-k generator in (8)). When D = B, the DS generator has
exactly one zero coefficient at the d-th term:

Xi = B
k∑

j=1,j �=d

Xi−j mod p, (11)

which can be efficiently implemented as

Xi = Xi−1 +B(Xi−1 −Xi−d +Xi−d−1 −Xi−k−1) mod p, i ≥ k + 1. (12)

The parameter d of the zero-coefficient index can be chosen arbitrarily. For
simplicity, we refer to the case of d = (k/2) as the DS-k generators.

Comparing equations (8) and (12), we can see that the higher-order im-
plementation of DS-k generators has a more complex recurrence than that
of DL-k generators. Therefore, DS-k generators may have a better lattice
structure for dimensions larger than k as described in Section 2.3. Note that
both DS and DL have the “perfect” lattice structure for dimensions up to k.
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3.3 DL and DS Generators of Large Order

To select a prime modulus p for a prime order k, we follow the approach taken
in L’Ecuyer, Blouin, and Couture [1993] and Deng [2004]. For a prime k, select
a prime p such that R(k, p) = (pk − 1)/(p− 1) is prime. For a 32-bit RNG, fix
k and find c such that both p = 231 − c and R(k, p) are prime. Note that some
prime modulus was found in L’Ecuyer, Blouin, and Couture [1993] for k = 7
and in L’Ecuyer [1999] for k = 13. Deng [2004] listed some prime modulus p
for k up to 1511. Deng [2007] found some prime modulus p for k up to 10007.

With the k and p given in Deng [2007], we can then apply the “Algorithm
GMP” proposed in Deng [2004] to find the DL-k and DS-k generators. Following
the approach proposed in Deng [2005], we search for the coefficient B for the
corresponding DS-k or DL-k generators sequentially from the upper bound of
B < 230. Table 1 lists some generators found.

The search time for DS-k or DL-k generators is generally an increasing
function of k and the search time varies from a few hours to a month.

We use k = 10007 to illustrate the DL and DS generators. For the DL-10007
generator listed in Table 1, we find

Xi = 1073730057(X1 + · · · +Xi−10007) mod 2147051903,

which can be implemented efficiently as

Xi = Xi−1 + 1073730057(Xi−1 −Xi−10008) mod 2147051903, i ≥ 10008.

Similarly, the DS-10007 generator can be implemented efficiently as

Xi = Xi−1 + 1073668540(Xi−1 −Xi−5004 −Xi−5005 −Xi−10008)
mod 2147051903.

The period length of the DS-10007 and DL-10007 generators is approximately
1093384.

As discussed in Deng and Xu [2003] and Deng [2005], for maintaining
portability, it is common to impose certain limits on the size of B. Thus, in
addition to the largest B < 230 given in Table 1, we also search for the smallest
B and the largest B < 2e of the maximum-period DL-k (with e = 20) and
DS-k (with e = 19) generators. We list these generators in Table 2.

Table 1: List of k, c, p = 231 − c and B for DL/DS generators.

k c p = 231 − c log10(p
k − 1) B for DL-k B for DS-k

5003 1259289 2146224359 46686 1073741664 1073737044

6007 9984705 2137498943 56045 1073739168 1073741104

7001 610089 2146873559 65332 1073741583 1073738430

8009 5156745 2142326903 74731 1073734663 1073740201

9001 7236249 2140247399 83984 1073696126 1073727087

10007 431745 2147051903 93384 1073730057 1073668540
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Table 2: List of k, p, with min B and B < 2e for DL/DS generators.

k p DL (min B) DS (min B) DL (B < 220) DS (B < 219)

5003 2146224359 8724 55302 1043251 510495

6007 2137498943 1900 342 1048062 510422

7001 2146873559 15167 32335 1013185 523310

8009 2142326903 27417 9776 1047374 511773

9001 2140247399 12431 19109 1043023 499683

10007 2147051903 11507 17267 1044762 523227

The DL and DS generators under “minB” in Table 2 are not recommended
because the value of B is small. But they can be useful to determine the
“power” of the empirical tests used. We remark that no empirical tests that
we know of have failed these generators with a small B. The generators under
“(B < 2e)” are recommended when 64-bit integer type is not available and
the generating efficiency is a major concern. For a portability consideration,
different upper bounds are used for DL and DS generators. This is because
there are different numbers of terms with coefficient B in equations (8) and
(12). See Deng and Xu [2003] and Deng [2005] for more explanations.

4 Summary and Conclusion

In addition to the DL generators, we propose the DS generators as a special
class of MRGs and as an alternative to DX generators. DS-k generators
may have a better lattice structure for dimensions higher than k than DL-k
generators. Both DL and DS generators have the following nice features: (1)
they enjoy many nice properties such as the equi-distribution and huge period,
since they are MRGs with special structures; (2) they can be implemented
efficiently because of their special forms of the common nonzero coefficients
(typically, only one multiplication operation and few addition or subtraction
operations are needed); (3) they have excellent empirical performances when
tested with the comprehensive and stringent test package TestU01. Above
all, the great feature that makes the DL/DS generators distinct is that the
DL/DS generators can recover a lot more quickly from bad initializations such
as near-zero initial vectors than many other popular efficient generators.
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Summary. In analogy to a recent paper by Kuo, Sloan, and Woźniakowski, which
studied lattice rule algorithms for approximation in weighted Korobov spaces, we
consider the approximation problem in a weighted Hilbert space of Walsh series. Our
approximation uses a truncated Walsh series with Walsh coefficients approximated by
numerical integration using digital nets. We show that digital nets (or more precisely,
polynomial lattices) tailored specially for the approximation problem lead to better
error bounds. The error bounds can be independent of the dimension s, or depend
only polynomially on s, under certain conditions on the weights defining the function
space.

1 Introduction

We introduce an algorithm to approximate functions f : [0, 1]s → in certain
Hilbert spaces. These spaces are in analogy to weighted Korobov spaces (see
[SW01]), but instead of trigonometric functions we use Walsh functions, see
Section 2. Recently, the approximation problem has been studied in [KSW06],
where a function from the weighted Korobov space is approximated by a
truncated Fourier series, with the remaining Fourier coefficients approximated
using lattice rules. Here, in analogy, we want to approximate functions from
a Hilbert space of Walsh series using digital nets (see [Nie92b] or Section 4
below).

More precisely, every function f in our Hilbert space Hs is given by its
Walsh-series representation

f(x) =
∑

k∈ s
0

f̂(k)walk(x), with f̂(k) :=
∫

[0,1]s
f(x)walk(x) dx, (1)
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where 0 = {0, 1, 2, . . .} denotes the set of nonnegative integers, and f̂(k) are
the Walsh coefficients associated with the Walsh functions walk(x) (see (3)
and (4) below). For functions f ∈ Hs, the values of |f̂(k)| are larger for k
“closer” to 0. We introduce a set As of vectors k ∈ s

0 that are close to 0 in
some sense, and we approximate f by the Walsh polynomial

F (x) :=
∑

k∈As

F̂ (k)walk(x), with F̂ (k) :=
1
N

N−1∑
n=0

f(xn)walk(xn), (2)

where {x0, . . . ,xN−1} ⊆ [0, 1)s is a digital net. A similar algorithm for lattice
rules was proposed in [Kor63] and has recently been studied in [KSW06] (see
also [KSW07, LH03, ZLH06]).

It is natural to use digital nets for the approximation of the integrals arising
from the Walsh coefficients, since Walsh functions are characters over the group
formed by digital nets (see [DP05b] or (13) below), which implies that the
Walsh coefficients are aliased via the so-called dual net D (see [DP05b] or (12)
below), i.e., it can be shown that

F̂ (k) = f̂(k) +
∑
h∈D

f̂(h ⊕ k),

where ⊕ denotes digit-wise addition modulo b, and it is to act on the vectors
component-wise. If the dual net D contains only elements k which are in
some sense large and f̂(k) is small for large k, then F̂ (k) will be a good
approximation of f̂(k), as

∑
h∈D f̂(h ⊕ k) is small in this case compared

to f̂(k). Hence the Walsh polynomial F (x) will give a good approximation
to f(x).

There are several ways of finding suitable digital nets. One choice is to
construct polynomial lattices which are suitable for integration in the space Hs

(see [DKPS05]). This way one can make use of the weights (see [SW98]), which
are introduced to moderate the importance of successive variables. Another
way is to use existing digital nets, say, obtained from the Sobol ′ sequence or
the Niederreiter sequence. The third method is to construct polynomial lattices
for approximation directly. This construction is similar to the one considered
in [DKPS05], but with a different quality measure which appears in the upper
bound on the approximation error and, at least theoretically, yields a better
approximation algorithm. This is also in analogy to the results for lattice rule
algorithms in [KSW06] for approximation in weighted Korobov spaces.

We also study tractability and strong tractability of the approximation
problem in Hs. Strong tractability means that the error converges to zero with
increasing N independently of the dimension s whereas tractability means
that the error converges with N with at most a polynomial dependence on s.
We show that our approximation algorithms based on digital nets achieve
tractability or strong tractability error bounds under certain conditions on the
weights. These results are again analogous to the results in [KSW06].
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This paper is organized as follows. We introduce the weighted Hilbert space
of Walsh series in Section 2, and we discuss the approximation problem in
Section 3. In Section 4 we review and develop results on digital nets for the
integration problem that are relevant to the approximation problem. The final
section, Section 5, contains the main results of this paper as discussed above.

2 Weighted Hilbert Spaces of Walsh Series

Let b ≥ 2 be an integer – the base. (Later we will restrict ourselves to a prime
base b for simplicity.) Let 0 denote the set of nonnegative integers.

Each k ∈ 0 has a b-adic representation k =
∑∞

i=0 κib
i, κi ∈ {0, . . . , b− 1}.

Each x ∈ [0, 1) has a b-adic representation x =
∑∞

i=1 χib
−i, χi ∈ {0, . . . , b−1},

which is unique in the sense that infinitely many of the χi must differ from
b− 1. If κa �= 0 is the highest nonzero digit of k, we define the Walsh function
walk : [0, 1) −→ by

walk(x) := e2πi(χ1κ0+···+χa+1κa)/b. (3)

For dimension s ≥ 2 and vectors k = (k1, . . . , ks) ∈ s
0 and x = (x1, . . . , xs) ∈

[0, 1)s we define walk : [0, 1)s −→ by

walk(x) :=
s∏

j=1

walkj (xj). (4)

It follows from the definition above that Walsh functions are piecewise
constant functions. For more information on Walsh functions, see, e.g., [Chr55,
Wal23].

We consider functions in a weighted Hilbert space of Walsh series. This
function space was considered in [DKPS05, DP05a, DP05b]; the notion of
weights was first introduced in [SW98].

Let α > 1, s ≥ 1, and b ≥ 2 be fixed. Let γ = (γj)∞j=1 be a sequence
of non-increasing weights, with 0 < γj ≤ 1 for all j. The weighted Hilbert
space Hs = Hwal,b,s,α,γ is a tensor product of s one-dimensional Hilbert spaces
of univariate functions, each with weight γj . Every function f in Hs can be
written in a Walsh-series representation (1).

The inner product and norm in Hs are defined by

〈f, g〉Hs :=
∑

k∈ s
0

r(α,γ,k)−1f̂(k) ĝ(k),

and ‖f‖Hs
:= 〈f, f〉1/2

Hs
, where r(α,γ,k) :=

∏s
j=1 r(α, γj , kj), with

r(α, γ, k) :=

{
1 if k = 0,
γ b−αψb(k) if k �= 0,

and ψb(k) := �logb(k)�. (5)
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(Equivalently, ψb(k) = a iff κa �= 0 is the highest nonzero digit in the b-adic
representation of k =

∑∞
i=0 κib

i.) For x > 1 we define

µ(x) :=
∞∑

k=1

b−xψb(k) = (b− 1)
∞∑

a=0

b−(x−1)a =
bx(b− 1)
bx − b . (6)

(The equalities hold since for any a ≥ 0 there are ba(b− 1) values of k ≥ 1 for
which ψb(k) = a.)

The space Hs is a Hilbert space with the reproducing kernel (see [Aro50,
DP05b])

K(x,y) =
∑

k∈ s
0

r(α,γ,k) walk(x) walk(y).

The kernel satisfies the reproducing property 〈f,K(·,y)〉Hs
= f(y) for all

f ∈ Hs and all y ∈ [0, 1)s.
As we have said in the introduction, we approximate functions from Hs

by truncated Walsh series, see (2). Now we define precisely the set of Walsh
terms to remain in the truncated Walsh series. In analogy to [KSW06], let
M > 0 and define

As(M) := {k ∈ s
0 : r(α,γ,k)−1 ≤M}. (7)

Following [KSW06, Lemma 1] and its proof, we can derive a number of
properties for our set As(M) here; the most important one is an upper bound
on the cardinality of the set, which we state as a lemma below.

Lemma 1. (cf. [KSW06, Lemma 1(d)]) For any M > 0 we have

|As(M)| ≤ Mq
s∏

j=1

(
1 + µ(αq)γq

j

)
for all q > 1/α, where the function µ is defined in (6).

We end this section with a useful property that will be needed later. For
k, h ∈ 0 with b-adic representations k =

∑∞
i=0 κib

i and h =
∑∞

i=0 �ib
i, let ⊕

and + denote digit-wise addition and subtraction modulo b, i.e.,

k ⊕ h :=
∞∑

i=0

((κi + �i) mod b) bi and k + h :=
∞∑

i=0

((κi − �i) mod b) bi.

For vectors h,k ∈ s
0, the operations are defined component-wise.

Lemma 2. (cf. [NSW04, Formula (23)]) For any h,k ∈ s
0, we have

r(α,γ,h ⊕ k) ≤ r(α,γ,k) r(α,γ,h)−1.
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Proof. It is sufficient to prove the result in one dimension, i.e., r(α, γ, h⊕ k) ≤
r(α, γ, k) r(α, γ, h)−1. Clearly this holds when h = 0 or k = 0. When h �= 0
and k �= 0, we have

r(α, γ, h⊕ k)r(α, γ, h)
r(α, γ, k)

= γ

(
bψb(k)−ψb(h)

bψb(k⊕h)

)α

≤ 1,

because ψb(k) − ψb(h) ≤ ψb(k ⊕ h). This completes the proof.

3 Approximation in the Weighted Hilbert Space Hs

We now discuss the approximation problem in the weighted Hilbert space
Hs following closely the discussions from [KSW06, NSW04] for the weighted
Korobov space, see also [TWW88, WW99, WW01] for general results.

Without loss of generality (see, e.g., [TWW88]), we approximate f by a
linear algorithm of the form

AN,s(f) =
N−1∑
n=0

anLn(f),

where each an is a function from L2([0, 1]s) and each Ln is a continuous linear
functional defined on Hs from a permissible class Λ of information. We consider
two classes: Λall is the class of all continuous linear functionals, while Λstd is
the class of standard information consisting only of function evaluations. In
other words, Ln ∈ Λstd iff there exists xn ∈ [0, 1]s such that Ln(f) = f(xn)
for all f ∈ Hs. (The approximation (2) in the introduction is of the linear form
above and uses standard information from Λstd.)

The worst case error of the algorithm AN,s is defined as

ewor−app
N,s (AN,s) := sup

‖f‖Hs
≤1

‖f −AN,s(f)‖L2([0,1]s).

The initial error associated with A0,s ≡ 0 is

ewor−app
0,s := sup

‖f‖Hs
≤1

‖f‖L2([0,1]s) = 1,

where the exact value 1 is obtained by considering f ≡ 1.
For ε ∈ (0, 1), s ≥ 1, and Λ ∈ {Λall, Λstd}, we define

Nwor(ε, s, Λ) := min
{
N : ∃AN,s with Ln ∈ Λ so that ewor−app

N,s (AN,s) ≤ ε
}
.

(Note that in the definition above we actually require ewor−app
N,s (AN,s) ≤

ε ewor−app
0,s , but since the initial error is conveniently 1, from this point on we

omit the initial error from our discussion.)
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We say that the approximation problem for the space Hs is tractable in
the class Λ iff there are nonnegative numbers C, p, and a such that

Nwor(ε, s, Λ) ≤ Cε−psa ∀ε ∈ (0, 1) and ∀s ≥ 1. (8)

The approximation problem is strongly tractable in the class Λ iff (8) holds
with a = 0. In this case, the infimum of the numbers p is called the exponent
of strong tractability, and is denoted by pwor−app(Λ).

It is known from classical results (see, e.g., [TWW88]) that the optimal
algorithm in the class Λall is the truncated Walsh series

A
(opt)
N,s (f)(x) :=

∑
k∈As(ε−2)

f̂(k) walk(x),

where we have taken M = ε−2 in (7) and N =
∣∣As(ε−2)

∣∣, which ensures that
the worst case error satisfies ewor−app

N,s (A(opt)
N,s ) ≤ ε. In fact, it is known from

the general result in [WW99] that strong tractability and tractability in the
class Λall are equivalent, and they hold iff sγ <∞, where

sγ := inf

{
λ > 0 :

s∑
j=1

γλ
j <∞

}
(9)

is known as the sum exponent of the weights γ = (γj)∞j=1. Furthermore, the
exponent of strong tractability is pwor−app(Λall) = 2 max(1/α, sγ).

For the class Λstd, which is the focus of this paper, a lower bound on the
worst case error for any algorithm AN,s(f) =

∑N−1
n=0 anf(xn) can be obtained

following the argument in [NSW04], i.e.,

ewor−app
N,s (AN,s) ≥ sup

‖f‖Hs
≤1

∣∣∣∣∣
∫

[0,1]s
f(x) dx −

N−1∑
n=0

bnf(xn)

∣∣∣∣∣ ,
where bn :=

∫
[0,1]s

an(x) dx. This lower bound is exactly the worst case

integration error in Hs for the linear integration rule
∑N−1

n=0 bnf(xn). Hence
the approximation problem is no easier than the integration problem in Hs,
and thus the necessary condition for (strong) tractability for the integration
problem in Hs is also necessary for the approximation problem.

(Strong) tractability in the weighted Hilbert space Hs for the family of
equal-weight integration rules have been analyzed in [DP05b], where it is
shown that strong tractability holds iff

∑∞
j=1 γj <∞, and tractability holds iff

lim sup
s→∞

s∑
j=1

γj/ ln(s+ 1) <∞.
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The same conditions can be obtained for the family of linear integration
rules following the argument used in [SW01] for the weighted Korobov
space. Hence, the same conditions are necessary for (strong) tractability
of the approximation problem in the class Λstd. It follows from [WW01]
that these conditions are also sufficient for (strong) tractability of app-
roximation. Moreover, if

∑∞
j=1 γj <∞ then the exponent of strong tractabil-

ity satisfies pwor−app(Λstd) ∈ [pwor−app(Λall), pwor−app(Λall) + 2], see [WW01,
Corollary 2(i)].

We summarize this discussion in the following theorem.

Theorem 1. Consider the approximation problem in the worst case setting in
the weighted Hilbert space Hs.

• Strong tractability and tractability in the class Λall are equivalent, and they
hold iff sγ <∞, where sγ is defined in (9). When this holds, the exponent
of strong tractability is

pwor−app(Λall) = 2 max
(

1
α , sγ
)
.

• The problem is strongly tractable in the class Λstd iff

∞∑
j=1

γj < ∞. (10)

When this holds, the exponent of strong tractability satisfies

pwor−app(Λstd) ∈ [pwor−app(Λall), pwor−app(Λall) + 2
]
.

• The problem is tractable in the class Λstd iff

� := lim sup
s→∞

∑s
j=1 γj

ln(s+ 1)
< ∞. (11)

Note that when (10) holds, we have sγ ≤ 1. When (10) does not hold but
(11) holds, we have sγ = 1.

The known results for the class Λstd are non-constructive. In this paper
we obtain constructive algorithms based on digital nets, and we reduce the
upper bound on the exponent of strong tractability to pwor−app(Λstd) ≤
2 pwor−app(Λall).

4 Integration Using Digital Nets

In this section we introduce nets and review results on numerical integration
rules using those point sets.

A detailed theory of (t,m, s)-nets and (t, s)-sequences was developed in
[Nie87] (see also [Nie92b, Chapter 4] and [Nie05] for a recent survey). The
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(t,m, s)-nets in base b provide sets of bm points in the s-dimensional unit cube
[0, 1)s which are well distributed if the quality parameter t is small.

Definition 1. Let b ≥ 2, s ≥ 1 and 0 ≤ t ≤ m be integers. A point set
P consisting of bm points in [0, 1)s forms a (t,m, s)-net in base b if every
subinterval J =

∏s
j=1[ajb

−dj , (aj + 1)b−dj ) ⊆ [0, 1)s of volume bt−m, with
integers dj ≥ 0 and integers 0 ≤ aj < b

dj for 1 ≤ j ≤ s, contains exactly bt

points of P .

In practice, all concrete constructions of (t,m, s)-nets are based on the
general construction scheme of digital nets. To avoid too many technical
notions we restrict ourselves to digital point sets defined over the finite field

b = {0, 1, . . . , b − 1} with b prime. For a more general definition, see, e.g.,
[Lar98, LNS96, Nie92b]. Throughout the paper, , means the transpose of a
vector or matrix.

Definition 2. Let b be a prime and let s ≥ 1 and m ≥ 1 be integers. Let
C1, . . . , Cs be m ×m matrices over the finite field b. For each 0 ≤ n < bm
with b-adic representation n =

∑m−1
i=0 ηib

i, and each 1 ≤ j ≤ s, we multiply
the matrix Cj by the vector (η0, . . . , ηm−1)� ∈ m

b , i.e.,

Cj (η0, . . . , ηm−1)� =: (χn,j,1, . . . , χn,j,m)� ∈ m
b ,

and set
xn,j :=

χn,j,1

b
+ · · · + χn,j,m

bm
.

If the point set {xn = (xn,1, . . . , xn,s) : 0 ≤ n < bm} is a (t,m, s)-net in base
b for some integer t with 0 ≤ t ≤ m, then it is called a digital (t,m, s)-net
over b.

See [Nie92b, Theorem 4.28] and [PS01] for results concerning the determi-
nation of the quality parameter t of digital nets.

Niederreiter introduced in [Nie92a] (see also [Nie92b, Section 4.4]) a special
family of digital nets known now as polynomial lattices. In the following, let

b((x−1)) be the field of formal Laurent series over b,
∑∞

l=w tlx
−l, where

w is an arbitrary integer and all tl ∈ b. Further, let b[x] be the set of all
polynomials over b, and let

Rb,m := {q ∈ b[x] : deg(q) < m and q �= 0}.

Definition 3. Let b be a prime and let s ≥ 1 and m ≥ 1 be integers. Let υm

be the map from b((x−1)) to the interval [0, 1) defined by

υm

( ∞∑
l=w

tlx
−l

)
:=

m∑
l=max(1,w)

tlb
−l.
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Choose polynomials p ∈ b[x] with deg(p) = m and q := (q1, . . . , qs) ∈ Rs
b,m.

For each 0 ≤ n < bm with b-adic representation n =
∑m−1

i=0 ηib
i, we associate

n with the polynomial n(x) =
∑m−1

i=0 ηix
i ∈ b[x]. Then the point set

PPL :=
{

xn =
(
υm

(
n(x)q1(x)
p(x)

)
, . . . , υm

(
n(x)qs(x)
p(x)

))
: 0 ≤ n < bm

}
is a polynomial lattice.

We are ready to review known results on digital nets for integration.
Let P = {x0, . . . ,xN−1} denote a digital (t,m, s)-net over b consisting of
N = bm points. For f ∈ Hs, we approximate the integral of f by an equal-
weight integration rule using the point set P . The worst case error of the point
set P (or more precisely, of the equal-weight integration rule using the point
set) for integration in the space Hs is defined by

ewor−int
N,s (P ) := sup

‖f‖Hs
≤1

∣∣∣∣∣
∫

[0,1]s
f(x) dx − 1

N

N−1∑
n=0

f(xn)

∣∣∣∣∣ .
First we discuss the results from [DP05b]. For k ∈ 0 with b-adic repre-

sentation k =
∑∞

i=0 κib
i, we write

trm(k) := (κ0, . . . , κm−1)� ∈ m
b

to denote the truncated digit vector of k. For a digital net P over b generated
by matrices C1, . . . , Cs, we define the dual net D by

D := {k ∈ s
0 \ {0} : C�

1 trm(k1) + · · · + C�
s trm(ks) = 0}, (12)

where the matrix-vector multiplications and vector additions are to be carried
out in b. It is well known that Walsh functions are characters over the group
formed by digital nets (see, e.g., [DP05b]), i.e.,

1
N

N−1∑
n=0

walk(xn) =

{
1 if k ∈ D ∪ {0},
0 otherwise.

(13)

It follows from the character property that for any f ∈ Hs,∫
[0,1]s

f(x) dx − 1
N

N−1∑
n=0

f(xn) = −
∑
k∈D

f̂(k), (14)

and hence (see [DP05b])

[ewor−int
N,s (P )]2 =

∑
k∈D

r(α,γ,k). (15)
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4.1 Results for Polynomial Lattices

Now we discuss the results from [DKPS05] concerning polynomial lattices. We
need some further notation: for every nonnegative integer k =

∑∞
i=0 κib

i we
define the polynomial

t̃rm(k)(x) := κ0 + κ1x+ · · · + κm−1x
m−1 ∈ b[x],

and for the vector k = (k1, . . . , ks) ∈ s
0 we consider

t̃rm(k) := (t̃rm(k1), . . . , t̃rm(ks))� ∈ b[x]s

to be a vector of polynomials. It is shown in [DKPS05] that the dual net for
the polynomial lattice PPL, with polynomials p ∈ b[x] and q = (q1, . . . , qs) ∈
Rs

b,m, can be expressed as

DPL :=
{
k ∈ s

0 \ {0} : t̃rm(k) · q ≡ 0 (mod p)
}
, (16)

where t̃rm(k) · q ≡ 0 (mod p) means that the polynomial p divides the poly-
nomial

t̃rm(k) · q :=
s∑

j=1

t̃rm(kj) qj ∈ b[x].

The main result of [DKPS05] is summarized in the following lemma.

Lemma 3. (cf. [DKPS05, Algorithm 4.3 and Theorem 4.4]) Given prime
b ≥ 2, positive integer m, and irreducible polynomial p ∈ b[x], a vector of
polynomials q = (q1, . . . , qs) ∈ Rs

b,m for a polynomial lattice PPL with N = bm

points can be constructed by a component-by-component algorithm such that

[ewor−int
N,s (PPL)]2 ≤ (bm − 1)−1/λ

s∏
j=1

(
1 + µ(αλ)γλ

j

)1/λ

for all λ ∈ (1/α, 1], where the function µ is defined in (6).

Using the property
∏s

j=1(1 + xj) = exp(
∑s

j=1 ln(1 + xj)) ≤ exp(
∑s

j=1 xj)
for all nonnegative xj , we see from Lemma 3 that if sγ ≤ 1/α then

ewor−int
N,s (PPL) = O(N−α/2+δ), δ > 0,

with the implied factor in the big-O notation is independent of N and s. This
is the optimal rate of convergence for integration in Hs.

4.2 Results for General Digital Nets

For any digital (t,m, s)-net with regular generating matrices, we can obtain
a worst case error bound in terms of its t-value. This is in analogy to results
obtained in [CDP06, DP05a, DP05c].
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Lemma 4. Let P be a digital (t,m, s)-net over b with non-singular generating
matrices. For each ∅ �= u ⊆ {1, . . . , s}, suppose that the projection of P onto
the coordinates in u is a (tu,m, |u|)-net. Then we have

[ewor−int
N,s (P )]2 ≤ 1

bαm

(
1 +

∑
∅�=u⊆{1,...,s}

bαtu

∏
j∈u

(
bα+1(m+ 2)µ(α)γj

))
.

Proof. We start with (15) and consider all vectors k in the dual net D given
by (12). If k = bml with l ∈ s

0 \ {0}, then trm(kj) = 0 for 1 ≤ j ≤ s.
Otherwise we can write k = k∗ + bml with l ∈ s

0, k∗ = (k∗1 , . . . , k
∗
s) �= 0 and

0 ≤ k∗j < bm for all 1 ≤ j ≤ s. In the latter case we have trm(kj) = trm(k∗j )
for all 1 ≤ j ≤ s. Thus we have (after renaming k∗ to k)

[ewor−int
N,s (P )]2 =

∑
l∈ s

0\{0}
r(α,γ, bml)+

∑
k∈D∗

∑
l∈ s

0

r(α,γ,k + bml) =: Σ∗
1 +Σ∗

2 ,

where

D∗ :=
{
k ∈ {0, . . . , bm − 1}s \ {0} : C�

1 trm(k1) + · · · + C�
s trm(ks) = 0

}
.

It follows from the definition (5) that for 0 ≤ kj < b
m we have

∞∑
l=0

r(α, γj , kj + bml) = r(α, γj , kj) +
∞∑

l=1

r(α, γj , b
ml)

= r(α, γj , kj) +
µ(α)
bmα

γj .

Thus

Σ∗
1 =

s∏
j=1

(
1 +

µ(α)
bmα

γj

)
− 1

and

Σ∗
2 =

∑
k∈D∗

s∏
j=1

(
r(α, γj , kj) +

µ(α)
bmα

γj

)

=
∑

k∈D∗
r(α,γ,k) +

∑
u�{1,...,s}

[( ∑
k∈D∗

∏
j∈u

r(α, γj , kj)
)∏

j /∈u

(
µ(α)γj

bmα

)]
. (17)

First we investigate the sum
∑

k∈D∗
∏

j∈u r(α, γj , kj) where u is a proper
subset of {1, . . . , s}. Let k = (k1, . . . , ks) ∈ {0, . . . , bm − 1}s \ {0} and j0 /∈ u.
Since the generating matrices C1, . . . , Cs are non-singular, for any combination
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of the s− 1 components kj ∈ {0, . . . , bm − 1} with j �= j0, there is exactly one
value of kj0 ∈ {0, . . . , bm − 1} which ensures that k ∈ D∗. Hence we have

∑
k∈D∗

∏
j∈u

r(α, γj , kj) = bm(s−|u|−1)
∏
j∈u

(
bm−1∑
k=0

r(α, γj , k)

)
− 1

≤ bm(s−|u|−1)
∏
j∈u

(1 + µ(α)γj) − 1,

from which we can show that the second term in (17) is bounded by

1
bαm

s∏
j=1

(1 + 2µ(α)γj) −Σ∗
1 .

It remains to obtain a bound on the first term in (17). Here we only outline
the most important steps; the details follow closely the proofs of [CDP06,
Lemma 7] and [DP05c, Lemma 7], see also [DP05a, Lemma 3].

We have∑
k∈D∗

r(α,γ,k) =
∑

∅�=u⊆{1,...,s}
u={u1,...,ue}

bm−1∑
ku1 ,...,kue=1

C�
u1

trm(ku1 )+···+C�
ue

trm(kue )=0

∏
j∈u

r(α, γj , kj). (18)

The u = {1, . . . , s} term in (18) is

bm−1∑
k1,...,ks=1

C�
1 trm(k1)+···+C�

s trm(ks)=0

s∏
j=1

r(α, γj , kj)

=
m−1∑

v1,...,vs=0

∏s
j=1 γj

bα(v1+···+vs)

b−1∑
l1,...,ls=1

(l1+1)bv1−1∑
k1=l1bv1

· · ·
(ls+1)bvs−1∑

ks=lsbvs︸ ︷︷ ︸
C�

1 trm(k1)+···+C�
s trm(ks)=0

1.

Using the fact that P is a digital (t,m, s)-net, it can be shown that

(l1+1)bv1−1∑
k1=l1bv1

· · ·
(ls+1)bvs−1∑

ks=lsbvs︸ ︷︷ ︸
C�

1 trm(k1)+···+C�
s trm(ks)=0

1 ≤ (b− 1)s
m−1∑

v1,...,vs=0
m−t−s+1≤v1+···+vs≤m−t

∏s
j=1 γj

bα(v1+···+vs)

+ (b− 1)s
m−1∑

v1,...,vs=0
v1+···+vs>m−t

∏s
j=1 γj

bα(v1+···+vs)
bv1+···+vs−m+t.

The ∅ �= u � {1, . . . , s} terms in (18) can be estimated in a similar way by
making use of the fact that the projection of P onto the coordinates in u is a
digital (tu,m, |u|)-net. Combining all the terms together, we finally obtain
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∑
k∈D∗

r(α,γ,k) ≤
∑

∅�=u⊆{1,...,s}

(
b− 1
bα−1 − 1

)|u| 2(m− tu + 2)|u|−1

bα(m−tu+1−2|u|)
∏
j∈u

γj

≤ 1
bα(m+1)

∑
∅�=u⊆{1,...,s}

bαtu

∏
j∈u

(
bα+1(m+ 2)µ(α)γj

)
,

from which the result can be derived.

We now give two examples of digital nets for which explicit bounds on the
values of tu are known. Let PSob and PNie denote the digital net generated
by the modified (as discussed below) left upper m ×m sub-matrices of the
generating matrices of the Sobol ′ sequence and the Niederreiter sequence
(which are examples of digital (t, s)-sequences, see, e.g., [Nie92a]), respectively.
We need to modify the generating matrices to make them regular; this can
be achieved by changing the least significant rows of the matrices without
influencing the digital net property nor the quality parameter of the net and
its projections.

Lemma 5. Let P ∈ {PSob, PNie} be a digital (t,m, s)-net over b obtained
from either the Sobol ′ sequence (b = 2) or the Niederreiter sequence. We have

[ewor−int
N,s (PSob)]2

≤ 1
2αm

s∏
j=1

(
2αc+1 (j log2(j + 1) log2 log2(j + 3))α (m+ 2)µ(α)γj

)
,

where c is some constant independent of all parameters, and

[ewor−int
N,s (PNie)]2 ≤ 1

bαm

s∏
j=1

(
b2α+1 (j logb(j + b))α (m+ 2)µ(α)γj

)
.

If {∑∞
j=1(j ln j ln ln j)αγj < ∞ when P = PSob,∑∞
j=1(j ln j)αγj < ∞ when P = PNie,

(19)

then

[ewor−int
N,s (P )]2 ≤ Cδ N

−α+δ, Cδ ∈ {CSob,δ, CNie,δ}, δ > 0,

where CSob,δ and CNie,δ are independent of m and s but depend on δ, b, α,
and γ.

Proof. The construction of the Sobol′ sequence makes use of primitive polyno-
mials in base b = 2, one polynomial pj for each dimension j, with non-decreasing
degrees as the dimension increases. It is known (see, e.g., [Wan02]) that
tu =
∑

j∈u(deg(pj) − 1) and deg(pj) ≤ log2 j + log2 log2(j + 1) + log2 log2 log2

(j + 3) + c, where c is a constant independent of j. (Note that the above
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formula for tu is associated with the whole sequence; for a net of bm points tu
is bounded by the minimum of m and the given formula.) Thus we have

btu = 2tu ≤
∏
j∈u

(
2c−1j log2(j + 1) log2 log2(j + 3)

)
.

On the other hand, the construction of the Niederreiter sequence makes use of
monic irreducible polynomials, and it is known (see [Wan02, Lemma 2]) that
deg(pj) ≤ logb j + logb logb(j + b) + 2. Thus in this case

btu ≤
∏
j∈u

(bj logb(j + b)) .

Substituting these bounds on btu into Lemma 4 proves the first part of this
lemma.

To prove the second part of this lemma, we follow closely the proof of
[HN03, Lemma 3]. Consider first the Niederreiter sequence and suppose that∑∞

j=1(j ln j)αγj < ∞. For k ≥ 0, define σk := b2α+1µ(α)
∑∞

j=k+1(j logb(j +
b))αγj . Then we have

s∏
j=1

(
b2α+1 (j logb(j + b))α (m+ 2)µ(α)γj

) ≤ (1 + σ−1
k )k b(m+2)σk(σ0+1).

Let δ > 0 and choose kδ such that σkδ
(σ0 + 1) ≤ δ. The desired result is

obtained with CNie,δ := b2δ(1 + σ−1
kδ

)kδ . The result for the Sobol′ sequence can
be obtained in the same way.

5 Approximation Using Digital Nets

Now we formalize the approximation algorithm (2). For M > 0 and P =
{x0, . . . ,xN−1} a digital net with N = bm points, we define

AN,s,M (f) :=
∑

h∈As(M)

(
1
N

N−1∑
n=0

f(xn)walh(xn)

)
walh(x).

Recall that the worst case error for the algorithm AN,s,M using the point set
P is defined by

ewor−app
N,s,M (P ) = ewor−app

N,s,M (AN,s,M ) := sup
‖f‖Hs

≤1

‖f −AN,s,M (f)‖L2([0,1]s) .
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We have

‖f −AN,s,M (f)‖2
L2([0,1]s)

=
∑

h/∈As(M)

|f̂(h)|2 +
∑

h∈As(M)

∣∣∣∣∣
∫

[0,1]s
f(x)walh(x) dx − 1

N

N−1∑
n=0

f(xn)walh(xn)

∣∣∣∣∣
2

≤ 1
M

‖f‖2
Hs

+
∑

h∈As(M)

|〈f, τh〉Hs
|2 ,

where

τh(t) :=
∫

[0,1]s
K(t,x)walh(x) dx − 1

N

N−1∑
n=0

K(t,xn)walh(xn).

Hence

ewor−app
N,s,M (P ) =

(
β

M
+ sup

‖f‖Hs
≤1

∑
h∈As(M)

|〈f, τh〉Hs
|2
)1/2

for some β ∈ [0, 1]. Moreover, it can be shown that the second term involving
the supremum is essentially the spectral radius ρ of the matrix TP whose
entries are given by 〈τh, τp〉Hs .

Using (14), it can be shown that

τh(t) = −
∑
k∈D

r(α,γ,h + k) walh�k(t)

= −
∑

q∈ s
0\{h}

C�
1 trm(h1�q1)+···+C�

s trm(hs�qs)=0

r(α,γ, q) walq(t).

Consequently,

〈τh, τp〉Hs =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if C�

1 trm(h1 + p1) + · · · + C�
s trm(hs + ps) �= 0,

∑
k∈ s

0\{0,p�h}
C�

1 trm(k1)+···+C�
s trm(ks)=0

r(α,γ,h ⊕ k) otherwise. (20)

We state the result in the following lemma.

Lemma 6. (cf. [KSW06, Lemma 2]) The worst case error for the approxima-
tion algorithm AN,s,M using a digital net P satisfies

ewor−app
N,s,M (P ) =

(
β

M
+ ρ(TP )

)1/2

for some β ∈ [0, 1],

where TP is a nonnegative-definite symmetric |As(M)| × |As(M)| matrix with
entries given by 〈τh, τp〉Hs

in (20) for h,p ∈ As(M).
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Unfortunately we do not have a computable expression for the spectral
radius ρ(TP ). Therefore we consider its upper bound, the trace of TP ,

ρ(TP ) ≤ trace(TP ) =
∑

h∈As(M)

∑
k∈D

r(α,γ,h ⊕ k). (21)

5.1 Nets Constructed for Integration

A natural question to ask is: how good are the nets constructed for integration
when they are used for approximation? To relate the worst case error for
approximation ewor−app

N,s (P ) to the worst case error for integration ewor−int
N,s (P ),

we apply Lemma 2 to (21) and obtain

ρ(TP ) ≤
∑

h∈As(M)

1
r(α,γ,h)

∑
k∈D

r(α,γ,k) ≤ M |As(M)|[ewor−int
N,s (P )]2.

Hence it follows from Lemma 6 that

ewor−app
N,s,M (P ) ≤

(
1
M

+M |As(M)|[ewor−int
N,s (P )]2

)1/2

. (22)

Applying Lemmas 1 and 3 to (22), we obtain the following result for
polynomial lattices constructed for the integration problem.

Lemma 7. (cf. [KSW06, Lemma 3]) Let PPL be a polynomial lattice con-
structed component-by-component for integration. Then the worst case error
for the approximation algorithm AN,s,M using PPL satisfies

ewor−app
N,s,M (PPL) ≤

(
1
M

+
Cs,q,λM

q+1

(N − 1)1/λ

)1/2

for all q > 1/α and λ ∈ (1/α, 1], where

Cs,q,λ :=
s∏

j=1

(
1 + µ(αλ)γλ

j

)1/λ (
1 + µ(αq)γq

j

)
.

Given ε ∈ (0, 1), we want to find small M and N = bm for which the error
bound in Lemma 7 is at most ε. To ensure that the two terms in the error
bound are of the same order, we first choose M = 2ε−2, and then choose N
such that the second term is no more than the first term. Hence it is sufficient
that we take N = bm with

m =
⌈
logb

((
Cs,q,λM

q+2
)λ

+ 1
)⌉
. (23)
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Using the property
∏s

j=1(1 + xj) = exp(
∑s

j=1 log(1 + xj)) ≤ exp(
∑s

j=1 xj)
for nonnegative xj , we can write

Cs,q,λ ≤ exp

(
µ(αλ)
λ

s∑
j=1

γλ
j + µ(αq)

s∑
j=1

γq
j

)
(24)

= (s+ 1)µ(αλ)λ−1∑ s
j=1 γλ

j / ln(s+1) + µ(αq)
∑ s

j=1 γq
j / ln(s+1). (25)

Let p∗ = 2 max(1/α, sγ). When (10) holds but sγ = 1, we have p∗ = 2 and
we take q = λ = p∗/2 = 1. Then we see from (24) that sups≥1 Cs,q,λ < ∞.
When (10) holds and sγ < 1, we have p∗ < 2 and we choose q = λ = p∗/2 + δ
for some δ > 0. Then µ(αλ) < ∞ and

∑∞
j=1 γ

λ
j < ∞, and once again we

see from (24) that sups≥1 Cs,q,λ < ∞. In both cases, we see from (23) that
N = O(ε−p), with p equal to or arbitrarily close to 2p∗ + p∗2/2 as δ goes to 0.

When (11) holds but not (10), we have sγ = 1. We take q = λ = 1 and
it follows from (23) and (25) that N = O(ε−6) and Cs,q,λ = O(sa), with a
arbitrarily close to 2µ(α)�.

We summarize the analysis in the following theorem.

Theorem 2. (cf. [KSW06, Theorem 1]) Let PPL be a polynomial lattice con-
structed component-by-component for integration. For ε ∈ (0, 1) set M = 2ε−2.
If (10) holds, then the approximation algorithm AN,s,M using PPL achieves
the worst case error bound ewor−app

N,s,M (PPL) ≤ ε using N = O(ε−p) function
values, with p equal to or arbitrarily close to

2 pwor−app(Λall) +
[pwor−app(Λall)]2

2
.

If (10) does not hold but (11) holds, then the error bound ewor−app
N,s,M (PPL) ≤ ε

is achieved using N = O(saε−6) function values, with a arbitrarily close to
2µ(α)�. The implied factors in the big O-notations are independent of ε and s.

Now we use Lemmas 1 and 5 in (22) to derive results for digital nets
obtained from the Sobol′ sequence or the Niederreiter sequence.

Lemma 8. Let P ∈ {PSob, PNie} be a digital net obtained from either the
Sobol ′ sequence or the Niederreiter sequence. If (19) holds, then the worst case
error for the approximation algorithm AN,s,M using P satisfies

ewor−app
N,s,M (P ) ≤

(
1
M

+
C̄s,q,δM

q+1

Nα−δ

)1/2

, C̄s,q,δ := Cδ

s∏
j=1

(
1 + µ(αq)γq

j

)
,

for all q > 1/α and δ > 0, with Cδ ∈ {CSob,δ, CNie,δ} given in Lemma 5.

Note that both conditions on the weights in (19) imply (10) as well as
sγ ≤ 1/α. For ε ∈ (0, 1) we take q = 1/α+ δ, M = 2ε−2 and N = bm with

m =
⌈
logb

((
C̄s,q,δM

q+2
)1/(α−δ)

)⌉
.
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Then we have sups≥1 C̄s,q,δ <∞ and N = O(ε−p), with p arbitrarily close to
4/α+ 2/α2 as δ goes to 0. This is summarized in the theorem below.

Theorem 3. Let P ∈ {PSob, PNie} be a digital net obtained from either the
Sobol ′ sequence or the Niederreiter sequence. For ε ∈ (0, 1) set M = 2ε−2.
If (19) holds, then the approximation algorithm AN,s,M using P achieves the
worst case error bound ewor−app

N,s,M (P ) ≤ ε using N = O(ε−p) function values,
with p arbitrarily close to

2 pwor−app(Λall) +
[pwor−app(Λall)]2

2
.

The implied factor in the big O-notation is independent of ε and s.

5.2 Polynomial Lattices Constructed for Approximation

In this section we study polynomial lattices with the generating polynomials
specially constructed for the approximation problem. It is perhaps not sur-
prising that such polynomial lattices yield smaller error bounds than those
studied in the previous subsection.

Since M r(α,γ,h) ≥ 1 for all h ∈ As(M), we have from (21) that ρ(TP ) ≤
M SN,s(P ), where

SN,s(P ) :=
∑

h∈ s
0

∑
k∈D

r(α,γ,h) r(α,γ,k ⊕ h). (26)

Thus it follows from Lemma 6 that

ewor−app
N,s,M (P ) ≤

(
1
M

+M SN,s(P )
)1/2

. (27)

An analogous expression to SN,s(P ) for lattice rule algorithms in weighted
Korobov spaces was considered in [DKKS07] for some integral equation prob-
lem. (It is advocated that the expression Sn,d(z) in [DKKS07] should be
considered instead of the quantity En,d(z) in [KSW06] for the approximation
problem.) Observe that the quantity SN,s(P ) depends only on the digital
net P = {x0, . . . ,xN−1} and does not depend on the value of M nor the set
As(M). Following [DP05b, Proof of Theorem 2]), we can rewrite SN,s(P ) in
an easily computable form

SN,s(P ) = −
s∏

j=1

(
1 + µ(2α)γ2

j

)
+

1
N

s∏
j=1

(1 + µ(α)γj)
2

+
1
N

N−1∑
n=1

s∏
j=1

(1 + ω(xn,j)γj)
2
,
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where ω(0) = µ(α), and ω(x) = µ(α) − b(a−1)(1−α)(µ(α) + 1) if x �= 0 and
χa �= 0 is the first nonzero digit in the b-adic representation x =

∑∞
i=0 χib

−i.
Let p be an irreducible polynomial of degree m. We wish to construct

a vector of polynomials q = (q1, . . . , qs) for a polynomial lattice PPL, one
polynomial at a time, such that the quantity SN,s(q) = SN,s(q1, . . . , qs) =
SN,s(PPL) is as small as possible.

Algorithm 1 Let m ≥ 1 and N = bm. Let p be an irreducible polynomial in
b[x] with deg(p) = m.

1. Set q1 = 1.
2. For d = 2, 3, . . . , s find qd in Rb,m to minimize SN,s(q1, . . . , qd−1, qd).

Lemma 9. (cf. [KSW06, Lemma 6]) Let P ∗
PL denote the polynomial lattice

constructed by Algorithm 1. Then the worst case error for the approximation
algorithm AN,s,M using P ∗

PL satisfies

ewor−app
N,s,M (P ∗

PL) ≤
(

1
M

+
C̃s,λ,δM

N1/λ

)1/2

for all λ ∈ (1/α, 1] and δ > 0, where

C̃s,λ,δ :=
1
δ

s∏
j=1

(
1 + (1 + δλ)µ(αλ)γλ

j

)2/λ
.

Proof. We prove by induction that the polynomials q∗1 , . . . , q
∗
s for a polynomial

lattice P ∗
PL constructed by Algorithm 1 satisfy, for each d = 1, . . . , s,

SN,d(q∗1 , . . . , q
∗
d) ≤ C̃d,λ,δN

−1/λ (28)

for all λ ∈ (1/α, 1] and δ > 0. Our proof follows the argument used in the
proofs of [DKKS07, Lemma 4] and [KSW06, Lemma 6]. We present here
only a skeleton proof; the technical details can be verified in analogy to
[DKKS07, KSW06].

The d = 1 case can easily be verified. Suppose now that q∗ = (q∗1 , . . . , q
∗
d) ∈

Rd
b,m is chosen according to Algorithm 1 and that SN,d(q∗) satisfies (28) for

all λ ∈ (1/α, 1] and δ > 0. By separating the kd+1 = 0 and kd+1 �= 0 terms in
(26) (with the dual net D replaced by DPL in (16)), we can write

SN,d+1(q∗, qd+1) = φ(q∗) + θ(q∗, qd+1),

where

φ(q∗) =
∑

hd+1∈ 0

r2(α, γd+1, hd+1)
∑

h∈ d
0

∑
k∈ d

0\{0}
t̃rm(k)·q∗≡0 (mod p)

r(α,γ,h)r(α,γ,k ⊕ h)

= (1 + µ(2α)γ2
d+1)SN,d(q∗),
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and

θ(q∗, qd+1) =
∑

(h,hd+1)∈ d+1
0

∞∑
kd+1=1

∑
k∈ d

0
t̃rm(k)·q∗≡−t̃rm(kd+1)·qd+1 (mod p)

r(α,γ,h)r(α, γd+1, hd+1)

× r(α, γd+1, kd+1 ⊕ hd+1)r(α,γ,k ⊕ h).

We choose q∗d+1 to minimize SN,d+1(q∗, qd+1). Then for any λ ∈ (1/α, 1]
we have

θ(q∗, q∗d+1) ≤
(

1
N − 1

∑
qd+1∈Rb,m

(θ(q∗, qd+1))λ

)1/λ

.

After some very long and tedious calculations to estimate this average on
the right hand side, with the aid of Jensen’s inequality and the property
[r(α, γ, hj)]λ = r(αλ, γλ, hj), we finally obtain

θ(q∗, q∗d+1) ≤ (2µ(αλ)γλ
d+1 + 4(µ(αλ))2γ2λ

d+1

)1/λ
N−1/λ

d∏
j=1

(
1 + µ(αλ)γλ

j

)2/λ
.

Hence it follows from the induction hypothesis that

SN,d+1(q∗, q∗d+1) ≤
((

1 + µ(2α)γ2
d+1

)
+ δ
(
2µ(αλ)γλ

d+1 + 4(µ(αλ))2γ2λ
d+1

)1/λ
)

× δ−1N−1/λ
d∏

j=1

(
1 + (1 + δλ)µ(αλ)γλ

j

)2/λ
.

With some elementary inequalities we can show that the multiplying factor in
the expression above is bounded by (1+(1+δλ)µ(αλ)γλ

d+1)
2/λ. This completes

the proof.

For ε ∈ (0, 1), we choose M = 2ε−2 and N = bm with

m =
⌈

logb

(
C̃s,λ,δM

2
)λ⌉
.

We have

C̃s,λ,δ ≤ 1
δ

exp

(
2(1 + δλ)µ(αλ)

λ

s∑
j=1

γλ
j

)
= δ−1(s+ 1)2(1+δλ)µ(αλ)λ−1∑ s

j=1 γλ
j / ln(s+1).

Let p∗ = 2 max(1/α, sγ). When (10) holds we take λ = p∗/2 = 1 if sγ = 1,
and λ = p∗/2 + δ if sγ < 1. In both cases we have sups≥1 C̃s,λ,δ < ∞ and
N = O(ε−p), with p equal to or arbitrarily close to 2p∗ as δ goes to 0. When
(11) holds but not (10), we have sγ = 1 and we take λ = 1. Then N = O(ε−4)
and C̃s,λ,δ = O(sa), with a arbitrarily close to 2µ(α)� as δ goes to 0. We
summarize the analysis in the following theorem.
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Theorem 4. (cf. [KSW06, Theorem 3]) Let P ∗
PL be a polynomial lattice con-

structed component-by-component by Algorithm 1. For ε ∈ (0, 1) set M = 2ε−2.
If (10) holds, then the approximation algorithm AN,s,M using P ∗

PL achieves
the worst case error bound ewor−app

N,s,M (P ∗
PL) ≤ ε using N = O(ε−p) function

values, with p equal to or arbitrarily close to

2 pwor−app(Λall).

If (10) does not hold but (11) holds, then the error bound ewor−app
N,s,M (P ∗

PL) ≤ ε
is achieved using N = O(saε−4) function values, with a arbitrarily close to
2µ(α)�. The implied factors in the big O-notations are independent of ε and s.

Observe that when (10) holds we have pwor−app(Λall) ≤ 2. Therefore

2 pwor−app(Λall) ≤ pwor−app(Λall) + 2,

and we have improved the result in Theorem 1 using a fully constructive
argument.

Remark. (cf. Theorem 1) The exponent of strong tractability in the class Λstd

satisfies
pwor−app(Λstd) ∈ [pwor−app(Λall), 2 pwor−app(Λall)].
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Summary. We provide a deterministic algorithm that constructs small point sets
exhibiting a low star discrepancy. The algorithm is based on bracketing and on
recent results on randomized roundings respecting hard constraints. It is structurally
much simpler than the previous algorithm presented for this problem in [B. Doerr,
M. Gnewuch, A. Srivastav. Bounds and constructions for the star discrepancy via
δ-covers. J. Complexity, 21:691–709, 2005]. Besides leading to better theoretical run
time bounds, our approach also can be implemented with reasonable effort.

1 Introduction

The L∞-star discrepancy or, more shortly, star discrepancy of an n-point set
T in the d-dimensional unit cube [0, 1]d is given by

d∗∞(T ) := sup
x∈[0,1]d

∣∣∣∣ 1n |T ∩ [0, x[| − vol([0, x[)
∣∣∣∣ ,

where [0, x[ is the d-dimensional anchored half-open box [0, x1[× . . .× [0, xd[.
Here, as in the whole article, the cardinality of a finite set S is denoted by |S|
and the ith component of a vector x by xi. The smallest possible discrepancy
of any n-point configuration in [0, 1]d is

d∗∞(n, d) := inf
T⊂[0,1]d ; |T |=n

d∗∞(T ).
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The inverse of the star discrepancy is given by

n∗∞(ε, d) := min{n ∈ N | d∗∞(n, d) ≤ ε} .

The star discrepancy is related to the worst case error of multivariate inte-
gration of a certain class of functions by the Koksma-Hlawka inequality (see,
e.g., [DT97, HSW04, Nie92]). The inequality shows that points with small star
discrepancy induce quasi-Monte Carlo algorithms with small worst case errors.
Since the number of sample points is roughly proportional to the costs of those
algorithms, it is of interest to find n-point configurations with small discrep-
ancy and n not too large. In particular, n should not depend exponentially
on d.

For fixed dimension d the asymptotically best upper bounds for d∗∞(n, d)
that have been proved so far are of the form

d∗∞(n, d) ≤ Cd ln(n)d−1n−1 , n ≥ 2 . (1)

These bounds give us no helpful information for moderate values of n, since
ln(n)d−1n−1 is an increasing function for n ≤ ed−1. Additionally, point con-
figurations satisfying (1) will in general lead to constants Cd that depend
critically on d. (Actually, it is known for some constructions that the constant
C ′

d in the representation

d∗∞(n, d) ≤ (C ′
d ln(n)d−1 + o(ln(n)d−1)

)
n−1

of (1) tends to zero as d approaches infinity, see, e.g., [Nie92, NX96, Ata04].
But as far as we know, no good bounds have been published for the im-
plicit constant of the o-notation or, respectively, the “whole” constant Cd

in (1).)
A bound more suitable for high-dimensional integration was established by

Heinrich, Novak, Wasilkowski and Woźniakowski [HNWW01], who proved

d∗∞(n, d) ≤ cd1/2n−1/2 and n∗∞(d, ε) ≤ (c2dε−2) , (2)

where c does not depend on d, n or ε. Here the dependence of the inverse of
the star discrepancy on d is optimal. This was also established in [HNWW01]
by a lower bound for n∗∞(d, ε), which was later improved by Hinrichs [Hin04]
to n∗∞(d, ε) ≥ c0dε−1 for 0 < ε < ε0, where c0, ε0 > 0 are constants. The proof
of (2) is not constructive but probabilistic, and the proof approach does not
provide an estimate for the value of c. (A. Hinrichs presented a more direct
approach to prove (2) with c = 10 at the Dagstuhl Seminar 04401 “Algorithms
and Complexity for Continuous Problems” in 2004.)

In the same paper the authors proved a slightly weaker bound with an
explicitly known small constant k:

d∗∞(n, d) ≤ kd1/2n−1/2
(
ln(d) + ln(n)

)1/2
. (3)
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The proof is again probabilistic and uses Hoeffding’s inequality. (A similar
probabilistic approach was already used by Beck in [Bec84] to prove upper
bounds for other kinds of geometric discrepancy.) For the sake of explicit
constants the proof technique has been adapted in subsequent papers on
high-dimensional integration of certain function classes [HSW04, Mha04]. In
[DGS05] Srivastav and the authors were able to improve (3) to

d∗∞(n, d) ≤ k′d1/2n−1/2 ln(n)1/2 , (4)

where k′ is smaller than k. (A slightly better bound for the star discrepancy
and a corresponding bound for the so-called extreme discrepancy can be found
in [Gne07].) Of course the estimate (4) is asymptotically not as good as (2).
But the constant k′ is small—essentially we have k′ =

√
2. If, e.g., c = 10, then

(4) is superior to (2) for all n that are roughly smaller than e50, i.e., for all
values of n of practical interest. By derandomizing the probabilistic argument
used in the proof of the inequality (4), the authors and Srivastav additionally
gave a deterministic algorithm constructing point sets satisfying (4). The
algorithm is based on a quite general derandomization approach of Srivastav
and Stangier [SS96] and essentially a point-by-point construction using the
method of conditional probabilities and so-called pessimistic estimators.

Our Results

In this paper, we use a novel approach to randomized rounding presented
in [Doe06]. Contrary to the classical one, it allows to generate randomized
roundings that respect certain hard constraints. This enables us to use a
construction that needs significantly fewer random variables, which in turn
speeds up the randomized construction.

A second speed-up and considerable simplification from the implementa-
tional point of view stems from the fact that the general approach in [Doe06]
may be derandomized via the more restricted approach of Raghavan [Rag88].
This runs in time O(mn), where n is the number of (random) variables and m
the number of constraints.

It thus avoids the general, but more costly solution by Srivastav and
Stangier [SS96]. The latter was a break-through from the theoretical point of
view as it showed that randomized rounding for arbitrary linear constraints
can be derandomized. From the practical point of view, it suffers from a higher
run-time of O(mn2 log(mn)) and its extremely high technical demands. To
the best of our knowledge, the algorithm implicit in the 30 pages proof has
never been implemented.

We show the following result. For a given n ∈ N the algorithm computes
an n-point set T with discrepancy

d∗∞(T ) ≤ (4 +
√

3
)√
n−1
(

1
2d ln(σn) + ln 2

)
+ 2−d ln(dn)−1n−1
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in time O(d(σn)d log(dn)). Here σ = σ(d) is less than one and converges to zero
as d tends to infinity. In [DGS05] the running time for constructing an n-point
set with the same discrepancy order was O(Cdnd+2 log(d)d/ log(n)d−1), C
some constant. That the running times of our deterministic algorithms are
exponential in dmay not be too surprising. Already any deterministic algorithm
known so far that approximates the L∞-star discrepancy of arbitrary given
n-point sets has running time exponential in d (see [Thi01], the literature
mentioned therein, and the discussion in [Gne07]). A comparison with other
deterministic algorithms for constructing low-discrepancy sets of small size
can be found in [DGS05].

Let us stress that the main advance in this paper is providing a simple
solution (even though we are also faster than the previous one). We feel that
our solution can be implemented with reasonable effort (and our future research
will include this implementation project). Since often the quality of computed
solutions is much better than what is guaranteed by theoretical worst-case
error bounds, our solution presented in this paper opens an interesting line of
research.

2 Randomized Construction

We start by introducing some useful notation: For arbitrary n ∈ N put [n] :=
{1, . . . , n}. If x, y ∈ [0, 1]d, we write x ≤ y if xi ≤ yi holds for all i ∈ [d].
We write [x, y] =

∏
i∈[d][xi, yi] and use corresponding notation for open and

half-open intervals. For a point x ∈ [0, 1]d we denote by Vx the volume of the
box [0, x]. Similarly, we denote the volume of a Lebesgue measurable subset S
of [0, 1]d by VS .

2.1 Grids and Covers

Let 0 = q0 < q1 < . . . < qk = 1 and G := {qi | 1 ≤ i ≤ k}d. G is a
(not necessarily equidistant) grid in the d-dimensional unit cube [0, 1]d. Let
δ = δ(G) be the smallest real number such that for all y ∈ [0, 1]d there are
x, z ∈ G∪{0} with x ≤ y ≤ z and Vz −Vx ≤ δ. In the language of [DGS05] δ is
minimal such that G is a δ–cover. Let us restate the definition from [DGS05]:

A finite set Γ ⊂ [0, 1]d is a δ-cover of [0, 1]d if for every y ∈ [0, 1]d there exist
x, z ∈ Γ ∪{0} with Vz −Vx ≤ δ and x ≤ y ≤ z. Essentially the same concept is
known in the literature of empirical processes as bracketing, see also [Gne07].

The helpfulness of δ-covers in discrepancy theory lies in the fact that one
can use them to discretize discrepancy while controlling the discretization
error:

Lemma 1. Let Γ be a δ-cover of [0, 1]d. Then for all n-point sets T ⊂ [0, 1]d

d∗∞(T ) ≤ d∗Γ (T ) + δ , where d∗Γ (T ) := max
x∈Γ

∣∣∣∣ 1n |T ∩ [0, x[| − Vx

∣∣∣∣ . (5)

The proof is straightforward and can, e.g., be found in [DGS05].
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Let now I := {[qi−1, qi[ | 1 ≤ i ≤ k} and B := {∏d
i=1 Ii | I1, . . . , Id ∈ I}.

Note that B is a partition of [0, 1[d into axis-parallel boxes with upper right
corners in G. Let C0 := {[0, g[ | g ∈ G}. C0 is a subset of the set C of all
axis-parallel boxes that are anchored in 0 (these boxes are sometimes called
corners). If g ∈ G, let B(g) be the uniquely determined B ∈ B and C(g) the
uniquely determined C ∈ C0 whose upper right corners are g. Furthermore,
let B(g) := {B ∈ B |B ⊆ [0, g[}. If B = B(g) or C = C(g), we denote B(g)
also by B(B) or B(C) respectively. Note that (G,≤) is a partially ordered set
and that via the identification of elements from B and C0 with their upper
right corners we get induced partial orderings on B and C0 respectively. Let us
denote all these orderings simply by ≤. Finally, denote for a given B ∈ B the
smallest set in C0 that contains B by C(B). That is, B and C(B) share the
same upper right corner.

2.2 Reducing the Binary Length

Our aim is to construct n points in the unit cube exhibiting a fairly good
discrepancy. We proceed as follows. For B ∈ B, let xB := n vol(B) be the fair
number of points to lie in B.

We first round the xB, B ∈ B, to non-negative numbers having a finite
binary expansion. Having numbers with finite binary expansion is necessary
in the subsequent rounding step, but also carries the advantages of allowing
(from this point on) efficient and exact computations.

Using a simple rounding approach, we could obtain (x̃B) such that 2�x̃B ∈ Z,
|xB − x̃B | < 2−� and

∑
B∈B x̃B =

∑
B∈B xB = n. This yields a rounding error

of |∑B∈B(C)(xB − x̃B)| < 2−�|B(C)| in all corners C ∈ C0.
However, we can achieve much smaller rounding errors by using a very

recent result of Güntürk, Yılmaz and the first author [DGY06]. Let us remark
first that there are higher-dimensional matrices A ∈ [0, 1][k]d such that for any
roundings B ∈ {0, 1}[k]d there is an x ∈ [k]d such that the rounding error∣∣∣∣ x1∑

i1=1

· · ·
xd∑

id=1

(ai1,...,id
− bi1,...,id

)
∣∣∣∣

is of order Ω((log k)(d−1)/2). Hence if we round the xB to multiples of 2−�, we
may get rounding errors |∑B∈B(C)(xB − x̃B)| of order Ω(2−�(log k)(d−1)/2).
This follows from a result of Beck [Bec81], which in turn relies heavily on lower
bounds for geometric discrepancies (Roth [Rot64], Schmidt [Sch72]). We refer
to [Doe07] for a more extensive discussion of these connections.

The surprising result of [DGY06] is that by allowing larger deviations in the
variables we can guarantee much better errors in the subarrays. In particular,
we are able to remove any dependence on the grid size k. To ease reading, we
reformulate and prove their result in our language.
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Lemma 2. Let � ∈ N. There is a simple O(|B|) time algorithm computing
(x̃B) such that

(i) 2�x̃B ∈ Z for all B ∈ B;
(ii) |xB − x̃B | ≤ 2−�−1+d for all B ∈ B;
(iii)
∑

B∈B x̃B =
∑

B∈B xB = n;
(iv) |∑B∈B(C)(xB − x̃B)| ≤ 2−�−1 for all C ∈ C0.

To assure that all quantities x̃B, B ∈ B, are non-negative, we will later
choose � ≥ d− 1 + log2(maxB∈B x−1

B ).

Proof. We may sort B in a way that B1 is prior to B2 if B1 ≤ B2. In this
order, we traverse (xB) and choose an x̃B satisfying 2�x̃B ∈ Z and

−2−�−1 <
∑

B′∈B(B)

(x̃B′ − xB′) ≤ 2−�−1 . (6)

That such an x̃B exists follows easily: If we have to choose x̃B for some B ∈ B,
then, due to our sorting, for all B′ ∈ B(B), B′ �= B, the value of x̃B′ has
already been fixed. Now take the uniquely determined integer yB satisfying

−1
2
< yB −

⎛⎝2�xB − 2�
∑

B �=B′∈B(B)

(x̃B − xB′)

⎞⎠ ≤ 1
2
.

Then x̃B := 2−�yB satisfies (6) (and is actually uniquely determined). We
may express any B by unions and differences of at most 2d corners C(B̃).
Hence we can write x̃B − xB as sum and difference of at most 2d terms∑

B′∈B(B̃)(x̃B′ − xB′), resulting in |x̃B − xB | ≤ 2−�−1+d.
Finally, from

∑
B∈B x̃B ∈ 2−�Z,

∑
B∈B xB = n ∈ Z and |∑B∈B(xB −

x̃B)| ≤ 2−�−1, we conclude
∑

B∈B x̃B =
∑

B∈B xB = n.

2.3 Randomized Rounding with Cardinality Constraint

We now randomly round (x̃B) to integers (yB) and then choose our point set
in a way that it has exactly yB points in the box B. This rounding is done
via a recent extension of the classical randomized rounding method due to
Raghavan [Rag88]. We briefly review the basics.

Randomized Rounding

For a number r we write �r� = max{z ∈ Z | z ≤ r}, (r) = min{z ∈ Z | z ≥ r}
and {r} = r − �r�. Let ξ ∈ R. An integer-valued random variable y is called
randomized rounding of ξ if

Pr(y = �ξ� + 1) = {ξ},
Pr(y = �ξ�) = 1 − {ξ}.
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Since only the fractional part of ξ is relevant, we often may ignore the integer
part and then have ξ ∈ [0, 1]. In this case, a randomized rounding y of ξ
satisfies

Pr(y = 1) = ξ,
Pr(y = 0) = 1 − ξ.

For ξ ∈ Rn, we call y = (y1, . . . , yn) randomized rounding of ξ if yj is a
randomized rounding of ξj for all j ∈ [n]. We call y independent randomized
rounding of ξ, if the yi are mutually independent random variables.

Independent randomized rounding was introduced by Raghavan [Rag88]
and since has found numerous applications. It takes its strength from the
fact that sums of independent random variables are strongly concentrated
around their mean. This allows to bound the deviation of a weighted sum of
the ξi from the corresponding sum of the yi (this is done via so-called Chernoff
bounds).

Independent randomized rounding can be derandomized. That is, one can
transform the above sketched approach into a deterministic rounding algorithm
(at the price of a slightly higher run-time) that guarantees large deviation
bounds comparable to those that randomized rounding satisfies with high
probability.

For our purposes, independent randomized rounding is not fully satisfactory
since we would like to construct exactly n points. In other words, we prefer to
have

∑
B∈B yB =

∑
B∈B x̃B = n without any deviation. Fortunately, this can

be achieved relatively easy with the randomized rounding method proposed by
the first author in [Doe06]. It allows to generate randomized roundings that
always fulfill constraints like

∑
B∈B yB =

∑
B∈B x̃B = n. In consequence, this is

not independent randomized rounding. However, though not being independent,
these roundings still satisfy Chernoff bounds and can be derandomized. The
following makes this precise.

Theorem 1 ([Doe06]). Let ξ ∈ RN such that all ξi have binary length at
most � and

∑N
i=1 ξi ∈ N. Then in time O(�N) a randomized rounding y of ξ

can be generated such that Pr(
∑N

i=1 yi =
∑N

i=1 ξi) = 1 and for all a ∈ [0, 1]N ,
Y :=

∑N
i=1 aiyi, µ := E(Y ) =

∑N
i=1 aiξi and all δ ∈ [0, 1],

Pr(Y ≥ (1 + δ)µ) ≤ exp(− 1
3µδ

2),

Pr(Y ≤ (1 − δ)µ) ≤ exp(−1
2µδ

2).

The Chernoff bounds given above are not strongest possible. Bounds like
Pr(Y ≥ (1 + δ)µ) ≤

(
eδ

(1+δ)(1+δ)

)µ

would also hold, but are often not practical
to work with. Since our roundings do not change the sum of all variables, we
also have the following bound, which often is easier to handle.
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Lemma 3. In the setting of Theorem 1, assume further that ξ is non-negative
and n :=

∑N
i=1 ξi. Then for all λ ≥ 0, we have

Pr(|Y − µ| ≥ λ) ≤ 2 exp(− 1
3λ

2/n).

Proof. We may assume λ ≤ n, as Y never exceeds n by non-negativity of ξ.
Let ξN+1 = (n − µ) and aN+1 = (n − µ)/(n − µ). Note that since ξN+1 is
integral, any randomized rounding of ξ1, . . . , ξN+1 as in Theorem 1 yields a
randomized rounding for ξ1, . . . , ξN as in Theorem 1 (by just forgetting the
(N + 1)-st variable) and vice versa (by taking yN+1 = ξN+1 with probability
one). Hence we need not to distinguish between the two.

Let Ỹ =
∑N+1

i=1 aiyi and µ̃ = E(Ỹ ). Note that by construction, µ̃ = n.
Hence with δ = λ/n, the first bound of Theorem 1 yields

Pr(Y − µ ≥ λ) = Pr(Ỹ − µ̃ ≥ λ)
= Pr(Ỹ ≥ (1 + δ)µ̃)
≤ exp(− 1

3nδ
2) = exp(− 1

3λ
2/n).

The second bound of Theorem 1 analogously yields Pr(−(Y − µ) ≥ λ) ≤
exp(−1

3λ
2/n). Both estimates give this lemma.

Construction of the Point Set

We use the theorem above to generate random variables (yB) as randomized
roundings of (x̃B). Since we required the x̃B , B ∈ B, to be non-negative, the
yB , B ∈ B, are non-negative integers. Let T be an n-point set in the unit cube
such that for all B ∈ B, T contains exactly yB points in B.

Lemma 4. Let C ∈ C0. Then for all non-negative λ we have

Pr
(∣∣|C ∩ T | − nVC

∣∣ > λ+ 2−�−1
) ≤ 2 exp

(
−λ

2

3n

)
.

Proof. By construction, we have |C ∩ T | =
∑

B∈B(C) yB and nVC =∑
B∈B(C) xB . From Lemma 2 we get

∣∣|C ∩ T | − nVC

∣∣ =
∣∣∣∣∣∣
∑

B∈B(C)

(yB − xB)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

B∈B(C)

(yB − x̃B)

∣∣∣∣∣∣+ 2−�−1.

Put Y :=
∑

B∈B(C) yB . Since the x̃B are non-negative and n =
∑

B∈B x̃B , we
get from Lemma 3

Pr

⎛⎝∣∣∣∣∣∣
∑

B∈B(C)

(yB − x̃B)

∣∣∣∣∣∣ ≥ λ
⎞⎠ ≤ 2 exp

(
−λ

2

3n

)
.
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Theorem 2. Let T be as above. Let δ ∈]0, 1]. For all θ ∈ [1,∞[ we have

Pr
(
d∗∞(T ) >

√
3n−1 ln(2θ|B|) + δ + 2−�−1n−1

)
≤ θ−1. (7)

Proof. By Lemma 1, we have d∗∞(T ) ≤ d∗G(T ) + δ. (Of course, G should be
a grid as in Subsection 2.1.) Choosing λ =

√
3n ln(2θ|B|), we deduce from

Lemma 4 that

Pr
(∣∣|C ∩ T | − nVC

∣∣ > λ+ 2−�−1
) ≤ (θ|B|)−1 for all C ∈ C0.

Hence, since |C0| = |B|,

Pr(d∗G(T ) > (λ+ 2−�−1)/n) ≤
∑

C∈C0

Pr
(∣∣|C ∩ T | − nVC

∣∣ > λ+ 2−�−1
) ≤ θ−1.

Choice of Parameters

Note that inequality (7) depends on the parameters θ, � and δ (in particular,
|B| depends on δ). In the following we make some reasonable choices for these
parameters to get a version of inequality (7) that only depends on d and n.

Let d ≥ 2. In [DGS05, Thm.2.3] a δ-cover in form of a non-equidistant grid
G = {q1, . . . , qk}d was constructed satisfying

k =
⌈
d

d− 1
ln(1 − (1 − δ)1/d) − ln δ

ln(1 − δ)
⌉

+ 1 ≤
⌈
d

d− 1
ln d
δ

⌉
+ 1.

The explicit construction goes as follows: Put p0 := 1 and p1 := (1 − δ)1/d. If
pi > δ, then define pi+1 := (pi − δ)p1−d

1 . If pi+1 ≤ δ, then put κ(δ, d) := i+ 1,
otherwise proceed by calculating pi+2. Then k = κ(δ, d) + 1 and qk−i = pi.

For this grid G and δ ≤ 1/2 we get

ln |B| = ln |G| = d ln k ≤ d(ln δ−1 + ln ln d+ ln 4) .

Choosing
δ =
(
3n−1(d (ln ln d+ ln 8) + ln 4)

)1/2
(8)

leads to

ln |B| ≤ d

2
ln(σn) , where σ = σ(d) :=

16(ln d)2

3(d(ln ln d+ ln 8) + ln 4)
. (9)

An elementary analysis shows that σ takes its maximum in d = 6 and therefore
maxd≥2 σ(d) < 0.9862. In the table below we listed some values of σ.
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d σ(d) d σ(d)
2 0.5324886424 20 0.7528969387
3 0.8141209699 30 0.6139386902
4 0.9308908286 40 0.5306094834
5 0.9754256341 50 0.4702720050
6 0.9861774970 60 0.4242704800
7 0.9802221264 70 0.3878425250
8 0.9657904472 80 0.3581541672
9 0.9471133088 90 0.3334088723

10 0.9264689299 100 0.3124089382
11 0.9051224430 360 0.1331152560
12 0.8837875877 1000 0.0634092061

Let us assume that for a given dimension d ≥ 2 the number of points n is
large enough to imply δ ≤ 1/2. Then, for θ = 2,

√
3n−1 ln(2θ|B|) + δ ≤ 2

√
3n−1

(
d

2
ln(σn) + ln 4

)
.

Now let us specify the choice of �. Due to our choice of the δ-cover G we
may assume that

min
B∈B

VB >
δd

dd
. (10)

(It is easy to see that qk − qk−1 > δ/d and that qi − qi−1, i = 2, . . . , k, is a
strictly monotonic decreasing sequence. Nevertheless, (10) does not hold in the
situation where q1 is almost zero. In this case we substitute q1 := q2/2. It is
easy to see that the new grid G is still a δ-cover. Then q1 > δ/2 and therefore
qi − qi−1 > δ/d for all i = 1, . . . , k.)

To guarantee that our quantities x̃B, B ∈ B, from Lemma 2 are non-
negative, we choose � such that 2−�+d−1 ≤ δd/dd. According to our choice of
δ in (8), the last inequality holds if

� ≥
⌈
d

2 ln 2
ln
(

2
3
dn

)⌉
− 1 .

For simplicity we choose
� = (d ln(dn)).

Our choices of G, δ, θ and � result in the following corollary.

Corollary 1. Let G, δ, θ and � be chosen as above, and let σ = σ(d) =
16(ln d)2

3(d(ln ln d+ln 8)+ln 4) be as above. Then

Pr
(
d∗∞(T ) > 2

√
3n−1

(
1
2d ln(σ n) + ln 4

)
+ 2−d ln(dn)−1n−1

)
≤ 1

2
. (11)
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Remark 1. Note that above we were using a non-equidistant grid as δ-cover.
In [DGS05, Gne07], also δ-covers were constructed that had no grid structure
(by a grid, we shall always mean a point set G in [0, 1]d that can be written
as G = (G0)d for some G0 ⊂ [0, 1]). These δ-covers were superior in the sense
that they needed fewer points. For the approach we use in this paper, however,
they cannot be applied. The reason is that in Lemma 2 and 4, we heavily use
the fact that corners (elements from C0) are the union of all boxes (elements
from B) which they have a non-trivial intersection with.

3 Derandomized Construction

The randomized roundings of Theorem 1 and hence the whole construction
above can be derandomized. Combining Theorem 4 of [Doe06] with the simple
derandomization without pessimistic estimators (this is derandomization (i)
in Section 3.2 of [Doe06]) yields the following.

Theorem 3. Let A ∈ {0, 1}m×n. Let ξ ∈ Rn such that
∑n

i=1 ξi ∈ Z and
2�ξ ∈ Zn. Then a rounding y of ξ such that

∑n
i=1 yi =

∑n
i=1 ξi and

∀i ∈ [m] : |(Aξ)i − (Ay)i| ≤ 13
√

max{(Aξ)i, ln(4m)} ln(4m)

can be computed in time O(mn�).

The rounding errors we are interested in are all of the kind
∑

B∈B(C)(x̃B −
yB) for some C ∈ C0. Hence the matrix encoding all these errors is an |C0|× |B|
matrix having entries 0 and 1 only. More precisely, we consider the matrix
A = (aC,B)C∈C0,B∈B, where aC,B = 1 if B ⊆ C and aC,B = 0 else. For each
C ∈ C0 we have

(Ax̃)C =
∑

B∈B(C)

x̃B ≤
∑
B∈B

x̃B = n .

Thus, if n ≥ ln(4|C0|), we get from Theorem 3 the bound

|(Ax̃)C − (Ay)C | ≤ 13
√
n ln(4|C0|) .

If n ≤ ln(4|C0|), this bound holds trivially, since always |(Ax̃)C − (Ay)C | ≤ n.
Altogether we get the following theorem.

Theorem 4. Let n ∈ N be given. There is a deterministic algorithm that

(i) computes a point set T ⊆ [0, 1]d that has exactly n points;

(ii) d∗∞(T ) ≤ 13
√
n−1 ln(4|C0|) + δ + 2−�−1n−1;

(iii) has run time O(�|B||C0|).
We get the following corollary.
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Corollary 2. Let n ∈ N be given. Let G, δ and � be as chosen in the last
section. Furthermore, let σ be as defined in (9). There is a deterministic
algorithm that

(i) computes a point set T ⊆ [0, 1]d that has exactly n points;

(ii) d∗∞(T ) ≤ (13 +
√

3)
√
n−1
(

d
2 ln(σ n) + ln 4

)
+ 2−d ln(d n)−1n−1;

(iii) has run time O(d ln(dn)(σ n)d).

3.1 Improvements on the Constants

In [Doe06], having good estimates for the constant in the error term (which
e.g. yield the 13 in Theorem 3) was not too important. Here, this constant
has roughly a quadratic influence on the size of the point set having a fixed
discrepancy. We therefore discuss a simple improvement of the result in [Doe06].

We note that the simple derandomization for {0, 1
2} vectors and A ∈

{0, 1}m×n (this is derandomization (i) in Section 3.2 of [Doe06]) works as well
for A ∈ {−1, 0, 1}m×n. This saves us from separating positive and negative
entries of A as in the proof of Lemma 4 in [Doe06]. Consequently, the ln(4m)

terms become ln(2m) and the constant 13 ≥ f(2√ 1
2

)
becomes f

(√
1
2

) ≤ 4
(where f is defined as in [Doe06]).

Further improvements, in particular, for certain values of the variables
involved, are definitely possible (cf. also the note after Theorem 1). We feel,
however, that in this paper further technicalities would rather hide the main
ideas. We thus decided not to follow such lines of research in this paper.

Future Work

We provided a deterministic algorithm to construct low-discrepancy sets of
small size. This algorithm can be implemented with reasonable effort, and we
will concentrate on this task in the near future. It would be interesting to test
the quality of the resulting point sets T . Further “fine tuning” may improve
the discrepancy of T . Notice, e.g., that so far we only distributed n points in
boxes B ∈ B, but we have not specified where to place them inside these boxes.
Indeed, this has no influence on our given analysis. But in practise it may,
e.g., lead to better results if one places the points in a more sophisticated way
inside the box instead of just putting them into the lower left corner. A further
investigation of this topic seems to be interesting.
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Summary. Starting from coding-theoretic constructions, we build digital nets with
good figures of merit, where the figure of merit takes into account the equidistribution
of a preselected set of low-dimensional projections. This type of figure of merit turns
out to be a better predictor than the t-value for the variance of randomized quasi-
Monte Carlo (RQMC) estimators based on nets, for certain classes of integrals. Our
construction method determines the most significant digits of the points by exploiting
the equivalence between the desired equidistribution properties used in our criterion
and the property of a related point set to be an orthogonal array, and using existing
orthogonal array constructions. The least significant digits are then adjusted to
improve the figure of merit. Known results on orthogonal arrays provide bounds
on the best possible figure of merit that can be achieved. We present a concrete
construction that belongs to the class of cyclic digital nets and we provide numerical
illustrations of how it can reduce the variance of an RQMC estimator, compared
with more standard constructions.

1 Introduction

This paper deals with the construction of finite sets of points that are more
evenly distributed in the s-dimensional unit hypercube, in some sense, than a
typical set of random points. The two main issues that arise in building such
point sets are: (a) to define an appropriate measure of uniformity, or measure
of discrepancy between the uniform distribution and the empirical distribution
of the points; (b) to find construction methods for point sets having high
uniformity, or low discrepancy, with respect to the retained definition.
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A popular class of construction is that of digital nets [Nie92, Nie05], whose
uniformity is usually measured by figures of merit defined in terms of the
equidistribution of the points in certain families of rectangular boxes that
partition the unit hypercube. A widely-used figure of merit in this context is
the t-value [LL02, Nie92, Nie05, PS01, SS05]. One limitation of this measure,
however, is that when the dimension of the point set is much larger than the
basis of the net, the t-value is necessarily large, and it does not really take
into account the quality of the low-dimensional projections. There are several
applications in RQMC integration where for a given t-value, the uniformity of
certain low-dimensional projections can make an important difference [LL99,
LL01, PL06].

The aim of this paper is to propose digital net constructions with good
t-values and high-quality low-dimensional projections and to exhibit theoretical
bounds on what can be achieved in this direction. We do this by exploiting the
links between digital net constructions on the one hand, and some established
results on orthogonal arrays and error correcting codes on the other hand.
Results from coding theory have already been exploited extensively to construct
digital nets with a small t-value and to compute tables of the best known t-value
for a given dimension, basis, and number of points [BE98, Nie04, Nie05, SS05].
Here we use similar techniques to define skeletons for our nets, i.e., to determine
the most significant digits of the points. The construction is then refined by
adjusting the least significant digits to improve our figure of merit. Known
results on orthogonal arrays also provide bounds on the best possible figure of
merit that can be achieved.

As a concrete example, we propose an algebraic construction of a family
of cyclic digital nets with well-equidistributed projections. These nets are
cyclic in the sense that if we shift all coordinates of any given s-dimensional
point of the net by one position to the left and put the old first coordinate
at the end, the resulting point is always in the net. (This definition differs
from that of [Nie04].) By repeating the blocks of s successive coordinates
ad infinitum, these nets provide point sets that are infinite-dimensional and
dimension-stationary, in the sense of [LL99, PL06]. We present a family of
cyclic (t,m, s)-nets that belong to that class; they have the same parameters
t, m, and s as in [BE98] (which give the best t known so far for certain values
of s and m), and improved equidistribution properties for certain projections.
We give a numerical illustration showing that this type of point set can be
more accurate than other well-established digital nets (such as Sobol’ nets) for
QMC integration, at least for certain types of integrands.

The rest of the paper is organized as follows. In Section 2, we recall and
discuss various ways of measuring the uniformity of digital nets. In Section 3,
we make the links between the nets that we want to construct and orthogonal
arrays, whose additive versions are the duals of additive error-correcting codes.
A specific class of cyclic net constructions is proposed and analyzed in Section 4.
The numerical illustrations are in Section 5.
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2 Digital Nets and Their Figures of Merit

QMC and RQMC.

We want to construct finite point sets of the form Pn = {u0, . . . ,un−1} in
[0, 1)s with low discrepancy (i.e., high uniformity) in some sense. These point
sets can be used, for instance, to estimate the integral of some function f over
[0, 1)s by quasi-Monte Carlo (QMC):

µ =
∫

[0,1)s

f(u)du ≈ 1
n

n−1∑
i=0

f(ui). (1)

Randomized QMC (RQMC) also uses the approximation (1), but after ran-
domizing the point set Pn in a way that each individual point has the uniform
distribution over [0, 1)s even though the point set as a whole keeps its high uni-
formity [LL02, Nie92, Owe98]. It has the advantage of providing an unbiased
estimator of µ, and also an unbiased variance estimator if we make several
independent randomizations.

Digital nets.

The two most widely used classes of constructions for Pn are digital nets and
lattice rules [Nie92, SJ94]. We focus on the former. For given integers b ≥ 2
(usually a prime or a prime power) and m ≥ 1, a digital net in base b with
n = bm points is defined as follows. For j = 1, . . . , s, select a w ×m generator
matrix C(j) whose elements are either in the finite ring Zb or in the finite
field Fb. (If b = pe where p is prime and e > 1, the operations in Fb and in Zb

are not equivalent, so one must make sure that the correct arithmetic is used,
depending on how the C(j) where constructed.) To define the ith point ui, for
i = 0, . . . , bm − 1, we write the digital expansion of i in base b and multiply
the vector of its digits by C(j), modulo b, to obtain the digits or the expansion
of ui,j , the jth coordinate of ui. That is,

i = ai,0 + ai,1b+ · · · + ai,m−1b
m−1,⎛⎜⎝ui,j,1

ui,j,2

...

⎞⎟⎠ = C(j)

⎛⎜⎜⎜⎝
ai,0

ai,1

...
ai,m−1

⎞⎟⎟⎟⎠
ui,j =

∞∑
�=1

ui,j,�b
−�, ui = (ui,1, . . . , ui,s).

In practice, we take w and m finite, but there is no limit on their size.
If the generating matrices are defined with an infinite number of columns,
then we have a digital sequence of points. If we have an infinite sequence
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of generating matrices, then the points can be thought as having infinite
dimension. Typically, these infinite sequences are defined via recurrences,
either for the successive columns or the successive generating matrices. Well-
known digital net constructions are those of Sobol’, Faure, Niederreiter, and
Niederreiter-Xing.

Equidistribution

Let (q1, . . . , qs) be a vector of nonnegative integers such that q = q1+. . .+ qs ≤
m. A (q1, . . . , qs)-equidissection in base b is a partition of the unit hypercube in
bq1+···+qs rectangular boxes aligned with the axes, of equal volume b−q, defined
by dividing the interval [0, 1) along the j-th coordinate into bqj equal parts,
for each j. A point set Pn with n = bm is said to be (q1, . . . , qs)-equidistributed
in base b if every cell defined by the (q1, . . . , qs)-equidissection contains exactly
bm−q points from Pn. It is easy to see that a digital net in base b is (q1, . . . , qs)-
equidistributed in base b if and only if the matrix constructed with the first q1
rows of C(1), the first q2 rows of C(2), . . . , and the first qs rows of C(s), has
full rank q1 + · · · + qs. This is possible only if q1 + · · · + qs ≤ m.

These definitions apply more generally to lower-dimensional projections of
Pn. For I = {i1, . . . , iη} ⊆ {1, . . . , s}, Pn(I) denotes the η-dimensional projec-
tion of Pn on the coordinates determined by I. The set Pn(I) is (qi1 , . . . , qiη

)-
equidistributed in base b if each box of the (qi1 , . . . , qiη

)-equidissection has the
same number of points. This is equivalent to saying that Pn is (q̃1, . . . , q̃s)-
equidistributed with q̃j = qih

if j = ih ∈ I and q̃j = 0 otherwise. This
equidistribution can thus be verified by checking the rank of a matrix as
explained earlier.

The t-value.

A digital net in base b with n = bm points is a (t,m, s)-net in base b, also
denoted (t,m, s)b net, if it is (q1, . . . , qs)-equidistributed whenever q1+· · ·+qs ≤
m − t [Nie92]. The smallest integer t ≥ 0 such that this holds is called the
t-value of the net. Ideally, we want t to be as small as possible. But t = 0 is
possible only if s ≤ b+ 1 [Nie92]. Otherwise, the best possible t-value can be
much larger than 0; the best possible t-value as a function of b and s, together
with the best known t-values, can be found in the MinT tables of [SS05].

For example, in base b = 2, for m = 14 and s = 23, the best known t-value
is t = 8. This guarantees equidistribution only for q1 + · · · + qs ≤ 6, i.e., when
considering no more than 6 output bits. But why not be more demanding
for low-dimensional projections? For instance, an easily achieved requirement
would be that all one-dimensional projections be (m)-equidistributed. We
could also ask that other low-dimensional projections have a smaller t-value;
in the previous example where t = 8, for instance, we may ask that several of
the two-dimensional projections have a t-value of 0.
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Another way to compromise when the lower bound on the t-value is deemed
too high is to define a figure of merit that takes the worst case over a smaller
number of equidissections, i.e., fewer shapes of boxes. This is the direction we
take in what follows.

Looking at square boxes only

We say that Pn or Pn(I) is η-distributed with � digits of accuracy if it is
(�, . . . , �)-equidistributed. This means that if we partition the hypercube into
bη� cubic boxes or equal size, each box contains exactly bm−η� points. The
largest � for which this holds is the η-dimensional resolution of Pn(I) in base b,
denoted �(I). One has �(I) ≤ �m/η�. The resolution gap of Pn(I) is defined by
δ(I) = �m/η� − �(I). This can be used to define a worst-case criterion based
on (cubic) equidistribution [LL00, LL02]:

∆J = max
I∈J

δ(I)

where J is a selected class of sets I ⊆ {1, . . . , s}. The choice of J is arbitrary.
If J contains too many projections, typically there are inevitably some bad
ones and the criterion loses its discriminatory power, because it only cares
about the worst projections. A leaner J can concentrate on the most important
projections, if it diminishes the theoretical lower bound on ∆J . As a practical
compromise, Lemieux and L’Ecuyer [LL02] suggested the form

J = {{0, 1, . . . , i} : i < s1} ∪ {{i1, i2} : 0 = i1 < i2 < s2} ∪ · · ·
∪{{i1, . . . , id} : 0 = i1 < . . . < id < sd} (2)

for arbitrarily selected values of d, s1, . . . , sd.

3 A Coding Theoretic Link: Orthogonal Arrays

An orthogonal array OA(n, s, q, t) is an array of n rows and s columns, with
entries in {0, 1, . . . , q−1}, such that in the submatrix formed by any t columns
of the array, each of the qt possibilities for a row appear equally often, namely
n/qt times each. We say that we have an orthogonal array (OA) with n words
(or runs), length s (or s factors), q levels, and strength t. For further details
on OAs, see [Bie04, HSS99, Owe92].

We can define a correspondence between an OA and a point set Pn in
[0, 1)s simply by dividing each entry of the array by q and viewing each row
of the array as representing an s-dimensional point. With a slight abuse of
language, we also call this point set an OA (i.e., identify it with the OA). Note
that all coordinates of all points in this point set are multiples of 1/q. If q = b�

for some positive integers b and �, the OA(n, s, q, t) property means that every
t-dimensional projection of Pn is t-distributed with � digits of accuracy, in
base b.
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Let Jη denotes the class of all subsets of exactly η coordinates, i.e., of the
form I = {i1, . . . , iη} ⊆ {1, . . . , s}. If Pn is a point set whose coordinates are
all multiples of b−�, then Pn is an OA(n, s, b�, η) if and only if

min
I∈Jη

�(I) ≥ �,

if and only if
∆Jη

≤ �m/η� − �.
If Pn is a digital net with n = bm where b is prime, then the sum (digitwise,
modulo b) of two points of the net is again a point of the net; that is, the
corresponding OA is an additive OA, which is the dual of an additive error-
correcting code (s, b�s−m, η + 1)b� [Bie04, HSS99]. In fact, each additive error-
correcting code gives an additive orthogonal array, and vice-versa.

Our aim here is to construct digital nets Pn in base b, such that Pn truncated
to its first �η digits is an OA(bm, s, b�η , η), simultaneously for η = 1, 2, . . . , d,
where each �η is as large as possible. So our task is more than just looking up
for existing OAs or codes. A trivial upper bound for each �η is �η ≤ �m/η�.
Known bounds on the largest � for which there can exist an OA(bm, s, b�, η)
are generally tighter than this trivial bound. In some cases, there are known
constructions that match the bounds. Note that the closer η is to s/2, the
more η-dimensional projections there are. To verify the OA property, η� digits
of each projection are examined, so a larger � means that more digits are
involved (the boxes have smaller volume) and the corresponding OA is then
harder to construct.

Example 1. Take b = 2, s = 65, and m = 12, so n = 212. Table 1 gives upper
bounds on the largest � for which there can be an OA(212, 65, 2�, η), as well as
the values of � achieved by known OA constructions.

The upper bounds from MinT [SS05] are obtained as follows. For η = 3
there is no OA(163, 19, 24, 3) which is a consequence of the bound on OAs with
index unity [Bus52]. For η = 4, from the linear programming bound we find
that there is no OA(46, 30, 22, 4) [SS06]. For η = 5, there is no OA(212, 65, 2, 5),
because otherwise its truncation would provide an OA(211, 64, 2, 4), which
would violate the sphere-packing bound [Bie04].

Table 1. Upper bounds on the values of � for which there can exist an
OA(212, 65, 2�, η), and values for which there exist known constructions.

η 1 2 3 4 5 6 7 · · · 12

�12/η� 12 6 4 3 2 2 1 · · · 1
MinT upper bound for OA 3 1 0 0 0 · · · 0
Best known additive OA 12 6 3 1 0 0 0 · · · 0

Best known net 12 6 3 1 0 0 0 · · · 0
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The best known additive OAs, on the other hand, can be found from the
best known linear error-correcting codes [65, 65 − 12/�, η + 1]2� . For the case
η = 1, there is an obvious construction. For η = 2, there is a Hamming code
[65, 65 − 2, 3]64. For η = 3, there is an ovoid code [65, 65 − 4, 4]8. For η = 4,
there is a binary linear code [65, 53, 5]2.

Our strategy for building our nets will be to start with a good (known)
OA(n, s, b�, η) for some reasonably large η (and a rather small �, necessarily)
and fix the first � digits of the net; then, in a second stage, we “optimize” the
other digits, either by algebraic construction or via computer search, to obtain
a point set whose �(η′)-digit truncation is an OA(n, s, b�(η

′), η′) for reasonably
large �(η′), for all η′ ≤ η.

4 A Cyclic Net Construction

We call a digital net Pn cyclic if for any point (u0, . . . , us−2, us−1) ∈ Pn, we
also have (u1, . . . , us−1, u0) ∈ Pn. For a cyclic digital net Pn, whenever b is
prime and gcd(b, s) = 1, the net is a direct product of rings (principal ideal
domains). These rings turn out to be linear cyclic codes, one of the favorite
classes of codes of coding theorists, and their structure can be exploited for
efficient computer search and algebraic constructions of good instances of these
nets. The following special case illustrates this.

A cyclic net construction

The following construction gives a cyclic digital net Pn in base b = 2, with n =
24r points in s = 22r + 1 dimensions, for some integer r. The dimensions of the
generating matrices will be w = m = 4r. This net can be used to approximate
integrals in s′ ≤ s dimensions by taking only the first s′ coordinates of each
point. For s′ > s, we can take advantage of the cyclic property to get as many
coordinates as needed. The periodicity of the coordinates will be destroyed by
the randomization (see Section 5).

The generator matrices of the net are defined as follows. Recall that

F2 ⊂ F2r ⊂ F22r ⊂ F24r .

Let ζ ∈ F24r be a (22r + 1)th primitive root of unity, i.e., such that ζ2
2r+1 = 1.

Such a ζ exists because we know that there is an element ζ ′ of multiplicative
order 24r − 1, so it suffices to take ζ = (ζ ′)2

2r−1, which has multiplicative
order 22r + 1. Choose a basis 1 = α1, . . . , αr of F2r over F2 and choose some
elements β ∈ F22r \ F2r , and γ ∈ F24r \ F22r . Put

ai = αi, ai+r = βαi, ai+2r = γαi, ai+3r = γβαi,

for i = 1, . . . , r. Then, a1, . . . , ar form a basis of F2r , a1, . . . , a2r are a basis of
F22r , and a1, . . . , a4r are a basis of F24r .

To define the ith row of the matrix C(j), we compute aiζ
j ∈ F24r and

represent it as a vector of 4r elements (or coordinates) over F2.
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Proposition 1. For r > 1, the cyclic net just constructed has the following
properties:

1. It is a digital (4r − 4, 4r, 22r + 1)-net in base 2
2. It is (4r)-equidistributed for all one-dimensional projections.
3. It is (2r, 2r)-equidistributed for all two-dimensional projections.
4. It is (r, r, r)-equidistributed for all three-dimensional projections.
5. It is (1, 1, 1, 1)-equidistributed for all four-dimensional projections.
6. It is (1, . . . , 1)-equidistributed whenever I = {j, j + 1, . . . , j + 4r − 1}.
7. It is (r, r, r, r)-equidistributed whenever I = {j, j + 1, j + 2, j + 3} or
I = {j, k, l,m(j, k, l)}, for any pairwise different j, k, l and some 2r − 2
different m(j, k, l). Thus, the proportion of four-dimensional projections
that are (r, r, r, r)-equidistributed is approximately 1/(1 − 1/n2).

Proof. That the net is (4r)-equidistributed for all one-dimensional projections
is equivalent to the fact that the matrix C(j) has full rank. This is obvious, as
the αi, βαi, γαi, γβαi are a basis of F24r over F2 and ζj �= 0.

Now we want to show that the net is (2r, 2r)-equidistributed for all two-
dimensional projections. We have to show that the first 2r rows of C(j) and the
first 2r rows of C(j′) have full rank. The first 2r rows of C(j) are of the form aiζ

j

and the ai, for 1 ≤ i ≤ 2r, are a basis of F22r . So we have to show that ζj and ζj′

are linearly independent over F22r . Let W = {ζj |0 ≤ j < 22r +1} ⊂ F4r be the
group of elements of multiplicative order 22r +1. As gcd(22r +1, 22r−1) = 1, we
have thatW ∩F22r = {1}. So two different ζj , ζj′ ∈W are linearly independent
over F22r .

For the (r, r, r)-equidistribution, with the same argument, we have to
show the linear independence of different powers of ζ over F2r . It is known,
that the (22r + 1)-th roots of unity, i.e., W is an ovoid in PG(3, 2r), where
PG(k, q) denotes the k-dimensional projective geometry over the finite field Fq

[Bie04, Hir85] (see the proof of Theorem 17 of [Bie03]). The defining property of
the ovoid implies that the ζj ∈W are a F2r -linear OA of strength 3. This means
that for any distinct indexes {j, j′, j′′}, ζj , ζj′

, ζj′′
are linearly independent

over F2r . Hence the net is (r, r, r)-equidistributed for all three-dimensional
projections.

For the (r, r, r, r)-equidistribution we consider again the ζj as points in
PG(3, 2r) (not to be confused with the points of Pn). Consider four points
ζj , ζk, ζl, ζm(j,k,l). Since W is an ovoid and three independent points define
a plane in PG(3, 2r), the points ζm(j,k,l) that are not independent from
{ζj , ζk, ζl} are those points of the ovoid that lie in the plane generated by
{ζj , ζk, ζl}. The claimed property follows from the fact that every plane that
contains more than one point of the ovoid in PG(3, 2r) contains exactly 2r + 1
points of the ovoid (Theorem 16.1.6.ii in [Hir85]).

That the net is (r, r, r, r)-equidistributed for I = {j, j+1, j+2, j+3} follows
from the fact that {1, ζ, ζ2, ζ3} are linearly independent over F2r , because F24r

is the smallest field that contains ζ. That the net is (1, . . . , 1)-equidistributed
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whenever I = {j, j+1, . . . , j+4r−1} follows from the fact that {1, ζ, . . . , ζ4r−1}
are linearly independent over F2.

The net is (1, 1, 1, 1)-equidistributed for all four-dimensional projections.
This follows from the fact that the binary code we obtain by restriction to the
first digit has strength 4; see [BE98] for the proof.

For the (t,m, s)-net property (i), we have to show that the net is
(l1, l2, l3, l4)-equidistributed whenever l1 + l2 + l3 + l4 = 4. The only case that
is not covered by what we already have shown is the (3, 1)-equidistribution for
all two dimensional projections, for r = 2. But for r = 2 we are exactly in the
same situation as in [BE98], where the corresponding (t,m, s)-net property is
proved.

5 Numerical Illustrations

We report (a subset of) the results of numerical experiments where we try our
cyclic nets for estimating some multivariate integrals by RQMC. We compare
their performance with that of Sobol’ nets when both are randomized by
a random binary digital shift [LL02, Owe03]. In each case, we estimate the
variance per run, defined as n times the variance of the average over the n
points, and compare it with the empirical variance of standard Monte Carlo
(MC). The variance reduction factor (VRF) reported is the ratio of the MC
variance over the RQMC variance per run. The digital nets are randomized
by a random digital shift (DS), which consists in generating a single point
u = (u1, . . . , us) uniformly over [0, 1)s, and performing a digit-wise addition
modulo b of uj with the jth coordinate of each point of Pn, for each j. For b = 2,
the digit-wise addition becomes a bitwise exclusive-or. This randomization
preserves the equidistribution for every equidissection in base 2; in particular,
it preserves the (t,m, s)-net properties. The primitive polynomials and the
direction numbers for the Sobol’ sequence were taken from [LCL04].

Example 2. This example is from [KW97] and [PL06]. We consider the function
f defined by

f(u1, . . . , us) =

√
2

t(t− 1)

t−1∑
j=0

j−1∑
i=0

g(ui)g(uj),

where g(x) = 27.20917094x3 − 36.19250850x2 + 8.983337562x+ 0.7702079855
and s = 120. We take n from 214 to 216 and we use RQMC with 100 independent
digital random shifts (DS) to estimate the variance for each method. Table 2
gives the VRF for different digital nets. The F2w nets were proposed by
Panneton and L’Ecuyer [PL06]; these authors tried 12 instances of these nets
on this example and obtained VRFs ranging from 10 to 4 × 105. With the
(0, 2, 126)125-net, we obtain a competitive VRF. (Note that this net cannot be
written as a net in base 2.) These (0, 2, q + 1)q-nets are essentially the duals
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Table 2. Variance reduction factors of RQMC compared with MC, with various
digital nets.

net n VRF

Sobol 214 2
Sobol 216 2
F2w -nets 214 − 216 10 to 4 × 105

(0, 2, 129)128-net 214 330
(0, 2, 126)125-net 56 8.3 × 104

Proposition 1 216 1.8 × 106

of Hamming codes. They provide an optimal resolution for the projections in
one and two dimensions, which seems to be what we need for the function f
considered here. With the net from Proposition 1, with r = 4, we obtain a
significantly larger VRF.

Example 3. This example is from [IT02] and [L’E04]. We consider a Bermudan-
Asian option on c assets. For 1 ≤ i ≤ c, the value of asset i evolves as a
geometric Brownian motion (GMB) {Si(t), t ≥ 0} with drift parameter µi and
volatility parameter σi. That is,

Si(t) = Si(0) exp [(µi − σi2/2)t+ σiWi(t)]

where Wi is a standard Brownian motion. The Wi’s are also correlated, with
Cov [Wi(t+ δ) −Wi(t), Wj(t+ δ) −Wj(t)] = ρi,jδ for all δ > 0. The option
has discounted payoff e−rT max[S̄(A) −K, 0] for some constants K > 0 and
T > 0, where

S̄(A) =
1
cd

c∑
i=1

d∑
j=1

Si(tj) (3)

is the arithmetic average at the fixed observation times tj = jT/d for
j = 1, . . . , d. The vector Y = (W1(t1), . . . ,Wc(t1),W1(t2), . . . ,Wc(t2), . . . ,
W1(td), . . . ,Wc(td))t, has a multivariate normal distribution with mean zero
and covariance matrix Σ whose element ((i − 1)c + j), (i′ − 1)c + j′) is
ρi,i′σiσi′ |tj′ − tj−1|) for j′ ≥ j.

To generate Y, we can decompose Σ as Σ = CCt for some matrix
C, generate a vector Z = (Z1, . . . , Zs) of independent N(0, 1) (standard
normal) random variates by inversion from s independent U(0, 1) random
variates U1, . . . , Us, i.e., Zj = Φ−1(Uj), and return Y = CZ. There are
several possibilities for the choice of factorization Σ = CCt. For instance, the
Cholesky factorization, takes C lower triangular, whereas principal component
analysis (PCA) selects C so that each Zj accounts for the maximum amount of
variance conditional on Z1, . . . , Zj−1. Its combination with QMC was suggested
in [ABG98].
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Table 3. Empirical variance reduction factors of RQMC with respect to MC for
Example 3 (in 250 Dimensions), for a Sobol’ net and for the net of Proposition 1,
with n = 216 points.

net Cholesky PCA

Sobol’ 16 6144

Proposition 1 50 2108

We take the same parameters as in Example 2 of [L’E04]: c = 10, d = 25
(so s = 250), ρi,j = 0.4 for all i �= j, T = 1, σi = 0.1 + 0.4(i− 1)/9 for all i,
r = 0.04, S(0) = 100, and K = 100. We thus have a 250-dimensional integral.
Simulations with a huge number of runs told us that µ ≈ 5.818 and the MC
variance is σ2 ≈ 72.3.

Recall that the Sobol’ nets are constructed to behave well for the projections
over the first successive coordinates, but not for arbitrary projections over
coordinates with a large index, whereas the net of Proposition 1 has been
built precisely to have good uniformity for projections over a small number
of arbitrary coordinates. With the Cholesky decomposition, the variance is
spread over pretty much all coordinates, whereas PCA pushes most of the
variance in the first coordinates. Thus, we expect the Sobol’ nets to work
well when PCA is used and the new nets to be more competitive if one is
forced to use the Cholesky decomposition. The simulation results reported in
Table 3 agree with these expectations. We also tried with different values of
r, from 0.03 to 0.07, and the VRFs were similar. The VRFs are much larger
with PCA than with Cholesky, due to the fact that PCA reduces significantly
the effective dimension in the truncation sense [IT02, LL02]. But PCA is not
always practical for real-life problems; for instance when the dimension is very
large. Then, one may have to use more traditional simulation schemes that do
not reduce the effective dimension in the truncation sense. The new nets can
be useful in this type of situation.
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Summary. We obtain significant improvements for the star discrepancy D∗ of
generalized van der Corput sequences by means of linear digit scramblings (see
Section 5.2 for the definition). We also find a new lower bound for the extreme
discrepancy D of these sequences which permits to show that linearly-scrambled
sequences are set in a good place among generalized van der Corput sequences.
Finally, we derive the corresponding properties for generalized Hammersley point
sets in arbitrary bases and link recent developments in base 2 by Kritzer, Larcher
and Pillichshammer to former studies of Béjian and the author.

1 Introduction

For a long time, permutations and linear scramblings play a leading part
in QMC methods, especially since the founding works of Owen [Owe95]
and Tezuka [Tez94], [Tez95] and the clever classification they received by
Matoušek [Mat98]. On the other hand, practitioners utilize systematically
random shifts for computing variance estimators, in particular random digit
shifts of the nets used to perform quadratures in Randomized QMC me-
thods. As far as we know, no theoretical study justify the superiority of such
shifts on scramblings by means of other classes of permutations like linear
scramblings.

One of the aims of this paper is to show, in elementary situations (one-
dimensional sequences or two-dimensional point sets), that shifting and
linearly-scrambling the generators (here van der Corput sequences) improves
their discrepancy behavior. Especially, digital shifts improve significantly
the behavior of the star discrepancy (Sections 5.2 and 6.2). Such subtle
distinction has been made possible thanks to our good knowledge of per-
muted van der Corput sequences and special (0, 1)−sequences (Sections 3
and 4.1).
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Another motivation is the question of the position of linearly-scrambled
sequences in the hierarchy of low discrepancy sequences and in particular
among generalized van der Corput sequences. Finding efficient lower bounds
for low discrepancy sequences is a difficult task and in this prospect, we have
improved a preceding lower bound which permits to sharpen the gap and
confirms that many linear digit scramblings produce very good sequences
(Sections 4.2–3 and 5.2).

Finally, according to the revival of interest for Hammersley two-dimensional
point sets with the works in base 2 by Kritzer, Larcher and Pillichshammer
[LP01], [LP03], [Kri06], [KLP06], it was important to link firmly these studies
to the preceding ones of Béjian [Bej78] and the author [Fau81], [Fau86], a lot
of results being in common although the approachs are –or at least presently
seem– quite different (see Section 5 and end of Section 6 for a temporary
conclusion).

2 Definitions

2.1 Irregularities of Distribution

The Discrepancies

For a point set PN = {X1, X2, . . . , XN} in Is = [0, 1]s and a subinterval J of
Is, we define the remainder (to ideal distribution) by

E(J ;N) = A(J ;N) −NV (J)

where A(J ;N) = #{n; 1 ≤ n ≤ N,Xn ∈ J} and V (J) is the volume of J .
Then, the star discrepancy D∗ and the discrepancy D of PN are defined by

D∗(PN ) = supJ∗ |E(J∗;N)| and D(PN ) = supJ |E(J ;N)|

where J∗ (resp. J) is in the shape of
∏s

i=1[0, yi[ (resp.
∏s

i=1[yi, zi[).
For an infinite sequence X, we denote by D(N,X) and D∗(N,X) re-

spectively the discrepancy and the star discrepancy of its first N points. To
emphasize that we deal with the infinite sequence X, we set also

E(J ;N ;X) = A(J ;N ;X) −NV (J).

Note that D∗ ≤ D ≤ 2sD∗.
In the following, we only deal with s = 1 or 2.
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Relations between sequences and point sets

General principle (also valid for all dimensions), see [Nie92] Lemma 3.7 and
[Fau86] Section III:

Let X = (Xn) be an infinite sequence taking its values in I and let PN be
the point set

PN =
{(
k − 1
N

,X(k)
)

; 1 ≤ k ≤ N
}

⊂ I2.

Then
max

1≤M≤N
D∗(M,X) ≤ D∗(PN ) ≤ max

1≤M≤N
D∗(M,X) + 1.

The left inequality will be useful to obtain lower bounds for Hammersley point
sets with N = bn points.

2.2 The Sequences

Permuted van der Corput Sequences

Let b ≥ 2 be an arbitrary integer and let Σ = (σr)r≥0 be a sequence of
permutations of Zb = {0, 1, . . . , b− 1}.

For any integer N ≥ 1, the permuted (or generalized) van der Corput
sequence SΣ

b in base b associated with Σ (see [Fau81]) is defined by

SΣ
b (N) =

∞∑
r=0

σr

(
ar(N)

)
br+1

,

where ar(N) is the r-th digit of the b−adic expansion of N − 1 =
∞∑

r=0

ar(N) br.

If Σ = (σr) = (σ) is constant, we write SΣ
b = Sσ

b .
The van der Corput sequence in base b, SI

b , is obtained with the identical
permutation I.

The original van der Corput sequence (1935) is SI
2 .

The permuted van der Corput sequences are (0, 1)–sequences (in the sense
of Niederreiter–Xing, [NX96]), see [Fau07] Proposition 3.1.

NUT Digital (0, 1)−Sequences

In this case, we deal only with prime bases b. Instead of permutations, we
consider the action on the digits of infinite (N × N), nonsingular, upper
triangular matrices over Fb.



330 H. Faure

Let C = (crk)r≥0,k≥0 be such a matrix and N − 1 =
∑∞

r=0 ar(N) br. Then
the NUT digital (0, 1)-sequence XC

b in base b associated with C is defined by

XC
b (N) =

∞∑
r=0

xN,r

br+1
in which xN,r =

∞∑
k=r

ckrak(N).

With the identity matrix I, we obtain XI
b = SI

b , the van der Corput sequence
in base b.

Of course, the NUT digital (0, 1)−sequences are a special case of (t, s)−
sequences introduced by Niederreiter, see for instance [Nie92].

2.3 The Point Sets

The point sets we are concerned with here are the usual Hammersley point
sets associated with the preceding sequences: for any integer N ≥ 1,

HSΣ
b (N) =

{(
k − 1
N

,SΣ
b (k)
)

; 1 ≤ k ≤ N
}

HXC
b (N) =

{(
k − 1
N

,XC
b (k)
)

; 1 ≤ k ≤ N
}

·

Remark: we write HX(N) instead of HXN to avoid too many subscripts.
In almost all studies on two-dimensional Hammersley point sets, N is a power
of the base b ([DeC86], [Whi75]) and moreover very often b = 2 ([DLP05],
[HZ69], [Kri06], [KLP06], [LP01], [LP03]).

3 Exact Formulas for the One–Dimensional Sequences

3.1 Functions Related to a Pair (b, σ)

Let σ be a permutation of Zb and set Zσ
b :=

(σ(0)
b
, . . . ,

σ(b− 1)
b

)
. For any

integer h with 0 ≤ h ≤ b− 1, define the real function ϕσ
b,h as follows:

Let k be an integer with 1 ≤ k ≤ b; then for every x ∈ [k − 1
b
, k
b
[ set:

ϕσ
b,h(x) = A

([
0,
h

b

[
; k;Zσ

b

)
− hx if 0 ≤ h ≤ σ(k − 1) and

ϕσ
b,h(x) = (b− h)x−A

([
h

b
, 1
[
; k;Zσ

b

)
if σ(k − 1) < h < b.

Finally the function ϕσ
b,h is extended to R by periodicity. Note that ϕσ

b,0 = 0.
These functions are linearizations of remainders associated with Zσ

b .
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In the special case b = 2, we only have two permutations which give either
ϕσ

2,1 = ‖ · ‖ if σ = I or ϕσ
2,1 = −‖ · ‖ if σ = (0 1), where ‖ · ‖ is the distance to

the nearest integer (occuring in many austrian papers).
Actually, the b functions ϕσ

b,h give rise to other functions, depending only
on (b, σ), according to the notion of discrepancy at work: for the extreme
discrepancies D∗ and D, we need

ψσ,+
b = max

0≤h≤b−1
(ϕσ

b,h), ψσ,−
b = max

0≤h≤b−1
(−ϕσ

b,h)

and
ψσ

b = ψσ,+
b + ψσ,−

b = sup
0≤h<h′<b

|ϕσ
b,h′ − ϕσ

b,h|.

These functions have been introduced in [Fau81]. Other functions are necessary
for the study of the L2−discrepancy and the diaphony (see [CF93]), notions
we shall not consider in this paper.

3.2 The Exact Formulas for the Sequences SΣ
b and XC

b

For any permuted van der Corput sequence SΣ
b in base b associated with Σ,

we have [Fau81], for all integers n and N with 1 ≤ N ≤ bn,

D+(N,SΣ
b ) := sup

0≤α≤1
E([0, α[;N ;X)

=
n∑

j=1

ψ
σj−1,+
b

(
N

bj

)
+
N

bn
−N

∞∑
j=n+1

σj−1(0)
bj

,

D−(N,SΣ
b ) := sup

0≤α≤1
(−E([0, α[;N ;X))

=
n∑

j=1

ψ
σj−1,−
b

(
N

bj

)
+N

∞∑
j=n+1

σj−1(0)
bj

.

Recall that for any one–dimensional sequence,

D∗(N,X) = max(D+(N,X), D−(N,X)) and
D(N,X) = D+(N,X) +D−(N,X).

Therefore, the star discrepancy of SΣ
b is obvious and its discrepancy is given

by

D(N,SΣ
b ) =

n∑
j=1

ψ
σj−1
b

(
N

bj

)
+
N

bn
.

Concerning the NUT digital (0, 1)−sequences XC
b , we have been able to obtain

the corresponding formulas for D+, D− and D (see [Fau05a]), but here things
are more complicated and we shall restrict in the present paper to D, for which
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a simple formula occurs by means of the sequence of permutations ∆ = (δr)
defined by δr(i) = crri (mod b) (the crr are the diagonal entries of C). We obtain

D(N,XC
b ) = D(N,S∆

b ) =
n∑

j=1

ψ
δj−1
b

(
N

bj

)
+
N

bn
·

There are analogous formulas for the L2−discrepancy and the diaphony of SΣ
b

and XC
b (see [CF93] and [Fau05a]).

4 Bounds and Asymptotic Behavior for D(N, Sσ
b )

The experimental research of pairs (b,Σ) giving the lowest discrepancy D
shows that it is better to work with constant sequences Σ = (σ). On the
contrary, concerning D∗, it appears that specific sequences of permutations
Σ associated with σ give the best results (even optimal with the identical
permutation); this case of D∗ will be considered in the next section. Note also
that, according to the last formula of Section 3 above, the case of NUT digital
(0, 1)−sequences XC

b reduces to sequences SΣ
b for the discrepancy D.

4.1 Upper Bounds for D(N, Sσ
b )

Set dσ
b (n) := supx∈R

∑n
j=1 ψ

σ
b

( x
bj
)

and ασ
b := inf

n≥1

dσ
b (n)
n

· Then

lim sup
N→∞

D(N,Sσ
b )

logN
=
ασ

b

log b
and D(N,Sσ

b ) ≤ ασ
b

log b
logN + ασ

b + 2.

Moreover, ασ
b = lim

n→∞
dσ

b (n)
n

and there exists βn, with 0 ≤ βn ≤ 1, such that

dσ
b (n) = ασ

b n+ βn, so that

0 ≤ dσ
b (1) − ασ

b ≤ 1.

We also have

dσ
b (1) = supψσ

b = max
1≤k≤b

max
0≤h′<h<b

∣∣∣∣E ([h′b , hb
[

; k;Zσ
b

)∣∣∣∣ =: dσ
b .

The quantity dσ
b is very important since it is easy to compute and it permits

to bound ασ
b from above (and below for large bases b). We will call it the

discrete discrepancy of the net
{(

k−1
b , Z

σ
b (k)
)
; 1 ≤ k ≤ b} (a slight variant of

the discrete discrepancy introduced in [LP03] p. 399). Numerical examples can
be found in Table 1 below.
We recall also the properties D(N,Sσ

b ) ≤ D(N,SI
b ) and αI

b =
b− 1
4 log b

if b is

odd and αI
b =

b2

4(b+ 1) log b
if b is even. All these results come from [Fau81]

(Theorem 2, Property 3.2.2, Lemma 4.2.2, Section 5.5.4 and Theorem 6).
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Table 1. Examples

b
f̃(b)

log b

f(b)

log b

dσ0
b − 1

log b

dσ0
b

log b

αI
b

log b

19 .339 .375 .107 .447 1.528
36 .318 .338 .116 .396 2.443
101 .279 .287 .293 .511 5.416
233 .251 .254 .261 .444 10.64
367 .232 .238 .331 .503 15.49
1301 .2020 .2024 .327 .467 45.32

4.2 Lower Bounds for D(N, Sσ
b )

The problem of lower bounds for the discrepancy D is still a very challenging
problem. In one dimension, the famous result of Schmidt (1972, improved by
Béjian [Bej82], see the first inequality below) solves the problem for the order
of magnitude, but improving the constants is still an open question. We have
from the general to the specific:

for any sequence X, 0.12 < lim sup
N→∞

D(N,X)
logN

,

for any sequence Sσ
b ,

b− 2
(b− 1) log b

≤ lim sup
N→∞

D(N,Sσ
b )

logN

(
<

b

4 log b

)
,

for a specific sequence Sσ
b ,

dσ
b − 1
log b

< lim sup
N→∞

D(N,Sσ
b )

logN

(
<
dσ

b

log b

)
.

The lower bound for arbitrary sequences Sσ
b results from the property θb ≤ ψσ

b

with θb the 1-periodic function defined by θb(x) = (b − 1)x if x ∈ [0, 1
b ],

θb(x) = 1 − x if x ∈ [ 1b ,
1
2 ] and θb(x) = θb(1 − x) if x ∈ [ 12 , 1] (see [Fau81]

Section 4.1). The lower bound for a specific sequence Sσ
b is poor for small b

(see Table 1).

4.3 A New Lower Bound for D(N, Sσ
b )

With increasing b, it is difficult to find good lower bounds for D(N,Sσ
b ). This

research seems to be of the same kind as for arbitrary sequences X. But
nevertheless, by optimization of the remainders with intervals containing 0 or
3 points, we have been able to improve the preceding lower bound of b−2

(b−1) log b

slightly. The idea is to consider the remainders (for 2 ≤ k ≤ b− 1)

E

([
l + 1
b
,
l + 1 + h

b

[
; k;Zσ

b

)
and E

([
l

b
,
l + 2 + h

b

[
; k + 1;Zσ

b

)
with h and l such that
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◦ Zσ
b (k + 1) ∈

[
l + 1
b
,
l + 1 + h

b

[
,

◦ l

b
is the abscis of the first point Zσ

b (i) (i ≤ k) preceding Zσ
b (k + 1),

◦ l + 1 + h
b

is the abscis of the first point Zσ
b (j) (j ≤ k) following Zσ

b (k+ 1).

In that way, E
([
l + 1
b
,
l + 1 + h

b

[
; k;Zσ

b

)
= h

k

b
(no point) and (3 points)

E

([
l

b
,
l + 2 + h

b

[
; k + 1;Zσ

b

)
= 3 − (h+ 2)

k + 1
b

. Since one increases with

h and the other decreases with h, we obtain the minimum for the equality
hk = 3b − (h + 2)(k + 1). Leaving aside the integer nature of h and k, we

get the function f(k) =
k(3b− 2k − 2)

2k + 1
for 2 ≤ k ≤ b− 1 and computing the

maximum of f (obtained for k0 =
√

3b−1−1
2 with f(k0) = 3b

2 − √
3b− 1), we

arrive at:

Proposition 1. For any sequence Sσ
b , we have

f̃(b)
log b

≤ lim sup
N→∞

D(N,Sσ
b )

logN
with f̃(b) ≈ 3

2
−

√
3b− 1
b

:= f(b).

Of course, with specific bases b, more precise results can be obtained with the
ceiling or the floor of reals involved in the computations. Table 1 gives some
examples of such computations (the reals are rounded to 3 significant digits),
some comments follow. The lower bound d

σ0
b −1

log b is not interesting for small bases.
The lower bound of Proposition 1 makes sense until bases as large as b ≈ 105;
after that the general lower bound 0.12 is better. The best permutations σ0

(presently known) for large bases are linear digit scramblings without additive
term (see the next section). The general lower bound 0.12 seems far from the
lowest possible value for Sσ

b sequences; for very large b, our lower bounds also.
The method of Proposition 1 facilitate too the research of the best permutations
for small bases; moreover, in the case of b = 36, it was possible to compute the
exact value ασ0

36 = 46
35 , so that α

σ0
36

log 36 = 0.366 . . . , the smallest discrepancy D
presently known among all one-dimensional sequences [Fau92]. Note also that
for each prime base up to 1301, we have found many digit scramblings σ with
constants dσ

b

log b around 0.5 [Fau05b], [Fau06]. Compared with the general lower

bounds f(b)
log b and the upper bounds αI

b

log b , we see that a lot of linearly-scrambled
sequences are really set in a good place among the family of sequences Sσ

b .

5 Formulas and Asymptotic Behavior for D∗

As announced at the beginning of Section 4, we come now to the study of
the star discrepancy D∗. First, we introduce the method to obtain low star
discrepancy sequences and give the main results we got with it (see [Fau81]).
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Then we link our results with recent publications of Kritzer, Larcher and
Pillichshammer by means of linear digit scramblings and finally, we obtain
new remarkable simple sequences with such scramblings judiciously chosen.

5.1 Swapping Permutations

Let E be a subset of Z+ and σ a permutation of Zb. Let τ be the permutation of
Zb defined by τ(k) = b−k−1, 0 ≤ k ≤ b−1. Define the sequence Σσ

E = (σj)j≥0

by σj = σ if j ∈ E and σj = τ ◦ σ if j /∈ E . Then ([Fau81] Lemma 4.4.1)

D+(N,SΣσ
E

b ) =
∞∑

j=1,j∈E
ψσ,+

b

(
N

bj

)
+

∞∑
j=1,j /∈E

ψσ,−
b

(
N

bj

)
,

D−(N,SΣσ
E

b ) =
∞∑

j=1,j∈E
ψσ,−

b

(
N

bj

)
+

∞∑
j=1,j /∈E

ψσ,+
b

(
N

bj

)
·

The permutation τ swaps the functions ψσ,+
b and ψσ,−

b hence, to get lower
D∗ = max(D+, D−), we must find E so that the sums with ψσ,+

b and ψσ,−
b

divide into two equal parts. This is achieved, among others, by the following
set:

A = {0, 2, 3, 6, 7, 8, 12, 13, 14, 15, . . .}.
With that A and with the condensed notation σ = τ ◦ σ, we obtain

Σσ
A = (σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, . . .) and

lim sup
N→∞

D∗(N,SΣσ
A

b )
logN

=
ασ,+

b + ασ,−
b

2 log b
in which

ασ,+
b = inf

n≥1
sup

x∈[0,1]

n∑
j=1

ψσ,+
b

( x
bj
)

and ασ,−
b = inf

n≥1
sup

x∈[0,1]

n∑
j=1

ψσ,−
b

( x
bj
)
.

For small b, the constants ασ,+
b and ασ,−

b are not difficult to compute as well
as for the identical permutation in any base b (in this case ψI,−

b = 0). We write
down two important consequences:

lim sup
N→∞

D∗(N,SΣI
A

b )
logN

=
αI,+

b

2 log b
=
b− 1
8 log b

if b is odd,

lim sup
N→∞

D∗(N,SΣI
A

b )
logN

=
αI,+

b

2 log b
=

b2

8(b+ 1) log b
if b is even,
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and in base 12, there exists a permutation σ0 such that (this is the smallest
star discrepancy currently known):

lim sup
N→∞

D∗(N,SΣ
σ0
A

12 )
logN

=
1919

3454 log 12
= .223 . . .

(see [Fau81], Theorems 3, 5, 6).
When b = 2, we recover the result of Béjian [Bej78], re-discovered recently in
[KLP06] Section 5 after a lot of computations involving shifted Hammersley
point sets (see Section 6 below):

lim sup
N→∞

D∗(N,SΣI
A

2 )
logN

=
1

6 log 2
= .2404 . . . .

When b = 3, we obtain “almost” the best sequence, anyhow the best among
the sequences SI

b :

lim sup
N→∞

D∗(N,SΣI
A

3 )
logN

=
1

4 log 3
= .227 . . . .

As to NUT digital (0, 1)–sequences, things appear much more complicated
for D∗ than for D. The only result we know is from Pillichshammer [Pil04],
in base 2, with the NUT matrix whose all entries are 1. The special case of
diagonal matrices ∆, X∆

b = S∆
b , follows.

5.2 Linear Digit Scramblings

This denomination comes from J. Matoušek [Mat98] in his attempt to classify
the very general scramblings introduced four years before by A. Owen.
A linear digit scrambling is a permutation of the set Zb of the form

π(k) = fk + g (mod b) (0 ≤ k ≤ b− 1),

where f �= 0 and g are given in Zb (identified as a set to Zb) with b prime.
The definition works also for any base b, provided that the multiplication by f
remains a bijection.
If g = 0, we obtain the so-called multiplicative factors f of our preceding
papers on NUT digital sequences ([Fau05b], [Fau06]). The additive factor g is
a translation also called digital shift ([Kri06], [KLP06]).
It is quite remarkable that the swapping of permutations is a linear scrambling
for any base, even though it is also quite trivial since τ(k) = b − 1 − k =
(b− 1)k+ b− 1 (mod b). But, according to the importance of this property to
link our former study on D∗ to recent studies on digital scramblings, we defer
it to a proposition.

Proposition 2. The permutation τ in the definition of sequences SΣσ
E

b is the
linear digit scrambling τ(k) = (b− 1)k + b− 1.
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The case of the base 2:

In base b = 2, since τ(k) = (b − 1)k + b − 1 = k + 1, the digital shift on F2

introduced in [Kri06] and [KLP06] is the permutation τ . In other words, in
base 2, shifting is swapping. Typical results in these papers follow from [Fau81],
[Fau86] and from the former Note of Béjian [Bej78] where, unfortunately,
the proofs are only outlined. As an example, we recall Theorem 2 of [Bej78]
(compare with [KLP06], end of Section 4):

lim sup
N→∞

D∗(N,SΣI
M

2 )
logN

=
1

6 log 2
+

(2m − 1)(2m − (−1)m)
18m(22m − (−1)m) log 2

with ΣI
M = (I, I, . . . , I︸ ︷︷ ︸

m

, τ, τ, . . . , τ︸ ︷︷ ︸
m

, I, I, . . . , I︸ ︷︷ ︸
m

, τ, τ, . . . , τ︸ ︷︷ ︸
m

, . . .).

The case of the base 3:

The 6 permutations are linear digit scramblings, in short I, I+1, I+2, 2I, 2I+1
and 2I + 2 = τ . All of them have the same asymptotic behavior and there is
no improvement with regards to SΣI

A
3 .

The case of the base 4:

The sequence S(12)
4 ((12) means the transposition which exchanges 1 and 2) is

the van der Corput sequence SI
2 and therefore SΣ

(12)
A

4 = SΣI
A

2 with asymptotic

constant
1

6 log 2
. No improvement with the linear digit scramblings 3I + g, but

the permutation σ = 3(12) + 1 produces the sequence Sσ
4 = SΣI

M
2 (for m = 1)

with asymptotic constant
1

5 log 2
, the sequence associated with the Halton-

Zaremba plane point set [HZ69]. We see that the permutation σ = 3(12) + 1
in base 4 is equivalent to the sequence of permutations ΣI

M (with m = 1) in

base 2. Moreover, SΣI
A

4 has also the same asymptotic constant
1

5 log 2
, hence

the only permutation σ is also equivalent to the sequence of permutations ΣI
A

in base 4.

The case of the bases b > 4:

With increasing b, things become more intricate and we cannot give an exhaus-
tive study. Let us only remark that the considerations of Section 4.1 apply
to functions ψσ,+

b and ψσ,−
b and permit to obtain upper bounds for the star

discrepancy as well, see [Fau86]. We give in the following two examples showing
the great interest of linear digit scramblings, especially with a digital shift
g �= 0.



338 H. Faure

In base 5, we observe the same phenomenon as in base 4, but this time
with the linear digit scramblings π(k) = 3k + 1 and π′(k) = 2k + 3. The

sequences Sπ
5 , Sπ′

5 and SΣI
A

5 have the same asymptotic constant
1

2 log 5
, but

the first ones are much simpler. A simple bound is
3

5 log 5
; finding the exact

constant needs a bit more computations.

In base 233, which is our best prime base for D up to 1301 (see [Fau05b]),
the phenomenon is magnified: with the two linear digit scramblings ρ(k) = 89k
and π(k) = 89k + 44 we have

lim sup
N→∞

D∗(N,SΣρ
A

233 )
logN

<
469 + 365
466 log 233

= .328 . . . ,

lim sup
N→∞

D∗(N,Sπ
233)

logN
<

368
233 log 233

= .289 . . .

lim sup
N→∞

D∗(N,SΣπ
A

233 )
logN

<
368

233 log 233
= .289 . . .while

lim sup
N→∞

D∗(N,SΣI
A

233 )
logN

=
232

8 log 233
= 5.32 . . . .

Here, we observe more: adding a digital shift (44) still improves the behavior
of the sequence and without using the “sophisticated” sequence ΣA. We bring
this fact together with the remark of Matoušek in [Mat98] p. 537: “Introducing
additive terms makes the situation much simpler and more regular”.

6 Hammersley Point Sets

6.1 Foreword

The study of two-dimensional Hammersley point sets (see Section 2.3) can
be approched by two ways (at least): directly, with the investigation of the
two-dimensional remainder E([0, α[×[0, β[;N) = A([0, α[×[0, β[;N) − Nαβ,
or as a by-product of the study of the infinite one-dimensional sequences
associated with the second coordinate of the point set.

In the first approach, systematically N = bn is a power of the base. Precise
studies, with exact formulas, have been done with combinatorial tools in arbi-
trary bases [DeC86], [Whi75] and in base two [HZ69]. More recently, by means
of Walsh series analysis in base two, important new advances were provided
by the austrian team of Linz and Salzburg [LP01], [LP03], [Kri06], [KLP06],
especially in the study of digitally shifted Hammersley point sets in base two.

The second approach is based on the relations between sequences and point
sets (see Section 2.1). Here, there is no necessity for N to be a power of b but,
since these relations are inequalities, this approach cannot claim to get exact
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formulas for the star discrepancy of Hammersley point sets. Nevertheless, the
precise knowledge of the sequences SΣ

b in arbitrary bases permits to obtain
the best results currently known and to derive very good approximations of
the exact formulas of De Clerck (see [Fau86] for details). In the same way our
new lower bound (Section 4.3) and our linear digit scramblings for D∗ (Section
5.2) give new results and allow investigations in very large (prime) bases for
two-dimensional Hammersley point sets. We make them explicit in the next
subsection.

6.2 New Results for Hammersley Point Sets

General estimates

Proposition 3. For any pair (b,Σ) and any integer n ≥ 1 we have

nf̃(b)
2

≤ D∗(HSΣ
b (bn)) ≤ D∗(HSI

b (bn)) ≤ b

4
n+ 3

in which f̃(b) ≈ 3
2

−
√

3b− 1
b

.

Proposition 3 is also valid for the Hammersley point sets HXC
b (bn).

The lower bound results from Proposition 1 and from the relation D ≤ 2D∗.
The right upper bound is not optimal and is a compression of formulas for
odd and even b given in [Fau86], in which also the upper bounds are in terms
of N instead of bn.
In particular, we see that the usual Hammersley point sets HSI

b are the
worst distributed among the HSΣ

b and the HXC
b , a property re-discovered

20 years later for b = 2 by Kritzer [Kri06], in the more general setting of
(0, n, 2)−Hammersley nets over Z2.
As to the lower bound, we recall the preceding one obtained in [Fau86]:

D∗(HSΣ
b (bn)) ≥ n(b− 2)

2(b− 1)
. The gain on the constant is about 0.5 to 0.75, see

Section 4.3 for comments on these poor (but only known) lower bounds.

Linear digit scramblings

Very good Hammersley point sets in any given prime base can be obtained
with linear digit scramblings of the original Hammersley point sets HSI

b . They
are deduced with the help of the general principle, right inequality, from
the method and the results of Section 5.2. For instance, and without the
complicated generic sequence of permutations Σσ

A, we have:

with b = 5 and π(k) = 3k + 1, D∗(HSπ
5 (N)) <

logN
2 log 5

+ c < .32 logN + c,
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with b = 233 and π(k) = 89k + 44, D∗(HSπ
233(N)) < .29 logN + c,

with b = 1301 and π(k) = 498k + 243, D∗(HSπ
1301(N)) < .31 logN + c

So, until now, bases 2, 3 and 12 remain the best with respectively the constants
0.240 . . ., 0.227 . . . and 0.223 . . ., but with our method we need the sequence
Σσ

A for these three sequences. Revisiting the proofs in our papers [Fau81] and
[Fau86] will permit to obtain the same constants without using the sequence
Σσ

A, as did Kritzer, Larcher and Pillichshammer in base 2 with their direct
approach of the remainder E([0, α[×[0, β[;N) = A([0, α[×[0, β[;N)−Nαβ (see
[Kri05] and [KLP06]). This study, together with other comparisons between
the two methods, will be considered in a forthcoming paper.
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Summary. In this paper we show that the Milstein scheme can be used to improve
the convergence of the multilevel Monte Carlo method for scalar stochastic differ-
ential equations. Numerical results for Asian, lookback, barrier and digital options
demonstrate that the computational cost to achieve a root-mean-square error of ε is
reduced to O(ε−2). This is achieved through a careful construction of the multilevel
estimator which computes the difference in expected payoff when using different
numbers of timesteps.

1 Introduction

In many financial engineering applications, one is interested in the expected
value of a financial option whose payoff depends upon the solution of a
stochastic differential equation. To be specific, we consider an SDE with
general drift and volatility terms,

dS(t) = a(S, t) dt+ b(S, t) dW (t), 0 < t < T, (1)

with given initial data S0. In the case of European and digital options, we are
interested in the expected value of a function of the terminal state, f(S(T )),
but in the case of Asian, lookback and barrier options the valuation depends
on the entire path S(t), 0 < t < T .

Using a simple Monte Carlo method with a numerical discretisation with
first order weak convergence, to achieve a root-mean-square error of O(ε)
would require O(ε−2) independent paths, each with O(ε−1) timesteps, giving
a computational complexity which is O(ε−3). We have recently introduced a
new multilevel approach [Gil06] which reduces the cost to O(ε−2(log ε)2) when
using an Euler path discretisation for a European option with a payoff with a
uniform Lipschitz bound. This multilevel approach is related to the two-level
method of Kebaier [Keb05], and is similar to the multi-level method proposed
by Speight [Spe05] based on the quasi control variate method of Emsermann
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and Simon [ES02]. There are also strong similarities to Heinrich’s multilevel
approach for parametric integration [Hei01].

In the previous work, it was also proved that the computational cost can be
further reduced to O(ε−2) for numerical discretisations with certain multilevel
convergence properties. The objective of this paper is to demonstrate that
this improved complexity is attainable for scalar SDEs with a variety of exotic
options through using the Milstein path discretisation. For European options
with a Lipschitz continuous payoff, it can be proved that this an immediate
consequence of the improved strong order of convergence of the Milstein
discretisation compared to the simpler Euler discretisation. However, for Asian,
lookback, barrier and digital options, special numerical treatments have to
be introduced, and that is the focus of the paper. Furthermore, no a priori
convergence proofs have yet been constructed for these cases and so the paper
relies on numerical demonstration of the effectiveness of the algorithms that
have been developed.

The paper begins by reviewing the multilevel approach, and the theorem
which describes its computational cost given certain properties of the numerical
discretisation. The next section discusses the Milstein discretisation and the
challenges of achieving higher order variance convergence within the multi-
level method. Asian, lookback, barrier and digital options are all considered,
and O(ε−2) computational cost is demonstrated for each through the use of
Brownian interpolation to approximate the behaviour of paths within each
timestep.

The final section indicates the direction of future research, including the
need for a priori convergence analysis, the challenges of extending this work
to multi-dimensional SDEs, and the use of quasi-Monte Carlo methods for
further reduction of the computational complexity.

2 Multilevel Monte Carlo Method

Consider Monte Carlo path simulations with different timesteps hl = 2−l T ,
l = 0, 1, . . . , L. Thus on the coarsest level, l= 0, the simulations use just 1
timestep, while on the finest level, l=L, the simulations use 2L timesteps. For
a given Brownian path W (t), let P denote the payoff, and let P̂l denote its
approximation using a numerical discretisation with timestep hl. Because of
the linearity of the expectation operator, it is clearly true that

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]. (2)

This expresses the expectation on the finest level as being equal to the expec-
tation on the coarsest level plus a sum of corrections which give the difference
in expectation between simulations using different numbers of timesteps. The
idea behind the multilevel method is to independently estimate each of the
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expectations on the right-hand side in a way which minimises the overall
variance for a given computational cost.

Let Ŷ0 be an estimator for E[P̂0] using N0 samples, and let Ŷl for l > 0
be an estimator for E[P̂l − P̂l−1] using Nl paths. The simplest estimator is a
mean of Nl independent samples, which for l>0 is

Ŷl = N−1
l

Nl∑
i=1

(
P̂

(i)
l −P̂ (i)

l−1

)
. (3)

The key point here is that the quantity P̂ (i)
l − P̂ (i)

l−1 comes from two discrete
approximations with different timesteps but the same Brownian path. The
variance of this simple estimator is V [Ŷl] = N−1

l Vl where Vl is the variance of
a single sample. Combining this with independent estimators for each of the
other levels, the variance of the combined estimator Ŷ =

∑L
l=0 Ŷl is V [Ŷ ] =∑L

l=0N
−1
l Vl, while its computational cost is proportional to

∑L
l=0Nl h

−1
l .

Treating the Nl as continuous variables, the variance is minimised for a fixed
computational cost by choosing Nl to be proportional to

√
Vl hl.

In the particular case of an Euler discretisation, provided a(S, t) and
b(S, t) satisfy certain conditions [BT95, KP92, TT90] there is O(h1/2) strong
convergence. From this it follows that V [P̂l −P ] = O(hl) for a European option
with a Lipschitz continuous payoff. Hence for the simple estimator (3), the single
sample variance Vl is O(hl), and the optimal choice for Nl is asymptotically
proportional to hl. Setting Nl = O(ε−2Lhl), the variance of the combined
estimator Ŷ is O(ε2). If L is chosen such that L = log ε−1/ log 2 + O(1),
as ε→ 0, then hL = 2−L = O(ε), and so the bias error E[P̂L −P ] is O(ε)
due to standard results on weak convergence. Consequently, we obtain a
Mean Square Error which is O(ε2), with a computational complexity which is
O(ε−2L2) = O(ε−2(log ε)2).

This analysis is generalised in the following theorem:

Theorem 1. Let P denote a functional of the solution of stochastic differ-
ential equation (1) for a given Brownian path W (t), and let P̂l denote the
corresponding approximation using a numerical discretisation with timestep
hl =M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo samples,
and positive constants α ≥ 1

2 , β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =

⎧⎨⎩E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii)V [Ŷl] ≤ c2N−1
l hβ

l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3Nl h
−1
l ,
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then there exists a positive constant c4 such that for any ε < e−1 there are
values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has a mean-square-error with bound

MSE ≡ E
[(
Ŷ − E[P ]

)2]
< ε2

with a computational complexity C with bound

C ≤

⎧⎪⎪⎨⎪⎪⎩
c4 ε

−2, β > 1,

c4 ε
−2(log ε)2, β = 1,

c4 ε
−2−(1−β)/α, 0 < β < 1.

Proof. See [Gil06].

The remainder of this paper addresses the use of the Milstein scheme
[Gla04, KP92] to construct estimators with variance convergence rates β > 1,
resulting in an O(ε−2) complexity bound. Provided certain conditions are
satisfied [KP92], the Milstein scheme gives O(h) strong convergence. In the
case of a Lipschitz continuous European payoff, this immediately leads to the
result that Vl = O(h2

l ), corresponding to β=2. Numerical results which are not
presented here demonstrate this convergence rate, and the associated O(ε−2)
complexity

This paper addresses the tougher challenges of Asian, lookback, barrier and
digital options. These cases require some ingenuity to construct estimators for
which β > 1. Unfortunately, there is no accompanying theoretical analysis as
yet, and so the paper relies on numerical demonstration of their effectiveness.

3 Milstein Discretisation

For a scalar SDE, the Milstein discretisation of equation (1) is

Ŝn+1 = Ŝn + a h+ b∆Wn + 1
2

∂b

∂S
b (∆Wn)2. (4)

In the above equation, the subscript n is used to denote the timestep index,
and a, b and ∂b/∂S are evaluated at Ŝn, tn.

All of the numerical results to be presented are for the case of geometric
Brownian motion for which the SDE is

dS(t) = r S dt+ σ S dW (t), 0 < t < T.
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By switching to the new variable X = logS, it is possible to construct
numerical approximations which are exact, but here we directly simulate the
geometric Brownian motion using the Milstein method as an indication of
the behaviour with more complicated models, for example those with a local
volatility function σ(S, t).

3.1 Estimator Construction

In all of the cases to be presented, we simulate the paths using the Milstein
method. The refinement factor is M = 2, so each level has twice as many
timesteps as the previous level. The difference between the applications is in
how we use the computed discrete path data to estimate E[P̂l − P̂l−1].

In each case, the estimator for E[P̂l − P̂l−1] is an average of values from
Nl independent path simulations. For each Brownian input, the value which
is computed is of the form P̂ f

l − P̂ c
l−1. Here P̂ f

l is a fine-path estimate using
timestep h = 2−lT , and P̂ c

l−1 is the corresponding coarse-path estimate using
timestep h = 2−(l−1)T . To ensure that the identity (2) is correctly respected,
to avoid the introduction of an undesired bias, we require that

E[P̂ f
l ] = E[P̂ c

l ]. (5)

This means that the definitions of P̂l when estimating E[P̂l − P̂l−1] and
E[P̂l+1 − P̂l] must have the same expectation.

In the simplest case of a European option, this can be achieved very simply
by defining P̂ f

l and P̂ c
l to be the same; this is the approach which was used

for all applications in the previous work using the Euler discretisation [Gil06].
However, for more challenging applications such as Asian, lookback, barrier and
digital options, the definition of P̂ c

l will involve information from the discrete
simulation of P̂ f

l+1, which is not available in computing P̂ f
l . The reason for

doing this is to reduce the variance of the estimator, but it must be shown
that equality (5) is satisfied. This will be achieved in each case through a
construction based on a simple Brownian motion approximation.

3.2 Asian Option

The Asian option we consider has the discounted payoff

P = exp(−rT ) max
(
0, S−K) ,

where

S = T−1

∫ T

0

S(t) dt.
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The simplest approximation of S, which was used in previous work [Gil06], is

Ŝ = T−1
nT −1∑

0

1
2 h (Ŝn + Ŝn+1),

where nT = T/h is the number of timesteps. This corresponds to a piecewise
linear approximation to S(t) but improved accuracy can be achieved by
approximating the behaviour within a timestep as simple Brownian motion,
with constant drift and volatility, conditional on the computed values Ŝn.
Taking bn to be the constant volatility within the time interval [tn, tn+1],
standard Brownian Bridge results (see section 3.1 in [Gla04]) give∫ tn+1

tn

S(t) dt = 1
2h(S(tn) + S(tn+1)) + bn∆In,

where ∆In, defined as

∆In =
∫ tn+1

tn

(W (t) −W (tn)) dt − 1
2 h∆W,

is a N(0, h3/12) Normal random variable, independent of ∆W . Using bn =
b(Ŝn, tn), this gives the fine-path approximation

S = T−1
nT −1∑

0

(
1
2 h (Ŝn + Ŝn+1) + bn∆In

)
.

The coarse path approximation is the same except that the values for ∆In are
derived from the fine path values, noting that∫ tn+2h

tn

(W (t) −W (tn)) dt− h(W (tn + 2h) −W (tn))

=
∫ tn+h

tn

(W (t) −W (tn)) dt− 1
2 h (W (tn + h) −W (tn))

+
∫ tn+2h

tn+h

(W (t) −W (tn + h)) dt− 1
2 h (W (tn + 2h) −W (tn + h))

+ 1
2 h (W (tn + h) −W (tn)) − 1

2 h (W (tn + 2h) −W (tn + h)) ,

and hence
∆Ic = ∆If1 +∆If2 + 1

2 h(∆W
f1 −∆W f2),

where ∆Ic is the value for the coarse timestep, and ∆If1 and ∆W f1 are the
values for the first fine timestep, and ∆If2 and ∆W f2 are the values for the
second fine timestep.

Figure 1 shows the numerical results for parameters S(0) = 1, K = 1,
T = 1, r = 0.05, σ = 0.2. The top left plot shows the behaviour of the
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Fig. 1. Asian option

variance of both P̂l and P̂l − P̂l−1. The slope of the latter is approaching a
value approximately equal to −2, indicating that Vl = O(h2

l ), corresponding
to β = 2. On level l = 2, which has just 4 timesteps, Vl is already more
than 1000 times smaller than the variance V [P̂l] of the standard Monte Carlo
method with the same timestep. The top right plot shows that E[P̂l − P̂l−1] is
approximately O(hl), corresponding to first order weak convergence, α = 1.
This is used to determine the number of levels that are required to reduce the
bias to an acceptable level [Gil06].

The bottom two plots have results from five multilevel calculations for
different values of ε. Each line in the bottom left plot shows the values for
Nl, l = 0, . . . , L, with the values decreasing with l because of the decrease in
both Vl and hl. It can also be seen that the value for L, the maximum level of
timestep refinement, increases as the value for ε decreases, requiring a lower
bias error. The bottom right plot shows the variation with ε of ε2 C where the
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computational complexity C is defined as

C =
∑

l

2lNl,

which is the total number of fine grid timesteps on all levels. One line shows
the results for the multilevel calculation and the other shows the corresponding
cost of a standard Monte Carlo simulation of the same accuracy, i.e. the same
bias error corresponding to the same value for L, and the same variance. It can
be seen that ε2C is almost constant for the multilevel method, as expected,
whereas for the standard Monte Carlo method it is approximately proportional
to ε−1. For the most accurate case, ε = 5 × 10−5, the multilevel method is
more than 100 times more efficient than the standard method.

3.3 Lookback Option

The lookback option we consider has the discounted payoff

P = exp(−rT )
(
S(T ) − min

0<t<T
S(t)
)
.

In previous work [Gil06], the minimum value of S(t) over the path was ap-
proximated numerically by

Ŝmin = min
n

(
Ŝn − β∗bn

√
h
)
.

Here bn is the volatility in the nth timestep, and β∗ ≈ 0.5826 is a constant
which corrects the O(h1/2) leading order error due to the discrete sampling
of the path, and thereby restores O(h) weak convergence [BGK97]. However,
using this approximation, the difference between the computed minimum
values and fine and coarse paths is O(h1/2

l ), and hence the variance Vl is
O(hl), corresponding to β = 1. In the previous work, this was acceptable
because β = 1 is the best that can be achieved in general with the Euler path
discretisation which was used, but in this work we aim to achieve an improved
convergence rate using the Milstein scheme.

To achieve this, we again approximate the behaviour within a timestep
as simple Brownian motion, with constant drift and volatility, conditional on
the computed values Ŝn. For the time interval [tn, tn+1], standard Brownian
Interpolation results (see section 6.4 in [Gla04]) give the minimum of Brownian
motion, conditional on the end values, as

Ŝn,min = 1
2

(
Ŝn + Ŝn+1 −

√(
Ŝn+1 − Ŝn

)2
− 2 b2n h logUn

)
, (6)

where bn is the constant volatility and Un is a uniform random variable on [0, 1].
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The fine-path value P̂ f
l is defined in this way using bn = b(Ŝn, tn), and

then taking the minimum over all timesteps to obtain the global minimum.
However, for the coarse-path value P̂ c

l−1, we do something different. Again
assuming simple Brownian motion conditional on the end-points, the value at
the midpoint of the time interval [tn, tn+1] is given by

Ŝn+1/2 = 1
2

(
Ŝn + Ŝn+1 − bnDn

)
, (7)

where

Dn =Wn+1 − 2Wn+1/2 +Wn =
(
Wn+1 −Wn+1/2

)− (Wn+1/2 −Wn

)
,

is aN(0, h) random variable which corresponds to a difference in the consecutive
Brownian increments of a finer path with timestep h/2. Given this midpoint
value, the minimum value over the full timestep is the smaller of the minima
for each of the two half-timesteps,

Ŝn,min = min

{
1
2

(
Ŝn + Ŝn+1/2 −

√(
Ŝn+1/2 − Ŝn

)2
− b2n h logU1,n

)
,

1
2

(
Ŝn+1/2 + Ŝn+1 −

√(
Ŝn+1−Ŝn+1/2

)2
− b2n h logU2,n

)}
.

(8)

In computing P̂ c
l−1, we use the values for Dn, U1,n and U2,n that come from the

fine-path simulation for P̂ f
l . Dn is the difference of the Brownian increments

for the two fine-path timesteps, and U1,n and U2,n are the uniform random
variables used to compute the minima for the two fine-path timesteps. Since
these all have the correct probability distribution, it follows that the expected
values of (6) and (8) are identical, and therefore equality (5) is satisfied.

Figure 2 shows the numerical results for parameters S(0) = 1, T = 1, r =
0.05, σ = 0.2. The top left plot shows that the variance is O(h2

l ), corresponding
to β = 2, while the top right plot shows that the mean correction is O(hl),
corresponding to first order weak convergence, α = 1. The bottom left plot
shows that more levels are required to reduce the discretisation bias to the
required level. Consequently, the savings relative to the standard Monte Carlo
treatment are greater, up to a factor of approximately 200 for ε = 5×10−5. The
computational cost of the multilevel method is almost perfectly proportional
to ε−2.

3.4 Barrier Option

The barrier option which is considered is a down-and-out call for which the
discounted payoff is
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Fig. 2. Lookback option

P = exp(−rT ) (S(T ) −K)+ 1{τ > T},
where the notation (S(T ) −K)+ denotes max(0, S(T ) −K), 1(τ > T ) is an
indicator function taking value 1 if the argument is true, and zero otherwise,
and the crossing time τ is defined as

τ = inf
t>0

{S(t) < B} .

Following a standard approach for continuously monitored barrier crossings
(see section 6.4 in [Gla04]), for a particular Brownian path input sampled
discretely at uniform intervals h, the conditional expectation of the payoff can
be expressed as

exp(−rT ) (ŜnT
−K)+

nT −1∏
n=0

p̂n,

where nT = T/h is again the number of timesteps, and p̂n represents the
probability that the path did not cross the barrier during the nth timestep. If
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we again approximate the motion within each timestep as simple Brownian
motion conditional on the endpoint values, then

p̂n = 1 − exp
(−2 (Sn−B)+ (Sn+1−B)+

b2n h

)
. (9)

This is the expression used to define the payoff P̂ f
l for the fine-path calculation,

with bn set equal to b(Ŝn, tn), as in the lookback calculation.
For the coarse path calculation, in which each timestep corresponds to two

fine-path timesteps, we again use equation (7) to construct a midpoint value
Ŝn+1/2. Given this value, the probability that the simple Brownian path does
not cross the barrier is

p̂n =
{

1 − exp
(−2 (Sn−B)+(Sn+1/2−B)+

b2n h

)}
×
{

1 − exp
(−2 (Sn+1/2−B)+(Sn+1−B)+

b2n h

)}
. (10)

The conditional expectation of (10) is equal to (9) and so equality (5) is
satisfied.

Figure 3 shows the numerical results for parameters S(0) = 1, K = 1,
B = 0.85, T = 1, r = 0.05, σ = 0.2. The top left plot shows that the variance
is approximately O(hβ

l ) for a value of β slightly less than 2. An explanation
for this is that a small O(h1/2

l ) fraction of the paths have a minimum which
lies within O(h1/2

l ) of the barrier, for which the product
∏
p̂n is neither close

to zero nor close to unity. The fine path and coarse path trajectories differ
by O(hl), due to the first order strong convergence of the Milstein scheme.
Since the p̂n have an O(h−1/2

l ) derivative, this results in the difference between∏
p̂n for this small subset of coarse and fine paths being O(h1/2

l ), giving a
contribution to the variance which is O(h3/2

l ).
The top right plot shows that the mean correction is O(hl), corresponding

to first order weak convergence, α = 1. The bottom right plot shows that
the computational cost of the multilevel method is again almost perfectly
proportional to ε−2, and for ε = 5 × 10−5 it is over 100 times more efficient
that the standard Monte Carlo method.

3.5 Digital Option

The digital option which is considered has the discounted payoff

P = exp(−rT ) 1{S(T ) > K}.

The standard numerical discretisation would be to simulate the path of
S(t) right up to the final time T . This is the approach adopted previously
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for multilevel calculations using the Euler discretisation [Gil06]. In that case,
the variance Vl was O(h1/2

l ), because O(h1/2
l ) of the paths terminate within

O(h1/2
l ) of the strike K, and for these paths there is an O(1) probability

that the coarse and fine paths will terminate on opposite sides of the strike,
giving an O(1) value for P̂l − P̂l−1. Using the same approach with the Milstein
method, there would be O(hl) of the paths terminating within O(hl) of the
strike K, for which there would be an O(1) probability that the coarse and
fine paths would terminate on opposite sides of the strike. This would result
in Vl being O(hl). This corresponds to β = 1 and would give a computational
cost which is O(ε−2(log ε)2).

To achieve a better multilevel variance convergence rate, we instead smooth
the payoff using the technique of conditional expectation (see section 7.2.3
in [Gla04]), terminating the path calculations one timestep before reaching
the terminal time T . If ŜnT −1 denotes the value at this time, then if we
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approximate the motion thereafter as a simple Brownian motion with constant
drift anT −1 and volatility bnT −1, the probability that ŜnT

> K after one
further timestep is

p̂ = Φ

(
ŜnT −1 + anT −1h−K

bnT −1

√
h

)
, (11)

where Φ is the cumulative Normal distribution.
For the fine-path payoff P̂ f

l we therefore use P̂ f
l = exp(−rT ) p̂, with

anT −1 = a(ŜnT −1, T − h) and bnT −1 =b(ŜnT −1, T − h). For the coarse-path
payoff, we note that given the Brownian increment ∆W for the first half of
the N th timestep, then the probability that ŜnT

> K is

p̂ = Φ

(
ŜnT −1 + anT −1h+ bnT −1∆W −K

bnT −1

√
h/2

)
. (12)
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The value for ∆W is taken from the final timestep of the fine-path calculation,
which corresponds to the first half of the N th timestep in the coarse-path
calculation. The conditional expectation of (12) is equal to (11), and so again
equality (5) is satisfied.

Figure 4 shows the numerical results for parameters S(0) = 1, K = 1,
T = 1, r = 0.05, σ = 0.2. The top left plot shows that the variance is
approximately O(h3/2

l ), corresponding to β = 1.5. The reason for this is similar
to the argument for the barrier option. O(h1/2

l ) of the paths have a minimum
which lies within O(h1/2

l ) of the strike, for which the p̂ is neither close to zero
nor close to unity. The fine path and coarse path trajectories differ by O(hl),
due to the first order strong convergence of the Milstein scheme. Since p̂ has
an O(h−1/2

l ) derivative, this results in the difference between p̂ for the coarse
and fine paths being O(h1/2

l ), and that results in the variance being O(h3/2
l ).

One strikingly different feature is that the variance of the level 0 estimator,
V0, is zero. This is because at level l = 0 there would usually be only one
timestep, and so here it is not simulated at all; one simply uses equation (11)
to evaluate the payoff. This reduces the cost of the multilevel calculations even
more than usual, leading to a factor 1000 computational savings for ε = 10−4.

4 Conclusions and Future Work

In this paper we have demonstrated numerically the ability of multilevel Monte
Carlo path simulation using the Milstein discretisation to achieve an ε RMS
error for a range of financial options at a computational cost which is O(ε−2).
This requires the use of Brownian interpolation within each timestep for Asian,
lookback and barrier options, and the use of conditional expectation to smooth
the payoff of digital options.

There are three major directions for future research. The first is the
theoretical analysis of the algorithms presented in this paper, to prove that
they do indeed have variance convergence rates with β > 1. The analysis of
earlier algorithms for lookback, barrier and digital options based on the Euler
discretisation [Gil06] is currently being developed; it is hoped this can then be
extended to the Milstein discretisation for scalar SDEs.

The second is the extension of the algorithms to multi-dimensional SDEs,
for which the Milstein discretisation usually requires the simulation of Lévy
areas [GL94, Gla04]. Current investigations indicate that this can be avoided
for European options with a Lipschitz payoff through the use of antithetic
variables. However, the extension to more difficult payoffs, such as the Asian,
lookback, barrier and digital options considered in this paper, looks more
challenging.

The third direction for future research is the use of quasi-Monte Carlo
methods. The analysis in section 2 showed that the optimal number of samples
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on level l is proportional to
√
Vlhl. If Vl = O(hβ

l ), then this number is pro-
portional to h(β+1)/2

l . Since the cost of an individual sample is proportional
to the number of timesteps, and hence inversely proportional to hl, the com-
putational cost on level l is proportional to h(β−1)/2

l . For β > 1, this shows
that the computational effort decreases geometrically as one moves to finer
levels of discretisation. Thus, when using the Milstein discretisation most of
the computational effort is expended on the coarsest levels of the multilevel
computation. For these low dimensional levels it is reasonable to expect that
quasi-Monte Carlo methods [KS05, Ecu04, Nie92] will be very much more
effective than the standard Monte Carlo methods used in this paper.
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Summary. We study approximation of continuous linear functionals Id defined over
reproducing kernel weighted Hilbert spaces of d-variate functions. Let n(ε, Id) denote
the minimal number of function values needed to solve the problem to within ε.
There are many papers studying polynomial tractability for which n(ε, Id) is to be
bounded by a polynomial in ε−1 and d. We study generalized tractability for which
we want to guarantee that either n(ε, Id) is not exponentially dependent on ε−1

and d, which is called weak tractability, or is bounded by a power of T (ε−1, d) for
(ε−1, d) ∈ Ω ⊆ [1,∞) × N, which is called (T, Ω)-tractability. Here, the tractability
function T is non-increasing in both arguments and does not depend exponentially
on ε−1 and d.

We present necessary conditions on generalized tractability for arbitrary contin-
uous linear functionals Id defined on weighted Hilbert spaces whose kernel has a
decomposable component, and sufficient conditions on generalized tractability for
multivariate integration for general reproducing kernel Hilbert spaces. For some
weighted Sobolev spaces these necessary and sufficient conditions coincide. They
are expressed in terms of necessary and sufficient conditions on the weights of the
underlying spaces.

1 Introduction

The study of approximation of continuous linear functionals Id over spaces of
d-variate functions has recently been a popular research subject especially for
large d. The primary example of Id is multivariate integration which occurs in
many applications for huge d.

Let n(ε, Id) be the minimal number of function values needed to reduce
the initial error by a factor ε ∈ (0, 1) for functions from the unit ball of a given
space. The initial error is the minimal error which can be achieved without
sampling the functions and is equal to the norm of Id. There are many papers,
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see [NW01a] for a survey, studying polynomial tractability for which n(ε, Id) is
to be bounded by a polynomial in ε−1 and d for all (ε−1, d) ∈ [1,∞) × N. By
now we know that polynomial tractability of multivariate integration holds
for reproducing kernel weighted Hilbert spaces for sufficiently fast decaying
weights. Let γd,j be a weight which controls the influence of the jth variable
for the d-dimensional case. A typical result is that multivariate integration is
polynomially tractable iff

lim sup
d→∞

∑d
j=1 γd,j

ln d
< ∞.

There is also the notion of strong polynomial tractability for which n(ε, Id)
is bounded by a polynomial only in ε−1 for all d. A typical result is that
multivariate integration is strongly polynomially tractable iff

lim sup
d→∞

d∑
j=1

γd,j < ∞.

In this paper we study generalized tractability, see [GW06]. First of all,
we possibly limit the set of all pairs (ε−1, d) of our interest, by assuming
that (ε−1, d) ∈ Ω where Ω ⊆ [1,∞) × N. To have a meaningful problem, the
set Ω is chosen such that at least one of the arguments ε−1 or d may go to
infinity. Since our main emphasis is on large d, in many cases we assume that
[1, ε−1

0 ) × N ⊆ Ω for some ε0 ∈ (0, 1) which allows to take arbitrary large d.
We study weak tractability in Ω for which we want to check when n(ε, Id)

is not exponentially dependent on ε−1 and d for (ε−1, d) ∈ Ω. We also study
(T,Ω)-tractability. Here T is called a tractability function which means that
T is non-increasing in both arguments and does not depend exponentially on
ε−1 and d. In this case, we want to check when n(ε, Id) is bounded by a power
of T (ε−1, d) for all (ε−1, d) ∈ Ω. Strong (T,Ω)-tractability means that n(ε, Id)
is bounded by a power of T (ε−1, 1) for all (ε−1, d) ∈ Ω.

We present necessary and sufficient conditions on generalized tractability
for I = {Id}. Necessary conditions are obtained for arbitrary continuous
linear functionals Id defined over reproducing kernel weighted Hilbert spaces
whose kernel has a decomposable component. We make heavy use of [NW01b]
where this concept was introduced and polynomial tractability was studied
for weights independent of d. We generalize the approach of [NW01b] by
studying generalized tractability and weights which may depend on d. Sufficient
conditions are obtained only for multivariate integration defined over general
reproducing kernel weighted or unweighted Hilbert spaces. Sufficient conditions
easily follow from upper bounds on n(ε, Id) which are obtained by using a
known proof technique which can be found in, e.g., [SW98].

We prove that for some reproducing kernel weighted Hilbert spaces, such
as some weighted Sobolev spaces, necessary and sufficient conditions for gener-
alized tractability of multivariate integration coincide. These conditions are
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expressed in terms of the weights of the underlying space. A typical result is
that weak tractability holds iff

lim
d→∞

∑d
j=1 γd,j

d
= 0.

If we compare this with polynomial tractability, we see that ln d is now replaced
by d but the corresponding limit must be zero. Hence, the unweighted case,
γd,j = constant > 0, leads to the lack of weak tractability which is called
strong intractability. To guarantee weak tractability we must take decaying
weights. For example, for γd,j = j−β we have polynomial tractability iff β ≥ 1
whereas we have weak tractability iff β > 0.

We obtain (T,Ω)-tractability iff

lim sup
(ε−1,d)∈Ω, ε−1+d→∞

∑d
j=1 γd,j + ln ε−1

ln (1 + T (ε−1, d))
< ∞.

and strong (T,Ω)-tractability iff

lim sup
(ε−1,d)∈Ω, ε−1+d→∞

∑d
j=1 γd,j + ln ε−1

ln (1 + T (ε−1, 1))
< ∞.

We illustrate these conditions for T (x, y) = xβ1 exp(yβ2) with non-negative βi

and β2 < 1 which is needed to guarantee that T is non-exponential. We consider
two tractability domains Ω = Ω1 = [1,∞) × N and Ω = Ω2 = [1, 2] × N. Then
(T,Ω1)-tractability holds iff

β1 > 0 and lim sup
d

∑d
j=1 γd,j

dβ2
<∞,

and strong (T,Ω1)-tractability holds iff

β1 > 0 and lim sup
d

d∑
j=1

γd,j <∞.

For Ω2, the dependence on ε is not important since ε ≥ 1
2 , and (T,Ω2)-

tractability holds as before without assuming that β1 > 0. That is, it holds
even for β1 = 0.

2 Approximation of Linear Functionals

For d ∈ N, let Fd be a normed linear space of functions f : Dd ⊆ Rd → R for
a Lebesgue measurable set Dd. Let

Id : Fd → R
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be a continuous linear functional. The primary example of Id is multivariate
integration. In this case, we assume that Fd is a space of Lebesgue measurable
functions and

Idf =
∫

Dd

ρd(x) f(x) dx,

where ρd is a weight, i.e., ρd ≥ 0 and
∫

Dd
ρd(x) dx = 1. Obviously Id is a

linear functional. The norm of Fd is chosen such that Id is also continuous.
Without loss of generality, see e.g., [TWW88], we approximate Id by linear

algorithms using function values, i.e., by algorithms of the form

Qn,df :=
n∑

i=1

aif(zi)

for some real coefficients ai and deterministic sample points zi ∈ Dd. Let

e(n, Id) = inf
ai,zi ; i=1,2,...,n

sup
f∈Fd, ‖f‖Fd

≤1

∣∣∣∣Idf −
n∑

i=1

aif(zi)
∣∣∣∣

be the nth minimal worst case error when we use n function values. In particular,
for n = 0 we do not use function values and approximate Id by zero. We then
have the initial error,

e(0, Id) = ‖Id‖ ,
where ‖ · ‖ is the operator norm induced by the norm of Fd. Let

n(ε, Id) = min{n | e(n, Id) ≤ ε e(0, Id) }

denote the smallest number of sample points for which there exists an algorithm
Qn,d such that e(Qn,d) := ‖Id −Qn,d‖ reduces the initial error by a factor at
least ε.

3 Generalized Tractability

For polynomial tractability, we assume that (ε−1, d) ∈ [1,∞) × N. Sometimes
it is natural, see [GW06], to assume that (ε−1, d) ∈ Ω, where Ω is a proper
subset of [1,∞) × N. As motivated in [GW06], it is natural to assume that Ω
satisfies the following condition.

Let us define [k] := {1, 2, . . . , k} for arbitrary k ∈ N and [0] := ∅. A
tractability domain Ω is a subset of [1,∞) × N satisfying

[1,∞) × [d ∗] ∪ [1, ε−1
0 ) × N ⊆ Ω (1)

for some d ∗ ∈ N ∪ {0} and some ε0 ∈ (0, 1] such that d∗ + (1 − ε0) > 0. This
implies that at least one of the arguments ε−1 or d may go to infinity within Ω.
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For polynomial tractability, n(ε, Id) is to be bounded by a polynomial in
ε−1 and d. For generalized tractability, we replace this polynomial dependence
by a tractability function T which does not depend exponentially on ε−1 and
d. More precisely, as in [GW06], a function T : [1,∞) × [1,∞) → [1,∞) is
called a tractability function if T is non-decreasing in x and y and

lim
(x,y)∈Ω, x+y→∞

lnT (x, y)
x+ y

= 0 . (2)

Let now Ω be a tractability domain and T a tractability function. The multi-
variate problem I = {Id} is (T,Ω)-tractable if there exist non-negative numbers
C and t such that

n(ε, Id) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω. (3)

The exponent ttra of (T,Ω)-tractability is defined as the infimum of all non-
negative t for which there exists a C = C(t) such that (3) holds.

The multivariate problem I is strongly (T,Ω)-tractable if there exist non-
negative numbers C and t such that

n(ε, Id) ≤ C T (ε−1, 1)t for all (ε−1, d) ∈ Ω. (4)

The exponent tstr of strong (T,Ω)-tractability is the infimum of all non-negative
t for which there exists a C = C(t) such that (4) holds.

An extensive motivation of the notion of generalized tractability and many
examples of tractability domains and functions can be found in [GW06].

Similarly as in [NW07], we say that I = {Id} is weakly tractable in Ω iff

lim
(ε−1,d)∈Ω, ε−1+d→∞

ln n(ε, Id)
ε−1 + d

= 0.

If I is not weakly tractable in Ω then I is called strongly intractable in Ω.
The essence of weak tractability in Ω is to guarantee that n(ε, Id) is not

exponential in ε−1 and d without specifying a bound on n(ε, Id). Note that if
I is (T,Ω)-tractable then I is weakly tractable in Ω. Or equivalently, if I is
strongly intractable in Ω then I is also not (T,Ω)-tractable for any tractability
function T .

4 Hilbert Spaces with Reproducing Kernels

In this section we make specific assumptions on the spaces Fd. We slightly
modify the approach proposed in [NW01b].

Let D1 be a Lebesgue measurable subset of R. Let H(Ri), i = 1, 2, denote
Hilbert spaces with reproducing kernels Ri : D2

1 → R. We assume that

H(R1) ∩H(R2) = {0},
and define the reproducing kernel K1 by K1 = R1 +R2.
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Let F1 be the Hilbert space with reproducing kernel K1. That is, for all
f ∈ F1 there exist uniquely determined f1 ∈ H(R1) and f2 ∈ H(R2) such that
f = f1 + f2, and the inner product of F1 is given by

〈f, g〉F1 = 〈f1, g1〉H(R1) + 〈f2, g2〉H(R2) .

Let I1 be a continuous linear functional on F1. Then there exists a h1 ∈ F1

such that
I1f = 〈f, h1〉F1 for all f ∈ F1.

The function h1 has the unique decomposition

h1 = h1,1 + h1,2 with h1,i ∈ H(Ri).

We assume that R2 is decomposable, i.e., there exists an a∗ ∈ R such that

R2(x, t) = 0 for all (x, t) ∈ D(0) ×D(1) ∪D(1) ×D(0),

where

D(0) := {x ∈ D1 |x ≤ a∗} and D(1) := {x ∈ D1 |x ≥ a∗} .

Let h1,2,(0) and h1,2,(1) be functions defined on D1 such that they are the
restrictions of h1,2 to the sets D(0) and D(1), respectively, and take zero values
otherwise.

We also consider weighted tensor product problems. We define F1,γ as the
Hilbert space determined by the weighted reproducing kernel K1,γ ,

K1,γ = R1 + γR2 , (5)

where γ is positive. The case γ = 0 can be obtained by taking the limit of
positive γ. Since the norms of F1,γ = F1 are equivalent, I1,γ = I1 is also a
continuous linear functional on F1,γ . It is easy to show that for

h1,γ := h1,1 + γ h1,2

we have
I1,γf = I1f = 〈f, h1,γ〉F1,γ

for all f ∈ F1,γ

and
‖h1,γ‖2

F1,γ
= ‖h1,1‖2

H(R1)
+ γ‖h1,2‖2

H(R2)
. (6)

For d ≥ 2, let Fd,γ = F1,γd,1 ⊗ · · · ⊗ F1,γd,d
be the tensor product Hilbert

space of the F1,γd,j
for some positive weights γ := {γd,j}, d ∈ N, j ∈ [d]. The

case of a zero weight can be obtained, as before, by taking the limit of positive
weights. Without loss of generality, we assume that

γd,1 ≥ γd,2 ≥ · · · ≥ γd,d for all d ∈ N.
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To relate weights for different d, we assume that for fixed j the sequence
{γd,j}∞d=1 is non-increasing. Hence, for all d ≥ j we have

γd,j ≤ γj,j ≤ γj,1 ≤ γ1,1.

Examples of weights include γd,j = γj for γj ≥ γj+1, as considered in [NW01b],
or γd,j = d−β with β ≥ 0.

Let us define the sequence of spaces Fγ := {Fd,γ}, where

Kd,γ(x, t) =
d∏

j=1

[R1(xj , tj) + γd,jR2(xj , tj)]

is the reproducing kernel of Fd,γ . We define the linear functional

Id,γ : Fd,γ → R

as the d-fold tensor product of I1. Then Id,γf = 〈f, hd,γ〉Fd,γ
with

hd,γ(x) =
d∏

j=1

h1,γd,j
(xj) =

d∏
j=1

[h1,1(xj) + γd,jh1,2(xj)] .

From (6) we have

e2(0, Id,γ) = ‖hd,γ‖2
Fd,γ

=
d∏

j=1

[
‖h1,1‖2

H(R1)
+ γd,j‖h1,2‖2

H(R2)

]
.

Let α1 := ‖h1,1‖2
H(R1)

, α2 := ‖h1,2‖2
H(R2)

, α3 := ‖h1,2‖2
H(R2)

‖h1,1‖−2
H(R1)

, and

α :=
max{‖h1,2,(0)‖2

H(R2)
, ‖h1,2,(1)‖2

H(R2)
}

‖h1,2,(0)‖2
H(R2)

+ ‖h1,2,(1)‖2
H(R2)

.

Furthermore, let us define for k = 1, 2, . . . , d,

Cd,k :=
∑

u⊆[d];|u|=k

∏
j∈u

γd,j ,

and, by convention, Cd,0 := 1. Then, Theorem 2 of [NW01b] states that

e2(n, Id,γ) ≥
d∑

k=0

Cd,k(1 − nαk)+ αd−k
1 αk

2 , (7)

where, by convention, 00 = 1.
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5 Necessary Conditions

We are ready to study generalized tractability of Iγ = {Id,γ}. In this section,
we consider lower bounds on the minimal errors e(n, Id,γ) from which we obtain
necessary conditions on generalized tractability.

The following theorem extends Theorem 3 from [NW01b].

Theorem 1. Assume that H(R1) ∩ H(R2) = {0} and R2 is decomposable.
Assume that both h1,2,(0) and h1,2,(1) are non-zero. Let T be an arbitrary
tractability function, and let Ω be a tractability domain with [1, ε−1

0 ) × N ⊆ Ω
for some ε0 ∈ (0, 1).

1. Let h1,1 = 0. Then Iγ = {Id,γ} is strongly intractable in Ω and is not
(T,Ω)-tractable.

2. Let h1,1 �= 0 and

lim
d→∞

∗
∑d

j=1 γd,j

ln(1 + f(d))
= ∞

for some non-decreasing function f:N→ [1,∞), where lim∗ ∈{lim, lim sup}.
Then

lim
d→∞

∗ e (�f(d)q�, Id,γ)
e(0, Id,γ)

= 1 for all q ∈ N. (8)

In particular,

lim sup
d→∞

d∑
j=1

γd,j = ∞

implies that Iγ is not strongly (T,Ω)-tractable, and

lim sup
d→∞

∑d
j=1 γd,j

ln(1 + T (ε−1, d))
= ∞

for some ε ∈ (ε0, 1) implies that Iγ is not (T,Ω)-tractable.
3. Let h1,1 �= 0 and γd,d ≥ γ∗ > 0 for all d ∈ N. Then

lim
d→∞

e(�bd�, Id,γ)
e(0, Id,γ)

= 1 for all b ∈ (1, α−c), (9)

where c ∈ (0, 1) satisfies the following two inequalities

c ≤ α3γ
∗ and (1 + ln(α3γ

∗) − ln c)c < ln(1 + α3γ
∗).

Hence, Iγ is strongly intractable in Ω.
4. Let h1,1 �= 0 and

lim sup
d→∞

∑d
j=1 γd,j

d
> 0.

Then Iγ is strongly intractable in Ω.



Generalized Tractability for Linear Functionals 367

Proof. We follow here the lines of the proof of [NW01b, Thm. 3]. Note that
just now α ∈ [1/2, 1) since h1,2,(0) �= 0 �= h1,2,(1).

Let us first prove statement 1. For h1,1 = 0, we have α1 = 0 and the only
non-zero term in (7) is for k = d. Then

e(n, Id,γ) ≥ (1 − nαd)1/2
+ e(0, Id,γ). (10)

From (10) we conclude that

n(ε, Id,γ) ≥ (1 − ε2)α−d.

Note that [1, ε−1
0 )×N ⊆ Ω for ε0 ∈ (0, 1) implies that, say, ((1+ε−1

0 )/2, d) ∈ Ω
for all d. Therefore

lim sup
(ε−1,d)∈Ω, ε−1+d→∞

ln n(ε, Id,γ)
ε−1 + d

≥ ln α−1 > 0 ,

which means that Iγ is strongly intractable in Ω and not (T,Ω)-tractable.
Let us now prove statement 2. For h1,1 �= 0 we get from (7)

1 ≥ e2(n, Id,γ)
e2(0, Id,γ)

≥
∑d

k=0 Cd,kα
k
3(1 − nαk)+∑d

k=0 Cd,kαk
3

.

Define γ′d,j := α3γd,j and C ′
d,k := αk

3Cd,k. Then we have

1 ≥ e2(n, Id,γ)
e2(0, Id,γ)

≥
∑d

k=0 C
′
d,k(1 − nαk)+∑d
k=0 C

′
d,k

. (11)

Now take n = �f(d)q� for an arbitrary q ∈ N. For any a ∈ (0, 1) there exist
non-negative β1 and β2 such that

nαk ≤ a for k ∈ [k(d, β), d], where k(d, β) = (β2 + β1 ln f(d)).

Let us denote

sd :=
d∑

j=1

γ′d,j = C ′
d,1.

Since k(d, β) = O(ln(1 + f(d))), the conditions

lim
d→∞

∗ sd
ln(1 + f(d))

= ∞ and sd = O(d)

imply that
sd ≥ k(d, β) and d ≥ k(d, β)

for infinitely many d. We confine our analysis to those values of d. From (11)
we conclude
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e2(n, Id,γ)
e2(0, Id,γ)

≥ (1 − a)
∑d

k=k(d,β)+1 C
′
d,k∑d

k=0 C
′
d,k

= (1 − a)(1 − αd,β),

where

αd,β =

∑k(d,β)
k=0 C ′

d,k∑d
k=0 C

′
d,k

.

To prove (8) it is enough to show that αd,β goes to zero as d tends to infinity
since a can be arbitrarily small.

It is easy to see that C ′
d,k ≤ skd/k!. Thus we have

k(d,β)∑
k=0

C ′
d,k ≤

k(d,β)∑
k=0

skd
k!
. (12)

Observe that

d∑
k=0

C ′
d,k =

d∏
j=1

(1 + γ′d,j) = exp

⎛⎝ d∑
j=1

ln(1 + γ′d,j)

⎞⎠.
Assume for a moment that there exists a positive γ∗ such that γd,d ≥ γ∗ > 0
for all d ∈ N. Since ln(1 + f(d)) = o(d) we have �f(d)q� ≤ �bd� for b > 1 and
sufficiently large d, and therefore (8) follows from (9) which will be addressed
in a moment.

Thus we may consider here only the case where limd→∞ γd,d = 0. Then for
an arbitrary ϑ ∈ (0, 1) there exists a positive constant cϑ with

exp
( d∑

j=1

ln(1 + γ′d,j)
)

≥ cϑ exp
(
sd(1 − ϑ)) for sufficiently large d. (13)

Indeed, let τ be such that ϑ = τ/(1 + τ). It is easily seen that

x(1 − ϑ) ≤ ln(1 + x) for all x ∈ [0, τ ].

Since γ′d,j ≤ γ′j,j for d > j, there is an index jτ such that γ′d,j ∈ [0, τ ] for all
d ≥ j ≥ jτ . For d ≥ jτ , we have

d∑
j=1

ln(1 + γ′d,j) ≥
jτ−1∑
j=1

ln(1 + γ′d,j) +
( d∑

j=jτ

γ′d,j

)
(1 − ϑ)

=
jτ−1∑
j=1

ln(1 + γ′d,j) − (1 − ϑ)
jτ−1∑
j=1

γ′d,j + sd(1 − ϑ) .

Hence (13) holds for d ≥ jτ with
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cϑ = exp
(

− (1 − ϑ)
jτ−1∑
j=1

γ′jτ ,j

)
.

Observe that skd/k! is an increasing function of k over the interval [0, k∗]
as long as sd ≥ k∗. Since sd ≥ k(d, β) we get

k(d,β)∑
k=0

skd
k!

≤ k(d, β) s
k(d,β)
d

k(d, β)!
= exp [k(d, β) ln sd − ln((k(d, β) − 1)!)] .

Using the formula k! ≥ kke−k and k(d, β) = O(ln(1 + f(d))), we get

k(d,β)∑
k=0

C ′
d,k ≤ exp [k(d, β) ln sd − (k(d, β) − 1)(ln(k(d, β) − 1) − 1))]

≤ exp
[
k(d, β) ln

(
sd

k(d, β) − 1

)
+O(ln(1 + f(d)))

]
≤ exp

[
O

(
ln(1 + f(d)) ln

(
sd

ln(1 + f(d))

))]
.

Let ϑ ∈ (0, 1). Then for d ≥ jτ ,

αd,β ≥ c−1
ϑ exp

[
−sd(1 − ϑ) +O

(
ln(1 + f(d)) ln

(
sd

ln(1 + f(d))

))]
= c−1

ϑ exp
[
− ln(1 + f(d))

(
sd(1 − ϑ)

ln(1 + f(d))
+O
(

ln
(

sd
ln(1 + f(d))

)))]
.

Thus lim∗
d→∞ αd,β = 0, and the proof of (8) is completed.

Let lim∗
d→∞

∑d
j=1 γd,j = ∞. Then lim∗

d→∞
∑d

j=1 γd,j/ ln(1 + f(d)) = ∞
for an arbitrary constant function f . According to (8), this results in

lim
d→∞

∗ e(n, Id,γ)
e(0, Id,γ)

= 1 for all n ∈ N.

Since {ε} × N ⊂ Ω for arbitrary ε ∈ (ε0, 1), we conclude that n(ε, Id,γ) must
go to infinity with d which means that Id is not strongly (T,Ω)-tractable.

Finally assume that lim∗
d→∞

∑d
j=1 γd,j/ ln(1 + T (ε−1, d)) = ∞ for some

ε ∈ (ε0, 1). This corresponds to f(d) = T (ε−1, d). If T (ε−1, d) = 1 for all d, we
are in the preceeding case and Iγ is not (T,Ω)-tractable. If T (ε−1, d) > 1 for
some d, then (8) implies that for arbitrary positive constants C and t there
exists a positive constant q and infinitely many d with

n(ε, Id,γ) > T (ε−1, d)q ≥ CT (ε−1, d)t .

This implies again that Iγ is not (T,Ω)-tractable.
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We now address statement 3, which, apart from the slightly more general
weights, is actually the fourth statement of [NW01b, Thm. 3]. If one checks
the proof there and makes the obvious small modifications, one easily sees that
(9) also holds. From it, we have n(ε, Id,γ) ≥ �bd� for a fixed ε ∈ (ε0, 1) and
sufficiently large d. Hence, n(ε, Id,γ) is exponential in d which implies strong
intractability in Ω.

We turn to the last statement 4 and reduce it to statement 3. We now
know that there exists a sequence {dk}, with limk dk = ∞, and a positive c1
such that

dk∑
j=1

γdk,j ≥ c1dk for all k ∈ N.

For s ∈ [dk] we have

dk∑
j=1

γdk,j =
s−1∑
j=1

γdk,j +
dk∑

j=s

γdk,j ≤ (s− 1)γ 1,1 + (dk − s+ 1)γs,s.

For all s ≤ 1 + c1dk/(2γ 1,1) we obtain

γs,s ≥ γ∗ := c1/2.

Since dk goes to infinity this proves that γd,d ≥ γ∗ for all d and the assumptions
of statement 3 are satisfied. This completes the proof.

6 Sufficient Conditions for Integration

In this section we analyze sufficient conditions for generalized tractability of
multivariate integration for a Hilbert space Fd with a general reproducing
kernel Kd : Dd ×Dd → R. We assume that Kd is Lebesgue measurable and∫

Dd

∫
Dd

ρd(x)ρd(y)Kd(x, y) dxdy ≤
∫

Dd

ρd(x)Kd(x, x) dx < ∞,

where ρd ≥ 0 and
∫

Dd
ρd(x) dx = 1. Then multivariate integration

Idf =
∫

Dd

ρd(x) f(x) dx for all f ∈ Fd,

is a continuous linear functional, and Idf = 〈f, hd〉Fd
with

hd(x) =
∫

Dd

ρd(y)Kd(x, y) dy.

Without loss of generality we assume that hd �= 0 since otherwise multivariate
integration is trivial. The initial error is now of the form
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e(0, Id) = ‖Id‖ = ‖hd‖Fd
=
(∫

Dd

ρd(x)hd(x) dx
)1/2

=
(∫

Dd

∫
Dd

ρd(x)ρd(y)Kd(x, y) dxdy
)1/2

> 0.

For the algorithm Qn,df =
∑n

i=1 aif(zi) we have

Idf −Qn,df =
〈
f, hd −

n∑
i=1

aiKd(·, zi)
〉

Fd

.

This yields a well know formula for the worst case error of Qn,d,

e(Qn,d) = sup
f∈Fd, ‖f‖Fd

≤1

∣∣∣∣Idf −
n∑

i=1

aif(zi)
∣∣∣∣ =
∥∥∥∥hd −

n∑
i=1

aiKd(·, zi)
∥∥∥∥

Fd

=
(
‖hd‖2

Fd
− 2

n∑
i=1

aihd(zi) +
n∑

i,j=1

aiajKd(zi, zj)
)1/2

.

We now assume that Qn,d is a QMC algorithm, i.e., ai = n−1, and treat
the sample points zi as independent and identically distributed points over Dd

with the density function ρd. We use the notation e(Qn,d) = e(Qn,d, {zi}) to
stress the dependence on the sample points zi. Let

E(n, d) =
∫

Dn
d

e2(Qn,d, {zi})ρd(z1) ρd(z2) · · · ρd(zn) dz1 dz2 · · · dzn

denote the average of the square of the worst case error of Qn,d. It is easy to
obtain an explicit formula for E(n, d) which is also well known, see e.g., [SW98],

E(n, d) = ‖hd‖2 − 2‖hd‖2 +
n2 − n
n2

‖hd‖2 +
1
n

∫
Dd

ρd(x)Kd(x, x) dx

=

∫
Dd
ρd(x)Kd(x, x) dx− ∫

Dd

∫
Dd
ρd(x)ρd(y)Kd(x, y) dxdy

n
.

Here, ‖hd‖ = ‖hd‖Fd
. By the mean value theorem we know that there are

sample points zi for which the square of the worst case error is at most E(n, d).
This proves that the square of the nth minimal error e(n, Id) is at most E(n, d)
and we have

e(n, Id)
e(0, Id)

≤ 1√
n

( ∫
Dd
ρd(x)Kd(x, x) dx∫

Dd

∫
Dd
ρd(x)ρd(y)Kd(x, y) dxdy

− 1

)1/2

. (14)

From this estimate it is easy to conclude sufficient conditions on generalized
tractability of multivariate integration.
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Theorem 2. Consider multivariate integration I = {Id} defined as in this
section. Let T be an arbitrary tractability function, and let Ω be a tractability
domain with [1, ε−1

0 ) × N ⊆ Ω for some ε0 ∈ (0, 1). Let

ηd =

∫
Dd
ρd(x)Kd(x, x) dx∫

Dd

∫
Dd
ρd(x)ρd(y)Kd(x, y) dxdy

− 1.

1. We have
n(ε, Id) ≤

⌈ηd
ε2

⌉
.

2. If

lim
d→∞

ln max(1, ηd)
d

= 0

then I is weakly tractable in Ω.
3. If

t∗ := lim sup
(ε−1,d)∈Ω, ε−1+d→∞

ln max(1, ηd) + 2 ln ε−1

ln (1 + T (ε−1, d))
< ∞

then I is (T,Ω)-tractable with the exponent of (T,Ω)-tractability equal to
at most t∗.

4. If

t∗ := lim sup
(ε−1,d)∈Ω, ε−1+d→∞

ln max(1, ηd) + 2 ln ε−1

ln (1 + T (ε−1, 1))
< ∞

then I is strongly (T,Ω)-tractable with the exponent of strong (T,Ω)-
tractability equal to at most t∗.

Proof. The proof is obvious. The bound on n(ε, d) directly follows from (14).
We have

n(ε, Id) ≤ ⌈max(1, ηd) ε−2
⌉ ≤ 2 max(1, ηd) ε−2

since (x) ≤ 2x for x ≥ 1. Since pairs (ε, d) for ε ∈ (ε0, 1) and d ∈ N belong to
Ω, we have

ln n(ε, Id)
ε−1 + d

≤ ln max(1, ηd)
d

+
2 ln ε−1

ε−1 + d
+

ln 2
ε−1 + d

which goes to 0 if limd→∞ ln(max(1, ηd))/d = 0. This yields weak tractability
in Ω. The rest follows from the fact that n(ε, Id) ≤ C T (ε−1, kd)t, with kd = d
when we consider (T,Ω)-tractability and kd = 1 when we consider strong
(T,Ω)-tractability, if

ln max(1, ηd) + 2 ln ε−1

ln (1 + T (ε−1, kd))
≤ ln (C/2)

ln (1 + T (ε−1, kd))
+ t.

For any δ ∈ (0, 1) there exists Cδ such that for all (ε−1, d) ∈ Ω with ε−1 + d ≥
Cδ, the left hand side is at most t∗ + δ. Hence, we can take t = t∗ + δ and C
sufficiently large so that the last inequality holds for all (ε−1, d) ∈ Ω. This
proves (T,Ω)-tractability or strong (T,Ω)-tractability as well as the needed
bounds on the exponents.
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7 Examples

We illustrate Theorems 1 and 2 by a number of examples of spaces for multi-
variate integration.

Example 1: Sobolev Space for Bounded Domain

In this example we consider multivariate integration for the bounded domain,
Dd = [0, 1]d and for a specific Sobolev space. More precisely for d = 1, as
in [NW01b], let F1,γ be the Sobolev space of absolutely continuous functions
defined on D1 = [0, 1] whose first derivatives are in L2([0, 1]) with the inner
product

〈f, g〉F1,γ = f( 1
2 )g( 1

2 ) + γ−1

∫ 1

0

f ′(x)g′(x) dx.

The reproducing kernel is K1,γ = R1 + γ R2 with

R1 = 1 and R2(x, y) = 1M (x, y) min
(|x− 1

2 |, |y − 1
2 |
)

with the characteristic function 1M of M = [0, 1
2 ] × [0, 1

2 ] ∪ [ 12 , 1] × [ 12 , 1].
Clearly, R2 is decomposable with a∗ = 1

2 . The kernel R2 can also be written as

R2(x, y) = 1
2

(|x− 1
2 | + |y − 1

2 | − |x− y|).
We have∫ 1

0

∫ 1

0

K1,γ(x, y) dxdy = 1 + 1
12 γ and

∫ 1

0

K1,γ(x, x) dx = 1 + 1
4 γ.

For d ≥ 2, we obtain the Sobolev space Fd,γ with the inner product

〈f, g〉Fd,γ
=
∑

u⊆[d]

γ−1
u

∫
[0,1]|u|

∂|u|

∂ xu
f(xu,

1
2 )
∂|u|

∂ xu
g(xu,

1
2 ) dxu.

Here γ∅ = 1 and γu =
∏

j∈u γd,j for non-empty u, and xu is the vector from
[0, 1]|u| whose components corresponding to indices in u are the same as for
the vector x ∈ [0, 1]d, and (xu,

1
2 ) is the vector x ∈ [0, 1]d with all components

whose indices are not in u replaced by 1
2 . Furthermore, we use the convention∫

[0,1]|∅| dx∅ = 1.
Consider multivariate integration, Id,γf =

∫
[0,1]d

f(x) dx = 〈f, hd,γ〉Fd,γ

with

hd,γ(x) =
d∏

j=1

[
1 +

1
2
γd,j

(|xj − 1
2 | − 1

4 + xj − x2
j

)]
.
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We now have

h1,1 = 1,
h1,2,(0)(x) = 1

2 ( 1
2 − x)( 1

2 + x) 1
[0,

1
2 ]

(x),

h1,2,(1)(x) = 1
2 (x− 1

2 )(2 − 1
2 − x) 1

[
1
2 ,1]

(x).

Hence, ‖h1,2,(0)‖H(R2) = ‖h1,2,(1)‖H(R2) = 1
24 and α = 1

2 . Hence, the assump-
tions of Theorem 1 are satisfied. Furthermore, the initial error is

e(0, Id,γ) =
d∏

j=1

(
1 + 1

12 γd,j

)1/2
,

whereas ∫
[0,1]d

Kd,γ(x, x) dx =
d∏

j=1

(
1 + 1

4 γd,j

)
.

Hence, the assumptions of Theorem 2 are also satisfied and

ηd =
d∏

j=1

1 + 1
4 γd,j

1 + 1
12 γd,j

− 1 ≤
d∏

j=1

(
1 + 1

6 γd,j

)
since (1 + b x)/(1 + a x) ≤ 1 + (b− a)x for b ≥ a and x ≥ 0.

Since ln(1 + x) ≤ x for x ≥ 0, we now have

ln max(1, ηd) ≤ 1
6

d∑
j=1

γd,j . (15)

Combining Theorems 1 and 2 we see that limd

∑d
j=1 γd,j/d = 0 is necessary

and sufficient for weak tractability.
For d = 1, it is known that the minimal error e(n, I1,γ) = Θ(n−1), see e.g.,

[TWW88]. Hence, if [1,∞) × [d∗] ⊆ Ω with d∗ ≥ 1 then the limit superior of
(ln ε−1)/ ln(1 + T (ε−1, 1)) must be finite if we want to have (T,Ω)-tractability.

We are ready to summarize results for generalized tractability of this
multivariate integration problem.

Theorem 3. Consider multivariate integration Iγ = {Id,γ} defined for the
Sobolev space Fd,γ as in this example. Let T be an arbitrary tractability function,
and let Ω be a tractability domain with [1, ε−1

0 ) × N ⊆ Ω for some ε0 ∈ (0, 1).
Then

Iγ is weakly tractable in Ω iff lim
d→∞

∑d
j=1 γd,j

d
= 0.

Assume additionally that [1,∞) × [d∗] ⊆ Ω for d∗ ≥ 1 and that

S(ε) := sup
d∈N

ln(1 + T (ε−1, d))
ln(1 + T (1, d))

<∞ for some ε ∈ (ε0, 1).
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Then

1. Iγ is (T,Ω)-tractable iff

t∗1 := lim sup
d→∞

∑d
j=1 γd,j

ln(1 + T (1, d))
< ∞,

t∗2 := lim sup
ε−1→∞

ln ε−1

ln(1 + T (ε−1, 1))
< ∞.

If this holds then for arbitrary t > 1
6 t

∗
1 + 2t∗2 there exists a positive C = Ct

such that

n(ε, Id,γ) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω.

The exponent ttra of (T,Ω)-tractability is in [t∗2,
1
6 t

∗
1 + 2t∗2].

2. Iγ is strongly (T,Ω)-tractable iff

t∗1 := lim sup
d→∞

d∑
j=1

γd,j < ∞,

t∗2 := lim sup
ε−1→∞

ln ε−1

ln(1 + T (ε−1, 1))
< ∞.

If this holds then for arbitrary t > 2t∗2 there exists a positive C = Ct such
that

n(ε, Id,γ) ≤ C T (ε−1, 1)t for all (ε−1, d) ∈ Ω .
The exponent tstr of strong (T,Ω)-tractability is in [t∗2, 2t

∗
2].

Proof. The statement on weak tractability follows from Theorems 1 and 2, and
(15). Let us now assume that [1,∞)× [d∗] ⊆ Ω for some d∗ ≥ 1 and S(ε) <∞
for some ε ∈ (ε0, 1).

We now address (T,Ω)-tractability. Let Iγ be (T,Ω)-tractable. Due to
Theorem 1 we have

lim sup
d→∞

∑d
j=1 γd,j

ln(1 + T (ε−1, d))
<∞ .

From S(ε) < ∞ it follows that t∗1 < ∞. From e(n, I1,γ) = Θ(n−1), we get
n(ε, I1,γ) = Θ(ε−1). Thus we have t∗2 <∞.

Let us now assume that t∗1 and t∗2 are finite. Let us first consider the
case, where lim supd→∞

∑d
j=1 γd,j is finite. Then, due to (15), ηd is uniformly

bounded and Theorem 2 implies that for (T,Ω)-tractability it is sufficient to
bound ε−2 by CT (ε−1, 1)t which is possible if t > 2t∗2. Let us now consider
the case where lim supd→∞

∑d
j=1 γd,j is infinite. Observe that this and the
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finiteness of t∗1 imply that limd→∞ T (1, d) = ∞. From Theorem 2 and (15) we
know that for (T,Ω)-tractability it is sufficient to show

t′ := lim sup
(ε−1,d)∈Ω, ε−1+d→∞

{
1
6

∑d
j=1 γd,j

ln(1 + T (ε−1, d))
+ 2

ln ε−1

ln(1 + T (ε−1, d))

}
<∞ .

Let us consider a sequence {(ε−1
k , dk)} with ε−1

k → ∞ and {dk} bounded. For
convenience we omit the indices k. Then

lim sup
{(ε−1,d)}

∑d
j=1 γd,j

ln(1 + T (ε−1, d))
= lim sup

{(ε−1,d)}

∑d
j=1 γd,j

ln(1 + T (1, d))
ln(1 + T (1, d))

ln(1 + T (ε−1, d))
= 0 ,

since ln(1 + T (ε−1, d)) ≥ ln(1 + T (ε−1, 1)) → ∞ as ε−1 → ∞. Furthermore,

lim sup
{(ε−1,d)}

ln ε−1

ln(1 + T (ε−1, d))
≤ t∗2 .

Let us now consider a sequence {(ε−1, d)} with d→ ∞. Then

lim sup
{(ε−1,d)}

∑d
j=1 γd,j

ln(1 + T (ε−1, d))
≤ lim sup

{(ε−1,d)}

∑d
j=1 γd,j

ln(1 + T (1, d))
≤ t∗1 ,

and

lim sup
{(ε−1,d)}

ln ε−1

ln(1 + T (ε−1, d))
= lim sup

{(ε−1,d)}

ln ε−1

ln(1 + T (ε−1, 1))
ln(1 + T (ε−1, 1))
ln(1 + T (ε−1, d))

.

Let us denote the last quantity by C1. If ε−1 → ∞ then obviously C1 ≤ t∗2. If
{ε−1} is bounded from above by, say, C2 then

ln(1 + T (ε−1, 1))
ln(1 + T (ε−1, d))

≤ ln(1 + T (C2, 1))
ln(1 + T (1, d))

,

which converges to zero as d tends to infinity; hence C1 = 0. This shows that
t′ ≤ 1

6 t
∗
1 + 2t∗2. The statement concerning the exponents t and ttra follows then

from Theorem 2 and from the univariate case showing that ttra ≥ t∗2.
We now turn to strong (T,Ω)-tractability. If Iγ is strongly (T,Ω)-tractable

then Theorem 1 implies that t∗1 is finite, whereas the univariate case d = 1
implies that t∗2 is finite. Assume then that both t∗1 and t∗2 are finite. Then ηd is
uniformly bounded and Theorem 2 implies that it is enough to bound ε−2 by
C T (ε−1, 1)t which is possible if t > 2t∗2. The univariate case yields that the
exponent tstr of strong (T,Ω)-tractability must be at least t∗2. This completes
the proof.

Remark 1. In Theorem 3 we made the additional assumptions [1,∞)×[d∗] ⊆ Ω
for d∗ ≥ 1 and S(ε) ≤ ∞ to ensure that the conditions t∗1 ≤ ∞ and t∗2 ≤ ∞
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in statement 1 and 2 are not only sufficient but also necessary for (T,Ω)-
tractability and strong (T,Ω)-tractability, respectively. Observe that for a
tractability function T of product form, i.e., T (x, y) = f1(x)f2(y) with non-
decreasing functions fi : [1,∞) → [1,∞), and limx→∞ ln(fi(x))/x = 0 for
i = 1, 2, we have S(ε) <∞ for every ε ∈ (ε0, 1). On the other hand S(ε) = ∞
for all ε ∈ (ε0, 1) if, e.g., T (x, y) = 1 + g1(x)g2(y), where the non-negative
and non-decreasing functions gi satisfy g1(1) = 0, g1(x) > 0 for x > 0, and
limy→∞ g2(y) = ∞. Observe also that one can always modify a tractability
function T by putting T (1, d) = 1 for all d—it still remains a tractability
function. In this case S(ε) <∞ is equivalent to limd→∞ T (ε−1, d) <∞.

For this Sobolev space Fd,γ and QMC algorithms Qn,d with ai = n−1, it is
known that the worst case errors of Qn,d are equal to the centered discrepancy,
see [Hic98, NW01b]. Since our upper bounds are based on QMC algorithms,
the same estimates and conditions on generalized tractability presented in
Theorem 3 are also valid for the centered discrepancy.

Example 2: Sobolev Space for Unbounded Domain

In this example we consider multivariate integration for the unbounded domain,
Dd = R, and for Sobolev spaces of smooth functions. More precisely let
r be a positive integer. For d = 1, similarly as in [NW01b], let F1,γ be
the Sobolev space of functions defined on R whose (r − 1)st derivatives are
absolutely continuous and whose rth derivatives belong to L2(R), and satisfy
the conditions

f ′(0) = f ′′(0) = . . . = f (r−1)(0) = 0.

The inner product of F1,γ is given by

〈f, g〉F1,γ
= f(0)g(0) + γ−1

∫
R

f (r)(x)g(r)(x) dx.

The reproducing kernel of F1,γ is K1,γ = R1 + γ R2 with R1 = 1 and

R2(x, y) = 1M (x, y)
∫

R+

(|x| − u)r−1
+

(r − 1)!
(|y| − u)r−1

+

(r − 1)!
du,

where 1M is the characteristic function of M = {(x, y) : xy ≥ 0}. Clearly,
R2 is decomposable with a∗ = 0. Consider univariate integration

I1,γf =
∫

R

ρ(x) f(x) dx,

where ρ(x) = ρ(−x) ≥ 0,
∫

R
ρ(x) dx = 1, and

∫
R
ρ(x) |x|2r−1 dx < ∞. We now

have h1,1 = 1 and h1,2 = h1,2,(0) + h1,2,(1) with

h1,2,(0)(x) =
∫ 0

−∞
ρ(y)R2(x, y) dy and h1,2,(1)(x) =

∫ ∞

0

ρ(y)R2(x, y) dy.
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Note that both h1,2,(i) are well defined since it can be checked that R2(x, x) =
O(|x|2r−1) and therefore even the integral

∫
R
ρ(x)R2(x, x) dx <∞. Further-

more, the functions h1,2,(i) are not zero since ρ is symmetric and non zero.
Hence, the assumptions of Theorem 1 are satisfied, and symmetry of ρ and R2

yield that α = 1
2 .

For d ≥ 2, we obtain the Sobolev space Fd,γ with the inner product

〈f, g〉Fd,γ
=
∑

u⊆[d]

γ−1
u

∫
R|u|

∂ r|u|

∂ xr
u

f(xu, 0)
∂ r|u|

∂ xr
u

g(xu, 0) dxu

with the same notation as in the previous example with the obvious exchange
of 1

2 to 0.
Consider multivariate integration,

Id,γ(f) =
∫

Rd

ρd(x) f(x) dx = 〈f, hd〉Fd,γ

with ρd(x) =
∏d

j=1 ρ(xj) and

hd(x) =
d∏

j=1

(1 + γd,j h1,2(x)) .

Furthermore, the initial error is

e(0, Id,γ) =
d∏

j=1

(1 + γd,j A)1/2
,

where
A :=

∫
R2
ρ(x) ρ(y)R2(x, y) dxdy.

We also have ∫
Rd

ρd(x)Kd,γ(x, x) dx =
d∏

j=1

(1 + γd,j B) < ∞,

with
B :=

∫
R

ρ(x)R2(x, x) dx < ∞.
Hence, the assumptions of Theorem 2 are also satisfied and

ηd =
d∏

j=1

1 + γd,j B

1 + γd,j A
− 1 ≤

d∏
j=1

(1 + γd,j (B −A)) .

For d = 1 it is known that e(n, I1,γ) = Θ(n−r), see again e.g., [TWW88].
Combining Theorems 1 and 2 and proceeding as for the previous example we
obtain necessary and sufficient conditions on generalized tractability of this
multivariate integration problem.
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Theorem 4. Consider multivariate integration Iγ = {Id,γ} defined for the
Sobolev space Fd,γ as in this example. Let T be an arbitrary tractability function,
and let Ω be a tractability domain with [1, ε−1

0 ) × N ⊆ Ω for some ε0 ∈ (0, 1).
Then

Iγ is weakly tractable in Ω iff lim
d→∞

∑d
j=1 γd,j

d
= 0.

Assume additionally that [1,∞) × [d∗] ⊆ Ω for d∗ ≥ 1 and that

S(ε) := sup
d∈N

ln(1 + T (ε−1, d))
ln(1 + T (1, d))

<∞ for some ε ∈ (ε0, 1).

Then

1. Iγ is (T,Ω)-tractable iff

t∗1 := lim sup
d→∞

∑d
j=1 γd,j

ln(1 + T (1, d))
< ∞,

t∗2 := lim sup
ε−1→∞

ln ε−1

ln(1 + T (ε−1, 1))
< ∞.

If this holds then for arbitrary t > (B −A) t∗1 + 2t∗2 there exists a positive
C = Ct such that

n(ε, Id,γ) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω.

The exponent ttra of (T,Ω)-tractability is in [r−1t∗2, (B −A) t∗1 + 2t∗2].
2. Iγ is strongly (T,Ω)-tractable iff

t∗1 := lim sup
d→∞

d∑
j=1

γd,j < ∞,

t∗2 := lim sup
ε−1→∞

ln ε−1

ln(1 + T (ε−1, 1))
< ∞.

If this holds then for arbitrary t > 2t∗2 there exists a positive C = Ct such
that

n(ε, Id,γ) ≤ C T (ε−1, 1)t for all (ε−1, d) ∈ Ω.
The exponent tstr of strong (T,Ω)-tractability is in [r−1t∗2, 2t

∗
2].

Example 3: General Case with R1 = 1

Based on the two previous examples, it is easy to see that we can obtain
necessary and sufficient conditions for generalized tractability of multivariate
integration for general spaces if we assume that the kernel R1 = 1. Then
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H(R1) = span(1) and H(R1) ∩ H(R2) = {0} holds iff 1 /∈ H(R2). We now
assume that R2 is Lebesgue measurable and that

A :=
∫

D2
1

ρ(x) ρ(y)R2(x, y) dxdy ≤ B :=
∫

D1

ρ(x)R2(x, x) dx < ∞.

As in Section 4 we assume that R2 is decomposable and consider integration
for the space F1,γ ,

I1,γf =
∫

D1

ρ(x) f(x) dx = 〈f, h1,γ〉F1,γ

with
h1,γ(x) = 1 + γ

(
h1,2,(0)(x) + h1,2,(1)(x)

)
,

where
h1,2,(i)(x) = 1D(i)(x)

∫
D(i)

ρ(y)R2(x, y) dy.

We assume that both h1,2,(i) are non-zero. For d = 1 we assume that e(n, I1,γ) =
Θ(n−r) for some r > 0.

Then Theorems 1 and 2 and the analysis of the previous examples yield
the following theorem.

Theorem 5. Consider multivariate integration Iγ = {Id,γ} defined for the
space Fd,γ with R1 = 1 as in this example. Let T be an arbitrary tractability
function, and let Ω be a tractability domain with [1, ε−1

0 ) × N ⊆ Ω for some
ε0 ∈ (0, 1). Then

Iγ is weakly tractable in Ω iff lim
d→∞

∑d
j=1 γd,j

d
= 0.

Assume additionally that [1,∞) × [d∗] ⊆ Ω for d∗ ≥ 1 and that

S(ε) := sup
d∈N

ln(1 + T (ε−1, d))
ln(1 + T (1, d))

<∞ for some ε ∈ (ε0, 1).

Then

1. Iγ is (T,Ω)-tractable iff

t∗1 := lim sup
d→∞

∑d
j=1 γd,j

ln(1 + T (1, d))
< ∞,

t∗2 := lim sup
ε−1→∞

ln ε−1

ln(1 + T (ε−1, 1))
< ∞.

If this holds then for arbitrary t > (B −A) t∗1 + 2t∗2 there exists a positive
C = Ct such that

n(ε, Id,γ) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω.
The exponent ttra of (T,Ω)-tractability is in [r−1t∗2, (B −A) t∗1 + 2t∗2].
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2. Iγ is strongly (T,Ω)-tractable iff

t∗1 := lim sup
d→∞

d∑
j=1

γd,j < ∞,

t∗2 := lim sup
ε−1→∞

ln ε−1

ln(1 + T (ε−1, 1))
< ∞.

If this holds then for arbitrary t > 2t∗2 there exists a positive C = Ct such
that

n(ε, Id,γ) ≤ C T (ε−1, 1)t for all (ε−1, d) ∈ Ω.
The exponent tstr of strong (T,Ω)-tractability is in [r−1t∗2, 2t

∗
2].
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[NW01a] E. Novak and H. Woźniakowski. When are integration and discrepancy
tractable? In: DeVore, R.A., Iserles, A., Süli, E. (eds) Foundation of Com-
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Summary. We present a sampling method with applications to Monte Carlo simu-
lations of particle systems which improves the efficiency in sampling from a table
of probabilities with changing values and a variable number of elements. For this
purpose an optimized partition of the set of events is constructed. The goal is to
minimize the expected number of operations in choosing first an element of the
partition and sampling afterwards the event from this set. The approach presented
here computes an optimized grouping based only on the current structure of the
table of events. It can be used as an universal tool, avoiding the experimental way
for determining the best group structure, which depends on the problem parameters
and on the number of particles. The method is tested numerically by simulations of
coagulation processes.

1 Introduction

In particle-based Monte Carlo simulations the basic quantities which are
involved are the empirical measures corresponding to the particle system. They
are determined by the positions of the particles in the physical space or in a
parameter space. Their support size is crucial for the efficiency of the stochastic
algorithms. If we allow the positions of the particles to take only a discrete
set of values, we can work directly with approximations of the macroscopic
quantities (like densities, or mass corresponding to a given size or located
at a given place) rather than treating each particle individually. We make
therefore no distinction between particles located at the same point in the
size space or in the physical space. The set of possible events can decrease
significantly, while the state of the system continues to change according to
the same particle dynamics. The main difference is that the set of events has
now a variable number of elements, depending on the fluctuating support size,
and not a fixed one (depending on the total number of particles).
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In this paper we introduce introduce a method of sampling within the
framework presented above, which optimizes the grouping principle used for
computing transitions in Monte Carlo methods. The stochastic algorithms for
simulating Markov processes have to face the following problem: to sample the
next event Ek from a set E = {E1, . . . En} of possible events with probabilities
pi = P (Ei), i = 1, . . . n. The state of the process is then changed according to
the event Ek, which leads also to a change in the structure of the set E and
of the probabilities of its elements. In many situations the new configuration
can be computed by using only a few operations. This is the case in particle
methods, where an “event” consists in modifying the position of only a small
number of particles in a given space, while the total number of particles is
usually very large.

In sampling from a set of events with changing probabilities we cannot use
fast methods like the alias-method ([Fi96], p. 165). We have therefore to rely
on the following two basic methods and on further improvements of them.

Consider a set of events E as above and denote P =
∑

i pi, pmax = maxi pi.

• the acceptance-rejection method
Let p1 p2 . . . pn be an array with a fixed number of elements which
corresponds to the probability table and let p̄ be an envelope for the table,
for example p̄ = pmax.
The sampling algorithm can be described as:
1. choose uniformly an index i
2. with probability pi/p̄ accept the event Ei

3. if rejection, GOTO 1.

The expected number of steps in the acceptance-rejection method is

Ear = n · p̄
P

. Note that if p̄/P = O(1/n) then we need O(1) operations,

while in the case p̄/P = O(1) we need O(n) operations. Since the probabil-
ities are subject to changes, we must always check if the modified value
of one of the pi’s exceeds p̄ and, if it is the case, we have to make the
corresponding update. However, the last computed maximal value can also
decrease during the simulations and it may be too costly to search every
time for the new maximum. In this situation we continue the simulation
with the current envelope p̄ and recompute the maximum only periodically.

• the inverse transform method
Let p1 ↔ p2 ↔ . . .↔ pn be a doubly linked list with a variable number of
elements.
The sampling algorithm can be described as:
1. simulate a uniformly distributed random variable U on (0, 1)

2. compute for succesive k the sum S =
k∑

i=1

pi

3. if S ≥ U · P choose the event Ek
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The expected number of steps in the inverse transform method is

Eit =
n∑

k=1

k · pk

P
. If pmax/P = O(1/n) then this approach needs in the average

O(n) steps in sampling an event. However, if there are significant differences
in the magnitude orders of the pi’s and they are sorted such that the large
values are at the beginning of the list, in certain circumstances we may need
only O(1) steps.

In the situations when n is very large, for example in particle methods
which use a large number of particles, one has to find a way to reduce the
magnitude order of the required operations with the two methods presented
above.

This issue is addressed in Section 2. The basic idea is to divide the events
into a certain number of groups and computing the group probabilities. A group
is chosen with respect to its probability and then the transition event is sampled
only within that group. This principle is known and already used in Monte
Carlo computations, for example in [EW00-1], [EW00-2] or [EW01]. There it
was used in the context of acceptance-rejection techniques, while the groups
were generated according to a power-law scale of the particle sizes. In this
situation, the optimal number of groups which delivers the best performance
of the implementation has to be determined experimentally from case to case,
depending on the problem parameters and on the total number of particles. Our
experiments show that this number influences strongly the overall performance
of the program, so choosing a proper value for it is a crucial issue.

Having in mind more complex applications, like simulations of spatially
inhomogeneous coagulation dynamics, the heuristic approach for determining
the optimal grouping is not satisfactory. The structure of the empirical measures
which describe the mass spectrum of the particles may be completely different
in various regions, so we cannot choose overall the same value of the parameter
which determines the group structure. Moreover, in the case of a large number
of patches, one cannot afford to find the proper values by experimenting. The
same problem arises in other applications, where the grouping according to
a monotone (e.g. power-law) scale is not appropriate at all: how should the
groups be chosen in such a case?

The aim of this paper is to present an approach for computing an optimized
grouping, based only on the current structure of the table of events. The
proposed approach can be therefore used as an universal tool, avoiding the
experimental way for determining the best group structure.

The optimization of the group structure is done by a simple method
based on binary partitions of the groups. Usually the events to be computed
correspond to a list which is ordered in a natural way (e.g. the positions
of the particles in the size space). Having a given group, we choose from
all possible splittings in two consecutive parts the one which minimizes the
number of expected operations needed to compute an event (to be precise: an
approximation of it). We call this division a binary partition of the original
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group. The algorithm which computes the optimized structure starts with
a single group which contains all possible events and follows then the next
procedure: having the current group structure, do succesive binary partitions
of the existing groups. If by replacing a group with the two parts the expected
number of operations decreases, then keep this binary partition and update
the group structure, otherwise reject it. We stop if the binary partition steps
are rejected for all existing groups.

In the ideal situation, the “optimal” solution would be the absolute min-
imizer for the expected number of operations in sampling the next event.
However, after performing one transition step, the set of events and the set
of probabilities suffer changes. This requests eventually an update the group
configuration, if we want to remain on the optimal track. Trying to do this in
an “optimal” way at each step, will wipe away all advantages which come with
this principle, due to the number of operations required for this optimization.
The solution is to assign the new possible events to one of the existing groups
in a straightforward and natural way, with a minimal number of operations.
The recomputation of the group configuration takes place only from time
to time, if the expected number of operations gets too far away from the
optimum.

But, even if we compute the “optimal” structure only periodically, it
will be immediately destroyed due to the changes in the event structure.
Therefore it suffices a “nearly optimal” configuration which can be achieved
as cheap as possible. A simpler and faster algorithm which leads to results
which are close to the optimum should have priority upon the attempt to
reach the exact minimum, but at a higher price. We must always have in
mind the fact that our real “optimization problem” is the global Monte
Carlo algorithm, which consists in computing the transition events, as well
as the group structure of these events. The combination of these two as-
pects has to work as fast as possible. A complete solution to this problem
is beyond our scope, but the binary partition algorithm presented in this
paper is a satisfactory alternative, altough there is certainly room for improve-
ment left.

Section 3 is dedicated to numerical experiments. The principles presented
here are tested in the implementation of a stochastic algorithm for the numerical
approximation of solutions of coagulation equations.

In coagulation phenomena, particles with size parameters x and y coalesce
at rate K(x, y) in order to form a particle of size x+ y. By this conservation
principle one arrives at the coagulation equations or Smoluchowski equations.
If the size parameter is integer-valued, for example in the case of polymerization,
where it equals the number of building blocks which form a polymer, these
equations take the form
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d

dt
u1(t) = −u1

∞∑
i=1

K(1, i)ui (1)

d

dt
uk(t) =

1
2

k−1∑
i=1

K(i, k − i)uiuk−i − uk
∞∑

i=1

K(k, i)ui k = 2, 3, . . .

where uk denotes the concentration of polymers of size k. The most usual
initial condition is the monodisperse initial data: u1(0) = 1, uk(0) = 0, k ≥ 2.

The total mass M(t) =
∑∞

k=1 ku
k(t) is formally conserved, since particles

are neither created, nor destroyed. However, for large coagulation rates, e.g.
K(i, j) ≥ (ij)q with q > 1

2 (see [Je98]), one can observe the so-called gelation
phenomenon, which means the decay of the total mass: M(t) < M(0) for
t > tgel (the gelation time). This is related to the formation in finite time of
infinitely large clusters, which are not described by the variables uk.

For further details concerning the properties of coagulation equations we
indicate the reference [BC90]. For the stochastic approach we recommend
the papers [No99], [Al99], [Wa03] and the references within. The stochastic
approach to the coagulation equations leads to existence results, as well as to
derivation of qualitative properties and numerical schemes.

In this paper we are interested in comparing the runtimes of different
implementation of the mass flow algorithm (see [EW01]) based on the same
number of particles. The conclusion is that the the algorithm obtained by
the optimized and periodically adapted grouping technique from Section 2
has a performance which is comparable to the best results provided by the
implementations which use a power-law scale for grouping the particles. One
should note that all implementations using the procedure introduced here have
built in this part which requests additional computing time, which is not present
in the cases where the group limits are defined apriori. However, under the
ansatz of the power-law scale, one has to perform several experiments in order
to determine the optimal value of the number of groups. These experiments
show also that the efficiency of the implementation depends strongly on the
choice of this parameter. The method of optimized grouping is however not
so sensitive for parameter variations (the frequency of recomputing) within
a meaningful range. This fact and its overall performance within the range
of different implementations with “manual” choice of the group structure,
speak for the various application possibilities of the method introduced here.
The implementation of these principles to a more complex model, namely the
coagulation-diffusion equations, is discussed in [Gu06]. It turns out that this
approach leads to good numerical results at an affordable computational effort.

2 The Grouping Principle

In this section we address the question of dividing a set E = {E1, . . . En}
of possible events with probabilities pi = P (Ei),

∑n
i=1 pi = 1 into groups,

in order to speed-up the computing of an event Ek according to the given
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distribution. The probabilities of the events, as well as their number, are
subject to changes. The goal is a simple and fast algorithm which leads to a
significant reduction of the expected number of operations, and not solving an
optimization problem at a possibly higher price. An additional restriction is
given by the fact that the events Ei are usually ordered in an array or in a list
in a natural way, and we want to keep track of this order property.

We consider thus the following grouping of the events into m groups:

{E1, . . . Ek1 | Ek1+1, . . . Ek2 | . . . | Ekm−1+1, . . . Ekm}.

For i = 1, . . .m denote the i-th group by Gi = {Eki−1+1, . . . Eki}, the number
of its elements by ni and its probability by Pi =

∑ki

j=ki−1+1 pj .
The sampling of an event Ek according to the given distribution, based on

a partition with a fixed number m of groups, is performed by the following
algorithm :

1. choose the group Gl according to the probability table {Pi}m
i=1

by the inverse transform method.
2. generate a uniformly distributed random variable U on (0, 1).
3. for the group Gl compute succesively the sums

∑k
j=kl−1+1 pj,

until the value for a given k exceeds PlU.
4. the chosen event will be Ek.

Given the set of groups G = {G1, . . . Gm}, an upper bound for the expected
number of additive operations needed to compute Ek is given by

MG = m+
m∑

i=1

Pini.

Our goal is to get MG as small as possible, by keeping at the same time things
as simple as possible.

The easiest case is for m = 2. We have to divide the set of events E
into two groups G = {G1, G2}, such that MG is minimal among all such
possible divisions. This is done in a straightforward manner, by considering all
possible partitions E = {E1, . . . Ek | Ek+1, . . . En} and choosing the one which
minimizes MG . We call this decomposition a binary partition of the original
group, which in this case is the set E of all events.

The scheme of the algorithm is now the following:

1. Suppose we have a group structure G = {G1, . . . Gm}.
For i = 1 to m do the following steps:
a) perform a binary partition of the group Gi.

b) if the replacing of Gi by the two new groups leads to a
smaller value of MG, then keep this binary partition,
otherwise reject it.
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c) if the binary partition of Gi was accepted, update the
value of MG.

2. If all binary partition steps were rejected, then STOP,
otherwise perform another cycle of similar operations with
the new group structure.

The simplicity of the formula forMG is crucial for the efficient computation
of the binary partitions of the groups, since we have to update its value while
checking each possible splitting of the current group in two consecutive parts.
The use of the majorants for the expected number of operations presented
above (and not the exact formulas) leads to simple recursions in updating the
value of MG .

Our next goal is to apply this principle at particle methods. An event
consists in the modification of the position of a few number of particles in the
state space. Consequently, the structure of events and their probabilities suffers
changes, which in most situations are only of local nature. Due to efficiency
reasons we do not perform a new division into groups after each transition
step, but add the new event to one of the existing groups, as described below
for the case of coagulation dynamics.

We compute the group structure anew only if for any of the groups, say
for Gi, the quantity Pini becomes α times larger than its initial value, given
at the moment of the previous computation of the group structure. α > 1 is
a parameter which one is free to choose, depending on the problem. If it is
too close to 1, the algorithm for grouping the events will eventually be used too
often, which slows down the global Monte Carlo algorithm. Choosing α too
large may allow increasing groups sizes and group weights, without reorganizing
them at the right moment. This leads again to a reduced efficiency of the
global algorithm. In our applications a reasonable choice for α turned out to
be in the range (2, 6).

3 Numerical Examples: Applications to Coagulation
Equations

In this section we will illustrate the application of the principle of group
optimization at the mass flow algorithm for simulating coagulation dynamics.
We consider N numerical particles located in the size space, which is the
interval (0,∞). The presence of ki particles at the location i means that
the total mass of i-mers in the system is ki/N . In the case of multiplicative
coagulation kernels, i.e. for K(i, j) = r(i)r(j), the mass flow algorithm needs to
simulate independently the following events: “the first coagulating particle has
size i” with probability proportional to r(i)ki/N and “the second coagulating
particle has size j” with probability proportional to r(j)kj/(Nj). Then a
particle at size i is removed and a new particle at size i+ j is added.
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Note that this definition of events does not distinguish between the particles
located at the same size, which brings another computational advantage
over treating each particle individually. A smaller support leads to faster
computations of the possible events and this is of advantage especially when
one starts with monodisperse initial conditions, i.e. only with monomers.
Figure 1 shows the time evolution of the support size of the empirical measure
for a gelling and a non-gelling kernel. We note that in the case of the gelling
kernel the maximal value is reached essentially at the gelation time (in this
case t = 1) and formulate this as a conjecture which would be interesting to
prove.

This approach leads straightforward to a data structure with a variable
number of elements and to the use of the inverse transform method in sampling
from such data structures. The number of events is continuously changing, but
between two updates of the group structure the number of groups remains
fixed. The data is organized as a doubly linked list. One element of the list
contains the following fields: the size, the mass concentrated at the respective
size, a pointer to the previous element, which corresponds to the next smallest
particle size where we have mass, and a pointer to the next element, which
corresponds to the next largest particle size where we have mass. Problems
like: handling the head or the end of the list, removing a particle from a given
size, removing an element form the list if the mass becomes 0, adding mass at
an existing particle size or adding a new element to the list, are treated in a
straightforward manner.

Since we have to compute two types of events, according to different
distributions, we will need two group structures. This is implemented by
considering two new lists or arrays, which contain only the first element from
each group. We introduce thus two additional fields in our data type, which
indicate the group to which the particles of that size belong, one field for each
group structure. Since the original lists are ordered by the increasing particle
size, the algorithm assigns a new generated element to one of the existing
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kernels K(i, j) = ij (left) and K(i, j) = (ij)0.5 (right)
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groups in a natural way. A group consists of all elements with values of the
size field larger or equal than that of the first element of the group (which
remains fixed as long as we have particles located there), and less than that of
the first element of the next group. Note that by the possibility of removing
elements form the list (if the mass becomes 0), the first element of a group
can be modified during the execution of the program, or groups may become
empty. If in addition to coagulation we want to consider other possible events,
for example fragmentation or dissapearance of particles, the number of group
structures has to be increased accordingly.

3.1 Comparison of Computing Times

In this section we present a comparison of the CPU times for different imple-
mentations of the MFA which use various sampling techniques:

1. Method: inverse transform with optimized grouping
2. Method: inverse transform with grouping according to a power-law scale

of the particle sizes
3. Method: acceptance-rejection with grouping according to a power-law scale

of the particle sizes

We compare the method which uses the optimzed grouping described
in the previous section with the inverse transform and the acceptance-
rejection method which group together particles with sizes in the intervals
[b(i−1)/m

N , b
i/M
N ), where bN denotes the maximal particle size. In the mass flow

algorithm with N numerical particles one usually takes bN = 100N , while
particles beyond this size are eliminated from the system and account for the
gel phase. The parameter m gives therefore the maximal possible number of
groups, the actual number being determined by the structure of the particle
spectrum. The optimal value of m has to be determined experimentally for
every coagulation kernel and for each number N of particles. It can be observed
that the value of this parameter has a strong influence on the efficiency of the
computation. In contrast to this, the method which uses optimized grouping
computes the group structure based on the actual particle configuration. More-
over, it turns out to be more stable regarding the variations of the parameter
α, which controls the frequency of the recomputation of the optimal group
structure).

All computations were performed on a SUN workstation with UltraSPARC
III processors at 900Mhz (using one processor). This performance corresponds
to that of a mid-range PC.

Figure 2 presents the CPU times for different implementations of the MFA
which use N = 105 particles for the mass-conserving kernel K(i, j) = (ij)0.5.

Compare first the different variants of the inverse transform method: the
one which uses optimized grouping for two different values of the parameter
α, with the implementation which considers grouping based on the power-law
scale for two different paramteters m. The choice m = 1220 is determined
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Fig. 2. CPU times for the mass-conserving kernel K(i, j) = (ij)0.5

experimentally to be (close to) the optimal value. Taking this as a reference, we
note that the method which computes adaptively the group structure reaches
about 85% of the performance (speed) of the fastest implementation based
on the inverse transform. A variation of the parameter α which determines
the frequency of recomputing the group structure (within a meaningful range)
has no significant influence on the performance. However, if we take the value
m = 520, which lies again within a meaningful range for it, we remark a
decrease in the efficiency of the implementation to about 60% of the best value.

Compare now the optimized grouping method with the acceptance-rejection
method for different values of m. We note that on time intervals where the
support size is not very large, the inverse transform method is significantly faster
than all implementations of the acceptance-rejection technique. Nevertheless,
on the time interval t ∈ [15, 28], the increased support size of the mass
spectrum (beween 0.5 ·N and 0.8 ·N , see also Fig. 1) reduces the efficiency of
the implementation based on the inverse-transform method. After the support
sizes decreases below 0.5 ·N , the inverse transform method becomes again more
efficient. On the time interval [0, 35] its overall performance is of about 95% of
that of the fastest implementation of the acceptance-rejection method, which
is delivered by the choice m = 60. Nevertheless, for m = 120 the performance
decreases to 72% of it, while for m = 320 even to 38%.

Let us conclude these experiments in the case K(i, j) = (ij)0.5 with some
comments. It is known that for this kernel we have mass conservation. However,
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we observe numerical gelation at the moment t = 21. For an increasing number
of particles in the simulation, this numerical gelation time will increase too
and in the limit it will converge to infinity. From the point of view of studying
the coagulation dynamics, the computations beyond this time are therefore not
meaningful. Our purpose here is however to test the performance of different
impelementations of stochastic particle methods. We consider this case as an
example of an extreme situation, in which the support size of the empirical
measure becomes very large and where the inverse transform method, which
relies heavily on the reduced support size, reaches its limits. Even in this
situation, its performance is close to that of the best implementation based
on the acceptance-rejection technique. The main advantage of the method
consists in the fact that we do not have to perform a series of numerical tests in
order to determine the optimal parameter values. As the experiments indicate,
the efficiency of the implementations (based either on inverse transform or
acceptance-rejection) which use the power-law scale for grouping the particles
depends strongly on the choice of the parameter which determines the number
of groups.

Figure 3 presents the CPU times for different implementations of the
MFA which use N = 105 particles for the gelling kernel K(i, j) = (ij)0.7.
The behaviour is similar as before: the optimized method has a performance
of about 82% from that delivered by the best (experimental) choice of the
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parameter m of the power-law scale. Nevertheless, other values of m may lead
to a decrease of the performance to about 45% or even below.

The behaviour of the CPU times for the kernel K(i, j) = ij is illustrated in
Figure 4. Taking a look at the support size in Figure 1, we note that in contrast
to the case K(i, j) = (ij)0.5 it is much smaller, altough the total number of
particles is in both cases N = 105. As a consequence, the methods using the
inverse transform (on the reduced support with a variable size) are generally
much faster than the acceptance-rejection methods which have to deal with
every individual particle. Comparing within the former class of methods, we
note that the performance (speed) of the method with optimized grouping
reaches in this case 92% of that of the reference implementation which groups
particles according to a power-law scale for m = 60. Taking m = 320 we
observe that the speed of the simulation decreases to about 45%, while the
implementations which use the acceptance-rejection method (and individual
particles) are even less efficient.

To conclude: these numerical simulations show that the algorithm based
on the optimized group structure, which is periodically recomputed, delivers
a performance which is comparable to that of the best choice (determined
experimentally) of a grouping of the particles according to a power-law scale.
It can be therefore employed to more complex simulations, where the heuristic
choice of the optimal parameters cannot be afforded.
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Summary. Many experiments in computer graphics imply that the average quality
of quasi-Monte Carlo integro-approximation is improved as the minimal distance
of the point set grows. While the definition of (t, m, s)-nets in base b guarantees
extensive stratification properties, which are best for t = 0, sampling points can still
lie arbitrarily close together. We remove this degree of freedom, report results of two
computer searches for (0, m, 2)-nets in base 2 with maximized minimum distance,
and present an inferred construction for general m. The findings are especially useful
in computer graphics and, unexpectedly, some (0, m, 2)-nets with the best minimum
distance properties cannot be generated in the classical way using generator matrices.

1 Introduction

Image synthesis can be considered as an integro-approximation problem [Kel06]

g(y) =
∫

[0,1)s

f(x, y)dx ≈ 1
n

n−1∑
i=0

f(xi, y), (1)

where g is the image function with pixel coordinates y on the screen. One
numerical method to compute approximations is the method of dependent
tests, where one set Pn := {x0, . . . , xn−1} of points from the unit cube [0, 1)s

is used to simultaneously estimate all averages g(y). The accumulation buffer
[HA90] for realistic image synthesis in computer graphics is a very popular
realization of that scheme. In this application the image plane is tiled by one
sampling point set Pn as illustrated in Figure 2.
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2 (t, m, s)-Nets in Base 2

For the scope of this paper, only (t,m, s)-nets (for an extensive reference see
[Nie92, Ch. 4]) in base 2 up to s = 3 are considered. While this may seem like
a strong restriction, improving these patterns directly results in considerable
performance gains in industrial rendering applications [HA90, CCC87, Kel03].
The considerations in base 2 go back to Sobol’s LPτ -nets and -sequences
[Sob67]. This basic concept was generalized by Niederreiter [Nie92], which for
base 2 is given by

Definition 1. For two integers 0 ≤ t ≤ m, a finite point set of 2m

s-dimensional points is a (t,m, s)-net in base 2, if every elementary inter-
val of size λs(E) = 2t−m contains exactly 2t points.

The elementary intervals in base 2 are specified in

Definition 2. For lj ∈ N0 and integers 0 ≤ aj < 2lj the elementary interval
is

E :=
s∏

j=1

[
aj

2lj
,
aj + 1

2lj

)
⊆ [0, 1)s.

The parameter t controls the stratification properties of the net, which are
best for t = 0, because then every elementary interval contains exactly one
point (see Figure 1). Thus the pattern is both a Latin hypercube sample and
stratified in the sense of [CPC84]. For base 2, (0,m, s)-nets can only exist up
to dimension s = 3 [Nie92, Cor. 4.21].

2.1 Matrix-Generated (t, m, s)-Nets

The classical way to generate (t,m, s)-nets is the use of generator matrices. In
the following we review the efficient generation of these nets and a method for
checking whether t = 0.
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Fig. 1. The quality parameter t = 0 ensures extensive stratification: There is exactly
one point inside each elementary interval of volume 2−4 of this (0, 4, 2)-net in base 2.
There are exactly 4 + 1 partitions into 24 elementary intervals. The leftmost and
rightmost kind of elementary intervals constitute the Latin hypercube property.



(t, m, s)-Nets and Maximized Minimum Distance 399

Definition 3. An s-dimensional point set Pn := {x0, . . . , xn−1} with n = 2m

and xi := (x(1)
i , . . . , x

(s)
i ) ∈ [0, 1)s is called C1, . . . , Cs-generated point set in

base 2 and dimension s, if C1, . . . , Cs ∈ Fm×m
2 with

x
(j)
i =

(
1
2

· · · 1
2m

)⎡⎢⎣Cj

⎛⎜⎝ d0(i)
...

dm−1(i)

⎞⎟⎠
⎤⎥⎦ , where i =

m−1∑
k=0

dk(i)2k

and the matrix-vector product in brackets is performed in F2. The matrices Cj

for j = 1, . . . , s are called the generators of the point set Pn, more precisely,
the matrix Cj is the generator of the j-th coordinate of the point set.

Computations in base 2 allow for exact representation of the coordinates in
the IEEE floating point standard, as long as the mantissa holds enough bits (23
in the case of the 4-byte float). Interpreting unsigned integers as bit vectors,
i.e. elements of F32

2 with F2 = Z/2Z, allows one to use standard bitwise
operations for vector operations on F32

2 . The matrix-vector multiplication
Cj (d0(i), . . . , dm−1(i)), which has to be performed in F2, then becomes very
efficient. Exploiting this simple kind of parallelism results in the following
algorithm in C++, which uses at most O(m) operations to compute x(j)

i . It
relies on the fact that addition corresponds to XOR in F2.

double x_j(unsigned int i)
{

unsigned int result = 0;

for (unsigned int k = 0; i; i >>= 1, k++)
if(i & 1)
// vector addition of (k+1)-th leftmost column of C_j
result ^= C_j[k];

return (double) result / (double) (1ULL << m);
}

Whether or not a given set of generator matrices produces a net with t = 0,
can be checked using the following

Theorem 1 (see [Nie92, Thm. 4.28] and [LP01, Def. 1]). Let Pn be a
C1, . . . , Cs-generated n = 2m-point set in base 2 and dimension s, then Pn is
a (0,m, s)-net in base 2 if for all d = (d1, . . . , ds)T ∈ Ns

0 with |d| = m the
following holds:

det
(
C(∑ s

j=1 dj)
)

�= 0,
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where

C(
∑s

j=1 dj) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
1,1 . . . c1

1,m

...
c1

d1,1 . . . c1
d1,m

...
cs
1,1 . . . cs

1,m

...
cs

ds,1 . . . cs
ds,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Fm×m

2 ,

with Cj = (cjk,l)
m
k,l=1 for j = 1, . . . , s. This means C(∑ s

j=1 dj) is an m × m
matrix consisting of the first dj rows of the generator Cj for all j = 1, . . . , s.

As a consequence of Theorem 1, all generator matrices C1, . . . , Cs must
be regular. Remark (iv) in [LP01, p. 3] states that the C1, . . . , Cs-generated
(0,m, s)-net in base 2 and the net generated by C1D, . . . , CsD, for any D ∈
GLm(F2) contain exactly the same points, where GLm(F2) denotes the general
linear group of matrices over F2 of dimension m ×m. This means that the
above mentioned nets are identical except for the numbering of their points.
Using this remark we can fix one matrix of a matrix-generated (0,m, s)-net in
base 2 by choosing

C1 :=

⎛⎜⎝0 1

. . .

1 0

⎞⎟⎠ (2)

which results in the first coordinate x(1)
i = i

2m .
For the special case, where s = 2 and C1 as defined in (2), Theorem 1 then

results in the following test for t = 0:

det

⎛⎜⎝ c
2
1,1 . . . c

2
1,k

...
c2k,1 . . . c

2
k,k

⎞⎟⎠
︸ ︷︷ ︸

=:Sk

�= 0 ∀k ∈ {1, . . . ,m} ⇒ C1, C2 generate a (0,m, 2)-net,

(3)
because all possible vectors d as stated in the theorem are considered.

2.2 Permutation-Generated (t, m, s)-Nets

Definition 1 states that a (t,m, s)-net in base 2 is a Latin hypercube sample.
This means that for all (t,m, s)-nets in base 2, the integer parts of the coordi-
nates multiplied by 2m must be a permutation of the numbers given by the
integer parts of the first coordinates x(1)

i multiplied by 2m.
The (0,m, 2)-nets in base 2 given by xi = 1

2m (i, σ(i)), where σ is a permu-
tation of the numbers {0, . . . , 2m − 1}, can be enumerated by using a modified



(t, m, s)-Nets and Maximized Minimum Distance 401

version of the classic backtracking algorithm to solve the n-Rooks problem
[Rol05] equipped with an additional test. This test checks whether the points
fulfill the stratification conditions imposed by the structure of the elementary
intervals (see Figure 1). While this seems to be a complicated test, it can in
fact be realized with only a few lines of code in C, if the base is 2:

for (k = 1; k < m; k++)
{

// combine k bits of i and m-k bits of j to form index
idx = (i >> (m - k)) + (j & (0xFFFFFFFF << k));

if(elementaryInterval[k][idx]++) // already one point there?
break; // t > 0 !

}

The code fragment tests whether a point given by the coordinates i and
j = σ(i) falls into an elementary interval that is already taken. In that case the
points cannot be a (0,m, 2)-net in base 2. There are exactly (m + 1) kinds of
each 2m elementary intervals (see Figure 1). The first and last kind of elemen-
tary intervals constitute the Latin hypercube property, which does not need to
be checked, because the points are determined by a permutation. Therefore the
variable k iterates from 1 to m− 1. The array elementaryInterval counts
how many points are in the k-th kind of elementary interval addressed by the
index idx, which is efficiently computed by using k bits of the first coordinate
i and m− k bits of the second coordinate j = σ(i).

3 Low Discrepancy and Minimum Distance

Although (0,m, s)-nets have exhaustive stratification properties (see Defin-
tion 1) that guarantee low discrepancy [Nie92], these properties do not avoid
that points can lie arbitrarily close together across boundaries of elementary
intervals.

Maximizing the minimum distance is a basic concept in nature [Yel83] and
has been applied extensively in computer graphics [HA90, Gla95]. Minimum
distance has been proposed as a measure for uniformity in [Pan04, Kel06], too.
In addition it has been observed that scrambling [Owe95] can change minimum
distance [Kel04] and that in fact points with maximized minimum distance
perform better on the average. We therefore perform an exhaustive computer
search for (0,m, 2)-nets in base 2 with maximized minimum distance.

The minimum distance

dmin(Pn) := min
0≤i<j<n

‖xi − xj‖

of a point set Pn = {x0, . . . , xn−1} is the smallest distance between any two
distinct points of this set. However, the choice of the norm ‖·‖ is important.
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Hammersley Larcher-Pillichshammer new construction

Fig. 2. Three examples of 3 × 3 periodically tiled (0, 6, 2)-nets in base 2.

Choosing the Euclidean distance ‖x− y‖ =
√∑s

i=1|xi − yi|2 is not sufficient
for our purposes, as for many graphics applications it is beneficial to be able
to tile the same net periodically as can be seen in Figure 2 [KH01]. As we do
not want the minimum distance to decrease for such a point set consisting of
shifted copies of Pn we use the toroidal distance:

Definition 4. For two points x = (x1, . . . , xs) ∈ [0, 1)s and y = (y1, . . . , ys) ∈
[0, 1)s their toroidal distance is defined as

‖x− y‖T :=

√√√√ s∑
i=1

(min{|xi − yi|, 1 − |xi − yi|})2.

Randomization

Randomized quasi-Monte Carlo point sets can be used to reduce the variance
of Monte Carlo estimators and allow for an unbiased error estimate on the
class of square-integrable functions [Owe98]. While random scrambling [Owe95,
FK02, KK02] does not alter the parameter t, it can decrease the minimum
distance of a (t,m, s)-net dramatically [Kel04].

On the contrary a random shift on the unit torus, i.e. a Cranley-Patterson
rotation [CP76], preserves minimum distance even for periodically tiled nets,
which perfectly matches our optimization goal. While it is often argued that
the parameter t can be affected by shifting, it also can be argued that just the
integrand is shifted leaving the point set structure untouched.

3.1 Exhaustive Matrix Computer Search

Following Section 2.1, we consider matrix-generated (0,m, 2)-nets. As the
search space of C2 generator matrices is exponentially growing in m and
the limiting factor for the performance is the minimum distance evaluation,
we only want to do these calculations for matrices which fulfill the t = 0
property. To efficiently enumerate such matrices, we exploit the conclusions of
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Table 1. Minimum distance dmin of (0, m, 2)-nets in base 2 for Hammersley, Larcher-
Pillichshammer and the new construction.

m Hammersley Larcher-Pillichshammer new construction

2
√

2/22 ≈ 0.35355339
√

2/22 ≈ 0.35355339
√

2/22 ≈ 0.35355339

3
√

2/23 ≈ 0.17677670
√

5/23 ≈ 0.27950850
√

8/23 ≈ 0.35355339

4
√

2/24 ≈ 0.08838835
√

8/24 ≈ 0.17677670
√

13/24 ≈ 0.22534695

5
√

2/25 ≈ 0.04419417
√

18/25 ≈ 0.13258252
√

29/25 ≈ 0.16828640

6
√

2/26 ≈ 0.02209709
√

32/26 ≈ 0.08838835
√

52/26 ≈ 0.11267348

7
√

2/27 ≈ 0.01104854
√

72/27 ≈ 0.06629126
√

100/27 ≈ 0.07812500

8
√

2/28 ≈ 0.00552427
√

128/28 ≈ 0.04419417
√

208/28 ≈ 0.05633674

9
√

2/29 ≈ 0.00276214
√

265/29 ≈ 0.03179457
√

400/29 ≈ 0.03906250

10
√

2/210 ≈ 0.00138107
√

512/210 ≈ 0.02209709
√

832/210 ≈ 0.02816837

11
√

2/211 ≈ 0.00069053
√

1060/211 ≈ 0.01589729
√

1600/211 ≈ 0.01953125

12
√

2/212 ≈ 0.00034527
√

2048/212 ≈ 0.01104854
√

3328/212 ≈ 0.01408418

13
√

2/213 ≈ 0.00017263
√

4153/213 ≈ 0.00786667
√

6385/213 ≈ 0.00975417

14
√

2/214 ≈ 0.00008632
√

8192/214 ≈ 0.00552427
√

13312/214 ≈ 0.00704209

15
√

2/215 ≈ 0.00004316
√

16612/215 ≈ 0.00393334
√

25313/215 ≈ 0.00485536

16
√

2/216 ≈ 0.00002158
√

32768/216 ≈ 0.00276214
√

53248/216 ≈ 0.00352105

Table 2. Maximum obtainable minimum distance dmin for matrix-generated (t, m, 2)-
nets with t ≥ 0. Requiring t = 0 does not always allow for obtaining the maximum.

t 0 0 0, 1 0, 1 1, 2, 3

m 2 3 4 5 6

dmin

√
2/22 ≈ √

8/23 ≈ √
13/24 ≈ √

29/25 ≈ √
65/26 ≈

0.35355339 0.35355339 0.22534695 0.16828640 0.12597278

Theorem 1 that are sufficient to ensure only one point per elementary interval.
The matrices are enumerated using a backtracking algorithm that first checks,
whether det(Sk) �= 0 (see Equation (3)) and in that case tries to extend the
matrix Sk by a right column and a bottom row to form Sk+1 (see Figure 3).
If such an extension cannot be found with det(Sk+1) �= 0, the next Sk will be
explored according to the backtracking search principle.

To compute the determinant, we apply the standard Gauss elimination
scheme. The implementation exploits that permuting matrix rows does not
change the determinant in F2. It exits on the first resulting zero on the diagonal

⎛⎜⎜⎜⎜⎝
1

⎞⎟⎟⎟⎟⎠
Fig. 3. Iterative construction of C2 for a (0, m, 2)-net by sequences of Sk.
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Fig. 4. Minimum distance dmin of a Hammersley-net, a Larcher-Pillichshammer-net
and the new construction.

Hammersley Larcher-Pillichshammer new construction

Fig. 5. Squared amplitudes of the Fourier transformation of the Hammersley-,
Larcher-Pillichshammer- and the newly constructed (0, 10, 2)-net in base 2 (inverted,
higher values are darker). A larger region of low frequencies gets attenuated as the
minimum distance increases (similar to the blue-noise spectrum [Yel83]). This region
is largest for the new construction and means that low frequencies are reproduced
more precisely. Like the Larcher-Pillichshammer-net, the new construction is much
more isotropic as compared to the Hammersley-net.

signaling a zero determinant. Using 32-bit integers together with the bitwise
XOR operation to perform vector addition in F32

2 , the algorithm runs in O(k2).
To further improve performance, we found it beneficial to use vector operations
of modern computers (i.e. the SSE2 instruction set) for some values of m. A
non-zero determinant implies t = 0.
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Next, to calculate the minimum distance all points are enumerated ac-
cording to the gray code numbering [PTVF92]. Computing square distances
multiplied by 2m allows for using integer arithmetic and guarantees to avoid
any floating point arithmetic problem. The omission of the division by 2m in
the first code fragment (see Section 2.1) then results in integer coordinates.

For the efficient minimum distance computation the resulting points are
sorted into a regular grid. This can be done very efficiently if m is even,
because then one kind of elementary intervals must be squares forming a
regular grid (see the middle plot in Figure 1). As mentioned before exactly one
point will fall into each grid cell. Assigning a grid cell to a point is done by
simply omitting the least

⌈
m
2

⌉
significant bits of the point coordinates. To find

the minimum distance of all points to one fixed point it is then sufficient to
examine the eight points in the neighboring cells. If m is odd, we use a square
regular grid with cells twice the area of the elementary intervals. So in this
case there are two points per cell which gives the complexity of the algorithm
a worse constant than in the even case. It still runs in O(n) where n = 2m is
the number of points.

Search Results

For m ≤ 6 Figures 6–10 show the (0,m, 2)-nets in base 2 along with the
generator matrix C2 for the second coordinate, where the minimum distance
between the points on the torus is maximal. Note that C1 always is the flipped
unit matrix as defined in Equation (2). Figure 11 considers the case m = 7,
where only a fraction of the search space could be explored and thus there
could exist generator matrices resulting in a larger minimum distance.

By abandoning the t = 0 constraint, the stratification properties of (0,m, s)-
nets are lost, but the minimum distance of resulting nets can be increased even
further (see Table 2). Instead of testing for t = 0, now the quality parameter t
is computed following the algorithm outlined in [PS01] after determining the
minimum distance of the point set. The size O

(
2m2
)

of the search space is
even larger, but a complete search is still feasible up to m ≤ 6.

3.2 Restricted Computer Search

Our exhaustive matrix search is only computationally feasible up to m ≤ 6.
However, the search results allow one to infer a submatrix structure:

for even m :

(
1 1
0 1

)
�

⎛⎜⎜⎝
1 0 1 1
1 1 1 1
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ �

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 1 1 0
0 1 1 1 1 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ � . . . , (4)
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�

�

�

�

(
1 0
0 1

) �

�

�

�

(
1 1
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Fig. 6. All matrix-generated (0, 2, 2)-nets in base 2 with maximal minimum distance
dmin =

√
2/22 ≈ 0.35355339.
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⎛⎝ 1 0 1
0 1 0
1 0 0
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Fig. 7. All matrix-generated (0, 3, 2)-nets in base 2 with maximal minimum distance
dmin =

√
8/23 ≈ 0.35355339.
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Fig. 8. All matrix-generated (0, 4, 2)-nets in base 2 with maximal minimum distance
dmin =

√
13/24 ≈ 0.22534695.

for odd m :

⎛⎝1 0 1
0 1 0
1 0 0

⎞⎠ �

⎛⎜⎜⎜⎜⎝
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 0 0
1 1 0 0 0

⎞⎟⎟⎟⎟⎠ � . . . . (5)
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⎞⎟⎟⎟⎟⎠
Fig. 9. All matrix-generated (0, 5, 2)-nets in base 2 with maximal minimum distance
dmin =

√
29/25 ≈ 0.16828640.

This observation motivated our approach to restrict the search to reduce the
growth of the search space to order O(2m). For this purpose, we define the
following matrix structure.

We write a matrix C ∈ Fm×m
2 with m ≥ 4 as matrix I = (ik,l)m−2

k,l=1

and vectors u = (u1 · · ·um), r = (r1, . . . , rm−2),b = (b1 · · · bm) and l =
(l1, . . . , lm−2) in the following way:

C =

⎛⎜⎜⎜⎜⎜⎝
u1 u2 . . . um−1 um

l1 i1,1 . . . i1,m−2 r1
...

...
. . .

...
...

lm−2 im−2,1 . . . im−2,m−2 rm−2

b1 b2 . . . bm−1 bm

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎣ u
l I r
b

⎤⎦ .

This way we are able to continue the matrix expansion scheme (4) and (5) as
follows:

C
(m)
2 =

⎡⎣ u
l C(m−2)

2 r
b

⎤⎦ .
Search Results

Our iterative search algorithm takes an (m− 2)× (m− 2)-matrix and seeks for
the best u, r,b, l vectors by maximizing the minimum distance of the resulting
(0,m, 2)-net. The resulting generator matrices for m = 7, 8, 9 are given in
Figure 12.

However, this iterative approach does not yield generator matrices that ob-
tain the maximal possible minimum distance, which already becomes apparent
for m = 7. The largest minimum distance of the generator matrix that was
found by the iterative search is

√
98/27 whereas the incomplete (see previous

section) full matrix search already revealed a matrix with minimum distance√
100/27 (see Figure 11).
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Fig. 10. All matrix-generated (0, 6, 2)-nets in base 2 with maximal minimum distance
dmin =

√
52/26 ≈ 0.11267348.



(t, m, s)-Nets and Maximized Minimum Distance 409

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 1 1 0 1
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 1 1 0 1 0
0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0 0
0 1 0 1 1 0 1
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 1 1 0 1 0
0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1
0 1 0 1 1 0 1
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 1 1 0 1 0
0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0 1
0 1 0 1 1 0 1
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 1 1 0 1 0
0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

C
(7)
2

Fig. 11. (0, 7, 2)-nets in base 2 with minimum distance dmin =
√

100/27 = 0.078125
(possibly not the maximum).
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m = 7 m = 8 m = 9

dmin =
√

98/27 dmin =
√

208/28 dmin =
√

392/29

≈ 0.07733980 ≈ 0.05633674 ≈ 0.03866990

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 12. Partial results of the restricted search for (0, m, 2)-nets in base 2.
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3.3 Construction Inferred from Computer Search

For m ≥ 8 we suggest the generator matrices⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0
. . .

1
... C

(6)
2

...

1

. . . 0

0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0
. . .

1
... C

(7)
2

...

1

. . . 0

0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for even m ≥ 8 for odd m ≥ 9,

where C(6)
2 and C(7)

2 are the matrices for m = 6, 7 given in Figure 10 and
Figure 11. The matrices extended by ones on the diagonals still fulfill the
conditions of Theorem 1. Hence the resulting nets are (0,m, 2)-nets in base 2
for m ≥ 8.

We would like to note that in general there are many matrices of size
(m − 2) × (m − 2) with nets having the same minimum distance. However,
when using these matrices for the inferred construction the resulting nets might
have different minimum distances. The restricted search from the previous
Section 3.2 was only computationally feasible up to m = 9, but did not find
better results.

Resulting New Construction and Numerical Results

Combining the findings of the previous sections, we propose to use the results
from

• the full matrix search for m ≤ 7,
• and the inferred construction for m ≥ 8.

The points generated by these matrices were compared to the Larcher-
Pillichshammer- (for an implementation see [KK02]) and the Hammersley-net
(see Table 1 and Figure 4). It turned out that the new construction performed
better than the Larcher-Pillichshammer-net with respect to the toroidal mini-
mum distance. In fact the Hammersley-net always generates the worst possible
minimum distance of

√
2/2m for our constructions. This distance is found

between the first and the last point of the net. The spectral properties of these
nets can be visually compared in Figure 5.

3.4 Exhaustive Permutation Search

In order to verify the results, we searched the space of the permutation-
generated (0,m, 2)-nets in base 2. For m < 5 the search produced nets with
the same minimum distance as the new construction (see Table 1). However,
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for m = 5 points were found which cannot be generated using matrices. These
also exhibited a better minimum distance (

√
32/25 ≈ 0.17677670) compared

to all matrix-generated nets (the maximum is
√

29/25 ≈ 0.16828640 for the
new construction). Unfortunately, for m > 5 this space is way too large for an
exhaustive search.

4 Conclusion

By maximizing the minimum distance of a point set, we removed a degree of
freedom from the definition of (t,m, s)-nets. Although an exhaustive computer
search is infeasible, two interesting facts could be revealed by examples:

1. Nets with a quality parameter t > 0 can obtain a minimum distance larger
than those with t = 0.

2. Permutation-generated nets can obtain a larger minimum distance than
matrix-generated nets.

We will continue our research in this direction and search for (0,m, 3)-nets in
base 2 with maximized minimum distance. We plan to investigate the practical
benefits of the new concepts in the setting of computer graphics, namely the
realistic simulation of light transport along the lines of [CCC87, KK02, WK07].
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Summary. We propose and analyze a quasi-Monte Carlo (QMC) method for sim-
ulating a discrete-time Markov chain on a discrete state space of dimension s ≥ 1.
Several paths of the chain are simulated in parallel and reordered at each step, using
a multidimensional matching between the QMC points and the copies of the chains.
This method generalizes a technique proposed previously for the case where s = 1. We
provide a convergence result when the number N of simulated paths increases toward
infinity. Finally, we present the results of some numerical experiments showing that
our QMC algorithm converges faster as a function of N , at least in some situations,
than the corresponding Monte Carlo (MC) method.

1 Introduction

Markov chains are used in many fields such as physics, queueing theory,
telecommunications, option pricing, etc. Frequently, we want to estimate the
expectation of a cost function that depends on the sample path of the chain
over several steps. In the simplest cases, if the chain has a small (finite) state
space, we may use matrix equations to compute the state distribution at each
step of the chain, and compute the expected cost from that. But very often,
the state space is too large to allow such exact computations, and the only
viable method to estimate the expected cost is MC simulation. Despite the
versatility of MC methods, one drawback is their slow convergence: Based on
the central limit theorem, their convergence rate is roughly of O(N−1/2) if N
denotes the number of copies of the chain that are simulated.
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One possible approach to accelerate the computation is to replace the
random numbers by low discrepancy sequences, i.e., quasi-random numbers.
This is the general idea of QMC methods, which outperform MC methods
in some cases, but also have limitations. In general, the expected cost can
be written as an integral over the s′-dimensional unit hypercube, where s′

represents the total number of U(0, 1) (uniform over (0,1)) random variates
needed to realize a sample path. The classical QMC method would take an
s′-dimensional low-discrepancy point set of cardinality N , use each point to
simulate one copy of the chain, and estimate the expected cost by the average
over these N copies. But this s′ is usually very large, so we end up with an
integration problem in a very large number of dimensions, in which case QMC
is typically not very effective.

A QMC algorithm for the simulation of Markov chains with a one-
dimensional state space was studied in [LT04]. Randomized variants of this
method, and an extension to multidimensional state spaces, were proposed and
examined in [LLT07]. The multidimensional extension of [LLT07] essentially
maps the state space to a one-dimensional set by defining a sorting function
that assigns a real number to each state. The choice of sorting function is
crucial for the performance of the algorithm, and finding a good function
can be difficult in general. Moreover, [LLT07] provide convergence proofs and
variance bounds only for the case of a unidimensional state space.

In the present paper, we propose a different generalization of the QMC
algorithm of [LT04], for Markov chains with multidimensional state spaces.
This algorithm employs a low-discrepancy sequence of points with the property
that each subsequence of length N starting at an index which is a multiple
of N in the sequence is evenly distributed in a sense to be specified. At each
step, it uses one such subsequence to advance the N chains by one step, after
matching the chains with the points in a clever way. This matching is done by
sorting both the chains and the points according to their successive coordinates.
This multidimensional sort ensures theoretical convergence and often achieves
better accuracy than one based on a real-valued sorting function, when N
increases, because it preserves the relative proximities of the points in the
space.

The remainder of the paper is organized as follows. In Section 2, we present
the algorithm, which simulates the N sample paths of the chain in parallel
using a low-discrepancy sequence. In Section 3 we adapt the basic concepts
of QMC methods to the present study and we recall some definitions and
properties related to the variation of multi-dimensional sequences. In Section 4,
under a certain assumption on the transition matrix, we prove a convergence
bound on the worst-case error for our method. This assumption could certainly
be relaxed, at the expense of more complicated notation in the convergence
proof. Finally, in Section 5, we present the results of numerical experiments
that compare our method with standard MC. The convergence rate observed
empirically for our method is much better than for MC and also much better
than what is guaranteed by the worst-case bound.
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2 The method

We consider a time-homogeneous discrete-time Markov chain {Xn, n ∈ N} with
state space E of the form E :=

∏s
r=1Er, where Er ⊆ Z. The initial state X0

has distribution λ0, so P[X0 = i] = λ0{i} for each i = (i1, . . . , is) ∈ E, and the
transition matrix is P = (p(i, j) : i, j ∈ E), where p(i, j) = P[Xn = j | Xn−1 = i].
The probability that the chain is in state i after n steps is

λn{i} = P[Xn = i] = λ0P
n{i}

for all i ∈ E. Our aim is to estimate the expected cost E[w(Xn)] at step n, for
some bounded function w : E → [0,∞). This function is also called a sequence
with multivariate indices (the indices are the elements of E).

As an intermediate step for estimating this expectation, we will construct
an approximation of λn for each n. Let δi be the row vector of unit mass at
i = (i1, . . . , is) defined, for all j = (j1, . . . , js) ∈ E, by

δi{j} =
{

1 if i1 = j1, . . . , is = js,
0 otherwise.

We denote by δiw the real number w(i). Our approximation of λn will be an
empirical distribution, of the form

λ̂n :=
1
N

∑
0≤�<N

δin�

for some integer N and for judiciously selected states in0 , . . . , i
n
N−1 ∈ E. Our

aim is to have λ̂n ≈ λn in the sense that the point set {in0 , . . . , inN−1} has a
small star λn-discrepancy; this will be defined more precisely in Section 3.

A simple way of obtaining these N states is the MC method, which simulates
N independent realizations (or copies) of the chain, and takes the corresponding
states at step n. For each copy, if the chain is in state Xn−1 = i before step n,
we simply generate the next state Xn so that P[Xn = j] = p(i, j). The usual
way of implementing this is as follows. For each i ∈ E, partition the interval
I = [0, 1) in subintervals Ii,j := [mi,j,m

′
i,j) where m′

i,j = mi,j + p(i, j), for all
j ∈ Ei := {j ∈ E : p(i, j) > 0}. For any y ∈ I, let j(i, y) denote the unique
element j ∈ Ei such that y ∈ Ii,j. At step n, if Xn−1 = i, the MC method
generates a U(0, 1) random variate Un and puts Xn = j(i, Un).

The aim of our QMC approximation is essentially to obtain a more represen-
tative set of states in0 , . . . , i

n
N−1 at each step. Before defining this approximation,

we recall the notion of (t, s)-sequence and (t,m, s)-net from [Nie92], page 48.
Let Is := [0, 1)s denotes the s-dimensional half open unit cube. For an integer
b ≥ 2, an elementary interval in base b is a subinterval of Is of the form

s∏
r=1

[
ar

bdr
,
ar + 1
bdr

)
,
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for some integers dr ≥ 0 and 0 ≤ ar < b
dr for all 1 ≤ r ≤ s. If 0 ≤ t ≤ m

are integers, a (t,m, s)-net in base b is a set Y of bm points in Is such that
every elementary interval Q in base b with Lebesgue-measure (or volume) bt−m

contains exactly bt points of Y . An infinite sequence of points y0,y1, . . . in
Is is a (t, s)-sequence in base b if for all integers n ≥ 0 and m > t, the set
Yn = {yp : nbm ≤ p < (n+ 1)bm} is a (t,m, s)-net in base b.

Choose a base b ≥ 2 and non-negative integers d1, . . . , ds. Put m :=
d1 + · · · + ds and N := bm. For the QMC approximation, we assume that
Y = {y0,y1, . . .} ⊂ Is+1 is a (t, s + 1)-sequence in base b for some integer
t ≥ 0, and such that if Π : Is+1 → Is denotes the projection defined by

(x1, . . . , xs+1)
Π�−→ (x1, . . . , xs) =: x′,

then the point set Π(Yn) is a (0,m, s)-net in base b for each n. This implies
that b ≥ s− 1.

We first outline our algorithm; then we explain the different steps. Note
that the N copies of the chain are simulated simultaneously.

1. Let n← 0;
2. Use QMC sampling to obtain N initial states i00, . . . , i

0
N−1 ∈ E;

3. Repeat until we have reached the desired number of steps:
3.1 Let n← n+ 1;
3.2 Relabel the states in0 , . . . , i

n
N−1 ∈ E according to their successive

coordinates;
3.3 Advance all the chains by one step using the point set Yn, to obtain

the states in+1
0 , · · · , in+1

N−1, and compute the average cost for this step;

Generating the Initial States (Step 2). This is done by mapping a (0,m, s)-net
in base b on E. The choice of the mapping depends on the initial distribution
to be sampled.

Relabeling the States (Step 3.2). At step n+ 1, given that we have a set Ξn of
N states in0 , . . . , i

n
N−1 such that λ̂n ≈ λn, we start computing λ̂n+1 by sorting

the set Ξn as we now explain. The states are labeled ink = (ink,1, . . . , i
n
k,s), using

a multi-dimensional index k = (k1, . . . , ks), with 0 ≤ kr < b
dr for 1 ≤ r ≤ s,

such that:

if k1 < l1, then ink,1 ≤ inl,1,
if k1 = l1, k2 < l2, then ink,2 ≤ inl,2,

...
if k1 = l1, . . . , ks−1 = ls−1, ks < ls, then ink,s ≤ inl,s.

These conditions can be interpreted as follows. The N states are first sorted in
bd1 batches of size Nb−d1 according to their first coordinates; then each batch
is sorted in subgroups of bd2 batches of size Nb−d1−d2 by order of the second
coordinates, and so on. At the last step of the sort, subgroups of size bds are
ordered according to the last coordinate of the state.
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This type of hierarchical (or nested) sort was first introduced and motivated
in [LC98]. It guarantees theoretical convergence. The idea is to match the
s-dimensional empirical distribution of the states with the distribution of the
s-dimensional points of low-discrepancy set Π(Yn).

A graphical illustration is given in Figure 1, with b = 2, s = 2, and
d1 = d2 = 2. Here we have N = bd1+d2 = 16 points in s = 2 dimensions. We
first sort these points in four groups of four points, according to their first
coordinate (which corresponds to the horizontal axis in the figure), and then
sort each group according to the second coordinate.
Advancing the Chains by one Step (Step 3.3). Let λ̃n+1 = λ̂nP . We have

λ̃n+1w =
1
N

∑
k∈K

(Pw)(ink) =
1
N

∑
k∈K

∑
j∈E

p(ink , j)w(j) (1)

where K = {0, . . . , bd1 − 1} × · · · × {0, . . . , bds − 1}. This expression could be
seen as the expected average cost at the next step, given the current set of
states Ξn. For k = (k1, . . . , ks) ∈ K, denote by χk the indicator function of
the s-dimensional elementary interval

Ik =
s∏

r=1

[
kr

bdr
,
kr + 1
bdr

)
.

At any given step, if a chain in state i is matched with a point y = (y′, ys+1),
then this chain will move to state j(i, ys+1), where the latter is defined as in
the MC method.

For any given point y = (y′, ys+1) ∈ Is+1, let

Gnw(y) :=
∑
k∈K

χk(y′)w(j(ink, ys+1)), (2)

0,1

3,2

2,1

1,1

2,3

3,0

0,2

0,3

2,2

3,3

2,0

1,3

0,0 1,0

1,2

3,1

Fig. 1. Relabeling the states (b = 2, s = 2, d1 = d2 = 2)
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which represents the cost at the next transition if we use y to move by one
step the chain associated with the point of index k. Integrating with respect
to y, we get

λ̃n+1w =
∫

Is+1
Gnw(y)dy, (3)

whereas averaging over the point set used at step n+ 1, we obtain the QMC
estimator λ̂n+1 of λn+1 defined by

λ̂n+1w =
1
N

∑
nN≤p<(n+1)N

Gnw(yp).

For any y′ = (y1, . . . , ys) ∈ Is, we define the multidimensional index

k(y′) := (�bd1y1�, . . . , �bdsys�) ∈ K,

where �x� denotes the largest integer ≤ x. Because Π(Yn) is a (0,m, s)-net in
base b, the function

p ∈ {nN, nN + 1, . . . , (n+ 1)N − 1} �−→ k(y′
p) ∈ K

is one-to-one. Combining this with (2), we have

1
N

∑
nN≤p<(n+1)N

Gnw(yp) =
1
N

∑
nN≤p<(n+1)N

w(j(ink(y′
p), yp,s+1)). (4)

Then, at step n+ 1, the point set Ξn+1 = {in+1
0 , . . . , in+1

N−1} ⊂ E is computed
according to

in+1
p−nN = j(ink(y′

p), yp,s+1), nN ≤ p < (n+ 1)N.

This means that the projection y′
p of each point yp of the low discrepancy

sequence on the first s axes is used to select the state that is matched to this
point at that step (i.e., which chain advances by one step), while the remaining
component yp,s+1 is used to determine the evolution (the next state).

3 Discrepancies and Variations of Sequences

The efficiency of a QMC method depends on the uniformity of the quasi-
random points that are used. These points should form a low discrepancy
point set. In this section, after recalling classical notions of discrepancy from
[Nie92], we define and examine discrepancy measures adapted to the context
of our method.
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The Star Discrepancy. For an s-dimensional point set Y = {y0, . . . ,yN−1} ⊂
Is and for a Lebesgue-measurable subset Q of Is we define the local discrep-
ancy by

D(Q, Y ) :=
1
N

∑
0≤p<N

χQ(yp) −
∫

Is

χQ(x)dx,

where χQ is the indicator function of Q. The discrepancy of the point set Y is
defined by

D(Y ) := sup
Q

|D(Q, Y )|,

the supremum being taken over all subintervals of Is. The star discrepancy of
Y is

D∗(Y ) := sup
Q∗

|D(Q∗, Y )|,

where Q∗ runs through all subintervals of Is with one vertex at the origin.
The following result is shown in [Nie87].

Lemma 1. Let Y be a (t,m, s)-net in base b. For any elementary interval
Q′ ⊂ Is−1 in base b and for any ξ ∈ Ī := [0, 1], we have

|D(Q′ × [0, ξ), Y )| ≤ bt−m.

The Star λ-Discrepancy. Let λ be a distribution on E and consider a set of
states Ξ = {i0, . . . , iN−1} ⊂ E. For an arbitrary F ⊂ E, we define the local
λ-discrepancy of Ξ for F by

D(F ;Ξ, λ) :=
1
N

∑
0≤�<N

χF (i�) −
∑
i∈F

λ{i},

where χF denotes the function

χF (i) =
{

1 if i ∈ F,
0 otherwise.

The star λ-discrepancy of the point set Ξ is defined by

D∗(Ξ, λ) := sup
h∈E

|D(Fh;Ξ, λ)|,

where Fh =
∏s

r=1((−∞, hr)∩Er). If w is a nonnegative and bounded sequence,
we set

D(w;Ξ, λ) :=
1
N

∑
0≤�<N

w(i�) −
∑
i∈E

λ{i}w(i),

so that if F ⊂ E, we have D(F ;Ξ, λ) = D(χF ;Ξ, λ). Similarly, if Y ′ =
{y′

0, . . . ,y
′
N−1} ⊂ Is and f is a nonnegative and bounded function defined on

Is, we put

D(f, Y ′) =
1
N

∑
0≤�<N

f(y′
�) −
∫

Is

f(x′)dx′.

If Q ⊂ Is, then D(χQ, Y
′) = D(Q, Y ′).
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Variations of Sequences. We must adapt to our case the definitions of variations:
instead of considering functions defined on Is, we have sequences defined on E.
We begin by giving the definition of the variation in the sense of Hardy-Krause,
assuming that 0 = (0, . . . , 0) ∈ E. For the case where 0 �∈ E, it suffices to
replace the origin 0 by some point a = (a1, . . . , as) ∈ E in the definition. For
w : E → R and j, j′ ∈ E, let T r

j w and ∆r
j,j′w be the functions (or multivariate

sequences) defined by

T r
j w(i) := w(i1, . . . , ir−1, jr, ir+1, . . . , is) and ∆r

j,j′w := T r
j′w − T r

j w.

If R = {r1, . . . , rq} ⊂ S = {1, . . . , s}, we denote

TR
j w := T r1

j . . . T
rq

j w and ∆R
j,j′w := ∆r1

j,j′ . . . ∆
rq

j,j′w.

For j ∈ E, let j+ be the vector (j1 + 1, . . . , js + 1); let E′ = {i ∈ E : i+ ∈ E}.
The variation in the sense of Vitali of w : E → R is defined by

V s(w) =
∑
j∈E′

|∆S
j,j+w|,

and the variation of w in the sense of Hardy and Krause is the sum

V (w) =
s∑

r=1

∑
R⊂S
#R=r

V r(TRc

0 w).

Let M = (M1, . . . ,Ms) be the vector with coordinates Mr = sup{i : i ∈ Er}.
If w can be extended to M, we define the upper variation of w as

V ∗(w) =
s∑

r=1

∑
R⊂S
#R=r

V r(TRc

M w).

One can prove that if w is of bounded variation in the sense of Hardy and
Krause, then w may be extended to M and has a bounded upper variation.
The next Lemma is a version of the classical Koksma-Hlawka inequality. The
proof follows the general outline of the proof given by Zaremba [Zar68].

Lemma 2. Let λ be a distribution on E. If w is a sequence of bounded variation
in the sense of Hardy and Krause and if Ξ = {i0, . . . , iN−1} ⊂ E, then

|D(w;Ξ, λ)| ≤ V ∗(w)D∗(Ξ, λ).

The following Lemma is an analogue of a result previously given in the
continuous case in [Lec96]; it can be proved by similar arguments.

Lemma 3. Let w : E → R be a sequence of bounded variation in the sense of
Hardy and Krause and p1, . . . , ps be integers. We consider a nested partition
of E of the form
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· g0,1 ≤ g1,1 ≤ . . . ≤ gp1,1 ∈ E1

· gk1,0,2 ≤ gk1,1,2 ≤ . . . ≤ gk1,p2,2 ∈ E2 for 0 ≤ k1 < p1.
· . . .
· gk′,0,s ≤ gk′,1,s ≤ . . . ≤ gk′,ps,s ∈ Es for k′ = (k1, . . . , ks−1) with 0 ≤ k1 <
p1,. . . , 0 ≤ ks−1 < ps−1.

For each k = (k1, . . . , ks) ∈ Λ :=
∏s

r=1{0, . . . , pr − 1}, let

ik, jk ∈ {gk1,1, . . . , gk1+1,1} × {gk1,k2,2, . . . , gk1,k2+1,2} × · · ·
· · · × {gk′,ks,s, . . . , gk′,ks+1,s}.

Then we have the following inequality

∑
k∈Λ

|w(jk) − w(ik)| ≤ V ∗(w)
s∏

r=1

pr

s∑
r=1

1
pr
.

Equipped with these tools, we return to the convergence of the QMC
algorithm.

4 Convergence analysis

We provide a convergence result under the following simplifying assumption,
which means that at most one coordinate of the state can be changed at any
step of the chain. We emphasize that this condition is not necessary for our
method to apply. In our numerical experiments reported in the next section,
we found that the method can be very effective even when this condition is
not fulfilled. The reason why we outline the convergence proof only under this
condition is to avoid excessively complicated notation.

Assumption 1 We suppose that whenever there exists 1 ≤ q �= q′ ≤ s such
that iq �= jq and iq′ �= jq′ , we have p(i, j) = 0.

For i ∈ E, denote Ei∗ = Ei � {i}. We suppose that Ii,i = [0, p(i, i)) if
i ∈ Ei, and Ii,i = ∅ otherwise. For j ∈ Ei∗, under Assumption 1, there exists a
unique index r ∈ {1, . . . , s} such that ir �= jr, and we take

mi,j = p(i, i) +
∑

g∈Ei∗
g1 �=i1

p(i,g) + · · · +
∑

g∈Ei∗
gr−1 �=ir−1

p(i,g) +
∑

g∈Ei∗,gr<jr
g�=i�,� �=r

p(i,g)

in the definition of the intervals Ii,j. This means that, for i ∈ E, we add the
probabilities {p(i,g) : g ∈ Ei∗} according to the natural order of the axes. Let

q(i) := p(i, i), pr(i) :=
∑

g∈Ei∗
gr �=ir

p(i,g),
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phr,r(i) :=
∑

g∈Ei∗,gr<hr
g�=i�,� �=r

p(i,g), ∀hr ∈ Er.

We assume that these sequences are of bounded variation in the sense of Hardy
and Krause. We then have the following worst-case error bound.

Proposition 1. If the transition matrix of the chain satisfies V ∗(PχFh
) ≤ 1

for all h ∈ E and if there exist positive constants c0, c1,r and c2,r, for 1 ≤ r ≤ s,
such that

V ∗(q) ≤ c0, V ∗(pr) ≤ c1,r, and V ∗(phr,r) ≤ c2,r,

then

D∗(Ξn, λn) ≤ D∗(Ξ0, λ0) +
(4s+ 1)n
b�(ds−t)/2�

+C(s)n
(

1
bd1

+ · · · + 1
bds−1

+
1

b�(ds−t)/2�

)
,

where C(s) is a positive constant that depends only on s.

Proof. The proof of this proposition is quite technical and will be given in
[ElH]; we only sketch it in what follows. For any nonnegative and bounded
sequence w, write

D(w;Ξn+1, λn+1) = D(Pw;Ξn, λn) +D(Gnw, Yn).

If we take w = χFh
, h ∈ E, we get

D(Fh;Ξn+1, λn+1) = D(PχFh
;Ξn, λn) +D(GnχFh

, Yn).

By Lemma 2 and using the inequality V ∗(PχFh
) ≤ 1, we have

|D(PχFh
;Ξn, λn)| ≤ V ∗(PχFh

)D∗(Ξn, λn) ≤ D∗(Ξn, λn).

On the other hand, GnχFh
is the indicator function of

Qn
h :=

⋃
k∈K

(Ik ×
⋃

j∈Eink

j<h

Iink ,j

)
,

where j < h means that j1 < h1, . . . , js < hs. Thus, D(GnχFh
, Yn) =

D(Qn
h, Yn). We decompose Qn

h into the following s+ 1 disjoint subsets:

Qn
h = Qn

h,0 ∪Qn
h,1 ∪ · · · ∪Qn

h,s,

with
Qn

h,0 =
⋃
k∈K
ink<h

Ik × Iink ,ink
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and
Qn

h,r =
⋃
k∈K

(
Ik ×

⋃
j∈Eink∗

j<h,jr �=in
k,r

Iink ,j

)

for 1 ≤ r ≤ s. Thus,

|D(Qn
h, Un)| ≤

s∑
r=0

|D(Qn
h,r, Un)|.

By studying the local discrepancy for each one of the subsets apart using
Lemmas 1 and 3, we get the following bound:

|D(Qn
h, Yn)| ≤ 4s+ 1

b�(ds−t)/2� + C(s)
(

1
bd1

+ · · · + 1
bds−1

+
1

b�(ds−t)/2�

)
,

where C(s) is a positive constant. The desired inequality is then obtained by
induction on n. By taking

d1 = · · · = ds−1 =
⌊
m− t
s+ 1

⌋
and ds = m− (s− 1)

⌊
m− t
s+ 1

⌋
,

the proposition shows that the error converges as O(N−1/(s+1)) in the
worst case.

5 Numerical examples

In this Section, we assess the accuracy of the QMC algorithm empirically,
through three academic examples where exact solutions are known. We show
the kind of improvement that our method can bring with respect to MC.
For our experiment, we use Niederreiter’s sequences in base 2. For MC, the
pseudo-random numbers are produced by the generator MRG32k3a of [L’Ec99].
Convergence speed is assessed by looking at the absolute difference between
the empirical and theoretical means, for several values of N .

5.1 A simple symmetric random walk on Z2

Our first example is a simple symmetric random walk on Z2; it is a Markov
chain with transition probabilities

p(i, j) =
{

1/4 if |i1 − j1| + |i2 − j2| = 1,
0 otherwise.
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At time n = 0, we start at a point A ∈ Z2 and we want to estimate the
probability pn

A of returning to A at time n. One can prove that

pn
A =

{((
n

n/2

)
(1/2)n

)2
if n is even,

0 if n is odd.

This example satisfies Assumption 1. We estimate the error for n = 20 as
a function of N , say ErrMC(N) for MC and say ErrQMC(N) for our QMC
method. The value of N varies from 28 to 220. Figure 2 shows the values of
these errors, in log-log scale. Regression analysis gives the following convergence
speed estimates:

ErrMC = O(N−0.25) and ErrQMC = O(N−0.89),

showing a strong improvement when using QMC.

5.2 A bivariate Markovian asset valuation model

We consider a bivariate extension of Cox-Ross-Rubinstein’s binomial single
asset pricing model, as proposed in [HKY03]. At time n, the values of the two
risky assets are denoted by S1

n and S2
n, and Sn = (S1

n, S
2
n)t is the price vector

(the “t” means “transposed”). The sequence (Sn)n≥0 is defined in terms of
two independent and identically distributed sequences (V 1

n )n≥0 and (V 2
n )n≥0:

For all n ∈ N, V 1
n can take the two values a and b, where −1 < a < b, with

probabilities p and 1 − p, respectively, while V 2
n can take the two values c and

Fig. 2. Simple symmetric random walk on Z2. The error as a function of N on
log-log scale (in base 2), with MC (thin line) and QMC (thick line).
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d, where −1 < c < d, with probabilities q and 1 − q, respectively. We suppose
that 0 < p, q < 1. The model is a Markov chain whose state evolves as(

S1
n

S2
n

)
=
(

1 + V 1
n ε(V 2

n − r)
δ(V 1

n − r) 1 + V 2
n

)(
S1

n−1

S2
n−1

)
, (5)

where ε and δ are small numbers expressing the perturbation caused by S2
n

on S1
n and by S1

n on S2
n. We suppose εδ �= 1 and (ε, δ) �= (0, 0). At each step,

there are four possibilities for the vector (V 1
n , V

2
n ).

For the QMC method, we partition the unit interval [0, 1) in four pieces; each
one is assigned to one of the four possible outcomes (with length corresponding
to the required probability), in this order: [0, pq), [pq, pq + p(1 − q)), [pq +
p(1 − q), pq + p(1 − q) + (1 − p)q), and [pq + p(1 − q) + (1 − p)q, 1). We want
to estimate E(S1

n) and E(S2
n) for some fixed n. These (exact) values are

E(S1
n) = (1 + r)n E(S1

0) and E(S2
n) = (1 + r)n E(S2

0) (6)

but for the purpose of our experiment, we pretend that they are unknown and
have to be estimated. Note that this bidimensional Markov chain does not
satisfy Assumption 1, because both coordinates of the state are changed at
each step.

We take the following parameters: n = 20, a = 0.074, b = 0.141, c = 0.086,
d = 0.182, r = 0.1, ε = 0.30, and δ = 0.20. The initial values are S1

0 = 120
and S2

0 = 130. The number of states N varies from 24 to 220, and we want to

Fig. 3. Bivariate Markovian asset valuation model. Linear fits to the error as a
function of N on log-log scale (in base 2), for S1 (left) and S2 (right), with MC (thin
line) and QMC (thick line).
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estimate the error as a function of N . For the errors, we use the same notations
as in the previous example. Figure 3 shows the empirical values of these errors,
in log-log scale, for both S1

n and S2
n. A linear regression analysis with this data

gives the following empirical convergence rates:

For S1
n, ErrMC = O(N−0.62) and ErrQMC = O(N−0.98).

For S2
n, ErrMC = O(N−0.53) and ErrQMC = O(N−0.80).

Clearly, the QMC method enjoys a much faster convergence than MC.

5.3 Pricing a European call on the maximum of two risky assets

For our second example, we consider the pricing of an European call option
on the maximum of two risky assets, in a setting where the (continuous-
time) evolution of the asset price vector is approximated by a (discrete-time)
binomial lattice model. Again, the example is artificial and simplified, since
the option price can be computed exactly in this case, but we want to use it
as a benchmark to evaluate the viability of our method.

The original (continuous-time) model is a bivariate geometric Brownian
motion (GBM) {S(t) = (S1(t), S2(t))t, t ≥ 0} with drift parameter µi, volatility
parameter σi, and correlation parameter ρ. Thus, for i = 1, 2,

Si(t) = Si(0) exp
[
(µi − σ2

i /2)t+ σiWi(t)
]

where Wi is a standard Brownian motion, and Cov[W1(t+ δ) −W1(t), W2(t+
δ) −W2(t)] = ρδ for all δ > 0. The option has discounted payoff

e−rT max[max(S1(T ), S2(T )) −K, 0]

for some constants K > 0 (the strike price) and T > 0 (the maturity), where
r is the riskless rate. The expected value C of this payoff, which is the exact
value of the option, can be computed by formulas given in [Stu82, Joh87].

To estimate C, instead of simulating the GBM directly (which can be
done by simulating the Brownian motion (W1,W2) at the desired observation
times), here we simulate a numerical approximation based on the multivariate
binomial lattice method developed in [BEG89]. This method is an extension
of the Cox-Ross-Rubinstein approach [CRR79]. It proceeds as follows.

A discrete-time model with discrete probability distribution is constructed
to approximate the bivariate lognormal distribution. In this model, at each
time step, each asset price can only move up or down (only two possibilities),
so there is four possible transitions for the process with probabilities p1, p2,
p3 and p4. Let h = T/m be the length of the time step, where m is the
number of steps. The value of Si(t) is multiplied by exp(σi

√
h) in an move

up and divided by this same value in a down move. The formulas for the
transition probabilities of up and down moves (and other details) can be found
in [BEG89]. They are selected in a way that the characteristic function of the
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discrete distribution at any fixed time point converges to that of the lognormal
at that point, when h→ 0. This model does not satisfy Assumption 1. As in
the previous example, we partition the unit interval [0, 1) in the following four
pieces: [0, p1), [p1, p1 + p2), [p1 + p2, p1 + p2 + p3), and [p1 + p2 + p3, 1), so
that each number in [0, 1) corresponds to one of the four possibilities.

We use the following parameter values (time is measured in years): S1(0) =
S2(0) = 40, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, r = 0.05, T = 7/12, K = 35. Let
CN,m be the QMC approximation of C with N paths and m time steps. We
measure the error with the following discrete L1 norm:

ErrN,m =
1
20

20∑
j=1

|C − CN,mj/20|.

Figure 4 shows the value of ErrN,m for m varying from 22 × 20 to 26 × 20, and
N varying from 28 to 220, for both the MC method (left panel), and QMC
(right panel), in a log-log scale. Note that there are two sources of error here:
(1) the discretization error and (2) the additional error due to using MC or
QMC instead of solving the binomial lattice model exactly. The discretization
error vanishes when m→ ∞, whereas the other source of error converges to
zero when N → ∞.

Fig. 4. Pricing an European call on the maximum of two risky assets by a binomial
lattice model. The error ErrN,m as a function of N in log-log scale (in base 2) for
different numbers of time steps m, for MC (left) and QMC (right).
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For MC, the error does not seem to depend much on m, which means that
the discretization error is small compared with the MC (statistical) error. For
QMC, this is also true for the small values of N , but not for the large ones. For
MC, we have a slope of about −1/2, so the error converges as O(N−1/2) as a
function of N , as expected. For QMC, when m is large, the slope is steeper
than −1/2, which indicates a faster convergence rate than for MC. For small
values of m, the error eventually reaches a plateau and stops decreasing when
we keep increasing N ; this indicates that the QMC error eventually becomes
negligible compared with the discretization error. This shows that a good
strategy in this type of situation is to increase both m and N simultaneously.
QMC clearly dominates MC in that case. For instance, for m = 1280 and
N = 220, ErrN,m is about 2−7 for MC and 2−11 for QMC. As another example,
for m = 320, the same error level is attained by QMC with N = 8 192 and by
MC with N = 524 288.

6 Conclusion

We have proposed and analyzed a QMC method for the simulation of discrete-
time Markov chains on a multi-dimensional state space. The method simulates
several copies of the chain in parallel and reduces the error by a technique
that sorts the chains in a special way, based on the several coordinates of their
states, at each step. We have proved a convergence result for the worst-case
error as the number of simulated paths increases, under a special condition.
In our empirical experiments, the performance of the proposed method was
clearly superior to MC. Directions for future research include the theoretical
analysis of the method in more general settings, experiments with larger and
more complicated models, and the analysis of a randomized version of the
method to produce unbiased low-variance estimators.
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[ElH] R. El Haddad. Méthodes quasi-Monte Carlo pour la simulation des chaines
de Markov. PhD thesis (in French), Université de Savoie, in preparation.
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We have developed a computational platform that simulates light transport in
tissue in support of biomedical optics research. Although in its initial stage
of development, this platform is being used to answer important questions
regarding the detection of tissue changes, and the optimal design and posi-
tioning of optical probes to ‘interrogate’ the tissue best. We provide answers
to such questions by applying perturbation and midway surface Monte Carlo
techniques. Derivation of these methods makes rigorous use of the radiative
transport equation which is essential if the methods are to provide accurate
solutions for highly complex media such as biological tissue.

1 Introduction

Computational tools for modeling radiative transport in biological tissues have
played a vital role in the development of optical techniques for the diagnosis
and therapeutic treatment of tissues. These tools aid in the design of optical
probes to detect noninvasively tissue transformations attributed to cancer
and other abnormalities. To date, models of tissue have been confined to
very simple geometries such as homogeneous and layered media. Recently,
however, there is evidence that optical signals provided by multiply scat-
tered light are sensitive to changes in tissue structure and composition on the
mesoscopic (0.1–1mm) spatial scales [FOV+03, KWR+03, MYLK05]. This
realization has driven the need to (a) model tissue with greater spatial re-
finement, (b) understand the detectability of specific tissue changes, and (c)
determine the tissue regions from which the detected light is remitted; i.e.,
the spatial and angular distribution of the light propagating from source to
detector.
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We are addressing these needs by developing a virtual tissue simula-
tor (VTS). This computational platform allows the user to specify a probe
configuration and define a voxelized tissue representation. A variety of probe
configurations will eventually be incorporated. Here, we focus on one consisting
of a fiber-optic source and detector at a fixed separation. The voxelized tissue
representation can be provided from images provided by histology, CT or MRI.
For a specified probe configuration and tissue definition, the user can run a
conventional Monte Carlo simulation to model light transport through this
system. The VTS also provides perturbation Monte Carlo capabilities that can
be used to determine the change in the detected signal due to small changes
in tissue structure and/or composition. Finally the VTS incorporates midway-
surface Monte Carlo methods that couple forward and adjoint simulations
at an intermediate surface to provide a spatial map of photon propagation
from source to detector. Both perturbation and midway-surface Monte Carlo
methods provide gains in efficiency and accuracy over conventional Monte
Carlo methods.

The long-range goals for the VTS include the ability to solve inverse
problems of two types. First, if a particular change in the detected optical
signal is detected by a specific probe, we would like to determine the changes
in the optical properties of the tissue that produced the optical signal change.
We have already demonstrated the use of perturbation and differential Monte
Carlo methods [Hay02, HS04, SYHV07] to solve this type of inverse problem
and plan to extend this method to systems in which the tissue region is
voxelized. Second, if we wish to target a specific tissue region, we would like
to determine the probe design characteristics and probe placement that would
optimally interrogate the targeted tissue region. Probe parameters such as the
radius, numerical aperture or orientation of the source and detector fibers,
source-detector (s-d) separation, and relationship of probe to target region
can be varied to enhance detection of target tissue changes. Robust forward
problem simulations are an essential part of accurate inverse problem solutions.
With these ultimate goals in mind, we concentrate in this paper on the forward
models for each of these inverse problems.

2 Monte Carlo Methods for Radiative Transport

The development of a Monte Carlo simulation of light transport in tissue
follows from a probability model derived directly from the analytic radiative
transport equation. This equation describes the physics of the problem and the
probability model defines the probability space needed to solve the problem
using Monte Carlo simulations. In the next sections, we present the linkages
between the analytic and probabilistic formulations needed to establish the
equivalence of these two formulations. The theoretical foundations presented in
§2.1 support the Monte Carlo simulations that form the computational engine
of the VTS.
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2.1 Conventional Monte Carlo

The analytic model describing light transport through tissue is the radiative
transport equation (RTE). In a closed, bounded subset D of R3, the integro-
differential form of the RTE is

∇ · ΩΦ(r,Ω) + µt(r)Φ(r,Ω) = µs(r)
∫

4π

p(Ω′ → Ω)Φ(r,Ω′) dΩ′ + Q(r,Ω)

(1)
where Φ(r,Ω) is the photon radiance, with r and Ω representing position and
unit direction vectors, respectively. µt(r) = µs(r)+µa(r) is the total attenuation
coefficient, µs(r) is the scattering coefficient, µa(r) is the absorption coefficient,
p(Ω′ → Ω) is the scattering phase function, and Q(r,Ω) is the internal source
function. A unique solution Φ(r,Ω) is assured for all r ∈ D,Ω ∈ S2 by
specifying appropriate conditions on the boundary ∂D.

Detectors are often placed within the tissue system to measure a system
response. For example, this system response could consist of reflected and/or
transmitted light using of one or more detectors. The quantity describing the
system response I in the context of the analytical model is

I =
∫

Γ

h(r,Ω)Φ(r,Ω)drdΩ (2)

where h is a known ‘detector’ function, Φ is the solution to Eq. (1) and Γ is
the phase space. Suppose, for example, that the amount of energy absorbed
within a detector occupying a subregion V of phase space is of interest. In this
case, the detector function is defined by h(r,Ω) = µa(r)

µt(r)
χV (r,Ω) where

χV (r,Ω) =
{

1 for (r,Ω) ∈ V
0 for (r,Ω) /∈ V (3)

and the integral in Eq. (2) measures the amount of photon absorption in the
volume V . With this definition of h, I can be estimated as the ratio of the
total number of photons absorbed in V and the total launched from the source.
To represent a detector on the surface of the tissue measuring reflectance/
transmittance, the same formalism contained in Eqs. (2) and (3) can be used.
In this case, the volume V is treated as an infinite absorber outside of the
tissue whose intersection with Γ is the surface of the detector.

The Monte Carlo solution of Eq. (1) is captured by a random variable ξ
defined on the sample space of all random walks Ω whose expectation is

E[ξ] =
∫

Ω

ξ dµ = I (4)

where µ is the analog measure that captures the physical model faithfully
and I is given by Eq. (2). Details regarding such constructions may be found
in [SG69].
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2.2 Perturbation Monte Carlo

Once a tissue system of interest is defined within VTS and a Monte Carlo
simulation is executed to estimate a desired system response I, the impact
on I of changes in the tissue structure and/or composition can quickly be
determined using perturbation Monte Carlo (pMC). We briefly review the
pMC method next; details can be found in [Hay02, HS04, SYHV07, HSB+01].

Perturbation Monte Carlo provides radiative transport solutions for mul-
tiple systems that can be expressed as a perturbation of a baseline system
using a single set of random walks. A set of photon biographies is generated
within a baseline tissue system of specified tissue properties. Using pMC, the
change to the system response Î = I +∆I due to perturbations in the optical
properties of the baseline system can be determined. This is done by appro-
priately modifying the random variable used to estimate the reflected light in
the baseline Monte Carlo simulation. The pMC method provides estimates
of the responses in a ‘perturbed’ system with a computational cost that is
orders of magnitude smaller than that required to run independent Monte
Carlo simulations. In addition, the positive correlation between the baseline
and perturbed system responses enables pMC to capture small changes ∆I in
the system response with a much higher precision than would be obtained with
independent simulations. The use of pMC can enable VTS users to determine
rapidly the degree to which a diagnostic or therapeutic measurement will be
sensitive to changes in tissue properties.

The pMC method can be described within a probability model in terms
of the pair of random variables ξ, ξ̂ where ξ is the system response of the
baseline tissue system and ξ̂ is the response in the perturbed tissue system.
The derivations necessary to make this formulation correct are based on the
identity ∫

P

ξ̂ dµ =
∫

P

ξ dµ̂ (5)

where
ξ̂ = ξ

dµ̂

dµ
(6)

and µ is the analog probability measure based on the baseline optical properties.
The measure µ̂ incorporates the analog measure except in the perturbed region,
where it uses the optical properties assumed for that region. The Radon-
Nikodym derivative (dµ̂/dµ) expresses how the analog random variable ξ must
be modified to produce an unbiased estimator ξ̂ of the optical response in
the perturbed system. Explicit formulas derived from Eq. (6) may be found
in [Hay02, HSB+01].

We apply the pMC method to study dysplasia within epithelial tissue. In the
initial stages of epithelial tissue dysplasia, cells within the epithelium adjacent
to the basal lamina exhibit a larger nucleus to cytoplasm ratio (see Fig. 1)
in which the scattering of light is increased by a factor of three [CAM+03,
CFMRK05]. Our interest is in determining how the placement of the probe on
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the tissue surface relative to these dysplastic regions effects our ability to detect
these changes. The baseline tissue is modelled as an epithelial region atop a
stromal region with an undulating basal lamina interface. The entire tissue is
divided into uniform voxels measuring 100µm × 100µm in the x-z plane. The
voxelized approximation of the undulating interface is shown with white line
segments. The optical properties of the two tissue regions are typical of normal
epithelial/stromal tissue [CAD+04]: for the epithelial region, µa = 0.12/mm,
µs = 2.8/mm with g, the average cosine of the scattering phase function, set
to 0.97 and n, the refractive index equal to 1.4. The stromal region optical
properties are: µa = 0.09/mm, µs = 17.5/mm, g = 0.8 and n = 1.4. The probe
configuration consists of a source and detector each with 200µm radius and
0.37 numerical aperture positioned 1 mm apart on the tissue surface. To model
the initial stages of dysplastic transformation, one voxel within the epithelial
region and positioned atop the two-region interface at x = 0.45 mm (outlined
in black) is considered to be ‘dysplastic’ and assigned a scattering coefficient
that exceeds that of the baseline tissue by a factor of 3. The probe is positioned
so that the voxel with respect to the x-axis is approximately midway between
source and detector: the source is centered at x = 0mm and the detector at
x = 1mm. This placement is chosen because conventional wisdom suggests
that the probe source and detector should straddle the target region.

Fig. 2 displays the detected reflected signal as a function of time, R(t), for
both the baseline tissue system and for this system with the dysplastic voxel
at x = 0.45mm atop the two region interface (as shown in Fig. 1). The two
plots are visually indistinguishable. This leads us to the conclusion that this
particular placement of the probe relative to the voxel exhibiting dysplasia is
insensitive to this pre-cancerous tissue transformation.

0.5
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0

1.5 0−0.5 0.5 1.0 1.5
x (mm)
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z 
(m

m
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epithelium
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Fig. 1. Schematic of the tissue definition with upper epithelial and lower stromal
regions separated by an undulating basal lamina interface. The white superimposed
grid identifies the 100 µm×100 µm voxelization. The solid black box atop the interface
designates a dysplastic voxel in which the scattering is increased three-fold.
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Fig. 2. Time-resolved reflectance for the baseline tissue system and for the perturbed
system with a dysplastic voxel at lateral position x = 0.45mm atop the two region
interface with the probe source and detector centered at x = 0mm and x = 1mm,
respectively.

The absence of a significant change in the detected optical signal due to
the appearance of the dysplastic voxel can be better understood if one has
knowledge of how the light propagates from the source, through the tissue,
to the detector. To date, available techniques to provide such information
have been based mainly on the diffusion approximation to the radiative trans-
port equation [BOCY97, FZC95, PAEWO95, SHL93]. However, the validity
of diffusion-based models is compromised when: (a) s-d separations are small
or (b) the tissue absorption is comparable to or greater than scattering. In ad-
dition, these models cannot, of course, provide transport-theoretic quantitative
information.

We have recently developed a novel Monte Carlo method that couples
forward and adjoint simulations to generate the spatial distribution of the
migration of light from source to detector [HSVed]. This map provides valuable
information regarding the relationship between a specific probe configuration
and placement and the resulting tissue region that can be interrogated. These
interrogation density maps are faithful to the radiative transport equation and
therefore provide quantitative measures of the contribution of different tissue
regions to the optical signal.

2.3 Midway Surface Monte Carlo

The magnitude and spatial extent to which an optical probe interrogates
the tissue system under examination is of great interest when designing a
diagnostic technique. For example, in the case of epithelial dysplasia considered
above, we would like to determine the probe position on the tissue surface that
would best interrogate the dysplastic voxel. A map that depicts the migration
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of the light from the source to the detector would aid in the probe placement.1

To generate such a map, each voxel within the tissue representation is treated
as a ‘target’ subvolume. Conventional Monte Carlo methods could be used
to select those photon trajectories that have migrated from source to target
region to detector either in a forward or adjoint simulation. However, when the
source and detector are each small relative to the target subvolume, forward
or adjoint simulations used alone engender low statistical signal-to-noise ratios.
Such a situation is exceedingly common in biomedical optics.

Our approach to bypass this dilemma, is to break this problem into two
components each of which can be determined rapidly through a Monte Carlo
simulation. First we determine (a) the probability of photon visitation from
the photon source to the target subvolume, P (V ) (‘target visitation’), and
then (b) the probability of photon detection conditioned by target visitation,
P (D|V ), (‘detection given target visitation’). These two probabilities can be
combined using Bayes’ Theorem to provide the joint transport probability of
‘target visitation and detection’:

P (V ∩D) = P (V ) · P (D|V ). (7)

We use a conventional Monte Carlo simulation to determine P (V ) for every
voxel in the VTS representation of the tissue. This not only provides an
estimate of the P (V ) term in Eq. (7), but also a spatially-resolved map of the
absorbed or scattered light distribution within the tissue. To determine the
second factor P (D|V ), we utilize an adjoint simulation to increase efficiency.
This is done by modifying a generalized reciprocity principle that converts
P (D|V ) to a coupled forward-adjoint computation at the ‘midway’ surface of
the target subvolume.

‘Midway’ forward-adjoint coupling methods [Cra96, SJH98, UHK01, Wil91]
have been successfully applied to increase efficiency in estimating detector
responses. In essence, a midway surface between the source and detector is
defined such that all detected radiation must pass through this surface. The
coupling of a forward and adjoint simulation at this intermediate surface
determines the detected response more efficiently, particularly in problems that
involve deep penetration. The midway method is made rigorous by utilizing
generalized reciprocity theory for transport equations.

We first present the analytical model describing generalized reciprocity and
then show how it is modified to allow evaluation of a conditional probability
to provide the desired interrogation maps. The intermediate derivations are
presented to clarify the final application.

Generalized Reciprocity

Generalized reciprocity establishes the equivalence between the execution of
a ‘forward’ Monte Carlo simulation from a source to detector and an adjoint
1 Note that a solution of the radiative transport equation alone does not provide

such a map because it omits any description of a detector.
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simulation for ‘backward-propagating’ photons from the detector (adjoint
source) to the source (adjoint detector). This result can be appreciated by first
considering the equation adjoint to Eq. (1):

− ∇ · ΩΦ∗(r,Ω) + µt(r)Φ∗(r,Ω)

= µs(r)
∫

4π

p(Ω → Ω′)Φ∗(r,Ω′) dΩ′ +Q∗(r,Ω) (8)

where Φ∗ is the adjoint photon radiance and Q∗ is any adjoint source function.
Let VM be an arbitrary closed, bounded subset of D and ∂VM its surface. If
we multiply the radiative transport equation [Eq. (1)] by Φ∗, Eq. (8) by Φ,
subtract the latter product from the former and integrate the difference over
all locations and directions within VM , we get∫

VM×S2
∇ · ΩΦΦ∗ =

∫
VM×S2

[QΦ∗ −Q∗Φ] (9)

where the variables of integration are suppressed but are understood to be
(r,Ω) with the spatial vector r ranging over the volume VM . Using Green’s
theorem to replace the volume integral on the left side of Eq. (9) by a surface
integral leads to:∫

∂VM×S2
nM · ΩΦΦ∗ =

∫
VM×S2

[QΦ∗ −Q∗Φ] (10)

where nM is the outward-pointing unit vector normal to ∂VM . Eq. (10) is often
referred to as the global reciprocity theorem [WE77]. Note that if VM = D and
the boundary conditions at the air-tissue interface cause the integral on the left
hand side to vanish, we then arrive at the ‘classical’ statement of reciprocity:∫

VM×S2
[QΦ∗ −Q∗Φ] = 0. (11)

Eq. (11) states that one can obtain the same transport estimates by performing
either a forward simulation from the source Q to detector Q∗ or by performing
an adjoint simulation from adjoint source Q∗ to adjoint detector Q.

While Eq. (10) is valid generally, it becomes particularly useful when VM

encloses either the source or the detector region. The surface of VM , ∂VM , can
then be identified as a ‘midway’ surface between source and detector: every
photon that is detected from the source must intersect the midway surface.
The function ΦΦ∗ that occurs in Eq. (10) has been called a ‘contributon’
response function [Cra96, SJH98, UHK01, Wil91, WE77, SJH99, UH01] and
can be used to define a function that characterizes transport from source
to detector. If VM encloses the source region, and Q∗ = 0 in VM , the left
hand side of Eq. (10) is positive, and equals

∫
VM×S2 QΦ

∗, which is the adjoint
representation of the detector response. If VM encloses the detector region,
and Q = 0 in VM , the left hand side of Eq. (10) is negative and equals
− ∫

VM×S2 Q
∗Φ, which is the forward representation of the detector response.
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P (V ∩ D) Maps

We extend this generalized reciprocity theory to determine the conditional
probability P (D|V ) for an arbitrary target subvolume V enclosing neither the
source nor the detector. Since we are interested not in the interrogation of
surfaces but rather of subvolumes within a tissue domain, we slightly modify
the midway method to facilitate the estimation of the conditional probability
P (D|V ). We launch photons at a physical source Q that propagate until they
exit the phase-space. Only photon trajectories that have intersected the target
subvolume V contribute to the estimate of P (V ). These ‘visiting’ photons
generate an induced source internal to V that produces a surface source Q∂V

on ∂V. This surface source is then paired with the adjoint radiance on ∂V in a
bilinear integration that produces an estimate of P (D|V ). The product of the
two probabilities P (V ) and P (D|V ) defines the probability that subvolumes
within the phase-space are both visited and detected. We use this product
to provide the key quantitative information used to assess and compare the
characteristics of potential probe designs.

Let QV denote the source induced in V by photons launched according to
the original optical source function Q(r,Ω). This induced source internal to V,
QV, generates a source on ∂V. If we merely replace the source function Q by
the source function QV(r,Ω) and repeat the derivation that led to Eq. (10),
we obtain ∫

∂V×S2
nV · ΩΦ̃Φ∗ =

∫
V×S2

[
QVΦ

∗ −Q∗Φ̃
]
, (12)

where the radiance Φ̃ is the solution of the RTE [Eq. (1)] with the indu-
ced source function QV. Recall, Q∗(r,Ω) is a detector function; as such
Q∗(r,Ω) = 0 unless r is on the boundary of the tissue and Ω points outward .
Replacing Q∗(r,Ω) by Q∗(r,−Ω), therefore, defines an adjoint source pointing
into the tissue. This in turn generates an adjoint radiance, Φ∗(r,−Ω) inside
the tissue. This reverses the direction in the arguments of Q∗ and Φ̃∗ in
Eq. (12), which then reads∫

∂V×S2
nV · ΩΦ̃(r,Ω)Φ∗(r,−Ω) =

∫
V×S2 [QV(r,Ω)Φ∗(r,−Ω)−

Q∗(r,−Ω)Φ̃(r,Ω)
]

=
∫

V×S2 QV(r,Ω)Φ∗(r,−Ω) (13)

since Q∗ = 0 inside V. The estimation of the right hand side of Eq. (13) is
performed using an adjoint simulation and provides the detected response due
to the induced source QV, or P (D|V ).

The forward simulation of photons exiting an arbitrary target subvolume V
is used to determine P (V ) and is matched at ∂V with the adjoint simulation
estimate of P (D|V ). The joint probability of visitation and detection P (V ∩D)
[Eq. (7)] is formed by the product of these two factors.
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Fig. 3. Interrogation density P (V ∩ D) map of the baseline tissue system with a
log-scale gray scale bar. The interface between the epithelial and stromal layers is
shown using white line segments. A dysplastic voxel atop the interface at x = 0.45 mm
with scattering increased threefold is shown in solid black.

Fig. 3 displays the resulting P (V ∩ D) map using our baseline epitheli-
um/stroma tissue definition. Each voxel (shown by the superimposed grid in
Fig 1) is treated as a target subvolume and the joint probability P (V ∩D) is
determined. Notice that the detected light field does not experience significant
lateral dispersion within the epithelial region during its propagation from
source to detector. This is due presumably to the high scattering asymmetry
coefficient g and low scattering coefficient µs in that region whose combined
effect is to produce minimal lateral dispersion. This behavior below the source
and detector within the epithelial region suggests that perturbations within
this region, in particular the voxels around positions x = 0 and x = 1, would
have the greatest effect on the detected signal. On the other hand, the voxels
midway between source and detector above the interface are fairly dark indica-
tive of positions of small perturbative effect. This explains why the dysplastic
voxel positioned at x = 0.45 mm did not noticably perturb the detected optical
signal.

Based on this analysis, we reposition the probe to place the detector directly
above the dysplastic voxel: the source is now centered at x = −0.5mm and
the detector at x = 0.5mm, while the dysplastic voxel remains atop the two
region interface at x = 0.45mm. Fig. 4 displays R(t) for the baseline tissue
system with and without the dysplastic voxel. With the new probe position, the
change in the detected signal due to the increased scattering in the dysplastic
voxel can now be seen. Notice also the strong correlation between the baseline
and perturbed plots. The small variations of the perturbed plot from the
baseline capture the effect of the change with much more accuracy than if
independent Monte Carlo simulations were used for the baseline and perturbed
systems.
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Fig. 4. Time-resolved reflectance for the baseline tissue system and for the perturbed
system with a dysplastic voxel at lateral position x = 0.45mm atop the two region
interface with the probe source and detector centered at x = −0.5mm and x =
0.5mm, respectively.

3 Summary

We have completed the initial development of the computational engine of a
virtual tissue simulator that incorporates efficient forward and adjoint Monte
Carlo simulations in a voxelized representation of tissue. This new platform
provides the biomedical optics researcher with a means to analyze better the
size and location of detectable tissue anomalies and to design and position
optical probes to capture these changes effectively. The engine is currently
comprised of conventional, perturbation, and midway surface Monte Carlo
techniques. In contrast to many other available methods, ours are radiative
transport equation rigorous and therefore provide more accurate models that
are essential for representing complex media such as biological tissue.

A robust forward model representation is a vital component of an inverse
problem-solving capability. By adding differential Monte Carlo to the VTS, we
plan next to extend the VTS platform to solve inverse problems. The first step
in this direction will enable quantitative determination of optical properties in
target regions based on measurements from a given probe design. For example,
given baseline and perturbed measurements as shown in Fig. 4, we would like
to determine what change in the absorption or scattering properties of the
dysplastic voxel caused the perturbed measurement. Second, probe design
parameters will be determined that best interrogate specific target regions
within the tissue. Generating the change to the P (V ∩D) maps as a function
of probe design parameters will enable inverse solutions that identify the best
probe configurations to target selected regions within the tissue.
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Summary. We study approximation of functions belonging to Sobolev spaces W r
p (Q)

by randomized algorithms based on function values. Here 1 ≤ p ≤ ∞, Q = [0, 1]d,
and r, d ∈ N. The error is measured in Lq(Q), with 1 ≤ q < ∞, and we assume
r/d > 1/p − 1/q, guaranteeing that W r

p (Q) is embedded into Lq(Q). The optimal
order of convergence for the case that W r

p (Q) is embedded even into C(Q) is well-

known. It is n−r/d+max(1/p−1/q,0) (n the number of function evaluations). This rate
is already reached by deterministic algorithms, and randomization gives no speedup.

In this paper we are concerned with the case that W r
p (Q) is not embedded into

C(Q) (but, of course, still into Lq(Q)). For this situation approximation based on
function values was not studied before. We prove that for randomized algorithms
the above rate also holds, while for deterministic algorithms no rate whatsoever is
possible. Thus, in the case of low smoothness, Monte Carlo approximation algorithms
reach a considerable speedup over deterministic ones (up to n−1+ε for any ε > 0).

We also give some applications to integration of functions and to approximation
of solutions of elliptic PDE.

1 Introduction

Denote N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }, let d ∈ N, and let Q = [0, 1]d

be the d-dimensional unit cube. For 1 ≤ p ≤ ∞, let Lp(Q) be the space of
real-valued p-integrable functions, endowed with the norm

‖f‖Lp(Q) =
(∫

Q

|f(x)|pdx
)1/p

if p <∞, and
‖f‖L∞(Q) = ess supx∈Q|f(x)|.
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For r ∈ N the Sobolev space W r
p (Q) consists of all functions f ∈ Lp(Q) such

that for all α = (α1, . . . , αd) ∈ Nd
0 with |α| :=

∑d
j=1 αj ≤ r, the generalized

partial derivative Dαf belongs to Lp(Q). The norm on W r
p (Q) is defined as

‖f‖W r
p (Q) =

⎛⎝∑
|α|≤r

‖Dαf‖p
Lp(Q)

⎞⎠1/p

if p <∞, and
‖f‖W r∞(Q) = max

|α|≤r
‖Dαf‖L∞(Q).

Let C(Q) denote the space of continuous functions on Q, equipped with the
supremum norm. Let 1 ≤ q < ∞. By the Sobolev embedding theorem (see
[Ada75], [Tri78]), for

r/d > 1/p− 1/q (1)

W r
p (Q) ⊂ Lq(Q), and there is a constant c > 0 such that for each f ∈W r

p (Q)

‖f‖Lq(Q) ≤ c‖f‖W r
p (Q). (2)

Consequently, the embedding operator Jpq : W r
p (Q) → Lq(Q) defined by

Jpqf = f is bounded. We shall study optimal approximation of Jpq by ran-
domized algorithms which use n function values.

For n ∈ N we consider the class Aran
n of randomized algorithms which are

of the form A = (Aω)ω∈Ω , where

Aω(f) = ϕω(f(x1,ω), . . . , f(xn,ω)) , (3)

(Ω,Σ,P) is a probability space, for each ω ∈ Ω, xi,ω is an element of Q and ϕω

is a mapping from Rn to Lq(Q), with the property that for each f ∈W r
p (Q),

the mapping

ω ∈ Ω → Aω(f) = ϕω(f(x1,ω), . . . , f(xn,ω))

is a random variable with values in Lq(Q) (that is, Σ-to-Borel measurable).
Since elements of W r

p (Q) are equivalence classes of functions, relation (3)
needs more explanation when W r

p (Q) is not embedded into C(Q), and hence
function values are, in general, not defined for such classes. We impose a
further condition on the elements of Aran

n , let us call it consistency of the
algorithm. We assume that whenever f1 and f2 are representatives of the same
class f ∈W r

p (Q), then

ϕω(f1(x1,ω), . . . , f1(xn,ω)) = ϕω(f2(x1,ω), . . . , f2(xn,ω)) P − a.s.

This means that Aω(f1) and Aω(f2) coincide almost surely, and in this sense
we can take (3) as the definition of the random variable Aω(f). A sufficient
condition for consistency is obviously the following: For all i, the mapping
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ω → xi,ω is Lebesgue measurable and for each subset Q0 ⊂ Q of Lebesgue
measure zero we have

P{ω ∈ Ω : xi,ω ∈ Q0} = 0,

or equivalently, the distribution of the xi,ω is absolutely continuous with respect
to the Lebesgue measure.

The class Aran
n contains the subclass of randomized linear algorithms – they

are of the form above with linear ϕω, thus

Aω(f) =
n∑

i=1

f(xi,ω)ψi,ω, (4)

for certain ψi,ω ∈ Lq(Q).
Given any 1 ≤ s <∞, the error of an algorithm A ∈ Aran

n is defined as

e(s)(Jpq, A,BW r
p (Q)) = sup

f∈BW r
p (Q)

(E ‖f −Aω(f)‖s
Lq(Q))

1/s, (5)

where E is the expectation with respect to P and BW r
p (Q) denotes the unit

ball of W r
p (Q). The randomized n-th minimal error is defined as

erann (Jpq, BW r
p (Q)) = inf

A∈An

e(1)(Jpq, A,BW r
p (Q)) .

Hence, no randomized algorithm that uses at most n function values can
provide a smaller error than erann (Jpq, BW r

p (Q)). We have chosen the s = 1 case
for the minimal error, which is convenient for the sequel. Statements for other
s can be read from the proofs below.

In terms of information-based complexity theory [TWW88], [Nov88], we
consider randomized nonadaptive algorithms using standard information. In
terms of [NT06], the erann can be viewed as randomized sampling numbers.

In the case that W r
p (Q) is embedded into C(Q), the order of erann is well-

known:

erann (Jpq, BW r
p (Q)) � n−r/d+max(1/p−1/q,0), (6)

where we used the following notation: for sequences (an) and (bn) of nonnegative
reals we write an � bn if there are constants c1, c2 > 0 and an n0 ∈ N such
that c1an ≤ bn ≤ c2an for all n ≥ n0. Furthermore note that we often use the
same symbols c, c1, . . . for possibly different constants, also in sequences of
relations.

The upper bound of (6) can be reached by deterministic methods, for
example by piecewise polynomial approximation (see, e.g. [Cia78]). The lower
bounds were shown in [Was89] (p = q = ∞), [Nov88] (1 ≤ p ≤ ∞, q = ∞),
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and [Mat91] (1 ≤ p, q ≤ ∞). Recall from [Ada75] that W r
p (Q) is embedded

into C(Q) iff
p = 1 and r/d ≥ 1

or
1 < p <∞ and r/d > 1/p

or
p = ∞.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7)

In this paper we are concerned with the case that (7) does not hold. Together
with (1), this means we assume

1 ≤ p, q <∞
and

1 − 1/q < r/d < 1 if p = 1,
1/p− 1/q < r/d ≤ 1/p if 1 < p <∞.

⎫⎪⎪⎬⎪⎪⎭ (8)

Note that we demanded from the beginning that W r
p (Q) is embedded into

Lq(Q) (otherwise the operator Jpq would not even be defined). So here we
study the case that W r

p (Q) is embedded into Lq(Q) but not into C(Q). In
this case approximation based on function values was not studied before. In
the deterministic case there is a certain reason for this: function values are
not defined any longer! However, this can easily be overcome. Namely, let us
consider approximation on BW r

p (Q) ∩ C(Q), a dense subset of BW r
p (Q). Now

function values are defined, and the question arises which rate can be reached
on the basis of Sobolev smoothness. It turns out that in the deterministic
setting no rate whatsoever is possible on BW r

p (Q) ∩C(Q). We discuss this issue
in section 4.

However, also the analysis of the randomized setting was restricted to
the case (7) of embedding into C(Q). In section 2 we present a randomized
algorithm which reaches the rate (6) also in the case (8) of non-embedding
into C(Q). Hence, in contrast to the situation of embedding (7), randomized
algorithms turn out to be superior to deterministic ones. We comment on this
in more detail in section 4.

Some applications to randomized integration of functions from W r
p (Q) and

to approximation of solution operators of elliptic partial differential equations
are given in Section 3.

2 Randomized Approximation

The following is the main result of this paper. We state it for 1 ≤ p ≤ ∞,
1 ≤ q <∞, since the proof works for all these cases, and thus shows that the
method proposed also partly recovers the upper bound from (6) (having in
mind though that the new part is the case in which (8) holds).
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Theorem 1. Let r, d ∈ N, 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and assume r/d >
1/p− 1/q. Then

erann (Jpq, BW r
p (Q)) � n−r/d+max(1/p−1/q,0). (9)

We proceed as follows. Under the assumptions of Theorem 1, we develop a
general scheme for randomized approximation of functions. Its convergence is
then analysed in Proposition 1. Based on this, the proof of Theorem 1 is given
at the end of this section.

Let (Ω,Σ,P) be a probability space, and for each ω ∈ Ω let Pω be any
operator from C(Q) to Lq(Q) of the form

Pωf =
κ∑

j=1

f(xj,ω)ψj,ω (f ∈ C(Q))

with xj,ω ∈ Q and ψj,ω ∈ Lq(Q). We assume that the mappings

ω → xj,ω, ω → ψj,ω

are random variables, the distributions of the xj being absolutely continuous
with respect to the Lebesgue measure, that

(E |f(xj,ω)|q)1/q ≤ c‖f‖W r
p (Q) (f ∈W r

p (Q)), (10)

ess supω∈Ω‖ψj,ω‖Lq(Q) ≤ c (11)

for j = 1, . . . , κ, and that for all g ∈ Pr−1(Q), the space of polynomials on Q
of degree not exceeding r − 1,

Pωg = g P − a.s. (12)

Families with such properties are easily constructed. For example, fix
0 < δ < 1 and let

P (1)f =
κ∑

j=1

f(zj)ψj (13)

be for d = 1 the Lagrange interpolation operator of appropriate degree and
for d > 1 its tensor product, with (zj)κ

j=1 the uniform grid on [0, 1 − δ]d, and
(ψj)κ

j=1 the respective Lagrange polynomials, considered as functions on Rd.
Put Ω1 = [0, δ]d, Σ1 the σ-algebra of Lebesgue measurable sets and P1 the
normalized on [0, δ]d Lebesgue measure. For ω1 ∈ Ω1 = [0, δ]d and f ∈ C(Q)
put

xj,ω1 = zj + ω1, (14)
ψj,ω1(x) = ψj(x− ω1) (x ∈ Q), (15)

and (
P (1)

ω1
f
)

(x) =
κ∑

j=1

f(zj + ω1)ψj(x− ω1). (16)
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Then we have for f ∈W r
p (Q)

(E |f(xj,ω1)|q)1/q =

(
δ−d

∫
[0,δ]d

|f(zj + y)|qdy
)1/q

≤ δ−d/q‖f‖Lq(Q) ≤ cδ−d/q‖f‖W r
p (Q),

which shows that (10) is satisfied. It is readily checked that conditions (11)
and (12) hold, as well.

Let l ∈ N0 and let

Q =
2dl⋃
i=1

Qi

be the partition of Q into 2dl cubes of sidelength 2−l and of disjoint interior.
Let xi denote the point in Qi with minimal coordinates. Define the operators
Ei and Ri on Lq(Q) by setting for f ∈ Lq(Q) and x ∈ Q

(Eif)(x) = f(xi + 2−lx)

and

(Rif)(x) = χQi
(x)f(2l(x− xi)) =

{
f(2l(x− xi)) if x ∈ Qi

0 otherwise.

For ω ∈ Ω set

Pl,ωf =
2dl∑
i=1

RiPωEif =
2dl∑
i=1

κ∑
j=1

f(xi + 2−lxj,ω)Riψj,ω (17)

(observe that we use the same random variables xj,ω for all i). It easily follows
from the assumptions on (Pω)ω∈Ω that (Pl,ω)ω∈Ω is an algorithm from Aran

m ,
where m = κ2dl. In fact it is a linear algorithm.

Proposition 1. Let r, d ∈ N, 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and assume r/d >
1/p−1/q. Let (Pω)ω∈Ω be as above satisfying (10), (11), (12), and let (Pl,ω)ω∈Ω

for l ∈ N0 be given by (17). Then there is a constant c > 0 such that for all
l ∈ N0 and f ∈W r

p (Q)

(E ‖f − Pl,ωf‖q
Lq(Q))

1/q ≤ c 2−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q). (18)

Proof. It follows from (10) and (11) that for f ∈W r
p (Q)

(E ‖Pωf‖q
Lq(Q))

1/q ≤
⎛⎝E

(
κ∑

j=1

|f(xj,ω)|‖ψj,ω‖Lq(Q)

)q
⎞⎠1/q

≤ c
κ∑

j=1

(E |f(xj,ω)|q)1/q ≤ c‖f‖W r
p (Q). (19)
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We denote

|f |r,p,Q =

⎛⎝∑
|α|=r

‖Dαf‖p
Lp(Q)

⎞⎠1/p

if p <∞ and
|f |r,∞,Q = max

|α|=r
‖Dαf‖L∞(Q).

Next we apply Theorem 3.1.1 from [Cia78]: there is a constant c > 0 such that
for all f ∈W r

p (Q)

inf
g∈Pr−1(Q)

‖f − g‖W r
p (Q) ≤ c|f |r,p,Q. (20)

It follows from (2), (12), (19), and (20) that

(E ‖f − Pωf‖q
Lq(Q))

1/q = inf
g∈Pr−1(Q)

(E ‖(f − g) − Pω(f − g)‖q
Lq(Q))

1/q

≤ c inf
g∈Pr−1(Q)

‖f − g‖W r
p (Q) ≤ c|f |r,p,Q. (21)

Clearly,
‖Rif‖Lq(Q) = 2−dl/q‖f‖Lq(Q) (f ∈ Lq(Q)). (22)

From (21) and (22) we obtain for all f ∈W r
p (Q),

(E ‖f − Pl,ωf‖q
Lq(Q))

1/q =

⎛⎝E
∥∥∥ 2dl∑

i=1

(RiEif −RiPωEif)
∥∥∥q

Lq(Q)

⎞⎠1/q

=

⎛⎝E
2dl∑
i=1

‖Ri(Eif − PωEif)‖q
Lq(Q)

⎞⎠1/q

=

⎛⎝2−dl
2dl∑
i=1

E ‖Eif − PωEif‖q
Lq(Q)

⎞⎠1/q

≤ c
⎛⎝2−dl

2dl∑
i=1

|Eif |qr,p,Q

⎞⎠1/q

≤ c 2max(1/p−1/q,0)dl

⎛⎝2−dl
2dl∑
i=1

|Eif |pr,p,Q

⎞⎠1/p
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and furthermore,⎛⎝2−dl
2dl∑
i=1

|Eif |pr,p,Q

⎞⎠1/p

=

⎛⎝2−dl
2dl∑
i=1

∑
|α|=r

∫
Q

|Dαf(xi + 2−lx)|p dx
⎞⎠1/p

= 2−rl

⎛⎝ 2dl∑
i=1

∑
|α|=r

∫
Qi

|Dαf(y)|p dy
⎞⎠1/p

= 2−rl|f |r,p,Q ≤ 2−rl‖f‖W r
p (Q).

(with the usual modifications for p = ∞). Combining the last two inequalities
gives

(E ‖f − Pl,ωf‖q
Lq(Q))

1/q ≤ c 2−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q),

which concludes the proof.

Proof of Theorem 1. Let n ∈ N and put

l =
⌈

log2 n

d

⌉
. (23)

Then (Pl,ω)ω∈Ω belongs to Aran
m with m = κ2dl ≤ cn, so Proposition 1 together

with (23) gives the upper bound in (9). The lower bound follows from standard
techniques of information-based complexity (reduction to the average case on
subsets formed by smooth bump functions) and is identical to that given in
[Mat91] (see also [Nov88], [Hei93]). We omit it here.

3 Some Applications

First we consider integration. Let Q = [0, 1]d and let I :W r
p (Q) → R be the

integration operator

If =
∫

Q

f(x)dx.

Corollary 1. Let r, d ∈ N, 1 ≤ p <∞, and put p̄ = min(p, 2). Then

erann (I,BW r
p (Q)) � n−r/d−1+1/p̄.

This result was shown by Novak for p ≥ 2 and for p < 2 and r/d ≥
1/p − 1/2, that is, for the case that W r

p (Q) is embedded into L2(Q), see
[Nov88], 2.2.9, and also the references therein for previous work. Our analysis
supplies the remaining cases and a new technique: Novak used a result of [EZ60]
on stochastic quadratures. For spaces embedded into C(Q), another proof
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was given in [Hei93] using deterministic approximation as variance reduction
(separation of the main part). What we present below might be viewed as a
stochastic analogon of the latter.

Proof of Corollary 1. Fix 0 < δ < 1 and let (Ω1, Σ1,P1) be as defined above,
following relation (13). Let n ∈ N, let l be given by (23), and let P (1)

l,ω1
for

ω1 ∈ Ω1 be as defined in (13-17), that is, for f ∈W r
p (Q) and x ∈ Q,

(
P

(1)
l,ω1
f
)

(x) =
2dl∑
i=1

κ∑
j=1

f(xi + 2−l(zj + ω1))χQi
(x)ψj(2l(x− xi) − ω1). (24)

Finally, let yk,ω2 (k = 1, . . . , n) be independent, uniformly distributed on
Q random variables over some probability space (Ω2, Σ2,P2). Define the
algorithm

(
A

(2)
ω2

)
ω2∈Ω2

to be the usual Monte Carlo method

A(2)
ω2

(g) =
1
n

n∑
k=1

g(yk,ω2). (25)

It is known that for g ∈ Lp(Q)(
E ω2 |Ig −A(2)

ω2
(g)|p̄
)1/p̄

≤ 22/p̄−1n−1+1/p̄‖g‖Lp(Q) (26)

(see [Hei93] for the case 1 ≤ p < 2). Now we put

(Ω,Σ,P) = (Ω1, Σ1,P1) × (Ω2, Σ2,P2)

and define an algorithm A = (Aω)ω∈Ω by setting for ω = (ω1, ω2) and f ∈
W r

p (Q)

Aω(f) = IP (1)
l,ω1
f +A(2)

ω2
(f − P (1)

l,ω1
f).

On the basis of (24) and (25) measurability and consistency readily follow,
and we have A ∈ Aran

m for m = κ2dl + n ≤ cn. Moreover,

If −Aω(f) = I(f − P (1)
l,ω1
f) −A(2)

ω2
(f − P (1)

l,ω1
f).

Using Fubini’s theorem, (26), and Proposition 1 for q = p, we derive(
E |If −Aω(f)|p̄)1/p̄

=
(
E ω1E ω2

∣∣∣I (f − P (1)
l,ω1
f
)

−A(2)
ω2

(
f − P (1)

l,ω1
f
)∣∣∣p̄)1/p̄

≤ cn−1+1/p̄

(
E ω1

∥∥∥f − P (1)
l,ω1
f
∥∥∥p̄

Lp(Q)

)1/p̄

≤ cn−1+1/p̄

(
E ω1

∥∥∥f − P (1)
l,ω1
f
∥∥∥p

Lp(Q)

)1/p

≤ cn−1+1/p̄−r/d‖f‖W r
p (Q),
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concluding the proof of the upper bound. The lower bound is already contained
in [Nov88], 2.2.9, Proposition 1.

Now we turn to elliptic problems. First results on the randomized infor-
mation complexity of elliptic partial differential equations were obtained in
[Hei06b]. The results above have some direct consequences for certain instances
of this problem. Let d,m ∈ N, d ≥ 2, let Q1 ⊂ Rd be a bounded C∞ domain
(see, e.g., [Tri78] for the definition), and let L be an elliptic differential operator
of order 2m on Q1, that is

Lu =
∑

|α|≤2m

aα(x)Dαu(x), (27)

with boundary operators

Bju =
∑

|α|≤mj

bjα(x)Dαu(x), (28)

where j = 1, . . . ,m, mj ≤ 2m− 1 and aα ∈ C∞(Q1) and bjα ∈ C∞(∂Q1) are
complex-valued infinitely differentiable functions. Consider the homogeneous
boundary value problem

Lu(x) = f(x) (x ∈ Q0
1) (29)

Bju(x) = 0 (x ∈ ∂Q1). (30)

We asssume that (L, {Bj}) is regularly elliptic (see [Tri78], 5.2.1/4, for the
definition), and that 0 is not in the spectrum of L, considered as an unbounded
operator in Lq(Q1) with domain of definition W 2m

q,{Bj}(Q1), where the latter
denotes the subspace ofW 2m

q (Q1) consisting of those f which satisfy (30). This
implies that L is an isomorphism from W 2m

q,{Bj}(Q1) to Lq(Q1) for 1 < q <∞,
see [Tri78], Theorem 5.5.1(b). Now we put S = L−1Jpq, considered as an
operator into W 2m

q (Q1), that is,

S :W r
p (Q1)

Jpq−→ Lq(Q1)
L−1

−→W 2m
q (Q1).

Hence S is the solution operator for the elliptic problem (29–30), where we
consider the problem of approximating the full solution u, the right-hand side
f is supposed to belong to W r

p (Q1), and the error is measured in the norm of
W 2m

q (Q1).

Corollary 2. Let r, d ∈ N, 1 ≤ p ≤ ∞, 1 < q < ∞, and r/d > 1/p − 1/q.
Then

erann (S,BW r
p (Q1)) � n−r/d+max(1/p−1/q,0). (31)

Proof. Using local charts (like, e.g., in [Hei06b]) it is easy to extend Theorem
1 to smooth domains Q1 in place of Q = [0, 1]d. It is also clear that the case
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of complex-valued functions is a direct consequence of the real case. From this
and the above-mentioned fact that L−1 is an isomorphic embedding of Lq(Q1)
into W 2m

q (Q1) the upper bound follows.
So does the lower bound if we verify that algorithms with values in

L−1(Lq(Q1)) =W 2m
q,{Bj}(Q1), a subspace of W 2m

q (Q1) containing S(W r
p (Q1)),

cannot be better (up to a constant) than algorithms with values in W 2m
q (Q1).

This, however, follows, e.g., from the fact that W 2m
q,{Bj}(Q1) is complemented

in W 2m
q (Q1), see [Tri78], Theorem 5.5.2(b), completing the proof.

A similar approach (in the sense of using isomorphism properties to reduce
approximation of solution operators to approximation of embeddings) was
presented in [DNS06a, DNS06b] for the deterministic setting, with q = 2.
There, however, more general classes of operators and, besides function values,
also arbitrary linear functionals are considered.

4 Deterministic Approximation

We already mentioned that for those r, d and p for which W r
p (Q) is embedded

into C(Q), the order of the randomized n-th minimal error coincides with
that of the deterministic one. If the embedding does not hold, that is, if (8) is
satisfied, the situation is different. First of all, since function values are not
well-defined, we replace BW r

p (Q) by the (dense) subset BW r
p (Q) ∩C(Q). In this

section we show that, although now function values are defined, the Sobolev
smoothnessW r

p (Q) does not lead to any rate at all for the deterministic setting.
That is, the deterministic n-th minimal error is bounded from below by a
positive constant.

Put F = BW r
p (Q) ∩ C(Q), let n ∈ N and let Adet

n be the class of all
deterministic algorithms for the approximation of Jpq on F , which are of the
form

A(f) = ϕ(f(x1), . . . , f(xn)), (32)

where xi ∈ Q (i = 1, . . . , n) and ϕ : Rn → Lq(Q) is an arbitrary mapping.
The error on F is defined as

e(Jpq, A, F ) = sup
f∈F

‖S(f) −A(f)‖Lq(Q).

The deterministic n-th minimal error is defined as

edet
n (Jpq, F ) = inf

A∈Adet
n

e(Jpq, A, F ).

Proposition 2. Let 1 ≤ p, q <∞ and r/d > 1/p− 1/q. Assume that either

r

d
<

1
p

(33)
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or
r

d
=

1
p

and 1 < p <∞. (34)

Then
edet

n (Jpq, BW r
p (Q) ∩ C(Q)) � 1. (35)

For the proof we need the following lemma. Let B (0, #) denote the closed ball
in Rd of radius # around 0.

Lemma 1. Assume that (33) or (34) holds. Then there is a sequence of
functions

(fm)∞m=1 ⊂W r
p (Rd) ∩ C∞(Rd)

such that for all m

fm(0) = 1, supp fm ⊆ B
(

0,
1
m

)
, (36)

and
lim

m→∞ ‖fm‖W r
p (Rd) = 0. (37)

Proof. In case of (34) this is a combination of well-known facts from function
space theory. Let ψ ∈ C∞(Rd) be such that ψ ≥ 0,

ψ(x) =

{
1 if |x| ≤ 1

2 ,

0 if |x| ≥ 1,

and ∫
Rd

ψ(x)dx = 1.

Put

g(x) =

{
ψ(x) ln ln 3

|x| if 0 < |x| < 1,
0 if |x| ≥ 1.

Then
‖g‖W r

p (Rd) <∞, supp g ⊆ B(0, 1), lim
x→0

g(x) = +∞, (38)

see [Ada75], Example 5.26. Furthermore, setting

hm = ψm ∗ g with ψm(x) = mdψ(mx) (x ∈ Rd, m ∈ N),

we get, using Lemma 3.15 of [Ada75] and (38),

hm ∈ C∞(Rd), supphm ⊆ B(0, 2), hm(0) > 0 (m ∈ N),

sup
m∈N

‖hm‖W r
p (Rd) <∞, lim

m→∞hm(0) = +∞.
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Finally we define fm by

fm(x) = hm(0)−1hm(2mx) (x ∈ Rd, m ∈ N).

Relation (34) implies

‖fm‖W r
p (Rd) ≤ hm(0)−1‖hm(2m · )‖W r

p (Rd) ≤ chm(0)−1 → 0,

while (36) is obviously fulfilled by definition. This completes the proof in the
case of (34).

If (33) holds, we choose ψ as above and put

fm(x) = ψ(mx) (x ∈ Rd, m ∈ N).

Clearly, (36) is satisfied, and it follows from (33) that

‖fm‖W r
p (Rd) ≤ cmr−d/p → 0 (m→ ∞).

Proof of Proposition 2. The upper bound follows from the fact that Jpq is
bounded. To prove the lower bound, let x1, . . . , xn be any fixed distinct points
in Q. For m ∈ N consider the function vm ∈ C(Q) given by

vm(x) =
(
1 + n‖fm‖W r

p (Rd)

)−1
(

1 −
n∑

i=1

fm(x− xi)

)
(x ∈ Q).

We have
‖vm‖W r

p (Q) ≤ 1 (39)

and, using (37),

‖vm‖Lq(Q) ≥
∫

Q

vm(x)dx

=
(
1 + n‖fm‖W r

p (Rd)

)−1
(

1 −
n∑

i=1

∫
Q

fm(x− xi)dx

)

≥
(
1 + n‖fm‖W r

p (Rd)

)−1 (
1 − n‖fm‖W r

p (Rd)

)
→ 1 (40)

as m→ ∞. Finally, by (36), for m large enough,

vm(xi) = 0 (i = 1, . . . , n). (41)

Now (39–41) combined with standard results from information-based complex-
ity theory [TWW88], Ch. 3.1, prove Proposition 2.

Proposition 2 was independently obtained by Novak and Woźniakowski (unpub-
lished notes).
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5 Comments

Comparing the rates in Theorem 1 and in Proposition 2 for the case (8) of
non-embedding into C(Q), we see that on BW r

p (Q) ∩C(Q) randomization gives
a speedup over the deterministic setting of

erann (Jpq, BW r
p (Q) ∩ C(Q))

edet
n (Jpq, BW r

p (Q) ∩ C(Q))
� n−r/d+max(1/p−1/q,0),

which is non-trivial in all cases, since r/d > max(1/p− 1/q, 0) by assumption.
If p = 1, the maximal exponent of the speedup is r/d, reached for q = 1, and
r/d can be arbitrarily close to 1. If 1 < p <∞, the maximal exponent of the
speedup is again r/d and can now be as large as 1/p, reached for q ≤ p.

Let us also mention that the lower bounds presented here for the randomized
setting hold true for the more general case of adaptive (standard) information,
as introduced e.g. in [Hei06a]. Similarly for the deterministic case. The latter
follows from general results [TWW88].

As is readily seen from its proof, Proposition 2 remains true if Jpq is replaced
by I of Corollary 1, the parameter q and the condition r/d > 1/p− 1/q being
omitted. Furthermore, the argument used in the proof of Corollary 2 shows
that we can also replace Jpq in Proposition 2 by S.
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Summary. We study the average case setting for linear multivariate problems
defined over a separable Banach space of functions f of d variables. The Banach space
is equipped with a Gaussian measure. We approximate linear multivariate problems
by computing finitely many information evaluations. An information evaluation
is defined as an evaluation of a continuous linear functional from a given class
Λ. We consider two classes of information evaluations; the first class Λall consists
of all continuous linear functionals, and the second class Λstd consists of function
evaluations.

We investigate the minimal number n(ε, d, Λ) of information evaluations needed
to reduce the initial average case error by a factor ε. The initial average case
error is defined as the minimal error that can be achieved without any information
evaluations.

We study tractability of linear multivariate problems in the average case setting.
Tractability means that n(ε, d, Λ) is bounded by a polynomial in both ε−1 and d,
and strong tractability means that n(ε, d, Λ) is bounded by a polynomial only in ε−1.

For the class Λall, we provide necessary and sufficient conditions for tractability
and strong tractability in terms of the eigenvalues of the covariance operator of a
Gaussian measure on the space of solution elements. These conditions are simplified
under additional assumptions on the measure. In particular, we consider measures
with finite-order weights and product weights. For finite-order weights, we prove that
linear multivariate problems are always tractable.

∗ The second and third authors were partially supported by the National Science
Foundation under Grants DMS-0609703 and DMS-0308713, respectively.
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For the class Λstd, we consider weighted multivariate function approximation
problems. We prove that for such problems the class Λstd is as powerful as the class
Λall in the following sense: if n(ε, d, Λall) = O(ε−p d q) then

n(ε, d, Λstd) = O
(
ε−p d q [ln ln (ε−1 + d + 1)

]1+p/2
)

.

Hence, modulo the double logarithm these classes are equally powerful. In particular,
this means that strong tractability and tractability are equivalent in both classes.

1 Introduction

Tractability of multivariate problems has recently become the subject of
intensive research. To give an idea of how this area has developed, note
that [NW01] was able to survey tractability results before 2000, but that
the number papers appearing after 200 is too many to cite. The initial re-
sults and early emphasis was on integration problems. There are also quite
a few papers on the tractability of general linear multivariate problems, how-
ever the majority of them have studied only the worst case setting. Much
less attention has been devoted to tractability of general linear multivari-
ate problems in other than the worst case setting; for exceptions see, e.g.,
[HW00, KSW07, RW96, RW97, Was93, WW95, WW01]. This has led us
to address tractability of linear multivariate problems in the average case
setting.

More specifically, by a linear multivariate problem we mean the appro-
ximation of a linear operator Sd that maps a separable Banach space Fd of
d-variate functions into a Hilbert space Gd for d = 1, 2, . . . . An important
example of such problems is provided by multivariate function approxima-
tion, Sdf = f , while other examples include linear partial differential equa-
tions and integral equations. In the average case setting, we assume that
the space Fd is endowed with a zero-mean Gaussian probability measure
µd. This allows us to measure the approximation errors in the correspond-
ing mean-square sense. That is, if Af denotes the approximation to Sdf
given by an algorithm A, then the average case error of the algorithm A is
given by

eavg(A;Sd) :=
(∫

Fd

‖Sdf −Af‖2
Gd
µd(df)

)1/2

.

The approximations Af use partial information about f that consists of a
finite number n of information evaluations given by L1(f), L2(f), . . . , Ln(f).
Here, the Li are continuous linear functionals that belong to the class Λall = F∗

d

of all continuous linear functionals or to the class Λstd of function evaluations.
That is, Li ∈ Λstd iff there exists a point xi such that Li(f) = f(xi) for all
f ∈ Fd.



Tractability of Linear Multivariate Problems in the Average Case Setting 463

It is important to know what algorithms and information evaluations are
optimal. In particular, we would like to know the minimal average case error
among all algorithms that use at most n information evaluations. For n = 0
this minimal error is called the initial error, which is the smallest average case
error which can be achieved without any information evaluations. In our case,
the initial error corresponds to the average case error of the zero algorithm
A ≡ 0 and is equal to the square root of the trace of the covariance operator
of the Gaussian measure νd = µd S

−1
d of solution elements.

Knowledge of the minimal average case errors allows us to know the minimal
number, n = n(ε;Sd, Λ), of information evaluations for any information class
Λ ∈ {Λall, Λstd} needed for the reduction of the initial error by a factor ε ∈
(0, 1). Clearly, n(ε;Sd, Λ) measures the intrinsic difficulty of the multivariate
linear problem Sd.

The function n(ε;Sd, Λ) has been extensively investigated in the literature,
mainly for a fixed d and for ε tending to zero. For a number of important
applications the number of variables d might be arbitrarily large and the
error demand ε might be not too severe, see e.g., [TW98]. It is therefore also
important to study the dependence of n(ε;Sd, Λ) also on d. Controlling the
dependence on d is the essence of tractability and strong tractability.

For the reader’s convenience, we now recall the definition of tractability
and strong tractability, see [Woź94]. We define S := {Sd} and say that the
problem S is tractable in the class Λ if there are non-negative constants C, p
and q such that

n(ε;Sd, Λ) ≤ C d q ε−p ∀ d ∈ N ∀ ε ∈ (0, 1).

It is strongly tractable if this bound above holds with q = 0. The exponent of
strong tractability is defined as the infimum of p satisfying the bound above.

For the class Λall, the optimal algorithms, optimal linear functionals and
n(ε;Sd, Λ

all) are known, see [PW90, Was86] for the original results which can
be also found in [TWW88]. The number n(ε;Sd, Λ

all) is the square root of
the truncated sum of eigenvalues of the covariance operator Wd : Gd → Gd of
the Gaussian measure νd of solution elements. From this, we obtain necessary
and sufficient conditions for tractability and strong tractability in terms of
eigenvalues of the operators Wd; see Theorem 1 in Section 3.

In general, it is difficult to find the eigenvalues of the operator Wd for all
d. Therefore, in the second part of Section 3, we assume that the eigenvalues
of Wd can be expressed as weighted products of eigenvalues for the univariate
d = 1 case, see (15). This corresponds to the assumption that the Hilbert space
Gd is a tensor product of d copies of the Hilbert space G1 for the univariate case,
and that the Fourier coefficients of the solutions with respect to the tensor
product orthonormal system of Gd are independent Gaussian variables with
zero means and whose variances are equal to weighted products of univariate
variances. In Section 4 we present several linear multivariate problems for
which the assumption (15) holds.
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Roughly speaking, (15) corresponds to assuming that the Gaussian measure
µd concentrates on functions of the form

f(x) =
∑

u⊆{1,2,...,d}
γd,u fu(x),

where γ = {γd,u}d,u is a family of non-negative numbers, called weights, and
the functions fu depend only on variables xk with k ∈ u. We now briefly
comment on the family of weights γ; for more discussion see [SW98] where the
concept of weights was introduced. Each weight γd,u quantifies the importance
of the group of variables xj with j ∈ u. For instance, by taking small γd,u

for subsets of a large cardinality, |u| > q∗ say, we model problems with
effective dimension at most q∗. By taking γd,u = 0 for |u| > q∗ we obtain the
finite-order weights, see [DSWW06] where this concept was introduced. For
finite-order weights, we force µd to be concentrated on the subspace of linear
combinations of functions, each depending on at most q∗ variables. Examples
of such functions are provided by d-variate polynomials of degree at most q∗,
or the Coulomb potential for which q∗ = 6, see e.g., [WW05]. This idea is also
behind the successful use of orthogonal arrays of fixed strength in experimental
designs [DM99, HSS99]. Another important class of weights is provided by the
product weights with γd,u =

∏
k∈u γd,k, first used in [WW01], or the uniform

product weights with γd,k independent of d, originally introduced in [SW98].
Such weights are used to model problems in which different variables have
different significance; less important variables xk correspond to smaller γd,k.

Using Theorem 1, we provide necessary and sufficient conditions for
tractability and strong tractability for both finite-order and product weights
for the class Λall. In particular, we show that problems with finite-order weights
are always tractable; and that tractability is equivalent to strong tractability
for uniform product weights.

For important applications, arbitrary linear functionals cannot be computed
and, instead, only function evaluations Li(f) = f(xi) are available. This
corresponds to the class Λstd. For this class, optimal information evaluation
and n(ε;Sd, Λ

std) are much more difficult to characterize. In Section 5, we
study the power of standard information for weighted multivariate function
approximation problems in the average case setting. We assume that function
evaluations are continuous functionals in Fd, and that Fd is continuously
embedded in Gd = L2,ρ(Dd) with

‖g‖2
Gd

=
∫

Dd

|f(x)|2 ρ(x) dx,

where ρ is a given probability density function on Dd ⊆ Rd. The solution
operator Sd is the embedding

Sdf = f ∀ f ∈ Fd.

Assuming that Λstd ⊆ Λall, we show that optimal standard information
and optimal information from Λall have the same order of convergence if we
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have a polynomial rate of convergence for the class Λall. That is, assume that
there exists a sequence of algorithms A∗

n, each using n functionals from Λall

and with the average case errors satisfying

eavg(A∗
n) ≤ C0

(n+ 1)r
∀n = 0, 1, . . .

for some positive C0 and r. We prove that there exists a sequence of algorithms
An, each using at most

n

⌈
ln(ln(n))

ln(1 + 1/(2r))

⌉
function evaluations,

with the average case errors bounded by

eavg(An) ≤ eC0

(n+ 1)r

√
2 +

ln(ln(n))
ln(1 + 1/(2r))

.

Furthermore, if multivariate approximation is (strongly) tractable in the
class Λall then it is also (strongly) tractable in the class Λstd with essentially
the same exponents of d and ε−1. That is, if

n(ε;Sd, Λ
all) ≤ C d q ε−p

then

n(ε;Sd, Λ
std) ≤ min

k=1,2,...
k

⌈(
2C(k + 1)p/2 d q ε−p

)1/(1−(1+p/2)−k)
⌉

= O
(
d q ε−p [ln(ln(ε−1 + d+ 1))]1+p/2

)
with the factor in the big O notation independent of d and ε.

Unfortunately, the proofs in Section 5 are not fully constructive, i.e., they
provide only semi-construction of the algorithms An. By semi-construction
we mean that sample points used by the algorithm An are selected only
probabilistically. If we want to guarantee that we succeed with probability
1 − δ then the cost of constructing good sample points is proportional to
ln(δ−1).

The lack of fully constructive algorithms achieving tractability error bounds
in the average case setting is in contrast to the randomized setting, in which
the construction of asymptotically optimal algorithms An using standard
information for multivariate approximation is known, see [WW07].

Finally we would like to stress that the results of Section 5 do not nec-
essarily mean that Λstd is always as powerful as Λall. Indeed, it is an open
problem to characterize the convergence of nth minimal errors n(ε;S,Λstd)
when n(ε;S,Λall) converge to zero faster than polynomially; see Remark 1.

We summarize the content of the paper. Section 2 contains basic definitions
and facts concerning average case setting and tractability. Section 3 deals with
tractability of linear problems for the class Λall. The assumptions and results
of Section 3 are illustrated in Section 4 by four examples. Finally, Section 5
deals with approximation problems for the class Λstd of function evaluations.
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2 Problem Formulation

In this section we present general definitions and known results about the
average case setting as well as assumptions specific to this paper. For more
detailed discussion we refer the reader to [TWW88].

2.1 General Definitions

For d = 1, 2, . . . , let Fd be a separable Banach space of functions f : Dd → R,
where Dd is a Borel measurable subset of Rmd. Here and in the rest of this
paper, m is a fixed positive integer. For many problems it is natural to assume
that m = 1. There are, however, practically important problems for which
m > 1, see e.g., [KS05, WW04]. We equip the space Fd with a zero mean
Gaussian probability measure µd whose covariance operator is denoted by Cµd

.
For general properties of Gaussian measures on Banach spaces we refer to
[Kuo75, Vak81], see also [TWW88, Appendix 2]. Here we only recall that

Cµd
: F ∗

d → Fd with L1(Cµd
L2) =

∫
Fd

L1(f)L2(f)µd(df) ∀L1, L2 ∈ F ∗
d ,

where F ∗
d denotes the space of continuous linear functionals L : Fd → R.

Furthermore, ∫
Fd

‖f‖2
Fd
µd(df) < ∞. (1)

Equivalently, f ∈ Fd can be viewed as a realization of a zero-mean Gaussian
stochastic process with the covariance operator Cµd

. When the function evalu-
ations, Lx(f) := f(x), are continuous functionals for all x, it is convenient to
work with the covariance kernel, Kd : Dd ×Dd → R, which is defined in terms
of the covariance operator applied to function evaluation functionals:

Kd(x,y) := Lx(Cµd
Ly) =

∫
Fd

f(x)f(y)µd(df) ∀x,y ∈ Dd. (2)

We assume that
Sd : Fd → Gd

is a continuous linear operator, and Gd is a separable Hilbert space. The
operator Sd is called the solution operator. Let

νd := µdS
−1
d . (3)

Then νd is a zero-mean Gaussian measure on Gd whose covariance operator
Cνd

: G∗
d = Gd → Gd is given by

Cνd
g =
∫
Fd

Sdf · 〈Sdf, g〉Gd
µd(df) = Sd

(
Cµd

(〈Sd(·), g〉Gd

)) ∀ g ∈ Gd.
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Equivalently,
Cνd
g = Sd (Cµd

(LgSd)) ∀ g ∈ Gd,

where Lg(h) = 〈g, h〉Gd
, with 〈·, ·〉Gd

standing for the inner product of Gd. Then
(1) and the continuity of Sd imply that the trace of Cνd

is finite, i.e.,

trace(Cνd
) =
∫
Gd

‖g‖2
Gd
νd(dg) =

∫
Fd

‖Sdf‖2
Gd
µd(df) < ∞.

The computational problem addressed in this paper is to approximate Sdf
for f ∈ Fd by algorithms that use a finite number of evaluations of f . One
evaluation is defined as computation of one continuous linear functional of
f . For problems considered in this paper, it is known that adaptive choice of
linear functionals as well as nonlinear algorithms do not essentially help, see
[TWW88, Was86]. Hence, we can restrict our attention to linear algorithms,
i.e., algorithms of the form

Af =
n∑

j=1

Lj(f) gj ,

where gj ∈ Gd and Lj are linear functionals from a class Λ of permissible
functionals. The number n is called the cardinality of A, and it is denoted by
card(A) = n. This number characterizes the cost of the algorithm A.

We will consider two classes of permissible information functionals. The
first class is the class Λall of all continuous linear functionals, Λall = F∗

d . In
particular, for any g ∈ Gd, the functional Lg(f) = 〈Sdf, g〉Gd

is linear and
continuous, and therefore Lg ∈ Λall. Linear functionals of this kind are used to
construct the optimal algorithm (6) below. The second class, which is probably
the most important for practical applications, is the class Λstd of function
evaluations, which is called standard information. That is,

L ∈ Λstd iff ∃x ∈ Dd such that L(f) = f(x) ∀ f ∈ Fd.

When we consider the class Λstd, we assume that the norm in the space Fd is
chosen so that the mapping f �→ f(x) is a continuous linear functional for any
x ∈ Dd. Therefore, Λstd ⊂ Λall.

In the average case setting the error of an algorithm A is defined as the
root mean square:

eavg(A;Sd) :=
(∫

Fd

‖Sdf −Af‖2
Gd
µd(df)

)1/2

.

We will also use an abbreviated notation

Eµd
‖Sd −A‖2

Gd
=
∫
Fd

‖Sdf −Af‖2
Gd
µd(df),
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for the mean square error, where Eµd
denotes the corresponding expectation.

This average case error is well defined and finite since Sd −A is a continuous
linear operator.

For n = 0, we formally set A ≡ 0; then eavg(0;Sd) is the initial average
case error which can be obtained without sampling the functions f . We have

[eavg(0;Sd)]
2 = Eµd

‖Sd‖2
Gd

=
∫
Fd

‖Sdf‖2
Gd
µd(df) < ∞.

We want to reduce the initial average case error by a factor ε ∈ (0, 1) using
an algorithm with the smallest cardinality. Let

n(ε;Sd, Λ) := min{ card(A) : A uses L1, . . . , Ln ∈ Λ and
eavg(A;Sd) ≤ ε eavg(0;Sd) }

denote the minimal number of information evaluations needed for such a
reduction.

Recall, that S := {Sd}. As in [Woź94], we say that the multivariate problem
S is tractable in the class Λ if there exist non-negative numbers C, p and q
such that

n(ε;Sd, Λ) ≤ C ε−p d q ∀ ε ∈ (0, 1), ∀ d ≥ 1. (4)

Numbers p = ptra(S,Λ) and q = qtra(S,Λ) satisfying (4) are called ε- and
d-exponents of tractability; we stress that they need not be uniquely defined.

Algorithms Ad,ε are called polynomial-time algorithms if for every d and ε,
the algorithm Ad,ε uses at most C ε−p dq functional evaluations from the class
Λ and has the error bounded by ε eavg(0;Ud), i.e., if

card(Ad,ε) ≤ C ε−p d q and eavg(Ad,ε;Sd) ≤ ε eavg(0;Sd). (5)

If q = 0 in (4) then we say that the multivariate problem S = {Sd} is
strongly tractable in the class Λ. Moreover, algorithms Ad,ε are called strongly
polynomial-time algorithms if (5) holds with q = 0. The exponent pstr(S,Λ) of
strong tractability is defined as the infimum of p satisfying (4) with q = 0.

3 Tractability for Linear Problems with Λall

For the class Λall, it is known that n(ε;Sd, Λ
all) is fully characterized by the

eigenvalues of the covariance operator Cνd
. As we shall see, this characterization

allows us to obtain necessary and sufficient conditions on tractability and strong
tractability in terms of these eigenvalues.

We now briefly recall general results on optimal algorithms and the minimal
cardinality number n(ε;Sd, Λ

all), see [PW90, TWW88] for more details.
The covariance operator Cνd

is self-adjoint and non-negative definite, and
has a finite trace equal to Eµd

‖Sd‖2
Gd

. Consider the sequence, {(λd,i, ηd,i)}i, of
eigenpairs, i.e.,
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Cνd
ηd,i = λd,iηd,i,

where the eigenvalues are ordered and the eigenfunctions are orthonormal,

λd,j ≥ λd,j+1 ≥ 0 and 〈ηd,i, ηd,j〉Gd
= δi,j ∀ i, j ≥ 1.

The eigenvalues λd,i can be positive only for dim(Sd(Fd)) indices. In
particular, if Sd is a continuous linear functional then λd,i = 0 for all i ≥ 2. To
make the problem non-trivial we assume that λd,1 > 0. For finite dimensional
spaces Gd, we set λd,i = 0 for i > dim(Gd) by convention. Recall that the
square of the initial average case error is

[eavg(0;Sd)]
2 = trace(Cνd

) =
∞∑

�=1

λd,� < ∞.

Algorithm

A∗
d,nf =

n∑
�=1

〈Sdf, ηd,�〉Gd
ηd,� ∀f ∈ Fd, (6)

has the smallest average case error among all algorithms of cardinality at
most n, and its square average case error is given by the truncated trace:

Eµd
‖Sd −A∗

d,n‖2
Gd

=
∞∑

�=n+1

λd,�.

Hence, optimality of A∗
d,n yields

n(ε;Sd, Λ
all) = min

{
n :

∞∑
�=n+1

λd,� ≤ ε2
∞∑

�=1

λd,�

}
. (7)

Furthermore, tractability and strong tractability of the problem S are
equivalent to the polynomial-time and strong polynomial-time properties
of A∗

d,n(ε;Sd,Λall), respectively.
Using (7), we now show conditions on tractability and strong tractability

of the problem S = {Sd}. As in [HW00], for r ≥ 1, define

Md,r :=

[∑∞
�=1 λ

1/r
d,�

]r
∑∞

�=1 λd,�
=

[
1 +
∑∞

�=2(λd,�/λd,1)1/r
]r

1 +
∑∞

�=2 λd,�/λd,1
. (8)

Clearly Md,1 = 1. By Jensen’s inequality, Md,r ≥ 1, and it may be infinite for
some r > 1. Furthermore, for r > 1, Md,r = 1 iff λd,� = 0 for all � ≥ 2.

Lemma 1 If there are r > 1 and α ≥ 0 such that

M := sup
d
d−αMd,r < ∞ (9)



470 F. Hickernell et al.

then

n(ε;Sd, Λ
all) ≤

⌈(
M

r − 1

)1/(r−1)

dα/(r−1)

(
1
ε

)2/(r−1)
⌉
.

Hence, the problem S = {Sd} is strongly tractable in the class Λall if α = 0,
and tractable in the class Λall if α > 0.

Proof. We essentially repeat the proof of [HW00, Corollary 1], where only
strong tractability is considered. Denote Minit :=

∑∞
�=1 λd,� = eavg(0;Sd)2.

Since λd,j ≥ λd,j+1 for all j ≥ 1, we have jλ1/r
d,j ≤∑∞

�=1 λ
1/r
d,� = (Md,rMinit)1/r

≤ (dαMMinit)1/r, and therefore

λd,j ≤ M dα

jr
Minit ∀ j = 1, 2, . . . . (10)

Hence ∞∑
�=n+1

λd,� ≤ M dαMinit

∞∑
�=n+1

j−r.

Since
∑∞

�=n+1 j
−r ≤ ∫∞

n
x−r dx = (r − 1)−1n−(r−1), we obtain

∞∑
�=n+1

λd,� ≤ M dα

r − 1

(
1
n

)r−1

Minit.

From (7) we see that it is enough to choose n such thatMdαn−r+1/(r−1) ≤ ε2
which yields the needed bound on n(ε;Sd, Λ

all). &'

Lemma 1 relates the numbers r and α to the exponents of tractability.
We now show that an opposite estimate also holds. That is, the exponents of
tractability yield numbers r and α for which (9) holds.

Lemma 2 If for some non-negative C, p and q

n(ε;Sd, Λ
all) ≤ C ε−p d q ∀ ε ∈ (0, 1), ∀ d = 1, 2, . . .

then
sup

d
d−q(r−1)Md,r < ∞ ∀ r ∈ [1, 1 + 2/p).

Proof. Again as in the proof of [HW00, Corollary 1], let m = m(ε, d) =
(Cε−pd q). Since ε ∈ (0, 1) then m ∈ [(Cd q),∞). We have m ≤ Cε−pd q + 1,
and so

ε ≤ (Cd q)1/p (m− 1)−1/p

for m ≥ 2. From (7) it follows that mλd,2m ≤ ∑∞
�=m+1 λd,� ≤ ε2Minit, with

Minit =
∑∞

�=1 λd,�, which yields
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λd,2m ≤
(

1
m− 1

)1+2/p

(C d q)2/p
Minit ∀m ≥ (C d q) + 1.

We now estimate
∞∑

�=1

λ
1/r
d,� = λ

1/r
d,1 +

∞∑
j=1

(
λ

1/r
d,2j + λ1/r

d,2j+1

)
≤ λ

1/r
d,1 + 2

∞∑
j=1

λ
1/r
d,2j

≤ λ1/r
d,1 + 2

�C d q�∑
j=1

λ
1/r
d,2j + 2 (C d q)2/(r p)

×
⎛⎝ ∞∑

j=�C d q�+1

(
1

m− 1

)(1+2/p)/r
⎞⎠ M1/r

init .

Using (a+ b)r ≤ 2r−1(ar + br) for non-negative a and b, we obtain

d−αMd,r ≤ 2r−1

⎛⎝
(
λ

1/r
d,1 + 2

∑�C d q�
j=1 λ

1/r
d,2j

)r

dα
∑∞

j=1 λd,j

+
(C d q)2/p

dα [(1 + 2/p)/r − 1]r (C d q)1+2/p−r

)
.

Since
(∑�C d q�

j=1 λ
1/r
d,2j

)r

≤
(∑�C d q�

j=1 λd,2j

)
((C d q))r−1 by Hölder’s inequality,

we see that both terms in the displayed formula are uniformly bounded in d
for r ∈ [1, 1 + 2/p) and α = q(r − 1). This completes the proof. &'

From Lemmas 1 and 2 imply necessary and sufficient conditions for the
problem S to be strongly tractable or tractable. Define

r(S) = sup{ r ≥ 1 : sup
d
Md,r < ∞}. (11)

Note that r(S) is well-defined since Md,1 = 1. We have the following theorem.

Theorem 1

• The problem S is strongly tractable in the class Λall iff r(S) > 1. If this
holds then the exponent of strong tractability is

pstr(S,Λall) =
2

r(S) − 1
.

• The problem S is tractable in the class Λall iff there are numbers r > 1 and
α ≥ 0 such that

M := sup
d
d−αMd,r < ∞.
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If this holds then the exponents of tractability are

ptra(S,Λall) =
2

r − 1
and qtra(S,Λall) =

α

r − 1
,

and

n(ε;Sd, Λ
all) ≤

⌈(
M

r − 1

)1/(r−1)

dα/(r−1)

(
1
ε

)2/(r−1)
⌉
.

Proof. First, consider strong tractability. If S is strongly tractable then Lemma
2 holds with α = 0 and r arbitrarily close to 1 + 2/pstr(Λall). Then r(S) ≥
1+2/pstr(Λall) > 1, as claimed. The last inequality is equivalent to pstr(Λall) ≥
2/(r(S)− 1). Now assume that r(S) > 1. Then Lemma 1 holds with α = 0 and
r arbitrarily close to r(S), and therefore it is larger than 1. Then n(ε, Sd, Λ

all)
is uniformly bounded in d by a polynomial in ε−1 of order arbitrarily close
to 2/(r(S) − 1). This yields strong tractability with pstr(Λall) ≤ 2/(r(S) − 1).
This completes the proof of this part.

Consider now tractability. If S is tractable then Lemma 2 holds r > 1 and
α ≥ 0 and yields that d−αMd,r is uniformly bounded in d, as claimed. On the
other hand, if d−αMd,r is uniformly bounded in d for r > 1 and α ≥ 0 then
Lemma 1 yields tractability of S and the bound on n(ε;Sd, Λ

all). &'

In general, it is difficult to find the eigenvalues λd,� and to check, in
particular, whether r(S) > 1. This problem is simplified if we assume the
following additional properties of the multivariate problem.

Assume that Gd is a tensor product of d copies of an infinite dimensional
separable Hilbert space G1, i.e., Gd =

⊗d
k=1 G1. More specifically, Gd is a

separable Hilbert space spanned by functions of the form
⊗d

k=1 gk with gk ∈ G1,

and the inner-product in Gd satisfies
〈⊗d

k=1 gk,
⊗d

k=1 hk

〉
Gd

=
∏d

k=1 〈gk, hk〉G1

for fk, gk ∈ G1. Let {ηi}i be an orthonormal system of G1. Then for d ≥ 1
and ı = [i1, i2, . . . , id] with ij ≥ 1, the system {ηd,ı } with ηd,ı =

⊗d
j=1 ηij

is
an orthonormal system of Gd. Observe that

Sdf =
∑
ı

〈Sdf, ηd,ı 〉Gd
ηd,ı and ηd,ı =

d⊗
j=1

ηij . (12)

It is enough to know the distribution of linear functionals Lı (f) = 〈Sdf, ηd,ı 〉Gd
.

Since µd has zero mean, we have

Eµd
Lı (f) =

∫
Gd

〈g, ηd,ı 〉Gd
νd(dg) = 0 ∀ ı ,

i.e., the expectations of these linear functionals vanish. We assume that for
different values of ı , the functionals Lı , viewed as random variables, are
independent, i.e.,
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Eµd
Lı (f)Lj (f) =

∫
Gd

〈g, ηd,ı 〉Gd
〈g, ηd,j 〉Gd

νd(dg) = λd,ı δı ,j . (13)

Hence,
Cνd
ηd,ı = λd,ı ηd,ı ∀ ı .

We consider a specific choice of eigenvalues λd,ı , which correspond to the
variances of Lı (f). For d = 1, we assume that λ1,i = λi with λ1 ≥ λ2 ≥ · · · ≥ 0.
Of course, we must have

∞∑
i=1

λi = trace(Cν1) < ∞. (14)

For d ≥ 1, let γ = {γd,u}, where u is an arbitrary subset of indices from
{1, 2, . . . , d}, with γ1,∅ = γ1,{1} = 1. For a given ı = [i1, i2, . . . , id] with
positive integer components, let uı = {j : ij > 1} denote the set of indices
larger than one. Of course, uı = ∅ iff ı = 1 = [1, . . . , 1]. We assume that
the eigenvalues (variances), λd,ı , have a product form like the eigenfunctions,
ηd,ı , do:

λd,ı = γd,uı

d∏
j=1

λij
= γd,uı λ

d−|uı |
1

∏
j∈uı

λij
. (15)

We now explain the role of the weight family γ = {γd,u}. Consider first
γd,u ≡ 1. Then

λd,ı =
∏
j /∈uı

λ1

∏
j∈uı

λij
=

d∏
j=1

λij
.

This corresponds to a tensor product structure of Fd, µd and Sd, see the
examples in the next section.

We now consider arbitrary γd,u. Suppose that u = ∅. Then

λd,1 = γd,∅ λd
1

which means that the variance of L1(f) is weighted by γd,∅. Now let u be
non-empty. Consider all indices ı for which uı = u, i.e., ij > 1 for all j ∈ u.
Then

λd,ı = γd,u λ
d−|u|
1

∏
j∈u

λij

which means that the variances of Lı (f) for all such ı are weighted by the
same γd,u.

Suppose for a moment that γd,u = 0 for some u. Then the variances of
Lı (f) are zero for all indices ı for which uı = u. Thus, with probability one,
the elements Sdf have zero coefficients Lı (f) = 〈Sdf, ηı 〉Gd

in (12) for all ı
with uı = u. Similarly, for small γd,u the coefficients 〈Sdf, ηı 〉Gd

play a less
significant role than coefficients corresponding to larger γd,u.
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That is how the weight sequence γ allows us to model various dependence
on groups of indices (variables) of the coefficients of Sdf in (12). The weights
allow us to make the class of problems small enough that there is a possibility
of tractability or strong tractability, and that it can be verified.

As in the worst case setting, see [DSWW06, SWW04, WW04, WW05], we
say that γ = {γd,u} is a family of finite-order weights if there exists an integer
q such that

γd,u = 0 for all d and u with |u| > q. (16)

The smallest integer q satisfying (16) is called the order of γ, and is denoted
by q∗. The essence of finite-order weights is that we know a priori that the
coefficients 〈Sdf, ηı 〉Gd

are zero (with probability one) for all vectors ı with
more than q∗ indices greater than one.

We say that γ = {γd,u} is a family of product weights if

γd,∅ = 1, γd,u =
∏
j∈u

γd,j for all non-empty u and all d,

for some γd,1 ≥ γd,2 ≥ · · · ≥ γd,d ≥ 0. Finally, we say that γ = {γd,u} is
a family of uniform product weights if γd,j above do not depend on d, i.e.,
γd,j = γj and

γd,∅ = 1, γd,u =
∏
j∈u

γj ∀ d, ∀ u �= ∅,

for some γ1 ≥ γ2 ≥ · · · ≥ 0. For product weights and uniform product
weights we know a priori that the coefficients 〈Sdf, ηı 〉Gd

are weighted by
γd,uı =

∏
j∈uı

γd,j or by γd,uı =
∏

j∈uı
γj , respectively.

We are ready to study tractability for eigenvalues λd,ı satisfying (15) with
λ1 > 0 and various weights γd,u. Observe that (15) implies that

∑
ı∈Nd

+

λd,ı = γd,∅λd
1 +

∑
∅�=u⊆{1,...,d}

γd,uλ
d−|u|
1

⎛⎝ ∞∑
j=2

λj

⎞⎠|u|

= λd
1

∑
u⊆{1,...,d}

γd,u

⎛⎝ ∞∑
j=2

(λj/λ1)

⎞⎠|u|

with the convention that 00 = 1. Therefore we have

Md,r =

(∑
u⊆{1,...,d} γ

1/r
d,u

(∑∞
j=2 (λj/λ1)

1/r
)|u|)r

∑
u⊆{1,...,d} γd,u

(∑∞
j=2(λj/λ1)

)|u| .

For r ≥ 1, let

βr :=
∞∑

j=2

(
λj

λ1

)1/r

. (17)
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If λi = 0 for all i ≥ 2, which happens when Sd is a continuous linear functional
for all d, then βr = 0 and Mr,d = 1 for all r ≥ 1. Due to Theorem 1, this yields
strong tractability with the exponent zero.

From now on we assume that λ1 ≥ λ2 > 0, i.e., we have at least two
positive eigenvalues of Cν1 . Then βr > 0. Note that β1 <∞ due to (14) and,
depending on λj , we may have βr = ∞ for some r. Indeed, if λj = Θ(j−α∗

)
then to satisfy (14) we must assume that α∗ > 1. Then βr <∞ iff r ∈ [1, α∗).
Note that βr is increasing as a function of r, and by using Jensen’s inequality
we have β1/r

1 ≤ βr.
Assume that βr <∞ for some r > 1, i.e.,

r(λ) := sup{ r ≥ 1 : βr <∞} > 1. (18)

For r ∈ [1, r(λ)), we have

Md,r =

(∑
u⊆{1,...,d} γ

1/r
d,u β

|u|
r

)r

∑
u⊆{1,...,d} γd,u β

|u|
1

.

From Theorem 1 we easily conclude the following corollary, which expresses
strong tractability and tractability in terms of γd,u and βr.

Corollary 1 Consider the problem S with eigenvalues λd,ı given by (15) with
λ1 ≥ λ2 > 0 and r(λ) > 1.

• The problem S is strongly tractable in the class Λall iff

r(S) = sup

⎧⎨⎩ r ∈ [1, r(λ)) : sup
d

(∑
u⊆{1,...,d} γ

1/r
d,u β

|u|
r

)r

∑
u⊆{1,...,d} γd,u β

|u|
1

< ∞
⎫⎬⎭ > 1.

If this holds then the exponent of strong tractability is pstr(S,Λall) =
2/(r(S) − 1).

• The problem S is tractable in the class Λall iff there are numbers r ∈ (1, r(λ))
and α ≥ 0 such that

M := sup
d
d−α

(∑
u⊆{1,...,d} γ

1/r
d,u β

|u|
r

)r

∑
u⊆{1,...,d} γd,u β

|u|
1

< ∞.

If this holds then the exponents of tractability are

ptra(S,Λall) =
2

r − 1
and qtra(S,Λall) =

α

r − 1
,

and we have

n(ε;Sd, Λ
all) ≤

⌈(
M

r − 1

)1/(r−1)

dα/(r−1)

(
1
ε

)2/(r−1)
⌉
.
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We now elaborate on finite-order and product weights. For finite-order weights
of order q∗, strong tractability can be entirely expressed in terms of the family
γ of weights, and the only dependence on the eigenvalues λj is through r(λ).

Indeed, for r ∈ (1, r(λ)), denote

C1
r,q∗ =

min{1, β q∗r
r }

max{1, β q∗
1 } , C2

r,q∗ =
max{1, β q∗r

r }
min{1, β q∗

1 } .

Then

C1
r,q∗

(∑
|u|≤q∗ γ

1/r
d,u

)r

∑
|u|≤q∗ γd,u

≤ Mr,d ≤ C2
r,q∗

(∑
|u|≤q∗ γ

1/r
d,u

)r

∑
|u|≤q∗ γd,u

.

Hence, strong tractability holds iff supd

(∑
|u|≤q∗ γ

1/r
d,u

)r

/
∑

|u|≤q∗ γd,u < ∞
for some r > 1.

To obtain tractability observe that using Hölder’s inequality we have

Md,r =

(∑
|u|≤q∗ γ

1/r
d,u β

|u|/r
1 β

|u|
r β

−|u|/r
1

)r

∑
|u|≤q∗ γd,uβ

|u|
1

≤
⎛⎝ ∑

|u|≤q∗

(
βr

β
1/r
1

)|u|r′⎞⎠r/r′

,

where 1/r′ + 1/r = 1. Since βr/β
1/r
1 ≥ 1 and the cardinality of the sum for

|u| ≤ q∗ is (
d
0

)
+
(
d
1

)
+ · · · +

(
d

min{q∗, d}
)

≤ 2 d q∗
,

see [WW05], we have

Md,r ≤ 2r−1

(
βr

β
1/r
1

) q∗r

d q∗(r−1) ∀ d.

Hence

sup
d
d−q∗(r−1)Md,r ≤ 2r−1

(
βr

β
1/r
1

)q∗r

.

This and Theorem 1 imply the following corollary:

Corollary 2 Consider the problem S with eigenvalues λd,ı given by (15) with
λ1 ≥ λ2 > 0 and r(λ) > 1. Let γ = {γd,u} be a sequence of finite-order weights
of order q∗.

• The problem S is strongly tractable in the class Λall iff

r(S) = sup

⎧⎨⎩ r ∈ [1, r(λ)) : sup
d

(∑
|u|≤q∗ γ

1/r
d,u

)r

∑
|u|≤q∗ γd,u

< ∞
⎫⎬⎭ > 1. (19)

If this holds then the exponent of strong tractability is pstr(S,Λall) =
2/(r(S) − 1).
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• The problem S is tractable in the class Λall. For r ∈ (1, r(λ)), the exponents
of tractability are

ptra(S,Λall) =
2

r − 1
and qtra(S,Λall) = q∗,

and

n(ε;Sd, Λ
all) ≤

⎡⎢⎢⎢⎢
⎛⎝ 2
r − 1

(
βr

β
1/r
1

)q∗r
⎞⎠1/(r−1)

d q∗
(

1
ε

)2/(r−1)

⎤⎥⎥⎥⎥ .
We stress that tractability holds for arbitrary finite-order weights with the
d-exponent equal to the order q∗ whereas the ε-exponent can be arbitrarily
close to 2/(r(λ) − 1).

We now turn to product and uniform product weights, where

Md,r =

∏d
j=1

(
1 + γ1/r

d,j βr

)r

∏d
j=1 (1 + γd,jβ1)

.

Then it is easy to check that for r ∈ (1, r(λ)) we have

sup
d
Md,r < ∞ iff lim sup

d→∞

d∑
j=1

γ
1/r
d,j < ∞

and

Mα := sup
d
d−αMd,r <∞ for some α ≥ 0 iff Ar := lim sup

d→∞

∑d
j=1 γ

1/r
d,j

ln(d+ 1)
<∞.

In fact, Mα <∞ if α > rβrAr.
We now show that the concepts of strong tractability and tractability are

equivalent for uniform product weights, see [KSW07] where this point is also
discussed. It is enough to show that tractability implies strong tractability.
Assume then that Ar <∞ for some r ∈ (1, r(λ)). We now have γd,j = γj for
non-increasing {γj}, and

k γ
1/r
k

ln(k + 1)
≤
∑k

j=1 γ
1/r
j

ln(k + 1)
≤ A := sup

d

∑d
j=1 γ

1/r
j

ln(d+ 1)
< ∞.

From this we have

γk ≤ (A ln(k + 1))r

kr
∀ k = 1, 2, . . . , .

This implies that
∑∞

k=1 γ
1/p
k < ∞ for all p ∈ (1, r). Hence, supdMd,p < ∞,

which implies strong tractability.
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We stress that the concepts of strong tractability and tractability do
not coincide for non-uniform product weights. Indeed, take γd,j = 1 for
j = 1, 2, . . . , (ln(d+ 1)), and γd,j = d−1−β for j = (ln(d+ 1)) + 1, . . . , d and
a positive β. Then lim supd

∑d
j=1 γ

1/r
d,j = ∞ for all r > 1, which implies the

lack of strong tractability, whereas Ar <∞ for all r ∈ (1, 1 + β], which implies
tractability.

This discussion and Theorem 1 yield the following corollary:

Corollary 3 Consider the problem S with the eigenvalues λd,ı given by (15)
with λ1 ≥ λ2 > 0 and r(λ) > 1. Let γ = {γd,u} be a family of product or
uniform product weights.

• The problem S is strongly tractable in the class Λall iff

r(S) = sup

⎧⎨⎩ r ∈ [1, r(λ)) : lim sup
d→∞

d∑
j=1

γ
1/r
d,j < ∞

⎫⎬⎭ > 1.

If this holds then the exponent of strong tractability is pstr(S,Λall) =
2/(r(S) − 1).

• The problem S is tractable in the class Λall iff for some r ∈ (1, r(λ)), we
have

Ar := lim sup
d→∞

∑d
j=1 γ

1/r
d,j

ln(d+ 1)
< ∞.

Then the exponents of tractability are

ptra(S,Λall) =
2

r − 1
and qtra(S,Λall) = α >

rβr

r − 1
Ar.

For such r and α we have M := supd d
−α(r − 1)Md,r <∞ and

n(ε;Sd, Λ
all) ≤

⌈(
M

r − 1

)1/(r−1)

dα

(
1
ε

)2/(r−1)
⌉
.

• The concepts of strong tractability and tractability coincide for uniform
product weights.

4 Illustration

We illustrate the assumptions and results of the previous section by a several
examples.

Example 1 (Continuous functions). We consider the class of continuous func-
tions Fd = C(Dd) defined on the d-dimensional unit cube Dd = [0, 1]d, i.e.,
m = 1, with the norm ‖f‖ = maxx∈Dd

|f(x)|. We analyze the approxima-
tion problem Sd : Fd → Gd = L2([0, 1]d) given by Sdf = f . The space Fd is
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equipped with the measure µd which is zero-mean Gaussian with the covariance
kernel

Kd(x,y) = γd,∅ +
∑
u�=∅
γd,uKd,u(x,y) ∀x,y ∈ Dd,

where

Kd,u(x,y) =
∏
k∈u

K(xk, yk) and K(x, y) = min(x, y)−3
(
x−x

2

2

)(
y− y

2

2

)
.

The function K is the covariance kernel of the Gaussian measure µ on C([0, 1])
obtained from the the classical Wiener measure4 ω under the condition that∫ 1

0
f(x) dx = 0. That is, µ is the classical Wiener measure concentrated on the

set of continuous functions with zero integral. Functions with nonzero integrals
arise from the constant term in Kd(x,y).

From the definition Kd, it follows that the functions from Fd can be viewed
as a γ-weighted sum

f =
∑

u⊆{1,...,d}
γd,u fu

of independent Gaussian processes fu, each with covariance kernel equal to
Kd,u. Note also that each fu depends only on the variables xk with k ∈ u.
In particular, f∅ corresponds to a constant function whose value is a N (0, 1)
random variable.

Since Sd is the embedding operator, the measure νd has the same covariance
kernel Kd. The covariance operator Cνd

is of the form

(Cνd
g) (x) =

∫
Dd

Kd(x,y)g(y) dy.

Therefore the eigenpairs (λd,ı , ηd,ı ) are the solutions of∫
Dd

Kd(x,y) ηd,ı (y ) dy = λd,ı ηd,ı (x).

From the tensor product form of Kd,u and the fact that the integral∫ 1

0
K(x, y) dy = 0 for any x, we see that the eigenvalues of Cνd

are of the form
(15), and the eigenpairs are

ηd,ı (x) =
∏

k∈uı

ηik
(xk) and λd,ı = γd,uı λ

d−|uı |
1

∏
k∈uı

λik
,

4 Property (15) does not hold for the classical Wiener measure ω; the average case
for more general measures including ω will be dealt with in a future paper.
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where (λ1, η1) = (1, 1) and (λi, ηi), for i ≥ 2, are the eigenpairs for the
univariate case, i.e., ∫ 1

0

K(x, y) f(y) dy = λi ηi(x).

This integral equation is equivalent to the following differential equation:

λi η
′′
i (x) = −ηi(x) + 3

∫ 1

0

(
y − 1

2
y2
)
ηi(y)dy with ηi(0) = 0 and η′i(1) = 0.

It can be verified that, for i ≥ 2,

ηi =
hi

‖hi‖L2([0,1])
and λi = α−2

i ,

where

hi(x) = cos(αi(x− 1)) − cos(αi) and ‖hi‖L2([0,1]) =
√

2 | sin(αi)|
2

.

Here, αi is the unique solution in ((i− 1)π, (i− 1/2)π) of the equation

αi = tan(αi).

This means that

λi = α−2
i =

1 + o(1)
((i− 1/2)π)2

as i → ∞.

For this example the key quantities in (17) and (18) are βr and r(λ), for which
we have

π−2/r(ζ(2/r) − 1) ≤ βr ≤ π−2/rζ(2/r) and r(λ) = 2.

Here ζ denotes the Riemann zeta function.
We now apply Corollary 1 for

γd,u = d−s |u| ∀ u ∈ {1, 2, . . . , d} (20)

with a real number s. For r ∈ [1, 2) we have

∑
u⊆{1,...,d}

γ
1/r
d,u β

|u|
r =

d∑
k=0

(
d
k

)(
d−s/rβr

)k

=
(
1 + d−s/rβr

)d

= (1 + o(1)) exp
(
βrd

1−s/r
)
,

where the last expression is for large d. Hence, the sum above is uniformly
bounded in d iff s ≥ r, whereas for s < r, it goes to infinity faster than polyno-
mially in d. From this we conclude that strong tractability and tractability are
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equivalent, holding iff s > 1. If s > 1 then r(S) = min(2, s), and the exponent
of strong tractability is 2/(min(2, s) − 1). For s ≥ 2, the exponent of strong
tractability is 2.

Corollaries 2 and 3 treat finite-order weights and product weights. For
arbitrary finite-order weights, Corollary 2 states that we have tractability
with an ε-exponent of tractability arbitrarily close to 2. We can have strong
tractability iff r(S) > 1. To illustrate the application of these corollaries for
this example, we consider specific choices of the weights γd,u.

For the case of finite-order weights let

γd,u = d−s |u| ∀ u ⊆ {1, 2, . . . , d} with |u| ≤ q∗,
where q∗ ≥ 1. This is similar to the case (20) just considered but now the
weights vanish for |u| > q∗. It is easy to check that in this case we also must
assume that s > 1 to obtain strong tractability. For s > 1, the exponent
of strong tractability is 2/(min(2, s) − 1), as before. Thus, the restriction to
finite-order does not enlarge the range of s for which the problem is strongly
tractable.

For product weights, we apply Corollary 3 for the weights

γd,j = d−s1 j−s2 j = 1, 2, . . . , d

for some non-negative numbers s1 and s2. The case s2 = 0 corresponds to the
case (20) considered above. We then have

ar :=
d∑

j=1

γ
1/r
d,j = d−s1/r

d∑
j=1

j−s2/r =

⎧⎪⎨⎪⎩
O(d1−(s1+s2)/r), r > s2,

O(d−s1/d ln(d)), r = s2,
O(d−s1/r), r < s2.

It easily follows that tractability and strong tractability are equivalent, holding
iff s1 + s2 > 1. Indeed, if s1 + s2 > 1 then we can have two cases: s1 = 0
or s1 > 0. If s1 = 0 then we take r ∈ (1, s2) and ar = O(d−s1/r) = O(1)
is uniformly bounded, which yields strong tractability. If s1 > 0, we take
r ∈ (s2, s1 + s2) and ar = O(d1−(s1+s+2)/r) = O(1) is uniformly bounded and
we again have strong tractability. On the other hand, if we have tractability,
then Ar <∞ for some r > 1. If s2 ≤ 1 then we have r > s2 and ar/ ln(d+1) =
O(d1−(s1+s2)/r/ ln(d+ 1) can be bounded only if s1 + s2 > 1 which, in fact,
also implies strong tractability. From this reasoning, it also follows that for
s1 + s2 > 1 we have r(S) = min(2, s1 + s2), and the exponent of strong
tractability is 2/(min(2, s1 + s2) − 1).

It is well known that the measure µ of this example concentrates on
functions that have no derivative at any point x. On the other hand, with
probability one, functions f satisfy Hölder’s condition with the exponent arbi-
trarily close to 1/2. This explains why the ε-exponent of (strong) tractability
is not greater than 2.
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Example 2 (Weighted Korobov spaces of periodic functions). As in the previous
section, we consider the approximation problem Sd : Fd → Gd with Sdf = f ;
however, we now take

Fd = Gd = L2([0, 1]d).

Since function evaluation, Lx(f) = f(x), is not even well-defined, the proba-
bility measure cannot be introduced via its covariance kernel. Therefore we
proceed as follows. Let

ηi(x) =

⎧⎪⎨⎪⎩
1, i = 1,√

2 sin(2π�i/2�x), i even,√
2 cos(2π�i/2�x), i odd and i ≥ 3.

Of course, {ηi} is an orthonormal system of L2([0, 1]), and the functions

ηd,ı (x) :=

(
d⊗

k=1

ηik

)
(x) =

d∏
k=1

ηik
(xk) for ı ∈ Nd

+

form an orthonormal system of L2([0, 1]d).
We define the probability measure µd = νd as the zero-mean Gaussian with

the covariance operator

(Cνd
g)(x) =

∫
[0,1]d

Kd,α∗(x,y) g(y) dy ∀ g ∈ Gd,

where

Kd,α∗(x,y) =
∑

u⊆{1,2,...,d}
γd,u 2|u|

∏
j∈u

∞∑
k=1

cos(2πk(xj − yj))
kα∗ . (21)

Here the parameter α∗ > 1.
For even α∗, we may write Kd,α∗ in terms of Bernoulli polynomials (see

e.g., [AS64, Chapter 23]) as

Kd,α∗(x,y) =
∑

u⊆{1,...,d}
γd,u

(−(−4π2)α∗/2

α∗!

)|u|∏
j∈u

Bα∗(xj − yj). (22)

A contour plot of K1,2(x, y) is given in Figure 1.
It is easy to find the eigenpairs of the covariance operator Cνd

for arbitrary
α∗ > 1. We have

Cνd
ηd,ı = λd,ı ηd,ı ∀ ı

with the following eigenvalues. For d = 1, and γ1,∅ = γ1{1} = 1, we have
λ1,ı = λi with

λ1 = 1 and λi = �i/2�−α∗
for i ≥ 2.
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Fig. 1. Contour plots of K1,2(x, y) defined in (22) (left) and (23) (right) .

For d ≥ 2, we have
λd,ı = γd,uı

∏
j∈uı

λij
,

The probability measure µd = νd is such that (with probability one) the
functions f ∈ Fd can be viewed as

f =
∑
ı∈Nd

+

γd,uı yd,ı ηd,ı ,

where the coefficients yd,ı ’s are independent random variables, each with the
normal N (0, λd,ı ) distribution.

We now indicate, see also [KSW07], that the approximation problem of this
example is essentially the same as the approximation problem for a weighted
Korobov space. First, recall that for β > 1, the weighted Korobov space Hd,β ,
is a reproducing kernel Hilbert space of periodic functions f defined for [0, 1]d

for which ‖f‖Hd,β
= 〈f, f〉1/2

Hd,β
<∞ with the reproducing kernel Kd,β of the

form (21) with α∗ replaced by β, see e.g., [DSWW06]. The inner product in
the space Hd,β is

〈f, g〉Hd,β
=
∑
h∈Zd

r(h, γ) f̂(h) ĝ(h),
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where

f̂(h) =
∫

[0,1]d
exp
(−2π

√−1 (h1x1 + · · · + hdxd)
)
f(x) dx

is a Fourier coefficient of f , and

r(h, γ) =

{
1, h = 0,
γ−1

d,uh

∏
j∈uh

|hj |β , h �= 0.

where uh = {j : hj �= 0} We then have

f(x) = 〈f,Kd,β〉Hd,β
∀ f ∈ Hd,β ∀x ∈ [0, 1]d.

The parameter β of the weighted Korobov space determines the smoothness
of the functions. Namely, for f ∈ Hd,β the derivative f (α1,α2,...,αd) ∈ L2([0, 1]d)
for non-negative integers αi if maxi αi ≤ β/2.

Using the Kolmogorov zero-one principle it is easy to show, see also
[KSW07], that

µd(Hd,β) = νd(Hd,β) = 1 iff α∗ > β + 1.

Hence if we assume that α∗ > 2 and β ∈ (1, α∗ − 1), then the approximation
problems for the spaces L2([0, 1]d) and Hd,β are the same in the average case
setting for the zero-mean Gaussian measure with the covariance operator given
by (21). That is why we call this example the weighted Korobov space of
periodic functions.

For this example the key quantities in (17) and (18) are βr = 2ζ(α∗/r) and
r(λ) = α∗. Corollaries 1, 2 and 3 provide necessary and sufficient conditions
on the weights γ = {γd,u} for strong tractability and tractability. In particular,
we know when the exponent of strong tractability and the ε-exponent of
tractability are equal or arbitrarily close to 2/(α∗ − 1). For finite-order weights
of order q∗, one obtains this exponent of strong tractability provided that
condition (19) on the weights γd,u is satisfied. This condition is not satisfied
for r > 1 if, for example, γd,u = 1 for |u| ≤ q∗. The ε-exponent of tractability
can be arbitrarily close to 2/(α∗ − 1) with the d-exponent equal to the order
q∗ of the weights, and this holds for arbitrary finite-order weights γd,u. For
uniform product weights with γj = j−k∗

we obtain strong tractability (which
is equivalent to tractability) iff k∗ > 1 and then the exponent of strong
tractability is 2/(min(α∗, k∗) − 1).

Example 3 (Spaces of non-periodic functions). The previous example of the
approximation problem can be generalized by taking different selections of
orthonormal systems of the space Fd = Gd = L2(Dd) with Dd ⊆ Rd. For
instance, we can take Dd = [−1, 1]d and an orthonormal system

ηd,ı (x) =
d∏

k=1

Pik−1(xk)
‖Pik−1‖L2([−1,1])

=
d∏

k=1

√
ik − 1/2Pik−1(xk),
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where {Pk}∞k=0 is the family of Legendre polynomials with ‖Pk‖L2([−1,1]) =
(k + 1/2)−1/2, see e.g., [AS64, Chapter 8].

As before, we take zero-mean Gaussian µd = νd with the covariance operator

(Cνd
g)(x) =

∫
[−1,1]d

Kd,α∗(x,y) dy,

now with

Kd,α∗(x,y) =
∑

u⊆{1,2,...,d}
γd,u

∏
j∈u

∞∑
k=1

(k + 1/2)Pk(x)Pk(y)
kα∗ . (23)

To guarantee that Kd,α∗(·,y) belongs to L2([−1, 1]d) we need to assume that
α∗ > 1. A contour plot of K1,2 is given in Figure 1.

The eigenvalues and eigenfunctions of the covariance operator Cνd
are of

the form (15) with

λi =

{
1, i = 1,
(i− 1)−α∗

, i ≥ 2,
ηi(x) =

√
i− 1/2Pi−1(x).

Similar to the previous example, the key quantities here are βr = ζ(α∗/r)
and r(λ) = α∗. The conditions for tractability and strong tractability are the
same as in Example 2.

If we assume that α∗ > 2, then Kd,α∗(x,y) is pointwise well-defined since
‖Pk‖L∞([−1,1]) = 1. Then, as in the previous example, Kd,β with β > 2 could
be viewed as a reproducing kernel generating a Hilbert space Hd,β whose an
orthonormal system is given by the functions

√
λd,ı ηd,ı (of course with α∗

replaced by β). The space Hd,β is a subspace of L2([−1, 1]d). As before, using
the Kolmogorov zero-one principle, we conclude that the probability measure
µd = νd is concentrated on Hd,β iff α∗ > β + 1; otherwise µd(Hd,β) = 0.

Example 4 (A More General Case). We end this section by a problem satisfying
(15) that is an extension of the preceding three examples. As before, suppose
that µd is such that the functions f ∈ Fd can be viewed as

f(x) =
∑
ı∈Nd

+

γd,uı yd,ı

d∏
k=1

ξik
(xk),

where ydı are independent random variables each with a normal distribution
N (0, σd,ı ) with σd,ı =

∏d
k=1 σk. The only assumption now about the functions

ξi ∈ F1 is that they are linearly independent and ξ1 ≡ 1.
Assume also that Sd is the tensor product of d copies of an operator

S1 : F1 → G1, and that the Sξi are orthogonal to Sξ1:

〈Sξ1, Sξi〉G1
= 0 ∀ i ≥ 2. (24)



486 F. Hickernell et al.

Then, as can be verified, the condition (15) is satisfied; however, the eigenpairs
of Cνd

might be difficult to find.
The situation is further simplified if we additionally assume that the Sξi

are mutually orthogonal, i.e., that

〈Sξj , Sξi〉G1
= δi,j ‖Sξi‖2

G1
∀ i, j ≥ 2 (25)

When these hold, the eigenfunctions of Cνd
take the explicit form

ηd,ı =
Sdξd,ı

‖Sdξd,ı ‖Gd

with Sdξd,ı =
d⊗

k=1

Sξik
.

The corresponding eigenvalues are given by

λd,ı = γd,uı

(
σ1 ‖Sξ1‖2

G1

)d−|uı | ∏
k∈uı

σik
‖Sξik

‖2
G1
.

In particular, λd,1 = γd,∅
(
σ1 ‖Sξ1‖2

G1

)d. We are now in a position to apply
Corollaries 1, 2 and 3 to deduce strong tractability and tractability of S in
terms of the conditions on γd,u and λj = σj‖Sξj‖2

G1
.

5 Tractability for Approximation with Λstd

In this section we assume that Fd is continuously embedded in the space
Gd = L2,ρ(Dd), where the weight function ρ : Dd → Rd is positive almost
everywhere and

∫
Dd
ρ(t) dt = 1. For g1, g2 ∈ Gd, we now have

〈g1, g2〉Gd
=
∫

Dd

g1(t)g2(t)ρ(t) dt.

We also assume that Lx(f) = f(x) is a continuous linear functional of Fd for
all x ∈ Dd. Then the class Λstd = {Lx : x ∈ Dd} of standard information is
well defined and is a subset of Λall. We now consider algorithms that use only
function evaluations and are of the form

Af =
∑
j=1

f(tj)gj

for some tj ∈ Dd and some gj ∈ Gd.
For the class Λstd, we consider the multivariate approximation problem

that is given by Sdf = f for f ∈ Fd. Combining the proof techniques of
[HW00] and [WW07] we show that the class Λstd is basically as powerful as
the class Λall when we have a polynomial rate of convergence for the class Λall.
That is, there are algorithms Ad,n that use only function evaluations whose
average case errors are essentially of the same order as the average case errors
of the optimal algorithms A∗

d,n given by (6). Recall that
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A∗
d,nf =

n∑
�=1

〈f, ηd,�〉Gd
ηd,� and eavg(A∗

n,d;Sd) =

( ∞∑
�=n+1

λd,�

)1/2

.

Without loss of generality, we may assume that all λd,i > 0 and then∫
Dd
η2d,i(t)ρ(t) dt = 1 for all i. We assume that( ∞∑

�=n+1

λd,�

)1/2

≤ C0

(n+ 1)p
∀n = 0, 1, . . . (26)

for some positive numbers p and C0. Note that for n = 0 we know that

C0 ≥
( ∞∑

�=n+1

λd,�

)1/2

= eavg(0;Sd).

Obviously, we should choose the parameter p as large as possible to properly
characterize the speed of convergence of the errors of the algorithms A∗

d,n.
Given d and n, we define a sequence of algorithms {Ak}k = {Ad,k,n}k that

use at most k n function evaluations and whose average case errors are quickly
approaching the average case error of A∗

d,n as k goes to infinity. To define Ak

we proceed as follows. Let

pk := p
2pk−1 + 1

2p+ 1
with p0 = 0 and mk := �npk/p�. (27)

It is easy to check that

pk = p

(
1 −
(

2p
2p+ 1

)k
)
.

The sequence {pk} is increasing and limk pk = p, whereas the sequence {mk}
is non-decreasing and mk ≤ n for all k. We will use the functions

uk(t) :=
1
mk

mk∑
j=1

η2d,j(t) and ωk(t) := ρ(t)uk(t). (28)

Observe that ωk is non-negative and
∫

Dd
ωk(t) dt = 1. Hence, ωk can be

regarded as a probability density function.
We define the algorithms Ak inductively with respect to k. We set A0 = 0,

and then

Akf = Ak−1f +
mk∑
j=1

[
1
n

n∑
�=1

(f −Ak−1(f)) (τ �)
ηd,j(τ �)
uk(τ �)

]
ηd,j (29)

for some yet to be specified sample points τ � from Dd. We use the convention
that 0/0 = 0.
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The algorithm Ak uses at most (k− 1)n function evaluations used by Ak−1

and at most n function evaluations at the τ �’s. Hence, the total number of
function evaluations is at most k n. Note that Akf is orthogonal to ηd,j for
j > mk. We are ready to estimate the average case error of the algorithm Ak.

Theorem 2 Let (26) hold. Then for every n and k, we have

eavg(Ak;Sd) ≤ C0

npk

√
k + 1.

Proof. The proof is by induction on k. For k = 0 this trivially holds. For k ≥ 1,
we have

eavg(Ak;Sd)2 =
∫
Fd

‖f −Akf‖2
Gd
µd(df) =

∫
Gd

‖f −Akf‖2
Gd
νd(df)

=
∞∑

i=1

∫
Gd

〈f −Akf, ηd,i〉2Gd
νd(df).

Let gk−1 = f −Ak−1f . For i ≤ mk, we have

〈f −Akf, ηd,i〉Gd
=
∫

Dd

gk−1(t)ηd,i(t)ρ(t) dt − 1
n

n∑
�=1

gk−1(τ �)
ηd,i(τ �)
uk(τ �)

,

whereas for i > mk, we have

〈f −Akf, ηd,i〉Gd
= 〈f, ηd,i〉Gd

=
∫

Dd

f(t)ηd,i(t)ρ(t) dt.

Hence, eavg(Ak;Sd)2 = a1 + a2, where

a1 =
mk∑
i=1

∫
Gd

[∫
Dd

gk−1(t)ηd,i(t)ρ(t) dt − 1
n

n∑
�=1

gk−1(τ �)
ηd,i(τ �)
uk(τ �)

]2
νd(df),

a2 =
∞∑

i=mk+1

∫
Gd

〈f, ηd,i〉2Gd
νd(df) =

∞∑
i=mk+1

λd,i.

From (26), we conclude that a2 ≤ C2
0 (mk + 1)−2p. Since mk + 1 ≥ npk/p we

obtain

a2 ≤ C2
0

n2pk
.

To obtain a bound on a1 we allow the sample points τ � to be independent
random sample points distributed over Dd according to the measure with
density function ωk. We now take the expectation of a1 = a1(τ 1, . . . , τn) with
respect to τ �’s, and using the standard argument as for the classical Monte
Carlo algorithm, we obtain
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Dd

· · ·
∫

Dd

[ ∫
Dd

gk−1(t)ηd,i(t)ρ(t) dt

− 1
n

n∑
�=1

gk−1(τ �)
ηd,i(τ �)
uk(τ �)

]2
ωk(τ 1) · · ·ωk(τn) dτ 1 · · ·dτn

≤ 1
n

∫
Dd

g2k−1(t)
η2d,i(t)
uk(t)

ρ(t) dt.

Therefore∫
Dd

· · ·
∫

Dd

a1(τ 1, . . . , τn)ωk(τ 1) · · ·ωk(τn) dτ 1 · · ·dτn

≤ mk

n

∫
Gd

∫
Dd

g2k−1(t)ρ(t) dt νd(df)

=
mk

n

∫
Gd

‖f −Ak−1f‖2
Gd
νd(df) =

mk

n
eavg(Ak−1; Sd)2

≤ mk C
2
0 k

n1+2pk−1
.

By the mean value theorem, we conclude that there are sample points
τ ∗

1, τ
∗
2, . . . , τ

∗
n such that the square of the average case error is at most equal

to the average of a1(τ 1, . . . , τn) + a2. Taking these τ ∗
� ’s in the definition of

the algorithm Ak we obtain

eavg(Ak;Sd)2 ≤ mk C
2
0 k

n1+2pk−1
+
C2

0

n2pk
.

Since mk ≤ npk/p and 1 + 2pk−1 − pk/p = 2pk, we finally get

eavg(Ak;Sd) ≤ C0

npk

√
k + 1,

as claimed. This completes the proof. &'

We stress that the description of the algorithms Ad,k,n is not constructive
since we do not know how to choose the sample points τ � in (29). We only
know that there exist sample points τ 1, . . . , τn for which the average case
error of Ad,k,n enjoys the average case error bound in Theorem 2.

There is, however, a “semi”-construction of the algorithms Ak = An,k,n

based on the proof of Theorem 2. Indeed, assume inductively that Ak−1

has been already constructed with the average case error bounded by
C C0

√
k n−pk−1 for some C > 1. To construct Ak, we select sample points

τ 1, . . . , τn as independent random variables distributed according to the mea-
sure with density ωk. Then we compute a1 for these τ �’s which is possible due
to the explicit average case error formula. If a1 ≤ C2mk C

2
0k n

−(1+2pk−1) then
we are done since the average case error of Ak is at most C C0

√
k + 1n−pk .
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If not we repeat the random selection of τ 1, . . . , τn. By Chebyshev’s inequality,
we know that the failure of finding proper τ �’s with j selections is C−2j . Hence,
it is enough to repeat the selection of τ �’s only a few times if C is large enough.

We return to the average case error of Ad,k,n given by Theorem 2. For n
such that ln(ln(n)) > 1, take

k = k∗ =
⌈

ln(ln(n))
ln(1 + 1/(2p))

⌉
.

It is easy to check that

eavg(Ad,k∗,n;Sd) ≤ eC0 n
−p

√
2 +

ln(ln(n))
ln(1 + 1/(2p))

= O
(
n−p
√

ln(ln(n))
)
.

If m = k∗n = Θ(n ln(ln(n))) then the algorithm

Ad,m := Ad,k∗,n

uses at most m function evaluations and

eavg(Ad,m;Sd) = O

(
[ln(ln(m))]p+0.5

m p

)
,

where the factor in the big O notation depends only on C0 and p and is
independent of m. Hence, modulo a power of ln(ln(n)), we obtain the same
speed of convergence as for the algorithm A∗

n,d.

We now turn to tractability of multivariate approximation for the class
Λstd. Based on Theorem 2, it is obvious that tractability for the class Λstd is
equivalent to tractability for the class Λall. We provide a formal proof and
estimates on n(ε;Sd, Λ

std) in the following corollary:

Corollary 4 Consider multivariate approximation in the classes Λall and
Λstd defined as in this section, so that Λstd ⊆ Λall. Then strong tractability
and tractability of multivariate approximation in the classes Λall and Λstd are
equivalent. Furthermore, the exponents of strong tractability and tractability
are, modulo a power of the double logarithm of ε−1 + d+ 1, the same in both
classes. That is, if

n(ε;Sd, Λ
all) ≤ C ε−perr d qdim ∀ ε ∈ (0, 1), d = 1, 2, . . . ,

then for all ε ∈ (0, 1) and d = 1, 2, . . . ,

n(ε;Sd, Λ
std) ≤ min

k=1,2,...
k

⌈(
2C (k + 1)perr/2 ε−perr d qdim

)[1−( 2
2+perr )

k
]−1⌉

,

and

n(ε;Sd, Λ
std) = O

([
ln(ln(ε−1 + d+ 1))

]1+perr/2
ε−perr d qdim

)
,

where the factor in the big O notation is independent of ε and d.
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Proof. We know from (7) that

∞∑
�=n+1

λd,� ≤ ε2
∞∑

�=1

λd,�

for n = �C ε−perr d qdim�. Varying ε ∈ (0, 1), we conclude that (26) holds with

p = p−1
err and C0 = (2C d qdim)p

( ∞∑
�=1

λd,�

)1/2

.

From Theorem 2 we conclude that eavg(Ad,k,n;Sd) ≤ ε (
∑∞

�=1 λd,�)
1/2 if we

take
n =

⌈
ε−1/pk (2C d qdim)p/pk (k + 1)1/(2pk)

⌉
.

Since
p

pk
=

[
1 −
(

2p
2p+ 1

)k
]−1

=

[
1 −
(

2
2 + perr

)k
]−1

,

we have

n =

⌈(
2C (k + 1)perr/2 ε−perr d qdim

)[1−( 2
2+perr )

k
]−1 ⌉

.

This and the fact that Ad,k,n uses at most k n function evaluations completes
the proof of the bound on n(ε;Sd, Λ

std). We now take

k =
⌈

ln(ln(ε−1 + d+ 1))
ln((2 + perr)/2)

⌉
.

Then (2/(2 + perr))k ≤ 1/ ln(ε−1 + d+ 1) and

k
(
2C (k + 1)perr/2 ε−perr d qdim

)[1−( 2
2+perr )

k
]−1

= O
([

ln(ln(ε−1 + d+ 1))
]1+perr/2

ε−perr d qdim

)
,

as claimed. This completes the proof. &'
We end with the following remark.

Remark 1 Suppose that the nth minimal errors for the class Λall converge
to zero exponentially fast, say,

e(n;S,Λall) ≤ C1 exp
(−α (n+ 1)β

) ∀n = 0, 1, . . . ,
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for positive α and β. Of course, then (26) holds for any p with the constant
C0 = C0(p, α, β) increasing super-exponentially with p, i.e.,

e(n;S,Λall) ≤ C0(p, α, β)
(n+ 1)p

with C0(p, α, β) = C1 max

(
e−α,

(
p

eαβ

)p/β
)
.

Hence, for every p, at the expense of a huge multiplicative constant for large
p, one could construct algorithms using standard information with the rate of
convergence proportional to n−p. However, it is not clear if e(n;S,Λstd) are
proportional to e(n;S,Λall), or even if e(n;S,Λstd) converges to zero faster
than polynomially.
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Summary. The appropriateness of Zinterhof sequences to be used in GRID-based
QMC integration is discussed. Theoretical considerations as well as experimental in-
vestigations are conducted comparing and assessing different strategies for an efficient
and reliable usage. The high robustness and ease of construction exhibited by those
sequences qualifies them as excellent QMC point set candidates for heterogeneous
environments like the GRID.

1 Introduction

High dimensional numerical integration problems may require a significant
amount of computational effort. Therefore, substantial effort has been invested
in finding techniques for performing these calculations on all kinds of high
performance computing platforms (see e.g. [KÜ94, SU03]). GRID environments
are highly beneficial but exhibit specifically challenging properties for numerical
integration techniques. This class of computing facilities show extreme hetero-
geneity in terms of computing speed (caused by different memory capacity,
cache sizes, and processor speed of the involved compute nodes) and network
connections, moreover the available computing resources may change over time
even during ongoing computations. These hardware properties require the
employed integration routines to exhibit certain features:

• Variety in computing speed requires dynamic load balancing capability.
• Variety in network bandwidth and latency requires load balancing strategies

without central organization and a minimal number of control messages
exchanged among the computing nodes.

• Failure in hardware resources requires tolerance to lost partial results.
• Additional resources becoming available require a possibility to assign

workload to these resources (i.e. by redistributing or redefining workload).
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Additionally, error bounds and numerical results should preferable carry
over from sequential execution, also reproducibility is considered an important
issue.

Quasi-Monte Carlo (QMC) algorithms are among the most efficient tech-
niques for evaluating high-dimensional integrals. Consequently, recent work has
been devoted to apply this numerical integration approach in GRID environ-
ments [LKd05, LM05, HUZ06], however, many QMC techniques investigated
for heterogeneous distributed systems may be used in the GRID context as
well (e.g. [ÖS02, SU01, dZCG00]).

In this work we investigate a special type of QMC sequences, so-called
Zinterhof sequences, for their applicability in GRID environments. In Section
2, we discuss the use of Zinterhof sequences in the general (sequential) QMC
setting. Section 3 reviews strategies for using QMC techniques on parallel or
distributed architectures. The main contribution of this work is presented in
Section 4 where we give theoretical as well as experimental results on the use
of Zinterhof sequences in GRID-type environments. Section 5 concludes the
paper.

2 QMC Integration using Zinterhof Sequences

The basic concept of any QMC method for numerical integration is to approx-
imate the integral by a finite sum, such that

I(f) :=
∫

Is

f(x)dx ≈ 1
N

N∑
n=1

f(xn) =: I ′N (f)

where xn are suitably chosen and Is is the unit interval. To identify suitable,
i.e. uniformly distributed, points xn with low star discrepancy are selected in
order to exploit the Koksma-Hlawka inequality [Nie92]:

EN (f) ≤ V (f)D∗
N (f),

where EN (f) := |I(f) − I ′N (f)| is the integration error.

2.1 Zinterhof Sequences

Zinterhof sequences [Zin69] are a special case of Weyl sequences. Weyl sequences
are defined by

xn = nθ = ({nθ1}, {nθ2}, . . . , {nθs}) n = 1, 2, 3, . . .

where s is the dimension and {x} is the fractional part of x. It is well known
that a Weyl sequence is uniformly distributed if and only if θi are independent
irrational numbers. An important issue with respect to their quality in terms
of uniformity of distribution is the amount or degree of irrationality of the
employed starting vector Θ = (θ1, . . . , θs). See [KY81][Theorem 4.15] for an
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estimation of discrepancy for this type of sequences. For the Zinterhof sequence
we set θi = e1/i and consequently:

xn = ({ne1/1}, . . . , {ne1/s}) n = 1, 2, 3, . . . . (1)

Note that due to their simplicity these sequences are extremely easy to
generate and may be used by non-experts in a straightforward way without
specific knowledge (which is not the case for all types of QMC sequences).

2.2 Numerical Integration with Zinterhof Sequences

Consider for dimension s the Fourier series expansion of the function f(x) to
be numerically integrated

f(x) =
∞∑

m1,...,ms=−∞
C(m)e2πi(m1x1+···+msxs) (2)

with the integration error

EN (θ) =
1
N

N∑
n=1

f(nθ) −
∫ 1

0

· · ·
∫ 1

0

f(x)dx1 . . . dxs (3)

where x = (x1, . . . , xs), m = (m1, . . . ,ms) and θ = (θ1, . . . , θs).
For absolute convergent Fourier series the error is

EN (θ) =
∞∑

m1,...,ms=−∞
m�=0

C(m)
1
N

N∑
n=1

e2πi(θ1m1+···+θsms)n =
∑
m�=0

C(m)SN (θ).

Thus to determine the quality of the integration method we have to estimate
SN (θ). Clearly θ1, . . . , θs must be rational independent unless θ1m1 + · · · +
θsms ∈ Z and thus SN (θ) = 1. Furthermore, by using Weyl’s criterion, we
know that for independent irrational numbers θ it holds that

lim
N→∞

SN (θ) → 0 ∀m ∈ Zs\{0}.

Since SN (θ) is a geometric series we can write

SN (θ) =
1
N
e2πi(m1θ1+···+ms) 1 − e2πi(m1θ1+···+ms)N

1 − e2πi(m1θ1+···+ms)
.

For the rational independent θ1, . . . , θs with the equality eix = cos(x) +
i sin(x) and the basic approximation | sin(πx)| ≥ 2 " x#, where " x# is
the distance of x to the nearest integer, we can approximate

|SN (θ)| ≤ 1/N
1

2 " m1θ1 + · · · +msθs # .
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Consider for α > 1 the class Es
α(C) = {f(x) : |C(m)| ≤ C

||m||α } then

|EN (θ)| ≤ 1/N
∑
m�=0

C

||m||α
1

2 " m1θ1 + · · · +msθs #

where ||m|| =
∏s

i=1 max(1, |mi|).
Now for θ1 = er1 , . . . , θs = ers , ri �= rj for i �= j, ri ∈ Q the subsequent

result follows from an approximation by A. Baker (c.f. [KY81]):

" m1θ1 + . . .+msθs #≥ C(θ)
||m||ψ(m)

,

where ψ(m) weakly converges towards ∞ for ||m|| → ∞.
Since there is no irrational vector θ such that for all m " m1θ1 + · · · +

msθs # ≥ C(θ)
||m|| holds, we obtain the final error approximation for α > 2

(Zinterhof provides the same error magnitude even for α > 1 [Zin69])

|EN (θ)| ≤ 1/N
∑
m�=0

C||m||
||m||α

ψ(m)
2C(θ)

.

To give an illustration of the excellent actual integration performance,
Fig. 1 shows a comparison of numerical integration accuracy among several
QMC sequences for two of the test functions used in Section 4 (we plot the
integration error versus sample size).

It can be clearly seen that for each of the two test scenarios there is a
single QMC sequence which shows very poor integration results, the Halton
sequence in the first case and the Faure sequence in the second case. While
being the top performing sequence considered for some test functions (compare
also [HUZ06] and Fig. 5), Zinterhof sequences are at least always competitive
to the best sequences available and lead to consistently low integration errors.
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Fig. 1. Comparison of Zinterhof, Halton, Sobol, Niederreiter/Xing (N/X) and Faure
sequences.
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This fact taken together with the available error estimates and the sim-
plicity of their construction and generation makes these sequences attractive
candidates for practical QMC integration applications.

3 QMC Techniques in GRID Environments

The generation of the points of a QMC sequence on a single machine and
the subsequent distribution of the generated points generates a significant
bottleneck for the integration application. When considering GRID properties,
the constraint of the unknown network capacity can become a problem, as such
a fast processing element (PE) behind a slow link would be wasted. Likewise,
if the point generating PE is behind a slow network link all other PEs are
penalized when they have to wait for new points. Thus, rather than distributing
the points, the generation of the points itself is distributed in such a fashion
that each PE can generate the points nearly independently of other PEs.

So far, two entirely different strategies have been discussed in literature to
employ QMC sequences in parallel and distributed environments (see [HUZ06]
for an exhaustive literature review and a detailed assessment of the effectiveness
of the different strategies in GRID environments).

1. Splitting a given QMC sequence into separately initialized and disjoint
parts which are then used independently on the PEs. This strategy comes
in two flavors (assuming availability of p PEs):

Blocking: p disjoint contiguous blocks of maximal length l of the original
sequence are used on the PEs. This is achieved by simply using a different
starting point on each PE (e.g., PEi, i = 0, . . . , p− 1, generates the vectors
xil,xil+1,xil+2, . . . ,xil+l−1) (“big blocks” scenario). In case a large num-
ber of smaller blocks is used index j is assigned dynamically to PEi which
generates the vectors xj ,xj+1, . . . ,xj+l−1 (where j is incremented in steps
of size l to avoid overlap – “small blocks” scenario). See [LM05, SU01] for
investigations and applications with respect to the blocking approach.

Leaping: interleaved streams of the original sequence are used on the
PEs. Each PE skips those points consumed by other PEs (leap-frogging)
(e. g. employing p PEs, PEi, i = 0, . . . , p − 1, generates the vectors
xi,xi+p,xi+2p, . . .). Usually a QMC point set is partitioned into p inter-
leaved substreams if p PEs are available. However, if more PEs become
available during the computation, there is no additional substream avail-
able in this scenario. A way to handle this situation is to partition a given
QMC point set into I > p substreams in case of p PEs are available. The
I− p substreams are not used by default but kept as additional work share
in case additional PEs become available. See [Bro96, SU01, ESSU03] for
investigations and applications with respect to the leaping approach.

2. Using inherently independent sequences on the different PEs (denoted as
“parameterization” which can be realized for example by randomizations
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of a given QMC sequence). The most important difference (and also
disadvantage) of parameterization as compared to blocking and leaping is
that the QMC point set used in parallel or distributed computation does
not correspond to a single (sequentially used) point set. Therefore, the
investigation of the results’ quality when using this technique is of great
importance since it is not clear a priori how results from different point
sets will interact in the final result. See [Cd02, ÖS02] for investigations
and applications with respect to the parameterization approach.

4 Zinterhof Sequences in GRID Environments

In this section we investigate whether Zinterhof sequences are sensible can-
didates for use in GRID environments. We present theoretical as well as
experimental results with respect to the three approaches for distributed
generation of QMC point sets as discussed in the previous section.

4.1 Theoretical Results

Leaping

For estimating the integration error resulting from using leaped Zinterhof
sequences, we replace θ in equation (3) by Lθ1, . . . , Lθs for leap size L ∈ N.
Then instead of SN (θ) we have

SN (Lθ) =
1
N

N∑
n=1

e2πi(Lm1θ1+···+Lmsθs)n.

By analogy to the general case we can approximate the integration error,
however this approximation is worse since instead of m we now have Lm in
all formulas. Thus with ||Lm|| =

∏s
i=1 max(1, |Lmi|) ≤ Ls||m|| and ψ(Lm)

instead of ψ(m) we get

|EN (Lθ)| ≤ 1/N
∑
m�=0

LsC||m||
||m||α

ψ(Lm)
2C(θ)

.

Considering that ψ(m) grows only logarithmically for θ = (θr1
1 , . . . , θ

rs
s )

and likewise for ψ(Lm) the difference of ψ(m) to ψ(Lm) plays hardly any
role. Thus the error approximation for leaping with leap size L is worse by
the factor Ls than the error approximation for the unleaped sequence. This
indicates a potentially significant deterioration of the results independent of
the specific leap value (note that contrasting to this result we have derived
poor discrepancy estimates only for 2n type leaped (t,s)-sequence substreams
in earlier work [SU01]).
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Blocking

Again, consider the Fourier series given in Equation (2) and the error given in
Equation (3) with the same parameters.

Then we have for f ∈ Es
α(C) with α > 3/2 and x1, . . . , xN ∈ Is := [0, 1]s

the approximation ([DT97, Theorem 1.35])∣∣∣∣∣ 1N
N∑

n=1

f(xn) −
∫

Is

f(x)dx1, . . . , dxs

∣∣∣∣∣ ≤ C
(

4α− 4
2α− 3

)s/2

FN (xn) (4)

where FN (xn) is the diaphony of x1, . . . , xN .
It is known [Zin76] that for the Zinterhof sequence the estimation of the

diaphony
FN (nθ) = O(1/N1−ε), (5)

for ε > 0 holds, since θ is of the form θ1 = er1 , . . . , θs = ers where the
ri ∈ Q ∀i = 1, . . . , s are rationally independent.

The definition of the diaphony FN for a general s-dimensional sequence
x1, . . . ,xN is

F 2
N (xn) =

1
N

N∑
i,j=1

H2(xi − xj), (6)

with

H2(x) =
s∏

i=1

h2(xi) − 1,

and h2 being the normed Bernoulli polynomial of degree 2,

h2 = 1 + 2π2

(
{x}2 − {x} +

1
6

)
,

where {x} is the fractional part of x.
The diaphony FN of the sequence x1, . . . , xN is translation invariant, which

follows directly from Equation (6) where we get H2((a + xi) − (a + xj)) =
H2(xi − xj), thus for any a = (a1, . . . , as)

FN (xn) = FN (a+ xn)

holds.
For the Zinterhof sequence we can choose a = xB = (Bθ1, . . . , Bθs) such

that we obtain
FN (xn) = FN (xB + xn) = FN (xB+n)

where n = 1, . . . , N .
Thus when using the error approximation (4) we see that we can use an

arbitrary block of length N instead of the first N points without deterioration
of the integration error. Note that this corresponds well to an earlier result on
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(t,s)-sequences where we showed that discrepancy estimates of arbitrary blocks
do not degrade as compared to estimates of entire (t,s)-sequences [SU01].

Now, similar to [ÖS02], let us consider the general case of blocking with
block size b where new blocks are handed out as requested (“small blocks”).
The classical blocking scheme, which we call “big blocks”, is essentially a
subset of this general case. When using p PEs we have always p continuous
subsets, each subset of points ends where a block is still unfinished. So we have
p sequences each generating an approximation of the integral I

I ′i =
1
ci

∑
λ(ci)

f(xi)

where i = 1, . . . , p, ci is the number of vectors in sequence i and λ(ci) is the
set of indices of vectors of the original Zinterhof sequence which generates
sequence i and the numbering be such that cp ≤ cp−1 ≤ · · · ≤ c1 holds. Figure 2
illustrates this for three PEs, when an PE finishes with block 3 the former c1
and c2 collapse to form the new c1. Also when one block is finished another
block is assigned and an PE starts to work on it, this forms a new sequence c3.

Now with N the total number of points, we get

I ′N =
1
N

∑
λ(N)

f(xi) =
p∑

i=1

ci
N

1
ci

∑
λ(ci)

f(xi) =
p∑

i=1

ci
N
I ′i,

which gives us the overall estimate from the estimates of the individual
sequences.

We can consider the error

EN (f) = |I ′N − I(f)| ≤
p∑

i=1

ci
N

|I ′i − I(f)| ≤
p∑

i=1

ci
N
D∗

ci
V (f).

c1 c2 c3

c1 c2 c3

block

gap gap

gap
gap

1 2 3 4 5 7 8 9 106

1 2 3 4 5 7 8 9 106block

Fig. 2. Growth of subsequences with small blocks.
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When looking at blocking with a small block size, i.e. not the big block
scenario, it is clear that the first sequence grows continuously as more interme-
diate blocks are finished and likewise new sequences are introduced at the end
with a very small cp. From the above error estimate we see that the weighted
average of the discrepancies is used, but since c1 continually grows for N → ∞
we get ci/c1 → 0 for 1 < i ≤ p. Since cp ≤ ci ≤ c2 for i = 3, . . . , p− 1, we get

EN (f) ≤ V (f)(
c1
N
D∗

c1
+

(p− 1)c2
N

D∗
cp

).

For very big N the error estimation thus becomes approximately

EN (f) ≤ V (f)D∗
c1

where c1 ≈ N .
Clearly the smaller the blocks are the faster they become insignificant and

the faster the first sequence grows. For big blocks we have the same problem
as with parameterization since unlike normal blocking no sequence becomes
insignificant and for the error we can only get the general error estimate. Given
a homogenous environment where c1 = · · · = cp we get only

EN (f) ≤ V (f)D∗
N/p

which shows no advantage over using a single machine.

Parameterization

A result with respect to a possible parameterization of Zinterhof sequences may
be found in [HUZ07], which provides a set of almost uncorrelated sequences.

For almost all collections of P specimen of s-dimensional Weyl sequences

f
(k)
1 = ({kθ1}, . . . , {kθs}), . . . ,
f

(k)
i = ({kθ(i−1)s+1}, . . . , {kθis}), . . . ,
f

(k)
P = ({kθ(P−1)s+1}, . . . , {kθPs}), k = 1, 2, . . . , N, . . .

the estimations for covariance and correlation

covN (f1, . . . , fP ) =
s

12
IP + O(N ε−1)

and
corN (f1, . . . , fP ) = IP + O(N ε−1)

hold, where IP is the P × P unit matrix with entries eii = 1 and ejk = 0 for
j �= k and i, j, k = 1, . . . , P . The estimations hold especially for the collections
of P sequences of the Weyl type having generators θ1, . . . , θs, θs+1, . . . , θPs of
the form θu = eru , ru ∈ Q, ru �= rv �= 0, 1 ≤ u, v ≤ Ps.

Since the Zinterhof sequences are of the form given above, we have well
distributed s-dimensional point generating sequences which are nearly un-
correlated. Essentially this allows us to use Zinterhof sequences for a param-
eterization approach where PEn uses xn = ({ke1/(n−1)s+1}, . . . , {ke1/ns}),
k = 1, 2, . . ..
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4.2 Numerical Experiments

Settings

For the Zinterhof sequences, we use our own custom implementation. In order
to be able to assess the accuracy of our results, we also employ different QMC
sequences. Overall we used Zinterhof, Sobol’, Halton, Faure and Niederreiter/
Xing sequences, due to page limitation only the more interesting results are
shown, however, we will always comment on the remaining sequences. For
generating the Sobol’, Halton, Faure and Niederreiter-Xing sequences we use
the implementation of the “High-dimensional Integration Library” HIntLib4.
The HIntLib uses an implementation of construction 6, 8 and 18 from [MMN95]
for the Sobol’, Faure and Niederreiter/Xing sequences respectively. For Halton
it uses the construction which was introduced in [Hal60]. For more information
on Sobol’, Faure, and Niederreiter-Xing sequences see [SS], and for Halton
sequences see [Hal60].

The numerical experiments have been conducted by integrating the follow-
ing test functions:

f(x) =
s∏

i=1

1
x0.5

i

, (7)

g(x) =

√
45
4s

(
s∑

i=1

x2
i − s

3

)
, (8)

h(x) =
s∏

i=i

(
x3

i − 1
4

+ 1
)
. (9)

All three functions have been employed extensively in experimental evalua-
tions, e.g. in own earlier work function (7) in [HUZ06] and functions (8) and
(9) in [SU01]. The function f(x) is unbounded due to the singularity in 0, the
value of the integral is 2s (we use the identical integration routine as outlined
in [HUZ06]). The integral for g(x) and h(x) is 0 in both cases, therefore we
display an absolute integration error on the ordinate of the plots instead of
a relative error as for f(x) (the abscissa shows the number of points used in
numerical integration).

For all experiments we used a randomly chosen mixture of machines using
AMD CPUs with 1200, 1600, and 2000 MHz interconnected by 100Mbit
ethernet [HUZ06]. The actual number of machines used is given for each
experiment.

Results

For leaping, the experimental results (fortunately) do not confirm the poor
error estimate. Figure 3 shows integration results when single leaps (with

4 Available at: http://www.cosy.sbg.ac.at/˜rschuer/hintlib/
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Fig. 3. Comparison of different leap sizes for the Zinterhof sequence, function h(x),
s = 10.

different leap sizes) are used in sequential execution instead of the unleaped
sequence. Surprisingly it turns out that the leaped substreams actually improve
the integration result and lead to significantly faster convergence as compared
to the baseline case. A similar behavior (except for leap 65) has been observed
for f(x) (see also [HUZ06]), g(x) is very easy to handle and therefore almost no
differences show up between the original and leaped versions of the Zinterhof
sequence.

Of the remaining sequences only the Niederreiter-Xing sequences show
comparable (and even better) stability with respect to splitting. All other
sequences show significant result degradation for one or more leaps.

In order to relate these results to an execution in a GRID like environ-
ment, we simulate failure of PEs in the following manner: “client-server” is
numerically identical to the sequential result (but executed in the distributed
environment), “leap” is the standard case where one stream is assigned each
PE, and “one-fast” and “one slow” are scenarios where one PE is speed up
or slowed down by a factor of 103: consequently, one-slow simulates the case
of one failing PE, whereas one-fast simulates the rather unlikely case that all
but one PE fail after an initial start.

Figure 4 gives the results for leap 11 (on 11 PEs) and compares them to
the result employing the Sobol’ sequence with leap 23 + 1 = 9 which is of the
form 2n + 1 (which is known to have a good star discrepancy estimate [SU01]).

It is clearly visible, that the Zinterhof sequence is very robust against PE
failure and that the integration errors are significantly smaller as compared to
the Sobol’ sequence. However, the Sobol’ case shows severely degraded results,
especially in the highly probable one-slow case. In this scenario we have a
systematic missing of equally spaced points which can not be grasped by a
discrepancy estimate of a single leaped substream and obviously leads to signifi-
cant problems in this type of point sets. Comparable results are found for h(x).

For the other sequences, except for the Niederreiter/Xing sequence, we
find problems comparable to those seen with the Sobol’ sequence. Overall, a
high robustness in the case of employing leaped substreams can be stated for
Zinterhof sequences.
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Fig. 4. Comparison of Zinterhof and Sobol’ sequences, g(x), s = 10.
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Fig. 5. Comparison of blocking (big and small blocks) using Zinterhof, Halton,
Faure, Niederreiter/Xing and Sobol’ sequences, f(x), s = 10.

Contrasting to the leaping case, robust behavior is to be expected due to
the theoretical result when using contiguous blocks of Zinterhof sequences in
distributed integration.

Figure 5 compares the results of different QMC sequences for blocking using
11 machines. For small blocks we use block size 500 and for big blocks the rela-
tively bad case of block sizeN is chosen, which results in gaps roughly nine times
the size of the actually used blocks. As a baseline for comparison we show inte-
gration with the Zinterhof sequence using all N points in consecutive manner.

The first things to note is that the three results corresponding to the
Zinterhof sequence are the best ones in terms of error magnitude. The small
blocks’ result is in fact identical to the baseline version (which holds true for
all sequences and was to be expected since the error estimate for small blocks
is practically independent of block discrepancy for high N and thus valid for
all sequences) whereas the big blocks’ result shows lower error but a higher
degree of result fluctuations in the Zinterhof sequence case.

For all cases (except the Zinterhof sequence between 8 × 106 and 9 × 106

integration points) the big blocks case is better than the small blocks case,
and thus the baseline. While this isn’t generally the case (see Fig. 6) it seems
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Fig. 6. Comparison Niederreiter/Xing and Zinterhof sequences regarding overlap,
gaps and unused streams for f(x), s = 10.

that the integration error estimation gained from our approach for big blocks
is not the best possible.

Figure 6 shows results corresponding to the more realistic case that we em-
ploy big blocks with a gap between blocks that cover 20% of the size of a block
and big blocks resulting in an overlap where about 30% of one block overlaps
the following block. Additionally, we investigate the “Streamsave” scenario,
where we use small blocks with a block size of 75 and between the blocks there
is a 25 point gap. This simulates the synchronized use of substreams with leap
100 where the last 25 out of 100 streams are reserved for PEs which become
available during the computation (but are not used in the experiment). 71
PEs are used for these computations.

The result shows that both considered sequences can cope well with gaps,
overlap, and the “streamsave” scenario, no degradation of the result is observed.

To relate parameterization behavior to blocking and leaping effects, we
compare all three approaches in the following. Results with respect to functions
f(x) and h(x) for dimension s = 10 (not shown) raise doubts about the reliabil-
ity of parameterization since the error seems to decrease slower for increasing
N as compared to other techniques. In order to facilitate a fair comparison we
increase the dimension and employ 10 PEs and less favorable conditions for
leaping and blocking: For blocking the block size is set to N and for leaping
we use leap 100 resulting in 90% gaps for blocking and likewise to 90% unused
streams for leaping (note that the gaps are distributed differently in both
variants).

As observed in Fig. 7, for higher dimension the approximation becomes
worse, which is to be expected since we use the same number of points
independent of dimension (compare e.g. Figs. 3 and 4). The results of blocking
and leaping are almost identical to the baseline version, although the conditions
are much more difficult in the current setting. On the other hand, parameteriza-
tion shows a larger error and a slower convergence towards the correct solution.
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Fig. 7. Comparison of leaping (with large leapsize), blocking (large gaps) and
parameterization for Zinterhof sequences.

5 Conclusion

Overall, we have shown that Zinterhof sequences are well suited for numerical
integration in GRID environments. Whereas the error estimation for leaped
substreams suggests worse integration errors as compared to sequential usage,
we have found no experimental evidence corresponding to this result. In con-
trary, leaping turns out to behave very reliable and robust even to hardware
failures and may be used in a flexible way.

For the case of using contiguous blocks for integration the theoretical
prediction suggesting behavior equal to the sequential case is supported by
experimental results. Similar to leaping, high robustness against gaps between
blocks and against overlap has been observed.

While the suggested parameterization scheme works in principle, the re-
sults show clearly slower convergence as compared to the leaping or blocking
strategies, respectively. Parameterization (at least in the proposed manner)
should only be used if this effect is acceptable.

Concluding we may state that Zinterhof sequences have been shown to
exhibit excellent behavior when using separately initialized and disjoint sub-
streams for distributed numerical integration and they excel by their ease of
construction and implementation even for non-specialists.
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Summary. We take a pragmatic approach to numerical integration of unbounded
functions. In this context we discuss and evaluate the practical application of a
method suited also for non-specialists and application developers. We will show that
this method can be applied to a rich body of functions, and evaluate it’s merits in
comparison to other methods for integration of unbounded integrals. Furthermore,
we will give experimental results to illustrate certain issues in the actual application
and to confirm theoretic results.

1 Introduction

The basic concept of any QMC method for numerical integration is to approx-
imate the integral by a finite sum, such that

I(f) :=
∫

Us

f(x)dx ≈ 1
N

N∑
n=1

f(xn) =: I ′N (f)

where xn are suitably chosen and Us is the unit cube. To identify suitable, i.e.
uniformly distributed, points xn the star discrepancy is defined as

D∗
N := D∗

N (x1, . . . , xn) = sup
J∈F

∥∥∥∥#{x|x ∈ J}
N

−m(J)
∥∥∥∥

where F is the family of all subintervals of the form J =
∏d

i=1[0, ti) ∈ Us with
volume m(J). The approximation error

EN (f) := |I ′N (f) − I(f)|
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depends on D∗
N and the variation V (f) in the sense of Hardy and Krause, see

[Nie92] or [Owe05] for details, of the function f . The dependency is stated in
the Koksma-Hlawka inequality

EN (f) ≤ V (f)D∗
N (f)

which is the fundamental error bound for quasi-Monte Carlo methods.
A big problem with numerical integration is the fact that the variation is

rather restrictive. Even simple functions like m(x) = max(x1 + x2 + x3 − 1, 0)
are of unbounded variation V (m) = ∞, see [Owe05]. Also if a function
is unbounded the variation is unbounded resulting in an error estimate
EN (f) ≤ ∞.

There have already been a number of methods proposed in literature which
aim at tackling the problem of numerically integrating unbounded functions,
these will be described in Section 2. The method proposed in this work is
discussed in detail in Section 3. In Section 4 we give experimental results which
indicate that the method may even be applied to functions not contained in
the restrictive class of functions it is proved for, associated problems are also
discussed.

2 Methods for the Numerical Integration
of Unbounded Functions

In the case of singularities the Koksma-Hlawka inequality becomes meaning-
less since functions containing singularities are unbound and thus of infinite
variation. When examining methods of numerical integration for integrands
with singularities usually the distinction is made whether the singularities are
in the interior of the unit cube or on the boundary.

2.1 Singularities on the Boundary

Sobol’ [Sob73] investigated a number of functions which have singularities in
the origin. By restricting the growth of the integral by

DN

∫ 1

aN

|f(x)|dx = o(N)

for N → ∞, where aN = min1≤i≤N xi, he shows that

lim
N→∞

1
N

N∑
µ=1

f(Pµ) =
∫

Us

f(P )dP

holds, but unfortunately fails to give an error bound. He allows one dimensional
functions f(x) to have a rational singularity 0 < ξ < 1 but reduces them
to functions with singularities in the origin. In the multi dimensional case
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Sobol’s test function is f(x) = x−β1
1 · · ·x−βs

s where the growth condition holds
if ∀i βi < 1.

An important class of methods deals with point generation sequences which
avoid the corners. Owen [Owe06] deals with singularities by replacing the part
of the function which is not touched by the numerical integration, i.e. the part
lying in the hyperbolic or L-shaped region avoided by the Halton sequence, by
a bounded extension of the function. This way he attains a finite variation for
the function and can prove error bounds for the numerical integration.

Definition 1. Let 1 > ε > 0 then the following regions are subsets of the
s-dimensional unit cube Us = [0, 1]s

Ho(ε) = {x ∈ Us|
s∏

i=1

xi ≥ ε} H(ε) = {x ∈ Us|
s∏

i=1

min(xi, 1 − xi) ≥ ε}

Lo(ε) = {x ∈ Us|
s

min
1≤i≤s

xi ≥ ε} L(ε) = {x ∈ Us| min
1≤i≤s

min(xi, 1 − xi) ≥ ε}.

The region Ho excludes a hyperbolic region near the origin and H excludes
hyperbolic regions near all corners of the unit cube. Likewise, Lo excludes a
L-shaped region near the origin and L near all corners.

Definition 2. Let 1 > ε > 0, then if a sequence of N points PN which fulfills

∀x ∈ PN ⇒ x ∈ Ho(ε)

we say the sequence avoids the origin in a hyperbolic fashion. The same holds
for H ( avoids all corners), Lo ( in an L-shaped fashion) and L ( avoids all
corners).

Remark 1. It is not unusual to differentiate between corners since a given
sequence usually doesn’t avoid all corners to the same degree, i.e. with the
same ε.

Owen shows that the Halton sequences avoid all corners in a hyperbolical
sense. He also shows that for a finite C > 0 the Halton points x1, . . . , xn

avoid the hyperbolic region {x|∏j x
j ≤ Cn−1}, while independent uniform

points xn enter that region infinitely often, with probability one. It is also
shown that while points from the Halton sequence avoid the 0 and 1 corner
stronger than independent uniform points do this doesn’t hold for all other
corners. To show an error bound for numerical integration with point sequences
which avoid the origin in a hyperbolic {x ∈ [0, 1]d|∏1≤i≤d x

i ≥ ε} or L-shaped
{x ∈ [0, 1]d|min1≤i≤d x

i ≥ ε} way Owen also imposes growth conditions on
the functions.

Hartinger et al. show in [HKZ05] that generalized Niederreiter sequences
possess corner avoidance properties similar to Halton sequences around the ori-
gin. They also show the corner avoidance rates for Halton and Faure sequences
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for corners different than the origin. To get efficient QMC rules for the inte-
grands one has to find point sets satisfying the condition

∏s
i=1 x

(i)
n ≥ cN−r

with small r as stated in [Owe06] or for an all corner case when the avoidance
condition is written as min1≤n≤N

∏s
i=1 min(1 − x(i)

n , x
(i)
n ) ≥ cN−r.

They show that for each point xn, 0 ≤ n < bl, of a generalized Niederreiter
(t, s)-sequence in base b the bound

∏s
i=1 x

(i)
n ≥ b−l−t−s holds.

Kainhofer, Hartinger, and Tichy [HKT04] also dealt with QMC methods
for multidimensional integrals with respect to a measure other than the
uniform distribution. They allow the integrand to be unbounded on the lower
boundary of the interval and justify the “strategy of ignoring the singularity”
by using weighted integration with a non-uniform distribution. This means
integration problems of the form I[a,b] :=

∫
[a,b]

f(x)dH(x) where H denotes a
s-dimensional distribution with support K = [a,b] ⊂ Rs and f is a function
with singularities on the left boundary of K. To use a generalized version
of the Koksma-Hlawka inequality they have to define a H-discrepancy of
ω = (y1, . . .) which measures the distribution properties of the sequence. It is
defined as DN,H(ω) = supJ⊂K |N−1AN (J, ω) −H(J)| where AN counts the
number of elements in (y1, . . . , yN ) falling into the interval J, e.g. AN (J, ω) =∑s

n=1 χJ(yn), and H(J) denotes the probability of J ⊂ K under H. With
this DN,H they can define the Koksma-Hlawka inequality for this case as
|IK −N−1

∑N
n=1 f(yn)| ≤ V (f)DN,H(ω).

While the authors state that there is a certain lack of sequences with low
H-discrepancy they also propose a technique for constructing such sequences
by using the Hlawka and Mück method [HM72]. However, for such a sequence
ω̃ there might be some elements ỹk which attain 0. Since the singularities of
f(x) are on the lower boundary these sequences are not directly suited to be
used with the numerical integration, however a simple change is proposed,
generating a new sequence ω̄.

For the multi-dimensional case the idea is basically the same, Kainhofer
et al. state a convergence criterion as follows. Similar to the one-dimensional
case the construction of H-distributed sequences leads to problems when using
Hlawkas method. However an adjustment to the generated sequence is given
by the authors.

In [HK05] Hartinger and Kainhofer deal with the problem of generating
low discrepancy sequences with an arbitrary distribution H. While they did
so before ([HKT04]) they identify some disadvantages which carry over to the
transformed sequence they proposed. They specifically deal with the property
of the Hlawka-Mück method that for some applications the points of the
generated sequence of a set with cardinality N lie on a lattice with spacing
1/N . Their solution is to use a smoothed approximation where the values
between the jumps are interpolated in the empirical distribution function.

In order to integrate functions with singularities at the boundary it will
be convenient to shift the interpolated sequences in an appropriate way to
avoid regions that lie too close to that singularity. The authors define how to
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generate a new sequence ω̂ from the constructed sequence ω̄ which has the
same distance to the boundaries as the original sequence ω.

They show, by utilizing the same techniques as Owen in [Owe06], that the
sequence can be used to integrate improper integrals which have a singularity
in the corner. They also show an error estimate for the L-shaped and hyperbolic
corner avoidance cases.

DeDoncker [dDG03] reduces the error rate of the methods of Klinger and
Sobol’ by constructing extensions which reduce the approximation error. She
looks at the leading asymptotic order of the error and generates extrapolations
for such functions in such a way that error terms vanish. She has shown that
for one dimensional functions with algebraic end point singularities her method
works very well. Furthermore, it gains significant convergence acceleration when
applied to some logarithmic and interior algebraic singularities. Additionally
an asymptotic error expansion was derived for integrands with algebraic
singularities at the boundaries of the d-dimensional unit cube.

The improvements were found to occur in stages, as each error term vanishes.
She also states that further research is needed to determine conditions for
which an exact order of leading error terms can be established, and thus a
proper extrapolation can be made.

2.2 Singularities in the Interior

In [Owe04] Owen applied and extended his results from [Owe06] to singularities
z ∈ [1, 0]d inside the unit cube. However since the sequences do not avoid
the region of the singularity, which can be in the interior of the unit cube,
he proposes using the extended function f̃ instead of the original function f
for numerical integration. Like in [Owe06] he requires the function to obey a
growth condition. He then defines an extendible region K around singularity
z for which ||x − z||p ≥ ν holds for some ν > 0, additionally he defines an
anchor c ∈ K for which rect[c, y] ⊂ K ∀y ∈ K holds, where rect[x, y] =∏s

i=1[min(xi, yi),max(xi, yi)] is the rectangular hull of x and y, thus he can
use Sobol’s extension f̃(x). With the help of the extendible region, f̃ and
the growth condition he gives an error estimate for any Lebesgue measurable
function f for the integration.

However, Owen states in the conclusion that it is not clear if such a good
extension to f can be found for arbitrary level sets.

Klinger [Kli97] shows that the numerical integration of a function is still
possible when it has a singularity in the origin, or can be transformed such
that the singularity is in the origin, by removing the point closest to the origin
from the integration. This basically excludes an elemental interval containing
the origin from the estimation, for Halton sequences he defines similar intervals.
Only Halton and (0, s)-sequences are used and Klinger uses the properties of
elemental intervals to find points which are near the singularity and thus not
included in the numerical integration. While the (0, s)-sequence is a Niederreiter
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sequence, and thus a notion of elemental intervals already exits, Klinger needs
to define a similar notion for Halton sequences:

Let ak be positive rational numbers which satisfy
∑s

k=1 1/ak ≥ 1 and
define positive numbers, coprime integers pk, qk by pk/qk := ak. Now let
R =
∏s

k=1[δk(δk − CN−1/ak), (1 − δk)CN−1/ak + δk) where δk ∈ {0, 1} and
C = min1≤k≤s b

−qk

k . Then at most one of the first N points x0, . . . , xN of
Halton’s sequence falls into R.

Consequently Klinger states that since x0 = 0, this argument also shows
that none of the first N points of a Halton sequence xn fall into the above
interval when δk = 0 for all 1 ≤ k ≤ s. He gives the error bounds for Halton
and (0, s)-sequences.

The computational experiments included in the paper compare the error
bounds of the Halton, Sobol’ and Niederreiter sequences. The error bounds are
shown to be reasonable and also that Halton sequences have, for low dimension,
basically the same characteristics as Sobol’ or Niederreiter sequences but are
less computationally expensive. For high dimension, shown for dimension 10
in the experiments, Halton sequences are worse for at least moderate N.

The method proposed in the next section is rather simple in application,
and can deal with arbitrary patterns of singularities. However, this entails a
rather problematic (at least theoretical) restriction to the class of functions to
which it can be applied.

3 A Pragmatic Approach

A number of people, starting with Sobol’ in [Sob73], have conducted research
for error bounds for improper integrals. One of the more recent results is by
Zinterhof [Zin02].

Definition 3. For a function f(x) and a B > 0 the functions fB(x) and f̂B(x)
are defined as

fB(x) =

{
f(x) |f(x)| ≤ B
0 |f(x)| > B

f̂B(x) =

{
0 |f(x)| ≤ B
f(x) |f(x)| > B.

Definition 4. Consider the class of s-variate functions, f(x1, . . . , xs) 0 ≤
xi ≤ 1 i = 1, . . . , s, consisting of all functions which fulfill

(a) I(|f̂B |) = O(B−β) for some β > 0
(b) V (fB) = O(Bγ) for some γ ≥ 1.

This class will be called C(β, γ).
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Theorem 1. Let f ∈ C(β, γ), D∗
N be the discrepancy of the set of nodes

x1, . . . ,xn and B = D∗
N

−1/(β+γ), then the estimate

I(f) =
1
N

N∑
n=1

fB(xn) + O(D∗
N

β/(β+γ))

holds, where I(f) = I(fB) + I(f̂B).

Proof. From
I(f) = I(fB) + I(f̂B)

using the Hlawka-Koksma inequality we get∣∣∣∣∣I(fB) − 1
N

N∑
n=1

fB(xn)

∣∣∣∣∣ ≤ V (fB)D∗
N ≤ C1(f)BγD∗

N

and from condition (a) we get

|I(f̂B)| ≤ C2(f)B−β .

Consequently

EN =

∣∣∣∣∣I(f) − 1
N

N∑
n=1

fB(xn)

∣∣∣∣∣ ≤ C1(f)BγD∗
N + C2(f)B−β ,

which takes it’s minimum of order when using

B = D∗
N

−1
β+γ .

Thus for an error estimate we get

EN ≤ C(f)D∗
N

β/(β+γ)

where C(f) is a constant depending on f .

Remark 2. Zinterhof [Zin02] also shows that the error bound is optimal.

Remark 3. Since the optimal B is depending on D∗
N , β and γ it is in any case

depending on N . Also, if either of D∗
N , β or γ is depending on s then B is also

depending on s.

3.1 The Class D(β, γ)

An important issue remains: the richness of the class C(β, γ). Generally if the
jump line, i.e. f(x) = B, x ∈ Us, is not axis parallel the variation is unbounded
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and consequently f /∈ C(β, γ) since condition (b) (in Definition 4) is violated4.
It can clearly be seen that the class C(β, γ) is very restrictive.

Consider the class T of bounded step functions t ∈ T , t(x1, . . . , xs) :
Us → C. These are functions which are piecewise constant on Us where Us

is partitioned into a finite number of, pairwise disjoint, intervals of the form∏s
i=1[ai, bi). All functions t ∈ T are of bounded variation.

Definition 5. Let the class D(β, γ) be defined as D(β, γ) := {f |f ∈ C(β, γ)
and fB ∈ T}. If it is clear from context we will abbreviate and write D.

Remark 4. Using the definition of D we can easily state T ⊂ D ⊂ C := C(β, γ).

It is well known that if g ∈ L1, which implies
∫

Us |g(x)|dx <∞, then there
exists for every ε > 0 a tε(x) ∈ T such that∫

Us

|g(x) − tε(x)|dx < ε.

Also since T ⊂ D we can easily write∫
Us

|g(x) − dε(x)|dx < ε,

with dε(x) ∈ D. Generally, the functions ∈ D will approximate a given function
g ∈ C ⊂ L1 better than functions ∈ T .

In any case, C is rich since T is rich and T ⊂ C. The restrictiveness of
C(β, γ) is a direct result of the restrictiveness of the variation in the sense of
Hardy and Krause.

3.2 The Function f(x) = max(x1, . . . , xs)−β

Now let us consider the function f = 1
max(x1,...,xs)β with 0 < β < 1. Certainly

f /∈ T and limx→0 f(x) = ∞, thus if we can show that f ∈ C we have T � C.
To do this we need to estimate the integral value and variation of the function
f to see if conditions (a) and (b) in Definition 4 are met.

Integral Value

Theorem 2. Let f = 1
max(x1,...,xs)β with 0 < β < 1, then

∫
Is f(x)dx = s

s−β

0 < β < 1.

Proof. With induction. For s = 1 the claim holds since
∫ 1

0
x−β

1 dx1 =
1

−β+1x
−β+1
1 |10 = 1

1−β .

4 Thanks to Reinhold Kainhofer for pointing this out.



A Pragmatic View on Numerical Integration of Unbounded Functions 519

Now∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xs)−βdx1 . . . dxs =

=
∫ 1

0

(∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xs)−βdx1 . . . dxs−1

)
dxs =

=
∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)−βdxs.

Let us consider
∫ 1

0
max(x1, . . . , xs−1, xs)−βdxs, and let x̂s := max(x1, . . . ,

xs−1), thus
∫ 1

0
max(x1, . . . , xs−1, xs)−βdxs =

∫ 1

0
max(x̂s, xs)−βdxs where

max(x̂s, xs) =

{
xs xs ≥ x̂s

x̂s xs < x̂s.

Thus∫ 1

0

max(x̂s, xs)−βdxs =
∫ x̂s

0

x̂−β
s dxs +

∫ 1

x̂s

x−β
s dxs =

−βx̂−β+1
s + 1
1 − β .

Now we have∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)−βdxs =

=
∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1
1 − βx̂−β+1

s

1 − β =

=
1

1 − β
[
1 − β

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , x
−β+1
s−1 dx1 . . . dxs−1

]
.

Now using the induction hypothesis we get∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)−βdxs =

=
1

1 − β
[
1 − β s− 1

s− 1 − β + 1

]
=
s− β − sβ + β
(1 − β)(s− β) =

s

s− β .

Remark 5. In a similar fashion we obtain
∫

Is f̂B(x)dx = s
s−β ( 1

B )
s−β

β .

Variation

Definition 6. Let P be the set of all partitions of the s-dimensional unit cube
Is then the variation of a function f in the sense of Vitali is defined as

VV (f) := sup
P∈P

∑
p∈P

|∆(f ; p)|,
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where ∆(f ; p) is the s-fold alternate sum, i.e. adjacent corners have opposite
sign, of the function values on the corners of the interval p.

Definition 7. Let n ∈ N and 0 = t0 < . . . < tn−1 < tn = 1, ti ∈ Is 0 ≤
i ≤ n. Now let Zs(t0, . . . , tn) = {{t1, . . . , tn}s} be the set of s-tuples formed
by t0, . . . , tn. A partition P of s-dimensional unit cube Is = [0, 1)s is called
valid partition if there is exists a Zs(t0, . . . , tn) such that P = {{[t0, t1), [t1, t2),
. . . , [tn−1, tn)}s} where [tk−1, tk)[tl−1, tl) = [tk−1, tk) × [tl−1, tl). We say the
partition P belongs to Zs(t0, . . . , tn) and write P (Zs(t0, . . . , tn)).

Remark 6. From the construction of Zs(t0, . . . , tn) it follows that for a valid
partition only the intervals of the form [tk−1, tk) × · · · × [tk−1, tk) 1 ≤ k ≤ n
cross the principal diagonal, i.e. the restriction of the principal diagonal of the
unit cube to such an interval is the principal diagonal of the interval.

Remark 7. Every partition of Is can be refined to a valid partition.

Lemma 1. VV (max(x1, . . . , xs)) = 1 for (x1, . . . , xs) ∈ Is.

Proof. The function f(x1, . . . , xs) = max(x1, . . . , xs) fulfills max(x1, . . . , xk−1,
xk, xk+1, . . . , xs) = xk for max(x1, . . . , xk−1, xk+1, . . . , xs) ≤ xk. Let In1,...,ns =
[tn1−1, tn1) × · · · × [tns−1, tns) be an interval of the valid partition
P (Zs(t0, . . . , tn)), which doesn’t cross the principal diagonal (x1, . . . , xs) =
t(1, . . . , 1) 0 ≤ t ≤ 1. Now we can write VV (f ; In1,...,ns

) = |∑1
τ1=0 · · ·∑1

τs=0

(−1)τ1+···+τs max(tn1−1 + τ1(tn1 − tn1−1), . . . , tns−1 + τs(tns
− tns−1)|. Since

In1,...,ns is not on the principal diagonal of Is there is a k0, 1 ≤ k0 ≤ s such
that

max
(
tn1−1 + τ1(tn1 − tn1−1), . . . , tnk0−1+

τk0(tnk0
− tnk0−1), tnk0

, tnk0+1 + τk0+1(tnk0
− tnk0−1), . . .

)
= tnk0

and

max (tn1−1 + τ1(tn1 − tn1−1), . . . , tns−1 + τs(tns
− tns−1)) =

= tnk0−1 + τk0(tnk0
− tnk0−1)

for all τ1, . . . , τk0−1, τk0+1, . . . , τs, ∀i : τi ∈ {0, 1}.
It follows that

VV (f ; In1,...,ns
) =

∣∣∣∣∣
1∑

τ1=0

. . .

1∑
τk0−1=0

1∑
τk0+1=0

. . .

1∑
τs=0

(−1)τ1+···+τk0−1+τk0+1+···+τs(tnk0
− tnk0−1)

∣∣∣∣∣ =
= (tnk0

− tnk0−1)

∣∣∣∣∣
1∑

τ1=0

. . .

1∑
τk0−1=0

1∑
τk0+1=0

. . .

1∑
τs=0

(−1)τ1+···+τk0−1+τk0+1+···+τs

∣∣∣∣∣ = 0.
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If on the other hand In1,...,ns
lies on the principal diagonal of Is, then

n1 = · · · = ns = n0 and In1,...,ns
=In0,...,n0= [tn0−1, tn0) × [tn0−1, tn0) × . . .×

[tn0−1, tn0), then

VV (f ; In0,...,n0) =

∣∣∣∣∣
1∑

τ1=0

. . .

1∑
τs=0

(−1)τ1+···+τs max (tn0−1 + τ1(tn0 − tn0−1), . . . ,

tn0−1 + τs(tn0 − tn0−1))

∣∣∣∣∣ =
=

∣∣∣∣∣
1∑

τ1,...,τs=0

(−1)τ1+···+τstn0−1 max(τ1, . . . , τs)(tn0 − tn0−1)

∣∣∣∣∣ =
=

∣∣∣∣∣tn0−1

1∑
τ1,...,τs=0

(−1)τ1+···+τs + (tn0 − tn0−1)

×
(

1∑
τ1,...,τs=0

(−1)τ1+···+τs −
1∑

τ1,...,τs=0

(−1)τ1+···+τs

)∣∣∣∣∣ =
= |tn0−10 + (tn0 − tn0−1)(0 − 1)| = tn0 − tn0−1.

Then holds VV (f ; Is) =
∑n

n0=1(tn0 − tn0−1) = 1, where VV (f ; Is) is
attained already at the principal diagonal of Is.

Remark 8. If g(x) in [0, 1] is monotone or of finite variation Var(g) then
VV (g(max(x1, . . . , xs); Is)) = |g(1) − g(0)| or VV (g(max(x1, . . . , xs); Is)) =
Var(g).

Remark 9. Let 0 ≤ ak < bk, 1 ≤ k ≤ s then for Ia,b =
∏s

k=1[ak, bk) we
analogously get VV (g(max(x1, . . . , xs)); Ia,b) = |g(b) − g(a)| for a1 = · · · = as

and b1 = · · · = bs, otherwise VV (g(max(x1, . . . , xs)); Ia,b) = 0. The variation
in the sense of Vitali of functions g(max(x1, . . . , xs)) is concentrated on the
principal diagonal of the unit cube.

Remark 10. For functions f = g(max(x1, . . . , xs))

VHK(f ; Is) = VV (f ; Is)

holds. The variation in the sense of Hardy and Krause is defined as

VHK(f ; Ia,b) =
∑

J⊂Is

VV (f ; J)

where J are all k-dimensional faces {(u1, . . . , us) ∈ Is|uj = 1, j �= i1, . . . , ik}
with 1 ≤ k ≤ s and 1 ≤ i1 < · · · < ik ≤ s. Since for k < s there are
some uj = 1, the function f = g(max(x1, . . . , xt−1, 1, xt+1, . . . , xs)) = g(1),
t �= i1, . . . , ik, is constant and consequently VV (f ;J) = 0, ∀J � Is.
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Let now g(x) = 1/xβ , 0 < x ≤ 1, 0 < β < 1 and fβ(x1, . . . , xs) =
1/max(x1, . . . , xs)β , (x1, . . . , xs) ∈ Is. Now let

f̂β,B =

{
0 fβ(x1, . . . , xs) > B, max(x1, . . . , xs) < 1/Bβ = B′

fβ(x1, . . . , xs) fβ(x1, . . . , xs) ≤ B, max(x1, . . . , xs) ≥ 1/Bβ = B′,

and

f̃β,B =

{
fβ(B′, . . . , B′) = B fβ(x1, . . . , xs) > B
fβ(x1, . . . , xs) fβ(x1, . . . , xs) ≤ B,

and

χβ,B =

{
B fβ(x1, . . . , xs) > B
0 fβ(x1, . . . , xs) ≤ B,

and clearly f̃β,B = f̂β,B + χβ,B. It can be easily seen that VV (χβ,B; Is) = B
and from the remarks before we know that VV (f̃β,B) = |g(0) − g(1)| =
B − 1. Consequently, VV (f̂β,B; Is) = VV (f̃β,B − χβ,B; Is) ≤ VV (f̃β,B; Is) +
VV (χβ,B ; Is) = 2B − 1.

Thus we have finally shown that f(x)(= max(x)−β), 0 < β < 1 is in
C( s−β

β , 1).

Remark 11. Since max(x)−β ∈ C( s−β
β , 1), 0 < β < 1, we also know that the

error takes it’s minimum when B = D∗
N

−β
s (c.f.: proof of Theorem1).

4 Experimental Results

First, we want to investigate the behavior of function f(x) = max(x1, . . . , xs)−β

as discussed in the last section in numerical experiments. As point sequence we
used the Zinterhof sequence [Zin69], which is a special case of Weyl sequences
defined as follows

xn = ({ne1/1}, . . . , {ne1/s}), n = 1, 2, 3, . . . ,

for points n = 1, 2, . . . and dimension s. Note that the Zinterhof sequence has
certain corner avoidance properties as well, which is due to the high degree
of irrationality of the generated points. Caused by corresponding diophantine
properties this is true not only for the origin but for all rational points as well.
For the calculation of the bound B we use the bound of the discrepancy given
by LeVeques inequality [KY81] and the diaphony of the Zinterhof sequence
[Zin69].

Figure 1 displays the results for the original and integral preserving trans-
formed function (transformed in such a way as to get singularities in the
interior of the unit interval as well as on the border)

max = max(x1, . . . , xs)−0.5, max ′ = max({5x1}, . . . , {5xs})−0.5
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Fig. 1. Functions max and max′ for dimension 10 and 15 with B = 2, relative error
over N .

respectively, where {x} is the remainder of x. We let N run and hold B = 2
(according to Remark 11) fixed for dimensions 10 and 15 (labeled d10 and d15
respectively).

Remark 12. We hold B fixed at a value which is calculated for N = 107 so
that we will get the best result towards the end of calculation. If we wanted
the lowest error for each N we would have to let B vary accordingly.

As expected, the error rates are very good, especially towards higher N .
Theoretically, we are restricted to functions of class C, practically however

the method can be applied to a wider range of functions. Consider the functions

f1 =
s∏

i=1

1
x0.5

i

, f2 =
s∏

i=1

1
ln( 1

xi
)0.5

where f1
B and f2

B both have non axis parallel jump curves and consequently
infinity variation.

Remark 13. The integral values over the s-dimensional unit cube for f1
α(x) =∏s

i=1 x
−α
i and f2

α(x) =
∏s

i=1 ln(1/xi)α−1, 0 < α < 1, are
∫

Us f
1
α(x)dx =

(1/(1 − α))s and
∫

Us f
2
α(x)dx = Γ (α)s respectively.

Experimentally, functions f1 and f2 can be integrated using our technique,
even though their bound representations for this method have infinite variation,
c.f. Definition 4 condition (b). For a test we used a fixed B = 109, which also
hints at a serious problem with this method if f /∈ C. Since the variations of
f1

B and f2
B are infinite we can not obtain a β and thus no optimal bound B

using dimension 10 and 15.
Figure 2 left hand side shows the results for function f1 over the number

of points N , and the right side shows the results for the integral preserving
transformation

f ′1 =
s∏

i=1

1
{5xi}0.5

where {x} is again the remainder of x.
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Fig. 2. Functions f1 and f ′1 for dimension 10 and 15 with B = 109, relative error
over N .

The figures show that the estimation converges toward a fixed error, this is
to be expected since we will by construction always miss I(f̂B) (see Theorem 1)
since we kept B fixed while it is actually a function of the discrepancy and
thus of N . The difference in error between dimension 10 and 15 is a well known
phenomenon (curse of dimensionality). However, given that we can somehow
obtain the proper bound B for the number of points N used for the integration
the error converges even though f1 (and f1

B) is of unbounded variation.
Keeping the bound B fixed and again using dimensions 10 and 15 we

will likely experience problems in the integration when we turn to another
function. To illustrate this we used function f2, and an integral preserving
transformation as follows

f ′2 =
s∏

i=1

1
ln( 1

{5xi} )0.5
,

shown in Fig. 3 left and right hand side respectively. When the bound is chosen
too low the results usually becomes stable quickly with a high error, stemming
again from f̂2

B . In this case the bound was chosen too high, i.e. we would need
to use more points N to get to the region where B is optimal. This can be seen
from the overshoots, usually high error rates at the beginning, due to points
falling near the jump curve, thus early introducing high values, i.e. close to B,
to the estimation. These will usually vanish when the number of points is high
enough to get a fine grained sampling of the unit cube but will stay visible
a long time. So while the method works, experimentally, even for functions
not in C this poses the problem of estimating a proper B to be used in the
integration.

To illustrate the effect B has on the integration we use a fixed number of
points N = 106 and let B vary. The result of this test, again for functions
f1 and f2 in dimensions 10 and 15, is given in Fig. 4. What can be seen is
that the bound depends not only on the number of points but also on the
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Fig. 4. Functions f1 and f2 for dimension 10 and 15 with N = 106, relative error
over B.

dimension, which is not surprising since it depends on the discrepancy. Also,
for f2, there is an interval of B where the integration holds, while on the other
hand we get an increase in error as we move away from that interval. Also,
since the bound is depending on the discrepancy, which in turn depends on the
number of points and the dimension, the bound is a function of the dimension
leading to quite some error in dimension 15 where the approximation was very
close for dimension 10.

Finally, we consider a function which can not be reduced to singularities
along the border or in the corner. Consider the function (again with integral
preserving transformation)

m =
s−1∑
i=1

1
|xi − xi+1|0.5

, m′ =
s−1∑
i=1

1
|{5xi} − {5xi+1}|0.5

.

Remark 14. The integral value of mα(x) =
∑s−1

i=1 |xi − xi+1|−α, 0 < α < 1
over the s-dimensional unit cube Us is

∫
Us mα(x)dx = 2(s− 1)/(1−α)(2−α).
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Fig. 5. Functions m and m′ for dimension 10 and 15 with B = 104, relative error
over N .

Remark 15. The functionmα has a singularity along the s−1 dimensional man-
ifold R = ∪i=1,...,s−1Ri, where Ri = {x|x ∈ Us, xi = xi+1}, i = 1, . . . , s− 1.

Remark 16. If we use a step function mM to approximate m with M intervals
we can give a bound for the variation as VHK(mM ) ≤M2ss

(
s

�s/2�
)
B = O(B).

Furthermore the integral of m̂B can easily calculated as
∫

Us m̂αB(x)dx =
(2(s− 1)/(1 − α)(2 − α))B−2α+α2

= O(B−(2α−α2)) thus m ∈ D(α2 − 2α, 1).

For m and m′ we used B = 104 (according to Remark 16), again for both
dimension 10 and 15, and the results are given in Fig. 5. As expected (since we
use a single fixed B) the error at the beginning is quite high but swiftly falls to
“normal” levels. Somewhat more important is the rather good convergence when
considering that this functions singularity is more severe than the singularity
of the two previous functions.

Since we only used an estimation for B we can not expect the numerical
integration to be optimal, so now we will assess how good the approximation
actually is. For this purpose, we integrated m in dimension 10 for different
values of B. The results are given in Fig. 6, the left side gives the relative error
over N for different values of B and the right side gives the number of points
for which the function value exceeded B for a fixed N = 107. On the left side
we see that for a lower B the error is increased and if we set B to high the error
increases again. Overall our estimated B seems to be a bit too low and some
value between 104 and 2 104 would have been the best fit. This is affirmed by
the right hand side of the figure, where we see that the difference between 104

and 2 104 is more than one point (otherwise it would not be possible to get
results between these two values on the left hand side). Overall we see that
with a function approximation using class D(β, γ) it is hard to get the best
approximation but it is certainly possible to get a good approximation. Also,
when we look at the left hand side we see that for B = 104 and B = 2 104 the
error increases again after about N = 6 106. This is a further evidence that
the choice of B is vital for the integration.
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Fig. 6. The effects of different values of B for the function m.

5 Conclusion

We have shown that the proposed method can be used to numerically integrate
over a rich class of functions C(β, γ). The method also works experimentally
on an even bigger class of functions with the problem that some parameters, i.e.
the bound B, cannot be chosen specifically for the function. Furthermore, the
bound can be applied during runtime, and thus the method can be applied to
the function directly. Also, the method is not restricted to singularities on the
boundary or in the corner. Thus this method is extremely easy to implement
and apply, even for non specialists.

However, even if a function is of class C we face the problem that we have
to know the number of points beforehand to choose an optimal B. Also, since
we need β and γ to choose optimal parameters for the numerical integration
the function must be well known. This is theoretically of no importance but
practically can prevent (optimal) integration.
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Summary. In the last years, haplotypic information has become an important
subject in the context of molecular genetic studies. Assuming that some genetic
mutations take part in the etiology of some diseases, it could be of great interest to
compare sets of genetic variations among different unrelated individuals, inherited in
block from their parents, in order to conclude if there is some association between
variations and a disease. The main problem is that, in the absence of family data,
obtaining haplotypic information is not straightforward: individuals having more
than one polymorphic heterozygous locus have uncertain haplotypes.
We have developed a Markov Chain Monte Carlo method to estimate simultane-
ously the sample frequency of each possible haplotype and the association between
haplotypes and a disease.

1 Introduction

Nowadays, haplotypic information has become vitally important in the context
of association studies. Association studies deal with the relationship between
genetic information and the etiology of some particular disease. Comparing
DNA of healthy and diseased individuals, we can find changes in the sequence
that could modify the risk of suffering from the disease [Bal06].

DNA variations we are going to deal with are the changes in only one
nucleotide, called SNP (Single Nucleotide Polymorphism).

The knowledge of haplotypes corresponding to a sample of genotypes
observed for some SNPs of a set of unrelated individuals is very helpful to
better describe this association. Unfortunately, in the absence of family data,
obtaining haplotypic information is not straightforward. Since every cell of the
human organism contains 22 pairs of homologous chromosomes, plus the sexual
chromosomes, for each chromosomical location at the autosomal chromosomes
there are two bases, one for each homologous chromosome at the same position
of the DNA sequence. Given that current lab techniques usually only report
genotypic data and do not provide the chromosome for each base, individuals
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with two or more heterozygous sites have uncertain haplotypes because there
is more than one possible haplotype pair compatible with their genotype.

Methods of Haplotypic Reconstruction

In the last years several methods of haplotypic reconstruction have been
developed in order to overcome this lack of information. Since Clark, in 1990
[Cla90], developed a parsimony algorithm to estimate haplotype frequencies
from a sample of genotypes, quite a large number of methods have been
developed. Most of them rely on the use of different techniques to calculate
the Maximum Likelihood Estimator (MLE).

In 1995, Excoffier and Slatkin [ES95] adapted the Expectation–Maximization
algorithm, an iterative algorithm of maximization developed by Dempster in
1977 [DLR77] to maximize the likelihood function of the haplotypes given the
genotypes at specific loci. This method has some limitations and convergence to
a local maximum may occur in some situations (Celeux and Diebolt, [CD85]).

Some authors have attempted to minimize these limitations in their works,
like Qin et al. [QNL02] using Divide and conquer strategies, or David Clayton,
implementing an EM-algorithm (snphap software) which adds SNPs one by
one and estimates haplotype frequencies, discarding haplotypes with low
frequency as it progresses. Besides, other techniques have been considered,
too. In the context of Bayesian statistics, Stephens et al. in 2001 proposed
an algorithm based on coalescent theory [SSD01] with a especial prior based
on the general mutational model. Niu et al. [NQXL02] implemented another
Bayesian approach using a Markov Chain Monte Carlo method. In general,
algorithms dealing with Bayesian models are suitable to infer haplotypes from
genotypes having a large number of polymorphisms.

The most recent methods work with clusters of haplotypes in order to avoid
the major limitations of many current haplotype-based approaches [WWB06].

Once the frequencies have been estimated by any of the methods mentioned
above, the next goal is to test the association between haplotypes and a disease.
The most accurate strategy in order to take into account the uncertainty of
the sample is to estimate simultaneously haplotype frequencies and haplotype
effects. There are some works in this direction (Tanck et al. [TKJ+03], Tregouet
et al. [TET+04]).

2 Methodologies

The algorithm we have developed makes the simultaneous estimation of
haplotype frequencies and haplotype effects within the frame of Bayesian
models. We aim to compute the Maximum Likelihood Estimator of the param-
eters using Markov Chain Monte Carlo techniques. To do so, it is first required
to define the models for both cases in order to deduce the two associated
likelihood functions.
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2.1 Notation

Consider a sample of individuals of size N , and let be Gi the genotype for
the i-th individual, i = 0, . . . , N . Each individual has a finite number of
haplotypes compatible with his genotype Gi. If this genotype has at most 1
heterozygous locus, there is only one possible pair of haplotypes compatible
with it and there is no uncertainty. Let be m the number of heterozygous
loci. If m ≥ 2, the genotype has 2m different haplotypes compatibles with it.
Let be Hi, i = 1, . . . , 2m the set of compatible haplotypes with the genotype
of each individual. Assuming that in the whole sample there are M possible
haplotypes, hj denotes the j-th haplotype, with j = 0, . . . ,M . The sample
frequency for each haplotype is denoted by fhj

.

2.2 Likelihood for Genotypes Sample

Now, assuming Hardy-Weinberg equilibrium, the sample frequency for each Gi

can be expressed by the product of the frequencies of every haplotype in Hi.
For example, if an individual is certain, Hi only has two elements hr and hs,
r, s ∈ (1, . . . , 2m), then FGi

= fhr
× fhs

. But for individuals with uncertain
haplotypes, we have to consider the sum over all the possible pairs:

FGi
=
∑

hr,hs∈Hi

crsfhr
fhs

(1)

where crs is a constant value, equal to 1 if hr = hs and 2 if hr �= hs. Now,
taking the product of (1) over all the individuals, the likelihood function �(F )
of the sample of genotypes can be written as Excoffier and Slatkin stated in
[ES95]:

�(F ) =
N∏

i=1

FGi
=

N∏
i=1

∑
hr,hs∈Hi

crsfhr
fhs

(2)

where F = {FGi
, i = 0, . . . , N}.

2.3 Estimation of Haplotype Effects. Logistic Regression Model

The estimation of haplotype effects can be done with a case–control design if
a binary status variable is known. A suitable model is the logistic regression
model, which has related to its coefficients the definition of a useful measure of
association, the odds ratio. Let be Yi the binary variable and yi the values of
Yi over each individual in the sample. Yi is equal to 0 for a healthy individuals
and 1 for diseased ones: {

yi = 1 with pi

yi = 0 with 1 − pi
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Now, consider Hi as the covariate for the model. The conditional probability
for Y can be expressed like:

pi = P (Yi = 1 | Hi) =
exp(α+ β1h1,i + · · · + βM−1hM−1,i)

1 + exp(α+ β1h1,i + · · · + βM−1hM−1,i)
(3)

where β = (α, β1, · · · , βM−1) ∈ RM is the parameter vector of the model.
β has at most 2m non zero entries.
Taking the product over all the individuals in the sample, the likelihood for
the logistic regression model with haplotypic covariate is:

N∏
i=1

pyi

i (1 − pi)1−yi (4)

Then, Eβ are odds ratios (OR), measuring the possible association between
Yi and Hi. Taking as reference a base haplotype (usually the most frequent
in the sample), the odds ratio quantifies the effect of a given haplotype by
comparison with the effect of the reference haplotype.

2.4 Estimating Parameters

To estimate the parameters of both likelihood functions, independence among
the parameters for the two models is assumed. Then, two Markov Chains
are created, one for each likelihood function, with stationary distribution the
distribution of the unknown parameters. The way the chain is created depends
on the model:

• For the estimation of the haplotype frequencies in (2), a particular case
of the Metropolis-Hastings algorithm, the Random walk, is a simple and
efficient method.

• To estimate the parameters of the logistic regression model (3), the sampling
will be generated using another particular case of the Metropolis-Hastings
algorithm, the Gibbs Sampler.

The Algorithm

Rebuilding the Haplotypes Sample
It starts with a sample of genotypes of N individuals, both cases or controls
for a particular disease (variable Yi). The algorithm begins taking an initial
seed for the haplotype frequencies and for the regression coefficients. Then,
the i-th step of the algorithm is described as follows:

Let be f (i−1) = (f (i−1)
h1

, f
(i−1)
h2

, . . . , f
(i−1)
hM

) the previous state of the chain.
Then, a new state f (i) is generated using Random Walk sampling, with invariant
distribution proportional to (2):

1. f (i) = f (i−1) + u where u = (u1, . . . , uM ) such as ui ∼ Unif(0, s) or
ui ∼ N(0, s) i = 1, . . . ,M where s is chosen empirically.
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2. Then, a value v is generated from a Unif(0, 1) distribution.
3. if v < �(f (i))/�(f (i−1)) where � is defined as in (2), the new state is

accepted. If it is not, f (i) = f (i−1).

After that, haplotypes for the uncertain individuals are rebuilt, drawing a value
from a categorical distribution taking the frequencies of the previous state. For
example, if an individual has a genotype compatible with the haplotypic pair
H1 = (h1, h2) and also with H2 = (h3, h4), then p1 = P (H1) and p2 = P (H2).
Now, a value from a cat(p1, p2) is drawn, where p1 = fh1fh2/(fh1fh2 + fh3fh4)
and p2 = fh3fh4/(fh1fh2 + fh3fh4).

Estimation of Haplotype Effects
After having the rebuilt haplotypes for the whole sample, they are passed as
a covariate inside the logistic regression model and a new state of the chain
for its coefficients is generated. This new state β(i) is sampled with a Gibbs
sampler simulation:

1. The Gibbs sampler is a sampling method which draws values from the full
conditional distribution of the model. Let be π(· | β) the full conditional
function for the logistic regression model (3). Then, the Gibbs Sampler
makes 2m + 1 samples to generate the new state βi of the chain, i.e.:

β
(i)
kj

∼ π(βkj |α(i), . . . , β
(i)
kj−1

, β
(i−1)
kj+1

, . . . , β
(i−1)
k2m

)

Notice that drawing the value β(i)
kj

is not straightforward. Since π(· | β) is
log-concave we use DFARS (Derivative Free Adaptive Rejection Sampling)
[Gil92] a rejection method for sampling from log-concave distributions,
using an envelope function.

2. Hence, β(i) is a new state of the chain.

This is a complete stage of the algorithm. Now, return to the first step and
generate a new value for the chain of the haplotype frequencies.

2.5 Limiting Distribution

The constructed Markov Chains are both irreducible and ergodic (i.e. aperi-
odic and positive recurrent), and so the limiting distribution is unique. This
limiting distribution is the stationary distribution of the chain, and so it is
the distribution of our parameters. Since the chain values are a sample of the
parameters distribution, the posterior mean for f and β can be estimated by
the arithmetic average of sample values and it can be taken as the MLE for
the parameters. Furthermore, sample values allow us to calculate different
estimators such as the median, the symmetry, etc. The variances for these
estimators can also be calculated from the chain.
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3 Results

Performed simulations show that with a burn-in period of about 500 iterations
and a sample of 1000, the convergence of the chains is remarkably good, even
in presence of a large quantity of polymorphisms.

Another good feature to point out is that for haplotypes with low frequency
(<1/100), the MCMC algorithm seems to be able to make a good estimation of
the effect, while other commonly used algorithms of numerical optimization may
have more difficulties to solve it. Results have also shown that the simultaneous
algorithm diminishes the possibility of converging to a local minimum.

3.1 Variance of the Estimators

The considered simultaneous method of sampling gives a good estimation
for the variance of β parameter, which is capturing the uncertainty of the
haplotype sample. The alternative generation of two chains could make every
rebuilding of the haplotype sample different at each step of the algorithm. Thus,
individuals with more than two elements in Hi may be rebuilt in a different way
depending on the f generated and the covariate value inside the logistic model
will then change. Therefore, for samples with a great number of ambiguous
individuals, the variance of the β distribution generated with the MCMC
algorithm is larger than with non-simultaneous methods. Hence, the latter
ones may resolve an odds ratio as significant, while the former may not do it.

4 Conclusions

Markov Chain Monte Carlo techniques can be successfully applied in the
context of haplotype effects estimation. These techniques allow us to generate
the distribution for each parameter, i.e. to have all the information about each
one. This is an improvement over other commonly used methods like the EM
algorithm, which only reports point estimators. Furthermore, for small sample
sizes, estimations made with MCMC capture the possible asymmetry of the
sample distribution, while methods based on asymptotic estimators do not.
MCMC also seems to perform quite well for haplotypes having low frequency in
the sample. Finally, the simultaneous estimation we have considered diminishes
the possibility of convergence to a local minimum, so it makes the algorithm
suitable to be applied over samples with a large number of polymorphisms.
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The Generalized Gibbs Sampler (GGS) is a recently proposed Markov chain
Monte Carlo (MCMC) technique that is particularly useful for sampling from
distributions defined on spaces in which the dimension varies from point to
point or in which points are not easily defined in terms of co-ordinates. Such
spaces arise in problems involving model selection and model averaging and
in a number of interesting problems in computational biology. Such problems
have hitherto been the domain of the Reversible-jump Sampler, but the
method described here, which generalizes the well-known conventional Gibbs
Sampler, provides an alternative that is easy to implement and often highly
efficient.

The GGS provides a very general framework for MCMC simulation. Not
only the conventional Gibbs Sampler, but also a variety of other well known
samplers emerge as special cases. These include the Metropolis-Hastings
sampler, the Reversible-jump Sampler and the Slice Sampler. We also present
a new special case of the GGS, called the Neighborhood Sampler (NS),
which does not conform to any of the other existing MCMC frameworks.
We illustrate use of the GGS and the NS with a number of examples. In
particular, we use the NS to sample from a discrete state space represented as
a graph in which nodes have varying degree. Finally, we introduce a technique
for improving convergence and mixing between sub-spaces of different
dimension.
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1 Markov Samplers

MCMC is a technique for approximately sampling from a target distribution
with pdf f . Almost any distribution can be sampled via MCMC, and often it
is the only technique capable of generating a sample from a given distribution.
There are numerous types of MCMC sampler, but the two most frequently en-
countered in practice are the Metropolis-Hastings algorithm [MRRT53, Has70]
and the Gibbs sampler [GG84, GS90]. Another sampler, which is distinct from
these and gaining in importance, is the slice sampler [Nea03]. The slice sampler
is often the most efficient MCMC method for sampling from one-dimensional
distributions, and it is used as the standard technique for sampling from a gen-
eral distribution in a one-dimensional sub-space in the popular MCMC software
package BUGS (available at http://www.mrc-bsu.cam.ac.uk/bugs/).

1.1 The Discrete Case

All of the above-mentioned MCMC algorithms can be described within a
framework that we call the Generalized Gibbs Sampler (GGS), although we
have also called it the Generalized Markov Sampler [KKB04]. The authors
have used the GGS to develop highly efficient new samplers for a range
of problems arising in computational biology [KAB+02, KAB+03, KKB04,
KAB+04, KARB05, Kei06].

Consider a Markov chain {(Xn,Yn), n = 0, 1, 2, . . .} on the set X × Y ,
where X is the target set and Y is an auxiliary set. For the sake of simplicity,
we initially assume that both X and Y are finite. We extend the GGS
to the general case in Section 1.2. Let f(x) be the target pdf, defined
on X . Each transition of the Markov chain consists of two parts. The
first is (x, ỹ) → (x,y), according to a transition matrix Q; the second is
(x,y) → (x′,y′), according to a transition matrix R. In other words, the
transition matrix P of the Markov chain is given by the product QR. Both
steps are illustrated in Figure 1, and further explained below.

The first step, the Q-step, only changes the y-coordinate, but
leaves the x-coordinate as it is. In particular, Q is of the form

Fig. 1. Each transition of the Markov chain consists of two steps: the Q-step, followed
by the R-step.
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Q((x, ỹ), (x,y)) = Qx(ỹ,y), where Qx is a transition matrix on Y .
Let qx be a stationary distribution for Qx, assuming that this exists.

The second step, the R-step, is determined by (a) the stationary distribu-
tion qx and (b) a partition of the set X × Y . Specifically, we define for each
point (x,y) a set R(x,y) containing (x,y) such that if (x′,y′) ∈ R(x,y) then
R(x′,y′) = R(x,y); see Figure 1, where the shaded area indicates the neighbor-
hood set of (x,y). The crucial step is now to define the transition matrix R as

R[(x,y), (x′,y′)] = c(x,y) f(x′) qx′(y′), for all (x′,y′) ∈ R(x,y) ,

where c(x,y) is a normalisation constant. Note that c(x′,y′) = c(x,y) if
(x′,y′) ∈ R(x,y). The distribution

µ(x,y) = f(x) qx(y), (1)

is trivially stationary with respect to Q, and satisfies detailed balance with
respect to R, and hence is a stationary distribution with respect to the
Markov chain. It will also be the limiting distribution, provided that the chain
is ergodic. In particular, by ignoring the y-coordinate, we see that the limiting
pdf of Xn is the required target f(x). This leads to the following algorithm:

Algorithm 1.1 (Generalized Gibbs Sampler) Starting with an arbitrary
(X0,Y0), perform the following steps iteratively:

[Q-step:] Given (Xn,Yn), generate Y from Qx(Yn,y).
[R-step:] Given Y generate (Xn+1,Yn+1) from R[(Xn,Y), (x,y)].

Denoting R−(x,y) = R(x,y) \ {(x,y)}, the sampler can be generalized
further (without disturbing detailed balance) by redefining R as:

R[(x,y), (x′,y′)] =

⎧⎪⎪⎨⎪⎪⎩
s((x,y), (x′,y′)) f(x′) qx′(y′) if (x′,y′) ∈ R−(x,y)

1 −
∑

(z,w)∈R−(x,y)

R[(x,y), (z,w)] if (x′,y′) = (x,y)

(2)
where s is any symmetric function such that the quantities above are indeed
probabilities.

1.2 GGS in a General Space

In order to relax the requirement that X and Y be finite, one must first
specify the reference measure φ with respect to which the target density f
is defined, and the reference measures ψx with respect to which the densities
Qx and qx are defined. Moreover, one must specify reference measures ηr
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with respect to which the density R[(x,y), (x′,y′)] will be defined for each
set r = R(x,y). It will be necessary to make the following assumption:

Assumption: There exists a measure ζ for the set R = {R(x,y) : (x,y) ∈
X × Y } such that the measure φ(dx)ψx(dy) has a finite density g(x,y) with
respect to the measure ζ(dr)ηr(dx, dy).

We can now define

R[(x,y), (x′,y′)] = c(x,y) f(x′) qx′(y′) g(x′,y′), for all (x′,y′) ∈ R(x,y) ,

where again c(x,y) is a normalisation constant. More generally, we can define:

R[(x,y), (x′,y′)]

=

⎧⎪⎪⎨⎪⎪⎩
s((x,y), (x′,y′)) f(x′) qx′(y′) g(x,y) if (x′,y′) ∈ R−(x,y)

1 −
∑

(z,w)∈R−(x,y)}
R[(x,y), (z,w)] if (x′,y′) = (x,y)

(3)

where s is any symmetric function such that R is indeed a pdf.
Note that if X and Y are finite, then all of the above measures may be

assumed to be counting measures. Moreover, in that case ζ always exists (it,
too, is a counting measure) and g(x,y) = 1.

2 Special cases

The GGS framework makes it possible to obtain many different samplers in
a simple and unified manner; we give the slice sampler as an example. Other
instances of the GCS include (see [KKB04]) the Metropolis-Hastings sampler,
the Gibbs sampler and the Reversible-jump sampler [Gre95]. Here, we also
introduce a new sampler — the Neighborhood sampler — and use it to sample
from a discrete space represented as a graph.

2.1 Slice Sampler

The slice sampler [Nea03] has numerous variants, all of which can be conve-
niently described within the GGS framework. Here we discuss a fairly general
form of the slice sampler. Suppose we wish to generate samples from the pdf

f(x) = b
m∏

k=1

fk(x), (4)

where b is a known or unknown constant, and the {fk} are known positive
functions — not necessarily densities. We employ Algorithm 1.1, where at
the Q-step we generate, for a given X = x, a vector Y = (Y1, . . . , Ym) by
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independently drawing each component Yk from the uniform distribution on
[0, fk(x)]. Thus, qx(y) = 1/

∏m
k=1 fk(x) = b/f(x). Secondly, we let R(x,y) =

{(x′,y) : fk(x′) � yk, k = 1, . . . ,m}. Then, (note that f(x′) qx′(y) = b)

R[(x,y), (x′,y)] =
1

|R(x,y)| .

where |A | means the measure of set A : the cardinality in the discrete case, or
the area/volume in the continuous case. In other words, in the R-step, given
x and y, we draw X′ uniformly from the set {x′ : fk(x′) � yk, k = 1, . . . ,m}.
This gives the following slice sampler, in which N is a predetermined number
of iterations:

Algorithm 2.1 (Slice Sampler) Let f(x) be of the form (4).

1. Initialize X0. Set t = 1.
2. For k = 1 to m draw Uk ∼ U(0, 1) and let Yk = Uk fk(xt−1).
3. Draw Xt uniformly from the set {x : fk(x) � Yk, k = 1, . . . ,m}.
4. If t = N stop. Otherwise set t = t+ 1 and repeat from step 2.

Suppose we want to generate a sample from the target pdf

f(x) = c
x e−x

1 + x
, x � 0 ,

using the slice sampler with f1(x) = x/(1 + x) and f2(x) = e−x. Suppose that
at iteration t, Xt−1 = z, and u1 and u2 are generated in step 2. In step 3,
Xt is drawn uniformly from the set {x : f1(x)/f1(z) � u1, f2(x)/f2(z) � u2},
which implies the bounds x � u1 z

1+z−u1 z , and x � z − lnu2. Since for z > 0
and 0 � u1, u2 � 1, the latter bound is larger than the former, the interval to
be drawn from in step 3 is ( u1 z

1+z−u1 z , z − lnu2). Figure 2 depicts a histogram
of N = 105 samples generated via the slice sampler, along with the true pdf
f(x). We see that the two are in close agreement.
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Fig. 2. True density and histogram of samples produced by the slice sampler.
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2.2 The Neighborhood Sampler

The Neighborhood Sampler (NS) is a new instance of the GGS that resembles
the slice sampler and in certain cases corresponds to it. The NS can be used
to sample from a target distribution f on some measure space (X , Σ, µ)
consisting of a target space X with σ-algebra Σ and measure µ. The aim
of the NS to reduce sampling from a complicated distribution function f to
sampling from uniform distributions over local neighborhoods. To construct
a NS, we must first assign a unique neighborhood Nx to each element
x ∈ X . These neighborhoods must satisfy the following three conditions:

1. x ∈ Nx for all x ∈ X ,
2. 0 < µ(Nx) <∞ for all x ∈ X , and
3. y ∈ Nx iff x ∈ Ny for all x,y ∈ X .

In what follows we use the notation N (x) synonymously with Nx to avoid
placing subscripts on subscripts.

To sample from an arbitrary distribution having density f with respect to
µ, the NS consists of the following steps performed iteratively, starting with
an arbitrary element x0 and with t = 0:

Algorithm 2.2 (Neighborhood Sampler)
Given the current state Xt = x:

1. Generate Y ∼ U(Nx) where U(Nx) is the uniform distribution (with
respect to µ) on Nx. Set H = NY.

2. Generate U ∼ U(0, f(x)/µ[Nx]).
3. Generate Z1 ∼ U(H).
4. Set k = 1 and iterate the following steps until f(Zk)/µ[N (Zk)] � U:

a) Optionally reduce H so that it excludes Zk while still containing x.
b) Generate Zk+1 ∼ U(H) and set k := k + 1.

5. Set Xt+1 = Zk.

The reduction in Step 4a) must be done so that H(x′,y, z1, . . . , zk) =
H(x,y, z1, . . . , zk) for all x′ ∈ H(x,y, z1, . . . , zk), where the notation
H(x,y, z1, . . . , zk) indicates the neighborhood obtained by reducing Ny in
such a way as to include x and exclude z1, . . . , zk. The details of this reduction
depend on the specific application. We give some examples below.

If we do not implement the reduction of H in Step 4a), then the Q-step
in this algorithm consists of selecting the pair (Y,U) in Steps 1 and 2.
The R-step consists of uniform sampling of the subset of H for which
f(z)/µ[N (z)] � U in Steps 3 to 5. If we do implement the reduction of H,
then the Q-step consists of selecting (Y,U,Z1, . . . ,Zk) in Steps 1 to 4 and
the R-step consists of accepting Zk with probability 1 in Step 5.

It is not difficult to show that if µ(Nx) is constant for all x, then the
denominators in Steps 2 and 4 above can be replaced by 1. With Nx = X for
all x, the NS reduces to the variant of the slice sampler described in Section 2.1
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with m = 1. If X is Rn with Lebesbue measure and Nx is a hypercube of side
s for all x ∈ X , then the NS reduces to a variant of the slice sampler described
in [Nea03]. In this case, H is reduced to a smaller hyper-rectangle with Zk as a
corner in Step 4a). Another interesting case is obtained if we suppose that X
is a discrete space represented by a connected graph in which nodes represent
states and edges represent allowed transitions. Let µ be counting measure
and let Nx consist of x and all of its neighbors, that is, all nodes adjacent
to x. Then U is chosen between 0 and f(x)/|Nx| at step 2. The optional
reduction of H in step 4a can be achieved by simply excluding Zk. The fact
that previously rejected elements are excluded from being chosen a second
time at Step 4a) should in principle make the neighborhood sampler faster
than a random walk sampler with a uniform proposal function on the same
neighborhoods, since the amount of computation is otherwise comparable.

2.3 Resequencing

Resequencing is the practice of determining the sequence of a biological
molecule — usually DNA — by assembling short sub-sequences using related
sequences that are already known to aid the assembly. For example, sequencing
of some part of the genome of an individual human can be achieved by assem-
bling short sub-sequences using the corresponding part of the already sequenced
reference genome to guide the assembly. Similarly, parts of the genomes of other
species can be assembled with reference to known genomes of related species.
The problem of resequencing is important because modern high-throughput
sequencing technologies determine only very short sub-sequences, or reads. For
example, the technology known as Sequencing By Hybridization (SBH) deter-
mines the subsequence content of an unknown DNA by identifying all probes
of a given length (often around 10 nucleotides) that bind to it [DDS+93]. More
recently, a number of groups have developed fast, high-throughput technologies
that use short reads [MEA+05, SPR+05]. The use of sequences known to be
similar can greatly facilitate the assembly process.

We propose the following idealized model of resequencing. Suppose that we
have a known sequence S of length L as shown in Figure 3. Suppose further that
we model the generation of the unknown sequence x as the result of independent
transitions at each base, with a known transition matrix M . Finally, suppose
that we know all contiguous sub-sequences of length k contained in the unknown
sequence. Let the set of such sub-sequences be denoted D. The target space
X here thus consists of all sequences of length L with precisely the same set
of length k sub-sequences. The posterior distribution on this space, given the
sub-sequences, is the restriction to X of the distribution over all sequences
of length L defined by the transition matrix. That is:

p(x|D,S,M) =
L∏

i=1

M(Si,xi)

restricted to X .
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Fig. 3. An idealized picture of resequencing. The sequence in the centre is unknown.
A similar sequence, shown at the top, is known, as is the complete set of subsequences
of length 10.

To avoid having to estimate the transition matrix M , we can specify a
prior probability distribution for each row of the transition matrix. Here we
use a Dirichlet distribution:

g(Mi) ∝Mα−1
i1 Mα−1

i2 Mα−1
i3 Mα−1

i4

for each row i, with α = 0.001. Integrating over Mij for i, j = 1, . . . , 4 results
in the target distribution:

f(x|D,S) ∝
4∏

i=1

Γ (Ci1 + α)Γ (Ci2 + α)Γ (Ci3 + α)Γ (Ci4 + α)
Γ (Ci1 + Ci2 + Ci3 + Ci4 + 4α)

where Cij = Cij(x) is the number of positions at which sequence S has
character i and sequence x has character j.

We sample from the distribution using the NS for a discrete space described
above. Let the nodes of the graph be all sequences that have the same set
of length k sub-sequences. The edges of the graph connect sequences that are
related by transformations of the following form:

1. Transpositions: Sequences of the form y1z1y2z2y3z1y4z2y5 where z1 and
z2 are length k − 1 subsequences and y1, y2, y3, y4 and y5 are sequences
of any length can be transposed by swapping the sequences y2 and y4.
Sequences of the form y1z1y2z1y4z1y5 can also be transposed by swapping
the sequences y2 and y4.

2. Rotations: Sequences of the form z1y1z2y2z1 where z1 and z2 are length
k − 1 subsequences and y1 and y2 are subsequences of any length can be
rotated by forming the sequence z2y2z1y1z2.

Some subtlety is required here: the sub-sequences labelled y may be null
sequences, and in fact the sequences labelled z may even overlap. It has been
shown [Pev95] that sequences related by these transformations have the same
set of length k subsequences and that graphs formed as described above are
connected. Note that rotations are only possible if the sequence begins and
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Fig. 4. log-likelihood for resequencing application of the Neighborhood sampler.

ends with the same k − 1 characters. Here we consider only sequences that do
not begin and end with the same sub-sequence, so that we need only consider
transpositions. Hence the neighborhood Nx of a sequence x consists of x plus
all sequences that can be obtained from x by transpositions.

We implemented the NS for discrete spaces for this problem and tested
it on a known human DNA sequence of length 4009 nucleotides containing
an exon of the breast cancer associated BRCA1 gene (specifically locus
38,496,578-38,500,586 of the March 2006 assembly of human chromosome 17).
We also obtained a known sequence of the chimpanzee genome of the same
length, aligned to this section of BRCA1 without any insertions or deletions.
The human sequence was used as the reference and the chimpanzee sequence
was treated as unknown. Figure 4 shows the log-likelihood values for 400 iter-
ations of the algorithm, showing rapid convergence to a single sequence which
on inspection turns out to be identical to the known chimpanzee sequence.

Note, however, that the sampler spends many iterations at a nearly
optimal sequence, only making the final transposition at iteration 1170. It
is not clear whether it is possible for this sampler to become stuck in a local
mode for infeasible lengths of time. However, one possible way to improve
mixing would be to expand each neighborhood Nx to include sequences that
can be obtained from x by two successive transpositions.

3 Discussion

The GGS provides a general framework within which all of the commonly
used MCMC samplers can be described. This generality raises the interesting
possibility of theoretically determining the sampler within this framework
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with optimal convergence and/or mixing rate for a specific distribution or
family of distributions. The GGS also supplies a framework within which
new samplers can be generated by exploring various possibilities for the sets
R(x,y) and other parameters. The Neighborhood Sampler is an example of
a new sampler generated in this manner.

To conclude this paper, we describe a technique that we recently developed
to improve the convergence and mixing rate of the genome segmentation
sampler that we described in [Kei06]. The technique is based on the fact that
typical trans-dimensional sampling (that is, sampling of spaces in which the
dimension varies from point to point) involves conditional sampling of sets
R(x,y) in which the dimension of the x component varies by at most one. In
other words, each set R(x,y) can be subdivided naturally into a set R1(x,y)
in which all x components have dimension k, say, and a set R2(x,y) in which
all x components have dimension k + 1.

We can now define a symmetric function s as follows. Let s[(x,y),
(x′,y′)] = 0 if (x,y) and (x′,y′) are both in R1(x,y) or both in R2(x,y).
Otherwise, let

s[(x,y), (x′,y′)] =
1

max{
∑

(z,w)∈R1(x,y)

f(z)qz(w),
∑

(z,w)∈R2(x,y)

f(z)qz(w)}

if (x′,y′) ∈ R−(x,y). Consequently, if (x,y) ∈ R1(x,y) and∑
(z,w)∈R1(x,y)

f(z)qz(w) �
∑

(z,w)∈R2(x,y)

f(z)qz(w)

then the probability of transition to R2(x,y), obtained by summing (2) over
R2(x,y), is one. Similarly, if (x,y) ∈ R1(x,y) and∑

(z,w)∈R1(x,y)

f(z)qz(w) �
∑

(z,w)∈R2(x,y)

f(z)qz(w)

then the probability of transition to R1(x,y) is one. The probability of a
change in dimension is therefore high.
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Summary. The (weighted) dyadic diaphony is a measure for the irregularity
of distribution modulo one of a sequence. Recently it has been shown that the
(weighted) dyadic diaphony can be interpreted as the worst-case error for QMC
integration in a certain Hilbert space of functions. In this paper we give upper
bounds on the weighted dyadic diaphony of digital (t, s)-sequences over Z2.

1 Introduction

Motivated by Weyl’s criterion for the uniform distribution modulo one of a
sequence (see [DT97, KN74, SP05]), Zinterhof [Zin76] introduced the diaphony
as a quantitative measure for the irregularity of distribution of a sequence (see
also [DT97, KN74]). In [HL97] Hellekalek and Leeb introduced the notion of
dyadic diaphony which is similar to the classical diaphony but with the trigono-
metric functions replaced by Walsh functions. As for the classical diaphony
it can be shown that a sequence ω is uniformly distributed modulo one if and
only if the the dyadic diaphony of the first N elements of the sequence ω tends
to zero as N goes to infinity (see [HL97, Theorem 3.1]). Recently it was shown
in [DP05a] that the dyadic diaphony is—up to a factor depending only on the
dimension s—the worst-case error for quasi-Monte Carlo integration of func-
tions from a certain Hilbert space. This motivates the introduction of the more
general notion of weighted dyadic diaphony as the worst-case error for quasi-
Monte Carlo integration of functions from a certain weighted Hilbert space (see
[DP05a, DP05b, Gro06]). This function space has been introduced (in a slightly

∗ The authors are supported by the Austrian Science Foundation (FWF), Project
S9609, that is part of the Austrian National Research Network “Analytic Combi-
natorics and Probabilistic Number Theory”.
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more general setting) in [DP05b]. We give the definition in Section 3. In Section
4 we analyze the weighted dyadic diaphony of digital (t, s)-sequences over Z2.

2 Digital Sequences

In this paper we consider the weighted dyadic diaphony of digital (t, s)-
sequences as introduced by Niederreiter in [Nie87]. We only deal with digital
(t, s)-sequences over the finite field Z2. For the definition of the general case
see, for example, [Lar98, LNS96, Nie87, Nie92].

Before we give the definition of digital (t, s)-sequences we introduce
some notation: for a vector c = (c1, c2, . . .) ∈ Z∞

2 and for m ∈ N we denote
the vector in Zm

2 consisting of the first m components of c by c(m), i.e.,
c(m) = (c1, . . . , cm). Further for an N × N matrix C over Z2 and for m ∈ N
we denote by C(m) the left upper m×m submatrix of C.

Definition 1. For s ∈ N and t ∈ N0, choose s N × N matrices C1, . . . , Cs

over Z2 with the following property: for every m ∈ N, m ≥ t and every
d1, . . . , ds ∈ N0 with d1 + · · · + ds = m− t the vectors

c (1)
1 (m), . . . , c (1)

d1
(m), . . . , c (s)

1 (m), . . . , c (s)
ds

(m)

are linearly independent in Zm
2 . Here c (j)

i is the i-th row vector of the matrix Cj .
For n ≥ 0 let n = n0 + n12 + n222 + · · · be the base 2 representation of

n. For j ∈ {1, . . . , s} multiply the vector n = (n0, n1, . . .)� by the matrix Cj ,

Cj · n =: (xj
n(1), xj

n(2), . . .)� ∈ Z∞
2 ,

and set

x(j)
n :=

xj
n(1)
2

+
xj

n(2)
22

+ · · · .

Finally set xn := (x(1)
n , . . . , x

(s)
n ).

Every sequence (xn)n≥0 constructed in this way is called digital (t, s)-
sequence over Z2. The matrices C1, . . . , Cs are called the generator matrices
of the sequence.

To guarantee that the points xn belong to [0, 1)s (and not just to [0, 1]s)
and also for the analysis of the sequence we need the condition that for each
n ≥ 0 and 1 ≤ j ≤ s, we have xj

n(i) = 0 for infinitely many i. This condition
is always satisfied if we assume that for each 1 ≤ j ≤ s and w ≥ 0 we have
c
(j)
v,w = 0 for all sufficiently large v, where c(j)v,w are the entries of the matrix
Cj . Throughout this paper we assume that the generator matrices fulfill this
condition (see [Nie92, p. 72] where this condition is called (S6)).

It is well known that any digital (t, s)-sequence over Z2 is uniformly dis-
trubuted modulo one (in fact, it is even well-distributed modulo one). Bounds
on the star discrepancy (which is another very popular quantitative measure
for the irregularity of distribution of a sequence) of (not necessarily digital)
(t, s)-sequences can be found in [Nie92, Chapter 4] or [Nie87], see also [Kri06].
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3 Walsh Functions and the Hilbert Space Hwal,s,α,γ

Throughout this paper let N0 denote the set of non-negative integers. For
k ∈ N0 with base 2 representation k = κa−12a−1 + · · · + κ12 + κ0, with
κi ∈ {0, 1}, we define the (dyadic) Walsh function walk : R → {−1, 1},
periodic with period one, by

walk(x) := (−1)ξ1κ0+···+ξaκa−1 ,

for x ∈ [0, 1) with base 2 representation x = ξ1/2 + ξ2/22 + · · · (unique in
the sense that infinitely many of the ξi must be zero). For dimension s ≥ 2,
x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 we define walk1,...,ks

: Rs → {−1, 1} by

walk1,...,ks(x1, . . . , xs) :=
s∏

j=1

walkj (xj).

For vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ Rs we write

walk(x) := walk1,...,ks
(x1, . . . , xs).

It is clear from the definitions that Walsh functions are piecewise constant. It
can be shown that for any integer s ≥ 1 the system {walk1,...,ks

: k1, . . . , ks ≥ 0}
is a complete orthonormal system in L2([0, 1)s), see for example [Chr55, Nie82]
or [Pir95, Satz 1]. More information on Walsh functions can be found in
[Chr55, Pir95, Wal23].

For a natural number k with 2a ≤ k < 2a+1, a ∈ N0, let ψ(k) = a. For
α > 1 and γ > 0 we define

r(α, γ, k) =
{

1 if k = 0,
γ2−αψ(k) if k �= 0.

For a vector k = (k1, . . . , ks) and a sequence γ = (γi)i≥1 of positive reals we
write r(α,γ,k) =

∏s
j=1 r(α, γj , kj).

The function space Hwal,s,α,γ is defined as a reproducing kernel Hilbert
space with reproducing kernel given by

K(x,y) =
∑

k∈Ns
0

r(α,γ,k)walk(x)walk(y).

The inner product in this space is defined by

〈f, g〉wal,s,γ =
∑

k∈Ns
0

r(α,γ,k)−1f̂wal(k)ĝwal(k),

with k = (k1, . . . , ks) and

f̂wal(k) :=
∫

[0,1]s
f(x)walk(x) dx.
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The corresponding norm is given by ‖f‖wal,s,γ = 〈f, f〉1/2
wal,s,γ . Note that

Hwal,s,α,γ is the space of all absolutely convergent Walsh series with finite
norm ‖ · ‖wal,s,γ . For more information on this space and generalizations
thereof we refer to [DP05b].

4 Worst-Case Error for QMC Integration in Hwal,s,α,γ

We want to approximate the integral Is(f) =
∫
[0,1]s

f(x) dx for f ∈ Hwal,s,α,γ

by a quasi-Monte Carlo (QMC) rule of the form Q(f ;P) = 1
N

∑N−1
n=0 f(xn),

where P = {x0, . . . ,xN−1} ⊂ [0, 1)s is a well chosen point set (here we use the
first N elements of a digital (t, s)-sequence over Z2). We define the worst-case
error for QMC integration in the space Hwal,s,α,γ by

eN,s,α,γ := e(P;Hwal,s,α,γ) = sup
f∈Hwal,s,α,γ

||f ||wal,s,γ≤1

|Is(f) −Q(f ;P)|.

It has been shown in [DP05b] that for any point set P = {x0, . . . ,xN−1} ⊂
[0, 1)s we have

e2N,s,α,γ =
∑

k∈Ns
0\{0}

r(α,γ,k)

∣∣∣∣∣ 1N
N−1∑
n=0

walk(xn)

∣∣∣∣∣
2

.

For α = 2 and γ = (1)j≥1 this is, up to the factor 1/(3s − 1), the squared
dyadic diaphony F2,N of P as introduced by Hellekalek and Leeb [HL97]. I.e.,

F2,N (P) =
eN,s,2,(1)j≥1√

3s − 1
.

For this reason we refer to eN,s,α,γ as weighted dyadic diaphony (see also
[Gro06]). It has been shown by Grozdanov [Gro06, Theorem 1] that a sequence
ω is uniformly distributed modulo one if and only if limN→∞ eN,s,α,γ(ωN ) = 0
holds for an arbitrary real α > 1 and an arbitrary sequence γ of positive weights,
where ωN is the point set consisting of the first N points of the sequence ω. See
also [HL97] for a proof of this fact in the special case α = 2 and γ = (1)j≥1.

In the following we study the worst-case error eN,s,α,γ if the integration
nodes stem from a digital (t, s)-sequence over Z2.

Before we state our results we introduce some notation: for a subset
u ⊆ {1, . . . , s} =: Ds we define γu :=

∏
j∈u γj . Further we denote by ‖ · ‖ the

distance to the nearest integer function, i.e., ‖x‖ = min(x−�x�, 1− (x−�x�)).
Theorem 1. Let α > 1, let γ be an arbitrary sequence of positive weights and
let N ∈ N. For the first N elements of a digital (t, s)-sequence over Z2 it is
true that
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e2N,s,α,γ ≤ 22t

N2

∑
∅�=u⊆Ds

γu22|u|
(

2α−1

2α−1 − 1

)|u|

×
⎛⎝1 + 2(t+|u|)(α−2)

∞∑
v=t+|u|+1

∥∥∥∥N2v

∥∥∥∥2 (v − t− 1)|u|−1

2v(α−2)

⎞⎠.
Remark 1. Observe that the upper bound in Theorem 1 converges to infinity
if α approaches one. Furthermore, the bound is independent of the specific
choice of the generating matrices of the digital (t, s)-sequence.

From Theorem 1 we obtain

Corollary 1. Let ω be a digital (t, s)-sequence over Z2 and let 2m−1 < N ≤
2m, with m > t+s. Then we have the following results for the first N elements
of the sequence.

(a) If α = 2, we have

e2N,s,2,γ ≤ 22t

N2

∑
∅�=u⊆Ds

γu23|u|
(

(m− t− 1)|u|

4
+ (m− t− 1)|u|−1c|u| + 1

)
,

where c|u| =
∑∞

v=1
(v−1)|u|−1

22v .
(b) If α > 2, we have

e2N,s,α,γ ≤ 22t

N2

∑
∅�=u⊆Ds

γu23|u|

×
(

(m− t− 1)|u|−1

(
1

2α − 4

(
1 − 1

2(α−2)(m−t−|u|)

)
+

1
2(m−t−|u|)(α−2)

c̃α,|u|

)
+ 1
)
,

where c̃α,|u| =
∑∞

v=1
(v+1)|u|−1

2αv .

From Corollary 1 (a), we see that the dyadic diaphony of the first N
elements of a digital (t, s)-sequence over Z2 is of order O(2t(logN)s/2/N).
More exactly we have

Corollary 2. Let ω be a digital (t, s)-sequence over Z2 and let F2,N (ω) denote
the dyadic diaphony of the first N elements of ω. Then we have

lim sup
N→∞

NF2,N (ω)
(logN)s/2

≤ 2t

(
8

log 2

)s/2

(3s − 1)−1/2.

See [Pil07] for very precise results on the dyadic diaphony of digital
(0, s)-sequences over Z2 for s = 1, 2.

For the proof of Theorem 1 we need the following lemma.
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Lemma 1. Let the non-negative integer N have binary expan-
sion N = N0 + N12 + · · · + Nm−12m−1. For any non-negative integer
n ≤ N − 1 let n = n0 + n12 + · · · + nm−12m−1 be the binary representation
of n. Let b0, b1, . . . , bm−1 be arbitrary elements of Z2, not all zero. Then

N−1∑
n=0

(−1)b0n0+···+bm−1nm−1 = (−1)bw+1Nw+1+···+bm−1Nm−12w+1

∥∥∥∥ N2w+1

∥∥∥∥ ,
where w is minimal such that bw = 1.

Proof. See [Pil07, Lemma 4.1].

We give the proof of Theorem 1.

Proof. For a point xn of ω and for ∅ �= u ⊆ Ds, we define x
(u)
n as the

projection of xn onto the coordinates in u. Further, we define γ(u) as the
collection of those γi with i ∈ u.

We then have, for the first N points of ω,

(NeN,s,α,γ)2 =
∑

k∈Ns
0\{0}

r(α,γ,k)

∣∣∣∣∣
N−1∑
n=0

walk(xn)

∣∣∣∣∣
2

=
∑

∅�=u⊆Ds

∑
k∈N|u|

r(α,γ(u),k)

∣∣∣∣∣
N−1∑
n=0

walk(x(u)
n )

∣∣∣∣∣
2

=
∑

∅�=u⊆Ds

u={w1,...,w|u|}

∞∑
kw1=1

· · ·
∞∑

kw|u|=1

(∏
i∈u

r(α, γi, ki)

)∣∣∣∣∣
N−1∑
n=0

wal(kw1 ,...,kw|u| )
(x(u)

n )

∣∣∣∣∣
2

=
∑

∅�=u⊆Ds

u={w1,...,w|u|}

∞∑
kw1=1

· · ·
∞∑

kw|u|=1

(∏
i∈u

γi

2αψ(ki)

)∣∣∣∣∣
N−1∑
n=0

wal(kw1 ,...,kw|u| )
(x(u)

n )

∣∣∣∣∣
2

.

Let now ∅ �= u = {w1, . . . , w|u|} ⊆ Ds be fixed. We have to study

Σ(u) =
∞∑

kw1=1

· · ·
∞∑

kw|u|=1

(∏
i∈u

γi

2αψ(ki)

)∣∣∣∣∣
N−1∑
n=0

wal(kw1 ,...,kw|u| )
(x(u)

n )

∣∣∣∣∣
2

.
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For the sake of simplicity we assume in the following u = {1, . . . , σ}, 1 ≤ σ ≤ s.
The other cases are dealt with in a similar fashion. We have

Σ({1, . . . , σ}) :=
∞∑

k1=1

· · ·
∞∑

kσ=1

⎛⎝ σ∏
j=1

γj

2αψ(kj)

⎞⎠∣∣∣∣∣
N−1∑
n=0

wal(k1,...,kσ)(x({1,...,σ})
n )

∣∣∣∣∣
2

.

For 1 ≤ j ≤ σ, let 2aj ≤ kj < 2aj+1, then kj = κ
(j)
0 + κ(j)

1 2 + · · · + κ(j)
aj 2aj

with κ(j)
v ∈ {0, 1}, 0 ≤ v < aj , and κ(j)

aj = 1.
Let c(j)

i be the i-th row vector of the generator matrix Cj , 1 ≤ j ≤ σ.

Since the i-th digit x(j)
n (i) of x(j)

n is given by
〈
c(j)

i ,n
〉
, we have

N−1∑
n=0

wal(k1,...,kσ)(x({1,...,σ})
n ) =

N−1∑
n=0

(−1)
∑σ

j=1

(
κ
(j)
0

〈
c
(j)
1 ,n

〉
+···+κ(j)

aj

〈
c
(j)
aj+1,n

〉)

=
N−1∑
n=0

(−1)
〈∑σ

j=1(κ
(j)
0 c

(j)
1 +···+κ(j)

aj
c
(j)
aj+1),n

〉
.

Let Cj = (c(j)v,w)v,w≥1. Define

u(k1, . . . , kσ) := min

⎧⎨⎩p ≥ 1 :
σ∑

j=1

(κ(j)
0 c

(j)
1,p + · · · + κ(j)

aj
c
(j)
aj+1,p) = 1

⎫⎬⎭ .
Since C1, . . . , Cs generate a digital (t, s)-sequence over Z2, it is easy to verify
that u(k1, . . . , kσ) ≤∑σ

j=1 aj + σ + t =: Rσ + σ + t. Indeed, let

A :=

⎛⎜⎜⎜⎜⎝
c
(1)
1,1 . . . c

(1)
a1+1,1 . . . . . . c

(σ)
1,1 . . . c

(σ)
aσ+1,1

c
(1)
1,2 . . . c

(1)
a1+1,2 . . . . . . c

(σ)
1,2 . . . c

(σ)
aσ+1,2

...
...

...
...

c
(1)
1,Rσ+σ+t . . . c

(1)
a1+1,Rσ+σ+t . . . . . . c

(σ)
1,Rσ+σ+t . . . c

(σ)
aσ+1,Rσ+σ+t

⎞⎟⎟⎟⎟⎠.

Note that A = A(a1, . . . , aσ) is an (Rσ + σ + t) × (Rσ + σ) matrix.
Since C1, . . . , Cs generate a digital (t, s)-sequence over Z2, it follows that
A(a1, . . . , aσ) has rank Rσ + σ. If, however, u(k1, . . . , kσ) > Rσ + σ + t, we
would have

A · (κ(1)
0 , . . . , κ

(1)
a1−1, 1, κ

(2)
0 , . . . , κ

(2)
a2−1, 1, . . . , . . . , κ

(σ)
0 , . . . , κ

(σ)
aσ−1, 1)�

= (0, . . . , 0)�, (1)

which would lead to a contradiction since the matrix A(a1, . . . , aσ) has full
rank and is multiplied by a non-zero vector in (1).
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Therefore we obtain, by applying Lemma 1,

Σ({1, . . . , σ})

=
∞∑

k1=1

· · ·
∞∑

kσ=1

⎛⎝ σ∏
j=1

γj

2αψ(kj)

⎞⎠ 22u(k1,...,ks)

∥∥∥∥ N

2u(k1,...,kσ)

∥∥∥∥2

=
∞∑

a1=0

· · ·
∞∑

aσ=0

⎛⎝ σ∏
j=1

γj

2αaj

⎞⎠ 2a1+1−1∑
k1=2a1

· · ·
2aσ+1−1∑
kσ=2aσ

22u(k1,...,kσ)

∥∥∥∥ N

2u(k1,...,kσ)

∥∥∥∥2

=
∞∑

a1=0

· · ·
∞∑

aσ=0

γ{1,...,σ}
2αRσ

Rσ+σ+t∑
u=1

22u

∥∥∥∥N2u

∥∥∥∥2 2a1+1−1∑
k1=2a1

· · ·
2aσ+1−1∑
kσ=2aσ︸ ︷︷ ︸

u(k1,...,kσ)=u

1.

We need to estimate the sum

2a1+1−1∑
k1=2a1

· · ·
2aσ+1−1∑
kσ=2aσ︸ ︷︷ ︸

u(k1,...,kσ)=u

1

for 1 ≤ u ≤ Rσ + σ + t. This is the number of κ(1)
0 , . . . , κ

(1)
a1−1, κ

(2)
0 , . . . , κ

(2)
a2−1,

. . . , κ
(σ)
0 , . . . , κ

(σ)
aσ−1 ∈ Z2 such that

A · (κ(1)
0 , . . . , κ

(1)
a1−1, 1, κ

(2)
0 , . . . , κ

(2)
a2−1, 1, . . . , . . . , κ

(σ)
0 , . . . , κ

(σ)
aσ−1, 1)�

= (0, . . . , 0, 1, xu+1, . . . , xRσ+σ+t)�, (2)

where A is defined as above, for arbitrary xu+1, . . . , xRσ+σ+t ∈ Z2. Let us
rewrite system (2) as

B ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ
(1)
0
...

κ
(1)
a1−1

κ
(2)
0
...

κ
(2)
a2−1
...
...
κ

(σ)
0
...

κ
(σ)
aσ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
xu+1

...
xRσ+σ+t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(1)
a1+1,1

...

...

...

...
c
(1)
a1+1,Rσ+σ+t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+· · ·+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(σ)
aσ+1,1

...

...

...

...
c
(σ)
aσ+1,Rσ+σ+t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)
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where

B :=

⎛⎜⎜⎜⎜⎝
c
(1)
1,1 . . . c

(1)
a1,1 . . . . . . c

(σ)
1,1 . . . c

(σ)
aσ,1

c
(1)
1,2 . . . c

(1)
a1,2 . . . . . . c

(σ)
1,2 . . . c

(σ)
aσ,2

...
...

...
...

c
(1)
1,Rσ+σ+t . . . c

(1)
a1,Rσ+σ+t . . . . . . c

(σ)
1,Rσ+σ+t . . . c

(σ)
aσ,Rσ+σ+t

⎞⎟⎟⎟⎟⎠.
Obviously, the matrix B has rank Rσ. Let now 1 ≤ u ≤ Rσ + σ + t be fixed.
For a fixed choice of xu+1, . . . , xRσ+σ+t, it is clear that we have at most one
solution of system (3). Therefore we have

2a1+1−1∑
k1=2a1

· · ·
2aσ+1−1∑
kσ=2aσ︸ ︷︷ ︸

u(k1,...,kσ)=u

1 ≤ 2Rσ+σ+t−u.

Now we have

Σ({1, . . . , σ}) ≤ γ{1,...,σ}
∞∑

a1=0

· · ·
∞∑

aσ=0

1
2αRσ

Rσ+σ+t∑
u=1

22u

∥∥∥∥N2u

∥∥∥∥2 2Rσ+σ+t−u

= γ{1,...,σ}
∞∑

a1=0

· · ·
∞∑

aσ=0

1
2(α−1)Rσ

2σ+t
Rσ+σ+t∑

u=1

2u

∥∥∥∥N2u

∥∥∥∥2
= γ{1,...,σ}2

σ+t
∞∑

u=1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
a1,...,aσ=0

Rσ≥max{u−t−σ,0}

1
2(α−1)Rσ

= γ{1,...,σ}2
σ+t

(
t+σ∑
u=1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
a1,...,aσ=0

1
2(α−1)Rσ

+
∞∑

u=t+σ+1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
a1,...,aσ=0
Rσ≥u−t−σ

1
2(α−1)Rσ

)

=: γ{1,...,σ}2
σ+t (Σ1 +Σ2) .

For Σ1 we have

Σ1 =
t+σ∑
u=1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
a1,...,aσ=0

1
2(a1+···+aσ)(α−1)

≤ 1
4

( ∞∑
a=0

1
2a(α−1)

)σ t+σ∑
u=1

2u ≤ 2t+σ−1

(
2α−1

2α−1 − 1

)σ

.
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For Σ2 we have

Σ2 =
∞∑

u=t+σ+1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
a1,...,aσ=0
Rσ≥u−t−σ

1
2Rσ(α−1)

=
∞∑

u=t+σ+1

2u

∥∥∥∥N2u

∥∥∥∥2 ∞∑
w=u−t−σ

1
2w(α−1)

(
w + σ − 1
σ − 1

)
.

We now use [DP05c, Lemma 6] to obtain

Σ2 ≤
∞∑

u=t+σ+1

2u

∥∥∥∥N2u

∥∥∥∥2 1
2(u−t−σ)(α−1)

(
u− t− 1
σ − 1

)(
2α−1

2α−1 − 1

)σ

= 2(t+σ)(α−1)

(
2α−1

2α−1 − 1

)σ ∞∑
u=t+σ+1

∥∥∥∥N2u

∥∥∥∥2(u− t− 1
σ − 1

)
2u

2u(α−1)

≤ 2(t+σ)(α−1)

(
2α−1

2α−1 − 1

)σ ∞∑
u=t+σ+1

∥∥∥∥N2u

∥∥∥∥2 (u− t− 1)σ−1

2u(α−2)
.

This yields

Σ({1, . . . , σ}) ≤ γ{1,...,σ}2
2t+2σ

×
(

2α−1

2α−1 − 1

)σ
(

1 + 2(t+σ)(α−2)
∞∑

u=t+σ+1

∥∥∥∥N2u

∥∥∥∥2 (u− t− 1)σ−1

2u(α−2)

)
.

The result follows. &'
We give the proof of Corollary 1.

Proof. Suppose first that α > 2 and 2m−1 < N ≤ 2m with m > t+ s, then

2(t+|u|)(α−2)
∞∑

v=t+|u|+1

∥∥∥∥N2v

∥∥∥∥2 (v − t− 1)|u|−1

2v(α−2)

=
m∑

v=t+|u|+1

∥∥∥∥N2v

∥∥∥∥2 (v − t− 1)|u|−1

2(α−2)(v−t−|u|) +
∞∑

v=m+1

∥∥∥∥N2v

∥∥∥∥2 (v − t− 1)|u|−1

2(α−2)(v−t−|u|)

=: Σ3 +Σ4.

Now,

Σ3 ≤ 1
4

m∑
v=t+|u|+1

(v − t− 1)|u|−1

2(α−2)(v−t−|u|) ≤ (m− t− 1)|u|−1

4

m−t−|u|∑
v=1

1
2(α−2)v

= (m− t− 1)|u|−1 1
2α − 4

(
1 − 1

2(α−2)(m−t−|u|)

)
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and

Σ4 = 2(t+|u|)(α−2)
∞∑

v=m+1

∥∥∥∥N2v

∥∥∥∥2 (v − t− 1)|u|−1

2v(α−2)

= 2(t+|u|)(α−2)
∞∑

v=m+1

(
N

2v

)2 (v − t− 1)|u|−1

2v(α−2)

= 2(t+|u|)(α−2)

(
N

2m

)2 ∞∑
v=1

1
22v

(v +m− t− 1)|u|−1

2(v+m)(α−2)

≤ 1
2(m−t−|u|)(α−2)

∞∑
v=1

(v +m− t− 1)|u|−1

2αv

=
1

2(m−t−|u|)(α−2)

∞∑
v=1

1
2αv

|u|−1∑
k=0

(|u| − 1
k

)
(m− t− 1)kv|u|−1−k

≤ 1
2(m−t−|u|)(α−2)

(m− t− 1)|u|−1
∞∑

v=1

1
2αv

|u|−1∑
k=0

(|u| − 1
k

)
v|u|−1−k

=
1

2(m−t−|u|)(α−2)
(m− t− 1)|u|−1

∞∑
v=1

(v + 1)|u|−1

2αv
.

The result for α > 2 follows from Theorem 1.
If we choose α = 2 in Theorem 1, we obtain

e2N,s,2,γ ≤ 22t

N2

∑
∅�=u⊆Ds

γu23|u|

⎛⎝1 +
∞∑

v=t+|u|+1

∥∥∥∥N2v

∥∥∥∥2 (v − t− 1)|u|−1

⎞⎠.
If we again assume 2m−1 < N ≤ 2m with m > t + s, then it can be shown,
in a similar way as in the case α > 2, that

∞∑
v=t+|u|+1

∥∥∥∥N2v

∥∥∥∥2(v−t−1)|u|−1 ≤ (m− t− 1)|u|

4
+(m−t−1)|u|−1

∞∑
v=1

(v + 1)|u|−1

22v
.

The result follows. &'
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Summary. It has been found recently that an increase in phase space dimension by
including simulated auxiliary random variables in the number of phase coordinates
can be effective for the construction of weight modifications. In this paper the
effectiveness of “value” and partial “value” modelling is considered. These types of
modelling are related to the construction of simulated distribution for some auxiliary
random variable by multiplying the initial density by the “value” function which
is usually corresponds to the solution of adjoint integral equation of the second kind.
It is proved that the weight estimator variance in case of the partial value modelling
is finite. On the basis of this fact a new criterion based on the use of majorant
adjoint equation was proposed for finiteness of the weight estimator variance. Using
this criterion the classical “exponential transformation” method is studied for the
free path simulation in one and three dimensional modifications.

1 Introduction

Let us consider a terminating homogeneous Markov chain x0, x1, . . . , xN ,
defined by the distribution density f(x) of the initial state x0 and
the substochastic generalized transition density k(x0, x) which satisfies∫
k(x′, x)dx = q(x′) ≤ 1 − δ < 1 where δ is a real number and 0 < δ < 1. Here

and further x ∈ X, X is m-dimensional Euclidean space and N is the number
of the state at which the trajectory terminates (i.e., the termination moment).

The total distribution density of the phase states of the chain ϕ(x) =
∞∑

n=0
ϕn(x)

represents the Neumann series for the following integral equation of the second
kind ϕ(x) =

∫
X

k(x′, x)ϕ(x′) dx′ + f(x), where functions f(x), k(x′, x) and

ϕ(x′) belong to space N1(X) of generalized densities of bounded variation
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measures [EM82]. For a given function h ∈ Cb(X), where Cb(X) is a set of
all nonnegative continuous functions, we also consider the conjugate equation

ϕ∗(x) =
∫
X

k(x′, x)ϕ(x′) dx′ + h, or ϕ∗ = K∗ϕ∗ + h. (1)

We suppose that K∗ ∈ [Cb(X) → Cb(X)].
Under general unbiasedness conditions [EM82] let us introduce transition

density p(x′, x), initial density π(x) and the auxiliary weights by the formulas
Q0(x0) = f(x0)/π(x0), Qn = Qn−1k(xn−1, xn)/p(xn−1, xn). It is well-known,
that for the weighted “collision estimator”

ξ =
f(x0)
π(x0)

ξx0 , ξx = h(x) +
N∑

n=1

Qnh(xn), (2)

we obtain Ih = (ϕ, h) = (f, ϕ∗) = Eξ [EM82]. In the theory of weighted Monte
Carlo methods, the function ϕ∗(·) is conventionally called the “value function”
in connection with its probability representation: ϕ∗(x) = Eξx, moreover, for
the estimator ξx the variable Eξ2x is defined by the Neumann series for the
following integral equation [Mik92]

g = K∗
pg + h(2ϕ∗ − h), (3)

where symbol K∗
p denotes the operator with the kernel k2(x, x′)/p(x, x′). It

is well-known [EM82] that if the spectral radius ρ(Kp) < 1 then Dξx < +∞.
Moreover if h(x) ≥ 0 and

p(x′, x) =
k(x′, x)ϕ∗(x)
[K∗ϕ∗](x′)

, π(x) =
f(x)ϕ∗(x)

(f, ϕ∗)
, (4)

then Dξ = 0 [EM82],[Mik92].
As usual, the transition x′ → x is realized by choosing a set of the values

of the auxiliary random variables, for example a collusion number type,
scattering angles and a free path in transport simulation process.

Let us represent t = (t1, t2) ∈ T = T1 × T2 as a set of two auxiliary
random variables (vector variables, in general) which are simulated for the
transition x→ x′ in Markov chain. In new phase space T ×X = {(t, x)} the
substochastic kernel has the form [Mik03]

k((t, x), (t′, x′)) = δ(x′ − x′(x, t′))k1(x, t′1)k2((x, t′1), t′2),
where x′(x, t′) is the function which defines new euclidean coordinates via
x and values of auxiliary variables t′.

Due to the definition of collision estimator we have

Eξ2 =
∫
X

f2(x)
π(x)

Eξ2xdx. (5)
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Therefore it is worth to consider the problem of uniform minimization of
Eξ2x for ∀x ∈ X. In [Mik03] it was shown that “value” modelling of all the
elementary auxiliary transitions in accordance with (4) gives an estimator
with zero variance. In practice such global optimization of modelling is rather
difficult; then it is important to consider the possibility of variance decrease by
means of optimal choice of the distribution density of a part of the auxiliary
random variables, for example, t′1.

Let us consider a Markov chain with the substochastic transition density

p((t, x), (t′, x′)) = δ(x′ − x′(x, t′))p1(x, t′1)p2((x, t′1), t′2).
In addition we assume that∫

T1

k1(x, t′1)dt
′
1 ≡
∫
T1

p1(x, t′1)dt
′
1 ≡ 1,

∫
T2

k2
2((x, t

′
1), t

′
2)

p2((x, t′1), t
′
2)
dt′2 ≤ q < 1. (6)

Theorem 1. [MM04] The equation

g(x) = h(x)[2ϕ∗(x) − h(x)] +

+
{∫

T1

k1(x, t′1)
[∫
T2

k2
2((x, t

′
1), t

′
2)

p2((x, t′1), t
′
2)
g(x′)dt′2

]1/2

dt′1

}2

. (7)

has unique solution and the density

p1(x, t′1) =

k1(x, t′1)
[∫
T2

k2
2((x,t′1),t

′
2)

p2((x,t′1),t
′
2)
g(x′) dt′2

]1/2

∫
T1

k1(x, t′1)
[∫
T2

k2
2((x,t′1),t

′
2)

p2((x,t′1),t
′
2)
g(x′) dt′2

]1/2

dt′1

(8)

gives the minimum value of Eξ2x ∈ Cb(X).

In [MM04] for one-velocity problem in transport theory it was shown how
Theorem 1 can be used for approximated estimation of optimal parameter in
“exponential transformation” method. However Theorem 1 can be practically
useless for solving more complex problems. Therefore it is worth investigating
the possibility of using more simple modifications of simulation t′1 which are
connected with the use of approximate solutions of conjugate integral equation.
Such modifications will be called “partial value” modelling. It turned out that
in some cases the use of partial value modelling can increase the estimator
variance as compared with direct one. Moreover it was discovered that under
value modelling of free path in the important applied problem of estimating
the probability of particles take-off from the half-space −∞ < z ≤ H standard
criterion ρ(K∗

p ) < 1 of variance finiteness is not valid any more [MM03].
The idea to define conditional transition distribution densities proportional

to the integral transformation kernel is not new. For example in [Dim91]
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general conditions for k(x′, x) and f(x) are derived under which the choice
p(x′, x) = C × k(x′, x) can be considered as optimal (with a minimal variance).
Here we consider different problem of defining conditions for p(x′, x) by
formulas (4) that guarantee variance finiteness of weight estimator.

In this paper it is proved that the weight estimator variance under partial
value modelling of the part of auxiliary variables is finite. On the basis of
this fact we propose a new criterion of estimator variance finiteness without
investigation of spectral radius.

2 New Criterion of Estimator Variance Finiteness

Let the random variable t′2 be simulated according to given distribution and
random variable t′1 be simulated with the use of auxiliary value function
[Mik03], i.e., corresponding conditional transition distribution densities are

p2((x, t′1), t
′
2) ≡ k2((x, t′1), t′2), (9)

p1(x, t′1) =
k1(x, t′1)ϕ

∗
1(x, t

′
1)

[K∗ϕ∗](x)
=
k1(x, t′1)ϕ

∗
1(x, t

′
1)

ϕ∗(x) − h(x) , (10)

where auxiliary value function has the form:

ϕ∗
1(x, t

′
1) =
∫
T2

∫
X

δ(x′ − x′(x, t′))k2((x, t′1), t′2)ϕ∗(x′)dx′dt′2

=
∫
T2

k2((x, t′1), t
′
2)ϕ

∗(x′(x, t′))dt′2. (11)

In addition we suppose that ∀x ∈ X∫
T1

k1(x, t′1)dt
′
1 = 1 − α(x) ≤ 1.

Theorem 2. The variance of the collision estimator ξx under exact partial
value modelling of t′1 (i.e. according to (9), (10)) is finite.

Proof. Since h, ϕ∗ ∈ Cb(X) the following statement is true [Mik92]:

Eξ2x =
∞∑

n=0

K∗n
p

(
h[2ϕ∗ − h]

)
(x). (12)

Let us show that the series (12) is converged for all h ∈ Cb(X).
Taking into account (9)–(11) and condition on k1(x, t′1) it is easy to verify

the following equality by forward substitution:
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[K∗
pϕ

∗](x) =
∫
T1

k2
1(x, t

′
1)

p1(x, t′1))

[∫
T2

∫
X

k2((x, t′1), t
′
2)δ(x

′−x′(x, t′))ϕ∗(x′)dx′dt′2

]
dt′1

=
∫
T1

k1(x, t′1)[K
∗ϕ∗](x)

ϕ∗
1(x, t

′
1)

[∫
T2

k2((x, t′1), t
′
2)ϕ

∗(x′(x, t′)dt′2

]
dt′1

= [K∗ϕ∗](x)
∫
T1

k1(x, t′1)dt
′
1 = [K∗ϕ∗](x)(1−α(x)) = (ϕ∗(x)−h(x))(1−α(x)).

Note that the last equality can be rewritten as ϕ∗ = K∗
pϕ

∗ + α(ϕ∗ − h) + h.
Substituting the function ϕ∗ for its equivalent function K∗

pϕ
∗ + α(ϕ∗ − h) + h

under the operator K∗
p in the last equality we obtain

ϕ∗ = K∗2
p ϕ

∗ +K∗
p

(
α(ϕ∗ − h) + h

)
+α(ϕ∗ − h) + h.

Let us make the same substitution in the last equality under the operator
K∗2

p and so on. Since all the functions are nonnegative as a result we have

ϕ∗ = lim
n→∞

[
K∗n

p ϕ
∗ +

n−1∑
k=0

K∗k
p

(
α(ϕ∗ − h) + h

)]
.

Therefore
∑
k

K∗k
p

(
α(ϕ∗ −h) +h

)
is convergent series since all the functions

are nonnegative and thus the series
∑
k

K∗k
p h is also convergent. Since h(2ϕ∗ −

h) ≤ h2ϕ∗ ≤ 2hC then the series (12) is converged which required to be proved.
Let us assume that conditional transition distribution density for t1 has

the form

p∗1(x, t1) =
k1(x, t′1)ϕ

∗
1(x, t

′
1)

ϕ∗(x)
. (13)

In this case the following statement is true.

Theorem 3. If

h(x)/α(x) ≤ C <∞, ∀x ∈ supp h ⊆ supp α, (14)

then the variance of the collision estimator ξx under partial value modelling
of t′1 (i.e. according to (9), (13)) is finite.

Proof. Taking into account (9), (11), (13) and condition on k1(x, t′1), it is
easy to verify the following equality by forward substitution:

[K∗
pϕ

∗](x) = ϕ∗(x)(1 − α(x)) ϕ∗(x) = [K∗
pϕ

∗](x) + ϕ∗(x)α(x).
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As above in the proof of Theorem 2 it easy to show that the Neumann series∑
k

K∗k
p ϕ

∗α for the last equation is convergent since all the functions are

nonnegative. Due to the condition (14) the series
∑
k

K∗k
p ϕ

∗h is also convergent.

As h(2ϕ∗ − h) ≤ h2ϕ∗ then the series (12) is converged.
From the proof of Theorem 3 it follows replaced by more simple one.

Theorem 4. If ∀x ∈ X we have 1 − α(x) ≤ 1 − ε < 1, then the variance of
the collision estimator ξx under partial value modelling of t′1 (i.e. according
to (9), (13)) is finite.

Let us assume that∫
T2

k2((x, t′1), t
′
2)dt

′
2 = 1 − β(x, t′1) ≤ 1.

In the case of exact partial value modelling of t′2 transition densities have the
following form

p1(x, t′1) ≡ k1(x, t′1), (15)

p2((x, t′1), t
′
2) =

k2((x, t′1), t
′
2)ϕ

∗
2(x, t

′
1, t

′
2)

ϕ∗
1(x, t

′
1)

, (16)

where

ϕ∗
2(x, t

′
1, t

′
2) =
∫
X

δ(x′ − x′(x, t′))ϕ∗(x′)dx′ = ϕ∗(x′).

ϕ∗
1(x, t

′
1) =
∫
T2

∫
X

δ(x′ − x′(x, t′))k2((x, t′1), t′2)ϕ∗(x′)dx′dt′2

=
∫
T2

k2((x, t′1), t
′
2)ϕ

∗
2(x, t

′
1, t

′
2)dt

′
2. (17)

By substituting transition densities (15), (16) in the expression for K∗
pϕ

∗

it is easy to verify the validity of the following analog of Theorem 2.

Theorem 5. The variance of the collision estimator ξx under exact partial
value modelling of t′2 (i.e. according to (15), (16)) is finite.

If transition density has the form

p2((x, t′1), t
′
2) =

k2((x, t′1), t
′
2)ϕ

∗
2(x, t

′
1, t

′
2)

ϕ̂∗
1(x, t

′
1)

, (18)

where ϕ̂∗
1 ≥ ϕ∗

1 then from the Theorem 5 follows the analog of Theorems 3, 4.
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Theorem 6. If for the function ϕ̂∗
1 holds

ϕ∗(x) ≥
∫
T1

k1(x, t′1)ϕ̂∗
1(x, t

′
1)(1 − β(x, t′1))dt′1, (19)

then the variance of the collision estimator ξx under partial value modelling
of t′2 (i.e. according to (15), (18)) is finite.

Let us note that Theorems 3, 4, 5, 6 are valid even if we use auxiliary value
function u(x) + C1, C1 > 0 where u ∈ Cb(X) and satisfies to the majorant
conjugate equation

u = K∗u+ ĥ,

with obligatory conditions:

supp h ⊆ supp ĥ,
h

ĥ
≤ C2 <∞ ∀x ∈ supp ĥ. (20)

As a generalization of the last note and Theorem 3, 4, 5, 6 we propose new
criterion: under conditions of the Theorem 3, 4, 5, 6 variance for the weight
collision estimator is finite if modified transition density for auxiliary variable
equals to the product of initial density and some function u(x) + C1, C1 > 0
where u satisfies to majorant conjugate equation.

3 Investigation of Weight Estimator Variance
in “Exponential Transformation” Method

Let us consider one-dimensional problem of estimating the escape probability
from the half-space −∞ < z ≤ H. We assume that an absolute absorbent
fills the outside of this half-space and the mean free path σ−1 = 1 in the
entire space. The scattering of a particle at a collision point is described
by the symmetric normalized density ω(µ, µ′), where µ is the cosine of the
angle between the particle path and the axis z. The probability of survival
in the collision at the point x = (z, µ), z < H is q < 1. Let us suppose that
distribution density of the mean free path l is el. Then we have t = (l, µ),
z′ = z + µl and the equation (1) has the form

ϕ∗(z, µ) = q

A∫
0

e−l

1∫
−1

w(µ, µ′)ϕ∗(z′, µ′) dµ′dl + h(z, µ), z < H, (21)

where A = +∞ for µ < 0 and A = (H − z)/µ for µ > 0. The free term in
equation (21) is

h(z, µ) =
{

exp{−(H − z)/µ}, for z < H and µ > 0,
0 otherwise. (22)
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The quantity Eξx = ϕ∗(x) is equal to the desired probability of escape of the
particle that started at the point x = (z, µ).

Additionally consider (21) with the free term ha(z, µ) = a(µ)h(z, µ), where
a(µ) and the parameter c = 1/L satisfy the characteristic Milne equation
[Dav60]. (

1 − cµ)a(µ) = q

1∫
−1

w(µ, µ′)a(µ′)dµ′. (23)

For the real scattering indicatrix, we have a(µ) ≥ ε > 0. Using a substitution,
it is easily verified (see, e.g., [Mik92], Section 2.4) that

ϕ∗
a(z, µ) = Eξx(a) = a(µ) exp{−(H − z)/L}. (24)

It is well known that simulation of the mean free path with the density
e−lecµl leads to the exponential transformation for which σ′ = 1 − cµ [Mik92].
Moreover, if the termination of the trajectory is modelled physically and
c = 1/L then the exponential transformation is equivalent to the partial value
modeling of the first (see (13)) auxiliary variable l (the mean free path with the
use of (24)). Note that if σ �= 1 then the value weighted modelling is constructed
for σ = σ(1−µ/L). It turned out that, if the exponential transformation is used,
there are some doubts whether the variance is bounded or not. For example for
1− p = q and c = 1/L we have ρ(K∗

p ) = 1 in the case of an isotropic scattering
therefore we cannot be sure that the variance is bounded in this case.

However, the criterion for the investigation of the variance boundedness
proposed in Section 2 makes it possible to establish the practically important
fact that the variance in the exponential transformation method is bounded for
0 < c ≤ 1/L. It is known (see [Dav60]) that for the real indicatrix w(µ, µ′) the
equation (23) establishes the correspondence c↔ {q(c), ac(µ)} and q(c) ≥ q
if c ∈ (0, 1/L]. Consider the value function

ϕ∗
c(z, µ) = ac(µ) exp{−(H − z)c}, (25)

for which

ϕ∗
c = K∗ϕ∗

c + ϕ∗
c

(
1 − q

q(c)
(1 − e−A(1−cµ))

)
= K∗ϕ∗

c + ĥ,

and
h

ĥ
≤ e−(H−z)( 1

µ +c)

ac(µ)
(
1 − q

q(c) (1 − e−A(1−cµ))
) <∞, ∀x ∈ supp ĥ.

Note that, if the probability of survival at the collision point is q(c), then the
exponential transformation is equivalent to the partial value modelling with
value function (25). When the initial probability of survival is q, the exponential
transformation with c ∈ (0, 1/L] is equivalent to the use of the partial value den-
sity multiplied by q(c)/q. Note that the proposed method makes it possible to
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use such a density because the expression for K∗
pϕ

∗
c includes the factor q(c)/q <

1 in this case (see the proof of Theorem 3). If q/q(c) = 1, i.e., for c = 1/L, it is
easy to verify that the conditions of Theorem 3 for the functions h, α are true.

We numerically estimated the probability that a particle goes beyond
the boundary H = 0 from the point (z0, µ0) = (−20, 1) using (22) with
q = 0.7 for the isotropic scattering. In this case, the exponential transforma-
tion with c = 0 is equivalent to the direct simulation of the mean free path; for
c =

√
1 − q ≈ 0, 548, it is asymptotically (as H → ∞) optimal (see [MM04]);

and, for c = 1/L ≈ 0.829, it is equivalent to the approximate value modeling of
the mean free path with the value function defined by (24) and, correspondingly,

Qn =
e−lcµ

(1 − cµ)Qn−1. (26)

Table 1 presents the results of the computations (obtained by modelling 107

trajectories of particles) based on the estimate with respect to scattering (2).
The rows in this table correspond to the direct, asymptotically value,

and asymptotically optimal variants of modelling (see (26)) of the mean free
path. To make the comparison easier, the same set of pseudorandom numbers
was used so that the modelling of the trajectories with the same index in
different variants started from the same pseudorandom numbers produced by
the multiplicative congruent generator with the parameters M = 517,m = 240

[EM82]. The following notation is used: c is the parameter of the exponential
transformation, ϕ̃∗ is the statistical estimate of ϕ∗ for x0 = (−20, 1), and σ̃
is the corresponding estimate of the root-mean-square probability error.

Now, we consider the three-dimensional problems concerning the transport
of particles inside a sphere of radius R. We assume that the space outside the
sphere is filled with an absolute absorber and σ = const in the entire space.
As a result of a collision in the interior point r = (x, y, z) of the sphere the
particle is scattered with the probability q along the random unit vector ω′

indicating the new direction of the particle motion. The spherical variant of
the exponential transformation is constructed using the substitution

Φ(r, ω) = ecrΦ1(r, ω), |c| < σ, r = |r|
in the integro-differential transport equation (see [EM82])

(ω, gradΦ) + σΦ(r, ω) =
∫

Φ(r, ω′)σw(ω, ω′, r)dω′ + Φ0(r, ω). (27)

Table 1. Estimator with respect to scattering

c ϕ̃∗ σ̃

0 9.191 · 10−8 3.74 · 10−8

0.829 1.120 · 10−7 6.35 · 10−9

0.548 1.032 · 10−7 3.90 · 10−9
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This variant is reduced to the use of the modified cross section

σ′(r, ω) = σ − cµ(r, ω), where µ(r, ω) = (r, ω)/r. (28)

Note that the quantity µ(r(l), ω) = µ(l) along the direction of the particle
motion r(l) = r + lω is nothing else than cos v(l), where v(l) is the angle
between r(l) and ω. It is easy to verify that

µ(l) =
∂r(l)
∂l
, r(l) =

√
r2 + l2 + 2lrµ(0).

In what follows we assume for the simplicity of presentation that σ = 1.
Then, cross section (28) corresponds to the modified density of distribution
of the mean free path

fl(r, w, l) = σ′(r(l), ω)exp

{ l∫
0

σ′(r(t), ω)dt

}

= e−l(1 − cµ(l))ecr(l)−cr.

If we use the auxiliary value function

g(r, ω) = [1 − cµ(r, ω)]ecr, r > 0,

in the collision scheme (see [EM82]), then the density fl is given by (18);
and it is the partial value density of the distribution of the second auxiliary
variable l if the function g satisfies condition (19) in Theorem 6 and, as a
consequence, the majorizing adjoint equation (20). Let us verify this condition.
We denote by the symbol l∗ = l∗(r, ω′) the distance from the point r to the
sphere of radius R along the given direction ω′. Then, we have

g(r, ω) − q
1∫

−1

w(ω, ω′)ecr(1 − ecR−l∗)dω′ ≥ (1 − cµ)ecr − qecr

1∫
−1

w(ω, ω′)dω′

≥ (1 − |c| − q)ecr.

Therefore, the condition of Theorem 6 is satisfied and according to the
proposed method (see Section 2) the variance of the weighted estimate is
bounded only for |c| ∈ (0, 1 − q).

In this problem, the admissible value of c can be increased by evaluating
the spectral radius of the operator K∗

p . We have the following inequality:

ρ(K∗
p ) ≤ ‖ K∗

p ‖ = sup
r
q

1∫
−1

w(ω, ω′)

∞∫
0

e−2l

e−l(1 − cµ(l))ecr(l)−cr
dldω′
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= sup
r
q

1∫
−1

w(ω, ω′)

∞∫
0

e−l−cr(l)+cr(1 + cµ(l))
(1 − c2µ2(l))

dldω′ ≤ q

1 − c2 .

Therefore, when the modified cross section (28) is used, the standard
criterion guarantees that the variance is bounded for |c| ∈ (0,

√
1 − q).

Note that the admissible range of values of c for cross section (28) can
be significantly increased by choosing another auxiliary value function.
For example, if we use the function g(r, ω) = g(r) = e−cr with c > 0
and simulate the mean free path according to density (16), then some
empirical considerations suggest that the function [g −K∗g](r) monotonically
decreases with increasing r. Consider the case of an isotropic scattering; i.e., let
w(ω, ω′) ≡ 1/4π. It is easy to verify that the following inequality holds at r = 0:

g(0) − [K∗g](0) = 1 − q
1∫

−1

1
4π

l∗∫
0

e−le−cldldω′

= 1 − q

1 + c

(
1 − e−R(1+c)

)
≥ 1 − q

1 + c
> 0.

On the sphere of radius R at the point r we have the inequality

g(r) − [K∗g](r) ≡ e−cR − q
0∫

−1

1
2

l∗∫
0

e−le−c
√

R2+l2+2Rlµ′
dldω′

≥ e−cR − q
0∫

−1

1
2

2R∫
0

e−le−c|R−l|dldω′ ≥
(

1 − q

2(1 − c)
)

where the last expression is positive for c ∈ (0, 1 − q/2). It is very difficult
to analytically prove that [g −K∗g](r) is monotonically decreasing. For this
reason we used the trapezoid method with a small step to verify that the
function g(r) − [K∗g](r) is monotonically decreasing with increasing r for
c = 0, 0.1, 0.2, . . . , 1 − q/2. For example, for the sphere of radius R = 10, the
results of the computations on the grid with the size 0.001 with respect to
l and µ for q = 0.7 and c = 0.6 are presented in the Table 2.

Thus for an isotropic scattering with the use of the auxiliary value
function e−cr the variance of the weighted estimator is bounded if

Table 2. Decrease of the function [g − K∗u](r) r

r 1 2 5 7 8 9 10

[g − K∗g](r) 0.9999 0.5488 0.0907 0.0149 0.0082 0.0045 0.0024
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c ∈ (0, 1−q/2). The construction of an efficient direct simulation method for the
density

p2((r, ω′), l) =
e−le−cr(l)

l∗∫
0

e−le−cr(l)dl

(29)

is a difficult problem. For this reason, we used the rejection method (see
[EM82]) to simulate the mean free path. Since

µ′(l) =
∂2r

∂2l
=
r2(1 − µ2(0))

r3(l)
≥ 0,

the function µ(l) is monotonically nondecreasing with increasing l for any
fixed r and ω; therefore, we have the inequality

e−cr(l) ≤ (1 + cµ(l))
1 + cµ(0)

e−cr(l).

With regard for these remarks, the mean free path l is simulated as follows:

• a random value of l̃ in the interval [0, l∗] is chosen according to the
distribution density

(1 + cµ(l))e−le−cr(l)

(e−cr − e−cR−l∗)

• the random number γ uniformly distributed in the interval [0, 1] is realized.

• if γ 1+cµ(l̃)
1+cµ(0)e

−cr(l) < e−cr(l), or, which is equivalent, γ 1+cµ(l̃)
1+cµ(0) < 1, then

set l = l̃, otherwise, the process is repeated.

Under this modelling algorithm the weight is transformed by the formula

Qn = Qn−1e
cr(l)

l∗∫
0

e−le−cr(l)dl.

Note that the computation of the normalizing constantC(r, µ(0)) =
l∗∫
0

e−le−cr(l)dl at each collision point can significantly increase the computation

time. To reduce it, it is reasonable to precalculate the quantity C(r, µ(0)) at
the points (rk, µi), (0 ≤ k, i ≤ N) of the grid built in the domain [0, R]× [−1, 1].
Given an arbitrary point (r, µ(0)), we can find the appropriate grid points

ri ≤ r ≤ ri+1 µi ≤ µ(0) ≤ µi+1,
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and determine C(r, µ(0)) using the linear interpolation by the formulas

C̃(r, µi) ≈ C(rk+1, µi) +
rk+1 − r
rk+1 − rk [C(rk, µi) − C(rk+1, µi)],

C̃(r, µi+1) ≈ C(rk+1, µi+1) +
rk+1 − r
rk+1 − rk [C(rk, µi+1) − C(rk+1, µi+1)],

C(r, µ(0)) ≈ C̃(r, µi+1) +
µi+1 − µ
µi+1 − µi

[C̃(r, µi) − C̃(r, µi+1)].

Let us consider some problems concerning the passage of particles through
an optically thick spherical layer.

Assume that a black ball of radius R1 < R is placed inside the given sphere.
When a particle hits the surface of this ball, it is absorbed with the unit
probability. We assume that the scattering of particles inside the layer R1 ≤
r ≤ R is isotropic and the probability of survival after a collision is q = 0.7.

Let a point source that emits particles according to the Lambert law (see
[EM82]) is placed on the interior surface of the sphere of radius and

w(ω0, ω
′) = 2(ω0, ω

′), (ω0, ω
′) ≥ 0,

where ω0 is the inner normal to the sphere of radius R. We want to estimate
the probability P = P (R1) that a particle is absorbed on the surface of the
black ball of radius R1.

We must calculate the passage of the particles through the optically
thick layer R1 ≤ r ≤ R to the internal sphere of radius R1. According to the
reasoning in Section 3, it is expedient to simulate the mean free path using
the modified cross section (28) with c < 0.

We numerically solved the problem of estimating the functional P (R1)
for R = 10 and R1 = 2. To estimate the probability P (R1) it is sufficient to
evaluate the integral [EM82]:

h(r, ω) = q
∫
D

1
4π

−l∗R1
(r,ω′)∫

0

e−ldldω′,

at each collision point (r, ω) where l∗R1
(r, ω′) is the distance from r to the

sphere of radius R1 along the given direction ω′ and

D =
{
ω′ :

(ω′, r)
r

≤ −
√
r2 −R2

1

r

}
is the cone of directions with the vertex at r “subtended” by the internal
sphere of radius R1. The evaluation of integral h(r, ω) at each collision point
is a computationally costly procedure. For such problem it is convenient to
use the randomized collision estimator (see [EM82]). More precisely after
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simulating the new direction ω′ we recommend to calculate the quantity

h∗(r, ω′) =
{
qel

∗
R1

(r,ω′) for ω′ ∈ D,
0 otherwise.

(30)

Quantity (30) is also calculated and added to the estimator when the particle
is absorbed at the point r.

The results of the computations based on the randomized collision estimator
in the exponential transformation without escape are presented at the Table 3.
In this modification, the mean free path l inside the layer R1 ≤ r ≤ R is
simulated according to the density C(1+µ(l))e−l−cr(l), therefore the trajectory
can terminate only as a result of absorption with the probability 1 − q. After
the scattering is modelled at the point (rn, ω

′), the weight is determined by

Qn = Qn−1
(e−crn−1 − e−cR(l∗m)−l∗m)ecr(l)

1 + cµ(l)
,

where l∗m is either l∗ or l∗R1
depending on the direction of motion ω. Let us

note that in this case the time needed to modell one trajectory depends only
on the given probability of absorption 1− q, therefore the average time needed
to modell one trajectory is the same for any value of c.

It is seen that the partial value modelling based on the majorizing adjoint
equation (c = 0.3) significantly reduces the variance compared to the direct
simulation, while it is slightly inferior to the exponential transformation with
the maximally admissible c = 0.548. When the boundedness of the variance
is not guaranteed theoretically (c = 0.65, 0.829) the modified modelling is
significantly more efficient than the direct simulation. For this reason we
believe that the variance of the weighted estimator is still bounded.

For comparison, at Table 4 we present the results of the computations
of P (R1) based on the randomized collision estimator and the partial value
modelling with the auxiliary value function e−cr. In this modification, the
mean free path inside the layer R1 ≤ r ≤ R is simulated according to density
(29) by the rejection method and the weight is transformed by the formula

Qn = Qn−1C(rn−1, µn−1(0)) ecrn .

Table 3. Randomized collisions estimator of P (R1) with the use of exponential
transformation without escape

c 0 0.3 0.548 0.65 0.829

P̃ (R1) 1.456 · 10−4 1.463 · 10−4 1.469 · 10−4 1.471 · 10−4 1.461 · 10−4

σ̃∗ 1.85 · 10−6 9.42 · 10−7 7.03 · 10−7 7.11 · 10−7 8.01 · 10−7
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Table 4. Randomized collisions estimator of P (R1) under partial value modelling
with the auxiliary value function e−cr

c 0 0.3 0.548 0.65 0.829

P̃ (R1) 1.473 · 10−4 1.466 · 10−4 1.465 · 10−4 1.474 · 10−4 1.482 · 10−4

σ̃∗ 1.88 · 10−6 9.79 · 10−7 7.04 · 10−7 6.65 · 10−7 7.41 · 10−7

The normalizing constant C(rn−1, µn−1(0)) was calculated according to
rejection method in Section 3 with the use the linear interpolation by the
precalculated values of C(r, µ) at the grid points:

2 = r0 < r1 < ... < r80 = 10, −1 = µ0 < µ1 < ... < µ100 = 1,

rk − rk−1 = 0.1, µi − µi−1 = 0.02 .

At each grid point C(rk, µi) was calculated using the trapezoid method with
the step 0.005.

It is seen that the partial value modelling based on the majorizing adjoint
equation (c = 0.3, 0.548) significantly reduces the variance compared to the dir-
ect simulation. The partial value modelling with the maximally admissible c =
1−q/2 = 0.65 also significantly reduces the variance. When the boundedness of
the variance is not guaranteed theoretically (c = 0.829) the modified modelling
is significantly more efficient than the direct simulation. For this reason we
believe that the variance of the weighted estimator is still bounded in this case.

We see that the variances of the weighted estimators obtained with use
of the exponential transformation without the escape (algorithm A) and
using the partial value modeling with the auxiliary value function e−cr

(algorithm B) are very close to each other. On the other hand, modelling of
the mean free path by the rejection method increases the computation time.
For example, for c = 0.548, the average time needed to modell one trajectory
in algorithm B is 2.5 · 10−5 s; and in algorithm A, it is 2 · 10−5 s.

Thus, when P (R1) is estimated in the case of the isotropic scattering with
q = 0.7, the simple standard algorithm A is as good as the complex value
algorithm B. However, as q → 1, the situation changes because algorithm
B admits the values c < 1 − q/2 ≈ 0.5, while algorithm A admits only
c <

√
1 − q → 0. Let us note that the value algorithms can be useful for

solving more complicated problems with an anisotropic scattering and variable
density, as well as for multivelocity problems.
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Informatik, FernUniversität Hagen, Lützowstraße 125, 58084 Hagen, Germany
Thomas.Mueller-Gronbach@FernUni-Hagen.de

2 Fachbereich Mathematik, Technische
Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
ritter@mathematik.tu-darmstadt.de

3 Fachbereich Mathematik, Technische
Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
twagner@mathematik.tu-darmstadt.de

We consider a linear stochastic heat equation on the spatial domain ]0, 1[
with additive space-time white noise, and we study approximation of the mild
solution at a fixed time instance. We show that a drift-implicit Euler scheme
with a non-equidistant time discretization achieves the order of convergence
N−1/2, where N is the total number of evaluations of one-dimensional
components of the driving Wiener process. This order is best possible and
cannot be achieved with an equidistant time discretization.

1 Introduction

We consider a linear stochastic heat equation

dX(t) = ∆X(t) dt+ dW (t),
X(0) = ξ

(1)

on the Hilbert space H = L2(]0, 1[) with a deterministic initial value ξ ∈ H.
Here ∆ denotes the Laplace operator with Dirichlet boundary conditions.
Moreover, W = (〈W (t), h〉)t≥0,h∈H is a cylindrical Brownian motion on H
with the identity operator as its covariance. See [DPZ92].

Note that ∆hi = −µi · hi with

hi(u) = 21/2 · sin(iπu)
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and
µi = π2 · i2

for i ∈ N, and put
βi(t) = 〈W (t), hi〉

for t ≥ 0. Then (βi)i∈N is an independent family of standard one-dimensional
Brownian motions. The mild solution X of equation (1) is given by

X(t) =
∑
i∈N

Yi(t) · hi,

where the real-valued processes Yi are independent Ornstein-Uhlenbeck
processes satisfying

dYi(t) = −µiYi(t) dt+ dβi(t),
Yi(0) = 〈ξ, hi〉

(2)

for every i ∈ N.
Let T > 0. We study approximation of X(T ) on the basis of evaluations

of finitely many scalar Brownian motions βi at a finite number of points in
[0, T ]. The selection and evaluation of the scalar Brownian motions βi, i.e.,
the discretization of the cylindrical Brownian motion W , is specified by a
non-empty finite set

I ⊆ N,

a collection
ν = (νi)i∈I ∈ N#I

of integers, and nodes

0 < t1,i < · · · < tνi,i ≤ T
for every i ∈ I. Every Brownian motion βi with i ∈ I is evaluated at the
corresponding nodes t�,i, and the total number of evaluations is given by

|ν|1 =
∑
i∈I
νi.

An approximation X̂(T ) to X(T ) is given by

X̂(T ) = φ
(
βi1(t1,i1), . . . , βi1(tνi1 ,i1), . . . , βik

(t1,ik
), . . . , βik

(tνik
,ik

)
)
, (3)

where
φ : R|ν|1 → H

is any measurable mapping and I = {i1, . . . , ik}. The error of X̂(T ) is
defined by

e(X̂(T )) =
(
E‖X(T ) − X̂(T )‖2

)1/2

,

where ‖ · ‖ = ‖ · ‖H .
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Let XN denote the class of all algorithms (3) that use at most a total of
N evaluations of the scalar Brownian motions βi, i.e., |ν|1 ≤ N . We wish to
minimize the error in this class, and hence we study the Nth minimal error

eN = inf
X̂(T )∈XN

e(X̂(T )).

As a subclass Xequi
N ⊂ XN we consider all methods X̂(T ) ∈ XN that

use equidistant nodes for evaluation of the scalar Brownian motions βi, i.e.,
|ν|1 ≤ N and t�,i = �/νi · T for every i ∈ I. Furthermore, we consider the
subclass Xuni

N ⊂ Xequi
N of methods X̂(T ) ∈ Xequi

N that use the same number
of equidistant nodes for every scalar Brownian motion βi, i.e., νi = n and
t�,i = �/n · T for all i ∈ I and some n ∈ N with n · #I ≤ N . The definition
of the corresponding minimal errors eequi

N and euni
N is canonical. Clearly,

eN ≤ eequi
N ≤ euni

N .

Construction and analysis of algorithm for stochastic heat equations or,
more generally, stochastic evolution equations, started with the work by
[GK96] and [GN97]. A partial list of further references includes [ANZ98],
[DZ02], [H03], [S99], and [Y05]. Lower bounds and optimality of algorithms has
first been studied by [DG01], see [MGR07a] and [MGR07b] for further results.

2 Results and Remarks

For two sequences (ak)k∈N and (bk)k∈N of positive real numbers we write
ak � bk if supk∈N ak/bk < ∞. Additionally, ak � bk means ak � bk and
bk � ak.

We determine the asymptotic behaviour of the minimal errors for the
classes XN , Xequi

N and Xuni
N . See Sections 3.2 and 3.3 for the proof.

Theorem 1. The N th minimal errors satisfy

eN � N−1/2

and
eequi

N � euni
N � N−1/6

for every ξ ∈ H.

Theorem 1 states that N−1/2 is the best possible order of convergence for
any sequence of methods X̂N (T ) ∈ XN . Moreover, this rate cannot be achieved
by using equidistant nodes for evaluation of the scalar Brownian motions βi.

Now we construct an implicit Euler scheme, which performs asymptotically
optimal in the class XN , up to a constant. Fix N ∈ N. For every i = 1, . . . , N
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we apply a drift-implicit Euler scheme to the corresponding equation (2) for
Yi to obtain an approximation Ŷi,N (T ) to Yi(T ). To this end we put

νi =
⌈
µ
−1/3
i ·N2/3

⌉
, (4)

and we define nodes t�,i by∫ t�,i

0

exp(−µi/3 · (T − t)) dt =
�

νi
·
∫ T

0

exp(−µi/3 · (T − t)) dt (5)

for � = 0, . . . , νi. The corresponding drift-implicit Euler scheme is given by

Ŷi,N (0) = 〈ξ, hi〉

and

Ŷi,N (t�,i) = Ŷi,N (t�−1,i)−µi · Ŷi,N (t�,i) · (t�,i − t�−1,i)+βi(t�,i)−βi(t�−1,i) (6)

for � = 1, . . . , νi. Finally, we use

X̂N (T ) =
N∑

i=1

Ŷi,N (T ) · hi

as an approximation to X(T ).
For the proof of the following error bound we refer to Section 3.3.

Theorem 2. Suppose that ξ ∈ C1([0, 1]). Then the error of the algorithm
X̂N (T ) satisfies

e(X̂N (T )) � N−1/2.

The algorithm X̂N (T ) is of the form (3) with I = {1, . . . , N}. Moreover,
its total number of evaluations of scalar Brownian motions satisfies

|ν|1 =
N∑

i=1

⌈
µ
−1/3
i ·N2/3

⌉ ≤ N + (N/π)2/3
N∑

i=1

i−2/3

≤ N + (N/π)2/3

∫ N

0

x−2/3 dx ≤ 2N.

Consequently, X̂N (T ) belongs to the class X2N , and combining Theorem 1
with Theorem 2 we obtain the following optimality result.

Corollary 1. Suppose that ξ ∈ C1([0, 1]). Then the sequence of algorithms
X̂N (T ) is asymptotically optimal, i.e.,

e(X̂N (T )) � e2N .
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Remark 1. Due to Theorem 1, non-equidistant time discretizations of the
cylindrical Brownian motion W are superior to equidistant ones for equation
(1). Whether this superiority carries over to more general equations with
space-time white noise is an open question. The result on the minimal errors
eN in Theorem 1 does not carry over in general. For example,

eN � N−1/6

holds for the equation

dX(t) = ∆X(t) dt+X(t) dW (t)

on H, see [DG01].

Remark 2. Minimal errors are studied, too, for approximation of stochastic
heat equations

dX(t) = ∆X(t) dt+B(t,X(t)) dW (t),
X(0) = ξ

(7)

on spaces H = L2(]0, 1[d) w.r.t. to the error criterion

e(X̂) =

(
E

∫ T

0

‖X(t) − X̂(t)‖2 dt

)1/2

. (8)

The latter takes into account the quality of an approximation X̂ on the whole
time interval [0, T ]. We add that (1) corresponds to (7) with B(t, x) = id and
d = 1.

We briefly survey results that hold under suitable assumptions on the
noise, the initial value ξ, and the operator-valued mapping B, see [MGR07a]
and [MGR07b]. These findings significantly differ from the results on
approximation of X at the single point T .

For equations with space-time white noise as well as nuclear noise appro-
ximations based on equidistant discretizations turn out to be asymptotically
optimal, i.e., eN � eequi

N for the respective minimal errors based on the
error criterion (8). Furthermore, for d = 1 and space-time white noise,
eN � euni

N � eequi
N � N−1/6. On the other hand, for equations with nuclear

noise uniform discretizations are suboptimal, asymptotically, at least for the
specific equation (7) with B(t, x) = id and d ∈ N.

Remark 3. For a fixed index i ∈ N and every choice of νi the nodes t�,i given
by (5) are 1/νi-quantiles w.r.t. a fixed probability density. Sequences of
discretizations of this kind are called regular. For approximation of stochastic
differential equations regular sequences of discretizations have first been used
by [HC96]. See, e.g., [R00] for further results and references.
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3 Proofs

3.1 One-Point Approximation of Ornstein-Uhlenbeck Processes

We start with lower and upper error bounds for the approximation of
Ornstein-Uhlenbeck processes at the single point T > 0. In the sequel we use
c to denote unspecified positive constants that may only depend on T .

Fix y0 ∈ R, µ ≥ 1, as well as a standard one-dimensional Brownian motion
β, and consider the Ornstein-Uhlenbeck process Y = (Y (t))t≥0 given by

Y (t) = y0 · exp(−µ · t) +
∫ t

0

exp(−µ · (t− s)) dβ(s)

= y0 · exp(−µ · t) + β(t) − µ ·
∫ t

0

exp(−µ · (t− s)) · β(s) ds.

Thus approximation of Y (T ) based on a finite number of values of β
is an integration problem for a Brownian motion with weight function
t �→ µ · exp(−µ · (T − t)). For this problem asymptotic results, where the
number ν of evaluations of β tends to infinity but µ remains fixed, are well
known, see, e.g., [R00] for results and references. In the present context,
however, we need error bounds that uniformly hold for µ and ν.

Lemma 1. Let ν ∈ N. For all 0 < t1 < . . . < tν ≤ T ,

E
(
Y (T ) − E(Y (T )|β(t1), . . . , β(tν))

)2 ≥ c · 1/(µν2).

Moreover, for equidistant nodes t� = �/ν · T ,

E
(
Y (T ) − E(Y (T )|β(t1), . . . , β(tν))

)2 ≥ c · min(1/µ, µ/ν2).

Proof. Define m ∈ {ν, ν + 1, ν + 2} and nodes 0 ≤ s1 < . . . < sm = T by

{s1, . . . , sm} = {t1, . . . , tν} ∪ {T − T/µ, T}.
Clearly,

E
(
Y (T ) − E(Y (T )|β(t1), . . . , β(tν))

)2
≥ E(Y (T ) − E(Y (T )|β(s1), . . . , β(sm))

)2
.

Put
Z(t) = β(t) − E(β(t)|β(s1), . . . , β(sm))

for t ≥ 0. Then

Y (T ) − E(Y (T )|β(s1), . . . , β(sm)) = −µ ·
∫ T

0

exp(−µ(T − t)) · Z(t) dt.
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Put s0 = 0 and note that

E(Z(s) · Z(t)) =
m∑

k=1

(sk − max(s, t)) · (min(s, t) − sk−1)
sk − sk−1

· 1[sk−1,sk]2(s, t).

Hence

E
(
Y (T ) − E(Y (T )|β(s1), . . . , β(sm))

)2
= µ2 ·

∫ T

0

∫ T

0

exp(−µ(2T − s− t)) · E(Z(s)Z(t)) ds dt

≥ µ2 · exp(−2T ) ·
∫ T

T−T/µ

∫ T

T−T/µ

E(Z(s)Z(t)) ds dt

= µ2 · exp(−2T ) ·
∑

sk>T−T/µ

(sk − sk−1)3

12
.

Let
K = #{k ∈ {1, . . . ,m} : sk > T − T/µ}.

By the Hölder inequality,∑
sk>T−T/µ

(sk − sk−1)3 ≥ T 3/(µ3 ·K2),

and summarizing we obtain

E
(
Y (T ) − E(Y (T )|β(t1), . . . , β(tν))

)2 ≥ 1/12 · exp(−2T ) · T 3 · 1/(µ ·K2).

Now the first statement follows from K ≤ m ≤ 3ν. In the case of equidistant
nodes t� we have K ≤ ν/µ+ 1, which yields the second statement.

For ν ∈ N and 0 = t0 < . . . < tν = T let

Ỹ (T ) = y0 · exp(−µ · T ) +
ν∑

�=1

exp(−µ · (T − t�−1)) · (β(t�) − β(t�−1)). (9)

We establish upper error bounds for the approximation Ỹ (T ) to Y (T ) in the
case of equidistant nodes t� = �/ν · T as well as in the case of nodes t� defined by∫ t�

0

exp(−µ/3 · (T − t)) dt =
�

ν
·
∫ T

0

exp(−µ/3 · (T − t)) dt, (10)

cf. (5).

Lemma 2. For the nodes given by (10),

E(Y (T ) − Ỹ (T ))2 ≤ c · 1/(µν2).

For equidistant nodes,

E(Y (T ) − Ỹ (T ))2 ≤ c · min(1/µ, µ/ν2).
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Proof. We have

E(Y (T ) − Ỹ (T ))2

=
ν∑

�=1

∫ t�

t�−1

(
exp(−µ · (T − t)) − exp(−µ · (T − t�−1))

)2
dt

= µ2 ·
ν∑

�=1

∫ t�

t�−1

(∫ t

t�−1

exp(−µ · (T − s)) ds
)2

dt

≤ µ2 ·
ν∑

�=1

∫ t�

t�−1

(
exp(−2µ/3 · (T − t)) ·

∫ t�

t�−1

exp(−µ/3 · (T − s)) ds
)2

dt

≤ µ2 · max
�=1,...,ν

(∫ t�

t�−1

exp(−µ/3 · (T − s)) ds
)2

·
∫ T

0

exp(−4µ/3 · (T − t)) dt

≤ µ · max
�=1,...,ν

(∫ t�

t�−1

exp(−µ/3 · (T − s)) ds
)2

.

It remains to observe that∫ t�

t�−1

exp(−µ/3 · (T − s)) ds =
1
ν

·
∫ T

0

exp(−µ/3 · (T − s)) ds ≤ 3/(µν)

in case of (10), while∫ t�

t�−1

exp(−µ/3 · (T − s)) ds ≤ min(T/ν, 3/µ)

for equidistant nodes.

Let ν ∈ N and 0 = t0 < . . . < tν = T . The corresponding drift-implicit
Euler scheme for the process Y is given by Ŷ (0) = y0 and

Ŷ (t�) = Ŷ (t�−1) − µ · Ŷ (t�) · (t� − t�−1) + β(t�) − β(t�−1)

for � = 1, . . . , ν, cf. (6).

Lemma 3. For the nodes given by (10),

E(Y (T ) − Ŷ (T ))2 ≤ c · 1/ν2 · (y20 + 1/µ).

Proof. Due to Lemma 2 it suffices to prove

E(Ỹ (T ) − Ŷ (T ))2 ≤ c · 1/ν2 · (y20 + 1/µ).

Put ∆� = t� − t�−1,

γ� =
ν∏

k=�

1
1 + µ ·∆k



Approximation of a Linear Stochastic Heat Equation 585

and
δ� = γ� − exp(−µ · (T − t�−1))

for � = 1, . . . , ν. Then

Ŷ (T ) = y0 · γ1 +
ν∑

�=1

γ� · (β(t�) − β(t�−1)),

and consequently

E(Ỹ (T ) − Ŷ (T ))2 = y20 · δ21 +
ν∑

�=1

δ2� ·∆�. (11)

Note that

δ� =
δ�+1

1 + µ ·∆�
+ exp(−µ · (T − t�)) ·

( 1
1 + µ ·∆�

− exp(−µ ·∆�)
)

=
1

1 + µ ·∆�
·
(
δ�+1 + exp(−µ · (T − t�)) ·

∫ µ·∆�

0

t · exp(−t) dt
)

(12)

for � = 1, . . . , ν, where δν+1 = 0. To estimate the quantities δ� we use the
recursion (12) and the fact that the nodes (10) satisfy

µ ·∆� ≤ 3/ν · exp(µ/3 · (T−t�−1)), � = 1, . . . , ν, (13)

as well as

µ ·∆� ≤ 3 ln 2, � = 2, . . . , ν. (14)

Assume � ≥ 2. By (13) and (14),

exp(−µ · (T − t�)) ·
∫ µ·∆�

0

t · exp(−t) dt ≤ 8 exp(−µ · (T − t�−1)) · (µ ·∆�)2

≤ 72/ν2 · exp(−µ/3 · (T − t�−1)).

Moreover, due to (14),

1
1 + µ ·∆�

≤ 1
1 + 1/(3 ln 2) · µ ·∆�

≤ exp(−κ · µ ·∆�)

with κ = 1/(6 ln 2). Employing (12) we obtain

δ� ≤ exp(−κ · µ ·∆�) · δ�+1 + 72/ν2 · exp(−κ · µ · (T − t�−1)),

and by induction we conclude that

δ� ≤ 72(ν−�+1)/ν2 ·exp(−κ·µ·(T−t�−1)) ≤ c/ν ·exp(−κ·µ·(T−t�−1)). (15)
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Consequently,

ν∑
�=2

δ2� ·∆� ≤ c/ν2 ·
∫ 1

0

exp(−2κ · µ · (T − t)) dt ≤ c · 1/(µν2).

In view of (11), for finishing the proof it suffices to show that

δ1 ≤ c · 1
ν · (1 + µ ·∆1)

. (16)

Note that
sup
t≥0
t · exp(−2/3 · t) ≤ 1.

Hence, by definition of the node t1,

exp(−µ · (T − t1)) ·
∫ µ·∆1

0

t · exp(−t) dt

≤ exp(−µ/3 · (T − t1)) ·
∫ µ·∆1

0

exp(−t/3) dt

= µ ·
∫ t1

0

exp(−µ/3 · (T − t)) dt
≤ 3/ν.

Due to (15) we have δ2 ≤ c/ν. Now, apply (12) to obtain (16).

3.2 Proof of the Lower Bounds in Theorem 1

Let N ∈ N and consider an arbitrary method X̂(T ) ∈ XN of the form (3).
Clearly,

E‖X(T ) − X̂(T )‖2 =
∑
i∈N

E(Yi(T ) − 〈X̂(T ), hi〉)2

≥
∑
i∈N

E
(
Y (T ) − E(Y (T )|βi1(t1,i1), . . . , βik

(tνik
,ik

))
)2

=
∑
i∈I
E
(
Y (T ) − E(Y (T )|βi(t1,i), . . . , βi(tνi,i))

)2
+
∑
i�∈I
E
(
Y 2

i (T )
)
.

Due to the first statement in Lemma 1∑
i�∈I
E
(
Y 2

i (T )
) ≥ c ·∑

i�∈I
1/µi ≥ c ·

∑
i>#I

i−2 ≥ c/(#I + 1) ≥ c/N,

which yields the lower bound for eN in Theorem 1.
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Next, assume that X̂(T ) uses equidistant nodes t�,i = �/νi for evaluation
of βi with i ∈ I. Put

J = {i ∈ I : νi > µi}
and use the second statement in Lemma 2 to obtain

E‖X(T ) − X̂(T )‖2 ≥ c ·
∑
i∈I

min(µi/ν
2
i , 1/µi) + c ·

∑
i�∈I

1/µi

= c ·
∑
i∈J

µi/ν
2
i + c ·

∑
i�∈J

1/µi.

By the Hölder inequality

N2 ·
∑
i∈J

µi/ν
2
i ≥
(∑

i∈J
νi

)2
·
∑
i∈J

i2/ν2
i ≥
(∑

i∈J
i2/3
)1/3

≥
( ∑

i≤#J
i2/3
)1/3

≥ c · (#J )5.

Thus, if #J > N1/3 then ∑
i∈J

µi/ν
2
i ≥ c ·N−1/3.

If #J ≤ N1/3 then∑
i�∈J

1/µi ≥ c · 1/(#J + 1) ≥ c ·N−1/3,

which finishes the proof of the lower bound for eequi
N and euni

N in Theorem 1.

3.3 Proof of the Upper Bounds in Theorem 1 and Theorem 2

Let N ∈ N and consider the the drift-implicit Euler scheme X̂N (T ) from
Section (2). By definition,

E‖X(T ) − X̂N (T )‖2 =
∑
i≤N

E
(
Yi(T ) − Ŷi,N (T )

)2 +
∑
i>N

E(Yi(T ))2.

Assume ξ ∈ C1([0, 1]) and put c(ξ) = max(1, ‖ξ‖∞ + ‖ξ′‖∞). Then

〈ξ, hi〉 ≤ c · c(ξ) · 1/µ1/2
i .

Hence
E(Yi(T ))2 ≤ 〈ξ, hi〉2 + 1/µi ≤ c · (c(ξ))2 · 1/µi (17)
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for i ∈ N, and by Lemma 3

E
(
Yi(T ) − Ŷi,N (T )

)2 ≤ c · 1/ν2
i · (〈ξ, hi〉2 + 1/µi) ≤ c · (c(ξ))2 · 1/(µi · ν2

i )

for i ≤ N . Recall that νi ≥ µ−1/3
i ·N2/3 by definition (4). It follows that

E‖X(T ) − X̂N (T )‖2 ≤ c · (c(ξ))2 ·
(
N−4/3 ·

∑
i≤N

i−2/3 +
∑
i>N

i−2
)

≤ c · (c(ξ))2 · 1/N,
which finishes the proof of Theorem 2.

For the proof of the upper bounds in Theorem 1 we may assume ξ = 0.
Hence eN ≤ c ·N−1/2 follows from Theorem 2. It remains to show that

euni
N ≤ c ·N−1/6. (18)

Consider the approximation

X̃N (T ) =
�N1/3�∑

i=1

Ỹi,N (T ) · hi,

where Ỹi,N (T ) is defined by (9) with y0 = 0, ν = �N2/3� and t� = �/ν.
Obviously, X̃N (T ) ∈ Xuni

N . Use Lemma 2 and observe (17) to obtain

E‖X(T ) − X̃N (T )‖2 =
∑

i≤�N1/3�
E
(
Yi(T ) − Ỹi,N (T )

)2 +
∑

i>�N1/3�
E(Yi(T ))2

≤ c ·
∑

i≤�N1/3�
min(µi/ν

2, 1/µi) + c ·
∑

i>�N1/3�
1/µi

≤ c ·N−4/3
∑

i≤�N1/3�
i2 + c ·

∑
i>�N1/3�

i−2

≤ c ·N−1/3,

which implies (18).
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Summary. We present techniques that enhance global illumination algorithms by
incorporating the effects of participating media. Instead of ray marching we use
a sophisticated Monte Carlo method for the realization of propagation events and
transmittance estimations. The presented techniques lead to unbiased estimators
of the light transport equation with participating media.

1 Introduction

A complete computation of all illumination effects is critical for the synthesis
of photorealistic images. This means that the global illumination problem
has to be solved. Global illumination is an important problem in graphics
and of high interest for applications like architecture, industrial design,
and even production. Accordingly, there are a great number of approaches
that attempt to solve the task of simulating light transport through
virtual three-dimensional scenes in an unbiased and physically correct way.
Nevertheless, most algorithms lack the ability to correctly estimate the effects
caused by interactions with media like smoke, fog, or dust.

The most sophisticated unbiased approaches are Bidirectional Path
Tracing [LW93, VG94] and the Metropolis Light Transport algorithm
[VG97, KSKAC02]. All of these algorithms are robust and can capture a wide
variety of illumination effects, albeit with varying efficiency. Additionally, ex-
tensions to scenes with participating media were presented in [LW96, PKK00].
Note, however, that these techniques are not unbiased as they rely on ray
marching techniques [PH89] to sample distances and to approximate the
transmittance of participating media.
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2 Light Transport with Participating Media

In the theory of radiative transfer there is generally a distinction between
solid objects, i.e. those that do not allow light to pass through them, and
diaphanous media like gases and liquids. Scenes are therefore often modeled
as a volume V and its boundary, i.e. the surface of solid objects ∂V . Note that
we assume V to be an open set, so that V ∩ ∂V = ∅. On the surface ∂V the
local scattering equation governs light transport

L(x, ω) = Le,∂V(x, ω) +
∫
S2
fs(ω, x, ω′)L(x, ω′)|cos θx|dσ(ω′). (1)

Here, S2 is the set of all directions, fs is the bidirectional scattering
distribution function (BSDF), which describes the scattering behavior at x,
and cos θx is the cosine of the angle between direction ω′ and the surface
normal in x. This formulation is sufficient for scenes in a vacuum, where all
interaction events occur on the surface.

In order to account for effects caused by participating media inside the
volume, we have to consider the equation of transfer

∂

∂ω
L(x, ω) = Le,V(x, ω) − σt(x)L(x, ω)

+ σs(x)
∫
S2
fp(ω, x, ω′)L(x, ω′)dσ(ω′), (2)

which describes the radiance change at position x in direction ω due to volume
emission and interaction events. The medium’s scattering and absorption
characteristics are given by the phase function fp, the scattering coefficient
σs, and the absorption coefficient σa. The latter two form the extinction
coefficient σt := σs + σa. Usually, equation (2) is integrated along straight
light rays to the next surface interaction point xS = h(x,−ω), which is
found by the ray casting function h. This approach yields a Fredholm
integral equation of the second kind, which can be handled by Monte Carlo
techniques.

2.1 Path Integral Formulation

A very general formulation of light transport is given in [Vea97] and has been
extended to handle participating media in [PKK00] and [Kol04]. The local
description by equations (1) and (2) is recursively expanded to obtain an
integral over an abstract space of complete transport paths.

The path space P can be modeled as the union of spaces containing paths
of a specific finite length, i.e.

P :=
⋃

k∈N

Pk where Pk :=
{
x̄ = x0 . . . xk : xi ∈ R3

}
.
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For each of these spaces we use a product measure µk, defined for a set
Mk ⊆ Pk by

µk(Mk) :=
∫
Mk

dλ(x0)dλ(x1) · · · dλ(xk),

of the corresponding Lebesgue measure on the volume and on the surface, i.e.

dλ(x) :=

{
dA(x) if x ∈ ∂V
dV (x) if x ∈ V.

The measure µ of a set M ⊆ P then is the natural expansion of those disjoint
spaces’ measures

µ(M) :=
∑
k∈N

µk (M ∩ Pk) .

In this context, the sensor response Ij of pixel j can be expressed as an
integral over P,

Ij =
∫
P
fj(x̄)dµ(x̄), (3)

where fj is called the measurement contribution function. In order to find
this function, we describe light transport in a slightly different manner. Let
L(y → z) denote the radiance scattered and emitted from point y in direction−→yz := z−y

‖z−y‖ . Inside the volume this quantity is given by

L(y → z) = Le,V(y,−→yz) +
∫
S2
σs(y)fp(−→yz, y, ω)L(y, ω)dσ(ω). (4)

On the surface we obtain L(y → z) directly by equation (1), i.e.
L(y → z) = L(y,−→yz) ∀y ∈ ∂V.

Using these notions in the integration of (2) with boundary condition (1)
and changing the integration domain to R3 yields the three point form:

L(y → z) = Le(y → z)

+ lim
∫
R3
L(x→ y)f(x→ y → z)G(x↔ y)V (x↔ y)dλ(x), (5)

where the following abbreviations are used (see [Kol04] for a full derivation):

• Three point scattering function

f(x→ y → z) :=

{
fr(−→yz, y,−→xy) if y ∈ ∂V
σs(y)fp(−→yz, y,−→xy) if y ∈ V (6)

• Source radiance distribution

Le(x→ y) :=

{
Le,∂V(x,−→xy) if y ∈ ∂V
Le,V(x,−→xy) if y ∈ V (7)
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• Geometric term

G(x↔ y) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|cos θx||cos θy|

‖y−x‖2 if x, y ∈ ∂V
|cos θx|
‖y−x‖2 if x ∈ ∂V, y ∈ V
|cos θy|
‖y−x‖2 if y ∈ ∂V, x ∈ V

1
‖y−x‖2 if x, y ∈ V

(8)

with θx and θy the angles between −→xy and the surface normals at the
respective points

• Attenuated visibility function

V (x↔ y) : = V ′(x↔ y)τ(x↔ y)

= V ′(x↔ y)e−
∫ ‖y−x‖
0 σt(x+t−→xy)dt

(9)

with the standard binary visibility function

V ′(x↔ y) =

{
1 if ‖y − x‖ ≤ ‖h(x,−→xy) − x‖
0 otherwise

Finally, we need a function ψj(xk−1 → xk) to describe the sensor response
of a pixel j to radiance arriving from xk−1 at the point xk on the image plane.
Along with the recursive expansion of the three point form (5) this yields the
measurement contribution function for a path x̄ = x0 . . . xk beginning on a
light source and ending on the image plane:

fj(x̄) := Le(x0 → x1)G(x0 ↔ x1)V (x0 ↔ x1)

·
k−1∏
l=1

(
f(xl−1 → xl → xl+1)G(xl ↔ xl+1)V (xl ↔ xl+1)

)
· ψj(xk−1 → xk) (10)

3 Unbiased Techniques for Transport Path Sampling

In a vacuum the next interaction point is fixed as the closest surface point
along the ray. With participating media, however, the position of this point
is no longer given deterministically but described by a stochastic process.
From the structure of equation (10) it is obvious that we have two separate
operators that describe the transport: one governing the distance to the next
interaction point (the τ term) and the other governing the scattering behavior
(the phase function or the BSDF). We treat these factors independently as
in [PKK00] by first sampling a distance and then sampling a direction, as
described in the next section. Since the processes are clearly independent, the
resulting density is simply the product of the two densities involved.
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Homogeneous Media

In the case of a homogeneous medium with σt(x) ≡ σt, the transmittance is
proportional to the exponential distribution’s density p(t) = σte

−σtt. Applying
the inversion method we realize the desired distance as

t =
− ln(1 − ξ)

σt
(11)

for a uniformly distributed random number ξ ∈ [0, 1).

Heterogeneous Media

In the general case, the density proportional to τ = e−K(t) with K(t) :=∫ t

0
σt(x0 + t′ω)dt′ is given by p(t) =

(
d
dtK(t)

)
e−K(t) = σt(x0 + tω)e−K(t).

Things are more complicated here since the inversion method only yields the
implicit equation

K(t) =
∫ t

0

σt(x0 + t′ω)dt′ = − ln(1 − ξ) (12)

for a uniformly distributed random number ξ ∈ [0, 1). As the inversion method
cannot be applied directly and there is no straightforward Monte Carlo
estimator available (as we cannot evaluate τ), this distance is usually sampled
using the classic ray marching algorithm [PH89]. Note that this method,
which is frequently used in computer graphics, is biased.

A more sophisticated and unbiased approach to sampling this distance can
be found in [Col68]. Let σt be a constant with σt ≥ σt(x) for all x ∈ V and let
t1, t2, . . . be independent random distances sampled according to equation (11)
with parameter σt. Let, furthermore, ξ1, ξ2, . . . ∈ [0, 1] be independent
uniformly distributed random numbers. Then, the first distance Ti0 =

∑i0
i=1 ti

satisfying ξi0 ≤ σt(x0+Ti0ω)

σt
is distributed as desired. Algorithm 1 implements

this procedure and thus provides an unbiased distance sampling routine for
arbitrary media.

In fact, the condition σt ≥ σt(x) only has to be satisfied for points along
the ray. Choosing a larger σt simply yields more iterations in Algorithm 1.
However, determining the maximum σt = supx∈V σt(x) in the whole volume
data set during a preprocessing step is usually easy while determining the
maximum along a single ray may be quite complicated.

3.1 Line Integral along a Ray

An explicit estimation of the transmittance τ is quite important in many
algorithms. Furthermore, splitting along the primary ray is often beneficial
when rendering scenes that contain participating media. We therefore
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f loat sampleDistance (Point x0 , Direction ω )
{

// sample wi th the maximum ex t i n c t i o n σt

f loat t = −l og ( rand ( ) ) / σt ;

while ( σt(x0+tω)
σt

< rand ( ) )

t −= log ( rand ( ) ) / σt ;

return t ;
}

Algorithm 1. Unbiased distance sampling for arbitrary media.

t = 0

t = 0t∂V

Fig. 1. Samples along a ray x0 + tω for t ∈ [0, t∂V): transformed random points (top)
and transformed equidistant points (bottom). The latter yield a better distribution
for the initial points in Algorihm 1.

generalize the one-dimensional integration along a ray in the context of
Algorithm 1 in order to obtain a generic and unbiased solution.

Assume that we have to estimate a transmittance-weighted integral C
along a light ray (x∂V , ω) starting at the surface intersection point x∂V as
present in the transport equations,

C = c∂V (x∂V) τ(x↔ x∂V) +
∫ ‖x∂V−x‖

0

cV(x− tω)τ(x↔ x− tω)dt, (13)

where cV and c∂V are volume and surface contributions, respectively. For the
simple case c∂V ≡ 1 and cV ≡ 0 we obtain an estimate of the transmittance
itself. We can estimate C by applying Algorithm 1 repeatedly and averaging
the corresponding contributions. Instead of using random numbers for
the starting points of Algorithm 1 the convergence can be improved by
transforming equidistant samples that are shifted by one random offset (see
Figure 1). Algorithm 2 is a formulation of this approach where we additionally
have seperated what we know from the maximum extinction.

A comparison for splitting along the primary ray in the scenario of shading
from a large set of point light sources representing global illumination is given
in Figure 2.
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1. Determine the surface intersection point x∂V = h(x,−ω), the distance t∂V =
‖x − x∂V‖, and the maximum volume extinction σt

2. Compute the probabilities pV = 1 − e−σtt∂V and p∂V = 1 − pV
3. Estimate the surface contribution c∂V = L(x∂V , ω) and set C = p∂V · c∂V
4. Generate n randomly shifted equidistant sample points ∆ ⊂ [0, pV)

∆ :=

{
(k + ξ)pV

n
: k = 0, . . . , n − 1

}
for one uniformly distributed random number ξ ∈ [0, 1)

5. Use ∆ as initial random numbers for n random walks according to Algorithm 1
resulting in distances t1, . . . , tn

6. Add contributions

C = C +

{
1
n
· pV · c(x−tkω,ω)

σt(x−tkω)
, if tk < t∂V

1
n
· pV · c∂V , else

for k = 1, . . . , n

Algorithm 2. Unbiased line integration along a ray.

(a) Algortihm 1
(repeatedly)

(b) Ray marching
(random offsets)

(c) Algorithm 2 (d) Reference image

Fig. 2. Comparison of splitting techniques along the primary ray for a homogeneous
(top) and a highly inhomogeneous (bottom) hazy Mie medium at low sampling rates
with the same computation time. Of course, our ray marcher implementation does
not perform shading operations in regions where σs = 0. While perfectly unbiased,
Algorithm 2 approaches the smoothness of ray marching with increasing homogeneity
along the ray. The reference image has been computed using Algorithm 1 with a vast
amount of samples.

3.2 Handling Multiple Wavelengths

It is a common notion in computer graphics that solving the transport
equations separately for each wavelength is less efficient than simulating
various wavelengths at once. While this may be true for moderately saturated
colors, the general setting requires some additional considerations for sampling
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the BSDF. Color-dependent implementations of Russian roulette [SSKK03]
can help but still cannot avoid infinite variance in general and are impractical
for bidirectional path tracing, as the probability density evalutions for the
heuristics become extremely complicated.

Using Algorithm 1 in a context where σt depends on the wavelength is
also problematic when computing a single solution for several wavelengths.
Consider sampling equation (13) with cV ≡ 1 in an infinite homogeneous
medium for two wavelengths λ1 and λ2 with σt,λ2 > σt,λ1 simultaneously,
using the density pλ2(t) = σt,λ2e

−σt,λ2 t. The variance on wavelength λ2 is now
zero, whereas the variance on λ1 can be arbitrarily high:

V

(
τλ1(x↔ y)

pλ2

)
=

⎧⎨⎩∞ if σt,λ2 ≥ 2σt,λ1(
2σt,λ1σt,λ2 − σ2

t,λ2

)−1

− (σt,λ1)
−2 otherwise.

The problem can be avoided by limiting the extinction coefficient to a scalar
value, i.e. by forcing σa,λ1(x) + σs,λ1(x) = σa,λ2(x) + σs,λ2(x) = σt(x) for
every pair of wavelengths λ1, λ2. This corresponds to situations where the
extinction coefficent is a quanitity depending on volume particle density and
size only. Then, the color of a medium is due to the reflection, refraction,
and absorption probabilities of the particles themselves (in analogy to
the BSDF) and may vary within this constraint. However, in scenarios
where this restriction cannot be applied (e.g. atmospheric scattering)
solving the transport equations for each wavelength separately should be
preferred.

4 Applications

In order to obtain truly unbiased estimators for light transport, we incorporate
the presented techniques into several Monte Carlo global illumination
algorithms. These include simple and Bidirectional Path Tracing, an unbiased
variant of Instant Radiosity for Participating Media, and a very robust version
of the Metropolis Light Transport algorithm.

4.1 Path Tracing

Path Tracing [Kaj86] is one of the most basic global illumination algorithms.
Due to its simplicity, it is still used frequently to compute reference solutions
or handle complex scenes. A recently presented variant called Adjoint Photon
Tracing [MBE+06] is capable of rendering difficult settings with participating
media accurately. The simple form of pure Path Tracing without next event
estimation, which does not estimate direct illumination at each path vertex
explicitly, can be extended to handle participating media without much effort.
The only modification is an additional distance sampling call for each ray that
is cast.
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The spatial sampling found in Path Tracing with next event estimation
requires an estimate of the transmittance. This quantity is easily obtained
with Algorithm 2. Note that the stability of Path Tracing may be compromised
in this case: a path vertex can be sampled arbitrarily close to a light source,
in which case the geometric term of the connection yields a weakly singular
integrand with infinite variance. This is generally a problem for algorithms
with next event estimation, though it is often avoided in a vacuum by only
modeling light sources with a certain minimum distance to other surface
points. With participating media the same problems arise from non-vacuum
volume points near light sources. Such cases are usually much harder to avoid.
However, the techniques presented below can be applied to handle the weak
singularity in an unbiased manner.

4.2 Instant Radiosity

Instant Radiosity [Kel97] is a popular global illumination algorithm for scenes
with predominantly diffuse surfaces. A set of transport paths is started from
the light source in a preprocessing pass and point light sources are stored at
each path vertex. The point lights, which represent path space samples, are
then used to shade each camera ray’s first interaction point.

Adapting this process for participating media using Algorithm 1 is
straightforward. Note that the volume point light sources have to be equipped
with a phase function instead of a BSDF. Shading the primary ray can be
done by sampling a first interaction or, preferably, applying some splitting
in the sense of Algorithm 2.

Solutions computed with Instant Radiosity can converge quite quickly,
given that the weak singularity found in the shading path is avoided by
bounding the geometric term [Kol04]. However, this approach introduces bias.

Bias Compensation

In order to handle the singularity without introducing bias we extend the
method from [KK04] to participating media. We set the geometric term G
as defined in equation (8) to G′ by letting

G′(x↔ y) :=

{
G(x↔ y) if G(x↔ y) < b
b otherwise

(14)

for an arbitrary positive bound b ∈ R+. The bias introduced into the
evaluation of the three point form L(y → z) as defined in equation (5) by
replacing G with G′ is
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L(y → z) − L′(y → z)

=
∫
R3
L(x→ y)f(x→ y → z) · max{G(x↔ y) − b, 0}V (x↔ y)dλ(x)

=
∫
R3
L(x→ y)f(x→ y → z)

max{G(x↔ y) − b, 0}
G(x↔ y)

·G(x↔ y)V (x↔ y)dλ(x)

=
∫
S2

∫ ‖h(y,−ω)−y‖

0

τ(y − tω ↔ y)L(y − tω → y)f(y − tω → y → z)

· max{G(y − tω ↔ y) − b, 0}
G(y − tω ↔ y)

dtdσ∗(ω). (15)

In the last step we have changed the integration domain from R3 back to
spherical coordinates, and depending on whether y is a surface or a volume
point we have

dσ∗(ω) =

{
|cos θy|dσ(ω) if y ∈ ∂V
dσ(ω) if y ∈ V.

This reformulation directly leads to a recursive algorithm for computing the
bias which does not suffer from any singularities. We simply sample a direction
ω according to the projected BSDF or the phase function, and a distance t
according to τ . At the resulting next vertex x = y− tω, we recursively estimate
L(x → y) and weight the result by max{G(x↔y)−b,0}

G(x↔y) . This weight is 0 for
G(x↔ y) ≤ b. If the next vertex is not close enough, we can thus terminate the
path from the camera. In fact, the bounding and bias compensation step can be
interpreted as s special case of Bidirectional Path Tracing where the weighting
functions are constructed with respect to the value of the geometric term.

The efficiency of the approach is, of course, highly dependent on the choice
of the bound b. Generally, one wants avoid bright spots in weakly illuminated
areas caused by close by point lights. Options to achieve this include bounding
point light contributions and bias compensation to the same maximum value
[KK04] or using radiance estimates (e.g. based on direct illumination) and
bound contributions of the point light sources to values below. Note that
the contribution of the bias compensation step is always bounded by the
brightness of the scene’s light source.

4.3 Bidirectional Path Tracing

Combining Path Tracing and its adjoint approach, Light Tracing, leads to
Bidirectional Path Tracing (BDPT) [LW93, VG94]. The algorithm uses a
whole family of sampling techniques (Path Tracing and Instant Radiosity
are two of them), which are combined using multiple importance sampling
[VG95]. The multi-sample estimator
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F =
n∑

i=1

1
ni

ni∑
j=1

wi(xi,j)
f(x)
pi(xi,j)

(16)

joins the samples xi,j that were created according to the density pi. The
estimator is unbiased as long as the weights wi(x) sum up to 1 for f(x) �= 0
and are 0 for pi(x) = 0. In fact, this is also true if the weights are only
normalized in expectation, i.e.

Ey

( n∑
i=1

wi(x, y)
)

=
∫

Ω

( n∑
i=1

wi(x, y)
)
dµ(y) = 1 ∀x. (17)

A good choice for a weighting function that satisfies these conditions is the
power heuristic

ws(x) =
pβ

s (x)∑
i p

β
i (x)

for β ∈ R+. (18)

For β = 1 we obtain the balance heuristic and β → ∞ results in the maximum
heuristic. As shown in [Vea97], these heuristics guarantee a fairly low variance.

The application of BDPT to participating media is given in [LW96] and can
easily be modified to handle propagation events and transmittance estimations
in an unbiased way by utilizing Algorithm 1 and Algorithm 2. However, the
weighting heuristics need some additional consideration. For heterogeneous
media, the densities pi ∝ τ due to propagation are not analytically computable
and must therefore be approximated. Using Algorithm 2 for this purpose
is generally not an option, as equation (17) fails for all but the maximum
heuristic. However, note that no bias is introduced if we approximate τ by
a deterministic quadrature rule, since the weights produced by equation (18)
will definitely sum up to one then. Presuming a decent approximation, the
good properties of the heuristics are preserved.

4.4 Metropolis Light Transport

Metropolis Light Transport (MLT) is a powerful alternative to the previous
rendering approaches. The algorithm, which was first presented in [VG97]
and strongly modified in [KSKAC02], uses Metropolis sampling [MRR+53] to
sample the path space. Whereas ordinary importance sampling only considers
factors of the measurement contribution in the previous algorithms, the
flexibility of Metropolis sampling allows us to generate paths according to

p(x̄) =
f (x̄)
b

with b =
∫
P
f (ȳ) dµ(ȳ).

This yields the importance sampling estimator

Fj,N =
1
N

N∑
i=1

hj

(
X̄i

)
b,
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(a) Bidirectional Path Tracing (b) Metropolis Light Transport

Fig. 3. A scene with a heterogeneous medium featuring caustics seen indirectly
through a reflection. Both images were rendered with the same number of samples
in approximately the same time. Splitting along the primary ray was employed to
speed up the estimation of direct light for MLT.

where the measurement contribution function fj(x̄) has been split into a pixel
filter function hj(x̄) and a remainder f (x̄), which is the same for every pixel.

The value of b can be estimated using any suitable rendering algorithm and
a fairly low number of samples.Usually, 104–105 samples yield a sufficiently
accurate estimate, which makes the cost of the initialization phase negligible.
One of the approximation samples is selected as the initial state for the
Metropolis phase of the algorithm with probability proportional to f/p. The
selected sample is expected to be distributed according to the stationary
density and thus avoids start-up bias without the need to discard any samples.

Once the first state has been selected, each new state is found by generating
a tentative sample ȳ from the current sample x̄ according to the tentative
transition function T (x̄→ ȳ) and either accepting or rejecting the proposal
according to the acceptance function

a(x̄→ ȳ) := min
{

1,
f(ȳ)T (ȳ → x̄)
f(x̄)T (x̄→ ȳ)

}
.

A good proposal strategy is of paramount importance to the success of the
algorithm. Key features of a sound strategy are the ability to exploit the
coherence in the scene and a low correlation between subsequent samples.

A number of important optimizations of the basic algorithm may be found
in [Vea97]. While they will not be discussed here, they are of great importance
to a successful implementation of MLT.

Adaptive Mutation

Kelemen et al. present a novel implementation of the MLT algorithm in
[KSKAC02], which we adapt to handle participating media. The new mutation
is simpler to implement than that proposed by Veach, reduces the correlation
between samples, and is considerably more robust. Furthermore, the inclusion
of participating media and other phenomena does not require extensive
modifications to the mutation.
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For any path tracing algorithm—e.g. classic Path Tracing or BDPT—,
a path is uniquely defined by the set of random numbers used to create it.
These numbers can be interpreted as a point in the infinitely-dimensional unit
cube [0, 1)∞, called the primary sample space U . The transformation between
the spaces, s : U → P, is determined by the path tracing algorithm. The path
integral presented in equation (3) can then be transformed to an integral over
the primary sample space:

Ij =
∫
P
fj(x̄) dµ(x̄) =

∫
U

fj(s(ū))
p(s(ū))

dµ∗(ū) ,

where f and p are defined as before.
If the chosen path tracing algorithm properly employs importance

sampling, the transformed integrand, f∗(ū) := f (s(ū)) /p(s(ū)), will vary only
moderately. Any mutation performed in the primary sample space will thus
automatically adapt to the modalities of the integrand.

The proposed mutation generates a new path by perturbing the primary
sample point that corresponds to the current path by a small exponentially
distributed amount. This perturbation is symmetric, so that the acceptance
probability simplifies to a(ū→ v̄) = min{1, f∗(v̄) /f∗(ū)}.

Like Veach’s original perturbations, the new mutation cannot ensure
ergodicity by itself. To guarantee that the algorithm cannot get stuck in
isolated areas of the scene, independent paths are generated at random
intervals by the underlying path tracer. This is done by simply feeding a fresh
set of uniform random numbers into the algorithm. The mutation type is
chosen at random before each mutation step.

Transformation

The presented Metropolis algorithm only works efficiently if the transformation
s : U → P ensures that a small change in U corresponds to a small change
in the path space. Because of the robustness and efficiency of the approach,
we use BDPT as the basic sample generation technique. Due to the separate
generation of subpaths by BDPT and the inclusion of participating media,
it is not possible to use values from successive dimensions of U as random
numbers for the generation of samples and still satisfy the requirement of
corresponding small changes. Rather, the values driving distinct parts of the
path generation must be separated from each other.

Random numbers used for the generation of eye and light subpaths can
simply be separated e.g. by assigning positive indices to one type of subpath
and negative indices to the other type. While the number of random values
needed to sample distances in homogeneous media is fixed, the amount of
random input needed to drive the presented distance sampling routine cannot
be determined in advance in scenes that contain heterogeneous media. In
such cases, each deterministic connection between two subpaths also needs an
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Fig. 4. A primary sample stored as an array of arrays. Random numbers are separated
between light and eye subpaths, as well as between scattering and propagation.

additional unknown amount of random values to estimate the transmittance
as described in section 3.1. Finally, some scattering models may need more
input than others when sampling a direction.

We therefore propose storing the current primary sample ū in an array
of arrays as outlined in Figure 4. The ith row vector provides input to the
sampling that is done at the |i|th vertex of the respective subpath. The
elements of each vector are accessed in sequential order. This separation
ensures that the random numbers that generated each vertex remain associated
to that vertex. The estimation of the various path transmittance values may
be driven by the row at index 0. A further separation is not necessary because
the transmittance is fairly smooth in realistic settings. Large variations in the
random values running the estimation thus have very little effect on the result.

5 Conclusion

We have presented unbiased global illumination algorithms for scenes with
participating media. We thus close a gap in computer graphics where many al-
gorithms are labeled as unbiased despite the fact that this claim was previously
not true for heterogeneous media. The new approaches presented here allow
for the physically accurate and efficient visualization of a wide range of scenes.
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Summary. Mersenne Twister (MT) is a widely-used fast pseudorandom number
generator (PRNG) with a long period of 219937 − 1, designed 10 years ago based on
32-bit operations. In this decade, CPUs for personal computers have acquired new
features, such as Single Instruction Multiple Data (SIMD) operations (i.e., 128-bit
operations) and multi-stage pipelines. Here we propose a 128-bit based PRNG,
named SIMD-oriented Fast Mersenne Twister (SFMT), which is analogous to MT
but making full use of these features. Its recursion fits pipeline processing better
than MT, and it is roughly twice as fast as optimised MT using SIMD operations.
Moreover, the dimension of equidistribution of SFMT is better than MT.

We also introduce a block-generation function, which fills an array of 32-bit
integers in one call. It speeds up the generation by a factor of two. A speed
comparison with other modern generators, such as multiplicative recursive generators,
shows an advantage of SFMT. The implemented C-codes are downloadable from
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html.

1 Introduction

Recently, the scale of simulations is getting larger, and faster pseudorandom
number generators (PRNGs) are required. The power of CPUs for usual
personal computers are now sufficiently strong for such purposes, and the
necessity of efficient PRNGs for CPUs on PCs is increasing. One such generator
is Mersenne Twister (MT) [MN98], which is based on a linear recursion
modulo 2 over 32-bit words. An implementation MT19937 has the period of
219937 − 1. MT was designed 10 years ago, and the architectures of CPUs,
such as Pentium and PowerPC, have changed. They have Single Instruction
Multiple Data (SIMD) operations, which may be regarded as operations on
128-bit registers. Also, they have more registers and automatic parallelisms
by multi-stage pipelining. These are not reflected in the design of MT.

In this article, we propose an MT-like pseudorandom number generator that
makes full use of these new features: SFMT, a SIMD-oriented Fast Mersenne
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Twister. We implemented an SFMT with the period a multiple of 219937 − 1,
named SFMT19937, which has a better equidistribution property than MT.
SFMT is much faster than MT, even without using SIMD instructions.

There is an argument that the CPU time consumed for function calls to
PRNG routines occupies a large part of the random number generation. This
is not always the case: one can avoid the function calls by (1) inline-expansion
and/or (2) generation of pseudorandom numbers in an array in one call.
Actually some demanding users re-coded MT to avoid the function call; see
the homepage of [MN98]. In this article, we introduce a block-generation
scheme which is much faster than using function calls.

2 SIMD-Oriented Fast Mersenne Twister

We propose a SIMD-oriented Fast Mersenne Twister (SFMT) pseudorandom
number generator. It is a Linear Feedbacked Shift Register (LFSR) generator
based on a recursion over F128

2 . We identify the set of bits {0, 1} with the two
element field F2. This means that every arithmetic operation is done modulo
2. A w-bit integer is identified with a horizontal vector in Fw

2 , and + denotes
the sum as vectors (i.e., bit-wise exor), not as integers. We consider three
cases: w is 32, 64 or 128.

2.1 LFSR Generators

A LFSR method is to generate a sequence x0,x1,x2, . . . of elements Fw
2 by

a recursion
xi+N := g(xi,xi+1, . . . ,xi+N−1), (1)

where xi ∈ Fw
2 and g : (Fw

2 )N → Fw
2 is an F2-linear function (i.e., the

multiplication of a (wN × w)-matrix from the right to a wN -dimensional
vector) and use it as a pseudorandom w-bit integer sequence. In the
implementation, this recursion is computed by using an array W[0..N-1] of
N integers of w-bit size, by the simultaneous substitutions

W[0] ← W[1], W[1] ← W[2], . . . , W[N− 2] ← W[N− 1],
W[N− 1] ← g(W[0], . . . , W[N− 1]).

The first N − 1 substitutions shift the content of the array, hence the name
of LFSR. Note that in the implementation we may use an indexing technique
to avoid computing these substitutions, see [Knu97, P.28 Algorithm A]. The
array W[0..N-1] is called the state array. Before starting the generation, we
need to set some values to the state array, which is called the initialization.

Mersenne Twister (MT) [MN98] is an example with

g(w0, . . . ,wN−1) = (w0|w1)A+ wM ,
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where (w0|w1) denotes the concatenation of the 32 − r most significant
bits (MSBs) of w0 and the r least significant bits (LSBs) of w1, A is a
(32 × 32)-matrix for which the multiplication wA is computable by a few
bit-operations, and M is an integer (1 < M < N). Its period is 232N−r − 1,
chosen to be a Mersenne prime. To obtain a better equidistribution property,
MT transforms the sequence by a suitably chosen (32 × 32) matrix T , namely,
MT outputs x0T,x1T,x2T, . . . (called tempering).

2.2 New Features of Modern CPUs for Personal Computers

Modern CPUs for personal computers (e.g. Pentium and PowerPC) have new
features such as (1) fast integer multiplication instructions (2) fast floating
point operations (3) SIMD operations (4) multi-stage pipelining. These were
not common to standard PC CPUs, when MT was designed.

An advantage of F2-linear generators over integer multiplication generators
(such as Linear Congruential Generators [Knu97] or Multiple Recursive Gen-
erators [L’E93]) was high-speed generation by avoiding multiplications. This
advantage is now smaller, since 32-bit integer multiplication is now quite fast.

Among the new features, (3) and (4) fit F2-linear generators. Our idea
is simple: to design a 128-bit integer PRNG, considering the benefit of such
parallelism in the recursion.

2.3 The Recursion of SFMT

We choose g in the recursion (1) as

g(w0, . . . ,wN−1) = w0A+ wMB + wN−2C + wN−1D, (2)

where w0,wM , . . . are w(= 128)-bit integers (= horizontal vectors in F128
2 ), and

A,B,C,D are sparse 128 × 128 matrices over F2 for which wA,wB,wC,wD
can be computed by a few SIMD bit-operations. The choice of the suffixes
N − 1, N − 2 is for speed: in the implementation of g, W[0] and W[M] are
read from the array W, while the copies of W[N-2] and W[N-1] are kept in two
128-bit registers in the CPU, say r1 and r2. Concretely speaking, we assign
r2 ← r1 and r1 ← “the result of (2)” at every generation, then r2 (r1) keeps
a copy of W[N-2] (W[N-1], respectively). The merit of doing this is to use the
pipeline effectively. To fetch W[0] and W[M] from memory takes some time. In
the meantime, the CPU can compute wN−2C and wN−1D, because copies of
wN−2 and wN−1 are kept in the registers. This selection was made through
experiments on the speed of generation.

By trial and error, we searched for a set of parameters of SFMT, with
the period being a multiple of 219937 − 1 and having good equidistribution
properties. The degree of recursion N is (19937/128) = 156, and the linear
transformations A,B,C,D are as follows.
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• wA := (w
128
<< 8) + w.

This notation means that w is regarded as a single 128-bit integer, and
wA is the result of the left-shift of w by 8 bits exor-ed with w. There
are such SIMD operations in both Pentium SSE2 and PowerPC AltiVec
SIMD instruction sets (SSE2 permits only a multiple of 8 as the amount of
shifting). Note that the notation + means the exclusive-or in this article.

• wB := (w
32
>> 11)&(BFFFFFF6 BFFAFFFF DDFECB7F DFFFFFEF).

This notation means that w is considered to be a quadruple of 32-bit
integers, and each 32-bit integer is shifted to the right by 11 bits, (thus
the eleven most significant bits are filled with 0s, for each 32-bit integer).
The C-like notation & means the bitwise AND with a constant 128-bit
integer, denoted in the hexadecimal form.

In the search, this constant is generated as follows. Each bit in the 128-bit
integer is independently randomly chosen, with the probability to choose 1
being 7/8. This is because we prefer to have more 1’s for a denser feedback.

• wC := (w
128
>> 8).

This is the right shift of an 128-bit integer by 8 bits, similar to the first.

• wD := (w
32
<< 18).

Similar to the second, w is cut into four pieces of 32-bit integers, and each
of these is shifted by 18 bits to the left.

All these instructions are available in both Intel Pentium’s SSE2 and
PowerPC’s AltiVec SIMD instruction sets. Figure 1 shows a concrete
description of SFMT19937 generator with period a multiple of 219937 − 1.

2.4 Endianness

Let x[0..3] be an array of 32-bit integers of size four. There are two natural
ways to convert the array to a 128-bit integer. One is to concatenate in the
order of x[3]x[2]x[1]x[0], from MSBs to LSBs, which is called the little-endian
system, adopted in Pentium. The converse is the big-endian system adopted
in PowerPC, see [Wik].

W0

W122

W154

W155

128 bit

128
 << 8

 32
 >> 11

128
 >> 8

 32
 << 18

AND
0xBFFFFFF6
0xBFFAFFFF
0xDDFECB7F
0xDFFFFFEF

+

Fig. 1. A circuit-like description of SFMT19937.
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The descriptions in this article is based on the former. To assure the
portability for both endian systems, we implemented two codes: one is for
little-endian system (SSE2 of Pentium) and the other is for big-endian system
(AltiVec of PowerPC), to assure the exactly same outputs as 32-bit integer
generators. In the latter code, the recursion (2) is considered as a recursion
on quadruples of 32-bit integers, rather than 128-bit integers, so that the
content of the state array coincides both for little and big endian systems,
as an array of 32-bit integers (not as 128-bit integers). Thus, shift-operations
on 128-bit integers in the little-endian system is different from that in the
big-endian system. PowerPC supports arbitrary permutations of 16 blocks
of 8-bit integers in a 128-bit register, which can emulate the shift in (2).

2.5 Block-Generation

In the block-generation scheme, the user of the PRNG specifies an array of
w-bit integers of the length L, where w = 32, 64 or 128 and L is specified by
the user. In the case of SFMT19937, wL should be a multiple of 128 and no
less than N × 128, since the array needs to accommodate the state space (note
that N = 156). By calling the block generation function with the pointer to
this array, w, and L, the routine fills up the array with pseudorandom integers,
as follows. SFMT19937 keeps the state space S in an internal array of 128-bit
integers of length 156. We concatenate this state array with the user-specified
array, using the indexing technique. Then, the routine generates 128-bit integers
in the user-specified array by recursion (2), as described in Figure 2, until it
fills up the array. The last 156 128-bit integers are copied back to the internal

128 bit

internal
array

g

g

user-
specified

array

copied
back to
internal
array

156

L

156

Fig. 2. Block-generation scheme.
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CPU/compiler return MT MT(SIMD) SFMT SFMT(SIMD)

Pentium-M block 1.122 0.627 0.689 0.298
1.4GHz (ratio) 3.77 2.10 2.31 1.00

Intel C/C++ seq 1.511 1.221 1.017 0.597
ver. 9.0 (ratio) 5.07 4.10 3.41 2.00

Pentium IV block 0.633 0.391 0.412 0.217
3GHz (ratio) 2.92 1.80 1.90 1.00

Intel C/C++ seq 1.014 0.757 0.736 0.412
ver. 9.0 (ratio) 4.67 3.49 3.39 1.90

Athlon 64 3800+ block 0.686 0.376 0.318 0.156
2.4GHz (ratio) 4.40 2.41 2.04 1.00

gcc seq 0.756 0.607 0.552 0.428
ver. 4.0.2 (ratio) 4.85 3.89 3.54 2.74

PowerPC G4 block 1.089 0.490 0.914 0.235
1.33GHz (ratio) 4.63 2.09 3.89 1.00

gcc seq 1.794 1.358 1.645 0.701
ver. 4.0.0 (ratio) 7.63 5.78 7.00 2.98

Table 1. The CPU time (sec.) for 108 generations of 32-bit integers, for four different
CPUs and two different return-value methods. The ratio to the SFMT coded in
SIMD is listed, too.

array of SFMT19937. This makes the generation much faster than sequential
generation (i.e., one generation per one call) as shown in Table 1.

3 How to Select the Recursion and Parameters.

We wrote a code to compute the period and the dimensions of equidistribution
(DE, see §3.2). Then, we searched for a recursion with good DE admitting
a fast implementation.

3.1 Computation of the Period

An LFSR that obeys the recursion (1) may be considered as an automaton,
with the state space S = (Fw

2 )N and the state transition function f : S → S
given by (w0, . . . ,wN−1) �→ (w1, . . . ,wN−1, g(w0, . . . ,wN−1)). As a w-bit
integer generator, the output function is o : S → Fw

2 , (w0, . . . ,wN−1) �→ w0.
Let χf be the characteristic polynomial of f : S → S. If χf is primitive,

then the period of the state transition takes the maximal value 2dim(S) − 1
[Knu97, §3.2.2]. However, to check the primitivity, we need the integer fac-
torization of this number, which is often hard for dim(S) = nw > 10000. On
the other hand, the primarity test is much easier than the factorization, so
many huge primes of the form 2p − 1 have been found. Such a prime is called a
Mersenne prime, and p is called the Mersenne exponent, which itself is a prime.
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MT and WELL[PLM06] discard r specific bits from the array S, so that
nw − r is a Mersenne exponent. Then, the primitivity of χf is easily checked
by the algorithm in [Knu97, §3.2.2], avoiding the integer factorization.

SFMT adopted another method to avoid the integer factorization, the
reducible transition method (RTM), which uses a reducible characteristic
polynomial with a large primitive factor. This idea appeared in [Fus90]
[BZ03][BZ04], and applications in the present context are discussed in detail
in another article [SHP+06], therefore we only briefly recall it.

Let p be the Mersenne exponent, and N := (p/w). Then, we randomly
choose parameters for the recursion of LFSR (1). By applying the Berlekamp-
Massey Algorithm to the output sequence, we obtain χf (t). (Note that a
direct computation of det(tI − f) is time-consuming because dim(S) = 19968.)

By using a sieve, we remove all factors of small degree from χf , until we
know that it has no irreducible factor of degree p, or that it has a (possibly
reducible) factor of degree p. In the latter case, the factor is passed to the
primitivity test described in [Knu97, §3.2.2].

Suppose that we found a recursion with an irreducible factor of desired
degree p in χf (t). Then, we have a factorization

χf = φpφr,

where φp is a primitive polynomial of degree p and φr is a polynomial of
degree r = wN − p. These are coprime, since we assume p > r. Let Ker(g)
denote the kernel of a linear transformation g. By putting Vp := Ker (φp(f))
and Vr := Ker (φr(f)), we have a decomposition into f -invariant subspaces

S = Vp ⊕ Vr (dimVp = p, dimVr = r).

Note that the characteristic polynomial of the restriction fp of f to Vp is
φp(t), and that of the restriction fr to Vr is φr(t). For any state s ∈ S, we
denote s = sp + sr for the corresponding decomposition with sp ∈ Vp and
sr ∈ Vr. Then, the k-th state fk(s) is equal to fk

p (sp) + fk
r (sr). This implies

that the automaton is equivalent to the sum of two automata fp : Vp → Vp

and fr : Vr → Vr. To combine two linear automata by sum is well-studied
as combined Tausworthe generators or combined LFSRs, see [CLT93] [L’E96]
[L’E99]. Their purpose is to obtain a good PRNG from several simple
generators, which is different from ours.

The period length of the state transition is the least common multiple
of that started from sp and that started from sr. Hence, if sp �= 0, then the
period is a nonzero multiple of 2p − 1. We checked the following.

Proposition 1. The period of SFMT19937 as a 128-bit integer generator is
a nonzero multiple of 219937 − 1, if the 32 MSBs of w0 are set to the value
6d736d6d in hexadecimal form.

This value of w0 assures that sp �= 0, see [SHP+06] for a way to find such
a value.
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Remark 1. The number of non-zero terms in χf (t) is an index measuring the
amount of bit-mixing. In the case of SFMT19937, the number of nonzero
terms is 6711, which is much larger than 135 of MT, but smaller than 8585
of WELL19937c [PLM06].

3.2 Computation of the Dimension of Equidistribution

We briefly recall the definition of dimension of equidistribution (cf.
[CLT93][L’E96]).

Definition 1. A periodic sequence with period P

χ := x0,x1, . . . ,xP−1,xP = x0, . . .

of v-bit integers is said to be k-dimensionally equidistributed if any kv-bit
pattern occurs equally often as a k-tuple

(xi,xi+1, . . . ,xi+k−1)

for a period i = 0, . . . , P − 1. We allow an exception for the all-zero pattern,
which may occur once less often. (This last loosening of the condition is techni-
cally necessary, because the zero state does not occur in an F2-linear generator).
The largest value of such k is called the dimension of equidistribution (DE).

We want to generalize this definition slightly. We define the k-window set
of the periodic sequence χ as

Wk(χ) := {(xi,xi+1, . . . ,xi+k−1)|i = 0, 1, . . . , P − 1},

which is considered as a multi-set, namely, the multiplicity of each element
is considered.

For a positive integer m and a multi-set T , let us denote by m · T the
multi-set where the multiplicity of each element in T is multiplied by m. Then,
the above definition of equidistribution is equivalent to

Wk(χ) = (m · Fvk
2 ) \ {0},

where m is the multiplicity of the occurrences, and the operator \ means that
the multiplicity of 0 is subtracted by one.

Definition 2. In the above setting, if there exist a positive integer m and a
multi-subset D ⊂ (m · Fvk

2 ) such that

Wk(χ) = (m · Fvk
2 ) \D,

we say that χ is k-dimensionally equidistributed with defect ratio
#(D)/#(m · Fvk

2 ), where the cardinality is counted with multiplicity.
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Thus, in Definition 1, the defect ratio up to 1/(P + 1) is allowed to claim the
dimension of equidistribution. If P = 219937 − 1, then 1/(P + 1) = 2−19937.
In the following, the dimension of equidistribution allows the defect ratio up
to 2−19937.

For a w-bit integer sequence, its dimension of equidistribution at v-bit
accuracy k(v) is defined as the DE of the v-bit sequence, obtained by
extracting the v MSBs from each of the w-bit integers. If the defect ratio is
1/(P + 1), then there is an upper bound

k(v) ≤ �log2(P + 1)/v�.

The gap between the realized k(v) and the upper bound is called the dimension
defect at v of the sequence, and denoted by

d(v) := �log2(P + 1)/v� − k(v).

The summation of all the dimension defects at 1 ≤ v ≤ 32 is called the total
dimension defect, denoted by ∆.

There is a difficulty in computing k(v) when a 128-bit integer generator
is used as a 32-bit (or 64-bit) integer generator. SFMT generates a sequence
x0,x1,x2, . . . of 128-bit integers. Then, they are converted to a sequence of 32-
bit integers x0[0],x0[1],x0[2],x0[3],x1[0],x1[1], . . ., where x[0] is the 32 LSBs of
x, x[1] is the 33rd–64th bits, x[2] is the 65rd–96th bits, and x[3] is the 32 MSBs.

Then, we need to modify the model automaton as follows. The state space
is S′ := S × {0, 1, 2, 3}, the state transition function f ′ : S′ → S′ is

f ′(s, i) :=
{

(s, i+ 1) ( if i < 3),
(f(s), 0) ( if i = 3)

and the output function is

o′ : S′ → F32
2 , ((w0, . . . ,wN−1), i) �→ w0[i].

We fix 1 ≤ v ≤ w, and let ok(s, i) be the k-tuple of the v MSBs of the
consecutive k-outputs from the state (s, i).

Proposition 2. Assume that f is bijective. Let k′ = k′(v) denote the
maximum k such that

ok(−, i) : Vp → Fkv
2 , s �→ ok(s, i) (3)

are surjective for all i = 0, 1, 2, 3. Take an initial state s satisfying sp �= 0.
Then, the 32-bit output sequence is at least k′(v)-dimensionally equidistributed
with v-bit accuracy with defect ratio 2−p.
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Moreover, if 4 < k′(v)+1, then for any initial state with s = sp �= 0 (hence
sr = 0), the dimension of equidistribution with defect ratio 2−p is exactly k′(v).

Proof. Take s ∈ S with sp �= 0. Then, the orbit of s by f has the form of
(Vp − {0}) × U ⊂ Vp × Vr, since p > r and 2p − 1 is a prime. The surjectivity
of the linear mapping ok′(−, i) implies that the image of

ok′(−, i) : Vp × U → Fkv
2

is m · Fkv
2 as a multi-set for some m. The defect comes from 0 ∈ Vp, whose

ratio in Vp is 2−p. Then the first statement follows, since Wk′(χ) is the union
of the images ok′(−, i)((Vp − {0}) × U) for i = 0, 1, 2, 3.

For the latter half, we define Li as the multiset of the image of
ok′+1(−, i) : Vp → F(k′+1)v

2 . Because of sr = 0, we have U = {0}, and the
union of (Li − {0}) (i = 0, 1, 2, 3) as a multi-set is Wk′+1(χ). If the sequence
is (k′ + 1)-dimensionally equidistributed, then the multiplicity of each element
in Wk′+1(χ) is at most 2p × 4/2(k′+1)v.

On the other hand, the multiplicity of an element in Li is equal to the
cardinality of the kernel of ok′+1(−, i). Let di be its dimension. Then by
the dimension theorem, we have di ≥ p − (k′ + 1)v, and the equality holds
if and only if ok′+1(−, i) is surjective. Thus, if there is a nonzero element
x ∈ ∩3

i=0Li, then its multiplicity in Wk′+1(χ) is no less than 4 × 2p−(k′+1)v,
and since one of ok′+1(−, i) is not surjective by the definition of k′, its
multiplicity actually exceeds 4× 2p−(k′+1)v, which implies that the sequence is
not (k′ + 1)-dimensionally equidistributed, and the proposition follows. Since
the codimension of Li is at most v, that of ∩3

i=0Li is at most 4v. The assumed
inequality on k′ implies the existence of nonzero element in the intersection.

The dimension of equidistribution k(v) depends on the choice of the initial
state s. The above proposition implies that k′(v) coincides with k(v) for the
worst choice of s under the condition sp �= 0. Thus, we adopt the following
definition (analogously to tl in [L’E96]).

Definition 3. Let k be the maximum such that (3) is satisfied. We call this
the dimension of equidistribution of v-bit accuracy, and denote it simply by
k(v). We have an upper bound k(v) ≤ �p/v�.

We define the dimension defect at v by

d(v) := �p/v� − k(v) and ∆ :=
w∑

v=1

d(v).

We may compute k(v) by standard linear algebra. We used a more efficient
algorithm based on a weighted norm, generalizing [CLT93]. This will be
written somewhere else, because of lack of space.
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4 Comparison of Speed

We compared two algorithms: MT19937 and SFMT19937, with implemen-
tations using and without using SIMD instructions.

We measured the speeds for four different CPUs: Pentium M 1.4GHz,
Pentium IV 3GHz, AMD Athlon 64 3800+, and PowerPC G4 1.33GHz. In
returning the random values, we used two different methods. One is sequential
generation, where one 32-bit random integer is returned for one call. The
other is block generation, where an array of random integers is generated for
one call (cf. [Knu97]). For detail, see §2.5 above.

We measured the consumed CPU time in second, for 108 generations of
32-bit integers. More precisely, in case of the block generation, we generate
105 of 32-bit random integers by one call, and this is iterated for 103 times.
For sequential generation, the same 108 32-bit integers are generated, one
per call. We used the inline declaration inline to avoid the function call,
and unsigned 32-bit, 64-bit integer types uint32 t, uint64 t defined in
INTERNATIONAL STANDARD ISO/IEC 9899: 1999(E) Programming
Language-C, Second Edition (which we shall refer to as C99 in the rest of
this article). Implementations without SIMD are written in C99, whereas
those with SIMD use some standard SIMD extension of C99 supported by
the compilers icl (Intel C compiler) and gcc.

Table 1 summarises the speed comparisons. The first four lines list the
CPU time (in seconds) needed to generate 108 32-bit integers, for a Pentium-M
CPU with the Intel C/C++ compiler. The first line lists the seconds for the
block-generation scheme. The second line shows the ratio of CPU time to that
of SFMT(SIMD). Thus, SFMT coded in SIMD is 2.10 times faster than MT
coded in SIMD, and 3.77 times faster than MT without SIMD. The third
line lists the seconds for the sequential generation scheme. The fourth line
lists the ratio, with the basis taken at SFMT(SIMD) block-generation (not
sequential). Thus, the block-generation of SFMT(SIMD) is 2.00 times faster
than the sequential-generation of SFMT(SIMD).

Roughly speaking, in the block generation, SFMT(SIMD) is twice as fast
as MT(SIMD), and four times faster than MT without using SIMD. Even
in the sequential generation case, SFMT(SIMD) is still considerably faster
than MT(SIMD).

Table 2 lists the CPU time for generating 108 32-bit integers, for four
PRNGs from the GNU Scientific Library and two recent generators. They
are re-coded with inline specification. Generators examined were: a multiple
recursive generator mrg [L’E93], linear congruential generators rand48 and
rand, a lagged fibonacci generator random256g2, a WELL generator well
(WELL19937c in [PLM06]), and a XORSHIFT generator xor3 [PL05] [Mar03].
The table shows that SFMT(SIMD) is faster than these PRNGs, except for the
outdated linear congruential generator rand, the lagged-fibonacci generator
random256g2 (which is known to have poor randomness, cf. [MN03]), and
xor3 with a Pentium-M.
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CPU return mrg rand48 rand random256g2 well xor3

Pentium M block 3.277 1.417 0.453 0.230 1.970 0.296
seq 3.255 1.417 0.527 0.610 2.266 1.018

Pentium IV block 2.295 1.285 0.416 0.121 0.919 0.328
seq 2.395 1.304 0.413 0.392 1.033 0.702

Athlon block 1.781 0.770 0.249 0.208 0.753 0.294
seq 1.798 0.591 0.250 0.277 0.874 0.496

PowerPC block 2.558 1.141 0.411 0.653 1.792 0.618
seq 2.508 1.132 0.378 1.072 1.762 1.153

Table 2. The CPU time (sec.) for 108 generations of 32-bit integers, by six other
PRNGs.

v MT SFMT v MT SFMT v MT SFMT v MT SFMT

d(1) 0 0 d(9) 346 1 d(17) 549 543 d(25) 174 173
d(2) 0 *2 d(10) 124 0 d(18) 484 478 d(26) 143 142
d(3) 405 1 d(11) 564 0 d(19) 426 425 d(27) 115 114
d(4) 0 *2 d(12) 415 117 d(20) 373 372 d(28) 89 88
d(5) 249 2 d(13) 287 285 d(21) 326 325 d(29) 64 63
d(6) 207 0 d(14) 178 176 d(22) 283 282 d(30) 41 40
d(7) 355 1 d(15) 83 *85 d(23) 243 242 d(31) 20 19
d(8) 0 *1 d(16) 0 *2 d(24) 207 206 d(32) 0 *1

Table 3. Dimension defects d(v) of MT19937 and SFMT19937 as a 32-bit integer
generator. The mark * means that MT has a smaller defect than SFMT at that
accuracy.

5 Dimension of Equidistribution

Table 3 lists the dimension defects d(v) of SFMT19937 (as a 32-bit integer
generator) and of MT19937, for v = 1, 2, . . . , 32. SFMT has smaller values of
the defect d(v) at 26 values of v. The converse holds for 6 values of v, but the
difference is small. The total dimension defect ∆ of SFMT19937 as a 32-bit
integer generator is 4188, which is smaller than the total dimension defect
6750 of MT19937.

We also computed the dimension defects of SFMT19937 as a 64-bit
(128-bit) integer generator, and the total dimension defect ∆ is 14089 (28676,
respectively). In some applications, the distribution of LSBs is important. To
check them, we inverted the order of the bits (i.e. the i-th bit is exchanged
with the (w − i)-th bit) in each integer, and computed the total dimension
defect. It is 10328 (21337, 34577, respectively) as a 32-bit (64-bit, 128-bit,
respectively) integer generator. Throughout the experiments, d′(v) is very
small for v ≤ 10. We consider that these values are satisfactorily small, since
they are comparable with MT for which no statistical deviation related to
the dimension defect has been reported, as far as we know.
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6 Recovery from 0-Excess States

For an LFSR with a sparse feedback function g, we observe the following
phenomenon: if the bits in the state space contain too many 0’s and few 1’s
(called a 0-excess state), then this tendency continues for many steps, since
only a small part is changed in the state array at one step, and the change
is not well-reflected to the next setp because of the sparseness.

We measure the recovery time from 0-excess states, by the method
introduced in [PLM06], as follows.

1. Choose an initial state with only one bit being 1.
2. Generate k pseudorandom numbers, and discard them.
3. Compute the ratio of 1’s among the next 32000 bits of outputs (i.e., in

the next 1000 pseudorandom 32-bit integers).
4. Let γk be the average of the ratio over all such initial states.

We draw graphs of these ratio γk (1 ≤ k ≤ 20000) in Figure 3 for the following
generators: (1) WELL19937c, (2) PMT19937 [SHP+06], (3) SFMT19937, and
(4) MT19937. Because of its dense feedback, WELL19937c shows the fastest
recovery among the compared generators. SFMT is better than MT, since its
recursion refers to two most recently computed words (W[N-1] and W[N-2])
that acquire new 1s, while MT refers only to the words generated long before
(W[M] and W[0]). PMT19937 shows faster recovery than SFMT19937, since
PMT19937 has two feedback loops. The speed of recovery from 0-excess states
is a trade-off with the speed of generation. Such 0-excess states will not
happen practically, since the probability that 19937 random bits have less
than 19937 × 0.4 of 1’s is about 5.7 × 10−177. The only plausible case would
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Fig. 3. γk (k = 0, . . . , 20000): Starting from extreme 0-excess states, discard the
first k outputs and then measure the ratio γk of 1’s in the next 1000 outputs. In the
order of the recovery speed: (1) WELL19937c, (2) PMT19937, (3) SFMT19937, and
(4) MT19937.
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be that a poor initialization scheme gives a 0-excess initial state (or gives two
initial states whose Hamming distance is too small). In a typical simulation,
the number of initializations is far smaller than the number of generations,
therefore we may spend more CPU time in the initialization than the generation.
Under the assumption that a good initialization scheme is provided, the slower
recovery of SFMT compared to WELL would perhaps not be a great issue.

7 Concluding Remarks

We proposed the SFMT pseudorandom number generator, which is a very
fast generator with satisfactorily high-dimensional equidistribution property.

It is difficult to measure the generation speed of a PRNG in a fair way,
since it depends heavily on the circumstances. The WELL [PLM06] generators
have the best possible dimensions of equidistribution (i.e. ∆ = 0) for various
periods (21024 − 1 to 219937 − 1). If we use the function call to the PRNG for
each generation, then a large part of the CPU time is consumed for handling
the function call, and in the experiments in [PLM06] or [PL05], WELL is
not much slower than MT. On the other hand, if we avoid the function call,
WELL is slower than MT for some CPUs, as seen in Table 1.

Since ∆ = 0, WELL has a better quality than MT or SFMT in a theoretical
sense. However, one may argue whether this difference is observable or not.
In the case of an F2-linear generator, the dimension of equidistribution k(v)
of v-bit accuracy means that there is no constant linear relation among the kv
bits, but there exists a linear relation among the (k + 1)v bits, where kv bits
((k + 1)v bits) are taken from all the consecutive k integers (k + 1 integers,
respectively) by extracting the v MSBs from each. However, the existence of a
linear relation does not necessarily mean the existence of some observable bias.
According to [MN02], it requires 1028 samples to detect an F2-linear relation
with 15 (or more) terms among 521 bits, by weight distribution test. If the
number of bits is increased, the necessary sample size is increased rapidly.
Thus, it seems that k(v) of SFMT19937 is sufficiently large, far beyond the
level of the observable bias. On the other hand, the speed of the generator
is observable. Thus, SFMT focuses more on the speed, for applications that
require fast generations. (Note: the referee pointed out that statistical tests
based on the rank of F2-matrix is sensitive to the linear relations [LS06], so
the above observation is not necessarily true.)

There is a trade-off between the speed and portability. We prepared (1)
a standard C code of SFMT, which uses functions specified in C99 only, (2)
an optimized C code for Intel Pentium SSE2, and (3) an optimized C code
for PowerPC AltiVec. The optimized codes require the icl (Intel C Compiler)
or gcc compiler with suitable options. We had put and will keep the newest
version of the codes in the homepage [SM].
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Summary. Let tb(s) denote the least t such that a (t, s)-sequence in base b exists.
We present a new lower bound on tb(s), namely

tb(s) >
1

b − 1
s − 1

b − 1
− 1

log b
− logb

(
1 + s (1 − 1/b + logb s) log b

)
,

which leads to the new asymptotic result

L∗
b := lim inf

s→∞
tb(s)

s
≥ 1

b − 1
.

The best previously known result has been L∗
b ≥ 1/b for arbitrary b ≥ 2 and

L∗
2 ≥ log2 3 − 1.

1 Introduction

(t,m, s)-nets and (t, s)-sequences [Nie87, Nie92] are among the best methods
for constructing low-discrepancy point sets in the s-dimensional unit cube. We
present a new lower bound on the t parameter of (t, s)-sequences in arbitrary
bases b. This new bound (Theorem 1) is an explicit formula depending on
b and s, stronger than all previously known results both for typical values
of s and b as well as in an asymptotic sense.

For every base b ≥ 2 and every dimension s ≥ 1 let tb(s) denote the least t
such that a (t, s)-sequence in base b exists. It is well known that tb grows linearly
for all bases b. The fact that tb(s) = O(s) is established in [XN95]. If b is a prime
power this follows from applying Niederreiter–Xing sequence construction III
to a tower of algebraic function fields over b related to the Garćıa–Stichtenoth
tower [GS95] over b2 . Using a direct product of such digital sequences over
appropriate finite fields [NX96a] yields tb(s) = O(s) for all bases b ≥ 2.

The first lower bound on t that grows linearly in s is given by Larcher
and Schmid in [LS95]: All digital (t, s)-sequences over b with t ≥ 1 satisfy

t >
p− 1
p3

(s+ 1) , (1)
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where p is the smallest prime factor of b. A stronger lower bound applicable
also to the non-digital case is established by Niederreiter and Xing in [NX96b].
There it is shown that

tb(s) ≥ 1
b
s− logb

(b− 1)s+ b+ 1
2

=
1
b
s− O(log s) (2)

based on a result for (t,m, s)-nets by Lawrence [Law95].
Therefore tb(s) grows linearly in s for all b ≥ 2 and one is interested

in upper and lower bounds on its slope. Since it is unknown whether
lims→∞ tb(s)/s exists, one examines the upper and lower limit of this quotient.
In the following we discuss only the lower limit, which is denoted by

L∗
b := lim inf

s→∞
tb(s)
s

for every integer b ≥ 2.
It follows from (2) that

L∗
b ≥ 1/b , (3)

which for b ≥ 3 has been the best result known for the last decade. Only for
b = 2 the following improvement has been known: In [Sch98] Schmid shows that

t > (log2 3 − 1) s− O(log s)

for all digital (t, s)-sequences over 2 based on a bound for digital (t,m, s)-nets
in [SW97]. In [MS99b] a formally equivalent bound for arbitrary (t,m, s)-nets
is given, which (when substituted in the proof in [Sch98]) yields

L∗
2 ≥ log2 3 − 1 ≈ 0.58496.

This is slightly better than L∗
2 ≥ 0.5 obtained from (3).

Before we discuss the new lower bound on L∗
b we recapitulate some results

on upper bounds, i.e., on asymptotic existence results for (t, s)-sequences.
For prime power bases good sequences can be constructed based on algebraic
function fields with many rational places using methods due to Niederreiter
and Xing. It is shown in [NX96a] that

L∗
q ≤ 1

/
lim sup

g→∞
Nq(g)
g

(4)

for all prime powers q, with Nq(g) denoting the maximal number of rational
places of an algebraic function field with genus g and full constant field q.
Using appropriate towers of function fields it can be shown (see, e.g. the
survey [NX98]) that

L∗
q ≤ c

log q
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for all prime powers q, with an effective absolute constant c > 0. Furthermore,

L∗
q ≤ 1√

q − 1

if q is a square, and

L∗
q ≤ q1/3 + 2

2
(
q2/3 − 1

)
if q is the cube of a prime. Bounds for q = pe with p prime and e ≥ 3 odd
can also be found in [NX98].

An upper bound for L∗
q not derived from (4) is

L∗
q ≤ q + 1

q − 1

from [XN95], which is especially useful for small nonsquares q.

2 The New Bound

An improved lower bound on L∗
b is implied by the following theorem:

Theorem 1. Let b ≥ 2 and s ≥ 2. A (t, s − 1)-sequence in base b can only
exist if

t >
1
b− 1

s− 1
b− 1

− 1
log b

− logb

(
1 + s (1 − 1/b+ logb s) log b

)
.

We prove this theorem in Section 3. Once it is established, an improved
lower bound on L∗

b follows easily.

Corollary 1. For all integers b ≥ 2,

tb(s) >
1
b− 1

s− O(log s),

where the constants in the O-term depend only on b.

Proof. For every (t, s)-sequence in base b it follows from Theorem 1 that

t >
s

b− 1
− 1

log b
− logb

(
1 + (s+ 1) (1 − 1/b+ logb (s+ 1)) log b

)
.

The first term is already the correct leading term, the second term is constant.
Using the inequality logb x < x/ log b, one shows that the logarithmic term
is indeed in O(log s). &'
Corollary 2. For all integers b ≥ 2,

L∗
b ≥ 1

b− 1
.

Proof. Follows trivially from Corollary 1. &'
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3 The Proof of the Theorem

The remainder of this article discusses the proof of Theorem 1. It is based
on the theory of ordered orthogonal arrays (OOAs) introduced independently
in [Law96] and [MS96].

3.1 The Plotkin Bound for Ordered Orthogonal Arrays

Definition 1. Let M ≥ 1, s ≥ 1, b ≥ 2, T ≥ 1, and 0 ≤ k ≤ sT denote
integers. Let Sb denote an arbitrary set of cardinality b.

Furthermore, let Ω=Ω(s,T ) := {1, . . . , s}×{1, . . . , T} and let Ξ
(s,T )
k

⊆ P(Ω) denote the set of those subsets ξ of Ω with

s∑
i=1

max
(i,j)∈ξ

j ≤ k ,

where an empty maximum is treated as 0.
Let N denote an array with M rows and sT columns indexed by the

elements of Ω and (for some ξ ∈ P(Ω)) let ξ(N ) denote the projection of N
on the coordinates in ξ.

Then N is called an ordered orthogonal array (OOA) with strength
k (denoted as OOA(M, s, Sb, T, k)) if for every ξ ∈ Ξ(s,T )

k each of the b|ξ|

possible vectors of S|ξ|
b appears the same number of times as a row in ξ(N ).

Remark 1. Note that OOAs are a generalization of orthogonal arrays. An
OA(M, s, Sb, k) is an OOA(M, s, Sb, 1, k) and vice versa.

There is a close relation between (t,m, s)-nets and the OOAs obtained
from the digit expansion of the coordinates of the points of these nets. In
particular it is shown in [Law96, MS96] that a (t,m, s)-net in base b exists
if and only if an OOA(bm, s, Sb,m− t,m− t) exists.

The basic ingredient for the proof of Theorem 1 is the following result by
Martin and Visentin:

Theorem 2 (Theorem 5 in [MV07]). An OOA(M, s, Sb, T, k) can only
exist if

M ≥ bTs

(
1 − s #T

k + 1

)
, (5)

where #T is defined as

#T := T −
T∑

i=1

1
bi
.

This result generalizes the dual Plotkin bound for OAs to OOAs and is
derived from the linear programming bound for OOAs [MS99a]. An alternative
proof is given by Bierbrauer in [Bie07].
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Remark 2. A formally equivalent result for the special case of linear OOAs
can also be obtained based on the Plotkin bound for generalized codes in
[RT97] and the duality of these codes to linear OOAs established in [NP01].
Even though this result has been available for a number of years, it has not
been applied to digital (t, s)-sequences so far.

The value #T plays an important role in the following discussion. Therefore
it is convenient to establish some of its basic properties. We define

#τ := τ − 1
b− 1

+
1

(b− 1)bτ
(6)

for all positive real numbers τ and note that this definition coincides with
the definition given in Theorem 2 for all positive integers T . Furthermore,
note that #τ is strictly increasing in τ for a fixed base b.

Since #T is always positive the right hand side of (5) becomes negative if s is
large compared to k. In this case (5) is trivially satisfied and Theorem 2 does not
give any information. Thus Theorem 2 can be expected to give good bounds only
for OOAs with large strength k and a small number of factors s. Since the OOAs
derived from (t, s)-sequences can have arbitrarily large strength k for fixed s,
it is no surprise that Theorem 2 leads to good bounds for (t, s)-sequences.

Lemma 1. Let b ≥ 2 and s ≥ 2 be integers. A (t, s − 1)-sequence in base b
can only exist if

t ≥ Ts− k + logb

(
1 − s #T

k + 1

)
(7)

for all integers T and k with T ≥ 1 and k > s#T − 1.

Proof. Assume that a (t, s− 1)-sequence in base b exists. From this sequence
we can construct (t, t + k, s)-nets in base b for all integers k ≥ 1 according
to [Nie87, Lemma 5.15]. As discussed above each of these nets is equivalent
to an OOA(bt+k, s, Sb, k, k). From this OOA an OOA(bt+k, s, Sb, T, k) can be
obtained for all integers T ≥ k/s by either discarding columns (if T < k) or
by appending columns with arbitrary content (if T > k).

For each of these OOAs Theorem 2 must hold, i.e., we have

bt+k ≥
(

1 − s #T

k + 1

)
bsT

for all integer T ≥ k/s and k ≥ 1. Solving for t yields (7), assuming that the
argument of the logarithm is positive. This is the case if and only if k > s#T −1.
Therefore (7) holds for all integers k, T with T ≥ 1 and s#T − 1 < k ≤ sT .

If k > sT , the right hand side of (7) is negative and yields only a trivial
bound on t. Therefore the condition k ≤ sT can be dropped. &'

In order to establish a lower bound on the t-parameter of (t, s)-sequences
the integers k and T must be chosen depending on b and s. It turns out that
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choosing these numbers properly is crucial, otherwise the resulting bound
does not yield an asymptotic rate of L∗

b ≥ 1/(b− 1).
Since k and T must be integers, we study the discretization error resulting

from replacing arbitrary real values by integers:

Lemma 2. Let b ≥ 2 and s ≥ 2 be integers. A (t, s − 1)-sequence in base b
can only exist if

t >
1
b− 1

s− s

(b− 1)bτ
− ε− logb (1 + s#τ+1/ε) (8)

for all positive real numbers τ and ε.

Proof. Lemma 1 states that

t ≥ Ts− k + logb

(
1 − s #T

k + 1

)
for all integers T and k with T ≥ 1 and k > s#T − 1. The integers T = (τ)
and k = (s#T − 1 + ε) satisfy these conditions.

Obviously s#T − 1 + ε ≤ k < s#T + ε. Therefore

t ≥ Ts− (s#T − 1 + ε) + logb

(
1 − s #T

(s#T − 1 + ε) + 1

)
> Ts− s#T − ε+ logb

(
1 − s#T

s#T − 1 + ε+ 1

)
= s (T − #T ) − ε+ logb

(
ε

s#T + ε

)
= s (T − #T ) − ε− logb (1 + s#T /ε) .

Using

T − #T =
1
b− 1

− 1
(b− 1) bT

from (6) and substituting T = (τ) yields

t >
1
b− 1

s− s

(b− 1)b�τ�
− ε− logb

(
1 + s#�τ�/ε

)
,

which, together with τ ≤ T < τ + 1 and the fact that #τ is increasing in τ ,
establishes (8). &'

Lemma 2 yields a function f of two variables ε and τ which is equal to the
right hand side of (8), bounded by s/(b− 1). We are looking for the maximum
of f since t > f(ε, τ) for all (ε, τ). According to classical calculus, a necessary
condition is ∂f

∂ε (ε, τ) = 0 and ∂f
∂τ (ε, τ) = 0. Solving analytically this system

of two equations in the unknowns ε and τ is impossible because of the second
equation (see Section 3.3). Therefore, one has to find good approximations
for such ε and τ . This approximation has to be made carefully, because for
many choices the resulting bound is weak or even trivial.
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3.2 Choosing ε

The optimal value for ε can be determined analytically. The derivative of the
right hand side of (8) with respect to ε is

∂

∂ε

(
s

1
b− 1

− s

(b− 1)bτ
− ε− logb (1 + s#τ+1/ε)

)
= −1 +

s#τ+1/ε
2

(1 + s#τ+1/ε) log b

= −1 +
s#τ+1

(ε2 + εs#τ+1) log b
.

Thus the ε-coordinates of the extremal points of (8) are given by the quadratic
equation

ε2 + s#τ+1 ε− s#τ+1

log b
= 0

with solutions

ε± = −s#τ+1

2
±
√(s#τ+1

2

)2
+
s#τ+1

log b
. (9)

Since ε− < 0 and ε−ε+ < 0, we get ε+ > 0, which together with

ε+ < −s#τ+1

2
+

√(s#τ+1

2

)2
+
s#τ+1

log b
+
(

1
log b

)2

=
1

log b
(10)

gives ε+ ∈ (0, 1/ log b). Moreover, the second-order Taylor expansion of√
1 + x at x = 0 is

√
1 + x = 1 + x/2 − x2/8 + O(x3), which yields

ε+ = −s#τ+1

2
+
s#τ+1

2

√
1 +

4
s#τ+1 log b

=
1

log b
− 1
s#τ+1 log2 b

+ O
(

1
s2τ2 log3 b

)
.

Therefore a good choice for ε is ε1 := 1/ log b (moreover independent of τ
and s). Including also the quadratic term yields

ε2 :=
1

log b
− 1
s#T log2 b

.

For b = 2 the choice εone := 1 ∈ (0, 1/ log 2) gives a suboptimal, but
particularly simple result.

Since the resulting value for k is given by k = (s#T − 1 + ε), we have

k ∈ (s#T − 1, s#T + logb).

In other words, the optimal k is always a small, bounded amount larger than
s#T − 1 and asymptotically equal to s#T when s turns towards infinity.
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3.3 Choosing τ

The optimal τ = τb(s) cannot be determined analytically, therefore an
appropriate approximation has to be found. If we use ε = ε1 or ε = εone in
(8), then ε is independent of s and τ . The first term 1

b−1s of (8) is already
the sought-after leading term, but s appears also in the second term

Ab(s) :=
s

(b− 1) bτb(s)

and in the fourth term, which can be bounded by

Bb(s) := logb

(
1 + s (τb(s) + 1) /ε

)
> logb

(
1 + s#τb(s)+1/ε

)
.

An obvious choice for τ is

τb(s) = logb s, (11)

because then Ab(s) = 1/(b − 1) ≤ 1 is bounded. We will use this choice for
establishing Theorem 1.

Note that τb(s) must be unbounded. In particular, for τb(s) = 1 we obtain

t ≥ s

b− 1
− s

(b− 1) b
− ε− logb (1 + 2s/ε) =

1
b
s− ε− logb (1 + 2s/ε),

and therefore only L∗
b ≥ 1/b, which is a rediscovery of Niederreiter and

Xing’s result (2). In general, if τb(s) is bounded, Ab(s) grows linearly in s and
therefore an asymptotic result of the form L∗

b ≥ 1/(b− 1) cannot be obtained.
A quick calculation shows that the exact growth rate of τb(s) is not

important for deriving Corollaries 1 and 2. It is sufficient to have

c+ logb s ≤ τb(s) ≤ Csn

for some c, C ∈ , n ∈ , and s sufficiently large. However, in order to
establish a strong bound, τ must be chosen carefully in addition to one of
the ε’s discussed in the previous section. Numerical experiments show that

τb(s) = −1
b

+ logb s+ logb (1 + logb s) (12)

is a perfect fit for the optimal τ , resulting in a bound that is slightly stronger
than the one obtained using (11).

3.4 The Proof of Theorem 1 and Further Remarks

Proof of Theorem 1. We use Lemma 2 with

ε = ε1 =
1

log b
and τ = logb s.
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Note that τ > 0 for all s ≥ 2. By substituting ε in (8), bounding #τ+1 in the
log-term by #τ+1 ≤ τ + 1 − 1/b, and substituting τ we get

t >
1
b− 1

s− s

(b− 1) bτ
− 1

log b
− logb

(
1 + s (τ + 1 − 1/b) log b

)
=

1
b− 1

s− 1
b− 1

− 1
log b

− logb

(
1 + s (1 − 1/b+ logb s) log b

)
,

which completes the proof. &'
Remark 3. Using ε = εone = 1, τb(s) = logb s, and bounding #τ+1 < τ + 1 =
1 + logb s yields the particularly simple (and asymptotically equivalent) bound

t >
1
b− 1

s− b

b− 1
− logb (1 + s+ s logb s)

for all (t, s− 1)-sequences in base b.

Remark 4. Using

ε = ε1 =
1

log b
, τ = −1

b
+ logb s+ logb (1 + logb s)

according to (12), and the exact value for #τ+1 in the log-term yields

t > s
1
b− 1

− 1
log b

−
b
√
b

(b− 1) (1 + logb s)

− logb

(
s

(
log
(
s (1 + logb s)

)
+

(
b2 − 3b+ 1

)
log b

b (b− 1)

)

+ 1 +
b
√
b log b

b (b− 1) (1 + logb s)

)
for all (t, s− 1)-sequences in base b.
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Summary. We consider boundary-value problem for elliptic equations with
constant coefficients related through the continuity conditions on the boundary
between the domains. To take into account conditions involving the solution’s normal
derivative, we apply a new mean-value relation written down at a boundary point.
This integral relation is exact and provides a possibility to get rid of the bias caused
by usually used finite-difference approximation. Randomization of this mean-value
relation makes it possible to continue simulating walk-on-spheres trajectory after
it hits the boundary. We prove the convergence of the algorithm and determine its
rate. In conclusion, we present the results of some model computations.

1 Statement of the Problem

We consider the boundary-value problem for a function, u(x), that satisfies
different elliptic equations with constant coefficients inside a bounded
simple-connected domain, Gi ⊂ R3, and in its exterior, Ge = R3 \Gi.

Denote, for convenience, by ui(x) and ue(x) the restrictions of function u(x)
to Gi and Ge, respectively. Let the first function satisfy the Poisson equation

εi∆ui = −ρ, (1)

and the second one satisfy the linearized Poisson-Boltzmann equation

εe∆ue − εeκ2ue = 0. (2)

The continuity conditions on the piecewise smooth boundary, Γ , relate
limiting values of solutions, and their fluxes as well:

ui(y) = ue(y) , εi
∂ui

∂n
(y) = εe

∂ue

∂n
(y) , y ∈ Γ. (3)
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Here, the normal vector, n, is pointed out into Ge; and ue(x) → 0 as |x|
goes to infinity. We assume the parameters of the problem to guarantee that
the unique solution exists [Mir70]. Problems of this kind arise in molecular
biophysics applications [DM90]. In this case, Gi can be thought of as a
molecule in aqueous solution. In the framework of the implicit solvent model,
only the geometric structure of this molecule is described explicitly, whereas
the surrounding water with ions dissolved is considered a continuous medium.

2 Monte Carlo Methods

To solve numerically the problem (1), (2), (3), we propose to use a Monte Carlo
method. There are several reasons for such a choice. Finite-difference and other
deterministic computational methods that are commonly used for solving
elliptic boundary-value problems encounter with apparent complications when
applied to calculating electrostatic properties of molecules in solvent. Most
of these difficulties are caused by the complexity of molecular surface. On
the other hand, the most efficient and commonly used Monte Carlo methods
such as the walk-on-spheres (WOS) algorithm [M5̈6, EM82, EKMS80] and
the random walk on the boundary algorithm [SS94] can analytically take
the geometry into account. The latter can be applied to solving not only
Dirichlet, Neumann and third boundary-value problems, but also for the
problems with continuity boundary conditions in the case when κ = 0
[KMS04b, KMS04a]. This method works well for small molecules, but becomes
computationally expensive for larger structures, which means that it needs
substantial optimization and further algorithmic development. It is well known
that the WOS algorithm is designed to work with the Dirichlet boundary
conditions. With this method, the common way of treating flux conditions is to
simulate reflection from the boundary in accordance with the finite-difference
approximation to the normal derivative [HSS66, Kro84, MM97, MS04]. Such
an approach has a drawback. It introduces a bias into the estimate and
substantially elongates simulation of Markov chain trajectories.

Recently [Sim06], we described a new approach to constructing Monte Carlo
algorithms for solving elliptic boundary-value problems with flux conditions.
This approach is based on the mean-value relation written for the value of the so-
lution at a point, which lies exactly on the boundary. It provides a possibility to
get rid of the bias when using Green’s function based random walk methods and
treating algorithmically boundary conditions that involve normal derivatives.

Consider the problem of computing the solution to (1), (2), (3) at a
fixed point, x0. Suppose, for definiteness that x0 ∈ Gi. To estimate u(x0),
we represent it as a sum of the regular part and the volume potential:

u(x0) = u0(x0) + g(x0). Here, g(x0) =
∫

Gi

1
4πεi

1
|x0 − y|ρ(y)dy. In molecular

electrostatic problems, charges are considered to be concentrated at a finite
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number of fixed points. Hence, g(x0) =
M∑

m=1

1
4πεi

1
|x0 − xc,m|ρm. Usually, in

these problems, x0 coincides with one of xc,m.
The regular part of the solution satisfies the Laplace equation in Gi.

Therefore, we have a possibility to use the WOS algorithm to find it. Let
x0 be the starting point and d(xi) be the distance from the given point,
xi, to the boundary, Γ . Generally, WOS Markov chain is defined by the
recursive relation: xi+1 = xi + d(xi)ωi, where {ω0, ω1, . . .} is a sequence of
independent isotropic unit vectors. With probability one, this chain converges
to the boundary [EKMS80]. Let xk be the first point of the Markov chain
that hit Γε, the ε-strip near the boundary. Denote by x∗k ∈ Γ the point
nearest to xk. Clearly, the sequence {u0(xi), i = 0, 1, . . .} forms a martingale.
Therefore, u0(x0) = Eu0(xk) = E(u(xk) − g(xk)) = E(u(x∗k) − g(x∗k) + φ),
where φ = O(ε), for elliptic boundary points, x∗k.

Mean number of steps in the WOS Markov chain before it for the first
time hits ε-strip near the boundary is O(log ε) [EKMS80]. In the molecular
electrostatics problems, however, it is natural to use the more efficient way of
simulating exit points of Brownian motion on the boundary, Γ . The algorithm
is based on the walk-in-subdomains approach [Sim83]. Such construction
utilizes the commonly used representation of a molecular structure in the
form of a union of intersecting spheres. This version of the WOS algorithm
converges geometrically, and there is no bias in the estimate, since the last
point of Markov chain lies exactly on Γ .

Note, that to compute the estimate for u0(x0), we use the unknown
boundary values of the solution. With the Monte Carlo calculations, we can use
estimates instead of these values. In the next section we derive the mean-value
relation, which is then used in Section 4 to construct such an estimate.

3 Integral Representation at a Boundary Point

To elucidate the approach we use, we consider first the exterior Neumann
problem for the Poisson-Boltzmann equation (2) in Ge:

∂ue

∂n
(y) = f(y) , y ∈ Γ. (4)

Let x ∈ Γ be an elliptic point on the boundary. To construct an integral
representation for the solution value at this point, consider the ball, B(x, a),
of radius a, and x being its center.

Let Φκ,a(x, y) = − 1
4π

sinh(κ(a− |x− y|))
|x− y| sinh(κa)

be the Green’s function of

the Dirichlet problem for the Poisson-Boltzmann equation (2) considered
in the ball, B(x, a), and taken at the central point of this ball. Denote by
Be(x, a) = B(x, a)

⋂
Ge the external part of the ball, and let Se(x, a) be
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the part of the spherical surface that lies in Ge. Next, we exclude from this
ball a small vicinity of the point, x. From here it follows that, for arbitrary
ε < a, both functions, ue and Φκ,a, satisfy the Poisson-Boltzmann equation in
Be(x, a)\B(x, ε). Therefore, it is possible to use the Green’s formula for this pair
of functions in this domain. Taking the limit of this formula as ε→ 0, we have

ue(x) =
∫

Se

2
∂Φκ,a

∂n
ue ds

−
∫

Γ
⋂

B(x,a)\{x}
2
∂Φκ,a

∂n
ue ds

+
∫

Γ
⋂

B(x,a)\{x}
2Φκ,a

∂ue

∂n
ds. (5)

Here, in the second and third integrals, we took into account that, on Γ , the nor-
mal vector external with respect to Be(x, a)\B(x, ε) has the direction opposite
to the normal vector we use in the boundary conditions (4). The normal deriva-

tive of the Green’s function can be written down explicitly. We have
∂Φκ,a

∂n
(y) =

Qκ,a(r)
∂Φ0,a

∂n
(y). Here, Qκ,a(r) =

sinh(κ(a− r)) + κr cosh(κ(a− r)
sinh(κa)

< 1,

r = |x − y|, and 2
∂Φ0,a

∂n
(y) =

1
2π

cosφyx

|x− y|2 , where φyx is the angle between

n(y) and y − x. Φ0,a(x, y) = − 1
4π

(
1

|x− y| − 1
a

)
is the Green’s function for

the Laplace equation.
Application of the Green’s formula to the pair of functions, ui and Φκ,a, in

Bi(x, a)\B(x, ε) provides the analogous result. To have a possibility to do this,
we have to suppose that there are no charges in this part of the interior domain.
From here it follows that the total potential, ui, satisfies the Laplace equation.
Thus using the Green’s formula and taking the limit as ε→ 0, we obtain

ui(x) =
∫

Si

2
∂Φκ,a

∂n
ui ds

+
∫

Γ
⋂

B(x,a)\{x}
2
∂Φκ,a

∂n
ui ds

+
∫

Bi(x,a)

[−2κ2Φκ,a]ui dy

−
∫

Γ
⋂

B(x,a)\{x}
2Φκ,a

∂ui

∂n
ds. (6)

Note the additional volume integral in this representation.
To make use of the continuity boundary conditions (3), we multiply (5)

by εe and (6) by εi, respectively, and sum up the results. This gives us
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u(x) =
εe

εe + εi

∫
Se(x,a)

1
2πa2

κa

sinh(κa)
ue ds

+
εi

εe + εi

∫
Si(x,a)

1
2πa2

κa

sinh(κa)
ui ds

− (εe − εi)
εe + εi

∫
Γ
⋂

B(x,a)\{x}

1
2π

cosφyx

|x− y|2 Qκ,au ds

+
εi

εe + εi

∫
Bi(x,a)

[−2κ2Φκ,a]ui dy. (7)

In the limiting case, κ = 0, this relation simplifies:

u(x) =
εe

εe + εi

∫
Se(x,a)

1
2πa2

ue ds

+
εi

εe + εi

∫
Si(x,a)

1
2πa2

ui ds

− εe − εi
εe + εi

∫
Γ
⋂

B(x,a)\{x}

1
2π

cosφyx

|x− y|2 u dy. (8)

Note that for a plane boundary, cosφyx = 0, and the integral over Γ vanishes.

4 Estimate for the Boundary Value

To construct an estimate for the solution of the boundary-value problem, we
need an estimate for the unknown boundary value. To do this, we use the
mean-value relation constructed in the previous section. It is not so simple as
it may seem at first sight, since we have to iterate integral operators standing
in the right-hand sides of these representations. The kernels of these operators
can be alternating, and the convergence of the Neumann series after replacing
the kernel by its modulus cannot be ensured. As a consequence, the direct
randomization of integral relations (5), (7), (8) cannot be used to constructing
a Monte Carlo estimate [EM82, ENS89]. However, as we see, the only part of
the integral operator, which can be negative, is the integral over the boundary.
Thus if Γ consists of planes, then the direct randomization is really possible.

In the general case, we can use a simple probabilistic approximation. Let
x = x∗k be the point on the boundary nearest to the last point of the already
constructed random walk.

Consider first the exterior Neumann problem. If Γ is concave everywhere
in B(x, a) then the kernel of the integral operator in (5) is positive, and the
next point of the Markov chain, xk+1, can be sampled isotropically in solid
angle with x being its vertex. However, it would be more natural to suppose
that the boundary was convex. In this case, we draw the tangent plane to
Γ at this point, and sample xk+1 isotropically on the external hemisphere,
S+(x∗k, a). Then, for sufficiently smooth function, u, we have:
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Lemma 1.
u(x∗k) = E {u(xk+1) | x∗k} + φΓ ,

where φΓ = O
( a

2R

)3
as a/2R → 0. Here, R is the minimal radius of

curvature at the point, x∗k.

This statement is easily verified by expansion of u into series and direct
integration.

The same approach works in the case of continuity boundary conditions
(3). For κ = 0, with probability pe =

εe
εi + εe

we sample the next point of

the Markov chain, xk+1, isotropically on S+(x∗k, a). With the complementary
probability, pi, the next point is chosen on the other hemisphere, S−(x∗k, a).

If κ > 0, with probability pe we sample the next point on S+(x∗k, a) and
treat the coefficient q(κ, a) =

κa

sinh(κa)
as the survival probability. With

probability pi we sample the direction of the vector, xk+1 − x, isotropically
pointing to S−(x∗k, a). Next, with probability q(κ, a) (Qκ,a, if this vector
intersects Γ ), the next point is taken on the surface of the sphere, and with
the complementary probability it is sampled inside the ball, B−(x∗k, a). The
simulation density of r = xk+1 −x is taken to be consistent with sinh(κ(a−r)).

It is easy to prove that Lemma 1 is also valid for the proposed randomized
approach to treating continuity boundary conditions.

It is essential to note that randomization of the finite-difference appro-
ximation for the normal derivative with step, h, provides an O(h2) bias, both
for the Neumann and continuity boundary conditions.

5 Construction of the Algorithm and its Convergence

To complete the construction, we need a Monte Carlo estimate for the solution
value at an arbitrary point in the exterior domain, Ge. It is natural to use the
estimate based on simulation of the walk-on-spheres Markov chain. Every step
of the algorithm is the direct randomization of the mean-value formula for

the Poisson-Boltzmann equation: u(x) =
∫

S(x,d)

q(κ, d)
4πd2

u ds, where S(x, d)

is the surface of a ball totally contained in Ge, and d is usually taken to be
the maximum possible, i.e. equal to the distance from x to Γ . For κ = 0,
we use the modification of the walk-on-spheres algorithm with the direct
simulation of jump to the absorbing state of the Markov chain at infinity
[ENS89]. The conditional mean number of steps for the chain to hit the ε-strip
near the boundary is O(log ε). For positive κ, we consider q(κ, d) the survival
probability. In this case the walk-on-spheres either comes to Γ or terminates
at some finite absorbing state in Ge.

To prove the convergence of the algorithm, we reformulate the problem
in terms of integral equations with generalized kernels [EM82, EKMS80].
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Inside the domains, Gi and Ge, we consider the mean-value formulas as
such equations. In Γε we use the approximation u(x) = u(x∗) + φ(x, x∗)
and substitute the integral representation for u(x∗) at a boundary point, x∗.
Hence, the described random-walk construction corresponds to so-called direct
simulation of (approximated) integral equation [EM82]. This means that the
resulting estimate for the solution’s value at a point, x = x0 ∈ R3, is

ξ[u](x) =
N∑

i=0

ξ[F ](xi). (9)

Here, N is the random length of Markov chain, and ξ[F ] are estimates for the
right-hand side of the integral equation. For the external Neumann problem,
this function is

F (x) = 0 when x ∈ Ge \ Γ ε ;

= −
∫

Γ
⋂

B(x∗,a)\{x∗}

1
2πr

(
1 − r

a

)
Q1

κ,a(r) f(y) ds(y)

+ φΓ + φ(x, x∗) , when x ∈ Γ ε, (10)

where Q1
κ,a(r) =

sinh(κ(a− r))
a− r

a

sinh(κa)
, r = |y − x∗|.

For Markov chains based on the direct simulation, finiteness of the mean
number of steps, EN < ∞, is equivalent to convergence of the Neumann
series for the corresponding integral operator, which kernel coincides with
the transition density of this Markov chain. Besides that, the kernel of the
integral operator that defines the second moment of the estimate is also equal
to this density [EM82]. It means that for exactly known free term, F , the
estimate (9) is unbiased and has finite variance. The same is true if estimates,
ξ[F ](xi), are unbiased and have uniformly in xi bounded second moments.
It is clear that we can easily choose such density that estimate for the integral
in (10) will have the requested properties.

To prove that the mean number of steps is finite, we consider the auxiliary
boundary-value problem:

∆p0(x) − κ2p0(x) = 0, x ∈ Ge,
∂p0
∂n

|Γ = −1. (11)

For this problem, the integral in (10) equals (cosh(κa) − 1)/(κ sinh(κa)) when

Γ is a plane or a sphere. This is equal to
a

2

(
1 − (κa)2

24
+O(κa)4

)
, as κa→ 0.

Setting ε = O(a/2R)3 we have

Lemma 2. The mean number of boundary hits in the walk-on-spheres solving

the exterior Neumann problem is EN∗ =
2p0
a

(
1 +O(a2)

)
.
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In the full analogy we obtain the following.

Lemma 3. The mean number of boundary hits of the walk-on-spheres

algorithm solving continuity boundary-value problem is EN∗ =
2p1
a

(1+O(a2)).

Here p1 is a bounded solution to the problem (1), (2) with no charges in Gi

and with boundary condition εi
∂p1,i

∂n
(y) = εe

∂p1,e

∂n
(y) + 1.

Denote by {x∗k,j ∈ Γ, j = 1, . . . , N∗
i } the sequence of exit points from Gi

for the walk-on-spheres Markov chain used to calculate the solution of the
continuity boundary-value problem. Let {xk+1,j ∈ Gi, j = 1, . . . , N∗

i − 1} be
the sequence of return points. Clearly, EN∗

i = piEN∗. Then we have

Theorem 1. The quantity

ξ[u](x0) = g(x0) − g(x∗k,1) +
N∗

i −1∑
j=1

[
g(xk+1,j) − g(x∗k,j+1)

]
(12)

is the estimate for solution of the boundary-value problem (1), (2), (3). For
ε = (a/2R)3, the bias of this estimate is O(a/2R)2 as a → 0. Variance of
this estimate is finite, and computational cost is O(log(δ) δ−5/2), for a given
accuracy, δ.

The variance is finite because the algorithm is based on the direct
simulation of the transformed integral equation [EM82]. Logarithmic factor in
the estimate comes from the mean number of steps in the WOS Markov chain
until it hits for the first time the ε-strip near the boundary [EKMS80, ENS89].

It is essential to note that with the finite-difference approximation of the
normal derivative using step h, the mean number of boundary hits is O(h−1.
Therefore, bias of the resulting estimate is O(h), and computational cost
O(log(δ) δ−3) [Kro84, MM97]. Thus even the simplest approximation to the
(exact!) integral relation we constructed substantially improves the efficiency
of the WOS algorithm.

6 Results of Computations and Discussion

To show the efficiency and dependence of the proposed algorithm on
parameters, we consider simple model problem with known analytical solution.
For the sphere, Gi = {x : r ≡ |x| < R}, with one point charge, Q, at

its center, the solution is ui(x) =
Q

4π

[
1
εi

(
1
r

− 1
R

)
+

1
εeR(1 + κR)

]
, and

ue(x) =
Q

4πεe
exp(−κ(r −R)
r(1 + κR)

. To elucidate the behavior of the algorithm

in the exterior, we also considered the model Neumann problem (11). Its
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analytical solution is p0 = exp(−κ(r − R))
R2

r(1 + κR)
. The statistical error

of the computed result is given as σ, which is calculated as the square root
of the estimate’s variance divided by (Nsamples − 1)−1/2.

The results in Table 1 clearly show the conformity with the theoretically
predicted behavior. In particular, we see that the mean number of random
walks returning to the boundary linearly depends on (a/2R)−1.

The results for the regular part of solution to the continuity boundary-value
problem given in Table 2 also show the theoretically predicted behavior of
number of boundary hits. Note, however, that for this problem, the bias is
substantially smaller then expected. This can be explained by the particularly
smooth behavior of the solution.

The results given in Table 3 show that the behavior of both numbers can
be approximated with good accuracy by const ∗ p0(r), as it is predicted by
Lemma 2.

Mean number of points in the WOS trajectory, as is clearly seen from
Table 4, even for non-zero κ, to the high accuracy can be approximated by
logarithmic law. The bias, as we know, should linearly depend on ε. However,

Table 1. Solution of Neumann problem (κ = 0.1, ε = 10−6) at |x| = R. Dependence
of bias on radius a of auxiliary sphere

a bias (sigma) theoretical mean number
bias of boundary hits

0.05 0.000957 (0.000897) 0.000545 36.40
0.1 0.002098 (0.000886) 0.002273 18.22
0.2 0.009586 (0.000867) 0.009187 9.18

Table 2. Regular solution of continuity problem at the center of sphere (κ = 0.1,
ε = 10−6). Dependence of bias (multiplied by 4π) on radius a of auxiliary sphere

a bias (sigma) theoretical mean number
bias of boundary hits

0.05 0.000011 (0.000015) 0.000598 38.24
0.1 0.000030 (0.000018) 0.002389 19.16
0.2 0.000106 (0.000024) 0.009646 9.64

Table 3. Solution of Neumann problem (κ = 0.1, a = 0.1, ε = 10−6) at |x| = r.
Dependence of number of points in WOS on r

r 1.0 1.1 1.2 1.5 2.0 3.0 4.0 6.0

N points 697.6 666.3 608.6 476.9 345.1 210.7 144.7 80.8
N boundary hits 18.22 16.39 14.89 11.55 8.27 4.97 3.37 1.84
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Table 4. Regular solution of continuity problem (κ = 0.1, ε = 10−6) at |x| = R.
Dependence of number of points in WOS and bias (σ = 0.00050) on the width of
strip near the boundary

ε 10−6 10−5 10−4 10−3 10−2

N points 356.8 289.5 222.6 155.2 93.1
bias 0.00035 0.00098 0.00285 0.00523 0.05209

we see that for small values of width of the boundary strip, its behavior is
screened by the statistical error.

The results of the model computations we presented confirm theoretically
predicted behavior of the algorithm described. Currently we are in the process
of adjusting this Monte Carlo method to computing electrostatic properties
of molecules in solvent. We already found out that complicated geometry
of these molecules requires special treatment and further development of
the algorithm. The work on these issues and on extending the Monte Carlo
approach to solving non-linear Poisson-Boltzmann equation is still in progress.
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Summary. Rank-1 lattice rules based on a weighted star discrepancy with weights
of a product form have been previously constructed under the assumption that the
number of points is prime. Here, we extend these results to the non-prime case. We
show that if the weights are summable, there exist lattice rules whose weighted star
discrepancy is O(n−1+δ), for any δ > 0, with the implied constant independent of
the dimension and the number of lattice points, but dependent on δ and the weights.
Then we show that the generating vector of such a rule can be constructed using
a component-by-component (CBC) technique. The cost of the CBC construction
is analysed in the final part of the paper.

Key words: Rank-1 lattice rules, weighted star discrepancy, component-by-
component construction.

1 Introduction

We consider rank-1 lattice rules for the approximation of integrals over the
d-dimensional unit cube given by

Id(f) =
∫

[0,1]d
f(x) dx.

These rank-1 lattice rules are quadrature rules of the form

Qn,d(f) =
1
n

n−1∑
k=0

f

({
kz

n

})
,
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where z ∈ Zd is the generating vector having all the components conveniently
assumed to be relatively prime with n, while the braces around a vector
indicate that we take the fractional part of each component of the vector.

In this paper we are looking to extend the recent results in [Joe06] by
constructing rank-1 lattice rules with a composite number of points. Hence,
the same assumptions as in [Joe06] will be used here with the main difference
that n is assumed to be just a positive integer. The vast majority of earlier
research papers have assumed that n was a prime number; an assumption
which simplifies the analysis of the problem.

However there are some known results in the non-prime case. For instance,
it has been proven in [Dis90], [Nie78], or [Nie92, Chapter 5] that good lattice
rules with a non-prime number of points do exist. Several measures of goodness
were used in those works, but under the assumptions that variables are equally
important. Here, we assume that variables are arranged in the decreasing
order of their importance and we employ a weighted star discrepancy as a
criterion of goodness. An unweighted star discrepancy (corresponding to an
L∞ maximum error) has been previously used in [Joe04] and in more general
works such as [Nie92] or [SJ94], while the weighted star discrepancy has been
used in [HN03], [Joe06], and [SJ07].

A constructive approach in the non-prime case has been proposed in
[KJ02], where the integrands were assumed to belong to certain reproducing
kernel Hilbert spaces such as weighted Korobov spaces of periodic functions or
weighted Sobolev spaces with square-integrable mixed first derivatives. Here we
require the integrands to have the weaker requirement of integrable mixed first
derivatives. Let us remark that in [Kuo03] it was proven that in the reproducing
kernel Hilbert spaces of [KJ02], the component-by-component construction
(used also here) achieves the optimal rate of convergence. In [Dic04], the results
in [Kuo03] were further improved and then extended to the non-prime case.

Let us also mention that lattice rules with a composite number of points
have become more interesting since the introduction of extensible lattice
rules in [HH97]. Later, in [HN03], it was shown that extensible lattice rules
in number of points with a low weighted star discrepancy do exist, but the
proof was non-constructive. More recently, in [DPW07], a possible way of
constructing extensible lattice rules was proposed. Therein, it was assumed
that n is of the form pm with p ≥ 2 an arbitrary prime. For such a case, it
has been shown that lattice rules extensible in number of points based on
the weighted star discrepancy can be constructed, but the results were not
generalised to arbitrary integers as we propose here.

2 Weighted Star Discrepancy

As mentioned in the previous section, throughout this paper we make similar
assumptions as in [Joe06] and we start by recalling some of those results and
assumptions.
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In order to introduce the general weighted star discrepancy, let us consider
first the point set Pn(z) := {{kz/n}, 0 ≤ k ≤ n − 1}. Then the local
discrepancy of the point set Pn(z) at x ∈ [0, 1]d is defined by

discr(x, Pn) :=
A([0,x), Pn)

n
−

d∏
j=1

xj .

Here A([0,x), Pn) represents the counting function, namely the number of
points in Pn(z) which lie in [0,x) with x = (x1, x2, . . . , xd).

Let now u be an arbitrary non-empty subset of D := {1, 2, . . . , d−1, d} and
denote its cardinality by |u|. For the vector x ∈ [0, 1]d, let xu denote the vector
from [0, 1]|u| containing the components of x whose indices belong to u. By
(xu,1) we mean the vector from [0, 1]d whose j-th component is xj if j ∈ u and 1
if j �∈ u. From Zaremba’s identity (see for instance [SW98] or [Zar68]), we obtain

Qn,d(f) − Id(f) =
∑
u⊆D

(−1)|u|
∫

[0,1]|u|
discr((xu,1), Pn)

∂|u|f((xu,1))
∂xu

dxu.

(1)
Now let us introduce a sequence of positive weights {γj}∞j=1, which describe
the decreasing importance of the successive coordinates xj and consider γu

as the weight associated with the set u. In this paper, we assume that the
weights {γu} are “product”, that is

γu =
∏
j∈u

γj ,

for any subset u ⊆ D. Such assumptions on the weights have been made in
[HN03], [Joe06], [SW98] and in other research papers. Using (1) we see that
we can write

Qn,d(f) − Id(f)

=
∑
u⊆D

(−1)|u|γu

∫
[0,1]|u|

discr((xu,1), Pn)γ−1
u

∂|u|f((xu,1))
∂xu

dxu.

Applying Hölder’s inequality for integrals and sums, we obtain

|Qn,d(f) − Id(f)| ≤
⎛⎝∑

u⊆D
sup

xu∈[0,1]|u|
γu |discr((xu,1), Pn)|

⎞⎠
×
(

max
u⊆D

γ−1
u

∫
[0,1]|u|

∣∣∣∣ ∂|u|∂xu
f((xu,1))

∣∣∣∣ dxu

)
.

Thus we can define a weighted star discrepancy D∗
n,γ(z) by

D∗
n,γ(z) :=

∑
u⊆D

γu sup
xu∈[0,1]|u|

|discr((xu,1), Pn)| . (2)
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From [Nie92, Theorem 3.10 and Theorem 5.6], we obtain the following
inequality:

sup
xu∈[0,1]|u|

|discr((xu,1), Pn)| ≤ 1 − (1 − 1/n)|u| +
Rn(z, u)

2
,

where
Rn(z, u) =

∑
h·zu≡0 ( mod n)

h∈E∗
n,|u|

∏
j∈u

1
max(1, |hj |) .

Here zu denotes the vector consisting of the components of z whose indices
belong to u, while

E∗
n,m = {h ∈ Zm, h �= 0 : −n/2 < hj ≤ n/2, 1 ≤ j ≤ m}.

This result, together with (2) shows that the general weighted star discrepancy
satisfies the inequality

D∗
n,γ(z) ≤

∑
u⊆D

γu

(
1 − (1 − 1/n)|u| +

Rn(z, u)
2

)
. (3)

For calculation purposes, the theory of lattice rules, (for example, see
[Nie92] or [SJ94]) shows that we may write Rn(z, u) as

Rn(z, u) =
1
n

n−1∑
k=0

∏
j∈u

⎛⎝1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|

⎞⎠− 1,

where the ′ in the sum indicates we omit the h = 0 term. It is easy to see that
Rn(z, u) represents the quadrature error produced by applying the lattice rule
to the integrand ∏

j∈u

⎛⎝1 +
∑′

−n/2<h≤n/2

e2πihxj

|h|

⎞⎠.
It is also easy to check that if |u| = 1, then the corresponding error
Rn(z, u) = 0 for each subset of D with only one element.

3 Bounds on the Weighted Star Discrepancy

To obtain bounds on D∗
n,γ(z), we see from (3) that we need to bound the

quantity ∑
u⊆D

γu

(
1 − (1 − 1/n)|u|

)



Rank-1 Lattice Rules with a Nonprime Number of Points 649

and the quantity
e2n,d(z) :=

∑
u⊆D

γuRn(z, u). (4)

Under the assumption that the weights are summable, that is
∑∞

j=1 γj <∞,
it follows from [Joe06, Lemma 1] that∑

u⊆D
γu

(
1 − (1 − 1/n)|u|

)
= O(n−1), (5)

with the implied constant depending on the weights, but independent of d and n.
We now consider e2n,d(z) in more detail and by expanding the quadrature

error defined by (4) as in [Joe06], we obtain

e2n,d(z) =
1
n

n−1∑
k=0

d∏
j=1

(1 + γj + γjCk(zj)) −
d∏

j=1

(1 + γj),

where
Ck(z) =

∑′

−n/2<h≤n/2

e2πihkz/n

|h| .

By setting βj = 1 + γj , we obtain

e2n,d(z) =
1
n

n−1∑
k=0

d∏
j=1

(βj + γjCk(zj)) −
d∏

j=1

βj . (6)

We can obtain a bound on e2n,d(z) by obtaining a bound on a certain mean
value of e2n,d(z). The mean Mn,d,γ is defined by

Mn,d,γ :=
1

ϕ(n)d

∑
z∈Zd

n

e2n,d(z),

where ϕ is Euler’s totient function and

Zn = {z : z ∈ {1, 2, . . . , n− 1}, (z, n) = 1}
has cardinality ϕ(n). Here (z, n) = gcd(z, n). A bound on the mean Mn,d,γ

is given next.

Theorem 1. Let n ≥ 2 be an integer and let

Sn =
∑′

−n/2<h≤n/2

1
|h| .

If the weights {γj}∞j=1 are summable, then

Mn,d,γ ≤ 1
n

d∏
j=1

(βj + γjSn) +O
(

ln ln(n+ 1)
n

)
,

where the implied constant depends on the weights, but is independent of the
dimension.



650 V. Sinescu and S. Joe

Proof. We have

Mn,d,γ =
1

ϕ(n)d

∑
z∈Zd

n

⎛⎝ 1
n

n−1∑
k=0

d∏
j=1

(βj + γjCk(zj)) −
d∏

j=1

βj

⎞⎠
=

1
n

n−1∑
k=0

d∏
j=1

⎛⎝ 1
ϕ(n)

∑
zj∈Zn

(βj + γjCk(zj))

⎞⎠−
d∏

j=1

βj

=
1
n

d∏
j=1

(βj + γjSn) +
1
n

n−1∑
k=1

d∏
j=1

⎛⎝βj +
γj

ϕ(n)

∑
zj∈Zn

Ck(zj)

⎞⎠−
d∏

j=1

βj ,

where in the last step the k = 0 term has been separated out and we have
used the fact that C0(z) = Sn. If we denote

Tn(k) =
∑

z∈Zn

Ck(z) =
∑

z∈Zn

∑′

−n/2<h≤n/2

e2πihkz/n

|h| , (7)

then we see that the mean can be written as

Mn,d,γ =
1
n

d∏
j=1

(βj + γjSn) + Ln,d,γ −
d∏

j=1

βj , (8)

where

Ln,d,γ =
1
n

n−1∑
k=1

d∏
j=1

(
βj +

γj

ϕ(n)
Tn(k)

)
. (9)

The rest of this proof follows many of the arguments used in the proof of
[Nie92, Theorem 5.10] (see also [Dis90]). Firstly, it may be shown that

Tn(k) =
∑
a|n
µ(a)
(n
a
, k
)
Sa( n

a ,k) =
∑
a|n
µ
(n
a

)
(a, k)Sn(a,k)

a
, (10)

where µ denotes the well-known Möbius function from number theory. If n
is prime, then we obtain Tn(k) = −Sn for any 1 ≤ k ≤ n − 1, which leads
to the results obtained in [Joe06]. From [Nie78, Lemmas 1 and 2], we have

Sm = 2 ln m+ 2ω − ln 4 + ε (m) , (11)

where ω is the Euler-Mascheroni constant given by

ω = lim
�→∞

(
�∑

k=1

1
k

− ln �

)
,
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while
|ε(m)| < 4m−2. (12)

Using (10), we now obtain

Tn(k) = (2 lnn+ 2ω − ln 4)Bn(k) − 2Hn(k) + Vn(k), (13)

where

Bn(k) =
∑
a|n
µ
(n
a

)
(a, k),

Hn(k) =
∑
a|n
µ
(n
a

)
(a, k) ln

a

(a, k)
,

and

Vn(k) =
∑
a|n
µ
(n
a

)
(a, k)ε

(
n(a, k)
a

)
. (14)

From the proof of [Nie92, Theorem 5.10], we have Bn(k) = 0 for any
1 ≤ k ≤ n− 1. Using this result in (13), we get

Tn(k) = −2Hn(k) + Vn(k). (15)

By combining (9) with (15), we obtain

Ln,d,γ =
1
n

n−1∑
k=1

d∏
j=1

(
βj + γj

(
−2Jn(k) +

Vn(k)
ϕ(n)

))
, (16)

where

Jn(k) =
Hn(k)
ϕ(n)

.

The proof of Theorem 5.10 in [Nie92] yields Vn(k) = O(1) with an absolute
implied constant. Hence we have Vn(k)/ϕ(n) = O(1/ϕ(n)). This result
together with (16) and βj = 1 + γj yields

Ln,d,γ =
1
n

n−1∑
k=1

d∏
j=1

(
1 + γj(1 − 2Jn(k)) + γjO

(
1
ϕ(n)

))
. (17)

Let us denote by p a prime number and by ep(n) the largest exponent such
that pep(n) divides n. Then, from the proof of [Nie92, Theorem 5.10], we obtain

Hn(k) =
{
pep(k)ϕ(n/pep(n)) ln p, if p is the unique prime with ep(n) > ep(k),
0, otherwise.

If such a p exists, then by the definition of ep(n), we have n/pep(n) relatively
prime with pep(n) and hence ϕ(n/pep(n))ϕ(pep(n)) = ϕ(n). We then obtain

Jn(k) =
pep(k)ϕ(n/pep(n)) ln p

ϕ(n)
=
pep(k) ln p
ϕ(pep(n))

=
ln p

pαk (p− 1)
, (18)
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where we put αk = ep(n)− ep(k)− 1, for 1 ≤ k ≤ n− 1. For each 1 ≤ k ≤ n− 1,
it is not difficult to check from (18) that −1 < 1 − 2 ln(p)/(pαk(p− 1)) < 1 for
any prime p ≥ 2 and for any αk ≥ 0. Hence, 1 + γj(1 − 2Jn(k)) ≤ 1 + γj = βj

for any 1 ≤ j ≤ d. The product in (17) can then be bounded by

d∏
j=1

(
1 + γj(1 − 2Jn(k)) + γjO

(
1
ϕ(n)

))

≤
d∏

j=1

(
βj + γjO

(
1
ϕ(n)

))

=
d∏

j=1

βj +
∑
u⊆D
|u|≥1

(
O

(
1
ϕ(n)

))|u|∏
j∈u

γj

∏
j �∈u

βj

=
d∏

j=1

βj +O
(

1
ϕ(n)

)
, (19)

where the implied constant depends on the quantity

∑
u⊆D
|u|≥1

∏
j∈u

γj

∏
j �∈u

βj ≤
d∏

j=1

(βj + γj).

Next, let us consider

d∏
j=1

(βj + γj) = exp

⎛⎝ d∑
j=1

ln (βj + γj)

⎞⎠ ≤ exp

⎛⎝2
d∑

j=1

γj

⎞⎠,
where we used that βj = 1 + γj and ln(1 + x) ≤ x for any x > −1. Recalling
that the weights were assumed to be summable, by denoting Γ :=

∑∞
j=1 γj ,

it follows that
d∏

j=1

(βj + γj) ≤ e2Γ ,

which shows that the implied constant of (19) is independent of the
dimension, but dependent on the weights. From (17), (19) and using that
1/ϕ(n) = O(n−1 ln ln(n+ 1)), we now obtain

Ln,d,γ ≤ n− 1
n

d∏
j=1

βj +O
(

ln ln(n+ 1)
n

)
.

By combining the last inequality with (8), we obtain

Mn,d,γ ≤ 1
n

d∏
j=1

(βj + γjSn) +O
(

ln ln(n+ 1)
n

)
. �
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Corollary 1. Let n ≥ 2 be an integer. If the weights {γj}∞j=1 are summable,
then there exists a vector z ∈ Zd

n such that

e2n,d(z) ≤ 1
n

d∏
j=1

(βj + γjSn) +O
(

ln ln(n+ 1)
n

)
,

where the implied constant depends on the weights, but is independent of the
dimension.

Proof. Clearly, there must be a vector z ∈ Zd
n such that e2n,d(z) ≤Mn,d,γ and

the result then follows from Theorem 1. �

It is known from [Nie78] or [Nie92] that in an unweighted setting there
exist d-dimensional lattice rules having O(n−1(lnn)d) star discrepancy with
the implied constant depending only on d. Such a bound is widely believed
to be the best possible (see [Lar87] or [Nie92] for details). In our situation,
from (3), (5) and Corollary 1, together with the observation that Sn ≤ 2 lnn
for any n ≥ 2 (this follows from (11) for n ≥ 3 and a direct calculation for
n = 2), it will follow that there exists a vector z ∈ Zd

n such that

D∗
n,γ(z) = O(n−1(ln n)d),

but with the implied constant independent of d. A bound that does not involve
lnn is possible by making use of [HN03, Lemma 3]. This result leads to the
conclusion that if the weights are summable, then there exists a generating
vector z such that the weighted star discrepancy achieves the error bound

D∗
n,γ(z) = O(n−1+δ),

for any δ > 0, where the implied constant depends on δ and the weights but
is independent of n and d.

Let us also remark that corresponding results for a weighted Lp star
discrepancy can be deduced, since such a discrepancy is bounded by the
discrepancy introduced in (2). Further details can be found in [Joe06].

4 A Component-by-Component Construction

Before presenting the main result regarding the CBC construction, we need
the following:

Lemma 1. There exists a positive constant c independent of n such that

n−1∑
k=1

|Tn(k)|
ϕ(n)

≤ c lnn,

where Tn(k) has been defined by (7).
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Proof. Since Jn(k) = Hn(k)/ϕ(n) ≥ 0, then from (15), we obtain:

n−1∑
k=1

|Tn(k)|
ϕ(n)

≤
n−1∑
k=1

(
2Jn(k) +

|Vn(k)|
ϕ(n)

)
. (20)

From the proof of [Nie92, Theorem 5.10], we obtain:

n−1∑
k=1

Jn(k) = lnn. (21)

In order to analyse the second quantity of (20), we see from (14) that

|Vn(k)| ≤
∑
a|n

∣∣∣µ(n
a

)∣∣∣ (a, k) ∣∣∣∣ε(n(a, k)a

)∣∣∣∣.
By using (12), we next obtain:

|Vn(k)| ≤ 4
∑
a|n

∣∣∣µ(n
a

)∣∣∣ (a
n

)2
= 4
∑
a|n

1
a2

≤ 2π2

3
.

Recalling that 1/ϕ(n) = O(ln ln(n+ 1)/n) with an absolute implied constant,
we now deduce that there exists a constant c1 > 0 independent of n such that

n−1∑
k=1

|Vn(k)|
ϕ(n)

≤ (n− 1)
2π2c1

3
ln ln(n+ 1)

n
≤ 2π2c1 lnn

3
.

From this inequality combined with (20) and (21), we obtain:

n−1∑
k=1

|Tn(k)|
ϕ(n)

≤
(

2 +
2π2c1

3

)
lnn,

which leads to the desired result by taking c = 2 + 2π2c1/3. �

In order to construct the generating vector, we use a component-by-
component (CBC) technique, which is essentially a “greedy”-type algorithm,
based on finding each component one at a time. This technique has been suc-
cessfully used in several research papers, for instance [Joe04], [Joe06] or [KJ02].
Here, we are looking to prove that the CBC algorithm produces a generating vec-
tor whose corresponding weighted star discrepancy has the same order of magni-
tude as the bound given in Corollary 1. The CBC algorithm is presented below:
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Component-by-component (CBC) algorithm
Assume that n ≥ 2 is an integer, d is the dimension and all the weights

are known. Then the generating vector z = (z1, z2, . . . , zd) can be constructed
as follows:

1. Set the value for the first component of the vector, say z1 := 1.
2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2n,m(z1, z2, . . . , zm) is

minimised.
In the above, we have

e2n,m(z1, z2, . . . , zm) =
1
n

n−1∑
k=0

m∏
j=1

(βj + γjCk(zj)) −
m∏

j=1

βj .

The following theorem and corollary will justify the use of the CBC algorithm.

Theorem 2. Let n ≥ 2 be an integer and suppose that the weights {γj}∞j=1

are summable. If there exists a z ∈ Zd
n such that

e2n,d(z) ≤ 1
n

d∏
j=1

(βj + αγj lnn) ,

where α = 2 + c with c defined by Lemma 1, then there exists zd+1 ∈ Zn such
that

e2n,d+1(z, zd+1) ≤ 1
n

d+1∏
j=1

(βj + αγj lnn) .

Such a zd+1 can be found by minimising e2n,d+1(z, zd+1) over the set Zn.

Proof. For any zd+1 ∈ Zn, we see from (6) that

e2
n,d+1(z, zd+1) =

1

n

n−1∑
k=0

d∏
j=1

(βj + γjCk(zj)) (βd+1 + γd+1Ck(zd+1)) − βd+1

d∏
j=1

βj

= βd+1e
2
n,d(z) +

γd+1

n

n−1∑
k=0

d∏
j=1

(βj + γjCk(zj)) Ck(zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d∏
j=1

(βj + γjSn)

+
γd+1

n

n−1∑
k=1

d∏
j=1

(βj + γjCk(zj)) Ck(zd+1),

where in the last step the k = 0 term has been separated out. Next we average
e2n,d+1(z, zd+1) over all the possible values of zd+1 to form

Avg(e2
n,d+1(z, zd+1)) =

1

ϕ(n)

∑
zd+1∈Zn

e2
n,d+1(z, zd+1)
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= βd+1e
2
n,d(z) +

γd+1Sn

n

d∏
j=1

(βj + γjSn)

+
γd+1

nϕ(n)

∑
zd+1∈Zn

n−1∑
k=1

d∏
j=1

(βj + γjCk(zj)) Ck(zd+1)

= βd+1e
2
n,d(z) +

γd+1Sn

n

d∏
j=1

(βj + γjSn)

+
γd+1

n

n−1∑
k=1

⎛⎝ 1

ϕ(n)

∑
zd+1∈Zn

Ck(zd+1)

⎞⎠ d∏
j=1

(βj + γjCk(zj))

≤ βd+1e
2
n,d(z) +

γd+1Sn

n

d∏
j=1

(βj + γjSn)

+
γd+1

n

n−1∑
k=1

|Tn(k)|
ϕ(n)

d∏
j=1

(βj + γjSn).

Using Lemma 1 and Sn ≤ 2 lnn, we next obtain

Avg(e2n,d+1(z, zd+1)) ≤ βd+1e
2
n,d(z) +

γd+1Sn

n

d∏
j=1

(βj + γjSn)

+
cγd+1 lnn

n

d∏
j=1

(βj + γjSn)

≤ βd+1e
2
n,d(z) +

(2 + c)γd+1 lnn
n

d∏
j=1

(βj + γjSn)

≤ βd+1e
2
n,d(z) +

αγd+1 lnn
n

d∏
j=1

(βj + αγj lnn) .

By making use of the hypothesis, we finally obtain

Avg(e2
n,d+1(z, zd+1)) ≤ βd+1

n

d∏
j=1

(βj + αγj ln n) +
αγd+1 ln n

n

d∏
j=1

(βj + αγj ln n)

=
1

n

d+1∏
j=1

(βj + αγj ln n) .

It is obvious that the zd+1 ∈ Zn chosen to minimise e2n,d+1(z, zd+1) will satisfy

e2n,d+1(z, zd+1) ≤ Avg(e2n,d+1(z, zd+1)).

This, together with the previous inequality completes the proof. �
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Corollary 2. Let n ≥ 2 be an integer. If the weights {γj}∞j=1 are summable,
then for any m = 1, 2, . . . , d, there exists a z ∈ Zm

n such that

e2n,m(z1, z2, . . . , zm) ≤ 1
n

m∏
j=1

(βj + αγjSn) .

We can set z1 = 1 and for every 2 ≤ m ≤ d, zm can be chosen by minimising
e2n,m(z1, z2, . . . , zm) over the set Zn.

Proof. Recall from Section 2 that Rn(z, u) = 0 for any subset u ⊆ D with
|u| = 1. Hence for m = 1 it follows that e2n,1(z1) = 0. The result then follows
immediately from Theorem 2. �

In order to evaluate the complexity of the CBC construction, we observe
first that each e2n,m(z1, z2, . . . , zm) can be evaluated in O(n2m) operations.
This cost can be reduced to O(nm) by using asymptotic techniques as
presented in [JS92] (see also [Joe06, Appendix A]) and consequently, the
total complexity of the algorithm will be O(n2d2). This can be reduced to
O(n2d) if we store the products during the construction at an extra expense of
O(n). However, this order of magnitude can be further reduced to O(nd logn)
with an approach similar to the one used by Nuyens and Cools in [NC05].
Their approach is essentially based on a fast matrix-vector multiplication and
consists of minimising a function of the form

1
n

n−1∑
k=0

d∏
j=1

(
1 + γjω

({
kzj
n

}))
− 1,

where ω is some function. In our situation we can take

ω(x) =
∑′

−n
2 <h≤n

2

e2πihx

|h| , x ∈ [0, 1].

Thus, with some modifications, the techniques used in [NC05] will also work
here.
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Summary. Ergodic simulations aim at estimating ensemble average characteristics
of diffusion in random fields from space averages. The traditional approach, based
on large supports of the initial concentration in general fails to obtain ergodic
simulations. However, such simulations, using single realizations of the velocity,
are shown to be feasible if space averages with respect to the location of the initial
concentration support are used to estimate ensemble averages.

1 Introduction

Diffusion in random velocity fields is often used to model the transport in
random environments as ionized plasmas [MPS93] turbulent flows [MY75] or
natural porous media [MM80]. Based on this model, predictions of transport
in real life problems, for which no analytical solutions are known, are usually
achieved by simple-sampling Monte-Carlo simulations. The latter consist in
ensemble averaging over simulations performed for given realizations of the
field. This procedure consumes often much computing time, as for instance in
the case of large-scale simulations of transport in groundwater [SVV06], where
even for reduced size, two-dimensional problems, a sample simulation requires
tens of cpu hours on last generation supercomputers. It is therefore desirable
to avoid the ensemble averaging. Towards this aim, ergodic hypotheses are
usually invoked to justify single realizations approaches.

Ergodicity occurs in stochastic modeling of transport in a broad variety of
formulations. The ergodicity of the dynamical system generated by a realization
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of the velocity field is investigated to assess stochastic average models for actual
observables given by time averages. The nonergodicity of this dynamical system
is associated with the anomalous diffusion of deterministic transport and with
the increase as the square of the Péclet number of the effective coefficient of
the diffusion in the corresponding random fields. In a larger sense, ergodicity
is also formulated as a measure of the reliability of the stochastic predictions
for single realizations of transport. (See [SVV07] for a short review on multiple
meanings of ergodicity). But related to numerical simulations of transport, the
ergodicity of the random field itself is of main concern [KKS05].

A random field is ergodic if space averages converge to ensemble averages.
For instance, this is the case for the mostly used space random functions
models in geostatistics, characterized by a finite integral range, for which
the ensemble mean can be successfully inferred from space averages [CD99].
Based on this property of the velocity field, a traditional approach was to
use extended initial concentration distributions and single realizations of the
velocity to estimate ensemble mean properties of transport. It was expected
that when the transport simulation starts with a large source and the solute
particles experience the variability of the given realization of the velocity field
the observables computed from a single simulation behave closely to their
average over the statistical ensemble of simulations. This eventuality is the
so called “ergodicity in the large sense” [SVV07], investigated numerically
in [SVV06]. It was found that the single realization approach using large
sources fails in general to reproduce the ensemble averaged results. Even if a
numerical evidence was supplied that, for ergodic velocity fields, the diffusion
in random fields is asymptotically ergodic in the large sense, irrespective of
the source dimensions, considering large sources does not ensure the reliability
of single realization simulations for finite times [SVV06, SVV07].

In the present paper we discuss the feasibility of ergodic simulations of
diffusion in random fields by a procedure which is different from the traditional
approach based on large sources. Using “global random walk” simulations
[VSV03], we found that an ergodic property also holds for the sample
simulations of the diffusion in fields with finite integral range: the ensemble
average of the transport observables can be estimated by the arithmetic mean
of the observables resulting from repeated simulations of diffusion, done for
the same realization of velocity field and for point-like sources with different
locations uniformly distributed over large enough spatial domains. The mainly
used observable quantities, dispersion coefficients and concentrations at
reference planes across the mean flow, are defined in Sect. 2. In Sect. 3 we
show the limitations of the approach based on large source simulations and
present a numerical evidence that the transport observables are homogeneous
random variables, with respect to the space location of the source. Further,
in Sect. 4, we investigate to what extent the observables are also ergodic, in
the sense mentioned above. Some concluding remarks are presented in Sect. 5.
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2 Observables of Transport Simulations

The mostly used observables which are computed from simulations of diffusion
in random velocity fields are the dispersion coefficients, equivalent to the
second spatial moments of the solute plume, and the space average of the
concentration over cross-sections of the plume. For a two dimensional problem,
as considered in the numerical investigation presented in this paper, these
quantities are defined as follows.

The effective coefficients for a given realization of the field are given by

Deff
ll (t) =

sll(t)
2t

, sll(t) =
∫

(xl − µl(t))2c(x, t)dx, (1)

where l = 1, 2, sll is a diagonal component of the second central moment of
the concentration field c and

µl(t) =
∫
xlc(x, t)dx

is the first moment or the center of mass of the plume. The effective coefficient
(1) is an equivalent representation of the second moment sll and plays the
role of a diffusion coefficient only when the process has a diffusive large time
upscaling [SVE06].

Often, to describe the randomness of the center of mass one uses the
“center of mass coefficient”

Dcm
ll (t) =

(µl(t) − 〈µl(t)〉ω)2

2t
, (2)

where 〈µl(t)〉ω is the average of the first moment over the realizations ω of
the velocity field. The ensemble average of this quantity is equivalent with
the variance of the center of mass, 2t〈Dcm

ll (t)〉ω = 〈µl(t)2〉ω − 〈µl(t)〉2ω.
An “ensemble coefficient” can be defined as

Dens
ll (t) =

σll(t)
2t

, σll(t) =
∫

(xl − 〈µl(t)〉ω)2c(x, t)dx, (3)

where σll is the second moment with respect to the center of mass of the
ensemble averaged plume. σll accounts for both diffusive spreading and
randomness of the center of mass. The ensemble, effective, and center of mass
coefficients are related by the identity

Dens
ll (t) = Deff

ll (t) +Dcm
ll (t).

The ensemble average of this identity is often used in analyses of time behavior
of the solute plume [SVV06].



662 N. Suciu et al.

The cross-section concentration at the center of mass of the two-dimensional
plume is computed by

C(t) =
1
L2

∫ L2

0

c(µ1(t), x2, t)dx2, (4)

where L2 is the transverse dimension of the grid [SVV06, SVV07].
The observables (1-4) are random variables depending on the realization

ω of the velocity field. For convenience, we define a point source simulation
S(t;ω,x0) by the quadruple

S(t;ω,x0) = {Deff
ll (t;ω,x0), D

ens
ll (t;ω,x0), D

cm
ll (t;ω,x0), C(t;ω,x0)}, (5)

where x0 denotes the space point where the point instantaneous source of
the transport simulation is located.

3 Simulations for Extended and Point Sources

We consider an isotropic two-dimensional diffusion in groundwater (D1 = D2 =
D = 0.01m2/day) in a random velocity field V with ensemble mean U = (U, 0),
U = 1 m/day. The velocity field is generated, with the Kraichnan routine, as a
superposition of 6400 random sin modes which approximates a Gaussian field.
This Gaussian field is an approximation of the Darcy velocity field in saturated
groundwater formations, for a log-hydraulic conductivity field exponentially
correlated with a small variance of 0.1 and isotropic correlation length λ = 1 m.
The transport over 2000days in given realizations of the velocity field, is simulated
by simultaneously tracking N = 1010 computational particles with the “global
random walk” algorithm (GRW), presented at length in [VSV03, SVV04]. To
simulate point instantaneous injection conditions, the particles were released at
t = 0 from points x0 . For comparisons presented in Figs. 1–4, simulations were
also done for an extended initial distribution by releasing the same number N
of particles from each of 121 grid points spaced by λ inside a square 10λ× 10λ
centered at the origin of the coordinate system. Details on the implementation
of the numerical method used in this paper are presented in [SVV06].

The principle of the GRW algorithm consists in moving all the compu-
tational particles lying at a grid site globally, by a numerical procedure based
on (exact or approximated) Bernoulli repartitions. The particles undergo
displacements proportional to local velocity at the site and diffusion jumps
proportional to

√
2Dδt/δx, where δt and δx are respectively the constant

time and space steps. Since the latter accounts exactly for the dispersion of
the diffusion process of coefficient D, the GRW algorithm has no numerical
diffusion. Because the particles are conserved, the algorithm is also stable.
The total number of computational particles is not restricted [VSV03] and
can be as large as necessary to ensure self-averaging results, i.e. no averages
over GRW simulations are necessary to obtain transport observables (for given
velocity realization) with the desired accuracy [SVV04]. The overshooting
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errors, occurring when particles jump over grid points with different velocity
values, were limited by a suitable choice of the time and the space steps of
δt = 0.5 days and δx = 0.1 m, so that the resulting dispersion coefficients
were estimated with errors of the order of D/2 [SV06, SVE06].

In Fig. 1 and Fig. 2 the longitudinal and transverse effective coefficients are
compared for a fixed velocity realization and a large square source 10λ× 10λ
centered at the origin, for the ensemble averages over 121 simulations for
different velocity realizations and identical initial conditions consisting of
the same square source and of a point source located at the origin, and for
a superposition of point source simulations. The latter represents the space
average over 121 simulations done for the same fixed velocity realization and for
point source locations x0 uniformly distributed into the same square 10λ×10λ.
To render comparable the effective coefficients for point and extended sources
[SVV06], the contribution of the initial second moment sll(0)/(2t) (which
is non-vanishing for extended sources) has been removed from Deff

ll (t) and
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the result has been normalized by the diffusion coefficient D. One remarks
that the superposition results are quite close to those of the ensemble average
for point source, which indicate the feasibility of ergodic simulations. On
the contrary, the effective coefficients for square source are very different
from the results of ensemble averaging (for either square and point sources).
This indicates the failure of large source simulations to reproduce ensemble
averages. The large early time deviation from ensemble averaged coefficients
in the case of large sources is caused by correlations between initial positions
and velocity fluctuations on solute particles trajectories [SVV07] (analyzed
in detail by Suciu et al., manuscript submitted to Water Resources Research,
2006). However, it was shown that for narrow sources with large extension
on the direction perpendicular to that of the simulated coefficient the single
realization effective coefficients (1) are close to their ensemble averages and
to the ensemble averages of the ensemble coefficients (3) [SVV07]. It is only
in this situation that large source conditions yield ergodic simulations.

Since a prerequisite for ergodicity is the statistical homogeneity of the ran-
dom variable, we check whether this holds true for the point source simulation
(5). To do that, we compare the ensemble averages over 256 velocity realizations
of simulations for x0 = (0, 0) and x0 = (50λ, 50λ). The results for effective
coefficients (Fig. 3 and Fig. 4) show differences of the order of D or smaller.
The statistical homogeneity is also indicated by the comparisons between time
and space behavior of the cross-section concentration (Fig. 5 and Fig. 6). Thus,
the ensemble average 〈S(t;ω,x0)〉ω can be assumed to be independent of x0 .

4 Ergodic Simulations

A random space function F (x) is ergodic if the space average converges to
the ensemble average,

lim
V(Ω)−→∞

1
V(Ω)

∫
Ω

F (x)dx = 〈F (x)〉 ,
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where V(Ω) is the volume of the domain Ω ⊂ R3. The Slutsky’s Theorem
ensures the mean square convergence if the integral of the correlation function
〈F (x)F (x+ y)〉 is finite. A sufficient condition for that is the existence of a
finite correlation range

∫ 〈F (x)F (x+ y)〉dy/〈F (x)2〉 of the random function
[CD99]. As shown by Chilès and Delfiner [CD99], this is almost always the
case for geostatistical models of the velocity field in groundwater. Therefore,
space averages can be used to infer the ensemble mean velocity, and for
Gaussian fields also to infer the velocity variance.

The ergodicity of the velocity field could induce ergodic properties for
simulations starting with extended sources if the observables for large source
conditions were expressed as space averages of those for point sources. Since
the dispersion coefficients (1-3) depend on squared first moments µl, and
thus on squared concentrations, they are not linear superpositions of point
source quantities [SVV06, SVV07]. The nonlinearity with respect to the initial
concentration of the effective coefficient (1) can explain the failure of the
traditional approach to yield ergodic simulations (see Fig. 1 and Fig. 2).

As an alternative to the traditional approach, we check the ergodicity
of the simulations with respect to the average over the spatial location of
the source. In this first paper we shall consider only point-like sources. The
simulations S(t;ω,x0) are ergodic if their ensemble average can be inferred
from space averages, i.e.

〈S(t;ω,x0)〉ω = 〈S(t;ω,x0)〉x0
. (6)

Even though statistically homogeneous velocity fields with finite correlation
lengths are ergodic [CD99] and, as shown by Figs. 3–6, the simulations are
almost homogeneous random variables, their ergodicity is extremely difficult to
prove theoretically owing to the highly nonlinear dependence on velocity of the
particles trajectories, and consequently of S(t;ω,x0) [SVV07]. Nevertheless,
the numerical results presented in the following indicate the ergodicity
property (6) for the simulations (5) of diffusion in random velocity fields.

The expectations E(·)(t) and the standard deviations SD(·)(t) of the
observables (1-4), defined in Sect. 2, are computed in two ways:

(a) as averages over an ensemble of 121 velocity realizations for the same
position of the injection point, and

(b) as averages over simulations of transport in the same realization of the
velocity, for 121 distinct positions of the injection point, uniformly distributed
in a square of edge equal to 10λ.

The method (a) corresponds to the usual simple-sampling Monte-Carlo
simulation, while (b) is the “ergodic simulation method”. Figs. 7–12 compare
the expectations and the standard deviations of the observables (1-4) computed
by ergodic simulations with those obtained by Monte-Carlo simulations (which
correspond to smoother curves). The agreement is better for the expectations
of the effective coefficients (Fig. 7 and Fig. 8) and for their standard deviations
(Fig. 9 and Fig. 10). Less satisfactory is the statistics estimated by ergodic sim-
ulations for the center of mass and ensemble coefficients (mainly for longitudinal
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coefficients shown in Fig. 7 and Fig. 9). The best results are obtained for the
expectation and standard deviation of the cross-section concentration (Fig. 11
and Fig. 12). The comparisons given in Fig. 13 and Fig. 14 further indicate that
simulations for symmetric averaging domains have better ergodic properties.

5 Conclusions

The numerical investigation presented in this paper indicate that ergodic
simulations of diffusion in random velocity fields with finite correlation range
are possible. Ensemble average characteristics of the process can be inferred
from space averages with respect to the location of the finite support of the
initial concentration distribution. The results are already encouraging for
fields generated with the Kraichnan simple-randomization method, in spite
of its poor ergodic properties [CD99, KKS05, SVV06].

The less satisfactory results are obtained for the center of mass and
ensemble dispersion coefficients. As indicated by their definitions, (2) and
(3), these coefficients rather characterize the random velocity field than the
spreading of the solute. It is therefore expected that their ergodic simulation
also improves when the Kraichnan routine is replaced by a field generator
with better ergodic properties [KKS05].

Further refinements of the method of ergodic simulations proposed in this
paper require investigations on the role of the averaging domain containing the
locations x0 of the point source and on the relation between the spacing of x0

and the correlation lengths of the velocity field. By taking different origins x0 of
the coordinate system for the transport simulation, uniformly distributed into
the domain Ω of a given realization of the velocity field, we expect that ergodic
simulations can be used in investigations of transport for large sources as well.
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Summary. Markov chains can be simulated efficiently by either high-dimensional
low discrepancy point sets or by padding low dimensional point sets. Given an order on
the state space, both approaches can be improved by sorting the ensemble of Markov
chains. We analyze deterministic approaches resulting in algorithmic simplifications
and provide intuition when and why the sorting works. Then we discuss the efficiency
of different sorting strategies for the example of light transport simulation.

I spent an interesting evening recently with a grain of salt.

Shannon: A Mathematical Theory of Communication, 1948

1 Introduction

A Markov chain describes a memoryless stochastic process, where the
transition probabilities do not depend on the history of the process. For
example Shannon modeled the English language by a Markov chain, where
he computed the relative frequencies of one word following another from an
English book. Using these transition probabilities he generated seemingly
English sentences. Many more evolution processes, like e.g. the Brownian
motion or particle trajectories, can be described as Markov chains.

Properties of processes can be estimated by averaging the contributions of
multiple Markov chains. Instead of simulating each trajectory independently, it
has been found that simultaneously simulating Markov chains using correlated
samples and sorting the ensemble of states after each transition step can
notably improve convergence.

2 Simultaneous Simulation of Markov Chains

The idea of improving the simultaneous simulation of Markov chains with
quasi-Monte Carlo methods by an intermediate sorting step was originally
introduced by Lécot in a series of papers dealing with the Boltzmann equation
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[Léc89a, Léc89b, Léc91, LC98] and later on the heat equation [KL99]. This idea
was then used and refined for solving the heat equation on a grid by Morokoff
and Caflisch [MC93] and recently extended by L’Écuyer, Tuffin, Demers
et al. [LL02, LT04a, LT04b, DLT05, LLT05, LDT06, LLT06, HLL07, LDT07]
to incorporate randomized versions of the algorithm and splitting for rare
event simulation. Independent research, but in a way related to the above
approaches, was conducted by [BNN+98] in the field of computer graphics.

In the following we simplify the deterministic version of the scheme. For
the derivation we use the algorithm from [LT04b]. The results give practical
insight, when and why the scheme is superior to approaches without sorting
and how to implement it.

2.1 Analysis of a Deterministic Algorithm in One Dimension

The algorithm presented in [LT04b] simultaneously simulates Markov chains
on a discrete state space E with an initial distribution µ := (µi)i∈E and a
transition matrix P := (pi,j)i,j∈E . Using a (t, 2)-sequence (xi)i∈N0 in base b
[Nie92], N = bm chains are simulated in parallel, where Xn,l is the state of
chain l at time step n and N0 are the natural numbers including zero. Further
the algorithm requires that for m > t the N = bm subsequent components xi,1

form a (0,m, 1)-net in base b. As shown in [LT04b] the algorithm converges if

∀k ∈ E :
N−1∑
l=1

∣∣∣∣∣
k−1∑
n=1

pl+1,n −
k−1∑
n=1

pl,n

∣∣∣∣∣ ≤ 1 (1)

holds.

Simplification of the Algorithm

We now consider the Sobol’ sequence xl = (xl,1, xl,2) = (Φ2(l), ΦS(l)) ∈ [0, 1)2,
which is a (0, 2)-sequence in base b = 2 and fulfills the assumptions required
for the convergence condition to hold. For the definition of the original Sobol’
sequence see [Sob67], while a simple code example for (Φ2(l), ΦS(l)) is found
in [KK02b].

The simulation itself starts at time step n = 0 initializing state X0,�N ·xl,1�
for 0 ≤ l < N using xl,2 for the realization of µ. The algorithm then continues
by sorting the states (this will be discussed in detail in Section 3) and continues
the chains by computing Xn,�N ·x(l+n·N),1� using x(l+n·N),2 for 0 ≤ l < N to
realize transitions according to P . The index

σ(l) := �N · x(l+n·N),1�
for selecting the next state for transition in fact uses the van der Corput
sequence Φ2 in base 2, which is a (0, 1)-sequence and thus a sequence of (0,m, 1)-
nets [Nie92]. For example choosing m = 3 > t = 0 we have N = 23 = 8 and
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(�8 · φ2(l + n · 8)�)7l=0 ≡ {0, 4, 2, 6, 1, 5, 3, 7}.
for n ∈ N0. Hence all indices used during the different timesteps n are in fact
identical for all m.

Assuming uniform probabilities pi,j = 1
|E| the convergence theorem still

applies, but more important, stable sorting does not change the state order.
It thus follows that in fact the index permutation can be chosen as identity
without touching the convergence conditions. The same applies for selecting
the initial states X0,l and it results the simplified, but equivalent algorithm

• n := 0
• initialize X0,l using xl,2 for 0 ≤ l < 2m

• loop
– sort state vector using a suitable order
– n := n+ 1
– continue chain by computing Xn,l using ΦS(l + n · 2m) for 0 ≤ l < 2m

using only the second component of the (0, 2)-sequence xl.

When and Why it Works

The improved convergence of the scheme, which has been observed in many
applications (see the references at the beginning of Section 2), now must
be caused by the structure of the samples ΦS(l + n · 2m) used to realize the
transitions of Xn,l according to P . This can be understood by decomposing
the radical inverse (see also [Kel06])

ΦS(l + n · 2m) = ΦS(l) +
1

2m
ΦS(n),

which reveals an implicit stratification: ΦS(l) is an offset with spacing 1
2m

depending on the state number l, while the shift ΦS(n) is identical for all the
intervals at timestep n.

ΦS(l) 10

�→ 1
2mΦS(n)

Here the low dimensional setting allows for a misleading interpretation
of the samples being a shifted lattice or stratified samples, as the entirety of
the ΦS(l) for l = 0, . . . , 2m − 1 in fact must be an (0,m, 1)-net and thus an
equidistant set of samples.

However, the good performance stems from the property that ΦS(l)
is a (t, s)-sequence and thus a sequence of (t,m′, s)-nets for any m′ with
t ≤ m′ ≤ m. This means that bm

′
states, that are similar in state space and

therefore subsequent by order after sorting, will sample their transition by
a (t,m′, s)-net, which guarantees for good discrete density approximation.
The maximum improvement would be obtained if all 2m chains were in the
same state. The more the states of the chains are separated in state space,
the smaller the performance improvements will be.
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2.2 Simplified Algorithm in s Dimensions

Using a (t, s)-sequence in base b, which is a sequence of (t,m, s)-nets, the
scheme also works in s dimensions: Markov chains, whose states are similar
after sorting are guaranteed to sample the transition probability by low
discrepancy samples. The simplified algorithm in s dimensions now looks like:

• n := 0
• initialize X0,l using quasi-Monte Carlo points xl

• loop
– sort state vector using a suitable order
– n := n+ 1
– continue chain by computing Xn,l using subsequent samples xl from

a (t, s)-sequence

Some simulations require trajectory splitting in order to capture cer-
tain local subtle effects. While this already has been addressed in
[DLT05, LDT06, LDT07], it in fact can be achieved in a simpler way by just
drawing more samples out of the (t, s)-sequence for states to be split.

This is a consequence of the fact that it is not even necessary to
simultaneously simulate exactly bm chains. It is only important to draw
subsequent samples from the (t, s)-sequence and to minimize the number
bm of points in the subsequent (t,m, s)-nets in order to enable the maximal
performance gain. The choice of the (t, s)-sequence, however, is restricted by
the condition that (0, s)-sequences only exist for b ≥ s and that m > t [Nie92].
Note that other radical inversion based points sets like the Halton sequence
or its scrambled variants fulfill properties similar to (t, s)-sequences [Mat98]
and will result in similar performance gains.

2.3 Randomization

While there exists no general proof for convergence of the deterministic
algorithm in higher dimensions yet, the algorithm becomes unbiased by freshly
randomizing the quasi-Monte Carlo points in each time step n [LLT06]. Since
this is in fact an instance of padded replications sampling as introduced in
[KK02a, KK02b] the argument for unbiasedness becomes simpler than in
[LLT06]. Randomization, however, deserves special attention.

The most efficient implementation along the lines of [KK02b] consists of
choosing a (t, s)-sequence in base b = 2, from which subsequent samples are
drawn, which are XOR-ed by an s-dimensional random vector. This random
vector is freshly drawn after each transition step. However, as random
scrambling changes the order in which the points are enumerated, the local
properties of the sequences of (t,m, s)-nets are changed, too.

This observation can be taken as an explanation for some of the effects seen
in [LLT05]: Sobol and Korobov points used in the array-(R)QMC simulation
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are worse up to an order of magnitude in variance reduction than their
transformed (Gray-code for Sobol, Baker transform for Korobov) counterparts.
The explanation for this is found in the structure of the points. The sequence of
(t,m, s)-nets extracted from the Sobol sequence is locally worse than its Gray-
code variant. The same goes for the Korobov lattice and its transformed variant.

3 Sorting Strategies

In order to have the states as closely together as possible, they have to be
enumerated in an order such that the sum of the distances of neighboring
states is minimal. This in fact relates to the traveling salesman problem3,
where for a given set of cities and the costs of traveling from one city to
another city, the cheapest round trip is sought that visits each city exactly
once and then returns to the starting city.

Our problem is very similar except for it is not necessary to return from
the last state of the route to the first state. Some techniques are already
available to efficiently calculate approximate, but close to optimal, solutions
for the traveling salesman problem [DMC91, Rei94]. However, running times
of these algorithms are not acceptable in our simulations, as the calculation
of the distance matrix alone exhibits an O(N2) complexity, while we want
to keep the algorithm as close as possible to the O(N) complexity of classic
Monte Carlo methods.

In the following we discuss some possible orders to achieve fast sorting
for high-dimensional state spaces.

3.1 Norm of State

The average complexity of quicksort is O(N logN), but for certain scenarios
even O(N) algorithms exist, like e.g. radixsort, which, however, requires
additional temporary memory. In order to use these one-dimensional sorting
algorithms, the multi-dimensional state must be reduced to one dimension.
Amongst many choices often some norm ‖Xn,l‖ is used to define an order on
the state space. However, similar norms do not necessarily indicate proximity
in state space. A simple example for this is similar energy of particles in a
transport simulation that are located far away in space.

3.2 Spatial Hierarchy

A second possibility to enable multidimensional sorting is the usage of a spatial
hierarchy to define an order on the states [Wie03]. Efficient data structures for

3 This problem already was investigated by Euler in the early 18th century and
unfortunately can be shown to be NP-hard [Kar72]. For a historical survey on the
problem see Lawler et al. [LLKS85].



674 C. Wächter and A. Keller

Fig. 1. Sorting the states into the leafs of a spatial hierarchy defines an order of
proximity by traversing the hierarchy in in-order.

this purpose are the BSP-tree [SBGS69, Abr95], its specialized axis aligned
subset, the kD-tree [Ben75], or bounding volume hierarchies [RW80, KK86,
WK06]. The construction of such binary hierarchies is simple: The space is
recursively subdivided using planes selected by some heuristic [WK07]. The
construction runs in O(N logN) on the average. Traversing the hierarchy in
in-order enumerates the leaves in an order of proximity. This traversal becomes
trivial, if the tree is left-balanced and in consequence can be stored in an array.

If a spatial hierarchy must be used anyway, for example to accelerate ray
tracing, there is no additional construction time for the hierarchy. The particles
then are stored as linked lists attached to the leaves of the hierarchy (see
Figure 1). Unfortunately the quality of this order is strongly determined by
the quality of the spatial hierarchy used for simulation, which is especially prob-
lematic if the number of leafs in the hierarchy is much smaller than the number
of chains N as this results in several states being mapped to the same leaf.

3.3 Bucket Sorting and Space Filling Curves

In order to guarantee linear time complexity, bucket sorting can be used. In the
s-dimensional extension [HLL07] of the simple algorithm sketched in Section 2.1,
multidimensional states were sorted into buckets by the first dimension of the
state, then the states of each bucket were sorted into buckets according to the
second dimension, and so forth. This procedure works well, but has the problem
that states close in state space can be separated by the sorting procedure. In ad-
dition, a stratification of each dimension has to be used, which induces the curse
of dimension in the number of Markov chains to be simulated simultaneously.

We therefore divide the state space into equal voxels, which serve as buckets.
The bucket of each state is found by truncating the state coordinates according
to the resolution of the voxel grid. Note that this applies for continuous as well
as discrete state spaces. Enumerating the voxels by proximity yields the desired
order on the states and can be done in linear time in the number of voxels.

Orders that enumerate the voxels by proximity are given by space filling
curves [Sag94] like e.g. the Peano curve, Hilbert curve, or H-indexing. These
curves guarantee every voxel to be visited exactly once and an overall path
length being relatively short. For problems with large geometry, which is the
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Fig. 2. The Z-curve in two dimensions for 2×2, 4×4, and 16×16 buckets. With the
origin (0, 0) top left the point marked by × has the integer coordinates (3, 4), which
corresponds to (011, 100)2 in the binary system. Its binary Z-curve index 1001012 is
computed by bitwise interleaving the binary coordinates.

case in our own simulations, this can be even one of the few possibilities to
generate fast and memory efficient approximate solutions to the traveling
salesman problem [Rei94]. However, these curves are rather costly to evaluate,
need to be tabulated to be efficient, or are not available for higher dimensions.

Fortunately, the Z-curve, also known as Lebesgue-curve or Morton
order, avoids these problems. Given integer coordinates of a bucket in
multidimensional space, its one dimensional Z-curve index is simply calculated
by bitwise interleaving the coordinate values (see Figure 2). This is very easy
and fast to compute for any dimension and problem size, and requires no
additional memory. Unfortunately the results are not as good as for example
the Hilbert-curve in a global context. However, the average case partitioning
quality and average/worst case logarithmic index ranges are comparably
good [Wie03]. Problems can arise in highly symmetrical scenes like Shirley’s
“Scene 6” (see Figure 6) used for our numerical experiments: States on the walls
parallel to the (x, y)-plane will be sorted very well, but the states located on
the other two walls parallel to the (y, z)-plane will be visited by the curve in an
alternating manner, which can lead to correlation artifacts in some scenarios.

4 Application to Light Transport Simulation

For numerical evidence, we apply the algorithm developed in the previous
sections to light transport simulation for synthesizing realistic images. The
underlying integral equation can be reformulated as a path integral [Vea97].
Sampling path space (see Figure 3) corresponds to simulating Markov chains,
where the paths are established by ray tracing and scattering events. The
initial distribution is determined by the emission characteristics of the light
sources and the transition probabilities are given by bidirectional reflectance
distribution functions on the surface.

To solve the path integral, one can think of two basic strategies, which
are either using high dimensional low discrepancy points or padding low
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Fig. 3. Sampling transport path space by bidirectional path tracing. Trajectories
from the eye and the light sources are generated by Markov chains and connected to
determine the transported amount of light.

dimensional low discrepancy points [KK02b]. The latter approach fits our
findings in Section 2.2, where high dimensional events are composed as sub-
sequent transitions of a Markov chain. As measured in [KK02a] the difference
to using high dimensional sequences for Markov chain simulations is small to
none, but using padded sequences is computationally faster and requires less
implementation effort. It is also simpler for practitioners in rendering industry.

In addition the low dimensional approach allows for much better results,
because the stratification properties of (t, s)-sequences or the Halton sequence
and its scrambled variants are much better for small dimensions (see
Section 2.2).

4.1 Fredholm or Volterra?

The integral equation underlying light transport can be considered either as
a Fredholm or Volterra integral equation, which matters for implementation.

Lr(x, ω) =
∫

S2
−(x)

fr(ωi, x, ω)L(x, ωi) (n(x) · ωi)dωi

is the radiance reflected off a surface in point x in direction ω, where the
domain S2

−(x) of the integral operator is the hemisphere aligned to the normal
n(x) in x (see the illustration in Figure 4). fr is the bidirectional reflectance
distribution function describing the optical surface properties and L is the
incident radiance. Using this integral operator results in a Volterra integral
equation of the second kind, as the integration domain depends on x.
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Fig. 4. Photon trajectories are started from the light sources. Upon hitting a surface
after tracing a ray, the bidirectional reflectance distribution function is sampled to
determine a direction of scattering to continue the path.

Lr(x, ω) =
∫

S2
fr(ωi, x, ω)L(x, ωi) max{n(x) · ωi, 0}dωi

on the other hand results in a Fredholm integral equation of the second kind,
as we are integrating over all directions of the unit sphere S2 independent of x.

Using the latter approach of generating global directions [SKFNC97] and
rejecting directions with negative scalar product with respect to the surface
normal n(x) is computationally attractive, while the first approach requires
to generate directions in the hemisphere that have to be transformed into the
local surface frame, which is more expensive. Mappings from the unit square
to S2 or S2

−(x) are found in [SC94, Rus98, Shi00].
An even more important argument for generating global directions is related

to our algorithmic approach (see Section 2.2): By sorting it can happen that
two close by surface points with different surface normals (e.g. in a corner) use
subsequent samples of a (t, s)-sequence to generate scattering directions. Gener-
ating global directions now works fine, whereas generating directions in the two
different local frames using subsequent samples will destroy the low discrepancy
properties. These discontinuities become clearly visible. Using global directions,
however, does not allow for importance sampling according to fr or the cosine
term, which often is a disadvantage and deserves further investigation.

4.2 Numerical Evidence

Following the arguments in Sections 2.2 and 2.3, we use the Halton sequence
with permutations by Faure [Kel06] randomized by a Cranley-Patterson-
rotation [CP76] in order to have unbiased error estimates. For the sorting
the Z-curve order (see Section 3.3) worked best in our setting and was used
for the following experiments. We further note that we numerically verified
that omitting the randomization has no notable effect on the precision of
the results. In our numerical experiments we compared four approaches to
simulate Markov chains:

MC: Uniform random numbers generated by the Mersenne Twister [SM07]
were used for classical Monte Carlo sampling.
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RQMC: Used the high-dimensional Halton sequence with permutations
by Faure randomized by a Cranley-Patterson rotation, where pairs of
components were used to sample the two dimensional emission and
scattering events.

lo-dim RQMCS: Used the two-dimensional Halton sequence randomized
by a Cranley-Patterson rotation. The Z-curve was used to enumerate the
bucket-sorted states.

hi-dim RQMCS: Used the high-dimensional Halton sequence with permuta-
tions by Faure randomized by a Cranley-Patterson rotation. The Z-curve
was used to enumerate the bucket-sorted states.

In a first experiment the robust global illumination algorithm [KK04, Kol04]
was used to compute the path integrals. The resulting graphs are depicted
in Figure 6 and display the RMS error to a master solution and the variance
averaged over the whole image as well as the pixel-based variance. The numbers
were obtained by averaging 10 independent runs for a varying number of Markov
chains. The measured numbers only convince for the simple test scene. In the
complicated cases even no performance gain over Monte Carlo sampling can be
measured, because the number of independent runs is too small and more ex-
periments were not possible due to excessive running times. However, the visual
error tells a dramatically different story as can be seen in Figure 5, where a clear
superiority of the new algorithm in even very difficult settings becomes obvious.
This case is not an exception, but can be observed for many test cases. It only
emphasizes that standard error measures are not appropriate error measures for
visual quality, which is a known but unsolved problem in computer graphics.

Figure 7 shows measurements for a very difficult light transport problem,
where we directly traced photons from the light sources and connected
their final path segment to the camera (one technique of bidirectional path
tracing [Vea97]). Opposite to the above measurements only one number

MC RQMC RQMCS

Fig. 5. Visual comparison for the test scene “Invisible Date” using 300 chains
for simulation. The only lightsource is not visible as it is placed on the ceiling of
the neighboring room. Due to the better distribution of the photons randomized
quasi-Monte Carlo (RQMC) outperforms Monte Carlo (MC) visually, as can be seen
by the reduced shadow artifacts. RQMC with sorting (RQMCS, using 2563 voxels
for the bucket sort) is even superior as more photons made it into the second room
and even the back of the door is lit very well.
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Fig. 6. RMS error, global, and per pixel variance for an a) simple and b) more
complicated light transport setting.
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0.4
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Monte Carlo
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RQMC
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RQMCS

0.6 0.8 1.0 1.2

L1 per camera L2 per camera L1 per pixel L2 per pixel

Monte Carlo 0.0626524 0.02368870 0.202377 463.397
RQMC 0.0407531 0.00773514 0.162835 62.0994
RQMCS 0.0247592 0.00178907 0.138360 9.79994

Fig. 7. Schematic view of the labyrinth test scene, where floor and roof have been
removed for illustration. The camera is situated in the room at the bottom, while a
light source is located on the other end of the connecting tunnel. The graphs show
the Box-and-Whisker plots and the average amount (marked by ×) of the total
radiance received by the camera for 1048576 simulated light paths for 50 independent
realizations using each technique. The lower graph enlarges the interesting part of the
upper graph. The table finally displays the deviation from a master solution using
the L1- and L2-norm (variance) for the total radiance received by the camera and
received by each pixel (256× 256 pixels resolution) averaged over the 50 independent
realizations. In this difficult setting the new method (RQMCS) is clearly superior.
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of simultaneously simulated Markov chains is considered. Now a sufficient
amount of experiments was computationally feasible and the superiority of
the new algorithm became clearly visible.

5 Conclusion

We successfully simplified the algorithms to simultaneously simulate Markov
chains and provided intuition when and why sorting the states can improve
convergence. In addition the algorithm no longer is bounded by the curse of
dimension and there is no restriction to homogenous Markov chains, because
the simulation just can use transition probabilities P ≡ Pn that can change
over time.

Our experiments also revealed that not all (t, s)-sequences or radical
inversion based points sequences are equally good. This deserves further
characterization.

The algorithm would be even simpler, if rank-1 lattice sequences could
be applied. The constructions so far, however, lack the properties of (t, s)-
sequences that are required for the improved performance. In the future we will
investigate whether it is possible to construct suitable rank-1 lattice sequences.

As we are using global directions, i.e. integrate over products of spheres, it
is also interesting to establish connections to recent research in that direction
[KS05].
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C.P. 6128, Succ. Centre-Ville, Montréal,
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Cementvägen 20 SE-901 82 Umera
Sweden
leiper@foi.se



Conference Participants 693

Friedrich Pillichshammer
Institut für Finanzmathematik
Universität Linz
Altenbergerstrasse 69, 4040 Linz
Austria
friedrich.pillichshammer@jku.at

Leszek Plaskota
Faculty of Mathematics Informatics
and Mechanics Warsaw University ul.
Krakowskie Przedmiescie 26/28 00-927
Warszawa
Poland
leszekp@mimuw.edu.pl

Marco Pollanen
Department of Mathematics
Trent University Peterborough
Ontario
Canada, K9J 7B8
marcopollanen@trentu.ca

Matthias Raab
Ulmer Zentrum für Wissenschaftliches
Rechnen
Abteilung Medieninformatik, Universität
Ulm
Albert-Einstein-Allee 11, 89069 Ulm
Germany
matthias.raab@uni-ulm.de

Klaus Ritter
TU Darmstadt
Fachbereich Mathematik
Schlossgartenstrasse 7 64289 Darmstadt
Germany
ritter@mathematik.tu-darmstadt.de

Andreas Rößler
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Canada, H3C 1J7
sanvidoc@iro.umontreal.ca

Thorsten Sauder
Bankgesellschaft Berlin
Alt-Stralau 31, 10245 Berlin
Germany
Thorsten.Sauder@

bankgesellschaft.de

Wolfgang Ch. Schmid
Department of Mathematics
University of Salzburg
Hellbrunnerstraße 34, 5020 Salzburg
Austria
wolfgang.schmid@sbg.ac.at

Hendrik Schmidt
Abteilung Stochastik
Universität Ulm
Helmholtzstrasse 18, 89069 Ulm
Germany
hendrik.schmidt@uni-ulm.de



694 Conference Participants

Rudolf Schürer
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Switzerland
Ronnie.Schwede@eawag.ch

Daniel Seibert
mental images GmbH
Fasanenstr. 81, 10623 Berlin
Germany
daniel@mental.com

Raffaello Seri
Dipartimento di Economia via Monte
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Rößler, Andreas: 237
Raab, Matthias: 591
Ritter, Klaus: 53, 577

Sabelfeld, Karl: 143, 659
Saito, Mutsuo: 607
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