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Abstract. Given a time series of multicomponent measurements of an
evolving stimulus, nonlinear blind source separation (BSS) usually seeks
to find a “source” time series, comprised of statistically independent com-
binations of the measured components. In this paper, we seek a source
time series that has a phase-space density function equal to the product
of density functions of individual components. In an earlier paper, it was
shown that the phase space density function induces a Riemannian ge-
ometry on the system’s state space, with the metric equal to the local
velocity correlation matrix of the data. From this geometric perspective,
the vanishing of the curvature tensor is a necessary condition for BSS.
Therefore, if this data-derived quantity is non-vanishing, the observa-
tions are not separable. However, if the curvature tensor is zero, there is
only one possible set of source variables (up to transformations that do
not affect separability), and it is possible to compute these explicitly and
determine if they do separate the phase space density function. A longer
version of this paper describes a more general method that performs
nonlinear multidimensional BSS or independent subspace separation.

1 Introduction

Consider a set of data consisting of x̃(t), a time-dependent multiplet of n mea-
surements (x̃k for k = 1, 2, . . . , n). The usual objectives of nonlinear BSS are: 1)
to determine if these observations are instantaneous mixtures of n statistically
independent source components x(t)

x̃(t) = f [x(t)] (1)

where f is an unknown, possibly nonlinear, n-component mixing function, and, if
so, 2) to compute the mixing function. In most approaches to this problem [1,2],
the desired source components are required to be statistically independent in the
sense that their state space density function ρ(x) is the product of the density
functions of the individual components. However, it is well known that this
problem always has many solutions (see [3] and references therein). Specifically,
any observed density function can be integrated in order to construct an entire
family of functions f−1 that transform it into a separable (i.e., factorizable)
form.
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The observed trajectories of many classical physical systems [4] can be char-
acterized by density functions in phase space (i.e., (x̃, ˙̃x)-space). Furthermore, if
such a system is composed of non-interacting subsystems, the state space vari-
ables can be chosen so that the system’s phase space density function is separable
(i.e., is the product of the phase space density functions of the subsystems). This
fact motivates the approach to BSS described in this paper [5]: we search for a
function of the state space variable x̃ that transforms the observed phase space
density function ρ̃(x̃, ˙̃x) into a separable form. Unlike conventional BSS, this
“phase space BSS problem” has a unique solution in the following sense: either
the data are inseparable, or they can be separated by a mixing function that is
unique, up to transformations that do not affect separability (translations, per-
mutations, and possibly nonlinear rescaling of individual source components).
This form of the BSS problem has a unique solution because separability in
phase space is a stronger requirement than separability in state space. In other
words, if a choice of variables x leads to a separable phase space density function,
it also produces a separable state space density function; however, the converse
is not true. In particular, the above-mentioned procedure of using integrals of
the state space density function to transform it into separable form [3] cannot
be used to separate the phase space density function.

It was previously demonstrated [6] that the phase space density function of
a time series induces a Riemannian metric on the system’s state space and that
this metric can be directly computed from the local velocity correlation matrix
of the data. In the following Section, we show how this differential geometry can
be used to determine if there is a source coordinate system in which the phase
space density function is separable and, if so, to find the transformation between
the coordinate systems of the observed variables and the source variables. In a
technical sense, the method is straight-forward. The data-derived metric is dif-
ferentiated to compute the affine connection and curvature tensor on state space.
If the curvature tensor does not vanish, the observed data are not separable. On
the other hand, if the curvature tensor does vanish, there is only one possible
set of source variables (up to translations, permutations, and transformations of
individual components), and it is possible to compute these explicitly and de-
termine if they do separate the phase space density function. A longer version of
this paper [5] describes the solution of a more general BSS problem (sometimes
called multidimensional independent component analysis [MICA] or indepen-
dent subspace analysis) in which the source components can be partitioned into
groups, so that components from different groups are statistically independent
but components belonging to the same group may be dependent [7,8,9].

As mentioned above, this paper exploits a stronger criterion of statistical in-
dependence than conventional approaches (i.e., separability of the phase space
density function instead of separability of the state space density function). Fur-
thermore, the new method differs from earlier approaches on the technical level.
For example, the proposed method exploits statistical constraints on source time
derivatives that are locally defined in the state space, in contrast to the usual
criteria for statistical independence that are global conditions on the source time
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series or its time derivatives [10]. Furthermore, the nonlinearities of the mixing
function are unraveled by imposition of local second-order statistical constraints,
unlike many conventional approaches that rely on higher-order statistics [1,2].
In addition, the constraints of statistical independence are used to construct the
mixing function in a “deterministic” manner, without the need for parameter-
izing it (with a neural network architecture or other means) and without using
probabilistic learning methods [11,12]. And, the new method is quite general, un-
like some other techniques that are limited to the separation of post-nonlinear
mixtures [13] or other special cases. Finally, the use of differential geometry in
this paper should not be confused with existing applications of differential geom-
etry to BSS. In our case, the observed measurement trajectory is used to derive
a metric on the system’s state space, and the vanishing of the curvature tensor is
shown to be a necessary condition for separability of the data. In contrast, other
authors [14] define a metric on a completely different space, the search space of
possible mixing functions, so that “natural” (i.e., covariant) differentiation can
be used to expedite the search for the function that optimizes the fit to the
observed data.

2 Method

This Section describes how the phase space density function of the observed data
induces a Riemannian geometry on the state space and shows how to compute the
metric and curvature tensor of this space from the observed time series. Next,
we show that, if curvature tensor is non-vanishing, the observed data are not
separable. However, if the curvature tensor vanishes, we show how to determine
whether the data are separable, and, if they are, we show how to find the mixing
function, which is essentially unique.

Let x = x(t) (xk for k = 1, 2, . . . , n) denote the trajectory of a time series.
Suppose that there is a phase space density function ρ(x, ẋ), which measures
the fraction of total time that the trajectory spends in each small neighborhood
dxdẋ of (x, ẋ)-space (i.e., phase space). As discussed in [6], most classical physical
systems in thermal equilibrium with a “bath” have such a phase space density
function: namely, the Maxwell-Boltzmann distribution [4]. Next, define gkl(x) to
be the local second-order velocity correlation matrix [6]

gkl(x) =< (ẋk − ¯̇xk) (ẋl − ¯̇xl) >x (2)

where the bracket denotes the time average over the trajectory’s segments in a
small neighborhood of x and where ¯̇x =< ẋ >x, the local time average of ẋ.
In other words, gkl is a combination of first and second moments of the local
velocity distribution. Because this correlation matrix transforms as a symmetric
contravariant tensor, it can be taken to be a contravariant metric on the system’s
state space. Furthermore, as long as the local velocity distribution is not con-
fined to a hyperplane in velocity space, this tensor is positive definite and can be
inverted to form the corresponding covariant metric gkl. Thus, under these con-
ditions, the time series induces a non-singular metric on state space. This metric



68 D.N. Levin

can then be used to compute the affine connection Γ k
lm and Riemann-Christoffel

curvature tensor Rk
lmn of state space by means of the standard formulas of

differential geometry [15]
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imΓ i
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inΓ i
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where we have used the Einstein convention of summing over repeated indices.
Now, assume that the data are separable and that x represents a set of source

variables; i.e., assume that the phase space density function ρ is equal to the
product of density functions of each component of x. It follows from definition
(2) that the metric gkl(x) is diagonal and has positive diagonal elements, each
of which is a function of the corresponding coordinate component. Therefore,
the individual components of x can be transformed in order to create a new
state space coordinate system in which the metric is the identity matrix and the
curvature tensor (4) vanishes. It follows that the curvature tensor must vanish
in every coordinate system, including the coordinate system x̃ defined by the
observed data

R̃k
lmn(x̃) = 0 (5)

In other words, the vanishing of the curvature tensor is a necessary consequence
of separability. Therefore, if this data-derived quantity does not vanish, the data
cannot be transformed so that their phase space density function is separable.

On the other hand, if the data do satisfy (5), there is only one possible sepa-
rable coordinate system (up to transformations that do not affect separability),
and it can be explicitly constructed from the observed data x̃(t). To see this, first
note that, on a flat manifold (e.g., (5)) with a positive definite metric, it is always
possible to explicitly construct a “Euclidean” coordinate system for which the
metric is the identity matrix. Furthermore, if a coordinate system has a diagonal
metric with positive diagonal elements that are functions of the corresponding
coordinate components, it can be derived from this Euclidean one by means
of an n-dimensional rotation, followed by transformations that do not affect
separability (i.e., translations, permutations, and transformations of individual
components). Therefore, because every separable coordinate system must have a
diagonal metric with the aforementioned properties, all possible separable coor-
dinate systems can be found by constructing a Euclidean coordinate system and
then finding all rotations of it that are separable. The first step is to construct
a Euclidean coordinate system in the following manner: 1) at some arbitrarily-
chosen point x̃0, select n small vectors δx̃(i) (i = 1, 2, . . . , n) that are orthonormal
with respect to the metric at that point (i.e., g̃kl(x̃0)δx̃(i)kδx̃(j)l = δij , where δij

is the Kronecker delta); 2) starting at x̃0, use the affine connection to repeat-
edly parallel transfer all δx̃ along δx̃(1); 3) starting at each point along the
resulting geodesic path, repeatedly parallel transfer these vectors along δx̃(2);
... continue the parallel transfer process along other directions ... n+1) starting



Using State Space Differential Geometry 69

at each point along the most recently produced geodesic path, parallel transfer
these vectors along δx̃(n). Finally, each point is assigned the geodesic coordinate
s (sk, k = 1, 2, . . . , n), where sk represents the number of parallel transfers of the
vector δx̃(k) that was required to reach it. Differential geometry [15] guarantees
that the metric of a flat, positive definite manifold will be the identity matrix in
a geodesic coordinate system constructed in this way. We can now transform the
data into this Euclidean coordinate system and examine the separability of all
possible rotations of it. The easiest way to do this is to compute the second-order
correlation matrix

σkl =< (sk − s̄k) (sl − s̄l) > (6)

where the brackets denote the time average over the entire trajectory and
s̄ =< s >. If this data-derived matrix is not degenerate, there is a unique rotation
that diagonalizes it, and the corresponding rotation of the s coordinate system
is the only candidate for a separable coordinate system (up to transformations
that do not affect separability). Its separability can be determined by explicitly
computing the data’s phase space density function in order to see if it factor-
izes in this rotated coordinate system. Alternatively, we can use higher-order
statistical criteria to see if the rotated s components are truly independent.

In summary, the BSS problem can be solved by the following procedure:

1. Use the data x̃(t) to compute the metric, affine connection, and curvature
of the state space [(2-4)].

2. If the curvature does not vanish at each point, the data are not separable.
3. If the state space curvature does vanish:

(a) Compute the transformation to a Euclidean coordinate system s and
transform the data into it.

(b) Find the rotation that diagonalizes the second-order correlation matrix σ
and transform to the corresponding rotation of the s coordinate system.

(c) Compute the phase space density function of the data in the rotated s
coordinate system.

(d) If the density function factorizes, the data are separable, and the rotated
s coordinates are the unique source variables (up to translations, per-
mutations, and transformations of individual components). If the density
function does not factorize, the data are not separable.

3 Discussion

This paper outlines a new approach to nonlinear BSS that is based on a notion of
statistical independence, which is characteristic of a wide variety of classical non-
interacting physical systems. Specifically, the new method seeks to determine if
the observed data are mixtures of source variables that have a phase-space den-
sity function equal to the product of density functions of individual components.
This criterion of statistical independence is stronger than that of conventional
approaches to BSS, in which only the state-space density function is required
to be separable. Because of the relative strength of this requirement, the new
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approach to BSS produces a unique solution in each case (i.e., data are either
inseparable or are separable by a unique mixing function), unlike the conven-
tional approach that always finds an infinite number of mixing functions. Given
a time series of observations in a measurement-defined coordinate system (x̃) on
the system’s state space, the basic problem is to determine if there is another co-
ordinate system (a source coordinate system x) in which the density function is
factorizable. The existence (or non-existence) of such a source coordinate system
is a coordinate-system-independent property of the time series of data (i.e., an
intrinsic or “inner” property). This is because, in all coordinate systems, there
either is or is not a transformation to such a source coordinate system. In general,
differential geometry provides mathematical machinery for determining whether
a manifold has a coordinate-system-independent property like this. In the case
at hand, we can induce a geometric structure on the state space by identifying its
metric with the local second-order correlation matrix of the data’s velocity [6].
Then, a necessary condition for BSS is that the curvature tensor vanishes in all
coordinate systems (including the measurement coordinate system). Therefore,
if this data-derived quantity is non-vanishing, the observations are not separable.
However, if the curvature tensor is zero, the data are separable if and only if the
density function is seen to factorize in a coordinate system that can be explicitly
constructed from the data-derived affine connection. In that case, these coordi-
nates are the unique source variables (up to transformations that do not affect
separability).

A longer version of this paper [5] describes the solution of a more general BSS
problem (sometimes called multidimensional ICA or independent subspace anal-
ysis) in which the source components are only required to be partitioned into
groups that are statistically independent of one another but contain statistically
interdependent variables [7,8,9]. The possible separable coordinate systems are a
subset of all coordinate systems in which the metric is block -diagonal (instead of
fully diagonal as in this paper). All of these “block-diagonal coordinate systems”
can be derived from geodesic coordinate systems constructed from geodesics
along a finite number of special directions in state space, and these special direc-
tions can be computed from algebraic equations involving the curvature tensor.
Thus, it is possible to construct every block-diagonal coordinate system and then
explicitly determine if the density function is separable in it. An exceptional sit-
uation arises if the metric can be transformed into a block-diagonal form with
two or more one-dimensional blocks. In this case, there is an unknown rotation
on this two-dimensional (or higher dimensional) subspace that is not determined
by the requirement of metric block-diagonality. However, much as in Sect. 2, this
rotation can be determined by applying other statistical requirements of sepa-
rability, such as block diagonality of the second-order state variable correlation
matrix or block-diagonality of higher-order local velocity correlation functions.
In reference [5], this procedure for performing multidimensional ICA is described
in detail, and it is illustrated with analytic examples, as well as with a detailed
numerical simulation of an experiment.
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What are the limitations of the applicability of this method? It is certainly
critical that there be a well-defined metric on state space. However, this will be
the case if the measurement time series is described by a phase space density
function, a requirement that is satisfied by the trajectories of a wide variety
of physical systems [6]. In practical applications, the measurements must cover
state space densely enough to be able to compute the metric, as well as its first
and second derivatives (required to calculate the affine connection and curvature
tensor). In the numerical simulation in [5], approximately 8.3 million short tra-
jectory segments (containing a total of 56 million points) were used to compute
the metric and curvature tensor on a three-dimensional state space. Of course,
if the dimensionality of the state space is higher, even more data will be needed.
So, a relatively large amount of data may be required in order to be able to
determine their separability. There are few other limitations on the applicability
of the technique. For example, computational expense is not prohibitive. The
computation of the metric is the most CPU-intensive part of the method. How-
ever, it can be distributed over multiple processors by dividing the observed data
into “chunks” corresponding to different time intervals, each of which is sent to a
different processor where its contribution to the metric (2) is computed. As ad-
ditional data are accumulated, they can be processed separately and then added
into the time average of the data that were used to compute the earlier estimate
of the metric. Thus, the earlier data need not be processed again, and only the
latest observations need to be kept in memory.
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