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Abstract. This paper derives a new algorithm that performs indepen-
dent component analysis (ICA) by optimizing the contrast function of
the RADICAL algorithm. The core idea of the proposed optimization
method is to combine the global search of a good initial condition with
a gradient-descent algorithm. This new ICA algorithm performs faster
than the RADICAL algorithm (based on Jacobi rotations) while still
preserving, and even enhancing, the strong robustness properties that
result from its contrast.
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1 Introduction

Independent Component Analysis (ICA) was originally developed for the blind
source separation problem. It aims at recovering independent source signals from
linear mixtures of these. As in the seminal paper of Comon [1], a linear instan-
taneous mixture model will be considered in this paper,

X = AS, (1)

where X , A and S are matrices in R
n×N , R

n×p and R
p×N respectively, with

p less or equal to n. The rows of S are assumed to be samples of independent
random variables. Thus, ICA provides a linear representation of the data X in
terms of components S that are statistically independent.

ICA algorithms are based on the inverse of the mixing model (1),

Z = WT X,

where Z and W are matrices in R
p×N and R

n×p, respectively. The aim of ICA
algorithms is to optimize over W the statistical independence of the p random
variables, whose samples are given in the p rows of Z. The statistical indepen-
dence is measured by a cost function

γ : R
n×p → R : W �→ γ(W ),

termed the contrast function.
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In the remainder of this paper, we assume that the data matrix X has been
preprocessed by means of prewhitening and its dimensions have been reduced
by retaining the dominant p-dimensional subspace. Consequently, the contrast
function γ is defined on a set of square matrices, i.e,

γ : R
p×p → R : W �→ γ(W ).

Several contrast functions for ICA can be found in the literature. In this paper,
we consider the RADICAL contrast function proposed in [2]. Advantages of this
contrast are a strong robustness to outliers as well as to the lack of samples.

A good contrast for γ is not enough to make an efficient ICA algorithm. The
other ingredient is a suitable numerical method to compute an optimizer of γ.
This is the topic of the present paper. The authors of [2] optimize their contrast
by means of Jacobi rotations combined with an exhaustive search. This yields
the complete Robust Accurate Direct ICA aLgorithm (RADICAL). We propose a
new steepest-descent-based optimization method that reduces the computational
load of RADICAL.

The paper is organized as follows. The contrast function of RADICAL is de-
tailed in Section 2. Section 3 describes a gradient-descent optimization algorithm.
In Section 4, this local optimization is integrated within a global optimization
framework. The performance of this new ICA algorithm is briefly illustrated in
Section 5.

2 A Robust Contrast Function

Like many other measures of statistical independence, the contrast of RADI-
CAL [2] is derived from the mutual information [3]. The mutual information I(Z)
of a multivariate random variable Z = (z1 . . . , zp) is defined as the Kullback-
Leibler divergence between the joint distribution and the product of the marginal
distributions,

I(Z) =
∫

p(z1, . . . , zp) log
p(z1, . . . , zp)
p(z1) . . . p(zp)

dz1 . . . dzp. (2)

This quantity presents all the required properties for a contrast function: it
is nonnegative and equals zero if and only if the variables Z are statistically
independent. Hence, its global minimum corresponds to the solution of the ICA
problem.

The challenge is to get a good estimator of I(Z). A possible approach is to
express the mutual information in terms of the differential entropy of a univariate
random variable z,

S(z) =
∫

p(z) log(p(z))dz, (3)

for which efficient statistical estimators are available.
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According to definitions (2) and (3), the following holds,

I(Z) =
p∑

i=1

S(zi) − S(z1, . . . , zp). (4)

The introduction of the demixing model Z = WT X within (4) results in

γ(W ) =
p∑

i=1

S(i)(W ) − log(|W |) − S(x1, . . . , xp), (5)

where S(i)(W ) = S(eT
i WT X) and ei is the ith basis vector. The last term

of (5) is constant and its evaluation can be skipped by the ICA algorithm. An
estimator for the differential entropy of univariate variables was derived in [2] by
considering order statistics. Given a univariate random variable z defined by its
samples, the order statistics of z is the set of samples {z1, . . . , zN} rearranged
in non-decreasing order, i.e., z1 ≤ . . . ≤ zN . The differential entropy of z can be
estimated by the simple formula

S(z) =
1

N − m

N−m∑
j=1

log
(

N + 1
m

(z(j+m) − z(j))
)

, (6)

where m is typically set to
√

N . Function (5) with the differential entropies being
estimated by (6) is the contrast of the RADICAL algorithm [2].

This contrast presents several assets in terms of robustness. Its robustness to
outliers was underlined in the original paper [2]. Robustness to outliers means
that the presence of some corrupted entries in the observations data set X has
little influence on the position of the global minimizer of that contrast. This is a
key feature in many applications, especially for the analysis of gene expression
data [4], where each entry in the observation matrix results from individual
experiments that are likely to sometimes fail. The RADICAL contrast brings also
advances in terms of robustness to the lack of samples. This will be illustrated
in Section 5.

3 A Line-Search Optimization Algorithm

In accordance with the fact that the independence between random variables
is not altered by scaling, the contrast function (5) presents the scale invariance
property

γ(W ) = γ(WΛ),

for all invertible diagonal matrices Λ. Optimizing a function with such an invari-
ance property is a degenerate problem, which entails difficulties of theoretical
(convergence analysis) and practical nature unless some constraints are intro-
duced. In the case of prewhitening-based ICA, it is common practice to restrict
the matrix W to be orthonormal [1], i.e., WT W = I. Classical constrained op-
timization methods could be used. We favor the alternative to incorporate the
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constraints directly into the search space and to perform unconstrained opti-
mization over the orthogonal group, i.e.,

min
W∈Op

γ(W ) with Op = {W ∈ R
p×p|WT W = I}. (7)

Most classical unconstrained optimization methods — such as gradient-descent,
Newton, trust-region and conjugate gradient methods — have been generalized
to the optimization over matrix manifolds (see [5] and references therein).

The remainder of this section deals with the derivation of a line-search op-
timization method on the orthogonal group for the RADICAL contrast func-
tion (5). Line-search on a nonlinear manifold is based on the update formula

W+ = RW (tη), (8)

which consists in moving from the current iterate W ∈ Op in the search direction
η with a certain step size t to identify the next iterate W+ ∈ Op. t is a scalar
and η belongs to TW Op = {WΩ|Ω ∈ R

p×p, ΩT = −Ω}, the tangent space to Op

at W . The retraction RW is a mapping from the tangent space to the manifold.
More details about this notion can be found in [5]. Our algorithm selects the
Armijo point tA as step size and the opposite of the gradient of the cost function
γ at the current iterate as search direction.

The Armijo step size is defined by tA = βmα, with the scalars α > 0, β ∈ (0, 1)
and m being the first nonnegative integer such that

γ(W ) − γ(RW (βmα)) ≥ −σ〈gradγ(W ), βmαη〉W ,

where W is the current iterate on Op and σ ∈ (0, 1). This step size ensures a
sufficient decrease of the cost function at each iteration. The resulting line-search
algorithm converges to the set of points where the gradient of γ vanishes [5].

An analytical expression of the gradient of the RADICAL contrast (5) has
been derived in [6]. Let us just sketch the main points of this computation.
First, because of the orthonormality condition, the second term of (5) vanishes.
Furthermore, since the last term is constant, we have

gradγ(W ) =
p∑

i=1

gradS(i)(W ).

The gradient of S(i) is given by

gradS(i)(W ) = PTW

(
gradS̃(i)(W )

)
,

where S̃(i) is the extension of S(i) over R
p×p, i.e., S̃(i) = S(i)|Op , and PTW (Z)

is the projection operator, namely, in case of the orthogonal group, PTW (Z) =
1
2W (WT Z − ZT W ). The evaluation of the gradient in the embedding manifold
is performed by means of the identity

DS̃(i)(W )[Z] = 〈gradS̃(i)(W ), Z〉,
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with the metric 〈Z1, Z2〉 = tr(ZT
1 Z2) and where

DS̃(i)(W )[Z] = lim
t→0

S̃(i)(W + tZ) − S̃(i)(W )
t

is the standard directional derivative of S̃(i) at W in the direction Z. Since one
wants to compute the gradient on the orthogonal group, the direction Z can be
restricted to the tangent plane at the current iterate, i.e., Z ∈ TW Op.

As we have shown in [6], the gradient of the differential entropy estimator on
the orthogonal group Op is finally given by

gradS(i)(W ) = PTW

⎛
⎝ 1

N − m

N−m∑
j=1

(x(kj+m) − x(kj))eT
i

eT
i W (x(kj+m) − x(kj))

⎞
⎠ ,

where x(k) denotes the kth column of the data matrix X . The indices kj+m and
kj point to the samples of the estimated source zi, which are respectively at
positions j + m and j in the order statistics of zi. The computational cost for
the gradient is of the same order as for the contrast, namely O(pN log N).

More details about the Armijo point, the computation of gradients and, more
generally, about line-search algorithms on manifolds can be found in [5].

4 Towards a Global Optimization Scheme

The algorithm described in the previous section inherits all the local convergence
properties of line-search optimization methods [5]. Nevertheless, the contrast of
RADICAL presents many spurious local minima that do not properly separate
the observations X into independent sources. The line-search algorithm may thus
fail in the context of ICA. Nevertheless, it leads to an efficient ICA algorithm
when it is initialized within the basin of attraction of the global minimizer W∗. It
is therefore essential to find good initial candidates for the line-search algorithm.
The procedure proposed in this paper rests on empirical observations about the
shape of the contrast function γ(W ). Figure 1 represents the evolution of this
function as well as of the norm of its gradient along geodesic curves on the
orthogonal group Op for a particular benchmark setup (p=6, N=1000).

Figure 1 and extensive simulations not included in the present paper incite
us to view the contrast function of RADICAL as possessing a very deep global
minimum surrounded by many small local minima. Furthermore, the norm of
the gradient tends to be much larger within the basin of attraction of the global
minimizer. The norm of the gradient thus provides a criterion to discriminate
between points that are inside this basin of attraction and those that are outside.

Our algorithm precedes the gradient optimization with the global search of a
point where the gradient has a large magnitude. The search is performed along
particular geodesics of the orthogonal group, exploiting the low numerical cost
of Jacobi rotations. All geodesics on the orthogonal group Op have the form
Γ (t) = WetB, where W ∈ Op and B is a skew-symmetric matrix of the same
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0 Curvilinear abscissa

γ Regular geodesic
Geodesic that goes through the global minimum

W
*

0 Curvilinear abscissa

‖grad (γ)‖
Regular geodesic
Geodesic that goes through the global minimum

W
*

Fig. 1. Evolution of the contrast and the norm of its gradient along geodesics of Op

size as W . Jacobi rotations correspond to B having only zero elements except one
element in the upper triangle and its symmetric counterpart, i.e., B(i, j) = 1 and
B(j, i) = −1 with i < j. The contrast function γ evaluated along such geodesics
has a periodicity of π

2 , i.e.,

γ(WetB) = γ(We(t+π
2 )B)

Such a geodesic is in fact a Jacobi rotation on the two-dimensional subspace
spanned by the directions i and j. This periodicity is an interesting feature for
an exhaustive search over the curvilinear abscissa t since it allows to define upper
and lower bounds for t.

Our algorithm evaluates the gradient at a fixed number of points that are
uniformly distributed on randomly selected geodesics of periodicity π

2 . This pro-
cess is pursued until a point with sufficient steepness is found. The steepness is
simply evaluated by the Frobenius norm of the gradient of γ. Such a point is
expected to belong to the basin of attraction of the global minimum and serves
as initialization for the line-search algorithm of the previous section.

5 Some Benchmark Simulations

This section evaluates the performance of the new algorithm against the perfor-
mance of the RADICAL algorithm. All results are obtained on benchmark setups
that artificially generate observations X by linear transformation of known sta-
tistically independent sources S.

Figure 2 illustrates that the new algorithm reaches the global minimum of the
contrast with less than half the computational effort required by the RADICAL
algorithm. These results are based on a benchmark with N = 1000 samples while
the dimension p of the problem varies from 2 to 8. For each p, five different data
matrices X are obtained by randomly mixing p sources chosen as sinusoids of
random frequencies and random phases. The indicated computational time is an
average over these five ICA runs.

Figure 3 highlights the robustness properties of the contrast discussed in
Section 2. The left graph results from a benchmark with p = 6 sources and
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Fig. 2. Reduced computational time of the new ICA algorithm

N = 1000 samples. A given percent of the entries of the data set have been
artificially corrupted to simulate outliers. The right graph considers a bench-
mark with p = 6 sources, no outliers and a varying number of samples. The
quality of the ICA separation is measured by an index α1, which stands for a
good performance once it is close to zero. The left graph indicates that both the
new algorithm and the RADICAL algorithm are robust to these outliers while
classical ICA algorithms such as JADE [7] or FastICA [8] collapse immediately.
It should be noted that the new algorithm supports up to 3% of outliers on the
present benchmark and is thus more robust than RADICAL. Similarly, the right
graph of Figure 3 suggests that the new algorithm is more robust to the lack of
samples than RADICAL.
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Fig. 3. Robustness properties of the new ICA algorithm

6 Conclusions

The RADICAL algorithm [2] presents very desirable robustness properties: ro-
bustness to outliers and robustness to the lack of samples. These are essential
1 Given the demixing matrix W ∗ and the matrix W identified by the ICA algorithm,

α(W, W ∗) = min
Λ,P

‖WΛP − W ∗‖F

‖W ∗‖F
,

where Λ is a non-singular diagonal matrix and P a permutation matrix.
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for some applications, in particular for the analysis of biological data that are
usually of poor quality because of the few number of samples available and the
presence of corrupted entries resulting from failed experiments [4]. The RADI-
CAL algorithm inherits these robustness properties from its contrast function.
In this paper, we have shown that the computation of the demixing matrix by
optimization of the RADICAL contrast function can be performed in a more
efficient manner than with the Jacobi rotation approach considered in [2]. Our
new optimization process works in two stages. It first identifies a point that sup-
posedly belongs to the basin of attraction of the global minimum and performs
afterwards the local optimization of the contrast by gradient-descent from this
point. This new ICA algorithm requires less computational effort and seems to
enhance the robustness margins.
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