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Abstract. Independent Subspace Analysis (ISA) is a generalization of
ICA. It tries to find a basis in which a given random vector can be de-
composed into groups of mutually independent random vectors. Since
the first introduction of ISA, various algorithms to solve this problem
have been introduced, however a general proof of the uniqueness of ISA
decompositions remained an open question. In this contribution we ad-
dress this question and sketch a proof for the separability of ISA. The key
condition for separability is to require the subspaces to be not further
decomposable (irreducible). Based on a decomposition into irreducible
components, we formulate a general model for ISA without restrictions
on the group sizes. The validity of the uniqueness result is illustrated on
a toy example. Moreover, an extension of ISA to subspace extraction is
introduced and its indeterminacies are discussed.

With the increasing popularity of Independent Component Analysis, people
started to get interested in extensions. Cardoso [2] was the first to formulate
an extension denoted here as Independent Subspace Analysis. The general idea
is that for a given observation X we try to find an invertible matrix W such that
WX = (ST

1 , . . . ,ST
k )T with mutually independent random vectors Si. If all Si

are one-dimensional, this is ICA, and we have the well-known separability results
of ICA [3]. However without dimensionality restrictions, if mutual independence
of the vectors Si is the only restriction imposed on W, ISA cannot produce
meaningful results: if W simply is the identity and k = 1, then S1 = X, which is
independent of the (non-existing) rest. So, further restrictions are required for a
meaningful model. A common approach is to fix the group size in advance, see [5]
for a short review of ISA models. Here, we propose a more general concept based
on [5], namely irreducibility of the recovered sources Si that is the requirement
that any Si cannot be further decomposed. Our main contribution is a sound
proof for the separability of this model together with a confirming simulation,
thereby giving the details for the proposed ISA model from [5].

The manuscript is organized as follows. In the next section, we motivate the
existence of such a separability result by studying a toy example. Then we give
the sketch of the proof, and finally extend it to blind subspace extraction.
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1 Motivation

Usually ISA is seen as a byproduct of ICA algorithms, which are assumed to
decompose signals into components ‘as independent as possible’; the compo-
nents are then simply sorted to give a decomposition into higher-dimensional
subspaces. However this approach is not as straight-forward as it might seem,
as, strictly speaking, if ICA is performed on a data set that cannot be completely
decomposed into one-dimensional independent components, we are applying ICA
to a data set that does not follow the ICA model and have no theoretical results
predicting the behavior of ICA algorithms. Here we present some simulations,
which give a hint that indeed ISA might not be so unproblematic.

We generated a toy data set consisting of two independent sources, each of
which were not further decomposable. The first data set consisted of a wireframe
model of a 3-dimensional cube, the second data set was created from a solid
2-dimensional circle, see figure 1. We uniformly picked N = 10.000 samples
and mixed them in batch runs by applying M = 200.000 uniformly sampled
orthogonal matrices. The 200.000 matrices were sampled, by choosing random
matrices B with entries normally sampled with mean 0 and variance 1, which
then were symmetrically orthogonalized by A = (BBT )−0.5B. A mixture with
an orthogonal matrix deviating from the block-structure should also deviate from
independence within the blocks. As an ad-hoc measure for dependence within
the blocks, we used the forth-order cumulant tensor:

δD(X) =
3∑

i=1

5∑

j=4

5∑

k=1

5∑

l=1

cum2(Xi, Xj , Xk, Xl) .

This is motivated by the well-known and in ICA often used fact that the crosscu-
mulant tensor is zero, i.e. cum2(Y1,Y2,Y∗,Y∗) = 0, if Y1 and Y2 are indepen-
dent. We measured the deviation of our mixing matrices from block-structure
by simply taking the Frobenius-norm of the off-block-diagonal blocks:

off(A) :=
3∑

i=1

5∑

j=4

(a2
ij + a2

ji) .

If ISA actually guarantees a unique block-structure in fourth order, we should
get a dependence of 0 only if the mixing matrix itself is block-diagonal that is if
off A = 0. However, due to sampling errors, this is of course never reached, so we
estimate the minima of δD. Figure 2 shows the relation of off A and δD(AS),
and here we observe not only the expected minimum at off A = 0, but two
additional minima at off A = 2 and off A = 4. In order to take a closer look
at these three points, we chose three matrices A0, A2 and A4, corresponding
to the three local minima of the plot in Fig. 2. Starting with these matrices,
we performed in their neighborhood a search for matrices with a lower model
deviation. Again we sampled random orthogonal matrices, but this time biased
them to be close to the identity matrix, as we wanted to search locally. We
therefore again orthogonalized matrices as above, however chose the matrices B
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(a) 3-dimensional sources S1 (b) 2-dimensional sources S2

Fig. 1. Toy data set

to be not arbitrarily normally sampled, but took matrices whose entries were
normally sampled with mean 0 and variance v, which we then added to the
identity matrix, modifying A0, A2 and A4 in every step only if it would perform
a better block-independence. We evaluated this for v = 0.1, v = 0.01 and v =
0.001, each time running for 20.000 steps. The result of this is plotted in Fig.
3, and we indeed observe considerably better block-independence in the order
of 1.5 magnitudes in the neighborhood of A0 than in the neighborhoods of
A2 and A4. While the three local minima found by random sampling show
only small difference (δD(A0) = 0.0135, δD(A2) = 0.0107, δD(A4) = 0.0285),
local searches show up better minima for all three areas (δD(A0) = 0.0002,
δD(A2) = 0.0055, δD(A4) = 0.0053), especially the area around off A = 0. As
a side note, the final matrices A2 and A4 correspond to the product of a block-
diagonal matrix and a permutation matrices where one, respectively two indices
in each of the two off-diagonal blocks are non-zero.

This shows us that while we observe local minima of our block-dependency
measure on our data set, a closer inspection reveals that these minima are of
different quality and we actually have only a single global minimum. We conclude
that separability of ISA indeed should hold.

2 Uniqueness of ISA

In this section we present the proof of uniqueness of ISA. After explaining the
notion of irreducibility of a random vector, we show why this idea is essential
for the separability of ISA.

2.1 The ICA Model

Let us quickly repeat a few facts about ICA. The linear, noiseless ICA model
can be described by the equation X = AS, where S = (S1, . . . , Sn)T denotes
a random vector with mutually independent components Si (sources) and an
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Fig. 2. Relation between block-crosserror and block-independence. Note the two addi-
tional minima at off A = 2 and off A = 4.

invertible mixing matrix A. The task of ICA is the recovery of S, given only the
observations X. This is obviously only possible up to the indeterminacies scaling
and permutation, and it is well-known that recovery is possible up to exactly
these permutations if S is square-integrable and contains at most one Gaussian
component [3, 4].

2.2 The ISA Model

Loosening the requirement of mutual independence of the sources naturally
brings up the idea of describing ISA through the same equation X = AS, where
now S = (ST

1 ,ST
2 , . . . ,ST

n )T with mutually independent random vectors Si, how-
ever this time dependencies within the multidimensional Si are allowed. Obvious
indeterminacies of such a model are invertible linear transforms within the sub-
spaces Si (which can be seen as a generalization of scaling to higher dimensions)
and permutations of subspaces of the same size (which, again, is the higher di-
mensional generalization of the regular permutation seen in ICA). However this
model is not complete, since for any observation X a decomposition into mutu-
ally independent subspaces where dependencies within the subspaces are allowed
is given simply by X itself. Realizing this naturally brings up the requirement of
S to be ‘as independent as possible’. This is formally described by the following
definition.

Definition 1. A random vector S is said to be irreducible if it contains no
lower-dimensional independent component. An invertible matrix W is called a
(general) independent subspace analysis of X if WX = (ST

1 , . . . ,ST
k )T with

mutually independent, irreducible random vectors Si. Then (ST
1 , . . . ,ST

k ) is called
an irreducible decomposition of X.

Irreducibility is a key property in uniqueness of ISA and indeed, if we additionally
assume irreducibility, we can show that this essentially allows for separability of
ISA up to the above mentioned indeterminacies of higher dimensional scaling
and permutation of subspaces of the same size.
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Fig. 3. Search for local minima around off A = 0 (lower graph) and off A = 2 respec-
tively off A = 4 (upper two graphs)

2.3 Uniqueness of ISA

We will now prove uniqueness of Independent Subspace Analysis under the addi-
tional assumption of no independent Gaussian components. Indeed, any orthog-
onal transformation of two decorrelated (and hence independent) Gaussians is
again independent, so for such random vectors clearly such a strong identification
result would not be possible.

Theorem 1. Given a random vector X with existing covariance and no Gaus-
sian independent component, then an ISA of X exists and is unique except for
scaling and permutation.

Existence holds trivially, but uniqueness is not obvious. Defining the equivalence
relation ∼ on random vectors as X ∼ Y :⇔ X = AY for some A ∈ Gl(n), we
are easily able to show uniqueness given the following lemma:

Lemma 1. Let S = (ST
1 , . . . ,ST

N )T be a square-integrable decomposition of S
into irreducible, mutually independent components Si where no Si is a one-
dimensional Gaussian. If (XT

1 ,XT
2 )T is an independent decomposition of S, then

there is some permutation π of {1, . . . , N} such that X1 ∼ (ST
π(1), . . . ,S

T
π(l))

T and
X2 ∼ (ST

π(l+1), . . . ,S
T
π(N))

T for some l.

So, given an irreducible decomposition of a random variable S with no inde-
pendent Gaussian components, any decomposition of it into independent (not
necessarily irreducible) components ‘splits along the irreducible components’.

Using this lemma, Theorem 1 is easy to show: Given two irreducible decom-
positions (XT

1 , . . . ,XT
N )T and (ST

1 , . . . ,ST
M )T , we search for the smallest irre-

ducible component appearing, which we may assume to be X1. We then group
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(XT
2 , . . . ,XT

N )T into a (larger) random vector. As this independent decomposi-
tion splits along the irreducible components Si and for all j, dim(X1) ≤ dim(Sj),
X1 is identical to one of the Sj . We may remove both of these and go on itera-
tively, thus proving the theorem.

The more complicated part is the proof of Lemma 1, and due to space restric-
tions we can only sketch the proof.

Before starting, we note that due to the assumption of existing covariance,
we may whiten both X and S, in which case it is easy to observe that A is
orthogonal. For notational reasons, we will split up the mixing matrix A into
submatrices, the sizes of which are according to the sizes of Si and Xj :

(
X1
X2

)
=

(
A11 . . . A1N

A21 . . . A2N

)
⎛

⎜⎝
S1
...

SN

⎞

⎟⎠ (1)

so Xi =
∑N

k=1 AikSk. We now claim that in every pair {A1j ,A2j} one of the
two matrices is zero.

We fix k = k0 and show this claim for k0. Let us assume the converse,
that is that both rank(A1k0) �= 0 and rank(A2k0 ) �= 0. As A has full rank,
rank(A1k0) + rank(A2k0) ≥ dim(Sk0) =: D. This leaves us with two cases to
handle, rank(A1k0) + rank(A2k0) = D and rank(A1k0) + rank(A2k0) > D. Let
us first address the first case and show that this contradicts the irreducibility
of Sk0 .

Lemma 2. Assume

S = (A1|A2)
(

X1
X2

)

with independent random vectors X1 and X2 and A1, A2 such that rank(AT
1 )+

rank(AT
2 ) = dim(S) and rank(A1|A2) = dim(S). Then S is reducible.

Proof. Let D := dim(S) and d := dim
(
ker(AT

1 )
)
. Then dim

(
ker(AT

2 )
)

= D−d,
and we can find a linearly independent set {v1, . . . ,vd} such that vT

i A1 = 0 for
any 1 ≤ i ≤ d, and similarly a linearly independent set {vd+1, . . . ,vD} such that
vT

j A2 = 0 for any d + 1 ≤ j ≤ D. These two sets are guaranteed to be disjoint,
as rank(A1|A2) = dim(S). Using these vectors, we define

T :=

⎛

⎜⎝
vT

1
...

vT
D

⎞

⎟⎠ .

Then

TS = (TA1|TA2)
(

X1
X2

)
=

(
T1 0
0 T2

) (
X1
X2

)
=

(
T1X1
T2X2

)

with some full rank matrices T1 and T2. It follows that S is reducible, as X1
and X2 are independent and T is invertible. �	
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The other case, rank(A1k0) + rank(A2k0 ) > D is harder to prove and follows
some of the ideas presented in [4].

Lemma 3. Given (1), if there is some 1 ≤ k0 ≤ N such that rank(A1k0 ) +
rank(A2k0) > dim(Sk0), then Sk0 contains an irreducible Gaussian component.

This concludes the proof of Theorem 1.

2.4 Dealing with Gaussians

The section above explicitly excluded independent Gaussian components in order
to avoid additional indeterminacies. Recently, a general decomposition model
dealing with Gaussians was proposed in the form of the so-called non-Gaussian
component analysis (NGCA) [1]. It tries to detect a whole non-Gaussian subspace
within the data, and no assumption of independence within the subspace is
made. More precisely, given a random vector X, a factorization X = AS with
an invertible matrix A, S = (SN ,SG) and SN a square-integrable m-dimensional
random vector is called an m-decomposition of X if SN and SG are stochastically
independent and SG is Gaussian. In this case, X is said to be m-decomposable and
X is denoted to be minimally n-decomposable if X is not (n − 1)-decomposable.
According to our previous notation, SN and SG are independent components of
X. It has been shown that the subspaces of such decompositions are unique [6]:

Theorem 2. The mixing matrix A of a minimal decomposition is unique except
for transformations in each of the two subspaces.

Moreover, explicit algorithms can be constructed for identifying the subspaces
[6]. This result enables us to generalize Theorem 1 and to get a general decom-
position theorem, which characterizes solutions of ISA.

Theorem 3. Given a random vector X with existing covariance, an ISA of X
exists and is unique except for permutation of components of the same dimension
and invertible transformations within each independent component and within
the Gaussian part.

Proof. Existence is obvious. Uniqueness follows after first applying Theorem 2
to X and then Theorem 1 to the non-Gaussian part. �	

3 Independent Subspace Extraction

Having shown uniqueness of the decomposition, we are able to introduce Inde-
pendent (Irreducible) Subspace Extraction, which separates independent (irre-
ducible) subspaces out of the random vector.

Definition 2. A pseudo-invertible (n × m) matrix W is said to be an Indepen-
dent Subspace Extraction of an m-dimensional random vector X, if WX is an
independent component of X. If WX even is irreducible, then W is called an
Irreducible Subspace Extraction of X.
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This could lead to a wider variety of algorithms like deflationary approaches
which are already common in standard ICA. The interesting aspect here is that
we only strive to extract a single component, so Independent (Irreducible) Sub-
space Extraction could prove to be simpler to handle algorithmically than a
complete Independent Subspace Analysis, and thus play an important role in
applications (such as dimension reduction) that need to extract only a single
component or subspacespace.

4 Conclusion

Although Independent Subspace Analysis has become a common practice in the
last few years, separability of it has not been fully shown. We presented examples
that showed that ISA is not as unproblematic as it seems. Additionally we proved
uniqueness – up to higher-dimensional generalizations of the indeterminacies of
ICA – of ISA, given no independent Gaussians and showed how to combine this
together with existing theoretical results on NGCA to a full ISA uniqueness
result. Using these results, it is now possible to speak of the ISA of any given
random vector. Moreover, theorem 3 now gives an complete characterization of
decompositions of distributions into independent factors, which might prove to
be a useful result in general statistics.

Now that uniqueness of ISA has been shown for the theoretical limit of per-
fect knowledge of the recordings, the next obvious step is the conversion to the
real-world case, where only a finite number of samples of the observations are
known. Here, a decomposition of the mixtures X such that X = AS where
S = (ST

1 , . . . ,ST
N )T with irreducible (or merely independent) Si cannot be ex-

pected, as in this case we expect to always see some dependency due to sampling
errors. Due to uniqueness of ISA in the asymptotic case, identification of the un-
derlying sources should hold here too, given enough samples, but additional work
is required to show this in the future.
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