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Abstract. We propose the kernel-based nonlinear independent compo-
nent analysis (ICA) method, which consists of two separate steps. First,
we map the data to a high-dimensional feature space and perform di-
mension reduction to extract the effective subspace, which was achieved
by kernel principal component analysis (PCA) and can be considered
as a pre-processing step. Second, we need to adjust a linear transforma-
tion in this subspace to make the outputs as statistically independent
as possible. In this way, nonlinear ICA, a complex nonlinear problem, is
decomposed into two relatively standard procedures. Moreover, to over-
come the ill-posedness in nonlinear ICA solutions, we utilize the minimal
nonlinear distortion (MND) principle for regularization, in addition to
the smoothness regularizer. The MND principle states that we would
prefer the nonlinear ICA solution with the mixing system of minimal
nonlinear distortion, since in practice the nonlinearity in the data gen-
eration procedure is usually not very strong.

1 Introduction

Independent component analysis (ICA) aims at recovering independent sources
from their mixtures, without knowing the mixing procedure or any specific
knowledge of the sources. In particular, in this paper we consider the general
nonlinear ICA problem. Assume that the observed data x = (x1, · · · , xn)T are
generated from an independent random vector s = (s1, · · · , sn)T by a nonlin-
ear transformation x = H(s), where H is an unknown real-valued n-component
mixing function. (For simplicity, it is usually assumed that the number of ob-
servable variables equals that of the original independent variables.) The general
nonlinear ICA problem is to find a mapping G : R

n → R
n such that y = G(x)

has statistically independent components.
In thegeneralnonlinear ICAproblem, inorder tomodelarbitrarynonlinearmap-

pings, one may need to resort to a flexible nonlinear function approximator, such as
the multi-layer perceptron (MLP) network or the radius basis function (RBF) net-
work, to represent the nonlinear separation system G or the mixing system H (see,
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e.g. [1]). In such away, parameters at different locations of the network are adjusted
simultaneously. This would probably slow down the learning procedure.

Kernel-based methods has also been considered for solving the nonlinear blind
source separation (BSS) problem [5,10].1 These methods exploit the temporal
information of sources for source separation, and do not enforce mutual indepen-
dence of outputs. In [5], the data are first implicitly mapped to high-dimensional
feature space, and the effective subspace in feature space is extracted. TD-
SEP [13], a BSS algorithm based on temporal decorrelation, is then performed
in the extracted subspace. Denote by d the reduced dimension. This method
produces d outputs and one needs to select from them n outputs, as an estimate
of the original sources. This method produces successful results in many exper-
iments. However, a problem is that its outputs may not contain the estimate of
the original sources, due to the effect of spurious outputs. Moreover, this method
may fail if some sources lack specific time structures.

In this paper we propose a kernel-based method to solve nonlinear ICA. The
separation system G is constructed using the kernel methods, and unknown pa-
rameters are adjusted by minimizing the mutual information between outputs
yi. The first step of this method is similar to that in [5], and kernel principal
component analysis (PCA) is adopted to construct the feature subspace of re-
duced dimension. In the second step we solve a linear problem—we adjust the
n × d linear transformation matrix W to make the outputs statistically inde-
pendent. As stated in [5], standard linear ICA algorithms do not work here. We
derive the algorithm for learning W, which is in a similar form to the traditional
gradient-based ICA algorithm.

We then consider suitable regularization conditions with which the proposed
kernel-based nonlinear ICA leads to nonlinear BSS. In the general nonlinear
ICA problem, although we do not know the form of the nonlinearity in the data
generation procedure, fortunately, the nonlinearity in the generation procedure
of natural signals is usually not strong. Hence, provided that the nonlinear ICA
outputs are mutually independent, we would prefer the solution with the mixing
transformation as close as possible to linear. This information, formulated as
the minimal nonlinear distortion (MND) principle [12], can help to reduce the
indeterminacies in solutions of nonlinear ICA greatly. MND and smoothness are
incorporated for regularization in the kernel-based nonlinear ICA.

2 Kernel-Based Nonlinear ICA

Kernel-based learning has become a popular technique, in that it provides an
elegant way to tackle nonlinear algorithms by reducing them to linear ones in
some feature space F , which is related to the original input space R

n by a
possibly nonlinear map Φ. Denote by x(i) the ith sample of x. The dot prod-
ucts of the form Φ(x(i)) · Φ(x(j)) can be computed using kernel representations
k(x(i),x(j)) = Φ(x(i)) · Φ(x(j)). Thus, any linear algorithm formulated in terms
of dot products can be made nonlinear by making use of the kernel trick, without
1 Note that kernel ICA [3] actually performs linear ICA with the kernel trick.
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knowing explicitly the mapping Φ. Unfortunately, ICA could not be kernelized
directly, since it can not be carried out using dot products.

However, the kernel trick can still help to perform nonlinear ICA, in an analo-
gous manner to the development of kTDSEP, which is a kernel-based algorithm
for nonlinear BSS [5]. Kernel-based nonlinear ICA involves two separate steps.
The first step is the same as that in kTDSEP: the data are implicitly mapped
to a high-dimensional feature space and its effective subspace is extracted. As
a consequence, the nonlinear problem in input space is transformed to a linear
one in the reduced feature space. In the second step, a linear transformation
in the reduced feature space is constructed such that it produces n statistically
independent outputs. In this way nonlinear ICA is performed faithfully, without
any assumption on the time structure of sources.

Many techniques can help to find the effective subspace in feature space F .
Here we adopt kernel PCA [11], since the subspace it produces gives the smallest
reconstruction error in feature space. The effective dimension of feature space,
denoted by d, can be determined by inspection on the eigenvalues of the kernel
matrix. Let x be a test point, and let k̃(x(i),x) = Φ̃(x(i)) · Φ̃(x), where Φ̃ de-
notes the centered image in feature space. The pth centered nonlinear principal
component of x, denoted by zp, is in the form (for details see [11]):

zp =
T∑

i=1

α̃pik̃(x(i),x) (1)

Let z = (z1, · · · , zd)T . It contains all principal components of the images Φ(x)
in feature space. Consequently, in the following we just need find a n × d matrix
W which makes the components of

y = Wz (2)

as statistically independent as possible.

2.1 Can Standard Linear ICA Work in Reduced Feature Space?

As claimed in [5], applying standard linear ICA algorithms, such as JADE [4]
and FastICA [6], to the signals z does not give successful results. In our problem,
zp, p = 1, · · · , d, are nonlinear mixtures of only n independent sources, and we
aim at transforming zp to n signals (generally n � d) which are statistically
independent, with a linear transformation. But standard ICA algorithms, such
as the natural gradient algorithm [2] and JADE, assume that W is square and
invertible and try to extract d independent signals from zi. So they can not give
successful results in our problem.

Although FastICA, which aims at maximizing the nongaussianity of outputs,
can be used in a deflationary manner, its relation to maximum likelihood of the
ICA model or minimization of mutual information between outputs is established
when the linear ICA model holds and W is square and invertible [7]. When the
linear ICA model does not hold, just like in our problem, nongaussianity of
outputs does not necessarily lead to the independence between them. In fact,
if we apply FastICA in a deflationary manner to zi, the outputs yi will be
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extremely nongaussian, but they are not necessarily mutually independent. The
extreme nongaussianity of yi is because theoretically, with a properly chosen
kernel function, by adjusting the ith row of W the mapping from x to yi covers
quite a large class of continuous functions.

2.2 Learning Rule

Now we aim to adjust W in Eq. 2 to make the outputs yi as independent as
possible. This can be achieved by minimizing the mutual information between yi,
which is defined as I(y) =

∑n
i=1 H(yi)−H(y) where H(·) denotes the differential

entropy. Denote by J the Jacobian matrix of the transformation from x to y,
i.e. J = ∂y

∂x , and by J1 the Jacobian matrix of the transformation from x to z,
i.e. J1 = ∂z

∂x .2 Due to Eq. 2, one can see J = W · J1. We also have H(y) =
H(x) + E log | detJ|. Consequently,

I(y) =
n∑

i=1

H(yi) − H(y) = −
n∑

i=1

log pyi(yi) − E log | det(W · J1)| − H(x)

As H(x) does not depend on W, the gradient of I(y) w.r.t. W is

∂I(y)
∂W

= E[ψ(y) · zT ] − E[J−T · JT
1 ] (3)

where ψ(y) = (ψ1(y1), · · · , ψn(yn))T with ψi being the score function of pyi ,

defined as ψi = −(log pyi)′ = − p′
yi

pyi
. W can then be adjusted according to Eq. 3

with the gradient-based method. Note that the gradient in Eq. 3 is in a similar
form to that in standard ICA, and the only difference is that the second term
becomes −E[W−T ] in standard ICA3.

In standard ICA, we can obtain correct ICA results even if the estimation of
the densities pyi or the score functions ψi is not accurate. But in the nonlinear
case, they should be estimated accurately. We use the mixture of 5 Gaussian’s
to model pyi . After each iteration of Eq. 3, parameters in the Gaussian mixture
model are adjusted by the EM algorithm to adapt the current outputs yi.

3 With Minimum Nonlinear Distortion

Solutions to nonlinear ICA always exist and are highly non-unique [8]. In fact,
in the general nonlinear ICA problem, nonlinear BSS is impossible without ad-
ditional prior knowledge on the mixing model [9]. Smoothness of the mapping
2 J1 is involved in the obtained update rule Eq. 3. Since k̃(x(i),x) = Φ̃(x(i)) · Φ̃(x) =

k(x(i),x)− 1
T

∑T
p=1 k(xp,x)− 1

T

∑T
q=1 k(x(i),x(q))+ 1

T2

∑T
p=1

∑T
q=1 k(x(p),x(q)). We

have ∂k̃(x(i),x)
∂x = ∂k(x(i),x)

∂x − 1
T

∑T
p=1

∂k(x(p),x)
∂x . According to Eq. 1, the pth row of

J1 is then ∂zp

∂x =
∑T

i=1 α̃pi
∂k̃(x(i),x)

∂x . This can be easily calculated and saved in the
first step of our method for later use.

3 Assuming that W is square and invertible, the natural gradient ICA algorithm is
obtained multiplying the right-hand side of ∂I(y)

∂W by WT W [2]. However, as W in
Eq. 2 is n × d, the natural gradient for W could not be derived in this simple way.
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G provides a useful regularization condition to lead nonlinear ICA to nonlinear
BSS [1]. But it seems not sufficient, as shown by the counterexample in [9].

In this paper, in addition to the smoothness regularization, we exploit the
“minimal nonlinear distortion” (MND) principle [12] for regularization of non-
linear ICA. MND has exhibited quite good performance for regularizing non-
linear ICA, when the nonlinearity in the data generation procedure is not very
strong [12]. The objective function to be minimized thus becomes

J(W) = I(y) + λ1R1(W) + λ2R2(W) (4)

where R1 denotes the regularization term for achieving MND, R2 is that for en-
forcing smoothness, and λ1 and λ2 are corresponding regularization parameters.

3.1 Minimum Nonlinear Distortion

MND states that, under the condition that the separation outputs yi are mu-
tually independent, we prefer the nonlinear mixing mapping H that is as close
as possible to linear. So R1 is a measure of ”closeness to linear” of H. Given a
nonlinear mapping H, its deviation from the affine mapping A∗, which fits H
best among all affine mappings A, is an indicator of its “closeness to linear”
or the level of its nonlinear distortion. Mean square error (MSE) is adopted
to measure the deviation, since it greatly facilitates the following analysis. Let
x∗ = (x∗

1, · · · , x∗
n)T = A∗y. R1 can be defined as the total MSE between xi and

x∗
i (here we assume that both x and y are zero-mean):

R1 = E{(x − x∗)T (x − x∗)} , where (5)
x∗ = A∗ỹ, and A∗ = argA min E{(x − Ay)T (x − Ay)}

The derivative of R1 w.r.t. A∗ is ∂R1
∂A∗ = −2E{(x − A∗y)yT }. Setting the

derivative to 0 gives A∗: E{(x − A∗ỹ)ỹT } = 0 ⇔ A∗ = E{xyT }[E{yyT }]−1.
We can see that due to the adoption of MSE, A∗ can be obtained in closed form.
This will greatly simplify the derivation of learning rules.

We then have R1 = Tr
(
E[(x−A∗y)(x−A∗y)T ]

)
= −Tr

(
E[xyT ]{E[yyT ]}−1 ·

E[yxT ]
)
+const. Since in the learning process, yi are approximately independent

from each other, they are approximately uncorrelated. We can also normalize the
variance of yi after each iteration. Consequently E[yyT ] = I. Let L = E[xzT ].
we have E[xyT ] = LWT . Thus R1 = −Tr(LWT WLT ) + const. This gives

∂R1

∂W
= −2WLT L (6)

It was suggested to initialize λ1 in Eq. 4 with a large value at the beginning of
training and decreasing it to a small constant during the learning process [12].
A large value for λ at the beginning helps to reduce the possibility of getting
into unwanted solutions or local optima. As training goes on, the influence of the
regularization term is reduced, and G gains more freedom. In addition, initializing
G to an almost identity mapping would also be useful. This can be achieved by
simply initializing W with W = E[xzT ]{E[zzT ]}−1.
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The MND principle can be incorporated in many nonlinear ICA/BSS methods
to avoid unwanted solutions, under the condition that the nonlinearity in the
mixing procedure is not too strong. As an example, for kTDSEP [5], MND
provides a way to select a subset of output components corresponding to the
original sources [12].

3.2 Smoothness: Local Minimum Nonlinear Distortion

Both MND and smoothness are used for regularization in our nonlinear ICA
method. In fact, the smoothness regularizer exploiting second-order derivatives
is related to MND. Particularly, enforcing local closeness to linear of the trans-
formation at every point will lead to such a smoothness regularizer [12].

For a one-dimensional sufficiently smooth function g(x), its second-order Tay-
lor expansion in the vicinity of x is g(x+ε) ≈ g(x)+

(
∂g
∂x

)T ·ε+ 1
2εT Hxε. Here ε is

a small variation of x and Hx denotes the Hessian matrix of g. Let �ij = ∂2g
∂xi∂xj

.
It can be shown [12] that if we use the first-order Taylor expansion of g at x to
approximate g(x + ε), the square error is

∣∣∣
∣∣∣g(x + ε) − g(x) −

( ∂g

∂x

)T

· ε
∣∣∣
∣∣∣
2

≈ 1
4

∣∣∣∣εT Hxε
∣∣∣∣2 =

1
4

( n∑

i,j=1

�ijεiεj

)2

≤ 1
4

( n∑

i=1

�2
ii + 2

n∑

i,j=1,i�=j

�2
ij

)( n∑

i=1

ε4
i + 2

n∑

i,j=1,i�=j

ε2
i ε

2
j

)
=

1
4
||ε||4 ·

n∑

i,j=1

�2
ij

The above inequality holds due to the Cauchy’s inequality. We can see that in
order to make g locally close to linear at every point in the domain of x, we
just need minimize

∫
Dx

∑n
i,j=1 �2

ijdx. When the mapping is vector-valued, we
need apply this regularizer to each output of the mapping. R2 in Eq. 4 can then
be constructed as R2 =

∫
Dx

∑n
i,j=1 Pijdx, where Pij �

∑n
l=1

(
∂2yl

∂xi∂xj

)2. The

derivation of ∂R2
∂W is straightforward. In the result, ∂2zp

∂xi∂xj
is involved. It can be

computed and saved in the first step of kernel-based nonlinear ICA.

4 Experiments

According to the experimental results in [1] and our experience, mixtures of
subgaussian sources are more difficult to be separated well, than those of super-
gaussian sources. So for saving space, here we just present some experimental
results on separating two subgaussian sources. The sources are a sawtooth signal
(s1) and an amplitude-modulated waveform (s2), with 1000 samples. xi are gen-
erated in the same form as the example in Sec. 4 of [5], i.e. x = Bs + cs1s2, but
here c = (−0.15, 0.5)T . The waveforms and scatterplots of si and xi are shown
in Fig. 1, from which we can see that the nonlinear effect is significant.

The regularization parameter for enforcing smoothness is λ2 = 0.2, and that
for enforcing MND, λ1, decays from 0.3 to 0.01 during the learning process.
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Fig. 1. Source and their nonlinear mixtures. Left: waveforms of sources. Middle: scat-
terplot of sources. Right: scatterplot of mixtures.

We chose the polynomial kernel of degree 4, i.e. k(a,b) = (aT b + 1)4, and
found d = 14. Here we compare the separation results of four methods/schemes,
which are linear ICA (FastICA is adopted), kernel-based nonlinear (kNICA)
without explicit regularization, kNICA with only the smoothness regularization,
and kNICA with both smoothness and MND regularization. Table 1 shows the
SNR of the recovered signals. Numbers in parentheses are the SNR values after
trivial indeterminacies are removed.4 Fig. 2 shows the scatterplots of yi obtained
by various schemes. In this experiment, clearly kNICA with the smoothness and
MND regularization gives the best separation result.

Table 1. SNR of the separation results on various methods (schemes)

Channel FastICA kNICA (no regu.) kNICA (smooth) kNICA (smooth & MND)
No. 1 3.72 (4.59) 9.25(9.69) 11.1(14.4) 12.1 (16.5)
No. 2 5.76 (6.04) 6.07(8.19) 8.9(12.7) 15.4 (25.1)
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Fig. 2. Scatterplot of yi obtained by various methods/schemes. (a) FastICA. (b) kNICA
without explicit regularization. (c) kNICA with the smoothness regularizer. (d) kNICA
with the smoothness and MND regularization.

4 We applied a 1-8-1 MLP, denoted by T , to yi to minimize the square error between
si and T (yi). In this way trivial indeterminacies are removed.
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5 Conclusion

We have proposed to solve the nonlinear ICA problem using kernels. In the first
step of the method, the data are mapped to high-dimensional feature space and
the effective subspace is extracted. Thanks to the kernel trick, in the second
step, we need to solve a linear problem. The algorithm in the second step was
derived, in a form similar to standard ICA. In order to achieve nonlinear BSS,
we incorporated the minimal nonlinear distortion principle and the smoothness
regularizer for regularization of the proposed nonlinear ICA method. MND helps
to overcome the ill-posedness of nonlinear ICA, under the condition that the
nonlinearity in the mixing procedure is not very strong. This condition usually
holds for practical problems.
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