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Abstract. Many linear ICA techniques are based on minimizing a non-
linear contrast function and many of them use a hyperbolic tangent (tanh)
as their built-in nonlinearity. In this paper we propose two rational func-
tions to replace the tanh and other popular functions that are tailored
for separating supergaussian (long-tailed) sources. The advantage of the
rational function is two-fold. First, the rational function requires a signif-
icantly lower computational complexity than tanh, e.g. nine times lower.
As a result, algorithms using the rational functions are typically twice
faster than algorithms with tanh. Second, it can be shown that a suitable
selection of the rational function allows to achieve a better performance
of the separation in certain scenarios. This improvement might be sys-
tematic, if the rational nonlinearities are selected adaptively to data.

1 Introduction

In this paper, a square linear ICA is treated (see e.g. [4,3]),

X = AS, (1)

where X is a d × N data matrix. The rows of X are the observed mixed signals,
thus d is the number of mixed signals and N is their length or the number of
samples in each signal. Similarly, the unknown d×N matrix S includes samples
of the original source signals. A is an unknown regular d × d mixing matrix.

As usual in linear ICA, it is assumed that the elements of S, denoted sij , are
mutually independent i.i.d. random variables with probability density functions
(pdf) fi(sij) i = 1, . . . , d. The row variables sij for all j = 1, . . . , N , having the
same density, are thus an i.i.d. sample of one of the independent sources denoted
by si. It is assumed that at most one of the densities fi(·) is Gaussian, and the
unknown matrix A has full rank. In the following, let W denote the demixing
matrix, W = A−1.
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Many popular ICA methods use a nonlinear contrast function to blindly sep-
arate the signals. Examples include FastICA [5], an enhanced version of the
algorithm named EFICA [7], and recursive algorithm EASI [2], Extended In-
fomax [1], and many others. Adaptive choices of the contrast functions were
proposed in [6,8].

In practical large-scale problems, the computational speed of an algorithm is a
factor that limits its applications. The main goal of this paper is to propose suit-
able rational functions that can be quickly evaluated when used instead of tanh
and other nonlinearities, and yet achieve the same or better performance. We
design such suitable rational nonlinearities for algorithms FastICA and EFICA,
based on our recent analytical results on their asymptotic performances, see [5,7].
It is believed that the nonlinearities proposed here will work well when applied
to other methods as well.

The structure of the paper is as follows. In section II we present a brief descrip-
tion of algorithms FastICA and EFICA, and the analytic expressions that char-
acterize the asymptotic performance of the methods. In section III we propose
A) two general-purpose rational nonlinearities that have similar performance
as tanh, and B) nonlinearities that are tailored for separation of supergaussian
(heavy tailed) sources.

2 FastICA, EFICA, and Their Performance

In general, the FastICA algorithm is based on minimization/maximization of
the criterion c(w) = E[G(wT Z)], where G(·) is a suitable nonlinearity, called
a contrast function, applied elementwise to the row vector wT Z; see [4]. Next,
w is the unitary vector of coefficients to be found that separates one of the
independent components from a mixture Z. Here Z denotes a mean-removed
and decorrelated data, Z = C−1/2 (X − X) where ̂C is the sample covariance
matrix, ̂C = (X − X)(X − X)T /N and X is the sample mean of the mixture
data.

In the following, in accordance with the standard notation [4], g(·) and g′(·)
denote the first and the second derivative of the function G(·). The application
of g(·) and g′(·) to the vector wT Z is elementwise. Classical widely used func-
tions g(·) include “pow3”, i.e. g(x) = x3 (then the algorithm performs kurtosis
minimization), “tanh”, i.e. g(x) = tanh(x), and “gauss”, g(x) = x exp(−x2/2).

The algorithm FastICA can be considered either in one unit form, where only
one row w of the estimated demixing matrix ̂W is computed, or in symmetric
form, which estimates the whole matrix ̂W. The outcome of the symmetric
FastICA obeys the orthogonality condition meaning that the sample correlations
of the separated signals are exactly zeros.

Recently, it was proposed to complete the symmetric FastICA by a test of
saddle points that eliminates convergence to side minima of the cost function,
which may occur for most nonlinearities g(·) [9]. The test consists in checking if
possible saddle points exist for each pair of the signal components exactly half-
way between them in the angular sense. This test requires multiple evaluations
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of the primitive (integral) function of g(·), i.e. G(·). If the intention is to perform
the test of saddle points in a fast manner, then it is desired that G is a rational
function as well.

We introduced recently a novel algorithm called EFICA [7], which is essen-
tially an elaborate modification of the FastICA algorithm employing a
data-adaptive choice of the associated nonlinearities used in FastICA, and thus
reaching a very small asymptotic error. The algorithm is initialized by perform-
ing a symmetric FastICA with a fixed nonlinearity. After that, the algorithm uses
an idea of a generalized symmetric FastICA, and an adaptive choice of nonlin-
earities, which may be different for each signal component separately. The final
demixing matrix does not obey the orthogonality condition. See [7] for details.
For the purpose of this paper we shall assume that the adaptive selection of the
nonlinearity in the EFICA algorithm is turned off and a fixed nonlinearity g(·)
is used instead.

Assume now, for simplicity, that all signal components have the the same
probability distribution with the density f(·). It was shown in [9] and in [7]
that the asymptotic interference-to-signal ratio of the separated signals (one off-
diagonal element of the ISR matrix) for the one-unit FastICA, for the symmetric
FastICA and for EFICA is, respectively,

ISR1U =
1
N

γ

τ2 , ISRSYM =
1

2N

[

1
2

+
γ

τ2

]

(2)

ISREF =
1
N

γ(γ + τ2)
τ2γ + τ2(γ + τ2)

(3)

where

γ = β − μ2

τ = |μ − ρ|

μ =
∫

s g(s) f(s) ds
ρ =

∫

g′(s) f(s) ds
β =

∫

g2(s) f(s) ds

and the integration proceeds over the real line1.
It can be easily seen that

ISREF = ISR1U
1/N + ISR1U

1/N + 2 ISR1U
(4)

and

ISREF ≤ min {ISR1U, ISRSYM} . (5)

It is well known that all three ISR’s are simultaneously minimized, when the
nonlinearity g(·) is proportional to the score function of the distribution of the
sources, g(x) = ψ(x) = −f ′(x)/f(x). To be more accurate the optimum nonlin-
earity may have the form g(x) = c1ψ(x) + c2x, where c1 and c2 are arbitrary
1 Note that it is the orthogonality constraint that makes the ISR of the symmetric

FastICA lower bounded by 1/(4N).
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constants, c1 �= 0. The choice of the constants c1, c2 does not make any influence
on the algorithm performance. For this case it was shown EFICA is maximally
efficient: the ISR in (3) in fact equals the respective Cramér-Rao-induced lower
bound [9,7].

3 Optimality Issues

From the end of the previous section it is clear that it is not possible to suggest
a nonlinearity that would be optimum for all possible probability distributions
of the sources. The opposite is true, however: for each nonlinearity g there exists
a source distribution fg such that all other nonlinearities, that are not linear
combinations of g and x, perform worse in separating the data having this dis-
tribution (in the sense of mean ISR). The density fg can be found by solving
the equation

g(x) = −c1
f ′

g(x)
fg(x)

+ c2 x = −c1
d

dx
[log fg(x)] + c2 x (6)

and has the solution

fg(x) = exp
{

− 1
c1

∫

g(x)dx +
c2

2c1
x2 + c3

}

. (7)

The constants c1, c2, and c3 should be selected in the way that f is a valid pdf,
i.e. is nonnegative, its integral over the real line is one and have zero mean and
the variance one.

For example, the nonlinearity tanh is optimum for the source distributions of
the form

ftanh = C0 exp(−C1x
2)(coshx)C2 (8)
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Fig. 1. Probability density functions (8) for which tanh is the optimum nonlinearity
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where C0, C1, and C2 are suitable constants. It can be shown that for any C2 it
is possible to find C0 and C1 such that ftanh is a valid density function.

Examples of probability densities for which the tanh is the optimum nonlin-
earity are shown in Figure 1. The pdf’s are compared with the standard Gaussian
pdf, which would be obtained for C2 = 0. The figure explains why tanh works
very well for so many different pdf’s: it includes supergaussian distributions for
C2 < 0 and subgaussian, even double modal distributions for C2 > 0.

4 All-Purpose Nonlinearities

In this subsection we propose two rational functions that can replace tanh in
FastICA and in other ICA algorithms,

g1(x) =
x

1 + x2/4
, g2(x) =

x(2 + |x|)
(1 + |x|)2 . (9)

The former one has very similar behavior as tanh in a neighborhood of zero, and
the latter one has a global behavior that is more similar to tanh, see Figure 2.
For example, if x → ±∞, then g2(x) approaches ±1. These rational functions
will be called RAT1 and RAT2, for easy reference.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

TANH
RAT1
RAT2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

GAUSS
EXP1
RAT3(4)

(a) (b)

Fig. 2. Comparison of nonlinearities (a) TANH, RAT1 and RAT2 and (b) GAUSS,
EXP3 and RAT3(4), discussed in Section 5. In diagram (b), the functions were scaled
to have the same maximum value, 1.

The speed of evaluation of tanh and the rational functions can be compared
as follows. In the matlab notation, put x = randn(1, 1000000). It was found that
the evaluation of the command y = tanh(x); takes 0.54 s, evaluation of RAT1 via
command y = x./(1 + x.̂2/4); requires 0.07 s and evaluation of RAT2 via the
pair of commands h = x.∗sign(x)+1; and y = x.∗(h+1)./h.̂2; requires 0.11 s.
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The computations were performed on HP Unix workstation, using a matlab
profiler. We can conclude that evaluation of RAT1 is nine times faster than
tanh, and evaluation of RAT2 is 5 times faster than tanh. As a result, FastICA
using nonlinearity RAT1 is about twice faster that FastICA using tanh.

Performance of the algorithms using nonlinearities RAT1 and RAT2 appears
to be very similar to that of the same algorithms using tanh for many probability
distributions of the sources.

Assume, for example, that the source distribution belongs to the class of gen-
eralized Gaussian distribution with parameter α, which will be denoted GG(α)
for easy reference. The pdf of the distribution is proportional to exp(−βα|x|)α

where βα is a suitable function of α such that the distribution has unit variance.
The asymptotic variance of one-unit FastICA (2) with the three nonlinearities

is plotted as a function of α in Figure 3 (a). The variance is computed for
N = 1000. We can see that performance of the algorithm with nonlinearity RAT1
is very similar to that of nonlinearity TANH. Performance of RAT2 is slightly
better than the previous two ones, if the sources are supergaussian (spiky), i.e.
for α < 2, and slightly worse when the distribution is subgaussian (α > 2).
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Fig. 3. Performance of one unit FastICA with nonlinearities (a) TANH, RAT1 and
RAT2 and (b) GAUSS, EXP1 and RAT3(4), discussed in Section 5, for sources with
distribution GG(α) as a function of the parameter α

The advantage of RAT2 compared to RAT1 is that while the primitive func-
tion of g1(x) is G1(x) = 2 log(1 + x2/4) and it is relatively complex to evaluate,
the primitive function of g2(x) is rational, G2(x) = x2/(1+|x|) and can be evalu-
ated faster. This might be important for the test of saddle points. It is, however,
possible to combine both approaches and use RAT1 in the main iteration, and
the primitive function of RAT2 in the test of saddle points.

It can be shown that the asymptotic variance ISR1U goes to infinity for any
nonlinearity in rare cases, when the source pdf is a linear combination of a
supergaussian and a subgaussian distributions (τ in (2) is zero). An example is
shown in Figure 4, where ISR1U is plotted for sources s = βb +

√

1 − β2l as a
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function of parameter β, where b and l stand for binary (BPSK) and Laplacean
random variables, respectively. Performances of nonlinearities TANH and RAT1
appear to be very similar, while a performance of RAT2 is slightly different.
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Fig. 4. Performance of one unit FastICA with nonlinearities TANH, RAT1 and RAT2
for sources of the type s = βb +

√

1 − β2l and N = 1000

5 Nonlinearities for Supergaussian Sources

In [5] the following nonlinearity was proposed for separation of supergaussian
(long-tailed) sources,

g(x) = x exp(−x2/2). (10)

For a long time, this nonlinearity was considered the best known one for the sep-
aration of supergaussian sources. In [7] it was suggested to use the nonlinearity

g(x) = x exp(−η|x|) (11)

where η = 3.348 was selected. This nonlinearity will be referred as EXP1. This
constant is the optimum constant for the nonlinearity of the form (11) pro-
vided that the distribution of the sources is Laplacean, i.e. GG(1). It was shown
that the latter nonlinearity outperforms the former one for most of distributions
GG(α) where 0 < α < 2. It was also shown in [7] that for the sources with
the distribution GG(α) with α ∈ (0, 1/2] the asymptotic performance of the
algorithm monotonically grows with increasing η.

In this paper we suggest to use the following nonlinearity, denoted as RAT3(b),
for easy reference,

g3b(x) =
x

(1 + b|x|)2 . (12)

We note that like in the case of the nonlinearity EXP, the slope of the function
at x = 0 increases with growing parameter b. This phenomenon improves the
asymptotic performance of the algorithm in separation of highly supergaussian
(long-tailed) sources, but makes the convergence of the algorithm more difficult.
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We found that the choice b = 4 is quite good a trade-off between the performance
and the ability to converge.

Evaluation of the nonlinearity RAT3(b) was found to be about five times
faster than evaluation of EXP1. Performance of the algorithm using the 3 non-
linearities in separating sources with the distribution GG(α), α < 2, is shown in
Figure 3(b).

6 Conclusions

The rational nonlinearities were shown to be highly viable alternatives to classi-
cal ones in terms of speed and accuracy. Matlab code of EFICA, utilizing these
nonlinearities can be downloaded at the second author’s web page.
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