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Abstract. In this paper we apply a novel smooth component analysis algorithm 
as ensemble method for prediction improvement. When many prediction 
models are tested we can treat their results as multivariate variable with the 
latent components having constructive or destructive impact on prediction 
results. We show that elimination of those destructive components and proper 
mixing of those constructive can improve the final prediction results. The 
validity and high performance of our concept is presented on the problem of 
energy load prediction. 

1   Introduction 

The blind signal separation methods have applications in telecommunication, 
medicine, economics and engineering. Starting from separation problems, BSS 
methods are used in filtration, segmentation and data decomposition tasks [5,11]. In 
this paper we apply the BSS method for prediction improvement in case when many 
models are tested. 

The prediction problem as other regression tasks aims at finding dependency 
between input data and target. This dependency is represented by a specific model 
e.g. neural networks [7,13]. In fact, in many problems we can find different 
acceptable models where the ensemble methods can be used to improve final results 
[7].  Usually solutions propose the combination of a few models by mixing their 
results or parameters [1,8,18]. In this paper we propose an alternative concept based 
on the assumption that prediction results contain the latent destructive and 
constructive components common to all the model results [16]. The elimination of the 
destructive ones should improve the final results. To find the latent components we 
apply blind signal separation methods with a new algorithm for smooth component 
analysis (SmCA) which is addressed for signals with temporal structure [4]. The full 
methodology will be tested in load prediction task [11]. 

2   Prediction Results Improvement 

We assume that after the learning process each prediction result includes two types of 
latent components: constructive, associated with the target, and destructive, associated 
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with the inaccurate learning data, individual properties of models, missing data, not 
precise parameter estimation, distribution assumptions etc. Let us assume there is m 
models. We collect the results of particular model in column vector xi, i=1,…, m, and 
treat such vectors as multivariate variable X = [x1, x2…xm]T, X∈Rm×N, where N  
means the number of observations. We describe the set of latent components as 

T
nkk ],,ˆ,...,ˆ,ˆ[ 121 sssssS += , S∈Rn×N, where jŝ  denotes constructive component and si is 

destructive one [3]. For simplicity of further considerations we assume nm = . Next 
we assume the relation between observed prediction results and latent components as 
linear transformation 

ASX = , (1) 

where matrix A∈Rn×n represents the mixing system. The (1) means matrix X 
decomposition by latent components matrix S and mixing matrix A.   

 

Fig. 1. The scheme of modelling improvement method by multivariate decomposition 

Our aim is to find the latent components and reject the destructive ones (replace 
them with zero). Next we mix the constructive components back to obtain improved 
prediction results as 

T
nkk ],...,,ˆ,...,ˆ,ˆ[ˆˆ

121 00sssASAX +== . (2) 

The replacement of destructive signal by zero is equivalent to putting zero in the 
corresponding column of A. If we express the mixing matrix as A = [a1, a2…an] the 
purified results can be described as 

[ ]S00aaaSAX nkk ,...,,,...,,ˆˆ
121 +== , (3) 

Where Â =[a1,a2…ap, 0p+1, 0p+2…0n]. The crucial point of the above concept is proper 
A and S estimation. It is difficult task because we have not information which 
decomposition is most adequate. Therefore we must test various transformations 
giving us components of different properties. The most adequate methods to solve the 
first problem seem to be the blind signal separation (BSS) techniques. 
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3   Blind Signal Separation and Decomposition Algorithms  

Blind signals separation (BSS) methods aim at identification of the unknown signals 
mixed in the unknown system [2,4,10,15]. There are many different methods and 
algorithms used in BSS task. They explore different properties of data like: 
independence [2,10], decorrelation [3,4], sparsity [5,19], smoothness [4], non-
negativity [12] etc. In our case, we are not looking for specific real signals but rather 
for interesting analytical data representation of the form (1). To find the latent 
variables A  and S  we can use a transformation defined by separation matrix 
W∈Rn×n, such that  

WXY = . (4) 

where Y is related to S. We also assume that Y satisfies the following relation 

PDSY = ,  (5) 

where P is a permutation matrix and D is a diagonal matrix [4,10]. The relation (5) 
means that estimated signals can be rescaled and reordered in comparison to the 
original sources. These properties are not crucial in our case, therefore Y can be 
treated directly as estimated version of sources S. There are some additional 
assumptions depending on particular BSS method.  We focus on methods based on 
decorrelation, independent component analysis and smooth component analysis.  

Decorrelation is one of the most popular statistical procedures for the elimination of 
the linear statistical dependencies in the data. It can be performed by diagonalization 
of the correlation matrix Rxx=E{XXT}. It means that matrix W should satisfy the 
following relation  

EWWRR == T
xxyy , (6) 

where E is any diagonal matrix. There are many methods utilizing different matrix 
factorisation leading to the decorrelation matrix W, Table 1 [6,17]. The decorrelation 
is not effective separation method and it is used typically as preprocessing, in general. 
However, we find it very useful for our analytical representation. 

Table 1. Methods of decorrelation possible for models decomposition 

Method Form correlation Cholesky EIG (PCA) 
Factorisation Rxx= Rxx

½ Rxx
½ Rxx=GTG Rxx=UΣUT 

Decorrelation W= Rxx
-½ W=G-T W=UT 

Independent component analysis, ICA, is a statistical tool, which allows 
decomposition of observed variable X into independent components Y = [y1,y2…yn]

T 
[2,4,10]. Typical algorithms for ICA explore higher order statistical dependencies in a 
dataset, so after ICA decomposition we have got signals (variables) without any linear 
and non-linear statistical dependencies. To obtain independent components we 
explore the fact that the joint probability of independent variables can be factorized by 
the product of the marginal probabilities 
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One of the most popular method to obtain (8) is to find such W that minimizes the 
Kullback-Leibler divergence between py(Y) and qy(Y) [5]  
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There are many numerical algorithms estimating independent components like 
Natural Gradient, FOBI, JADE or FASTICA [2,4,10].   

Smooth Component Analysis, SmCA, is a method of the smooth components 
finding in a multivariate variable [4]. The analysis of signal smoothness is strongly 
associated with the definitions and assumptions about such characteristics [9,17]. For 
signals with temporal structure we propose a new smoothness measure  
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where symbol δ(.) means Kronecker delta, and P(y)∈[0,1]. Measure (9) has simple 
interpretation: it is maximal when the changes in each step are equal to range 
(maximal change), and is minimal when data are constant. The Kronecker delta term 
is introduced to avoid dividing by zero. The range calculated in denominator is 
sensitive to local data, what can be avoided using extremal values distributions. 

The components are taken as linear combination of signals xi and should be as 
smooth as possible. Our aim is to find such W = [w1, w2…wn] that for WXY = we 
obtain Y = [y1, y2…yn]

T where 1y  maximizes P(y1) so we can write 

))((maxarg
1||||

1 xww
w

TP
=

= . (10) 

Having estimated the first 1−n  smooth components the next one is calculated as 
most smooth component of the residual obtained in Gram-Schmidt orthogonalization: 
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where niT
ii K1, == xwy . As the numerical algorithm for finding nw  we can 

employ the conjugate gradient method with golden section as a line search routine. 
The algorithm outline for initial )0()0(,)0( iii rand gpw −== is as follows:  

1. Identify the indexes l  for extreme signal values: 
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(12) 
 

(13) 
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2. Calculate gradient of )( xw T
iP : 
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where )1()()( −−=Δ lll xxx  , 

3. Identify the search direction (Polak-Ribiere formula[19]) 
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gg
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4. Calculate the new weights: 

)()( )()1( kkkk iii pww ⋅+=+ α , (16) 

where )(kα  is found in golden search. 

The above optimization algorithm should be applied as a multistart technique with 
random initialization [14]. 

4   Component Classification  

After latent component are estimated by e.g. SmCA we need to label them as 
destructive or constructive. The problem with proper signal classification can be 
difficult task because obtained components might be not pure constructive or 
destructive due to many reasons like improper linear transformation assumption or 
other statistic characteristics than explored by chosen BSS method [21]. 
Consequently, it is possible that some component has constructive impact on one 
model and destructive on the other. There may also exist components destructive as a 
single but constructive in a group. Therefore, it is advisable to analyze each subset of 

the components separately. In particular, we eliminate each subset (use the matrix Â ) 
and check the impact on the final results. Such process of component classification as 
destructive or constructive is simple and works well but for many components it is 
computationally extensive. 

5   Generalized Mixing 

As was mentioned above, the latent components can be not pure so their impact 
should have weight other than 0. It means that we can try to find the better mixing 

system than described by Â . The new mixing system can be formulated more general 
than linear, e.g. we can employ MLP neural network:  

))]([( )2()1()1()1()2()2( bbSBgBgX ++=
)

, (17) 
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where g(i)(.) is a vector of nonlinearities, B(i)(.) is a weight matrix and b(i)(.) is a bias 
vector respectively for i-th layer, i=1,2. The first weight layer will produce results 

related to (4) if we take AB ˆ)1( = . But we employ also some nonlinearities and the 
second layer, so in comparison to the linear form the mixing system gains some 
flexibility.  If we learn the whole structure starting from system with initial weights of 

AB ˆ)0()1( = , we can expect the results will be better, see Fig. 2.  

  
 

Fig. 2. The concept of filtration stage 

6   Electricity Consumption Forecasting 

The tests of proposed concept were performed on the problem of energy load 
prediction [11]. Our task was to forecast the hourly energy consumption in Poland in 
24 hours basing on the energy demand from last 24 hours and calendar variables: 
month, day of the month, day of the week, and holiday indicator. We learned six MLP 
neural networks using 1851 instances in training, 1313 – in validation, and 1313 – in 
testing phase. The networks have the structure: M1=MLP(5,12,1) M2=MLP(5,18,1), 
M3=MLP(5,24,1), M4=MLP(5,27,1), M5=MLP(5,30,1), M6=MLP(5,33,1), where in 
parenthesis you can find the number of neurons in each layer.  The quality of the 
results is measured with Mean Absolute Percentage Error: 

∑ =
−⋅= N

i y
yy

N i

iiMAPE
1

ˆ1 , (18) 

where i is the index of observation, N- number of instances, iy - real load value, and 

iŷ - predicted value. 

In Table 2 we can observe the MAPE values for primary models, effects of 
improving the modelling results with particular decomposition, and with decom-
position supported by neural networks remixing. The last column in Table 2 shows 
percentage improvement of the best results from each method versus the best primary 
result.   
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Table 2. Values of MAPE for primary models and after  

ModelsMethods
M1 M2 M3 M4 M5 M6

Best
result

%

Primary results 2.392 2.365 2.374 2.402 2.409 2.361 2.361 -
Decorr. 2.304 2.256 2.283 2.274 2.255 2.234 2.234 5.4
Smooth 2.301 2.252 2.357 2.232 2.328 2.317 2.232 5.5
ICA 2.410 2.248 2.395 2.401 2.423 2.384 2.248 4.8
Decorr&NN 2.264 2.241 2.252 2.247 2.245 2.226 2.226 5.7
Smooth&NN 2.224 2.227 2.223 2.219 2.232 2.231 2.219 6.0
ICA&NN 2.327 2.338 2.377 2.294 2.299 2.237 2.237 5.3
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Fig. 3. The MAPE for primary models, improvement with SmCA, and improvement by 
SmCA&NN 

To compare the obtained results with other ensemble methods we applied also 
bagging and boosting techniques for the presented problem of energy load prediction.  
They produced predictions with MAPE of 2.349 and 2.226, respectively, what means 
results slightly worse than SmCA with neural generalisation.  

7   Conclusions 

The Smooth Component Analysis as well as the other Blind Signal Separation 
methods can be successfully used as a novel methodology for prediction 
improvement. The practical experiment with the energy load prediction confirmed the 
validity of our method. Due to lack of space we compare SmCA approach only with 
basis BSS methods like decorrelation and ICA. For the same reason extended 
comparison with other ensemble methods was left as the further work.  



284 R. Szupiluk, P. Wojewnik, and T. Ząbkowski 

References  

1. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996) 
2. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural 

Computation 11, 157–192 (1999) 
3. Choi, S., Cichocki, A.: Blind separation of nonstationary sources in noisy mixtures. 

Electronics Letters 36(9), 848–849 (2000) 
4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, 

Chichester (2002) 
5. Donoho, D.L., Elad, M.: Maximal Sparsity Representation via l1 Minimization. The Proc. 

Nat. Acad. Sci. 100, 2197–2202 (2003) 
6. Golub, G.H., Van-Loan, C.F.: Matrix Computations. Johns Hopkins, Baltimore (1996) 
7. Haykin, S.: Neural nets: a comprehensive foundation. Macmillan, NY (1994) 
8. Hoeting, J., Mdigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. 

Statistical Science 14, 382–417 (1999) 
9. Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116 

(1951) 
10. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, 

Chichester (2001) 
11. Lendasse, A., Cottrell, M., Wertz, V., Verdleysen, M.: Prediction of Electric Load using 

Kohonen Maps – Application to the Polish Electricity Consumption. In: Proc. Am. Control 
Conf. Anchorage AK, pp. 3684–3689 (2002) 

12. Lee, D.D., Seung, H.S.: Learning of the parts of objects by non-negative matrix 
factorization. Nature, 401 (1999) 

13. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997) 
14. Scales, L.E.: Introduction to Non-Linear Optimization. Springer, NY (1985) 
15. Stone, J.V.: Blind Source Separation Using Temporal Predictability. Neural 

Computation 13(7), 1559–1574 (2001) 
16. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical 

Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) 
ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004) 

17. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, 
New Jersey (1992) 

18. Yang, Y.: Adaptive regression by mixing. Journal of American Statistical Association, 96 
(2001) 

19. Zibulevsky, M., Kisilev, P., Zeevi, Y.Y., Pearlmutter, B.A.: BSS via multinode sparse 
representation. Adv. in Neural Information Proc. Sys. 14, 185–191 (2002) 


	Smooth Component Analysis as Ensemble Method for Prediction Improvement
	Introduction
	Prediction Results Improvement
	Blind Signal Separation and Decomposition Algorithms
	Component Classification
	Generalized Mixing
	Electricity Consumption Forecasting
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




