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Abstract. This paper introduces an extension of an earlier method of the author
for separating stationary sources, based on the joint approximated diagonalization
of interspectral matrices, to the case of cyclostationary sources, to take advantage
of their cyclostationarity. the proposed method is based on the joint block approx-
imate diagonlization of cyclic interspectral density. An algorithm for this diago-
nalization is described. Some simulation experiments are provided, showing the
good performance of the method.

1 Introduction

Blind source separation aims at recovering sources from their unknown mixtures [1].
All separation methods are based on some “non properties” of the source signals. Early
methods which do not exploit the time structure of the signals would require non Gaus-
sianity of the sources. However, by exploiting the time structure, one can separate mix-
tures of Gaussian sources provided that the sources are not independent identically dis-
tributed (iid) in time., that is one (or both) of the two “i” in “iid” is not met. If only the
first “i” is not met, one has stationary correlated sources and separation can be achieved
by considering the lagged covariances or inter-spectra between mixtures signals. This
is the basis of most second order separation methods [2, 3, 4]. If the second “i” in “iid”
is not fulfilled, one has nonstationary sources and separation methods can again be
developed using only second order statistics [5, 6]. However, “nonstationarity” is a too
general non property to be practical, the above works actually focus only on a particular
aspect of it: They assume temporal independence (or more accurately ignore possible
temporal dependency) and focus only on the variation of variance of the signal in time
and assume that this variation is slow enough to be adequately estimated nonparametri-
cally. In this paper, we consider another aspect of non stationarity: the cyclostationarity.
The variance of the source is also variable in time but in an (almost) periodic manner.
Further, the autocovariance between the source at different time points does not de-
pend only on the delay as in the stationary case, but also on time as well and again in
a (almost) periodic manner. Thus the “nonstationary” method in [6] may not work as
this source variance can vary rapidly since the period (frequency) can be short (high).
Moreover, such method ignores the lagged autocovariance of the sources, which pro-
vide important useful information for the separation. The “stationary” methods [2, 3, 4]
still work in general if one takes as lagged covariances the average lagged covariances
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over time. In fact the usual lagged covariance estimator when applied to cyclostation-
ary signal actually estimates the average lagged covariance. However, such methods
ignore the specificity of cyclostationary signals and thus don’t benefice from it and fur-
ther would fail if the sources are noncorrelated (but has variance varying periodically
with time). Our method is specially designed to exploit this specificity. There have been
several works on blind separation of cyclostationary sources [7, 8, 9, 10]. Our work is
different in that we work with cyclic inter-spectral densities while the above works are
mainly based on cyclic cross-covariances. Our work may be viewed as an extension of
our earlier work for blind separation of stationary sources [4] based on the joint approx-
imate diagonalization of a set of inter-spectral matrices. As said earlier, this method still
works for cyclostationary sources, provided that their average spectra are different up to
a constant factor. The present method exploits the extra information of cyclostationarity
and thus yields better performance and also can be dispensed with the above restriction.

2 Cyclostationary Signals

A discrete time (possibly complex value) process {X(t)} is said to be cyclostationary
(or almost periodically correlated) if its mean function t �→ E[X(t)] and its covariance
functions t �→ cov{X(t + τ), X(t)} are almost periodic [11]. The definition of almost
periodicity is rather technical, but here we consider only zero mean cyclostationary
process with a finite “number of cycles”, for which an equivalent definition is that there
exists a finite subset A of (−1/2, 1/2] such that

E[X(t + τ)X∗(t)] =
∑

α∈A
R(α; τ)ei2παt, ∀t, ∀τ. (1)

where ∗ denotes the complex conjugate. The function τ �→ R(α; τ) is called the cyclic
autocovariance function of cycle α. From (1), it can be computed as

R(α; τ) = lim
T→∞

1
T

T∑

t=1

E[X(t + τ)X∗(t)]e−i2παt (2)

Note that for α /∈ A, the last right hand side yields zero by (1). Thus we may define
R(α, τ) for all α, τ by the above right hand side, and A as the set {α : R(α; ·) �= 0}.

We shall assume that the function R(α; ·) admits a Fourier transform f(α; ·), called
the cyclic spectral density of cycle α:

f(α; ν) =
∞∑

τ=−∞
R(α; τ)e−i2πντ ⇔ R(α; τ) =

∫ 1

0
f(α; ν)ei2πντ dν.

Note It can be seen from (2) that R(−α; τ) = R∗(α; −τ)e−i2πατ . This means that if
A contains α, it must contain −α.

Let α1, . . . , αq be in A, the matrix of general j, k element R(αk − αj ; τ)ei2παjτ

can be seen to be the average autocovariance of lag τ of the vector process
{[X(t)ei2πα1t · · · X(t)ei2παqt]T }, since
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R(αk − αj ; τ)ei2παjτ = lim
T→∞

1
T

T∑

t=1

E[X(t + τ)X∗(t)]ei2παj(t+τ)e−i2παkt

Therefore this matrix as a function of τ is of type positive and it follows that its Fourier
transform is a non negative (matrix) function. In other words:

⎡

⎢⎣
f(0; ν − α1) · · · f(αq − α1; ν − α1)

...
. . .

...
f(α1 − αq; ν − αq) · · · f(0; ν − αq)

⎤

⎥⎦ ≥ 0 (3)

In particular, f(0; ·) ≥ 0. The functions R(0; ·) and f(0; ·) may be viewed as the av-
erage covariance function and spectral density of the process {X(t)}. Since R(0; 0) =
limT→∞ T−1 ∑T

t=1 E[|X(t)|2] > 0, 0 ∈ A. By taking α1 = 0, one see that the matrix
in (3) can contain all the cyclic spectral densities of cycle in A and possibly some other
vanishing cyclic spectral densities (since its cycle is not in A) as well.

The natural estimator of R(α; τ) based on an observed sample X(1), . . . , X(T ) is

R̂(α; τ) =
1
T

min(T,T−τ)∑

t=max(1,1−τ)

X(t + τ)X∗(t)e−i2παt. (4)

From this estimator, one may construct an estimator for f(α; ν) as

f̂(α; ν) =
T−1∑

τ=1−T

kM (τ)R̂(α; τ)e−i2πντ (5)

where kM (·) is a given lag windows, often of the form k(·/M) with k being some given
even function taking the value 1 at 0, and M is a window width parameter.

3 The Mixture Model and Separation Method

We consider the simplest mixture model in which the mixing is instantaneous without
noise and there is a same numbers of mixtures as the sources: X(t) = AS(t) where
X(t) and S(t) denote the vectors of mixtures and of sources at time t, and A is a
square matrix. The sources are assumed to be independent cyclostationary processes. It
is easily seen that the observed mixtures are also cyclostationary, with the set of cycle
frequencies contained in the union of the sets of cycle frequencies of the sources, which
we denote by A. The goal is to recover the sources from their mixtures. For simplicity,
we shall assume that A is known. In practice, such set can be estimated. Further, it is
not important that A be accurately known.

We define the cyclic autocovariance function RX(α; ·) of cycle α of the vector pro-
cess {X(t)} similar to (2) except that X(t) is replaced by X(t) and ∗ is understood
as the transpose conjugate. Clearly RX(α; τ) = ARS(α; τ)A∗ where RS(α; ·) is the
cyclic autocovariance function of cycle α of the vector source process {S(t)}. The in-
dependence of the sources implies that the matrices RS(α; τ) are diagonal for all α, τ
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(of course if α /∈ A this matrix vanishes and is of no interest). Similarly, we define the
cyclic spectral density of cycle α of the vector process {X(t)} as the Fourier transform
fX(α; ·) of RX(α; ·). Again, we have fX(α; ν) = AfS(α; ν)A∗ where fS(α; ·) is the
cyclic spectral density of cycle α of the vector process {S(t)}, which is diagonal for all
frequencies and all α.

The analogue of the matrix in (3) is the block matrix

C(ν) =

⎡

⎢⎣
C11(ν) · · · C1K(ν)

...
. . .

...
CK1(ν) · · · CKK(ν)

⎤

⎥⎦ (6)

where

Cjk(ν) =

⎡

⎢⎣
fXjXk

(0; ν − α1) · · · fXjXk
(αq − α1; ν − α1)

...
. . .

...
fXjXk

(α1 − αq; ν − αq) · · · fXjXk
(0; ν − αq)

⎤

⎥⎦ (7)

fXjXk
denoting the jk element of fX . The relation fX(α; ν) = AfS(α; ν)A∗ implies

that C(ν) = (A ⊗ Iq)D(ν)(A∗ ⊗ Iq) where D is defined similar to C but with fSjSk

(the jk element of fS) in place of fX , Iq is the identity matrix of order q and ⊗ denotes
the Kronecker product:

A ⊗ M =

⎡

⎣
A11M A12M · · ·
A21M A22M · · ·

...
...

. . .

⎤

⎦ ,

Aij being the elements of A. The independence of the sources implies that the matrix
D is block diagonal (Djk = 0 except when j = k). Thus our idea is to find a separation
matrix B such that B ⊗ Iq block diagonalizes all the matrices C(ν) in the sense that
the matrices (B ⊗ Iq)C(ν)(B∗ ⊗ Iq) are block diagonal (of block size q) for all ν.

In practice, the matrices C(ν) have to be replaced by their estimators Ĉ(ν). This
estimator is naturally built from the estimators f̂X(α; ν) of fX(α; ν), defined similarly
as in (5) with R̂(α; τ) replaced by R̂X(α; τ), the estimator of RX(α; τ). The last esti-
mator is defined similarly as in (4) with X(t) replaced by X(t). As the lag window kM

in (5) has the effect of a smoothing, the (cyclic) spectral density estimator at a given fre-
quency actually does not estimate the spectral density at this frequency but the average
density over a frequency band centered around it. Therefore, we shall limit ourselves to
the matrices Ĉ(ν) for ν on some finite grid, so that we have only a finite set of matri-
ces to be block diagonalized. The spacing of the grid would be directly related to the
resolution of the spectral estimator. Of course, since the Ĉ(ν) are not exactly equal to
C(ν), one cannot block diagonalize them exactly but only approximately, according to
some block diagonality measure, which will be introduced below.

It is important that the estimator Ĉ(ν) be non negative as C(ν) is. One can ensure
that this is the case regardless of the data, by chosing the (real) window kM in (5) such
that

∑
τ kM (τ)e−2πντ is real and non negative for all ν. Indeed, there then exists a

real window k
1/2
M (not unique) such that

∑
τ kM (τ)e−2πντ = |

∑
τ k

1/2
M (τ)e−2πντ |2

or kM (τ) =
∑

u k
1/2
M (u − τ)k1/2

M (u). Therefore
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f̂X(α; ν) =
1
T

∑

τ

[∑

u

k
1/2
M (u − τ)k1/2

M (u)
][∑

v

X̃(v + τ)X̃∗(v)e−i2παv

]
e−i2πντ

where X̃(t) = X(t) for 1 ≤ t ≤ T, = 0 otherwise. The last right hand side equals, after

summing up with respect to τ : T−1 ∑
u

∑
v(kM �X̃ν)(v+u) k

1/2
M (u)X∗(v)ei2π(ν−α)v

where X̃ν(t) = X̃(t)e−i2πνt and � denotes the convolution. Let t = u+v and summing
up again first with respect to u, one gets

f̂X(α; ν) =
1
T

∑

t

(kM � X̃ν)(t) (k1/2
M � X∗

ν−α)(t).

This formula shows that Ĉ(ν) is the sample covariance of certain vector sequence,
hence is non negative, and can be used for the calculation of Ĉ(ν).

4 Joint Block Approximate Diagonalization

The separation method in previous section leads to the problem of joint
approximate block diagonalizing a set of positive definite block matrices Ĉ(νm), m =
1, . . . , M , of block size q, by a matrix of the form B ⊗ Iq . Following [4] we take
as the measure of block diagonality of a Hermitian non negative block matrix M:
(1/2)[log detDiag(M) − log det(M)] where Diag denotes the operator which builds
a bloc diagonal matrix from its argument. This measure is always positive and can be
zero if and only if the matrix M is block diagonal. Indeed, each diagonal block Mii

of M, being non negative, can be diagonalized by a unitary matrix Ui. Thus the matri-
ces UiMiiU∗

i are diagonal with diagonal elements being also those of UMU∗ where
U is the block diagonal matrix with diagonal block Ui. Hence by the Hadamard in-
equality [12],

∏
i det(UiMiiU∗

i ) ≥ detUMU∗ with equality if and only if UMU
is diagonal. This yields the announced result, since the right and left hand sides of the
above inequality are no other than detDiag(M) and det(M), and UMU∗ diagonal is
the same as M is block diagonal.

Therefore we consider the joint block diagonality criterion

1
2

M∑

m=1

{log detDiag[(B ⊗ Iq)Ĉ(νm)(B ⊗ Iq)] − log det[(B ⊗ Iq)Ĉ(νm)(B∗ ⊗ Iq)]}.

(8)
Note that the last term in the above curly bracket { } may be replaced by 2q log det |B|
since these two terms differ by log det[C(νm)] which does not depend on B.

The algorithm in [13] can be adapted to solve the above problem. For lack of space,
we here only describe how it works. Starting from a current value of B, it consists in
performing successive transformations, each time on a pair of rows of B, the i-th row
Bi· and the j-th row Bj· say, according to

[
Bi·
Bj·

]
← Tij

[
Bi·
Bj·

]
,



Blind Separation of Cyclostationary Sources 249

where Tij is a 2 × 2 non singular matrix, chosen such that the criterion is decreased
and whose expression is given later. Once this is done, the procedure is repeated with
another pair of rows. The processing of all the K(K − 1)/2 is called a sweep. The
algorithm consists of repeated sweeps until convergence is achieved. Put

gij =
M∑

m=1

1
Mq

tr[C−1
ii (m;B)Cij(m;B)], 1 ≤ i �= j ≤ K, (9)

ωij =
M∑

m=1

1
Mq

tr[C−1
ii (m;B)Cjj(m;B)], 1 ≤ i �= j ≤ K.

where Cij(m;B) stands for the ij block of (B ⊗ Iq)C(νm)(B∗ ⊗ Iq) for short. The
matrix is Tij given by
[

1 0
0 1

]
− 2

1 + hijhji − h∗
ijh

∗
ji +

√
(1 + hijhji − h∗

ijh
∗
ji)2 − 4hijhji

[
0 hij

hji 0

]

where hij and hji are the solution of
[

ωij 1
1 ωji

] [
hij

h∗
ji

]
=

[
gij

g∗ji

]
.

Note 1. In the case where the signal X(t) is real, R̂X(α; τ) = R̂T
X(−τ)ei2πατ , T

denoting the transpose, hence fX(α; −ν) = fT
X(α; α + ν). It follows that

fXjXk
(αm − αl; −ν − αl) = fXkXj (αm − αl; ν + αm).

We already know that if A contain α it must contain −α. Thus it is of interest to choose
α1 = 0 and αj = −αq+2−j , 2 ≤ j ≤ q (which implies that q is odd, unless 1/2 ∈ A,
in this case q may be even with αq/2+1 = 1/2)1. Then the above right hand side can
be written as fXkXj (αq+2−l − αq+2−m; ν − αq+2−m), with αq+1 = 0 by convention.
Therefore by (7): Cjk(−ν) = ΠCT

kj(ν)ΠT for some permutation matrix Π, hence
C(−ν) = (IK ⊗ Π)CT (ν)(IK ⊗ ΠT ). It follows that for a real matrix B

(B ⊗ Iq)C(−ν)(B∗ ⊗ Iq) = (IK ⊗ Π)[(B ⊗ Iq)C(ν)(B∗ ⊗ Iq)]T (IK ⊗ ΠT ),

and thus the measure of block diagonality of the matrix in the above left hand side is
the same as that of (B ⊗ Iq)C(ν)(B∗ ⊗ Iq). It is then of interest to consider a grid
of frequencies ν1, . . . , νM with M even and νm = −νM+1−m mod 1, so as to reduce
the number of matrices to be block diagonalized by half, since the term corresponding
to νm in (8) can be grouped with the one corresponding to νM+1−m. One may take
νm = (m − 1/2)/M which yield a regular grid of spacing 1/M .

Note 2. In the case where the signals are real, the matrix B must be constrained to be
real, that is the minimization of (8) must be done over the set of real matrices. It can be
shown that the algorithm is the same as before but the gij are now defined as the real
part of the right hand side of (9).

1 {α1, . . . , αq} need not be equal to A but can be a subset of A.
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5 Some Simulation Examples

We consider two cyclostationary sources constructed as Gaussian stationary autore-
gressive (AR) processes of second order, modulated with sine waves cos(α2πt) and
cos(α3πt) respectively. Thus they have cycle frequencies 0, ±α2 and 0, ±α3 respec-
tively. We take α2 = 0.3/π = 0.0955 and α3 = 0.7/π = 0.2228 (the same as
in [9]). The AR coefficients are 1.9 cos(0.16π), −0.952 and cos(0.24π), −0.52 for the
first and second sources, respectively. This corresponds to the AR polynomials with
roots 0.95e±i0.16π and 0.5e±i0.24π respectively.

Four hundred series of length 256 are generated for each source. The 2 sources are

mixed according to the mixing matrix A =
[

1 1
−1 1

]
and our method is applied to

obtain the separation matrix B. The number of positive frequency bins is set to 4. To
quantify the quality of the separation, we introduce two contamination coefficients c12
and c21 defined as follows. First the global matrix G = BA is formed, then its rows is
eventually permuted such that |G11G22| ≥ |G12G21|, Gij denoting the elements of G.
Finally c12 = G12/G11 and c21 = G21/G22.

Table 1 shows the mean square of the contamination coefficients and of their prod-
ucts, all multiplied by 256 which is the length of the observed series (since the variance
of the estimator should be asymptotically inversely proportional to this length). The
mean number of iterations is also listed. For comparison, the values for the stationary
method in [4] is also given. This method amounts to running our algorithm with no cy-
cle frequency: q = 1 and α1 = 0, which means that one just ignore the cyclostationarity
of the sources and considers them as stationary (with spectrum being the average spec-
trum over time). It can be seen that cyclostationary method yields better results than
the stationary method. However, the algorithm converges a little more slowly and each
iteration is also more costly computationally.

Table 1. Mean square of the contamination coefficients and of their products and mean number of
iterations, obtained from the cyclostationary and stationary methods. The sources are modulated
AR processes.

256(mean c2
12) 256(mean c2

21) 256(mean c12c21) mean # iterations
cyclostationary method 0.3707 0.0310 0.0010 5.86

stationary method 0.5513 0.1250 −0.0628 3.97

In a second test, we consider two cyclostationary sources constructed as (temporally)
independent Gaussian processes of unit variance, modulated in the same way as before.
Thus the sources are uncorrelated but have variance varying periodically. Therefore, the
stationary methods, which amount to considers the sources as stationary with spectrum
being the average spectrum over time, would fail since the average sources spectra are
constant. Table 2 compares the results of the cyclostationary and stationary methods.
It can be seen the stationary method fails completely, as expected. The cyclostationary
still works reasonably well, although less well than in the case where the sources are
modulated AR processes. The “nonstationarity” method in [6] is also not suitable since
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the variance function vary too fast. Indeed, the variance function of the sources have
frequencies α1 and α2 respectively, which corresponds to the periods 1/α1 = π/0.3 =
10.472 and 1/α1 = π/0.7 = 4.4880. Thus in order to “see” the variation of the source
variances one has to estimate them in a moving window of size less than 4 which is to
short.

Table 2. Mean square of the contamination coefficients and of their products and mean number of
iterations, obtained from the cyclostationary and stationary methods. The sources are modulated
independent Gaussian processes of unit variance.

256(mean c2
12) 256(mean c2

21) 256(mean c12c21) mean # iterations
cyclostationary method 0.6638 0.6131 −0.2586 8.27

stationary method 74.4639 72.8648 −72.5062 4.43
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