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Abstract. This paper addresses the problem of the blind signal ex-
traction of sources by means of an information theoretic and geometric
criterion. Our main result is the extension of the minimum support crite-
rion to the case of mixtures of complex signals. This broadens the scope
of its possible applications in several fields, such as communications.

1 Introduction

The paradigm of linear ICA consists in the decomposition of the observations
into a linear combination of independent components (or sources), plus some
added noise. The problem is named blind signal separation (BSS) when one tries
to recover all the involved sources, whereas, it is named blind signal extraction
(BSE) when one is interested in one or a subset of sources.

In the late 1970s, a powerful contrast function was proposed to solve the
problem of blind deconvolution [1]. This contrast function, which minimizes the
Shannon entropy of the output under a variance constraint on its signal com-
ponent, was a direct consequence of the entropy power inequality [2]. A similar
principle was much latter rediscovered in the field of ICA, where the minimiza-
tion of the mutual information of the outputs, under a covariance constraint,
was seen as a natural contrast function to solve the BSS problem [3]. Indeed,
provided that the inverse system exists, there is a continuum of contrast func-
tions based on marginal entropies which allows the simultaneous extraction of
an arbitrary number of source signals [4].

Since them, the ICA literature explored the properties of other generalized
entropy measures, like Renyi’s entropies, to obtain novel information theoretic
contrast functions [5,6]. A criterion, which involved the minimization of the sum
of ranges of the outputs, was proposed in [7] for solving the BSS problem with
order statistics. Some time latter, we independently proposed a similar criterion
(the minimum support criterion) which minimizes zero order Renyi’s entropy of
the output for solving the problem of the blind extraction of one of the sources
[8]. In [9] the minimum range criterion for extraction was rediscovered and proved
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to be free of erroneous minima, a very desirable property. The minimum support
and the minimum range criteria coincide only when all the involved signals have
convex support, otherwise they differ [10].

In this paper, we retake the minimum support criterion and extend its role as
contrast function for mixtures of complex source signals.

The paper is organized as follows. In section 2 we present the signal model.
Section 3 and section 4 detail some useful results and geometrical object defini-
tions. Section 5 presents the complex version of the minimum support criterion
and other extensions. Section 6 presents the simulations, and finally, section 7
discusses the conclusions.

2 Signal Model and Notation

We consider the standard linear mixing model of complex stationary processes
in a noiseless situation. The observations random vector obeys the following
equation

X = AS , (1)

where S = [S1, · · · , Sn]T ∈ Cn×1 is a random vector with independent compo-
nents, and A ∈ Cn×n is a mixing matrix of complex elements.

In order to extract one non-Gaussian source from the mixture, one can com-
pute the inner product of the observations with the vector u, to obtain the
output random variable or estimated source

Y = uHX = gHS , (2)

where gH = uHA denotes the vector with the coefficients of the mixture of the
sources at the output.

The Darmois-Skitovitch theorem [3] guarantees the identifiability of non-
Gaussian complex sources, up to a permutation, scaling and phase term. Let
ei, i = 1, . . . , n, denote the coordinate vectors; one source is extracted when

g = ‖g‖ejθei, i ∈ {1, . . . , n}. (3)

3 Support Sets and Geometric Inequalities

Consider two m-dimensional vectors of random variables A and B , whose re-
spective densities are fA(a) and fB(b).

Definition 1. The support set of a random vector A, which we denote by SA =
supp{A}, is the set of points for which its probability density function is nonzero,
i.e., SA = {a ∈ Rm : fA(a) > 0}.

Definition 2. The convex hull of the set SA, which we denote by SĂ = conv SA,
is the intersection of all convex sets in R

m which contain SA.
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In this paper, we will consider that all the support sets of our interest are compact
(bounded and closed), thus we will make no distinction between convex hull and
the convex closure.

Definition 3. The Minkowski sum of two given sets SA and SB is defined as
the set SA ⊕ SB = {a + b : a ∈ A, b ∈ B} which contains all the possible sums
of the elements of SA with the elements of SB.

In the case of two independent random vectors A and B , it is easy to observe
that the support of their sum SA+B is equal to the Minkowski sum of the original
support sets SA ⊕ SB .

The following famous theorem in geometry establishes the superadditivity of
the n-th root of the volume of a Minkowsky sum of two sets.

Theorem 1 (Brunn-Minkowski inequality in R
m). Let SA and SB be non-

empty bounded Lebesgue measurable sets in Rm such that SA ⊕ SB is also mea-
surable. Then

μm(SA ⊕ SB)1/m ≥ μm(SA)1/m + μm(SB)1/m (4)

The Brunn-Minkowski inequality is formulated for nonempty bounded measur-
able sets in Rm. However, we want to apply it to obtain a criterion that works
for complex data. The next section will help us in this task.

4 Isomorphisms Between Real and Complex Sets

The following bijective mapping

c = �{c} + j�{c} �→ T1(c) =
(

�{c}
�{c}

)
. (5)

defines a well-known isomorphism between the space of complex scalar numbers
C and the vector space R2 with the operation of addition and multiplication
by a real number. However, the multiplication of two complex numbers is not
naturally carried in R2. Hopefully, there is another isomorphism between the
space of complex scalar numbers c ∈ C and the subfield of the M2 vector space
of real 2 × 2 which carries the operation of multiplication. It is defined by the
following bijective mapping

c = �{c} + j�{c} �→ T2(c) =
(

�{c} −�{c}
�{c} �{c}

)
. (6)

The two previously presented isomorphisms allow one to express the following
operation of complex random variables

Y =
n∑

i=1

g∗i Si (7)
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as the equivalent real operation between real vectors of random variables

(
�{Y }
�{Y }

)
=

n∑
i=1

(
�{gi} �{gi}

−�{gi} �{gi}

)(
�{Si}
�{Si}

)
. (8)

Moreover, to any given set of complex numbers SA we can associate an area
μ2(A) which represents the area of the equivalent set T1(SA) = {T1(a) : a ∈ SA}
of R2 defined by the real and imaginary pairs of coordinates. Thus, the measure
of the support of a complex scalar random variable is defined as the measure of
support of the random vector formed by its real and imaginary parts

μc
1(SC) ≡ μ2

(
supp

{(
�{C}
�{C}

)})
. (9)

Note that the measure of the support of the complex scalar multiplication
g∗i Si is invariant to the phase of the complex scalar g∗i , because the phase term
only implies a rotation of the space. This can be better seen from the fact that

μc
1
(
S(g∗

i Si)
)

=
∣∣∣∣ �{gi} �{gi}
−�{gi} �{gi}

∣∣∣∣ μ2

(
supp

{(
�{Si}
�{Si}

)})
= |gi|2 μc

1(SSi)

5 The Complex Version of the Minimum Support
Criterion

Now we are ready to apply the Brunn-Minkowski theorem. We will implicitly
assume complex sources whose densities have bounded Lebesgue measurable
and non-empty supports. Under these conditions, we can exploit the previously
defined isomorphisms, between real and complex sets, to rewrite the Brunn-
Minkowski inequality in R

2 (see equation (4)) as an inequality for the measure
of the support of complex random variables

(μc
1(SY ))

1
2 ≥

n∑
i=1

(
μc

1(Sg∗
i Si)

) 1
2 =

n∑
i=1

|gi| (μc
1(SSi))

1
2 . (10)

A theorem, originally formulated by Lusternik and whose proof was later
corrected by Henstock and Macbeath [13], establishes the general conditions for
the equality to hold in the Brunn-Minkowski theorem.

Theorem 2 (Conditions for equality). Let SA and SB be nonempty bounded
Lebesgue m-dimensional measurable sets, let S′

A and S̆A denote, respectively, the
complement and the convex closure of SA.

a) If μm(SA) = 0 and 0 < μm(SB) < ∞, then the necessary and sufficient con-
dition for the equality in Brunn-Minkowski theorem is that SA should consist
of one point only.
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b) If 0 < μm(SA)μm(SB) < ∞ the equality in Brunn-Minkowski theorem holds
if and only if

μm(S̆A ∩ S′
A) = μm(S̆B ∩ S′

B) = 0,

and the convex closures S̆A and S̆B are homothetic1.

By the application of theorem 2, the equality in (10) is only obtained when one
of the following conditions is true:

Case a) The mixture at the output is trivial, i.e.,

Y = g∗i Si, i ∈ {1, . . . , n}, (11)

which happens when the output is an arbitrary scaled and rotated version
of only one the sources.

Case b) When the sources whose contribution to the output does not vanish
have support sets which are all convex and homothetic.

The connection between the zero order Rényi’s entropy of a random vector in
R2 and the volume of its support set (see [11]) leads us to identify the zero order
entropy of a complex random variable with the joint zero order entropy of its
real and imaginary parts,

hc
0(Y ) = log μc

1(SY ) ≡ h0(�{Y }, �{Y }) . (12)

Then, we can use equation (10) to obtain a different inequality which relates
the zero order entropy of the output with those of the sources and which, at the
same time, prevents the equality to hold true for the situations described in the
case b). This new inequality is at the heart of the following result.

Theorem 3. If the measure of the support set of the complex sources if finite
and does not vanish for at least n − 1 of them,

μc
1(SSπi

) = 0, i = 1, . . . , n − 1, π perm. of {1, . . . , n}, (13)

the zero order entropy of the normalized output

Ψ(X,u) = hc
0

(
uH

‖u‖2
X

)
= hc

0

(
Y

‖u‖2

)
(14)

is a contrast function for the extraction of one of the sources. The global mini-
mum of this contrast function is obtained for the source (or sources) with smallest
scaled measure of support, i.e.,

min
u

Ψ(X,u) = min
i

hc
0
(
Si/‖a−

i ‖2
)
, (15)

where a−
i denotes the ith column of A−H , the inverse hermitian transpose of the

mixing matrix.
1 They are equal sets up to translation and dilation.
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Due to the lack of space, its proof is omitted. The result tells us that we can
extract one of the sources by minimizing the area of the support set of the
output.

Note that the theorem does not require the typical ICA assumption of the
circularity of the complex sources nor the mutual independence between their
real and imaginary parts.

The minimum support contrast function does not work for discrete sources
(drawn from alphabets of finite cardinality) because they are of zero measure, a
case not covered by the conditions of the theorem. Nevertheless, after replacing
the support sets of the original random variables by its convex hull, we return
to the conditions of the theorem, obtaining the well-behaved contrast function

Ψ(X̆ ,u) = log μc
1(S̆Y/‖u‖2) ≡ hc

0

(
Y̆

‖u‖2

)
. (16)

Indeed, in all of our experiments, and in similarity with the minimum range
contrast for the case of real mixtures [9], this contrast function was apparently
free of deceptive minima. Although we still don’t know whether this property is
true in general, we succeeded in proving the following result.

Theorem 4. For a mixture of n complex sources with bounded circular convex
hull, the minima of the contrast function Ψ(X̆,u) can only be attained at the
solutions of the extraction problem, i.e., there are no local deceptive minima.

6 Simulations

In order to optimize the contrast function we first parametrized a complex unit
norm vector u in terms of 2n − 2 angles (ignoring a common phase term). Let
R(1, k+1, αk, βk), for k = 1, . . . , n−1, denote a class of planar rotation matrices,
then

u = e1
T R(1, n, αn−1, βn−1) · · ·R(1, 2, α1, β1).

Since the extraction solutions are non-differentiable points of the contrast
function, we used the downhill simplex method of Nelder and Mead to optimize it
in low dimensions [14]. In high dimensions, an improved convergence is obtained
when combining the previous optimization technique with numerical gradient
and line-search methods. Each function evaluation requires the computation of
the planar convex hull of a set of T outputs. The optimal algorithms for this
task, have, in the worst case, a computational complexity of O(T log V ) where
V is the number of vertices of the convex hull [15].

Consider the sample experiment of 200 observations of a complex mixture
of two 16QAM sources (a typical constellation used in communications). The
illustration of figure 1 presents the graph of the contrast function Ψ(X̆ ,u) which
periodically tessellates the (α1, β1)-plane. The figure shows a contrast function
with no local deceptive minima, which is non-differentiable at those points where
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Fig. 1. Graph of the contrast function, with respect the parameters (α1, β1), for a
mixture of two 16QAM sources. The solutions to the extraction problem are at the
minima of the function.
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Fig. 2. The 16QAM source recovered by the extraction algorithm and the frontier of
the convex hull of its support (dashed line)

the Brunn-Minkowski equality holds true. The illustration of figure 2 presents the
16QAM source extracted by the previously described algorithm and the frontier
of the convex hull of its support.

7 Conclusions

We have presented a geometric criterion for the extraction of one indepen-
dent component from of a linear mixture of complex and mutually independent
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signals. The criterion favors the extraction of the source signals with minimum
scaled support and does not require the mutual independence between their real
and imaginary parts. Under certain given conditions, the criterion is proved to
be free of defective local minima, although, a general proof is still elusive.
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