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Abstract. We introduce Model-free Toolbox (MFBOX), a Matlab tool-
box for analyzing multivariate data sets in an explorative fashion. Its
main focus lies on the analysis of functional Nuclear Magnetic Resonance
Imaging (fMRI) data sets with various model-free or data-driven tech-
niques. In this context, it can also be used as plugin for SPM5, a popular
tool in regression-based fMRI analysis. The toolbox includes BSS algo-
rithms based on various source models including ICA, spatiotemporal
ICA, autodecorrelation and NMF. They can all be easily combined with
higher-level analysis methods such as reliability analysis using projective
clustering of the components, sliding time window analysis or hierarchi-
cal decomposition. As an example, we use MFBOX for the analysis of an
fMRI experiment and present short comparisons with the SPM results.
The MFBOX is freely available for download at http://mfbox.sf.net.

1 Introduction

With the increasing complexity and dimensionality of large-scale biomedical data
sets, classical analysis techniques yield way to more powerful methods that can
take into account higher-order relationships in the data. Such often explorative
methods have been popular in the field of engineering and statistics for quite
some time, however they perpetrate into the application areas such as psychol-
ogy, biology or medicine in a much slower fashion. This is partially due to the
fact that visual and simple tools for more complex analyses are rarely available.
In this contribution, we present a toolbox, MFBOX, for performing blind source
separation of complex tasks with appropriate pre- and postprocessing methods.
One of our main goals is to provide a simple toolbox that allows for the model-free
analysis of fMRI data sets [14], although MFBOX may just as well be applied to
other recordings. The graphical user interface of MFBOX enables users to easily
try out various model-free algorithms, together with additional pre- and post-
processing and reliability analysis. The design of the toolbox is modular, so it
can be easily extended to include your algorithm of choice. It can integrate into
SPM5 [1] and can be used to perform model-free analysis of biomedical image
time series such as fMRI or PET data sets. The toolbox is realized in MATLAB,
and has been tested on Linux, Windows and Mac OS. The paper itself is orga-
nized as follows: In the next section, we present the core features of MFBOX,
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Fig. 1. The data flow of the MFBOX application. The user interface is divided into
the spm mf box part and the mfbox compare ic part.

from preprocessing to Blind Source Separation (BSS) and higher-order analysis
itself to postprocessing. We then illustrate the usage of MFBOX on a complex
fMRI experiment, and conclude with an outlook.

2 Features of the MFBOX

The MFBOX application includes two main graphical interfaces, spm mf box
which gives access to all processing possibilities and mfbox compare ic which
allows for easy comparison of different results. Any of the algorithms can also
be used separately from the main toolbox interface and additionally a batch run
command mfbox runbatch is provided to ease the analysis of multiple data sets.
The workflow can be divided into modular stages, also see figure 1:

– Preprocessing
– Model-free processing and higher-level analysis
– Postprocessing

2.1 Preprocessing

The preprocessing stage can include one or more preprocessing steps in a row
where the precedence can be easily controlled. The purpose of this stage is to
select regions of interest to apply the model-free algorithms on or enhance the
effectiveness of the main processing algorithms by denoising or transforming the
original sequence data.
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datavalue mask selection by bounds on voxel values
denoise high quality Local ICA (lICA) based 3d denoising [4]
infomap gridding using a Self-Organizing Maps (SOM) [12] based on the infor-

mation content of the voxels
remmean different mean removal options
roiselect mask selection by loadable masks
selectslices rectangular mask selection in voxel space
varthreshold mask selection by bounds on voxel variances

Recommended standard options are to mask out the parts of the signal which
are outside the brain and regions uninteresting for the Blood Oxygenation Level
Dependent Contrast (BOLD) effect like blood support system. Moreover the
analysis can be enhanced by only using the white matter voxels. How this mask
selection is achieved depends on the available data. If structural data is available
the preprocessing option roiselect can use the data from a segmentation step.
Otherwise the mask selection can be accomplished by datavalue or varthreshold
selection.

2.2 Model-Free Analysis and Higher-Level Analysis

Given a multivariate data set x(t), our goal is to find a new basis W such
that Wx(t) fulfills some statistical properties. If we for example require the
transformed random vector to be statistically independent, this is denoted as
Independent Component Analysis [8]. Independent Component Analysis (ICA)
can be applied to solve the BSS problem, where x(t) is known to be the mixture
of some underlying hidden independent sources. Depending on the data set also
other models are of interest, as for e.g. depending on the data set. The MFBOX
currently includes three different paradigms for tackling the BSS problem and
for each of these fundamental types it contains different algorithms to perform
the separation.

1. ICA algorithms
PearsonICA spatial ICA algorithm which employs a fast fixed point algo-

rithm as extension of FastICA [8] where the nonlinearity is estimated
from the data and automatically adjusted at each step [9]

JADE spatial ICA algorithm which is based on the approximate diagonal-
ization of the fourth cumulant tensor [3]

stJADE spatiotemporal version of the JADE algorithm [15], for an impres-
sion on how the spatiotemporal weighting can enhance the separation of
a real data set see figure 2

TemporalICA temporal ICA [2] optionally using Projection Approxima-
tion Subspace Tracking (PAST) [17] for the temporal Principal Compo-
nent Analysis (PCA) reduction

hrfICA semi-blind spatial ICA algorithm using the Haemoglobin Response
Function (HRF) function to incorporate prior knowledge about the as-
sumed sources
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2. second order algorithms
mdSOBI Multidimensional version of the Second Order Blind Identification

(SOBI) [16] algorithm, which is based on second-order autodecorrelation
stSOBI Spatio-temporal version of the SOBI algorithm [15]

3. other decomposition algorithms
hNMF a Nonnegative Matrix Factorization (NMF) decomposition algo-

rithm using hyperplane clustering [5]

These base BSS algorithms can be combined with different types of higher-
level analysis methods. These three methods share the fact that they apply a
previously selected BSS algorithm multiple times in order to extract additional
statistics e.g. for reliability. The methods will be explained in the following.

Reliability analysis with projective k-means clustering. A common prob-
lem in explorative data analysis is how to access the reliability of the obtained
results. A proven method of reliability analysis in statistics is bootstrapping i.e.
to randomly subsample the same methods as before and compare the results
from multiple different random sub sample runs, see e.g. [6, 7]. For most BSS
algorithms this leads to a permutation problem (namely identifying correspond-
ing Independent Component (IC)) since there is an inherent permutation and
scaling, especially sign, invariance of BSS. Here we use projective k-means clus-
tering [5] for the assignment and to evaluate the quality of a component using
the resulting cluster size. It is essentially a k-means-type algorithm, which acts
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Fig. 2. Evaluation of some of the higher level algorithms present in the MFBOX on a
real data set using the stJADE algorithm with 10 components. In both graphs α = 1
is the situation where only temporal ICA is performed whereas at α = 0 only spatial
ICA is performed.
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on samples in the projective space RP
n of all lines of R

n. This models the scaling
indeterminacy of ICA more precisely than projection onto its hypersphere since
it also deals with the sign invariance. The result (figure 2) is explained by the fact
that the spatial dimension of the data is strongly smoothed and reveals a some
structure. Hence it does not follow the usual linear ICA model of independently
drawn samples from an identically distributed random variable. The temporal
dimension does not expose such additional structure and is less smoothed by the
data acquisition and so the temporal ICA should be more stable.

Hierarchical analysis of component maps. Another common issue in data-
driven BSS methods is how to choose the number of components and how to
evaluate the large amount of possibly interesting components the process might
yield without means to identify the ones which are interesting in the current
problem. The hierarchical analysis tries to overcome this problem by extracting
different numbers of components and extracting a hierarchical structure form
the relations between the timecourses and the component maps of the extracted
sources. This yields a tree structure of the components which can be used to
easily navigate to the components which are of interest in an experiment. For
more detailed implementation details see also [11].

Sliding time-window analysis. Usualy ICA cannot deal with non-stationary
data, so most commonly approximations or windowing techniques are used. In
ordinary ICA, the whole data set is transformed, and as many component maps
as time steps are reconstructed. Window ICA [10] groups the observations in
windows of a fixed size, and extracts components out of each of them. Correlation
analysis then gives corresponding components over the whole time interval, thus
yielding additional structure in a single full-scale component map.

2.3 Import, Export and Postprocessing

The MFBOX has rich im- and export possibilities to load and save data, masks,
designs, reference brain masks, and parameters from different formats as Ana-
lyze, Nifti, plain MATLAB, and its own file format.

selectcomp semi-manual selection, labeling and grouping of extracted
components

denoise lICA based 3d denoising [4] of the extracted components

3 Using the MFBOX on fMRI Recording of an Wisconsin
Card Sorting Test (WCST)

In this part we will demonstrate the results from using the MFBOX on a real
world data set. After a short introduction into the nature of the data we will
present the result and compare it to the standard SPM result. The WCST is
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Fig. 3. Result of a stJADE run with α=1.0, selecting the whole brain area as mask,
and after applying spatial and temporal mean removal. The component network in the
prefrontal cortex and a more compact network at the parietal/occipital lobe is clearly
visible.

a traditional neuropsychological test that is sensitive to frontal lobe dysfunc-
tion and allows to assess the integrity of the subjects’ executive functions. The
WCST-task primarily activates the dorsolateral prefrontal cortex that is respon-
sible for executive working memory operations and cognitive control functions.
The given fMRI data set originates from a modified version of the WCST [13].
Its aim is to segregate those network components participating in the above
mentioned process. At first, a number of stimulus cards are presented to the
participants. Afterwards the subject is asked to match additional cards to one
of the stimulus cards with respect to a sorting criterion unknown to the subject.
In fact, the subject has to discover it by trial and error (Sorting dimensions
include: the color of symbols, their shape or the number of displayed symbols
on the card). Sorting dimension changes if a previously defined number of cor-
rect answers have been given consecutively. Three different test variants of the
WCST were applied

Task A. No instructions of dimensions (very close to the original WCST)
Task B. Instruction of dimensional change as sorting criterion changes.
Task C. Reminder of dimension prior to each trial; subject knows in advance

the attribute that was searched for in the test.

Our results largely verify the findings of [13], as can be seen in figure 3(a). In
addition to the stimulation of the prefrontal cortex, an increased activity in the
parietal lobe as well as in the occipital lobe was revealed by our stJADE algo-
rithm. The increased activity in the rear section of the brain (see figure 3(b))
was also discovered by the model-free algorithm. The complete summary of one
stJADE analysis of the data set is shown in figure 4. The classification into
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Fig. 4. A complete BSS analysis output as provided by the SVG export function of
the MFBOX. The component labeled stimulus indicates the one which has the highest
correlation with the stimulus. The components labeled artifact are most likely artifacts,
two of them are also grouped together such that the number of displayed components
is 9 although 10 components were extracted by stJADE.
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stimulus component and artifacts was done after the analysis using the reliabil-
ity analysis and a Minimum Description Length (MDL)-likelihood based noise
estimator included in the MFBOX.

4 Conclusion

The MFBOX is an easy to use but nonetheless powerful instrument for explo-
rative analysis of fMRI data. It includes several modern BSS algorithms and due
to its highly modular structure it can easily be extended with novel as well as
classical approaches.
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