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Abstract. This paper addresses the problem of the non-unitary ap-
proximate joint block diagonalization (NU − JBD) of matrices. Such a
problem occurs in various fields of applications among which blind sep-
aration of convolutive mixtures of sources and wide-band signals array
processing. We present a new algorithm for the non-unitary joint block-
diagonalization of complex matrices based on a gradient-descent algo-
rithm whereby the optimal step size is computed algebraically at each
iteration as the rooting of a 3rd-degree polynomial. Computer simula-
tions are provided in order to illustrate the effectiveness of the proposed
algorithm.

1 Introduction

In the recent years, the problem of the joint decomposition of matrices or tensors
sets have found interesting solutions through signal processing applications in
blind source separation and array processing.

One of the first considered problem was the joint-diagonalization of matri-
ces under the unitary constraint, leading to the nowadays well-known JADE [4]
and SOBI [2] algorithms. The following works have addressed either the prob-
lem of the joint-diagonalization of tensors [5][7][12] or the problem of the joint-
diagonalization of matrices but discarding the unitarity constraint [6][10][14]
[15][16][17].

A second type of matrices decomposition has proven to be useful in blind
source separation, telecommunications and cryptography. It consists in joint
zero-diago-nalizing several matrices either under the unitary constraint [1] or
not [9][10]. Most of the proposed (unitary) joint-diagonalization and/or zero-
diagonalization algorithms have been applied to the problem of the blind sepa-
ration of instantaneous mixtures of sources.

Finally, a third particular type of matrices decomposition arises in both the
wide-band sources localization in correlated noise fields and the blind separation
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of convolutive mixtures of sources problems. It is called joint block-diagonalization
since the wanted matrices are block diagonal matrices1 in such a decomposition.
Such a problem has been considered in [3][8] where the block-diagonal matrices
under consideration have to be positive definite and hermitian matrices and the
required joint-block diagonalizer is a unitary matrix.

In this paper, our purpose is to discard this unitary constraint. To that aim, we
generalize the non unitary joint-diagonalization approach proposed in [16] to the
non-unitary joint block-diagonalization of several complex hermitian matrices.
The resulting algorithm is based on a gradient-descent approach whereby the
optimal step size is computed algebraically at each iteration as the rooting of a
3rd-degree polynomial. The main advantage of the proposed algorithm is that
it is relatively general since the only needed assumption about the complex
matrices under consideration is their hermitian symmetry. Finally, the use of
the optimal step size speeds up the convergence.

The paper is organized as follows. We state the considered problem in the
Section 2. In the Section 3, we present the algebraical derivations leading to the
proposed non-unitary joint block-diagonalization algorithm. Computer simula-
tions are provided in the Section 4 in order to illustrate the behaviour of the
proposed approach.

2 Problem Statement

The non-unitary joint block-diagonalization problem is stated in the following
way: let us consider a set M of Nm, Nm ∈ N

∗ square matrices Mi ∈ C
M×M ,

i ∈ {1, . . . , Nm} which all admit the following decomposition:

Mi = ADiAH or Di = BMiBH , ∀i ∈ {1, . . . , Nm} (1)

where Di =

⎛
⎜⎝

Di1 . . . 0
. . .

0 . . . Dir

⎞
⎟⎠, ∀i ∈ {1, . . . , Nm}, are N × N block diagonal

matrices with Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} are nj × nj square matrices
so that n1 + . . .+ nr = N (in our case, we assume that all the matrices have the
same size i.e. N = r × nj , j ∈ {1, . . . , r}) and where 0 denotes the nj × nj null
matrix. A is the M × N (M ≥ N) full rank matrix and B is its pseudo-inverse
(or generalized Moore-Penrose inverse).

The non-unitary joint bloc-diagonalization problem consists in estimating the
matrix A and the matrices Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} from only the
matrices set M. The case of a unitary matrix A has been considered in [8] where
a first solution is proposed.

1 A block diagonal matrix is a square diagonal matrix in which the diagonal elements
are square matrices of any size (possibly even), and the off-diagonal elements are
0. A block diagonal matrix is therefore a block matrix in which the blocks off the
diagonal are the zero matrices and the diagonal matrices are square.
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3 Non-Unitary Joint Block-Diagonalization Using a
Gradient Approach

In this section, we present a new algorithm to solve the problem of the non-
unitary joint block-diagonalization. We propose to consider the following cost
function

CBD(B) =
Nm∑
i=1

‖OffBdiag{BMiBH}‖2
F , (2)

where ‖.‖F stands for the Frobenius norm and the operator OffBdiag{·} denotes
the zero block-diagonal matrix. Thus:

M =

⎛
⎜⎜⎜⎜⎝

M11 M12 . . . M1r

M21 . . . . . .
...

... . . . . . .
...

Mr1 Mr2 . . . Mrr

⎞
⎟⎟⎟⎟⎠

⇒ OffBdiag{M} =

⎛
⎜⎜⎜⎜⎝

0 M12 . . . M1r

M21
. . .

...
...

. . .
...

Mr1 Mr2 . . . 0

⎞
⎟⎟⎟⎟⎠

� E (3)

Our aim is to minimize the cost function (2).
To make sure that the found matrix B keeps on being invertible, it is updated

according to the following scheme (see [17]):

B(m) = (I + W(m−1))B(m−1) ∀m = 1, 2, . . . , (4)

where B(0) is some initial guess, B(m) denotes the estimated matrix B at the
m-th iteration, W(m−1) is a sufficiently small (in terms of Frobenius norm) zero-
block diagonal matrix and I is the identity matrix.

Denoting M(m)
i = B(m−1)MiB(m−1)H ∀i = 1, . . . , Nm and ∀m = 1, 2, . . .,

where (·)H stands for the transpose conjugate operator, then at the m-th itera-
tion, the cost function can be expressed versus W(m−1) rather than B(m). We
now have:

CBD(W(m−1)) =
Nm∑
i=1

‖OffBdiag{(I + W(m−1))M(m)
i (I + W(m−1))H}‖2

F (5)

or more simply C(m)
BD (W) �

∑Nm

i=1 ‖OffBdiag{(I + W)M(m)
i (I + W)H}‖2

F .
At each iteration, the wanted matrix W is then updated according to the

following adaptation rule:

W(m) = −μ∇CBD(W(m−1)) ∀m = 1, 2, . . . (6)

where μ is the step size or adaptation coefficient and where ∇CBD(W(m−1))
stands for the complex gradient matrix defined, like in [13], by:

∇CBD(W(m−1)) = 2
∂CBD(W(m−1))

∂W(m−1)∗ ∀m = 1, 2 . . . (7)

where (·)∗ is the complex conjugate operator. We now have to calculate the

complex gradient matrix ∇C(m)
BD (W) = 2∂C(m)

BD (W)
∂W∗ .
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3.1 Gradient of the Cost Function C(m)
BD (W)

LetD(m)
i andE(m)

i respectively denote the block-diagonal and zero block-diagonal
matrices extracted from the matrix M(m)

i (M(m)
i = E(m)

i +D(m)
i ). As W is a zero-

block diagonal matrix too, the cost function C(m)
BD (W) can be expressed as:

C(m)
BD (W) =

Nm∑
i=1

‖OffBdiag{M(m)
i } + OffBdiag{M(m)

i WH} + OffBdiag{WM(m)
i }

+ OffBdiag{WM(m)
i WH}‖2

F

=
Nm∑
i=1

‖E(m)
i + D(m)

i WH + WD(m)
i + WE(m)

i WH‖2
F

=
Nm∑
i=1

tr{(E(m)
i +D(m)

i WH +WD(m)
i +WE(m)

i WH)H(E(m)
i +D(m)

i WH

+ WD(m)
i + WE(m)

i WH)} (8)

where tr{.} stands for the trace operator. Then, using the linearity property of
the trace and assuming to simplify the derivations that the considered matrices
are hermitian, we finally find that:

C(m)
BD (W) =

Nm∑
i=1

tr{E(m)H
i E(m)

i } + 2tr{E(m)H
i (D(m)

i WH + WD(m)
i )}

+ tr{WD(m)H
i D(m)

i WH + D(m)H
i WHWD(m)

i }
+ 2tr{E(m)H

i WE(m)
i WH}

+ tr{WD(m)H
i WD(m)

i + D(m)H
i WHD(m)

i WH}
+ 2tr{WE(m)H

i WH(D(m)
i WH + WD(m)

i )}
+ tr{WE(m)H

i WHWE(m)
i WH} (9)

Using now the following properties [11]

tr{PQR} = tr{RPQ} = tr{QRP} (10)
∂tr{PXH}

∂X∗ = P (11)

∂tr{PX}
∂X∗ = 0 (12)

dtr{P} = tr{dP} (13)
dtr{PXHQX} = tr{PdXHQX + PXHQdX} (14)
∂tr{PXHQX}

∂X∗ = QXP (15)
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It finally leads to the following result:

∇C(m)
BD (W) = 4

Nm∑
i=1

(
E(m)H

i D(m)
i + WD(m)H

i D(m)
i + E(m)H

i WE(m)
i

+ WE(m)H
i WHD(m)

i + WE(m)
i WHWE(m)H

i + D(m)
i WHD(m)H

i

+ D(m)
i WHWE(m)H

i + WD(m)
i WE(m)H

i

)
. (16)

3.2 Seek of the Optimal Step Size

The expression (16) is then used in the gradient descent algorithm (6). To ac-
celerate its convergence, the optimal step size μ is computed algebraically at
each iteration. To that aim, one has to calculate C(m)

BD (W ← −μ∇C(m)
BD (W)), but

here we use C(m)
BD (W ← μF(m) = −μOffBdiag{∇C(m)

BD (W)}). F(m) is the anti-
gradient matrix. We use OffBdiag{∇C(m)

BD (W)} instead of ∇C(m)
BD (W) because

W is a sufficiently small (in terms of norm) zero block-diagonal matrix and thus
only the off block-diagonal terms are involved in the descent of the criterion. We
now have to seek for the optimal step μ ensuring the minimization of the cost
function C(m)

BD (μF(m)). This step is determined by the rooting of the 3rd-degree
polynomial (18) which is obtained as the derivative of the 4rd-degree polynomial
C(m)

BD (μF(m)) with respect to μ:

C(m)
BD (μF(m)) = a

(m)
0 + a

(m)
1 μ + a

(m)
2 μ2 + a

(m)
3 μ3 + a

(m)
4 μ4, (17)

∂C(m)
BD (μF(m))

∂μ
= 4a

(m)
4 μ3 + 3a

(m)
3 μ2 + 2a

(m)
2 μ + a

(m)
1 , (18)

where the coefficients have been found to be equal to:

a
(m)
0 =

Nm∑
i=1

tr{E(m)H
i E(m)

i } (19)

a
(m)
1 =

Nm∑
i=1

tr{E(m)H
i (D(m)

i FH + FD(m)
i ) + (D(m)

i FH + FD(m)
i )HE(m)

i }(20)

a
(m)
2 =

Nm∑
i=1

tr
{
E(m)H

i FE(m)
i FH + FE(m)H

i FHE(m)
i

+ (D(m)
i FH + FD(m)

i )H(D(m)
i FH + FD(m)

i )
}

(21)

a
(m)
3 =

Nm∑
i=1

tr
{
(D(m)

i FH + FD(m)
i )HFE(m)

i FH

+ FE(m)H
i FH(D(m)

i FH + FD(m)
i )

}
(22)

a
(m)
4 =

Nm∑
i=1

tr{F(m)E(m)H
i F(m)HF(m)E(m)

i F(m)H}. (23)
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The optimal step μ corresponds to the root of the polynomial (18) attaining the
absolute minimum in the polynomial (17).

3.3 Summary of the Proposed Algorithm

The proposed non-unitary joint block-diagonalization based on a gradient algo-
rithm denoted by JBDNU,G is now presented below:

Denote the Nm square matrices as M(0)
1 ,M(0)

2 , . . . ,M(0)
Nm

Given initial estimates W(0) = 0 and B(0) = I
For m = 1, 2, . . .

For i = 1, . . . , Nm

Compute M(m)
i as

M(m)
i = B(m−1)M(m−1)

i B(m−1)H

Compute ∇C(m)
BD (W) whose expression is given by equation (16)

EndFor
Set F(m) = −OffBdiag{∇C(m)

BD (W)}
Compute the coefficients a

(m)
0 , . . . , a

(m)
4 thanks to (19), (20), (21), (22) and

(23)
Set the optimal step μ by the research of the root of the polynomial (18)
attaining the absolute minimum in the polynomial (17)
Set W(m) = μF(m) and B(m) = (I + W(m−1))B(m−1)

EndFor

4 Computer Simulations

In this section, we perform simulations to illustrate the behaviour of the proposed
algorithm. We consider a set D of Nm = 11 (resp. 31, 101) matrices, randomly
chosen (according to a Gaussian law of mean 0 and variance 1). Initially these
matrices are exactly block-diagonal, then matrices with random entries chosen
from a Gaussian law of mean 0 and variance σ2

b are added. The signal to noise
ratio (SNR) is then defined by SNR = 10 log( 1

σ2
b

) . We use the following perfor-
mance index which is an extension of that introduced in [12]:

I(G)=
1

r(r − 1)

⎡
⎣

r∑
i=1

⎛
⎝

r∑
j=1

‖(G)i,j‖2

max
�

‖(G)i,�‖2 − 1

⎞
⎠+

r∑
j=1

⎛
⎝

r∑
i=1

‖(G)i,j‖2

max
�

‖(G)�,j‖2 − 1

⎞
⎠

⎤
⎦

where (G)i,j∀i, j ∈ {1, . . . , r} is the (i, j)-th matrix block (square) of G = B̂A.
The displayed results are averaged over 30 Monte-Carlo trials. In this example,
they were obtained considering M = N = 12, r = 3 and real and symmetric
matrices. On the left of Fig. 1 we display the performance index obtained with
the proposed algorithm versus the number of used matrices for different values
of the SNR. On its right we have plotted the evolution of the performance index
versus the SNR.
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Fig. 1. Left: performance index versus number Nm of used matrices for different values
of the SNR (SNR=10 dB (×), 20 dB (◦), 50 dB (�) and 100 dB (+)). Right: performance
index versus SNR for different size of the matrices set to be joint block-diagonalized
(Nm=11 (×), 31 (◦), 101 (+)).

5 Discussion and Conclusion

In this paper, we have proposed a new algorithm (named JBDNU,G) based on a
gradient approach to perform the non-unitary joint block-diagonalization of a
given set of complex matrices. One of the main advantages of this algorithm is
that it applies to complex hermitian matrices. This algorithm finds application
in blind separation of convolutive mixtures of sources and in array processing.
In the context of blind sources separation, it should enable to achieve better
performances by discarding the unitary constraint. In fact, starting with a pre-
whitening stage is a possible way to amount to a unitary square mixture of
sources to be able to use unitary joint-decomposition algorithms. But such a
pre-whitening stage imposes a limit on the attainable performances that can be
overcome thanks to non-unitary algorithms.
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