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Abstract. This paper deals with the problem of the blind separation
of convolutive mixtures of sources. We present a novel method based on
a new non orthogonal joint block diagonalization algorithm (NO − JBD)
of a given set of matrices. The main advantages of the proposed method
are that it is more general and a preliminary whitening stage is no more
compulsorily required. The proposed joint block diagonalization algo-
rithm is based on the algebraic optimization of a least mean squares
criterion. Computer simulations are provided in order to illustrate the
effectiveness of the proposed approach in three cases: when exact block-
diagonal matrices are considered, then when they are progressively per-
turbed by an additive Gaussian noise and finally when estimated corre-
lation matrices are used. A comparison with a classical orthogonal joint
block-diagonalization algorithm is also performed, emphasizing the good
performances of the method.

1 Introduction

In the signal processing community, many works have been recently dedicated to
the study of the problem of joint decomposition of matrices or tensors because
of their numerous applications especially in blind source separation and array
processing [1]-[14].

Here, we are interested in the problem of the blind separation of convolutive
mixtures of sources. That is why this communication is dedicated to the so-
called joint block-diagonalization of matrices problem. In such a decomposition,
the wanted matrices are block diagonal ones1. Such a problem has been already
considered in [1][4][7] but under the constraint that the joint-block diagonalizer
is an orthogonal (unitary in the complex case) matrix. Our purpose, here, is to

1 A block diagonal matrix is a block matrix in which the off-diagonal block terms are
zero matrices and the diagonal matrices are square.
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discard this unitary constraint. To that aim, we show how the (non necessarily
orthogonal) joint-block diagonalizer can be algebraically estimated by minimi-
zing a least mean squares criterion, leading to a new non-orthogonal joint block-
digonalization algorithm. Some computer simulations are provided in order to
illustrate the good behaviour of the proposed algorithm. Then, it is shown how
this algorithm finds application in blind source separation where it is applied,
here, to a set of observations correlation matrices at different time delays.

The rest of this communication is organized as follows. The problem statement
and the proposed joint block-diagonalization algorithm are both introduced in
the Section 2. In the Section 3, we show how this algorithm can be applied
to solve the problem of blind separation of convolutive mixtures of sources.
Computer simulations are provided in both sections to illustrate the effectiveness
of the proposed algorithm and to compare it with another one based on an
orthogonal joint block-diagonalization.

2 Non-orthogonal Joint Block-Diagonalization Problem

2.1 Problem Statement

The non-orthogonal joint block-diagonalization problem is stated in the following
way: let us consider a set M of Nm, Nm ∈ N

∗ square invertible matrices Mi

∈ R
M×M , i ∈ {1, . . . , Nm} which all admit the following decomposition:

Mi = ADiAT , or Di = BMiBT , ∀i ∈ {1, . . . , Nm} (1)

where Di =

⎛
⎜⎝

Di1 . . . 0
. . .

0 . . . Dir

⎞
⎟⎠, ∀i ∈ {1, . . . , Nm}, are N × N block diagonal

matrices with Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} are nj ×nj square matrices so
that n1+ . . .+nr = N (in our case, we will assume that all the matrices have the
same size i.e N = r × nj , ∀j ∈ {1, . . . , r}) and where 0 denotes the nj × nj null
matrix. A is the M × N (M ≥ N) full rank matrix and B is its pseudo-inverse
(or generalized Moore-Penrose inverse).

The non-orthogonal joint block-diagonalization problem consists in estimating
the matrix A and the matrices Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} (or more
simply the matrix B only) from the matrices set M. The case of an orthogonal
matrix A has been already considered in [7] where a first solution is proposed.

2.2 Joint Block-Diagonalization Algorithm

In this communication, we propose to consider the following cost function

CBD(C) =
Nm∑
k=1

‖OffBdiag{CT MkC}‖2, (2)
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where the operator OffBdiag{·} denotes the zero-block-diagonal matrix and C =
BT . Thus:

M =

⎛
⎜⎜⎜⎜⎝

M11 M12 . . . M1r

M21 . . . . . .
...

... . . . . . .
...

Mr1 Mr2 . . . Mrr

⎞
⎟⎟⎟⎟⎠

⇒ OffBdiag{M} =

⎛
⎜⎜⎜⎜⎝

0 M12 . . . M1r

M21
. . .

...
...

. . .
...

Mr1 Mr2 . . . 0,

⎞
⎟⎟⎟⎟⎠

. (3)

Let C = [C1, · · · ,Cr], where Cj, j ∈ {1, · · · , r}, are r block matrices of dimen-
sion M × nj . The cost function (2) can be rewritten as:

CBD(C) =
Nm∑
k=1

r∑
i,j=1(i�=j)

‖CT
i MkCj‖2 =

Nm∑
k=1

ni∑
m=1

nj∑
n=1

r∑
i,j=1(i�=j)

|(cm
i )T Mkcn

j |2 (4)

where cn
j , ∀n ∈ {1, . . . , nj} stand for the nj column vectors of matrices Cj ,

∀j ∈ {1, . . . , r}. Then:

CBD(C) =
Nm∑
k=1

ni,nj∑
m,n=1

r∑
i,j=1(i�=j)

((cm
i )T Mkcn

j )((cm
i )T Mkcn

j )T

=
Nm∑
k=1

ni,nj∑
m,n=1

r∑
i,j=1(i�=j)

(cm
i )T (Mkcn

j (cn
j )T MT

k )cm
i

=
ni∑

m=1

r∑
i=1

(cm
i )T

⎡
⎣

r∑
j=1(j �=i)

nj∑
n=1

Nm∑
k=1

Mkcn
j (cn

j )T MT
k

⎤
⎦ cm

i

=
ni∑

m=1

r∑
i=1

(cm
i )T Qi(Ci)c

m
i (5)

where Qi(Ci) =
∑r

j=1(j �=i)
∑nj

n=1
∑Nm

k=1 Mkcn
j (cn

j )T MT
k is a symmetric matrix.

As cn
j (cn

j )T is rank one, ∀j = 1, . . . , r, and ∀n = 1, . . . , nj , the matrix Qi(Ci)
possesses N −(r−1)nj = nj eigenvectors associated with null eigenvalues. Then,
the minimization of this quadratic form under the unit norm constraint can be
achieved by taking the nj unit eigenvectors associated with the nj smallest eigen-
values of Qi(Ci). However since matrix Qi for a given i also depends on column
vectors of matrix C, we propose to use an iterative procedure. The proposed
non-orthogonal joint block-diagonalization (denoted by NO − JBD) writes:

∀i ∈ {1, . . . , r} with l ∈ N
∗ and given C(0)

i
an initial matrix, do (a) and (b)

(a) Calculate Qi(C
(l)
i

)
(b) Find the ni lowest eigenvalues λm

i
(l), m ∈ {1, . . . , ni} and the associated

eigenvectors cm
i

(l), m ∈ {1, . . . , ni} of matrix Qi(C
(l)
i

)

Stop after a given number of iterations or when |λm
i

(l) − λm
i

(l−1)| ≤ ε where ε is
a given small positive threshold.
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2.3 Computer Simulations

We present simulations to illustrate the effectiveness of the proposed algorithm.
We consider a set D of Nm = 11 (resp. 31, 56, 96) matrices, randomly chosen
(according to a Gaussian law) of mean 0 and variance 1. Initially these matrices
are exactly block-diagonal, then random noise matrices of mean 0 and variance
σ2

b are added. A signal to noise ratio can be defined as SNR = 10 log( 1
σ2

b
). To

measure the quality of the separation, the following performance index (which
is an extension of the one introduced in [10]) is used:

I(G)=
1

r(r − 1)

⎡
⎣

r∑
i=1

⎛
⎝

r∑
j=1

‖(G)i,j‖2

max
�

‖(G)i,�‖2 − 1

⎞
⎠+

r∑
j=1

⎛
⎝

r∑
i=1

‖(G)i,j‖2

max
�

‖(G)�,j‖2 − 1

⎞
⎠

⎤
⎦

where (G)i,j∀i, j ∈ {1, . . . , r} is the (i, j)-th (square) block matrix of G = ĈT A.
All the displayed results have been averaged over 30 Monte-Carlo trials. On the
Fig. 1, the performance index of algorithm NO − JBD is displayed versus the
number of used matrices (left) and versus the SNR (right). These curves illustrate
the good behaviour of the algorithm since I ≈ −110 dB at high SNR.
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Fig. 1. Left: performance index versus number of matrices, right: performance index
versus SNR

3 Separation of Convolutive Mixtures of Sources

3.1 Model and Assumptions

We consider a convolutive finite-duration impulse response (FIR) model given by

xi(t) =
n∑

j=1

L∑
�=0

hij(�)sj(t − �) + nj(t), ∀i = 1, . . . , m (6)
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where sj(t), ∀j = 1, . . . , n are the n sources, xi(t), i = 1, . . . , m, are the m > n
observed signals, hij(t) is the real transfer function between the j-th source and
i-th sensor with an overall extent of (L+1) taps. ni(t), ∀i = 1, . . . , m are additive
noises. Our developments are based on the two following assumptions:

Assumption A: Each source signal is a real temporally coherent signal. More-
over they are uncorrelated two by two, i.e., for all pairs of sources (si(t),sj(t))
with i 	= j, for all time delay τij , we have Rij(t, τij) = 0, where Rij(t, τ) denotes
the cross-correlation function between the sources si(t) and sj(t). It is defined
as follows: Rij(t, τ) = E{si(t)sj(t+ τ)}, where E{.} stands for the mathematical
expectation.

Assumption B: The noises ni(t), i = 1, . . . , m, are assumed real stationary
white random signals, mutually uncorrelated, independent from the sources, with
the same variance σ2

n. The noises correlation matrix can be written as:

Rn(τ) = E{n(t)nT (t + τ)} = σ2
nδ(τ)Im (7)

where δ(τ) stands for the Delta impulse, Im for the m × m identity matrix and
(.)T for the transpose operator.

Let us now recall how the convolutive mixing model can be reformulated into
an instantaneous one [4][7].

Considering the vectors S(t), X(t) and N(t) respectively defined as:

S(t) = [s1(t), . . . , s1(t − (L + L′) + 1), . . . , sn(t − (L + L′) + 1)]T

X(t) = [x1(t), . . . , x1(t − L′ + 1), . . . , xm(t − L′ + 1)]T

N(t) = [n1(t), . . . , n1(t − L′ + 1), . . . , nm(t − L′ + 1)]T

and the (M × N) matrix A, where M = mL′ and N = n(L + L′):

A =

⎛
⎜⎝

A11 . . . A1n

...
. . .

...
Am1 . . . Amn

⎞
⎟⎠

where

Aij =

⎛
⎜⎜⎜⎜⎝

hij(0) . . . . . . hij(L) 0 . . . 0

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0
0 . . . 0 hij(0) . . . . . . hij(L)

⎞
⎟⎟⎟⎟⎠

(8)

are (L′ × (L + L′)) matrices, the model described by Eq. (6) can be written in
matrix form as:

X(t) = AS(t) + N(t) (9)

In order to have an over-determined model, L′ must be chosen such that mL′ ≥
n(L + L′). We assume, here, that the matrix A is full rank. Because of the As-
sumption A, all the components of S(t) are temporally coherent signals. More-
over, two different components of this vector are correlated at least in one non
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null time delay. With regard to the noise vector N(t), the Assumption B holds
for each of its components involving that its correlation matrix RN(τ) reads:

RN(τ) = E{N(t)NT (t + τ)}

=

⎛
⎜⎜⎜⎜⎝

σ2
nĨL′(τ) 0L′ . . . 0L′

0L′
. . . . . .

...
...

. . . . . . 0L′

0L′ . . . 0L′ σ2
nĨL′(τ)

⎞
⎟⎟⎟⎟⎠

(10)

where ĨL′(τ) is the L′ × L′ matrix which contains ones on the τ th superdiagonal
if 0 ≤ τ < L′ or on the |τ |th subdiagonal if −L′ ≤ τ ≤ 0 and zeros elsewhere.
Then, we have:

RX(t, τ) − RN (τ) = ARS(t, τ)AT = RY (t, τ) (11)

Because sources signals are spatially uncorrelated and temporally coherent, the
matrices RS(t, τ), ∀τ are block diagonal matrices. To recover the mixing matrix
A, the matrices RY (t, τ), ∀τ and ∀t can be joint block diagonalized without any
unitarity constraint about the wanted matrix A.

Notice that in this case, the recovered sources after inversion of the system
are obtained up to a permutation and up to a filter but we will not discuss about
these indeterminations in this communication.

3.2 Computer Simulations

We present simulations to illustrate the effectiveness of the proposed algorithm in
the blind source separation context and to establish a comparison with another
algorithm (O − JBD) for the orthogonal joint block diagonalization of matrices.
While our algorithm is directly applied on the correlation matrices of the ob-
servations, the second algorithm is applied after a pre-whitening stage on the
correlation matrices of the pre-whitened observations. We consider m = 4 mix-
tures of n = 2 speech source signals sampled at 8 kHz, L = 2 and L′ = 4. These
signal sources are mixed according to the following transfer function matrix
whose components are randomly generated:

A[z] =

⎛
⎜⎜⎝

0.9772 + 0.2079z−1 − 0.0439z−2 −0.6179 + 0.7715z−1 + 0.1517z−2

−0.2517 − 0.3204z−1 + 0.9132z−2 −0.1861 + 0.4359z−1 − 0.8805z−2

0.0803 − 0.7989z−1 − 0.5961z−2 0.5677 + 0.6769z−1 + 0.4685z−2

−0.7952 + 0.3522z−1 + 0.4936z−2 −0.2459 + 0.8138z−1 − 0.5266z−2

⎞
⎟⎟⎠

where A[z] stands for the z transform of A(t). On the Fig. 2, we have displayed
the performance index versus the number of matrices (left) and versus the SNR.
One can check that the obtained performance are better with the NO − JBD
algorithm than with the O − JBD algorithm. One can also evaluate the block-
diagonalization error defined as:
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Fig. 2. Left: performance index versus number of matrices, right: performance index
versus SNR

E = 10 log10{ 1
Nm

∑Nm

k=1 ‖OffBdiag{BRY (t, τk)BT ‖2
F } where B is the pseudo-

inverse of the mixing matrix A and ‖.‖F denotes the Frobenius norm. Finally, a
comparaison of the block-diagonalization error with the NO − JBD and O − JBD
algorithms versus the number of matrices (resp. SNR) is given in the left of
Fig. 3 (resp. its right).
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Fig. 3. Left: block-diagonalization error versus number of matrices, right: block-
diagonalization error versus SNR

4 Discussion and Conclusion

In this paper, we have proposed a new joint block diagonalization algorithm
for the separation of convolutive mixtures of sources that does not rely upon a
unitary constraint. We have illustrated the usefulness of the proposed approach
thanks to computer simulations: the considered algorithm has been applied to
source separation using the correlation matrices of speech sources evaluated over
different time delays.
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