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Abstract. A common problem in independent component analysis after
prewhitening is to optimize some contrast on the orthogonal or unitary
group. A popular approach is to optimize the contrast only with respect
to a single angle (Givens rotation) and to iterate this procedure. In this
paper we discuss the choice of the sequence of rotations for such so-called
Jacobi-based techniques, in the context of joint block-diagonalization
(JBD). Indeed, extensive simulations with synthetic data, reported in
the paper, illustrates the sensitiveness of this choice, as standard cyclic
sweeps appear to often lead to non-optimal solutions. While not be-
ing able to guarantee convergence to an optimal solution, we propose a
new schedule which, from empirical testing, considerably increases the
chances to achieve global minimization of the criterion. We also point out
the interest of initializing JBD with the output of joint diagonalization
(JD), corroborating the idea that JD could in fact perform JBD up to
permutations, as conjectured in previous works.

1 Introduction

Joint diagonalization techniques have received much attention in the last fif-
teen years within the field of signal processing, and more specifically within
the fields of independent component analysis (ICA) and blind source separation
(BSS). JADE, one of the most popular ICA algorithms developed by Cardoso
and Souloumiac [1], is based on orthonormal joint diagonalization (JD) of a set
of cumulant matrices. To this purpose the authors designed a Jacobi algorithm
for approximate joint diagonalization of a set of matrices [2]. In a BSS parlance,
JADE allows for separation of determined linear instantaneous mixtures of mu-
tually independent sources, exploiting fourth-order statistics. Other standard
BSS techniques involving joint diagonalization include the SOBI algorithm [3],
TDSEP [4], stBSS [5] and TFBSS [6], which all rely on second-order statistics
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of the sources, namely covariance matrices in the first through third case and
spatial Wigner-Ville spectra in the fourth case; see [7] for a review.

Joint block-diagonalization (JBD) came into play in BSS when Abed-Meraim,
Belouchrani and co-authors extended the SOBI algorithm to overdetermined
convolutive mixtures [8]. Their idea was to turn the convolutive mixture into
an overdetermined linear instantaneous mixture of block-dependent sources,
the second-order statistics matrices of the source vector thus becoming block-
diagonal instead of diagonal. Hence, the joint diagonalization step in SOBI
needed to be replaced by a JBD step. Another area of application can be found
in the context of multidimensional ICA or independent subspace analysis [9,10].
Its goal is to linearly transform an observed multivariate random vector such
that its image is decomposed into groups of stochastically independent vectors.
It has been shown that by using fourth-order cumulants to measure the inde-
pendence, JADE now translates into a JBD problem [11]; similarly also SOBI
and other JD-based criteria can be extended to this group ICA setting [12, 13].

Abed-Meraim et al. have sketched several Jacobi strategies in [14, 15, 16]: the
JBD problem is turned into a minimization problem, where the matrix parame-
ter (the joint block-diagonalizer) is constrained to be unitary (because of spatial
prewhitening). The minimizer is searched for iteratively, as a product of Givens
rotations, each rotation minimizing a block-diagonality criterion around a fixed
axis, which we refer to as ‘pivot’. Convergence of the algorithm is easily shown,
but convergence to an optimal solution (which minimizes the chosen JBD crite-
rion) is not guaranteed. In fact, we observed that results vary widely according to
the choice of the successive pivots (which we refer to as ‘schedule’) and the initial-
ization of the algorithm, which is not discussed in previous works [14,15,16]. The
main contributions of this paper are 1) to point out that the choice of the rotation
schedule is a sensitive issue which greatly influences the convergence properties of
the Jacobi algorithm, as illustrated on extensive simulations with synthetic data,
2) to propose a new schedule, which, from empirical testing, offers better chances
to converge to the optimal solution (while still not guaranteeing it), as compared to
the standard cyclic Jacobi technique. We also point out the interest of initializing
JBD with the output of JD, corroborating the idea that JD could in fact perform
JBD up to permutations, as suggested by Cardoso in [10], more recently conjec-
tured by Abed-Meraim and Belouchrani in [16] and partially proved in [11, 17].

The paper is organized as follows. Section 2 briefly describes the Jacobi ap-
proach to approximate JBD, with fixed equal block sizes. Section 3 compares
the convergence results obtained with three choices of initialization/schedule on
generated sets of matrices exactly joint block-diagonalizable, with various size,
block size and set dimension. Section 4 reports conclusions.

2 Jacobi Approximate Joint Block-Diagonalization

2.1 Approximate Joint Block-Diagonalization

Let A = {A1, . . . ,AK} be a set of K complex matrices of size n×n. The problem
of approximate JBD consists of finding a unitary matrix U ∈ C

n×n such that
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∀k ∈ �1, K� := {1, . . . , K}, the matrices

UAk UH = Bk

are as block-diagonal as possible. More precisely, let us denote L the (fixed)
length of the diagonal blocks and m = n/L the number of blocks. Writing for
k ∈ �1, K�

Ak =

⎡
⎢⎣

Ak11 . . . Ak1m

...
...

Akm1 . . . Akmm

⎤
⎥⎦

where Akij is a subblock of dimensions L × L, ∀(i, j) ∈ �1, m�
2, our block-

diagonality criterion is chosen as

boff (Ak) :=
∑

1≤i�=j≤m

‖Akij‖2
F . (1)

Here ‖B‖2
F =

∑
ij |bij |2 denotes the Frobenius norm. We look for U by mini-

mizing the cost function

Cjbd(V; A) :=
K∑

i=1

boff
(
VAi VH

)

with respect to V ∈ U(n), where U(n) is the set of unitary n × n-matrices.

2.2 The Jacobi Approach

Jacobi approaches rely on the fact that any unitary matrix V ∈ U(n) can be
written as a product of complex Givens matrices G(p, q, c, s) ∈ U(n), 1 ≤ p <
q ≤ n, defined as everywhere equal to the identity In except for [G(p, q, c, s)]pp =
[G(p, q, c, s)]qq = c, [G(p, q, c, s)]pq = s̄, [G(p, q, c, s)]qp = −s, with (c, s) ∈ R×C

such that c2 + |s|2 = 1. The Jacobi approach consists of iteratively applying
the same Givens rotation to all the matrices in set A, with (p, q) chosen as to
minimize criterion Cjbd. In other words, for fixed p and q, one iteration of the
method consists of the following two steps:

– compute (c�, s�) = argminc,s Cjbd(G(p, q, c, s); A)
– ∀k ∈ �1, K�, Ak ← G(p, q, c�, s�)Ak G(p, q, c�, s�)H

Let I1, . . . , Im be the partition of �1, n� defined by Ii = �(i − 1)L + 1, i L�,
and let i(k) = �i/L� give the index i of the interval Ii to which k belongs. Let
Bk = G(p, q, c, s)Ak G(p, q, c, s)H , k ∈ �1, K�. Bk is everywhere equal to Ak,
except for its pth and qth rows and columns, which depend on c and s, such
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that [18, 17]

bkpp = c2 akpp + |s|2 akqq + c s akpq + c s̄ akqp

bkqq = c2 akqq + |s|2 akpp − c s akpq − c s̄ akqp

bkpj = c akpj + s̄ akqj (j ∈ Ii(p), j 	= p)
bkjp = c akjp + s akjq (j ∈ Ii(p), j 	= p)
bkqj = −s akpj + c akqj (j ∈ Ii(q), j 	= q)
bkjq = −s̄ akjp + c akjq (j ∈ Ii(q), j 	= q)

Using the fact that the Frobenius norm is invariant to rotations, minimization of
criterion Cjbd(G(p, q, c, s); A) with respect to (c, s) can be shown to be equivalent
to the maximization of

C′
jbd(c, s) :=

K∑
k=1

⎧⎨
⎩|bkpp|2 + |bkqq |2+

∑
j∈Ii(p),j �=p

|bkpj |2 + |bkjp|2+
∑

j∈Ii(q),j �=q

|bkqj |2 + |bkjq |2
⎫⎬
⎭

However, the latter criterion is constant if p and q belong to the same interval
Ii(p) (i.e, i(p) = i(q)). Details of above derivations can be found in [18, 17].

It may be shown [15, 16] that the maximization of C′
jbd(c, s) boils down to

the constrained maximization of a linear quadratic form. This optimization can
be achieved using Lagrange multipliers. The computation of the latter requires
solving a polynomial of degree 6 in the complex case (i.e, U ∈ Cn×n), and of
degree 4 in the real case (i.e, U ∈ Rn×n). First order approximations of the
criterion are also considered in [15,16] to simplify its maximization. A tensorial
rank-1 approximation is also found in [19]. For real matrices, when both Ak

and U belong to Rn×n, maximization of C′
jbd(c, s) directly amounts to rooting

a polynomial of order 4 (without requiring a Lagragian parametrization), as
sketched in [19] and developed in [18, 17].

So far, the indices p and q have been fixed. However, the important issue
appears not to be how to maximize C′

jbd(c, s), which can be done exactly in
a way or another, but how to choose these pivots (p, q). Similarly to JD, the
convergence of the proposed (joint) block-diagonalization scheme is guaranteed
by construction, whatever the chosen rotation schedule [18,17]. If convergence to
the global minimum was in practice usually observed with joint diagonalization
schemes, this is certainly not the case for joint block-diagonalization, where we
found convergence to be very sensitive to initialization and rotation schedule, as
illustrated in the next section.

3 Simulations

The employed algorithms as well as some of the following examples are freely
available for download at [20]. The programs have been realized in MATLAB,
and sufficient documentation is given to reproduce the results and extend the
algorithms. We propose to test the following initialization/schedule strategies.
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(M1) The first method is inspired from the standard cyclic Jacobi approach
[2, 21], which consists of systematically sweeping the pivots one after the
other, except for the fact that the couples (p, q) are chosen not to include
the diagonal blocks. The algorithm is initialized with the identity matrix,
i.e U = In. The algorithm is stopped when all the values of s� are lower
than 10−4 within a sweep.

(M2) The second method is identical to (M1) except for the fact that the algo-
rithm is initialized with the matrix Ujdr provided by joint diagonalization
of A, as obtained from [2].

(M3) The third method is inspired from the classical Jacobi method for the
diagonalization of a normal matrix [21] and consists, after initialization
as in (M2), of choosing at each iteration the pivot (p, q) ensuring a maxi-
mum decrease of criterion Cjbd. This requires computing all the differences
|
∑K

k=1 boff (Bk)−boff (Ak) | for all couples (p, q) and to pick up the cou-
ple which yields the largest difference value. The algorithm stops when 20
successive values of s� are all lower than 10−4.

For simplicity, the three methods are tested in the real case. The three methods
are applied to 100 random draws of K real matrices exactly joint block-
diagonalizable in a real common orthogonal basis (optimal rotation angles are thus
computed by rooting a polynomial of order 4 like in [18, 17]). Various values of L
(size of the blocks), m (number of blocks) and K (number of matrices) are consid-
ered. The number of failures over the 100 realizations (i.e, the number of times the
methods do not converge to a solution such that Cjbd = 0) is reported in Table 1.

Table 1. Number of failures of methods M1, M2 and M3 over 100 random realizations
of K matrices exactly block-diagonalizable in a common orthonormal basis

m 2
L 2 4 6
K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24
M1 1 4 4 1 2 32 33 25 10 11 55 33 21 24 16
M2 0 0 0 0 0 11 1 0 0 0 43 2 0 0 0
M3 0 0 0 0 0 5 0 0 0 0 14 0 0 0 0
m 3
L 2 4 6
K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24
M1 3 14 11 18 8 68 54 38 33 32 84 60 48 51 52
M2 0 0 0 0 0 29 5 1 2 0 53 10 8 7 8
M3 0 0 0 0 0 15 1 0 3 1 44 0 0 2 8
m 4
L 2 4 6
K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24
M1 5 30 21 19 16 87 75 68 60 59 99 83 77 77 75
M2 0 0 0 0 0 47 7 6 4 2 88 15 8 4 10
M3 0 0 0 0 0 21 5 4 2 3 65 8 2 0 5
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Fig. 1. Evolution of criterion Cjbd for a random set A such that m = 3, L = 4,
K = 3. Using a 2.60 GHz Pentium 4 with 1 Go RAM, the computation times for this
particular dataset are: (M1 - 1.2 s), (M2 - 0.3 s), (M3 - 1.2 s). The three methods
succeed in minimizing the criterion.
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Fig. 2. Evolution of criterion Cjbd for a random set A such that m = 4, L = 6, K = 3.
Using a 2.60 GHz Pentium 4 with 1 Go RAM, the computation times for this particular
dataset are: (M1 - 28.4 s), (M2 - 4.1 s), (M3 - 6.9 s). Only (M3) succeeds in minimizing
the criterion.

The results emphasize the importance of the initialization and the choice of
the schedule. Failure rates of (M1) are very high, in particular when m and L
increase. (M2) and (M3), which are both initialized by joint diagonalization, give
much better results, with (M3) being in nearly every case more reliable than
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(M2). However, none of the two methods systematically converge to a global
minimum of Cjbd when m ≥ 3, and, interestingly, the methods do not usually
fail on the same data sets. Also, Fig. 1 and Fig. 2 show that (M3) only need a
few iterations after JD to minimize Cjbd. This indicates the validity of the claim
from [16], that JD minimizes the joint block-diagonality Cjbd, however only up
to a permutation. In the above simulation, the permutation is then discovered
by application of the JBD algorithm — this also explains why in Figures 1
and 2, when (M2) is used, the cost function after JD only decreases in discrete
steps, corresponding to identified permutations.

Audio results of the separation of a convolutive mixture with 3 observations
and 2 sources, obtained with the generalization of SOBI using our pivot selection
scheme and followed by a SIMO identification step removing filtering ambiguities
are found at [22], following the approach described in [23].

4 Conclusions

The main algorithmic conclusion of this paper is: Jacobi algorithms for joint
block-diagonalization bring up convergence problems that do not occur in joint
diagonalization and that still need to be properly addressed. However we pro-
posed a strategy (method (M3)) which considerably reduces the failure rates
of the straightforward approach (M1). The fact that lower failure rates are ob-
tained with (M2) and (M3), which are initialized with joint diagonalization,
tend to corroborate the conjecture that JBD diagonalization could be achieved
up to an arbitrary permutation of columns via JD [10, 16], but it still does not
explain why this permutation cannot be solved by minimization of Cjbd. This
is a question we are currently working on, and for which partial results exist
already [11, 17]. Moreover, extensions to the case of varying, possibly unknown
block sizes are interesting [11], with respect to both the optimization and the
application in the field of ICA.
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