A Sufficient Condition for the Unique Solution of Non-Negative Tensor Factorization

Toshio Sumi and Toshio Sakata*

Faculty of Design, Kyushu University, Japan sumi@design.kyushu-u.ac.jp, sakata@design.kyushu-u.ac.jp

Abstract. The applications of Non-Negative Tensor Factorization (NNTF) is an important tool for brain wave (EEG) analysis. For it to work efficiently, it is essential for NNTF to have a unique solution. In this paper we give a sufficient condition for NNTF to have a unique global optimal solution. For a third-order tensor T we define a matrix by some rearrangement of T and it is shown that the rank of the matrix is less than or equal to the rank of T . It is also shown that if both ranks are equal to r, the decomposition into a sum of r tensors of rank 1 is unique under some assumption.

1 Introduction

In the past few years, Non-Negative Tensor Factorization (NNTF) is becoming an important tool for brain wave (EEG) analysis through Morlet wavelet analysis (for example, see Miwakeichi [\[MMV\]](#page-7-0) and Morup [\[MHH\]](#page-7-1)). The NNTF algorithm is based on Non-Negative Matrix Factorization (NNMF) algorithms, amongst the most well-known algorithms contributed by Lee-Seung [\[LS\]](#page-7-2). Recently, Chichoki et al. [\[CZA\]](#page-7-3) deals with a new NNTF algorithm using Csiszar's divergence. Furthermore, Wang et al. [\[WZZ\]](#page-7-4) also worked on NNMF algorithms and its interesting application in preserving privacy in datamining fields. These algorithms converged to some stationary points and do not converge to a global minimization point. In fact, it is easily shown that the problem has no unique minimization points in general (see [\[CSS\]](#page-7-5)). In applications of NNTF for EEG analysis, it is important for NNTF to have a unique solution. However this uniqueness problem has not been addressed sufficiently as far as the authors are aware of. Similarly as in Non-Negative Matrix Factorization (NNMF), it seems that the uniqueness problem has not been solved. However we managed to obtain the uniqueness and proved it. (see Proposition [1\)](#page-2-0). In this paper we give a sufficient condition for NNTF to have a unique solution and for the usual NNTF algorithm to find its minimization point in the case when NNTF exists strictly, not approximation (see Theorem [3\)](#page-6-0).

^{*} The research is supported partially by User Science Institute in Kyushu University (Special Coordination Funds for Promoting Science and Technology).

2 Quadratic Form

As the NNMF problem is a minimization of a quadratic function, we shall first review quadratic functions generally. Let us consider the quadratic form defined by $f(x) = x^T A x - 2b^T x$ where A is a $n \times n$ symmetric matrix and b is a n vector. The symmetric matrix A is a diagonalized by an orthogonal matrix P as

$$
PAP^T = \text{diag}(e_1, \ldots, e_n).
$$

Then by assigning $y = (y_1, \ldots, y_n)^T = Px$ and $c = (c_1, \ldots, c_n)^T = Pb$, we obtain the equality

$$
f(x) = y^T (P A P^T) y - 2c^T y = \sum_i (e_i y_i^2 - 2c_i y_i) = \sum_i \left(e_i (y_i - \frac{c_i}{e_i})^2 - \frac{c_i^2}{e_i} \right).
$$

We assume that the matrix A is positive definite. Then, when $f(x)$ reaches its minimum at $y = (PAP^T)^{-1}c = (PAP^T)^{-1}Pb = PA^{-1}b$ in \mathbb{R}^n , with the value $f(A^{-1}b) = -b^T A^{-1}b$ at $x = P^T y = A^{-1}b \in \mathbb{R}^n$. The minimal value is under the condition $x \geq 0$. Here, some basic facts will be explained. Let $a \in \mathbb{R}^n$ and let $h: \mathbb{R}^n \to \mathbb{R}$ be a function defined as $h(x) = ||x - a||^2$, where $|| \cdot ||$ stands for the common Euclidean norm.

Lemma 1. On the arbitrary closed set S of \mathbb{R}^n , $h(t)$, $t \in S$ takes a global minimal value in S.

Proof. Choose an arbitrary $t_0 \in S$, and set $s = h(t_0)$ and $U = h^{-1}([0, s]) \cap S$. The set U is a closed subset of \mathbb{R}^n . By triangular inequality, we know that $h(t) \geq ||t|| - ||a||$. Since $s \geq h(t)$ for $t \in U$, it holds that $||t|| \leq s + ||a||$ which shows that U is bounded. Hence, since U is bounded and closed, it is compact. Thus $h(t)$, $t \in U$ becomes a closed map, and $h(U)$ is also compact. That is, $h(t), t \in U$ takes a global minimum value, say s_0 . Thus, it holds that for $t \in S$, $h(t) > s$ if $t \notin U$, and $h(t) \geq s_0$ if t in U. This means that s_0 is the global minimum of h on S.

Lemma 2. Let S be a closed convex subset of \mathbb{R}^n . Then $h(t)$, $t \in S$ reaches a global minimal value at a unique point in S.

Proof. The existence of a global minimal value follows from Lemma [1.](#page-1-0) Let x and y be points in \mathbb{R}^n which attain a global minimal value $r := \min_{z \in S} f(z)$. Note that $x, y \in S \cap \partial B_r(z_0)$, where $B_r(a) := \{x \mid ||x - a|| \leq r\}$ and $\partial B_r(a) := \{x \mid$ $||x - a|| = r$. Since $S \cap B_r(a)$ is also convex, $tx + (1-t)y \in S \cap B_r(a)$ for each $0 \le t \le 1$. If $x \neq y$, then $||a - (x + y)/2|| < r$, which is contradiction. Therefore $x = y$.

Let $D = \text{diag}(\sqrt{e_1}, \ldots, \sqrt{e_n}), z = DPx$ and $S = \{ z \in \mathbb{R}^n \mid x \geq 0 \}$. Note that S is a convex set of \mathbb{R}^n and $f(x) = h(z)$ for $a = D^{-1}Pb$. Therefore $f(x)$ reaches a global minimal value at a unique point under the condition $x \geq 0$.

The following are some basic facts about matrix decompositions. Let A, W and H be $m \times n$, $m \times r$ and $r \times n$ matrix respectively. Then $||A - WH||$ for any H with $H \geq O$ and any W with $W \geq O$ reaches a global minimal value at a unique $m \times n$ matrix WH but W and H are not unique. We state this precisely below.

Proposition 1. The following properties hold:

- 1. If $r = \text{rank}(A)$, there exist W and H such that $A = WH$.
- 2. If $r > \text{rank}(A)$, there exists an infinite number of pairs of W and H such that $A = WH$.
- 3. Let $r = \text{rank}(A)$. Then if $A = WH = W'H'$ there exists a non-singular matrix X such that $W' = W X$, $H' = X^{-1}H$ ([\[CSS,](#page-7-5) Full-Rank Decomposition Theorem]).
- 4. If $r < \text{rank}(A)$, there exists no pair of W and H such that $A = WH$.

Proof. [\(1\)](#page-2-1) In this case, let W be a matrix whose columns are linearly independent vectors of length m . From the assumption it is clear that the columns of A are expressed as linear combination of columns of W hence $A = WH$.

[\(2\)](#page-2-2) In this case, put $s = \text{rank}(A), (r > s)$. By property [\(1\)](#page-2-1), we know there exists a $m \times s$ matrix W_1 and a $s \times m$ matrix H_1 such that $A = W_1 H_1$. Place $W = (W_1 W_2)$ and $H = \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}$ $H₂$ where W_2 and H_2 are $m \times (r - s)$ matrix and $(r - s) \times n$ matrix respectively and satisfy $W_2H_2 = 0$. There are infinitely many such pairs of (W_2, H_2) , and for all of those it clearly holds that $A = WH$.

[\(3\)](#page-2-3) From $r = \text{rank}(A)$, in the expression of $A = WH = W'H'$, the columns of W and W' are linearly independent respectively. Hence we have $W' = W X$ for some regular $r \times r$ matrix X. From this the rest of [\(3\)](#page-2-3) is derived trivially.

[\(4\)](#page-2-4) Since rank(WH) $\leq r$, it is impossible to have $A = WH$.

3 Non-Negative Matrix Factorization

It is well known NNMF (Non-Negative Matrix Factorization) is not unique ([\[CSS\]](#page-7-5)). Let V, W and H be a $m \times n$, $m \times r$ and $r \times n$ matrix respectively. For a matrix A, we denote by A_{ij} the (i, j) -component of A and its Frobenius norm is defined by

$$
||A||_F := \sqrt{tr(A^T A)} = \sqrt{\sum_{i,j} A_{ij}^2},
$$

where tr takes the sum of all diagonal entries.

Lemma 3. Fixing H, $f(W) = ||V - WH||_F$ attains the minimum at the solution W of the equation $W(HH^T) = VH^T$. Especially, if HH^T is non-singular, the minimum is attained at the unique point $W = VH^T(HH^T)^{-1}$.

Proof. It holds that

$$
f(W) = \sum_{i,j} (V_{ij} - \sum_p W_{ip} H_{pj})^2
$$

=
$$
\sum_{i,j} \left(\sum_{p,q} W_{ip} H_{pj} W_{iq} H_{qj} - 2 \sum_p V_{ij} W_{ip} H_{pj} + V_{ij}^2 \right)
$$

=
$$
\sum_{i,p,q} (HH^T)_{pq} W_{ip} W_{iq} - 2 \sum_{i,p} (V H^T)_{ip} W_{ip} + \sum_{i,j} V_{ij}^2.
$$

Therefore $f(W)$ is a quadratic function of W_{ij} $(i = 1, 2, \dots, m, j = 1, 2, \dots, r)$. Put

$$
x = (W_{11}, \dots, W_{1r}, \dots, W_{m1}, \dots, W_{mr})^T \in \mathbb{R}^{mr},
$$

\n
$$
a = ((VH^T)_{11}, \dots, (VH^T)_{1r}, \dots, (VH^T)_{m1}, \dots, (VH^T)_{mr})^T \in \mathbb{R}^{mr}
$$

and define a $mr \times mr$ matrix M by diag(HH^T, \ldots, HH^T). Then, M is positive semidefinite and $f(W)$ is expressed as

$$
f(W) = x^T M x - 2a^T x + \sum_{i,j} V_{ij}^2.
$$

Assume that HH^T is non-singular. Then M is positive definite and thus the minimum of $f(W)$ is attained at the unique point $x = M^{-1}a$, that is, $W^{T} =$ $(HH^T)^{-1}(V\overset{\circ}{H}T)^T$, equivalent to, $W = V\overset{\circ}{H}T(\overset{\circ}{H}H^T)^{-1}$. The minimum value is

$$
f(W) = \|V\|_F^2 - \|WH\|_F^2 \tag{1}
$$

and we also have $||WH||_F^2 = tr(W^T V H^T) = tr((HH^T)^{-1}(V H^T)^T (V H^T)).$ □

Since $\| V - WH \|_F = \| V^T - H^T W^T \|_F$, fixing W , $\| V - WH \|_F$ attains the minimum at the unique point $V = (W^TW)^{-1}\tilde{W}^TV$ if W^TW is non-singular.

We recall the Lee-Seung NNMF Algorithm for the Frobenius norm property.

Theorem 1 ([\[LS\]](#page-7-2)). The Frobenius norm $\|V - WH\|_F$ is non-increasing under the update rules:

$$
H_{ij} \leftarrow H_{ij} \frac{(W^T V)_{ij}}{(W^T W H)_{ij}} \quad W_{ij} \leftarrow W_{ij} \frac{(V H^T)_{ij}}{(W H H^T)_{ij}}
$$

Now we propose the following improvement of the Lee-Seung NNMF Algorithm for the Frobenius norm property. For matrices X with $X \geq 0$ and Y, let $t_{max}(X, Y) = \max\{t \mid (1 - t)X + tY \ge 0, 0 \le t \le 1\}.$

Theorem 2. The Frobenius norm $\parallel V - WH \parallel_F$ is non-increasing under the update rules:

$$
H \leftarrow \begin{cases} (1 - h_0)(W^T W)^{-1} W^T V + h_0 H, & \text{if } W^T W \text{ is non-singular and } h_0 > 0 \\ H_{ij} \frac{(W^T V)_{ij}}{(W^T W H)_{ij}}, & \text{otherwise} \end{cases}
$$

$$
W \leftarrow \begin{cases} (1 - w_0) V H^T (H H^T)^{-1} + w_0 W, & \text{if } H H^T \text{ is non-singular and } w_0 > 0 \\ W_{ij} \frac{(V H^T)_{ij}}{(W H H^T)_{ij}}, & \text{otherwise} \end{cases}
$$

where $h_0 = t_{max}((W^T W)^{-1} W^T V, H)$ and $w_0 = t_{max}(V H^T (H H^T)^{-1}, W)$.

Proof. If either $W^T W$ is singular or $h_0 = 0$, the claim follows from Theorem [1.](#page-3-0) Suppose both $W^T W$ is non-singular and $h_0 > 0$. By Lemma [3,](#page-2-5) fixing W , $||V WH \parallel_F$ takes minimum at $(W^TW)^{-1}W^TV$ without the assumption $x \geq 0$. Let us denote $H' = (1 - h_0)(W^T W)^{-1} W^T V + h_0 H$ for clarity. On the line from H to H', the Frobenius norm decreases and thus $\| V - WH \|_{F} \ge \| V - WH' \|_{F}$. Clearly $H' \geq 0$ which follows from the definition of h_0 .

4 Non-Negative Tensor Factorization

4.1 Existence of a Global Optimal Solution

Let $\mathbb{R}_{>0}$ be the set of all non-negative real numbers. Let T be a third-order tensor in $\mathbb{R}_{\geq 0}^{a \times b \times c}$. Let $X = (x_1 \dots x_r)$, $Y = (y_1 \dots y_r)$ and $Z = (z_1 \dots z_r)$ be $a \times r$, $b \times r$ and $c \times r$ matrices, respectively. We define a function f over $\mathbb{R}_{\geq 0}^{(a+b+c)r}$ as

$$
f(X, Y, Z) = \sum_{ijk} \left(t_{ijk} - \sum_{\ell} X_{i\ell} Y_{j\ell} Z_{k\ell} \right)^2.
$$

Let $S_b = \{x \in \mathbb{R}^b_{\geq 0} \mid ||x|| = 1\}$ be an intersection of an unit sphere in \mathbb{R}^b with $\mathbb{R}^b_{\geq 0}$. Put $S = (\mathbb{R}^{\overline{a}})^{\times r} \times (S_b)^{\times r} \times (S_c)^{\times r}$ for short, where $M^{\times r} = M \times \cdots \times M$ (*r* times). Then S is a closed subspace of $\mathbb{R}_{\geq 0}^{(a+b+c)r}$ and the image $f(S)$ coincides with the full image $f(\mathbb{R}^{(a+b+c)r}_{\geq 0})$. Let $(X, Y, Z) \in S$. Then $X \geq O, Y \geq O$, $Z \geq O$ and $||y_j|| = ||z_j|| = 1$ for all j. Noting that

$$
\sum_{i,j,k} \left(\sum_{\ell} X_{i\ell} Y_{j\ell} Z_{k\ell} \right)^2 \ge \sum_{i,j,k} (X_{i\ell} Y_{j\ell} Z_{k\ell})^2 = ||x_{\ell}||^2
$$

if $\sum_{i,j,k} (\sum_{\ell} X_{i\ell} Y_{j\ell} Z_{k\ell})^2$ is bounded, $|| X ||_F$ is also bounded and thus so is S. Hence, we can apply the proof of Lemma [1](#page-1-0) for the function f on S instead of h and we obtain an existence of a global minimal value.

4.2 Uniqueness

We show the uniqueness under some assumption. First,several facts are presented. For convenience, we define

$$
X_1 \circ \cdots \circ X_k = (x_1^{(1)} \otimes \cdots \otimes x_1^{(k)}, \ldots, x_r^{(1)} \otimes \cdots \otimes x_r^{(k)})
$$

for matrices $X_1 = (x_1^{(1)}, \ldots, x_r^{(1)}), \ldots, X_k = (x_1^{(k)}, \ldots, x_r^{(k)})$ with r-columns. For $u = (1, \ldots, 1)^T \in \mathbb{R}^r$, we have $f(X, Y, Z) = ||T - (X \circ Y \circ Z)u||_F^2$. For a transformation $M_{\sigma} = (m_{ij})$ among $\{1, \ldots, r\}$ σ , a permutation matrix M_{σ} is defined by $m_{ij} = \delta_{i\sigma(j)}$. For a permutation matrix M_{σ} it does hold that

$$
M_{\sigma}^T = M_{\sigma^{-1}} = M_{\sigma}^{-1}.
$$

Proposition 2. In a general P, the following equation does not hold

$$
(X_1P)\circ\cdots\circ(X_rP)=(X_1\circ\cdots\circ X_r)P.
$$

However, if P is a permutation matrix, and P_1, \ldots, P_r are diagonal matrices,

$$
(X_1P)\circ\cdots\circ(X_rP)=(X_1\circ\cdots\circ X_r)P
$$

$$
(X_1P_1)\circ\cdots\circ(X_rP_r)=(X_1\circ\cdots\circ X_r)P_1\cdots P_r
$$

does hold.

Lemma 4. Let A and C be $m \times r$ matrices and B and D be $n \times r$ matrices, and Q be $r \times r$ non-singular matrix. Assume that $A \circ B = (C \circ D)Q$ and rank $(C) =$ rank $(C \circ D) = r$ Then there exists a permutation matrix $P = M_{\sigma}$ such that both of PQ and QP^{-1} become diagonal matrices and $A = CQX$ and $B = DP^{-1}X^{-1}$ hold for some diagonal matrix X. Further suppose that $A, B, C, D \geq 0$. Let $Q_{1/2}$ be a $r \times r$ matrix whose (i, j) -component is the square root of the (i, j) -component of Q. Then $Q_{1/2}$ is a real matrix, and both $A = CQ_{1/2}X$ and $B = DQ_{1/2}X^{-1}$ hold for some diagonal matrix X.

Proof. We use the notations $A = (a_1, \ldots a_r), B = (b_1, \ldots b_r) = (b_{ij}), C =$ $(c_1,...c_r), D = (d_1,...d_r) = (d_{ij}), Q = (q_{ij}).$ Since ⊗ is a bilinear operation and rank $(C \circ D) = r$, it holds that $d_k \neq 0$ ($\forall k$) and that $d_k \, || \, d_\ell$ implies $k = \ell$. Since $A \circ B = (C \circ D)Q$, we have

$$
a_k \otimes b_k = \sum_{\ell} q_{\ell k} c_{\ell} \otimes d_{\ell}, \quad \forall k, \text{ and } b_{ik} a_k = \sum_{\ell} q_{\ell k} d_{i\ell} c_{\ell}, \quad \forall i, k.
$$

Since Q is non-singular, for each k there exists a permutation $\sigma(k)$ such that $q_{\sigma(k)k} \neq 0$. Now we will show that for each ℓ there exists an i such that $b_{i\ell} \neq 0$. Assume that $b_s = 0$ for some s. Then, it holds that $\sum_{\ell} q_{\ell s} c_{\ell} \otimes d_{\ell} = 0$, and since rank($C \circ D$) = r, it holds that $q_{\ell s} = 0$ ($\forall \ell$). This contradicts to the fact that Q is non-singular. Therefore, for each ℓ , there exists a $\tau(\ell)$ such that $b_{\tau(\ell)\ell} \neq 0$. Then, it follows

$$
q_{\ell k} b_{ik} d_{\tau(k)\ell} = q_{\ell k} b_{\tau(k)k} d_{i\ell}, \quad \forall i, k, \ell
$$

from the equality

$$
b_{\tau(k)k}b_{ik}a_k = \sum_{\ell} b_{ik}q_{\ell k}d_{\tau(k)\ell}c_{\ell} = \sum_{\ell} b_{\tau(k)k}q_{\ell k}d_{i\ell}c_{\ell}, \quad \forall i, k
$$

and rank $(C) = r$. On the assumption of $q_{\ell k} \neq 0$, since $d_{i\ell} = \frac{d_{\tau(k)\ell}}{b_{\tau(k)k}} \cdot b_{ik}$ for all

i it holds that $d_{\ell} = \frac{d_{\tau(k)\ell}}{b_{\tau(k)k}} b_k$. Especially it holds that $d_{\tau(k)\ell} \neq 0$. That is, it holds that $d_{\ell} \, || \, b_k$. Hence, by rank $(C \circ D) = r$, if $q_{\ell k} \neq 0$, then $\ell = \sigma(k)$. This implies that there exists a permutation matrix $P = M_{\sigma}$ such that both of PQ and QP^{-1} are diagonal. Then, if we choose $X = \text{diag}\left(\frac{d_{\tau(k)\sigma(k)}}{b_{\tau(k)k}}\right)$, it holds that

$$
a_k = q_{\sigma(k)k} \cdot \frac{d_{\tau(k)\sigma(k)}}{b_{\tau(k)k}} c_{\sigma(k)}, \ b_k = \frac{b_{\tau(k)k}}{d_{\tau(k)\sigma(k)}} d_{\sigma(k)}, \quad \forall k
$$

that is, it holds that $A = CQX$, $B = DP^{-1}X^{-1}$. Further, on the assumption of $Q \ge 0$, if we choose $Y = \text{diag}\left(\frac{\sqrt{q_{\sigma(k)k}}d_{\tau(k)\sigma(k)}}{b_{\tau(k)k}}\right)$), it holds that $A =$ $CQ_{1/2}Y$, $B = DQ_{1/2}Y^{-1}$. These completes the proof of Lemma [4.](#page-5-0)

We should note that the factorization $(X \circ Y \circ Z)$ has the scalar uncertainty such that for scalars a, b, c , it holds

$$
(a'X) \circ (b'Y) \circ (c'Z) = (abc)(X \circ Y \circ Z).
$$

where (a',b',c') denotes any permutation of (a,b,c) . Now we give a sufficient condition that NNTF has the unique global solution. From now set $u = (1, \ldots, 1)^T$ \mathbb{R}^r and let $fl_1(T)$ be a $a \times bc$ matrix whose $(i, j + b(k - 1))$ -component is t_{ijk} . Then the following theorem holds.

Theorem 3. For $f(X, Y, Z) = ||T - (X \circ Y \circ Z)u||_F^2$, we assume rank $(f l_1(T)) = r$ and min $f(X, Y, Z) = 0$. Then, under the condition $\text{rank}(Y) = \text{rank}(Y \circ Z) = r$, the optimal global point is unique up to permutations and scalar uncertainty.

Proof. By triangular inequality we have

$$
\| (X_1 \circ Y_1 \circ Z_1)u - (X_0 \circ Y_0 \circ Z_0)u \|_{F} \le f(X_0, Y_0, Z_0) + f(X_1, Y_1, Z_1) = 0,
$$

and thus $(X_0 \circ Y_0 \circ Z_0)u = (X_1 \circ Y_1 \circ Z_1)u$ which is equivalent to the following equation $X_0(Y_0 \circ Z_0)^T = X_1(Y_1 \circ Z_1)^T$. By Proposition [1](#page-2-0) [\(3\)](#page-2-3), there exists a non-singular matrix Q such that $X = X_0(Q^T)^{-1}$, $Y \circ Z = (Y_0 \circ$ Z_0)Q. From Lemma [4,](#page-5-0) for some permutation matrix P and diagonal matrix D_1 , it holds that $D_2 := PQ$ is a diagonal matrix and $Y = Y_0 Q D_1$ and $Z =$ $Z_0 P^{-1} D_1^{-1}$. Hence, noting $P^{-1} = P^T$, it holds that $X = X_0 P^{-1} D_2^{-1}$, $Y =$ $Y_0 P^{-1} D_2 D_1$, $Z = Z_0 P^{-1} D_1^{-1}$. Up to scalar uncertainty, (X, Y, Z) is equal to $(X_0P^{-1}, Y_0P^{-1}, Z_0P^{-1})=(X_0, Y_0, Z_0)P^{-1}$, and also it is, up to permutation, equal to (X_0, Y_0, Z_0) . In general, it does not hold $(X_0 \circ Y_0 \circ Z_0)u = (X_1 \circ Y_1 \circ Z_1)u$, but we can show the following property.

Proposition 3. For the function $f(X, Y, Z) = ||T - (X \circ Y \circ Z)u||_F^2$, assume that (X_0, Y_0, Z_0) , (X_1, Y_1, Z_1) are two stationary points which attain the minimal value such that $f(X_0, Y_0, Z_0) = f(X_1, Y_1, Z_1)$. Then it holds that

$$
\|(X_0\circ Y_0\circ Z_0)u\|_F=\|(X_1\circ Y_1\circ Z_1)u\|_F.
$$

Proof. Since $f(X, Y, Z) = || f l_1(T) - X(Y \circ Z)^T ||_F^2$, from the equation [\(1\)](#page-3-1), we have $|| f l_1(T) ||_F^2 - || X_0 (Y_0 \circ Z_0)^T ||_F^2 = || f l_1(T) ||_F^2 - || X_1 (Y_1 \circ Z_1)^T ||_F^2$. That is, it holds that $||X_0(Y_0 \circ Z_0)^T||_F = ||X_1(Y_1 \circ Z_1)^T||_F$.

Finally we remark that the equality

$$
|| X_0 (Y_0 \circ Z_0)^T ||_F = || Y_0 (Z_0 \circ X_0)^T ||_F = || Z_0 (X_0 \circ Y_0)^T ||_F.
$$

5 Conclusion

For a third-order tensor T and each r , there exists a sum of r tensors of rank 1 which is the closest to T in the sense of Frobenius norm (Existence property). Generally, a global optimal solution is not unique for NNTF. For this problem we proved that if T is of rank r the rank of the matrix made by an arrangement of T is less than or eaual to r , and that if the equality of both ranks holds the decomposition of T into a sum of r tensors of rank 1 is unique under some condition (Uniqueness property).

References

- [CSS] Cao, B., Shen, D., Sun, J.-T., Wang, X., Yang, Q., Chen, Z.: Detect and Track Latent Factors with Online Nonnegative Matrix Factorization, IJCAI 2007, pp. 2689–2694 (2007)
- [CZA] Chichoki, A., Zdunek, R., Amari, S.-i.: Non-Negative Tensor Factorization Using Csiszar's Divergence. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 32–39. Springer, Heidelberg (2006)
- [LS] Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 556–562. MIT Press, Cambridge (2001)
- [MMV] Miwakeichi, F., Martínez-Montes, E., Valdés-Sosa, P.A., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG Data into Space–Time– Frequency Components Using Parallel Factor Analysis. NeuroImage 22, 1035– 1045 (2004)
- [MHH] Morup, M., Hansen, L.K., Herman, C.S., Parnas, J., Arnfred, S.M.: Parallel Factor Analysis as an Exploratory Tool for Wavelet Transformed Event-related EEG. NeuroImage 29, 938–947 (2006)
- [WZZ] Wang, J., Zhong, W., Zhang, J.: NNMF-Based Factorization techniques for High-Accuracy Privacy Protection on Non-negative-valued Datasets. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 513–517. Springer, Heidelberg (2006)