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Abstract. The applications of Non-Negative Tensor Factorization
(NNTF) is an important tool for brain wave (EEG) analysis. For it to
work efficiently, it is essential for NNTF to have a unique solution. In this
paper we give a sufficient condition for NNTF to have a unique global
optimal solution. For a third-order tensor 7" we define a matrix by some
rearrangement of 7" and it is shown that the rank of the matrix is less
than or equal to the rank of 7. It is also shown that if both ranks are
equal to r, the decomposition into a sum of r tensors of rank 1 is unique
under some assumption.

1 Introduction

In the past few years, Non-Negative Tensor Factorization (NNTF) is becom-
ing an important tool for brain wave (EEG) analysis through Morlet wavelet
analysis (for example, see Miwakeichi [MMYV] and Morup [MHH]). The NNTF
algorithm is based on Non-Negative Matrix Factorization (NNMF) algorithms,
amongst the most well-known algorithms contributed by Lee-Seung [LS]. Re-
cently, Chichoki et al. [CZA] deals with a new NNTF algorithm using Csiszar’s
divergence. Furthermore, Wang et al. [WZZ] also worked on NNMF algorithms
and its interesting application in preserving privacy in datamining fields. These
algorithms converged to some stationary points and do not converge to a global
minimization point. In fact, it is easily shown that the problem has no unique
minimization points in general (see [CSS|). In applications of NNTF for EEG
analysis, it is important for NNTF to have a unique solution. However this
uniqueness problem has not been addressed sufficiently as far as the authors are
aware of. Similarly as in Non-Negative Matrix Factorization (NNMF), it seems
that the uniqueness problem has not been solved. However we managed to ob-
tain the uniqueness and proved it. (see Proposition [). In this paper we give a
sufficient condition for NNTF to have a unique solution and for the usual NNTF
algorithm to find its minimization point in the case when NNTF exists strictly,
not approximation (see Theorem [3)).
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2 Quadratic Form

As the NNMF problem is a minimization of a quadratic function, we shall first
review quadratic functions generally. Let us consider the quadratic form defined
by f(z) = 27 Az —2bT 2 where A is a n x n symmetric matrix and b is a n vector.
The symmetric matrix A is a diagonalized by an orthogonal matrix P as

PAPT = diag(eq, ..., en).

Then by assigning y = (y1,...,yn)’ = Pz and ¢ = (c1,...,¢,)T = Pb, we
obtain the equality

2
f(z) =yt (PAPT )y — 2¢Ty = Z(eiyf —2¢,y;) = Z (ei(yi _ Zl )2 - 3) .
We assume that the matrix A is positive definite. Then,when f(z) reaches its
minimum at y = (PAPT) " lc = (PAPT)"1Pb = PA~'b in R", with the value
f(A7') = —bTA7 b at x = PTy = A~'b € R”. The minimal value is under the
condition x > 0. Here, some basic facts will be explained. Let a € R™ and let
h: R™ — R be a function defined as h(z) = ||z — a||®, where |- || stands for the
common Euclidean norm.

Lemma 1. On the arbitrary closed set S of R™, h(t), t € S takes a global
minimal value in S.

Proof. Choose an arbitrary to € S, and set s = h(tg) and U = h=1([0, s]) N S.
The set U is a closed subset of R™. By triangular inequality, we know that
h(t) > ||t]| — |||l Since s > h(t) for t € U, it holds that ||t]] < s+ | a| which
shows that U is bounded. Hence, since U is bounded and closed, it is compact.
Thus h(t), t € U becomes a closed map, and h(U) is also compact. That is,
h(t), t € U takes a global minimum value, say sg. Thus, it holds that for ¢t € S,
h(t) > sif t ¢ U, and h(t) > so if ¢ in U. This means that s¢ is the global
minimum of A on S. O

Lemma 2. Let S be a closed convex subset of R™. Then h(t), t € S reaches a
global minimal value at a unique point in S.

Proof. The existence of a global minimal value follows from Lemmalll Let x and
y be points in R"™ which attain a global minimal value r := min,cgs f(2). Note
that @,y € SNIB,(z0), where By(a) :={z | ||z —a| <r} and 0B, (a) := {z |
|z — al| = r}. Since SN B, (a) is also convex, tx + (1 —¢)y € SN B,(a) for each
0<t<1.Ifz#uy,then ||a— (z+y)/2| <r, which is contradiction. Therefore
r=y. O

Let D = diag(/e1,...,v/én), 2= DPxand S ={z € R" |2 > 0}. Note that S
is a convex set of R™ and f(z) = h(z) for a = D! Pb. Therefore f(x) reaches a
global minimal value at a unique point under the condition x > 0.
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The following are some basic facts about matrix decompositions. Let A, W
and H be m x n, m x r and r X n matrix respectively. Then || A — W H || for any
H with H > O and any W with W > O reaches a global minimal value at a
unique m x n matrix W H but W and H are not unique. We state this precisely
below.

Proposition 1. The following properties hold:

1. If r = rank(A), there exist W and H such that A= WH.

2. If r > rank(A), there exists an infinite number of pairs of W and H such
that A=WH.

3. Let r = rank(A). Then if A= WH = W'H’ there exists a non-singular ma-
triv X such that W' = WX, H = X~'H ([CSS, Full-Rank Decomposition
Theorem]).

4. If r < rank(A), there exists no pair of W and H such that A= WH.

Proof. () In this case, let W be a matrix whose columns are linearly independent
vectors of length m. From the assumption it is clear that the columns of A are
expressed as linear combination of columns of W hence A = WH.

@) In this case, put s = rank(A), (r > s). By property (), we know there
exists a m X s matrix W7 and a s X m matrix H; such that A = W1 H;. Place
W = (W1 Wg) and H = (Z;) where Wy and Hs are m X (r — s) matrix and
(r — s) X n matrix respectively and satisfy WaHs = 0. There are infinitely many
such pairs of (Wa, Ha), and for all of those it clearly holds that A = WH.

@) From r = rank(A), in the expression of A = WH = W'H’, the columns
of W and W' are linearly independent respectively. Hence we have W' = WX
for some regular r x r matrix X. From this the rest of (@) is derived trivially.

@) Since rank(W H) < r, it is impossible to have A = WH. O

3 Non-Negative Matrix Factorization

It is well known NNMF (Non-Negative Matrix Factorization) is not unique
(ICSS]). Let V, W and H be a m x n, m x r and r X n matrix respectively.
For a matrix A, we denote by A;; the (4, j)-component of A and its Frobenius

norm is defined by
| Allim yfir(AT 4) = \/Z A2,
(]

where ¢r takes the sum of all diagonal entries.

Lemma 3. Fizing H, f(W) =||V—-WH ||r attains the minimum at the solution
W of the equation W(HH™) = VHT. Especially, if HH” is non-singular, the
minimum is attained at the unique point W = VHT(HHT)™1,
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Proof. 1t holds that

FOV) = (Vij =Y Wi Hy))?

(]

= Z (Z WipHijquqj -2 Z V;J‘WipHpj + V;?)
ij \DPq P

= Z(HHT)quipWiq -2 Z(VHT)ipWip + Z Vz?
4,p,q ip ij

Therefore f(W) is a quadratic function of W;; (i=1,2,---,m, j =1,2,--- 7).
Put

t=Wit,...,Wir, o, Wity oo, Wie) T € R™",
a=((VH ) 11,...,(VH ) 1py...,(VH )1, ..., (VH"),,, )T € R™"

and define a mr x mr matrix M by diag(HH”,..., HHT). Then, M is positive
semidefinite and f(W) is expressed as

fW) =a"Mz— 24"z + ) V3.

(2¥]

Assume that HH” is non-singular. Then M is positive definite and thus the
minimum of f(W) is attained at the unique point = M ~'a, that is, W7 =
(HHT)"Y(VHT)T equivalent to, W = VHT(HH?”)~!. The minimum value is

fFW) = VI[E — IWH|[3 (1)
and we also have |WH ||%=tr(WTVHT) =tr(HHT)"Y(VHT)T(VHT)). O
Since |V — WH ||p=|| VT — HTWT ||, fixing W, ||V — WH ||r attains the
minimum at the unique point V = (WTW)"1WTV if WTW is non-singular.

We recall the Lee-Seung NNMF Algorithm for the Frobenius norm property.

Theorem 1 ([LS]). The Frobenius norm ||V —W H || is non-increasing under
the update rules:

(WTV),
(WTWH)ij

(VHT)y

Hig = Hig (WHHT),,

Wij — Wi

Now we propose the following improvement of the Lee-Seung NNMF Algo-
rithm for the Frobenius norm property. For matrices X with X > 0 and Y,
let e (X,Y) =max{t | (1 - )X +tY >0, 0 <¢ <1}
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Theorem 2. The Frobenius norm ||V — WH || g is non-increasing under the
update rules:

(1= ho)WIW)*WTV + hoH, if WTW is non-singular and hg > 0

H I (WTV),;
Y (WIWH);
(1 —wo)VHTY(HHT)™' +woW, if HH" is non-singular and wo > 0

W<  (VH);
Y(WHHT);;’

otherwise

otherwise

where hg = tyae (WTW)TIWTV, H) and wo = tpmee(VHT(HHT)=Y W).

Proof. If either WT'W is singular or hg = 0, the claim follows from Theorem [
Suppose both WT'W is non-singular and hg > 0. By Lemma B3] fixing W, ||V —
WH || takes minimum at (WZW)"'WTV without the assumption z > 0. Let
us denote H' = (1 — ho)(WTW)"*WTV + hoH for clarity. On the line from H
to H', the Frobenius norm decreases and thus ||V — WH ||p>||V — WH' ||p.
Clearly H' > 0 which follows from the definition of hq. O

4 Non-Negative Tensor Factorization

4.1 Existence of a Global Optimal Solution

Let R>o be the set of all non-negative real numbers. Let 7" be a third-order
tensor in R‘;ﬁbxc. Let X = (xl ...xr), Y = (y1 yr) and Z = (21 zr) be

. . : b
axr,bxrand cxr matrices, respectively. We define a function f over R(fgr +or

as
2
XY, 2) =" (tijk - ZXMYJ[ZM> ,

ik ¢

Let Sy = {x € R%, | ||«|| = 1} be an intersection of an unit sphere in R” with

Rl’zo. Put § = (R%)*7 x (Sp)*" x (S¢)*" for short, where M*" = M x ---x M (r
times). Then S is a closed subspace of R(;J T and the image f(S) coincides

with the full image f(RFT7). Let (X,Y,Z) € S. Then X > O, Y > O,
Z >0 and |ly;|| = 2]l =1 for all j. Noting that

2
Z (Z Xiijsz‘> = Z(XMYJ‘ZZM)Q = |||

w3,k \ L 4,5,k

i 50 O XMYJ[ZM)2 is bounded, || X || is also bounded and thus so is S.
Hence, we can apply the proof of Lemma [I] for the function f on S instead of h
and we obtain an existence of a global minimal value.
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4.2 Uniqueness

We show the uniqueness under some assumption. First,several facts are pre-
sented. For convenience, we define

Xlo"'oXk:(l‘(ll)(X) ®x(1k)’.7xgil)®..®x7(dk))

for matrices Xy = (xgl), .. .,a:,(ﬁl))7 e Xg = (xgk), .. &k)) with r-columns.
For u = (1,...,1)T € R", we have f(X,Y,Z) =|T — (X oY o Z)u||%. For a
transformation M, = (m;;) among {1,...,7} o, a permutation matrix M, is

defined by m;; = 0 For a permutation matrix M, it does hold that

io(j)-
M} = My =M;".
Proposition 2. In a general P, the following equation does not hold
(XiP)o---0o(X,P)=(Xj0---0X,)P.
However, if P is a permutation matriz, and Py, ..., P, are diagonal matrices,

(XiP)o---0o(X,P)=(Xj0---0X,)P
(X1P1)O"'O(XTPT):(X10~-~OXT)P1--.PT

does hold.

Lemma 4. Let A and C' be m X r matrices and B and D be n X r matrices, and
Q be r x r non-singular matriz. Assume that Ao B = (C o D)Q and rank(C) =
rank(C o D) = r Then there exists a permutation matriz P = M, such that both
of PQ and QP~' become diagonal matrices and A = CQX and B = DP~'X !
hold for some diagonal matriz X . Further suppose that A, B,C, D > 0. Let Q1 /;
be a rxr matriz whose (i, j)-component is the square root of the (i, j)-component
of Q. Then Qo is a real matriz, and both A = CQ,/3X and B = DQl/QX*1
hold for some diagonal matriz X .

Proof. We use the notations A = (al,...ar), = (b1,...b,) = (biy), C =
(c1,...¢r), D = (di,...dr) = (dij), Q = (¢ij)- Smce ® is a bilinear operation
and rank(C o D) = r, it holds that di # 0 (Yk) and that dj // d; implies k = £.
Since Ao B=(Co D)Q7 we have

ap ®@ by, = Z%kcé ®de, "k, and byar = ZQdei€C€7 Vi, k.
¢ ¢

Since ) is non-singular, for each k there exists a permutation o(k) such that
9o(k)k 7 0. Now we will show that for each £ there exists an ¢ such that by # 0.
Assume that b, = 0 for some s. Then, it holds that Ze Qesce ® dy = 0, and since
rank(C o D) = 7, it holds that gos = 0 (Y¢). This contradicts to the fact that
Q is non-singular. Therefore, for each £, there exists a 7(¢) such that b, (s, # 0.
Then, it follows

Qekbindy (ke = Qeebr (pypdic, ik, L
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from the equality

bryrbikar = Z bikQerdy (kyeCe = Zbr(k)k%kdifcéa Vi k
¢ ¢

d,

and rank(C) = r. On the assumption of g # 0, since dyp = b (k) b for all

T(k)k

d,

i it holds that d; = . by, Especially it holds that d, )y, # 0. That is, it
T(k)k

holds that dg // by. Hence, by rank(C o D) = r, if qu, # 0, then ¢ = o(k). This

implies that there exists a permutation matrix P = M, such that both of PQ

dT ag
and QP! are diagonal. Then, if we choose X = diag < (k)o (k) ), it holds that
T(k)k
dr (ko (k) br (k) v
Ak = 4o (k)k * Co(k)s b, = da(k)7 k
br(kyk dr(k)o (k)

that is, it holds that A = CQX, B = DP~'X~!. Further, on the assump-

ag dT g
tion of @ > 0, if we choose Y = diag (\/q (kb)k () (k))7 it holds that A =
T(k)k
CQ.2Y, B= DQl/QYfl. These completes the proof of Lemma Fl O

We should note that the factorization (X oY o Z) has the scalar uncertainty
such that for scalars a, b, ¢, it holds

(@' X)o(b'Y)o(dZ) = (abc)(X oY o Z).

where (o', V', ¢’) denotes any permutation of (a, b, ¢). Now we give a sufficient con-
dition that NN'TF has the unique global solution. From now set v = (1,...,1)7 €
R" and let f1,(T') be a a x bc matrix whose (¢, j + b(k — 1))-component is ;.
Then the following theorem holds.

Theorem 3. For f(X,Y,Z) =||T—(XoYoZ)ul|%, we assume rank(fl;(T)) = r
and min f(X,Y,Z) = 0. Then, under the condition rank(Y) = rank(Y o Z) =r,
the optimal global point is unique up to permutations and scalar uncertainty.

Proof. By triangular inequality we have
[(X10Y10Z1)u— (XgoYyoZo)u|r< f(Xo, Yo, Zo) + f(X1,Y1,7Z1) =0,

and thus (X o Yy o Zg)u = (X3 o Y; o Z1)u which is equivalent to the fol-
lowing equation Xo(Yy o Zo)T = X1(Y1 o Z1)T. By Proposition 0 @), there
exists a non-singular matrix @ such that X = Xo(Q7)™!, Yo Z = (Yoo
Z0)Q. From Lemma H for some permutation matrix P and diagonal matrix
Dy, it holds that D, := PQ is a diagonal matrix and Y = YyQD; and Z =
ZoP~'D;'. Hence, noting P~' = PT it holds that X = XoP~'D;', YV =
YoP~'DyDy, Z = ZyP~'D;*. Up to scalar uncertainty, (X,Y,Z) is equal to
(XoP~ 1, YoP™ Y, ZoP~Y) = (X0, Yo, Zo)P~ 1, and also it is, up to permutation,
equal to (Xo, Yo, Zo). O
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In general, it does not hold (X o Yy 0 Zp)u = (X7 0 Y7 0 Z1)u, but we can show
the following property.

Proposition 3. For the function f(X,Y,Z) =[|T — (X oY o Z)u||%, assume
that (Xo, Yo, Zo), (X1,Y1, Z1) are two stationary points which attain the minimal
value such that f(Xo, Yo, Zo) = f(X1,Y1,Z1). Then it holds that

[(Xo o Yoo Zo)ulp=[|(X10YioZi)u|r .

Proof. Since f(X,Y,Z) =|| fl(T) — X(Y o Z)T ||%, from the equation (), we
have || flu(T) |3 — | Xo(Yo © Zo)" [|3-=I| fl(T) |3 — || X1(Y1 0 Z1)" ||. That is,
it holds that || Xo(YO o Zo)T ||F:|| X1 (Yl o Zl)T ||F O

Finally we remark that the equality
| Xo(Yo 0 Zo)" [|7=IYo(Zo © Xo)" [l 7= Zo(Xo © Yo)" || -

5 Conclusion

For a third-order tensor T" and each r, there exists a sum of r tensors of rank 1
which is the closest to T" in the sense of Frobenius norm (Existence property).
Generally, a global optimal solution is not unique for NNTF. For this problem
we proved that if 7" is of rank r the rank of the matrix made by an arrangement
of T is less than or eaual to r, and that if the equality of both ranks holds
the decomposition of T" into a sum of r tensors of rank 1 is unique under some
condition (Uniqueness property).
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