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Abstract. The applications of Non-Negative Tensor Factorization
(NNTF) is an important tool for brain wave (EEG) analysis. For it to
work efficiently, it is essential for NNTF to have a unique solution. In this
paper we give a sufficient condition for NNTF to have a unique global
optimal solution. For a third-order tensor T we define a matrix by some
rearrangement of T and it is shown that the rank of the matrix is less
than or equal to the rank of T . It is also shown that if both ranks are
equal to r, the decomposition into a sum of r tensors of rank 1 is unique
under some assumption.

1 Introduction

In the past few years, Non-Negative Tensor Factorization (NNTF) is becom-
ing an important tool for brain wave (EEG) analysis through Morlet wavelet
analysis (for example, see Miwakeichi [MMV] and Morup [MHH]). The NNTF
algorithm is based on Non-Negative Matrix Factorization (NNMF) algorithms,
amongst the most well-known algorithms contributed by Lee-Seung [LS]. Re-
cently, Chichoki et al. [CZA] deals with a new NNTF algorithm using Csiszar’s
divergence. Furthermore, Wang et al. [WZZ] also worked on NNMF algorithms
and its interesting application in preserving privacy in datamining fields. These
algorithms converged to some stationary points and do not converge to a global
minimization point. In fact, it is easily shown that the problem has no unique
minimization points in general (see [CSS]). In applications of NNTF for EEG
analysis, it is important for NNTF to have a unique solution. However this
uniqueness problem has not been addressed sufficiently as far as the authors are
aware of. Similarly as in Non-Negative Matrix Factorization (NNMF), it seems
that the uniqueness problem has not been solved. However we managed to ob-
tain the uniqueness and proved it. (see Proposition 1). In this paper we give a
sufficient condition for NNTF to have a unique solution and for the usual NNTF
algorithm to find its minimization point in the case when NNTF exists strictly,
not approximation (see Theorem 3).
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2 Quadratic Form

As the NNMF problem is a minimization of a quadratic function, we shall first
review quadratic functions generally. Let us consider the quadratic form defined
by f(x) = xT Ax−2bT x where A is a n×n symmetric matrix and b is a n vector.
The symmetric matrix A is a diagonalized by an orthogonal matrix P as

PAPT = diag(e1, . . . , en).

Then by assigning y = (y1, . . . , yn)T = Px and c = (c1, . . . , cn)T = Pb, we
obtain the equality

f(x) = yT (PAPT )y − 2cT y =
∑

i

(eiy
2
i − 2ciyi) =

∑

i

(
ei(yi − ci

ei
)2 − c2

i

ei

)
.

We assume that the matrix A is positive definite. Then,when f(x) reaches its
minimum at y = (PAPT )−1c = (PAPT )−1Pb = PA−1b in R

n, with the value
f(A−1b) = −bT A−1b at x = PT y = A−1b ∈ R

n. The minimal value is under the
condition x ≥ 0. Here, some basic facts will be explained. Let a ∈ R

n and let
h : R

n → R be a function defined as h(x) = ‖x − a‖2, where ‖·‖ stands for the
common Euclidean norm.

Lemma 1. On the arbitrary closed set S of R
n, h(t), t ∈ S takes a global

minimal value in S.

Proof. Choose an arbitrary t0 ∈ S, and set s = h(t0) and U = h−1([0, s]) ∩ S.
The set U is a closed subset of R

n. By triangular inequality, we know that
h(t) ≥ ‖ t‖ − ‖a‖. Since s ≥ h(t) for t ∈ U , it holds that ‖ t‖ ≤ s + ‖a‖ which
shows that U is bounded. Hence, since U is bounded and closed, it is compact.
Thus h(t), t ∈ U becomes a closed map, and h(U) is also compact. That is,
h(t), t ∈ U takes a global minimum value, say s0. Thus, it holds that for t ∈ S,
h(t) > s if t /∈ U , and h(t) ≥ s0 if t in U . This means that s0 is the global
minimum of h on S. �	

Lemma 2. Let S be a closed convex subset of R
n. Then h(t), t ∈ S reaches a

global minimal value at a unique point in S.

Proof. The existence of a global minimal value follows from Lemma 1. Let x and
y be points in R

n which attain a global minimal value r := minz∈S f(z). Note
that x, y ∈ S ∩ ∂Br(z0), where Br(a) := {x | ‖x − a‖ ≤ r} and ∂Br(a) := {x |
‖x − a‖ = r}. Since S ∩ Br(a) is also convex, tx + (1 − t)y ∈ S ∩ Br(a) for each
0 ≤ t ≤ 1. If x 
= y, then ‖a − (x + y)/2‖ < r, which is contradiction. Therefore
x = y. �	

Let D = diag(
√

e1, . . . ,
√

en), z = DPx and S = { z ∈ R
n | x ≥ 0 }. Note that S

is a convex set of R
n and f(x) = h(z) for a = D−1Pb. Therefore f(x) reaches a

global minimal value at a unique point under the condition x ≥ 0.
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The following are some basic facts about matrix decompositions. Let A, W
and H be m×n, m× r and r ×n matrix respectively. Then ‖A − WH ‖ for any
H with H ≥ O and any W with W ≥ O reaches a global minimal value at a
unique m × n matrix WH but W and H are not unique. We state this precisely
below.

Proposition 1. The following properties hold:

1. If r = rank(A), there exist W and H such that A = WH.
2. If r > rank(A), there exists an infinite number of pairs of W and H such

that A = WH.
3. Let r = rank(A). Then if A = WH = W ′H ′ there exists a non-singular ma-

trix X such that W ′ = WX, H ′ = X−1H ([CSS, Full-Rank Decomposition
Theorem]).

4. If r < rank(A), there exists no pair of W and H such that A = WH.

Proof. (1) In this case, let W be a matrix whose columns are linearly independent
vectors of length m. From the assumption it is clear that the columns of A are
expressed as linear combination of columns of W hence A = WH .

(2) In this case, put s = rank(A), (r > s). By property (1), we know there
exists a m × s matrix W1 and a s × m matrix H1 such that A = W1H1. Place

W =
(
W1 W2

)
and H =

(
H1
H2

)
where W2 and H2 are m × (r − s) matrix and

(r − s) ×n matrix respectively and satisfy W2H2 = 0. There are infinitely many
such pairs of (W2, H2), and for all of those it clearly holds that A = WH .

(3) From r = rank(A), in the expression of A = WH = W ′H ′, the columns
of W and W ′ are linearly independent respectively. Hence we have W ′ = WX
for some regular r × r matrix X . From this the rest of (3) is derived trivially.

(4) Since rank(WH) ≤ r, it is impossible to have A = WH . �	

3 Non-Negative Matrix Factorization

It is well known NNMF (Non-Negative Matrix Factorization) is not unique
([CSS]). Let V , W and H be a m × n, m × r and r × n matrix respectively.
For a matrix A, we denote by Aij the (i, j)-component of A and its Frobenius
norm is defined by

‖A‖F :=
√

tr(AT A) =
√∑

i,j

A2
ij ,

where tr takes the sum of all diagonal entries.

Lemma 3. Fixing H, f(W ) =‖V −WH ‖F attains the minimum at the solution
W of the equation W (HHT ) = V HT . Especially, if HHT is non-singular, the
minimum is attained at the unique point W = V HT (HHT )−1.
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Proof. It holds that

f(W ) =
∑

i,j

(Vij −
∑

p

WipHpj)2

=
∑

i,j

(
∑

p,q

WipHpjWiqHqj − 2
∑

p

VijWipHpj + V 2
ij

)

=
∑

i,p,q

(HHT )pqWipWiq − 2
∑

i,p

(V HT )ipWip +
∑

i,j

V 2
ij .

Therefore f(W ) is a quadratic function of Wij (i = 1, 2, · · · , m, j = 1, 2, · · · , r).
Put

x = (W11, . . . , W1r, . . . , Wm1, . . . , Wmr)T ∈ R
mr,

a = ((V HT )11, . . . , (V HT )1r, . . . , (V HT )m1, . . . , (V HT )mr)T ∈ R
mr

and define a mr × mr matrix M by diag(HHT , . . . , HHT ). Then, M is positive
semidefinite and f(W ) is expressed as

f(W ) = xT Mx − 2aT x +
∑

i,j

V 2
ij .

Assume that HHT is non-singular. Then M is positive definite and thus the
minimum of f(W ) is attained at the unique point x = M−1a, that is, WT =
(HHT )−1(V HT )T , equivalent to, W = V HT (HHT )−1. The minimum value is

f(W ) =‖V ‖2
F − ‖WH ‖2

F (1)

and we also have ‖WH ‖2
F = tr(WT V HT ) = tr((HHT )−1(V HT )T (V HT )). �	

Since ‖ V − WH ‖F =‖ V T − HT WT ‖F , fixing W , ‖ V − WH ‖F attains the
minimum at the unique point V = (WT W )−1WT V if WT W is non-singular.

We recall the Lee-Seung NNMF Algorithm for the Frobenius norm property.

Theorem 1 ([LS]). The Frobenius norm ‖V −WH ‖F is non-increasing under
the update rules:

Hij ← Hij
(WT V )ij

(WT WH)ij
Wij ← Wij

(V HT )ij

(WHHT )ij

Now we propose the following improvement of the Lee-Seung NNMF Algo-
rithm for the Frobenius norm property. For matrices X with X ≥ 0 and Y ,
let tmax(X, Y ) = max{t | (1 − t)X + tY ≥ O, 0 ≤ t ≤ 1}.
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Theorem 2. The Frobenius norm ‖ V − WH ‖F is non-increasing under the
update rules:

H ←

⎧
⎨

⎩

(1 − h0)(WT W )−1WT V + h0H, if WT W is non-singular and h0 > 0

Hij
(WT V )ij

(WT WH)ij
, otherwise

W ←

⎧
⎨

⎩

(1 − w0)V HT (HHT )−1 + w0W, if HHT is non-singular and w0 > 0

Wij
(V HT )ij

(WHHT )ij
, otherwise

where h0 = tmax((WT W )−1WT V, H) and w0 = tmax(V HT (HHT )−1, W ).

Proof. If either WT W is singular or h0 = 0, the claim follows from Theorem 1.
Suppose both WT W is non-singular and h0 > 0. By Lemma 3, fixing W , ‖V −
WH ‖F takes minimum at (WT W )−1WT V without the assumption x ≥ 0. Let
us denote H ′ = (1 − h0)(WT W )−1WT V + h0H for clarity. On the line from H
to H ′, the Frobenius norm decreases and thus ‖ V − WH ‖F ≥‖ V − WH ′ ‖F .
Clearly H ′ ≥ 0 which follows from the definition of h0. �	

4 Non-Negative Tensor Factorization

4.1 Existence of a Global Optimal Solution

Let R≥0 be the set of all non-negative real numbers. Let T be a third-order
tensor in R

a×b×c
≥0 . Let X =

(
x1 . . . xr

)
, Y =

(
y1 . . . yr

)
and Z =

(
z1 . . . zr

)
be

a×r, b×r and c×r matrices, respectively. We define a function f over R
(a+b+c)r
≥0

as

f(X, Y, Z) =
∑

ijk

(
tijk −

∑

�

Xi�Yj�Zk�

)2

.

Let Sb = {x ∈ R
b
≥0 | ‖x‖ = 1} be an intersection of an unit sphere in R

b with
R

b
≥0. Put S = (Ra)×r × (Sb)×r × (Sc)×r for short, where M×r = M ×· · ·×M (r

times). Then S is a closed subspace of R
(a+b+c)r
≥0 and the image f(S) coincides

with the full image f(R(a+b+c)r
≥0 ). Let (X, Y, Z) ∈ S. Then X ≥ O, Y ≥ O,

Z ≥ O and ‖yj ‖ = ‖zj ‖ = 1 for all j. Noting that

∑

i,j,k

(
∑

�

Xi�Yj�Zk�

)2

≥
∑

i,j,k

(Xi�Yj�Zk�)2 = ‖x� ‖2

if
∑

i,j,k (
∑

� Xi�Yj�Zk�)
2 is bounded, ‖ X ‖F is also bounded and thus so is S.

Hence, we can apply the proof of Lemma 1 for the function f on S instead of h
and we obtain an existence of a global minimal value.
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4.2 Uniqueness

We show the uniqueness under some assumption. First,several facts are pre-
sented. For convenience, we define

X1 ◦ · · · ◦ Xk = (x(1)
1 ⊗ · · · ⊗ x

(k)
1 , . . . , x(1)

r ⊗ · · · ⊗ x(k)
r )

for matrices X1 = (x(1)
1 , . . . , x

(1)
r ), . . ., Xk = (x(k)

1 , . . . , x
(k)
r ) with r-columns.

For u = (1, . . . , 1)T ∈ R
r, we have f(X, Y, Z) =‖ T − (X ◦ Y ◦ Z)u ‖2

F . For a
transformation Mσ = (mij) among {1, . . . , r} σ, a permutation matrix Mσ is
defined by mij = δiσ(j). For a permutation matrix Mσ it does hold that

MT
σ = Mσ−1 = M−1

σ .

Proposition 2. In a general P , the following equation does not hold

(X1P ) ◦ · · · ◦ (XrP ) = (X1 ◦ · · · ◦ Xr)P.

However, if P is a permutation matrix, and P1, . . . , Pr are diagonal matrices,

(X1P ) ◦ · · · ◦ (XrP ) = (X1 ◦ · · · ◦ Xr)P
(X1P1) ◦ · · · ◦ (XrPr) = (X1 ◦ · · · ◦ Xr)P1 · · ·Pr

does hold.

Lemma 4. Let A and C be m× r matrices and B and D be n× r matrices, and
Q be r × r non-singular matrix. Assume that A ◦ B = (C ◦ D)Q and rank(C) =
rank(C ◦ D) = r Then there exists a permutation matrix P = Mσ such that both
of PQ and QP−1 become diagonal matrices and A = CQX and B = DP−1X−1

hold for some diagonal matrix X. Further suppose that A, B, C, D ≥ 0. Let Q1/2
be a r×r matrix whose (i, j)-component is the square root of the (i, j)-component
of Q. Then Q1/2 is a real matrix, and both A = CQ1/2X and B = DQ1/2X

−1

hold for some diagonal matrix X.

Proof. We use the notations A = (a1, . . . ar), B = (b1, . . . br) = (bij), C =
(c1, . . . cr), D = (d1, . . . dr) = (dij), Q = (qij). Since ⊗ is a bilinear operation
and rank(C ◦ D) = r, it holds that dk 
= 0 (∀k) and that dk // d� implies k = �.
Since A ◦ B = (C ◦ D)Q, we have

ak ⊗ bk =
∑

�

q�kc� ⊗ d�,
∀k, and bikak =

∑

�

q�kdi�c�,
∀i, k.

Since Q is non-singular, for each k there exists a permutation σ(k) such that
qσ(k)k 
= 0. Now we will show that for each � there exists an i such that bi� 
= 0.
Assume that bs = 0 for some s. Then, it holds that

∑
� q�sc� ⊗ d� = 0, and since

rank(C ◦ D) = r, it holds that q�s = 0 (∀�). This contradicts to the fact that
Q is non-singular. Therefore, for each �, there exists a τ(�) such that bτ(�)� 
= 0.
Then, it follows

q�kbikdτ(k)� = q�kbτ(k)kdi�,
∀i, k, �
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from the equality

bτ(k)kbikak =
∑

�

bikq�kdτ(k)�c� =
∑

�

bτ(k)kq�kdi�c�,
∀i, k

and rank(C) = r. On the assumption of q�k 
= 0, since di� =
dτ(k)�

bτ(k)k
· bik for all

i it holds that d� =
dτ(k)�

bτ(k)k
bk. Especially it holds that dτ(k)� 
= 0. That is, it

holds that d� // bk. Hence, by rank(C ◦ D) = r, if q�k 
= 0, then � = σ(k). This
implies that there exists a permutation matrix P = Mσ such that both of PQ

and QP−1 are diagonal. Then, if we choose X = diag
(

dτ(k)σ(k)

bτ(k)k

)
, it holds that

ak = qσ(k)k ·
dτ(k)σ(k)

bτ(k)k
cσ(k), bk =

bτ(k)k

dτ(k)σ(k)
dσ(k),

∀k

that is, it holds that A = CQX, B = DP−1X−1. Further, on the assump-

tion of Q ≥ 0, if we choose Y = diag
(√

qσ(k)kdτ(k)σ(k)

bτ(k)k

)
, it holds that A =

CQ1/2Y, B = DQ1/2Y
−1. These completes the proof of Lemma 4. �	

We should note that the factorization (X ◦ Y ◦ Z) has the scalar uncertainty
such that for scalars a, b, c, it holds

(a′X) ◦ (b′Y ) ◦ (c′Z) = (abc)(X ◦ Y ◦ Z).

where (a′, b′, c′) denotes any permutation of (a, b, c). Now we give a sufficient con-
dition that NNTF has the unique global solution. From now set u = (1, . . . , 1)T ∈
R

r and let fl1(T ) be a a × bc matrix whose (i, j + b(k − 1))-component is tijk.
Then the following theorem holds.

Theorem 3. For f(X, Y, Z) =‖T−(X◦Y ◦Z)u‖2
F , we assume rank(fl1(T )) = r

and min f(X, Y, Z) = 0. Then, under the condition rank(Y ) = rank(Y ◦ Z) = r,
the optimal global point is unique up to permutations and scalar uncertainty.

Proof. By triangular inequality we have

‖(X1 ◦ Y1 ◦ Z1)u − (X0 ◦ Y0 ◦ Z0)u‖F ≤ f(X0, Y0, Z0) + f(X1, Y1, Z1) = 0,

and thus (X0 ◦ Y0 ◦ Z0)u = (X1 ◦ Y1 ◦ Z1)u which is equivalent to the fol-
lowing equation X0(Y0 ◦ Z0)T = X1(Y1 ◦ Z1)T . By Proposition 1 (3), there
exists a non-singular matrix Q such that X = X0(QT )−1, Y ◦ Z = (Y0 ◦
Z0)Q. From Lemma 4, for some permutation matrix P and diagonal matrix
D1, it holds that D2 := PQ is a diagonal matrix and Y = Y0QD1 and Z =
Z0P

−1D−1
1 . Hence, noting P−1 = PT , it holds that X = X0P

−1D−1
2 , Y =

Y0P
−1D2D1, Z = Z0P

−1D−1
1 . Up to scalar uncertainty, (X, Y, Z) is equal to

(X0P
−1, Y0P

−1, Z0P
−1) = (X0, Y0, Z0)P−1, and also it is, up to permutation,

equal to (X0, Y0, Z0). �	
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In general, it does not hold (X0 ◦ Y0 ◦ Z0)u = (X1 ◦ Y1 ◦ Z1)u, but we can show
the following property.

Proposition 3. For the function f(X, Y, Z) =‖ T − (X ◦ Y ◦ Z)u ‖2
F , assume

that (X0, Y0, Z0), (X1, Y1, Z1) are two stationary points which attain the minimal
value such that f(X0, Y0, Z0) = f(X1, Y1, Z1). Then it holds that

‖(X0 ◦ Y0 ◦ Z0)u‖F =‖(X1 ◦ Y1 ◦ Z1)u‖F .

Proof. Since f(X, Y, Z) =‖ fl1(T ) − X(Y ◦ Z)T ‖2
F , from the equation (1), we

have ‖fl1(T )‖2
F − ‖X0(Y0 ◦ Z0)T ‖2

F =‖fl1(T )‖2
F − ‖X1(Y1 ◦ Z1)T ‖2

F . That is,
it holds that ‖X0(Y0 ◦ Z0)T ‖F =‖X1(Y1 ◦ Z1)T ‖F . �	
Finally we remark that the equality

‖X0(Y0 ◦ Z0)T ‖F =‖Y0(Z0 ◦ X0)T ‖F =‖Z0(X0 ◦ Y0)T ‖F .

5 Conclusion

For a third-order tensor T and each r, there exists a sum of r tensors of rank 1
which is the closest to T in the sense of Frobenius norm (Existence property).
Generally, a global optimal solution is not unique for NNTF. For this problem
we proved that if T is of rank r the rank of the matrix made by an arrangement
of T is less than or eaual to r, and that if the equality of both ranks holds
the decomposition of T into a sum of r tensors of rank 1 is unique under some
condition (Uniqueness property).
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