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Abstract. Delayed mixing is a problem of theoretical interest and prac-
tical importance, e.g., in speech processing, bio-medical signal analysis
and financial data modelling. Most previous analyses have been based
on models with integer shifts, i.e., shifts by a number of samples, and
have often been carried out using time-domain representation. Here, we
explore the fact that a shift τ in the time domain corresponds to a mul-
tiplication of e−iωτ in the frequency domain. Using this property an
algorithm in the case of sources≤sensors allowing arbitrary mixing and
delays is developed. The algorithm is based on the following steps: 1)
Find a subspace of shifted sources. 2) Resolve shift and rotation ambigu-
ity by information maximization in the complex domain. The algorithm
is proven to correctly identify the components of synthetic data. How-
ever, the problem is prone to local minima and difficulties arise especially
in the presence of large delays and high frequency sources. A Matlab im-
plementation can be downloaded from [1].

1 Introduction

Factor analysis is widely used to reconstruct latent effects from mixtures of
multiple effects based on the model

Xn,m =
∑

d

An,dSd,m + En,m, (1)

where En,m is additive noise. However, this decomposition is not unique since
Ã = AQ and S̃ = Q−1S yields same approximation as A,S. Consequently, con-
straints have been imposed such as Varimax rotation for Principal Component
Analysis (PCA) [2], statistical independence of the sources S as in Indepen-
dent Component Analysis (ICA)[3,4]. A related strategy is sparse coding where
the objective of minimizing the error is combined with a term penalizing the
non-sparsity of S [5].

Factor analysis in the setting of ICA is often illustrated by the so-called cock-
tail party problem. Here mixtures of several speakers are recorded in several
microphones forming the measured signal X. The task is to identify the sources
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S of each original speaker. However, even in an anechoic environment the mix-
ing model is typically not accurate because of different delays in the micro-
phones. Consider two microphones placed at distance L and L + h from a given
speaker. Under normal atmospheric conditions, the speed of sound is approx-
imately c = 344 m/s while a typical sampling rate is fs = 22 kHz. Then the
delay in samples between the two microphones is given by: #samples= fsh

c such
that the delay increases linearly with the difference in distance. Consequently, a
distance of 1 cm gives a delay of 0.6395 samples while h = 1m leads to a delay of
63.95 samples. Harshman and Hong [6] proposed a generalization of the factor
models in which the underlying sources have specific delays when they reach the
sensors. The model is called shifted factor analysis (SFA), and reads

Xn,m =
∑

d

An,dSd,m−τ̃n,d
+ En,m. (2)

In real acoustic environments we expect echoes due to paths that are created
by reflection off surfaces. To account for general delay mixing effects, the ICA
model has been generalized to convolutive mixtures, see e.g., [7,8,9]

Xn,m =
∑

τ,d

Aτ
n,dSd,m−τ + En,m. (3)

Here Aτ is a filter that accounts for the presence of each source in the sensors at
time delay τ . The shifted factor model, thus is a special case of the convolutive
model where the filter coefficients Aτ

n,d = An,d if τ̃n,d = τ else Aτ
n,d = 0.

In fact shifted mixtures are also seen in many other contexts. For instance,
astronomy where star motion Doppler effects induce frequency red shifts that
can be modelled using SFA. Here we will focus on the delayed source model.
In [6] strong support was found for the conjecture that the incorporation of
shifts can strengthen the model enough to make the parameters identifiable up
to scaling and permutation (essential uniqueness). We will demonstrate that this
conjecture is not correct when allowing for arbitrary shifts. Indeed, the model
is, as for regular factor analysis, ambiguous. In [10] an algorithm was proposed
to estimate the model. However, the algorithm has the following drawbacks.

1. All potential shifts have to be specified in the model.
2. Exhaustive integer search for the delays is expensive.
3. The model only accounts for shifts by whole samples.
4. The model is in general not unique.

Prior to the work of [6,10] Bell and Sejnowski [4] sketched how to handle time
delays in networks based on a model similar to equation 2. This was further
explored in [11]. Although their algorithms derive gradients to search for the
delays (alleviating the first two drawbacks above) the models are still based on
pure integer delays. In [12] a different model based on equally mixed sources,
i.e. A = 1, formed by moving averages incorporated non-integer delays by sig-
nal interpolation. Yeredor [13] solved the SFA model by joint diagonalization of
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Fig. 1. Example of activities obtained (black graph) when summing three components
(gray, blue dashed and red dash-dotted graphs) each shifted to various degrees (given in
samples by the colored numbers). Clearly, the resulting activities are heavily impacted
by the shifts such that a regular instantaneous ICA analysis would be inadequate.

the source cross spectra based on the AC-DC algorithm with non-integer shifts
for the 2 × 2 system. This approach was extended to complex signals in [14].
The algorithm is least squares optimal for equal number of sensors and sources.
More sensors than sources is not a problem for conventional ICA; we simply
reduce dimension by variance decomposition, this procedure is exact for noise-
less mixing. Due to the delays projection based dimensional reduction will not
reproduce the simple single delay structure, but rather lead to a more general
convolutive mixture. We will therefore aim at an algorithm for finding a shift
invariant subspace. Hence, solve equation 2 by use of the fact that a shift τ in
the time domain can be approximated by multiplication by the complex coeffi-
cients e−iωτ in the frequency domain. This alleviates the first three drawbacks
of the SFA algorithm. We will denote this algorithm a Shift Invariant Subspace
Analysis (SISA). To further deal with shift and rotation ambiguities, we impose
independence in the complex domain based on information-maximization (IM)
[4]. Hence, we form an algorithm for ICA with shifted sources (SICA). Notice,
that algorithms for ICA in the complex domain without shifts have previously
been derived, see for instance [9,15] and references therein.

2 Method and Results

In the following U will denote a matrix in the time domain, while Ũ denotes the
corresponding matrix in the frequency domain. U and Ũ denotes 3-way arrays
in the time and frequency domains respectively. Furthermore, U • V denotes
the direct product, i.e. element-wise multiplication. Also, ω = 2π f−1

M such that

Ũ(f) = U • e−i2π
f−1
M τ . Finally, the ith row of a matrix will be denoted Ui,:.

2.1 Shift Invariant Subspace Analysis (SISA)

In the following we will device an algorithm to find a shift invariant subspace
based on the SFA model. Consider the SFA model and its frequency transformed

Xn,m =
∑

d

An,dSd,m−τn,d
+ En,m, X̃n,f =

∑

d

An,dS̃d,fe−i2π
f−1
M τ n,d + Ẽn,f .

(4)
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In matrix notation this can be stated as

X̃f = Ã(f)S̃f + Ẽf . (5)

Due to Parseval’s identity the following holds

Cls =
∑

n,m

‖En,m‖2
F = 1

M

∑

n,f

‖Ẽn,f‖2
F . (6)

Thus, minimizing the least square error in the time and frequency domain is
equivalent. The algorithm will be based on alternatingly solving for A, S and τ .

S update: According to equation 5, Sf can be estimated as

S̃f = Ã(f)†
X̃f . (7)

Although, S is updated in the frequency domain the updated version has to
remain real when taking the inverse FFT. For S to be real valued the following
has to hold

S̃M−f+1 = S̃∗
f , (8)

where ∗ denotes complex conjugate. This constraint is enforced by updating
the first �M/2� + 1 elements, i.e. up to the Nyquist frequency, while setting the
remaining elements according to equation 8.

A update: Let S̃(n)
d,f denote the delayed version of the source signal S̃d,f to the

nth channel, i.e. S̃(n)
d,f = S̃d,fe−i2π

f−1
M τ n,d . Then equation 2 can be restated as

Xn,: = An,:S(n) + En,:, (9)

This is the regular factor analysis problem giving the update

An,: = Xn,:S(n)†
. (10)

τ update: The least square error for the model stated in equation 5, is given
by

Cls = 1
M

∑

f

(X̃f − Ã(f)S̃f )H(X̃f − Ã(f)S̃f ), (11)

where H denotes the conjugate transpose. Define TND×1 = vec(τ ), i.e. the
vectorized version of the matrix τ such that Tn+(d−1)N = τ n,d. Let further

Q̃n,d,f = Ã(f)
n,dS̃d,f , Ẽf = X̃f − Ã(f)S̃f . (12)

Then the gradient of Cls with respect to τn,d is given as

gn+(d−1)N = ∂Cls

∂Tn+(d−1)N
= ∂Cls

∂τn,d
= −1

M

∑

f

2ω�[Q̃n,d,f Ẽ∗
n,f ] (13)



Shifted Independent Component Analysis 93

The Hessian has the following structure

Hn+(d−1)N,n′+(d′−1)N =

{
−2
M

∑
f ω2�[Q̃n,d,fQ̃∗

n′,d′,f ] if n �= n′ ∧ d �= d′
−2
M

∑
f ω2�[Q̃n,d,f(Q̃∗

n′,d′,f + Ẽ∗
n′,f)] if n=n′ ∧ d=d′

(14)
As a result, τ can be estimated using the Newton-Raphson method

T ← T − ηH−1g, (15)

where η is a step size parameter that is tuned to keep decreasing the cost function.
The above iterative update for τ is sensitive to local minima. Thus, to improve
the algorithm from being stuck in suboptimal solutions τ was re-estimated by
the following cross-correlation procedure every 10th iteration. Let

R̃n,f = X̃n,f −
∑

d �=d′

Ã(f)
n,dS̃d,f , (16)

i.e. the signal at the nth sensor at frequency f when projecting all but the d′

source out of X̃. The cross-correlation between the d′ source and nth sensor is
given as c̃f = R̃∗

n,f S̃d′,f , such that τn,d′ can be estimated as

t = arg max
m

|cm|, τn,d′ = t − (M + 1), An,d′ =
ct

Sd′,:ST
d′,:

. (17)

I.e. as the delay corresponding to maximum cross-correlation between the sensor
and source. The value of An,d′ corresponding to this delay is also given above.

2.2 SISA Is Not Unique

According to equation 5, the reconstructed signal in the complex domain is given

as X̃f ≈ Ã(f)S̃f = Ã(f)W̃(f)W̃(f)−1
S̃f .Such that W̃(f) = W • e−i2π

f−1
M τ̂ is a

rotation, scaling and shift matrix. Assume the inverse of W̃(f) is also a rotation,

scaling and shift matrix, i.e. W̃(f)−1
= V • e−i2π

f−1
M τ̌ . Since W̃(f)W̃(f)−1

= I,
we find

∑

d′′

Wd,d′′Vd′,d′′e−i2π
f−1
M (τ̂d,d′′+τ̌d′,d′′ ) =

{
0 for d �= d′∀ f
1 for d = d′∀ f

(18)

From f = 1 we obtain the relation V = W−1. For the remaining frequencies
this expression can only be valid if τ̂ dd′′ + τ̌ d′′d = 0 (diagonal elements) and
τ̂ dd′′ + τ̌ d′′d′ = kdd′ (off diagonal elements) where kdd′ denotes an arbitrary
constant. The first relation gives the constraint that τ̂ = −τ̌T . The second
relation further constraints all the elements of the columns of τ̂ to be equal.

Thus the ambiguity is given by W̃(f) = [W diag(e−i2π
f−1
M τ̂ )]. Where τ̂ is a

vector describing the shift ambiguity.
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Fig. 2. Results obtained by a shift invariant subspace analysis (SISA). Left panel: the
true factors forming a synthetic data set. To the left, the strength of the mixing A of
each source is indicated in gray color scale. In the middle, the three sources are shown
and to the right is given the time delays of each source to each channel. Right panel:
The estimated factors from the SISA analysis. Although, all the variance is explained
the decomposition has not identified the true underlying components but an ambiguous
mix. Clearly, as for regular factor analysis the SISA is not unique.

2.3 Shifted Independent Component Analysis (SICA)

A common approach to ICA is the maximum likelihood (ML) method [16] which
corresponds to the approach of maximizing information proposed in [4]. In the
framework of ML a non-gaussian distribution on the sources is assumed such that
ambiguity can be resolved up to the trivial ambiguities of scale, permutation and
source shifting relative to the time delays.

Define, Ũf = W̃(f)S̃f , i.e. the sources at frequency f when transformed
according to the rotation and shift ambiguity described in the previous section.
The ambiguity can be resolved by maximizing the log-likelihood assuming the
(non-gaussian) Laplace distribution p(Ũf ) ∝ e−|Ũd,f |, i.e.

p(S̃f |W, τ̂ ) =
∏

f

p(S̃f |W, τ̂ ) =
∏

f

|det(W̃(f))|p(W̃(f)S̃f ) (19)

Such that the log-likelihood as a function of W and τ̂ becomes

L(W, τ̂ ) =
∑

f

ln | det(W̃(f))| −
∑

d

|W̃(f)S̃f |d (20)

By maximizing L(W, τ̂ ) W and τ̂ is estimated and a new unambiguous S solu-
tion found by S̃f = W̃(f)S̃f . The corresponding mixing and delays can be esti-
mated alternating between the A and τ update. We initialized A as A = AW−1

and τ i,d by the cross-correlation procedure.
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Fig. 3. Result obtained using the SICA on the decomposition found using SISA. By
imposing independence, e.g., requiring the amplitudes in the frequency domain to be
sparse, the rotation and shift ambiguity inherited in the model is resolved. Clearly
the true underlying components and their respective mixing are correctly identified.
However, a local minimum has been found, resulting in errors in the estimation of the
delays particularly for the first component.

3 Discussion

Traditionally, ICA analysis is based on subspace analysis often using singular
value decomposition (SVD). The sources are then found by rotating the vectors
spanning the subspace according to a measure of independence. Similarly, we de-
rived the SISA algorithm to find a shift invariant subspace by alternating least
squares. Shift and rotation ambiguities were solved by imposing independence
on the amplitudes of the frequency transform of the sources. While SVD has
a closed form solution the SISA algorithm is non-convex. Estimating both A,
S and each delay in τ using the cross-correlation procedure has a closed form
solution for fixed values of τ , S and A. While the cross correlation procedure
only finds integer delays the Newton-Rhapson procedure can estimate the non-
integer delays. The cross-correlation procedure greatly reduces the algorithm’s
vulnerability to local minima, however due to the alternating least squares esti-
mation the problem cannot be circumvented completely. Furthermore, the prob-
lem becomes increasingly difficult for high frequency sources and large shifts
due to additional local minima. In an example we saw this happen: The SICA
algorithm failed in correctly identifying the delays of the first component; the
component with the highest frequencies. A multistart strategy was invoked, we
choose the best of ten random initializations to obtain a good initial solution for
the estimation of the shift invariant subspace. While our algorithm was based
on likelihood maximization, Yeredor [13] developed an algorithm based on joint
diagonalization. The present SISA is potentially useful as a preprocessing step
for this latter algorithm when estimating less sources than sensors.
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Previous work based on integer shifts conjectured the decomposition to be
unique [6]. When using integer shifts some shifts might perform better than oth-
ers due to a better integer rounding error. Hence, this might be why the integer
shifts formed seemingly unique solutions. However, as demonstrated in figure 2
the shifted factor analysis model is not in general unique. But, by imposing inde-
pendence unique solutions can be obtained up to trivial permutation, scaling and
specific onset relative to the delays of the sources as demonstrated in figure 3. The
shift/delay model may prove useful for a wide range of data where ICA already
has been employed. Furthermore, the extra information of delays can be useful
for spatial source localization when combined with information of position of the
sensors. Future work will focus on implementing additional constraints such as
non-negativity and attempt to further improve the identifiability in the presence
of many local minima. The current algorithm can be downloaded from [1].
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