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Abstract. The discussion in this paper revolves around the notion of
separation problems. The latter can be thought of as a unifying concept
which includes a variety of important problems in applied mathematics.
Thus, for example, the problems of classification, clustering, image seg-
mentation, and discriminant analysis can all be regarded as separation
problems in which one is looking for a decision boundary to be used in or-
der to separate a set of data points into a number of (homogeneous) sub-
sets described by different conditional densities. Since, in this case, the
decision boundary can be defined as a hyperplane, the related separation
problems can be regarded as geometric. On the other hand, the problems
of source separation, deconvolution, and independent component analy-
sis represent another subgroup of separation problems which address the
task of separating algebraically mixed signals. The main idea behind the
present development is to show conceptually and experimentally that
both geometric and algebraic separation problems are very intimately
related, since there exists a general variational approach based on which
one can recover either geometrically or algebraically mixed sources, while
only little needs to be modified to go from one setting to another.

1 Introduction

Let X = {xi ∈ IRd, i = 1, . . . , N} be a set of N observations of a random variable

X which is described by M conditional densities {pk(x)
def
= p(x | X ∈ Ck)}M

k=1,
with Ck denoting a class to which a specific realization of X may belong. In
other words, the set X can be viewed as a mixture of realizations of M random
variables associated with different classes described by corresponding probability
densities. In this case, the problem of classification (or, equivalently, separation)
refers to the task of ascribing each observation xi to the class Ck which it has
most likely come from. The most challenging version of the above problem occurs
in the case when the decision has to be made given the observed set X alone.

The setting considered above is standard for a variety of important problems
in applied mathematics. Probably, the most famous examples here are unsu-
pervised machine learning and data clustering [1,2]. Signal detection and image
segmentation are among other important examples of the problems which could
be embedded into the same separation framework [3,4]. It should be noted that,
although a multitude of different approaches have been proposed previously to

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 81–88, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



82 O. Michailovich and D. Wiens

address the above problems, most of them are similar at the conceptual level.
Specifically, viewing the observations {xi} as points on either a linear or a non-
linear manifold Ω, the methods search for such a partition of the latter so that
the points falling at different subsets of Ω are most likely associated with differ-
ent classes Ck. Moreover, the boundaries of the partition, which are commonly
referred to as decision boundaries, are usually defined by means of geometric
descriptors. The latter, for example, can be hyperplanes in machine learning [1]
or active contours [4] in image segmentation. For this reason, we refer to the
problems of this type as the problems of geometric source separation (GSS), in
which case the data set X is considered to be a geometric mixture of unknown
sources.

In parallel to the case of GSS, there exists an important family of problems
concerned with separating sources that are mixed algebraically [5]. In a canonical
setting, the problem of algebraic source separation (ASS) can be formulated as
follows. Let S be a vector of M signals (sources) [s1(t), s2(t), . . . , sM (t)]T , with
t = 1, . . . , T being either a temporal or a spatial variable. Also, let A ∈ IRM×M

be an unknown mixing matrix of full rank. Subsequently, the problem of blind
source separation consists in recovering the sources given an observation of their
mixtures X = [x1(t), x2(t), . . . , xM (t)]T acquired according to1:

X = AS. (1)

Note that, in (1), neither the sources S nor the matrix A are known, and hence
the above estimation problem is conventionally referred to as blind. Note that
the problem of (algebraic) blind source separation constitutes a specific instance
of Independent Component Analysis, which is a major theory encompassing a
great number of applications [5]. Moreover, when M = 1 and A is defined to
be a convolution operator, the resulting problem becomes the problem of blind
deconvolution [6], which can also be inscribed in our framework of separation
problems.

The main purpose of this paper is to show conceptually and experimentally
that both GSS and ASS problems are intimately interrelated, since they can
be solved using the same tool based on variational analysis [7]. To define this
tool, let us first introduce an abstract, geometric separation operator ϕ : X �→
{Sk}M

k=1 that “sorts” the points of X into M complementary and mutually
exclusive subsets {Sk}M

k=1 which represent estimates of the geometrically mixed
sources. On the other hand, in the case of ASS, the separation operator is defined
algebraically as a de-mixing matrix W ∈ IRM×M such that:

S � WX, (2)

with S and X defined to be S = [s1(t), . . . , sM (t)]T and X = [x1(t), . . . , xM (t)]T ,
respectively.

Additionally, let yk be an estimate of either a geometric or an algebraic k-th
source signal, computed via applying either ϕ or W to the data. This estimate
1 Here and hereafter, the matrix A is assumed to be square which is merely a technical

assumption which can be dropped; this is discussed in the sequel.



On Separation of Signal Sources Using Kernel Estimates 83

can be characterized by its empirical probability density function (pdf) which
can be computed as given by:

p̃k(z) =
1

Nk

Nk∑

t=1

K(z − yk(t)), z ∈ IRd, (3)

where Nk is the size of the estimate (that is independent of k in the case of ASS).
Note that (3) defines a kernel based estimate of the pdf of yk when the kernel
function K(z) is normalized to have unit integral [8]. There exist a number of
possibilities for choosing K(z), among which the most frequent one is to define
the kernel in the form of a Gaussian density function. Accordingly, this choice
of K(z) is used throughout the rest of this paper.

The core idea of the preset approach is quite intuitive and it is based on
the assumption that the “overlap” between the informational contents of the
estimated sources has to be minimal. To minimize this “overlap”, we propose
to find the optimal separation operator (viz. either ϕ or W) as a minimizer
of the cumulative Bhattacharyya coefficient between the empirical pdfs of the
estimated sources, which is defined to be [9]:

BM =
2

M(M − 1)

∑

i<j

∫

IRd

√
p̃i(z) p̃j(z)dz, i, j = 1, . . . , M. (4)

It should be noted that, apart from the Bhattacharyya coefficient, a number
of alternative metrics are available to assess the distance between the probabil-
ity densities. Thus, for example, the Kullback-Leibler divergence was employed
in [10] and [5] to solve the problems of image segmentation and blind source
separation, respectively. However, for the reasons discussed below, we prefer us-
ing (4), since it results in comparatively more stable and reliable separation.
To demonstrate how BM can be used to unify the concept of separation, as
it appears in both geometric and algebraic settings, we turn to some specific
examples, among which the problem of image segmentation is chosen to be first.

2 Geometric Source Separation: Image Segmentation

In order to facilitate the discussion, we confine the derivations below to the case
of two segmentation classes. In this case, the values of a vector-valued image
I(u) : Ω ⊆ IR2 → IRd are viewed as a geometric mixture of two sources, viz. the
object of interest and its background. Consequently, the segmentation problem
can be reformulated as the problem of partitioning the domain of definition Ω
of I(u) (with u ∈ Ω) into two mutually exclusive and complementary subsets
Ω− and Ω+. These subsets can be represented by their respective characteristic
functions χ− and χ+, which can, in turn, be defined as χ−(u) = H(−ϕ(u)) and
χ+(u) = H(ϕ(u)), with H standing for the Heaviside function.

Given a level-set function ϕ(u), its zero level set {u | ϕ(u) ≡ 0, u ∈ Ω} is used
to implicitly represent a curve – active contour – embedded into Ω. For the sake



84 O. Michailovich and D. Wiens

of concreteness, we associate the subset Ω− with the support of the object of
interest, while Ω+ is associated with the support of corresponding background.
In this case, the objective of active-contour-based image segmentation is, given
an initialization ϕ0(u), to construct a convergent sequence of level-set functions
{ϕt(u)}t>0 (with ϕt(u)t=0 = ϕ0(u)) such that the zero level-set of ϕ∞(u) coin-
cides with the boundary of the object of interest.

The above sequence of level-set functions can be conveniently constructed
using the variational framework. Specifically, the sequence can be defined by
means of a gradient flow that minimizes the value of the cost functional (4). In
the case of two segmentation classes, the optimal level set ϕ�(u) is defined as:

ϕ�(u) = arg inf
ϕ(u)

{B2(ϕ(u))}, (5)

where
B2(ϕ(u)) =

∫

z∈IRN

√
p−(z | ϕ(u)) p+(z | ϕ(u)) dz. (6)

with p−(z | ϕ(u)) and p+(z | ϕ(u)) being the kernel-based estimates of the pdf’s
of the class and background sources.

In order to contrive a numerical scheme for minimizing (5), its first variation
should be computed first. The first variation of B2(ϕ(u)) (with respect to ϕ(u))
can be shown to be given by:

δB2(ϕ(u))
δϕ(u)

= δ(ϕ(u))V (u), (7)

where

V (u) =
1
2
B2(ϕ(u))(A−1

− − A−1
+ ) +

1
2

∫

z∈IRd

K(z − I(u))L(z | ϕ(u)) dz, (8)

with

L(z | ϕ(u)) =
1

A+

√
p−(z | ϕ(u))
p+(z | ϕ(u))

− 1
A−

√
p+(z | ϕ(u))
p−(z | ϕ(u))

. (9)

Note that, in the equations above, δ(·) stands for the delta function, and A−
and A+ are the areas of Ω− and Ω+ given by

∫
Ω χ−(u) du and

∫
Ω χ+(u) du,

respectively.
Finally, introducing an artificial time parameter t, the gradient flow of ϕ(u)

that minimizes (5) is given by:

ϕt(u) = −δB2(ϕ(u))
δϕ(u)

= −δ(ϕ(u))V (u), (10)

where the subscript t denotes the corresponding partial derivative, and V (u) is
defined as given by (8).

It should be added that, in order to regularize the shape of the active contour,
it is common to constrain its length and to replace the theoretical delta function
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δ(·) by its smoothed version δ̄(·). In this case, the final equation for the evolution
of the active contour becomes:

ϕt(u) = δ̄(ϕ(u)) (α κ(u) − V (u)) , (11)

where κ(u) is the curvature of the active contour given by κ(u)=−div
{

∇ϕ(u)
‖∇ϕ(u)‖

}

and α > 0 is a user-defined regularization parameter. Note that, in the segmen-
tation results reported in this paper, α was set to be equal to 1.

3 Blind Separation of Algebraically Mixed Sources

It is surprising how little has to be done to modify the separation approach of the
previous section to suit the ASS setting. Indeed, let Y = [y1(t), y2(t), . . . , yM (t)]T

be the matrix of estimated sources computed as Y = WX. Additionally, let
{p(z;wi)

def
= p̃i(z | W)}M

i=1 (where wT
i is the ith row of W) be the set of empirical

densities computed as at (3) and that correspond to the source estimates in Y.
Consequently, the optimal separation matrix W∗ can be found as:

W� = arg inf
W

{BM (W)}, (12)

where

BM (W) =
2

M(M − 1)

∫

IRd

∑

i<j

√
p(z;wi) p(z;wj), i, j = 1, . . .M. (13)

It should be noted that intrinsic in blind (algebraic) source separation is the
problem of permutation and normalization, as, using (2), the sources can only
be recovered in an arbitrary order and up to arbitrary multiplication factors.
While the order of the sources is rarely of importance, the normalization could
become an issue, especially from the viewpoint of numerical minimization. To
overcome this difficulty, it is common to prewhiten the mixtures X before they
are passed into the computations. In this case, it can be easily shown that the
optimal solution W� becomes a member of the orthogonal group O(M) = {W ∈
IRM×M | WWT = I}.

We solve this constrained minimization problem with the aid of Lagrange
multipliers {λαβ}α≤β . Consider the problem of minimizing

F (w1, ...,wM , λ) = BM (W) +
∑

α≤β

λαβ

(
wT

αwβ − δαβ

)
, (14)

where δαβ is Kronecker’s delta. Solving the equations

∂

∂wi
F (w1, ...,wM , λ) = 0T (∈ IR1×M ), (15)

together with WWT = I (details available from authors) leads to the charac-
terization of W∗ as a fixed point of the function

G(W) = (PPT )−1/2P, (16)
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where (PPT )1/2 is a symmetric square root and P = P(W) is defined as follows.
Let K̇(z) be the N × M matrix with (i, j)th element K ′(z − yj(i)) and let D(z)
be the diagonal matrix with diagonal elements

di(z) =

∑
j=1,...,M ;j 
=i

√
p(z;wj)√

p(z;wi)
. (17)

Then
PT =

1
NM (M − 1)

X
∫

IRd

K̇(z)D(z) dz. (18)

We solve (16) by iteration:

1. Initialize W, say W(0) = IM .
2. For l = 0, 1, ... to convergence, compute P(l) from (18), and update W(l) to

W(l+1) = G(W(l)) = (P(l)PT
(l))

−1/2P(l)).

4 Results

4.1 Image Segmentation

The image of Lizard shown in Subplot A of Fig. 1 is considered to be relatively
hard to segment due to the multimodality of the pdf related to the object class.
Moreover, the intensity distributions of the object and background classes of the
image are very similar, which makes it impossible to segment the image based on
gray-level information alone. To overcome this difficulty, the input image I(u)
was defined to be the bivariate image of the partial derivatives of Lizard, which
are shown in Subplots B and C of the figure.

Fig. 1. (Subplot A) Original image of Lizard; (Subplot B) Row-derivative of the image;
(Subplot C) Column-derivative of the image; (Subplot D) Initial segmentation; (Subplot
E) Separation by the Bhattacharyya flow; (Subplot F) Separation by the K-L flow
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The initial segmentation of Lizard and its segmentation obtained using the
proposed method are shown in Subplots D and E of Fig. 1, respectively. For the
sake of comparison, we have also segmented the image of Lizard using the active
contour that maximized the Kullback-Leibler (K-L) divergence between the em-
pirical pdf’s of the object and background classes. The resulting segmentation is
shown in Subplot F of Fig.1. It is obvious that the proposed approach (i.e., the
one that exploits the Bhattacharyya metric) is the best performer here.

It is worthwhile noting that the relatively worse performance of the image
segmentation using the K-L divergence seems to be stemming from the properties
of the functions involved in its definition, viz. of the logarithm. In particular,
the latter is known to be very sensitive to variations of its argument in vicinity
of relatively small values of the latter. Moreover, the logarithm is undefined at
zero, which makes computing the K-L gradient flow prone to the errors caused
by inaccuracies in estimating the tails of probability densities. On the other
hand, the square root is a well-defined function in vicinity of zero. Moreover,
for relatively small values of its argument, the variability of the square root is
considerably smaller than that of the logarithm. As a result, the Bhattacharyya
flow is much less susceptible to the influence of the inaccuracies mentioned above.

Fig. 2. (Subplots A1-A3) Original image sources; (Subplot B1-B3) Corresponding mix-
tures; (Subplot C1-C3) Estimated sources
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4.2 Blind Source Separation

Subplots A1-A3 of Fig. 2 show the original source images which have been used to
test the performance of the proposed separation methodology. The correspond-
ing mixtures obtained using a random mixing matrix A are shown in Subplots
B1-B3 of the same figure, whereas Subplots C1-C3 of Fig.2 show the source im-
ages estimated by applying 50 iterations of the fixed point algorithm described in
Section 3. One can see that the algorithm results in virtually perfect reconstruc-
tion of the image sources. For this case, the average interference-to-signal ratio
(ISR) was found to be equal to 0.0024, while minimizing the mutual information
between the estimated sources resulted in ISR equal to 0.036.

5 Conclusions

The present study has demonstrated the applicability and practicability of the
method for separating different components of a data signal based on the notion
of a distance between probability distributions. The latter was defined by means
of the Bhattacharyya coefficient which was shown to be advantageous over the
K-L divergence (and, hence, over the related criterion of mutual information) in
practical settings, in which class-conditional densities have to be estimated in a
non-paramentric manner. Additionally, the versatility of the proposed criterion
was demonstrated via its application to the problems of blind separation of both
geometrically and algebraically mixed sources. Thus, from a certain perspective,
the proposed method can be seen as unifying for the problems of both classes.
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