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Abstract. A framework named copula component analysis (CCA) for
blind source separation is proposed as a generalization of independent
component analysis (ICA). It differs from ICA which assumes indepen-
dence of sources that the underlying components may be dependent by
certain structure which is represented by Copula. By incorporating de-
pendency structure, much accurate estimation can be made in principle
in the case that the assumption of independence is invalidated. A two
phrase inference method is introduced for CCA which is based on the
notion of multi-dimensional ICA. Simulation experiments preliminarily
show that CCA can recover dependency structure within components
while ICA does not.

1 Introduction

Blind source separation (BSS) is to recover the underlying components from
their mixtures, where the mixing matrix and distribution of the components
are unknown. To solve this problem, independent component analysis (ICA) is
the most popular method to extract those components under the assumption
of statistically independence[1,2,3,4,5]. However, in practice, the independence
assumption of ICA cannot always be fully satisfied and thus strongly confines its
applications. Many works have been contributed to generalize the ICA model,[6]
such as Tree-ICA[7], Topology ICA[8]. A central problem of those works is how
to relax the independent assumption and to incorporate different kinds of de-
pendency structure into the model.

Copula [9] is a recently developed mathematical theory for multivariate
probability analysis. It separates joint probability distribution function into the
product of marginal distributions and a Copula function which represents the
dependency structure of random variables. According to Sklar theorem, given
a joint distribution with margins, there exists a copula uniquely determined.
Through Copula, we can clearly represent the dependent relation of variables
and analysis multivariate distribution of the underlying components.

The aim of this paper is to use Copula to model the dependent relations
between elements of random vectors. By doing this, we transform BSS into a
parametric or semi-parametric estimation problem which mainly concentrate on
the estimation of dependency structure besides identification of the underlying
components as ICA do.
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This paper is organized as follows: we briefly review ICA and its extensions in
section 2. The main conclusions of copula theory are briefly introduced in sec-
tion 3. In section 4, we propose a new model for BSS, named copula component
analysis (CCA) which takes dependency among components into consideration.
Inference method for CCA is presented in section 5. Simulation experiments are
presented in section 6. Finally, we conclude the paper and give some further
research directions.

2 ICA and Its Extensions

Given a random vector x, ICA is modeled as

x = As, (1)

where the source signals s = {s1, . . . , sn} assume to be mutually independent, A
and W = A− is the invertible mixing and demixing matrix to be solved so that
the recovered underlying components {s1, . . . , sn} is estimated as statistically
independent as possible.

Statistical independence of sources means that the joint probability density
of x and s can be factorized as

p(x) = p(As) =| det(W) | p(s)
p(s) =

∏n
i=1 pi(si)

(2)

The community has presented many extensions of ICA with different types of
dependency structures. For example, Bach and Jordan [7] assumed that depen-
dency can be modeled as a tree (or a forest). After the contrast function is ex-
tended with T-mutual information, Tree-ICA tries to find both a mixing matrix
A and a tree structure T by embedding a Chow-Liu algorithm into algorithm.
Hyvärinen etc. [8] introduced the variance into ICA model so as to model depen-
dency structure. Cardoso generalized the notion of ICA into multidimensional
ICA using geometrical structure.[6]

3 A Brief Introduction on Copula

Copula is a recently developed theory which separates the margin law and the
joint law and therefore gives dependency structure as a function. According to
Nelson [9], it is defined as follows:

Definition 1 (Copula). A bidimensional copula is a function C(x, y) : I2 �→ I
with following properties:

1. (x, y) ⊂ I2

2. C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1) ≥ 0, for x1 ≤ x2 and y1 ≤ y2;
3. C(x, 1) = x and C(1, y) = y.

It’s not hard to know that such defined C(x, y) is a cdf on I2. Multidimensional
version can be generalized in a same manner which presents in [9].
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Theorem 1 (Sklar Theorem). Given a multidimensional random vector x =
(x1, . . . , xn) ∈ Rn with its corresponding distribution function and density func-
tion ui = Fi(xi) and pi(xi), i = 1, . . . , n. Let F (x) : Rn �→ I denotes the joint
distribution, then there exists a copula C(·) : In �→ I so that

F (x) = C(u). (3)

where u = (u1, . . . , un).
If the copula is differentiable, the joint density function of F (x) is

P1,...,n(x) =
n∏

i=1

pi(xi)C′(u). (4)

where C′(u) = ∂C(u)
∂u1,...,∂un

.

Given a random vector x = (x1, . . . , xn) with mutually independent variables,
and their cdf F (x) =

∏
i Fi(xi). It is easy to obtain that the corresponding

copula function called Product Copula is C(u) =
∏

i ui and C′(u) = 1.

4 Copula Component Analysis

4.1 Geometry of CCA

As previously stated, ICA assumes that the underlying components are mutually
independent, which can be represented as (1). CCA also use the same represen-
tation (1) as ICA, but without independence assumption. Here, Let the joint
density function represents by Copula:

pc(x) =
N∏

i=1

pi(xi)C′(u) (5)

where the dependency structure is modeled by function C(u).
The goal of estimation is to minimize the distance between the ’real’ pdf of

random vector x and its counterpart of the proposed model. Given a random
vector x with pdf p(x), the distance between p(x) and pc(x) in a sense of K-L
divergence can be represented as

D(p‖pc) = Ep(x) log
p(x)
pc(x)

= Ep(x) log
p(x)

∏
i pi(xi)

− Ep(x) log C′(u)
(6)

The first term on the right of (6) is corresponding to the K-L divergence between
p(x) and ICA model and the second term is corresponding to entropy of copula
C(x).
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Theorem 2. Given a random vector x = (x1, . . . , xn) ∈ Rn with pdf p(x) and
its joint pdf pc(x) =

∏n
i=1 pi(xi)C′(u), where ui = Fi(xi) is the cdf of xi and

dependency structure is presented by copula function C(u) : In �→ I,u ∈ Rn and
C′(u) = ∂nC(u)

∂u1,...,∂un
is the derivative of C(u). The K-L divergence D(p‖pc) is as

D(p‖pc) = I(x1, . . . , xn) + H(C′(u)). (7)

where H(·) is the Shannon differential entropy.

That is, the K-L divergence between p(x) and pc(x) equal to the sum of the
mutual information I(x) and copula entropy H for function u ∼ C′.

Using the invariant of K-L divergence, we now have the following corollary to
Theorem 2 for BSS problem s = Wx.

Corollary 1. With the same denotation of Theorem 2, the K-L divergence for
BSS problem is

D(p‖pc) = I(s1, . . . , sn) + H(C′(us)), (8)

where us denotes the marginal variable for sources s. Assume that the number
of sources equals to that of observations.

In other words, the distance between ICA model and the true model is presented
by dependency structure and its value equals to entropy of the underlying copula
function. It can be easily learned from (7) that if dependency structure was
incorporated into model, the distance between data and model can be further
closer than that of ICA model.

ICA is a special case when it assumes mutual independence of underlying
components. Actually, ICA only minimizes the first part of (7) under the as-
sumption of independence. This also explains why sometime ICA model is not
applicable when dependency relations between source components exist.

4.2 Multidimensional ICA

From the notion of multidimensional ICA generalized from ICA by Cardoso [6],
it can be derived that

p(x) =
m∏

k=1

pk(xk) =
m∏

k=1

pk(xik
, . . . , xik+1−1)

=
m∏

k=1

ik+1−1∏

l=ik

pk(xl)C′
k(uk) =

n∏

i=1

pi(xi)
m∏

k=1

C′
k(uk)

(9)

where Ck(·) is the copula with respect to pk(·). On the other side, the definition
of copula gives

p(x) =
n∏

i=1

pi(xi)C′(u) (10)

According to Sklar theorem, if all pi(·) exist, then C(·) is unique. Therefore, we
can derive the following result.
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Theorem 3. The copula corresponding to multidimensional ICA is factorial if
all the marginal pdf of component exist, that is

C′(u) =
m∏

k=1

C′
k(uk) (11)

Proof. Because of the unique of C, the above (11) can be easily derived by
comparing (9) and (10).

The theorem can guide hypothesis selection of copula. That is, Copula should
be factorized as a product of sub-function with different type for dependency
structure of different sub-space.

Combining (7) and (11), we can derived the following:

D(p‖pc) = I(u1, . . . , un) +
m∑

k=1

H(C′
k) (12)

It means that the distance between the true model and ICA model composes of
entropy of Copulas which corresponds to every un-factorial ICs spaces. There-
fore, if we want to derive a model much closer to the ’true’ one than ICA, we
should find dependency structure of each space, that is, approach the goal step
by step. This is one of the guide principles for designing algorithm of copula
component analysis.

5 Inference of CCA

5.1 General Framework

In this section, we study inference method for CCA based on the notion of
multidimensional ICA. Suppose the underlying copula function parameterized
by θ ∈ Θ, thus the estimation of CCA should infer the demixing matrix W and
θ. According to theorem 2, estimation of the underlying sources through our
model requires the minimization of the K-L divergence of (7) or (12). Thus the
objective function is

min D(p‖pc;W, θ) (13)

which composes of two sub-objective: min I(x1, . . . , xn;W) and minH(C′(u);
W, θ). Because u in the latter objective depends on the structure of IC spaces
derived from the former objective, we should handle the optimal problem min
I(x1, . . . , xn;W) at first. The first objective can be achieved by ICA algorithm.
For the second one we proposed the Infomax like principle given a parametric
family of copula.

We propose that the framework of CCA composes of two phrases:

1. Solve W through minimization of mutual information .
2. Determine W and θ so that the objective function (13) is minimized.
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5.2 Maximum Likelihood Estimation

Given the parametric model of Copula, maximum likelihood estimation can be
deployed under the constraint of ICA. Consider a group of independent ob-
servations x1, . . . , xT of n × 1 random vector X with a common distribution
P = C′

θ(x)
∏T

i=1 pi(xi); θ ∈ Θ where pi(xi) is marginal distribution associated
with xi, and the log-likelihood is

L(W, θ) =
1
T

log C′
θ(x)

T∏

i=1

pi(xi)

=
1
T

T∑

i=1

log pi(xi) +
1
T

log C′
θ(x)

(14)

The representation is consist with two-phrase CCA framework in that the first
term on the right of equation (14) implies mutual information of x and that the
second term is empirical estimation of entropy of x. It is not hard to proof that

min D(p‖pc) ⇔ maxL(W, θ) (15)

5.3 Estimation of Copula

Suppose the IC subspaces have been correctly determined by ICA and then we
can identify the copula by minimizing the second term on the right of (7). Given
a class of Copula C(u; θ) with parameter vector θ ∈ Θ, and a set of sources
s = (s1, . . . , sn) identified from data set X, the problem is such a optimization
one

max
W,θ

Ep(s)(C′(us; W, θ)) (16)

By using Sklar theorem, the copula to be identified has been separate with
marginal distributions which are known except non-Gaussianity in ICA model.
Therefore, the problem here is a semi-parametric one and only need identifying
the copula.

Parametric method is adopted. First, we should select a hypothesis for copula
among many types of copula available. The selection depends on many factors,
such as priori knowledge, computational ease, and individual preference. Due to
space limitations, only few of them are introduced here. For more detail please
refer to [9].

When a set of sources s and a parametric copula C(·; θ) is prepared, the
optimization of (16) becomes an optimization problem which can be solved as
follows:

n∑

si=1

∂C′

∂θ
(u; θ) = 0 (17)

where many readily methods can be utilized.
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6 Simulation Experiments

In this section, simulation experiments are designed to compare CCA and ICA
on two typical cases to investigate whether CCA can perform better than ICA
as previous stated. One cases is with independent components and the other is
where there are dependent components.

We first apply both methods on independent components recovery from their
mixtures and then on recovery of components with dependency structure. In both
experiments, the basic case of BSS with two components are considered. Two
components are generated by bi-variate distribution associated with Gumbel
copula:

C(u, v) = exp
((

(− ln u)θ + (− ln v)θ
)−θ

)
(18)

where θ = 1, 5 respectively. Note that two components such generated are inde-
pendent when θ = 1 and thus compose of sources of ICA problem. The marginal
density of components are uniform. Sources are mixed by randomly generated
and invertible 2 × 2 matrix A. In our experiments, A is

A =
(

0.4936 0.9803
0.4126 0.5470

)

Both ICA and CCA are used to recover the components from their mixtures.
Without the attention to study model selection, Gumbel copula family is adopted
in CCA method.

The results are illustrated in Figure 1. Due to space limitations, we only
present copula density structure of sources and their recoveries by both methods
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Fig. 1. Simulation experiments. The left column is for independent component exper-
iments and the right column is for the experiment of components by Gumbel copula.
The top two sub-figure is sources and (a) and (b) is their corresponding copula density.
(c) and (d) is for ICA and (e) and (f) is for CCA.
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in Figure 1. Note that copula density structure should be a plane if two compo-
nents are independent, that is, C(u, v) = 1. It can be learned from figure 1 that
both methods works well when components are mutually independent and more
importantly that ICA always try to extracts components mutually independent
while CCA can recover the dependency between components successfully.

7 Conclusions and Further Directions

In this paper, a framework named Copula Component Analysis for blind source
separation is proposed as a generalization of ICA. It differs from ICA which as-
sumes independence of sources that the underlying components may be depen-
dent with certain structure which is represented by Copula. By incorporating
dependency structure, much accurate estimation can be made, especially in the
case where the assumption of independence is invalidated. A two phrase inference
method is introduced for CCA which is based on the notion of multidimensional
ICA. A preliminary simulated experiment demonstrates the advantage of CCA
over ICA on dependency structure discovery. Many problems remain to be stud-
ied in the future, such as Identifiability of the method, selection of copula model
and applications.
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