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Preface

This volume contains the papers presented at the 7th International Conference
on Independent Component Analysis (ICA) and Source Separation held in Lon-
don, 9–12 September 2007, at Queen Mary, University of London.

Independent Component Analysis and Signal Separation is one of the most
exciting current areas of research in statistical signal processing and unsuper-
vised machine learning. The area has received attention from several research
communities including machine learning, neural networks, statistical signal pro-
cessing and Bayesian modeling. Independent Component Analysis and Signal
Separation has applications at the intersection of many science and engineering
disciplines concerned with understanding and extracting useful information from
data as diverse as neuronal activity and brain images, bioinformatics, commu-
nications, the World Wide Web, audio, video, sensor signals, or time series.

This year’s event was organized by the EPSRC-funded UK ICA Research
Network (www.icarn.org). There was also a minor change to the conference
title this year with the exclusion of the word ‘blind’. The motivation for this was
the increasing number of interesting submissions using non-blind or semi-blind
techniques that did not really warrant this label. Evidence of the continued
interest in the field was demonstrated by the healthy number of submissions
received, and of the 149 papers submitted just over two thirds were accepted.

These proceedings have been organized into 6 sections: theory, algorithms,
sparse methods, biomedical applications, speech and audio applications, and
miscellaneous. Within each section, papers have been organized alphabetically
by the first author’s last name. However the strong interaction between theory,
method and application inevitably means that many papers could have equally
been placed in alternative categories.

In this year’s papers there was a significant growth in development of sparsity
as a tool for source separation, while the application areas were once again dom-
inated by submissions focusing on speech and audio, and on biomedical process-
ing. The organizing committee decided to reflect this in their choice of keynote
speakers and were pleased to secure keynote talks from two leading researchers
in these fields: Shoji Makino from NTT Communication Science Laboratories,
Kyoto, Japan; and Scott Makeig from the Swartz Center for Computational
Neuroscience, Institute for Neural Computation, UCSD, USA.

Following the successful additions made to the 2006 event, the 2007 confer-
ence continued to offer a “Student Best Paper Award” and included two tutorial
sessions on the day preceding the main conference. This year’s tutorials covered
two topics closely connected with recent research progress in ICA and source
separation: “Information Filtering,” lectured by José Principe of the University
of Florida; and “Sparse Representations” lectured by Rémi Gribonval of IN-
RIA at IRISA, Rennes. A further innovative aspect of the 2007 event was the
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introduction of the “Stereo Audio Source Separation Evaluation Campaign”,
which aimed to compare the performance of source separation algorithms from
different researchers when applied to stereo under-determined mixtures. The dif-
ferent contributions to the challenge were presented in a special poster session
on the last day of the conference, which was then followed by a panel discussion.
The overall results of the evaluation campaign are also summarized in a paper
in this volume.

There are many people that should be thanked for their hard work, which
helped to produce the high quality scientific program. First and foremost we
would like to thank all the authors who have contributed to this volume. Without
them there would be no proceedings. In addition, we thank the members of the
organizing committee and the reviewers for their efforts in commissioning the
reviews, and for their help in selecting the very best papers for inclusion in this
volume. We are also grateful to the organizers of the “Stereo Audio to Source
Separation Evaluation Campaign” for managing both the submissions to and
the evaluation of this work.

Thanks also go to the members of the ICA international steering committee
for their continued advice and ongoing support for the ICA conference series.
All these contributions went towards making the conference a great success. Last
but not least, we would like to thank Springer for their rapid transformation of
a collection of papers into this volume in time for the conference.

June 2007 Mike Davies
Christopher James

Samer Abdallah
Mark Plumbley
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Comparative Speed Analysis of FastICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Vicente Zarzoso and Pierre Comon

Kernel-Based Nonlinear Independent Component Analysis . . . . . . . . . . . . 301
Kun Zhang and Laiwan Chan



XIV Table of Contents

Linear Prediction Based Blind Source Extraction Algorithms in
Practical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Zhi-Lin Zhang and Liqing Zhang

Sparse Methods

Blind Audio Source Separation Using Sparsity Based Criterion for
Convolutive Mixture Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

A. Aı̈ssa-El-Bey, K. Abed-Meraim, and Y. Grenier

Maximization of Component Disjointness: A Criterion for Blind Source
Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Jörn Anemüller

Estimator for Number of Sources Using Minimum Description Length
Criterion for Blind Sparse Source Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Radu Balan

Compressed Sensing and Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . 341
Thomas Blumensath and Mike Davies

Morphological Diversity and Sparsity in Blind Source Separation . . . . . . . 349
J. Bobin, Y. Moudden, J. Fadili, and J.-L. Starck

Identifiability Conditions and Subspace Clustering in Sparse BSS . . . . . . 357
Pando Georgiev, Fabian Theis, and Anca Ralescu

Two Improved Sparse Decomposition Methods for Blind Source
Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

B. Vikrham Gowreesunker and Ahmed H. Tewfik

Probabilistic Geometric Approach to Blind Separation of Time-Varying
Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Ran Kaftory and Yehoshua Y. Zeevi

Infinite Sparse Factor Analysis and Infinite Independent Components
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

David Knowles and Zoubin Ghahramani

Fast Sparse Representation Based on Smoothed �0 Norm . . . . . . . . . . . . . . 389
G. Hosein Mohimani, Massoud Babaie-Zadeh, and Christian Jutten

Estimating the Mixing Matrix in Sparse Component Analysis Based on
Converting a Multiple Dominant to a Single Dominant Problem . . . . . . . . . 397

Nima Noorshams, Massoud Babaie-Zadeh, and Christian Jutten

Dictionary Learning for L1-Exact Sparse Coding . . . . . . . . . . . . . . . . . . . . . 406
Mark D. Plumbley



Table of Contents XV

Supervised and Semi-supervised Separation of Sounds from
Single-Channel Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Paris Smaragdis, Bhiksha Raj, and Madhusudana Shashanka

Image Compression by Redundancy Reduction . . . . . . . . . . . . . . . . . . . . . . . 422
Carlos Magno Sousa, André Borges Cavalcante,
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A Flexible Component Model for Precision ICA
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Abstract. We describe an ICA method based on second order statis-
tics which was originally developed for the separation of components in
astrophysical images but is appropriate in contexts where accuracy and
versatility are of primary importance. It combines several basic ideas
of ICA in a new flexible framework designed to deal with complex data
scenarios. This paper describes our approach and discusses its implemen-
tation in terms of a library of components.

1 Introduction

Objectives. This paper describes a framework for component separation which
has been designed with the following objectives in mind:

– the ability to model components with much more flexibility than in most
basic ICA techniques. This includes, in particular, the case of correlated or
multidimensional components,

– the ability to take noise into account. The noise is not necessarily well char-
acterized: its correlation structure may have to be estimated,

– the ability to deal with signals/images of varying resolution.
– the ability to incorporate easily prior information about the components,
– ‘Relative’ speed (enabling error estimates via Monte-Carlo simulations).

Motivation. The original motivation for the work presented here is the process-
ing of spherical maps resulting from all-sky surveys of the microwave emission.
The object of interest is the Cosmic Microwave Background (CMB). The space-
based Planck mission of the European Space Agency will provide observations
of the CMB in 9 frequency channels which will be used as inputs to a component
separation method. This is needed because the cosmological background is ob-
served together with several other astrophysical emissions, dubbed ‘foregrounds’,
both of galactic and extra-galactic origins. These foregrounds, together with the
CMB, are the components which are to be separated. The CMB map itself is
very well modeled as a realization of a (spherical) Gaussian stationary random
field but this is not the case of the other components.

Our method, however, is not specific to this particular problem and may be
considered for application to any situation where ‘expensive’ data deserve special
care and have to be fitted by a complex component model.

Section 2 describes the statistical framework while section 3 discusses imple-
mentation in terms of a library of components.
� Maude Martin is partly supported by the Cosmostat project funded by CNRS.
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2 The Additive Component Model

2.1 A Component Based Model

We introduce a special notation for the ICA model which is more convenient to
our framework, in particular to deal with correlated sources. Traditionally, the
noisy ICA model is denoted as

X = AS + N

where matrix A is m×n for m channels (sensors) and n sources. This is a multi-
plicative model in the sense that the mixing matrix A multiplies an hypothetical
vector S of ‘sources’. The ith source Si contributes aiSi to the observation vec-
tor X where ai is the ith column of A. Hence, the model can be rewritten
‘additively’ as a superposition of C = n + 1 random components:

X =
C∑

c=1

Xc (1)

where X i = aiSi for 1 ≤ i ≤ n and Xn+1 = N . Such a reformulation is worthless
if all sources are modeled as independent. Assume now that two sources, say i
and j, are modeled as statistically dependent. They contribute aiSi + ajSj to the
observedX . We decide to lump them into a single component denoted Xc for some
index c: Xc = aiSi + ajSj . Then X can still be written as in eq. (1) and all the
components Xc are independent, again. However, the new component Xc can no
longer be written as one-dimensional, i.e. as the product of a single fixed column
vector multiplied by a random variable. Instead, it can be written as [SiSj ]† left
multiplied by the m×2 matrix [aiaj ]. Such a component is termed ‘bi-dimensional’
and we could obviously define multidimensional components of any dimension.

In eq. (1), we have included the noise term as one of the components. Note
that if the noise is uncorrelated from channel to channel, as is often the case,
then the noise component is m-dimensional (the largest possible dimension).

More generally, our model does not require any component to be low di-
mensional. Rather, our model is a plain superposition of C components as in
eq. (1). None of these components is required to have any special structure, one-
dimensional or otherwise. We only require that they are mutually uncorrelated.
In other words, we rely on the property

R =
C∑

c=1

Rc (2)

where R (resp. Rc) is the covariance matrix of the data vector X (resp. of cth
component Xc).

2.2 Component Restoration by Wiener Filtering

The best (in the mean-square sense) linear estimate X̂c of Xc based on X is
well known to be Cov(Xc, X)Cov(X, X)−1X which reduces here to

X̂c = RcR−1X (3)
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Hence optimal linear recovery of Xc from X requires only the determination
of matrices R and Rc. The total covariance matrix R can often be estimated
directly from the data so that, in order to restore component c from the mixture,
one “only” has to estimate its covariance matrix Rc.

2.3 Localized Statistics, Localized Separation

In practice, we do not consider a single covariance matrix. Rather, in order
to capture better the correlation structure, we compress the data into a set
R̂ = {R̂q}Q

q=1 of Q covariance matrices of size m × m. For instance, one would
estimate the covariance of X over several domains (time intervals for time series,
spatial domains for images) or in Fourier space over several frequency bands.
More generally, one could localize the covariance matrices in both domains using
a wavelet basis or just plain windowed transforms. Index q can be thought of as a
time interval (or a spatial zone), a Fourier band, a wavelet domain, etc. . . In our
application (see introduction), we would consider a hundred of angular frequency
bands localized over a few zones on the sky and Q would be the product of these
two numbers.

This can be formalized by denoting X(i) the ith coefficient of the data in
some localized basis of p elements

X(i) i ∈ [1, 2, . . . , p] = ∪Q
q=1Dq (4)

where the set [1, . . . , p] of all coefficient indices is partitioned into Q domains
D1, . . . , DQ. For instance, X(i) is an m×1 vector of Fourier coefficients and Dq is
a set of discrete Fourier frequencies in a particular band. The sample covariance
matrix for the qth domain and its expected value are defined/denoted as

R̂q =
1
pq

∑

i∈Dq

X(i)X(i)†, Rq = ER̂q (5)

where pq is the number of coefficients in Dq. The same notation is also used for
each component so that, these being mutually uncorrelated by assumption, one
has the decomposition

Rq =
C∑

c=1

Rc
q (6)

There are two strong reasons for localizing the statistics.
First, if the strength of the various components and the SNR vary with time,

space, frequency,. . . , reconstruction is improved by localizing the filter in time,
space frequency,. . . More specifically, the cth component is reconstructed from
its coefficients X̂c(i) estimated by

X̂c(i) = Rc
qR
−1
q X(i) if i ∈ Dq. (7)

i.e. the reconstruction filter also is localized, taking advantage of the ‘local SNR
conditions’ on domain Dq.
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Second, the diversity of the statistics of the components over several domains
is precisely what may make this model blindly identifiable. For instance, if all
components are one-dimensional and there is no noise, we are back to the stan-
dard ICA model. Then, if X(i) are Fourier coefficients and Dq are spectral bands,
it is known that spectral diversity (no two components have identical spectrum)
is a sufficient condition for blind identifiability.

2.4 Model Identification

So far, the separation of components has been discussed without any blindness
ingredient. However, we saw that computing the MSE-optimal separating filter
for component c in domain q requires only, by eq. (7), the determination of Rc

q.
A generic procedure for identifying these matrices is to assume some parametric
model for each component: the set Rc of localized covariance matrices for the
cth component is parametrized by a vector θc of parameters and the component
model is some well thought of function θc → Rc(θc) = {Rc

q(θ
c)}Q

q=1. Some
examples are given at section 3.1.

A parametric model R(θ) follows by assuming component decorrelation (6)
and taking the global parameter θ as the concatenation of the parameters of each
component: θ = (θ1, . . . , θc) , so that R(θ) = {Rq(θ)}Q

q=1 = {
∑

c Rc
q(θc)}Q

q=1.
The unknown parameters are found by matching model to data, that is, by
minimizing some measure of discrepancy between R̂ and R(θ). More specifically:

θ̂ = argmin φ(θ) where φ(θ) =
Q∑

q=1

wqK(R̂q,Rq(θ)). (8)

Here, K(·, ·) is measure of mismatch between two positive matrices and wq are
positive weights (example below).

2.5 Summary. Blind. . . or Not?

At this stage, (most of) the statistical framework is in place but our method is
not well defined yet because many options are available:

1. choice of a basis to obtain coefficients X(i) and of domains {Dq}Q
q=1 to define

their second-order statistics R̂,
2. choice of a model θc → Rc(θc), for each component contribution,
3. choice of weights wq and matrix mismatch K(·, ·) in criterion φ(θ).

Regarding point 3, our most common choice is to use wq = pq and K(R1,R2) =
1
2 [trace(R−1

1 R2)−log det(R−1
1 R2)−m]. Then, φ(θ) is the negative log-likelihood

of the model where X(i) ∼ N (0,Rq) for i ∈ Dq and is independent from X(i′)
for i �= i′.

Another design choice is to implement the recovery (7) of individual compo-
nents either as X̂c(i) = Rc

q(θ̂
c)Rq(θ̂)−1X(i) or as X̂c(i) = Rc

q(θ̂
c)R̂−1

q X(i).
Is this a blind component separation method? It all depends on the component

model. If all components are modeled as ‘classic’ ICA components (see 3.1), then
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the method is as blind as regular ICA. Our approach, however, leaves open the
possibility of tuning the blindness level at will by specifying more or less stringent
models θc → Rc for some or all of the components.

3 Implementation

We are ‘only’ left with the numerical issue of actually minimizing φ(θ) using an
arbitrary library of components. This is the topic of next section.

We call a collection of models θc → Rc(θc) a library of components. In prac-
tice, each member of the library must not only specify a function θc → Rc(θc)
but also its gradient and other related quantities, as we shall see next.

3.1 A Library of Components

Typical examples of component models are now listed.

1. The ‘classic’ ICA component is one dimensional Xc(i) = acSc(i). Denoting
σ2

qc the average variance of Sc(i) over the qth domain, the contribution Rc
q

of this component to Rq is the rank-one matrix

Rc
q = aca†cσ

2
qc

This component can be described by an (m + Q) × 1 vector θc of param-
eters containing the m entries of ac and the Q variance values σ2

qc. Such a
parametrization is redundant, but we leave this issue aside for the moment.

2. A d-dimensional component can be modeled as

Rc
q = AcPqcA

†
c

where Ac is an m × d matrix and Pqc is an d × d positive matrix varying
freely over all domains. This can be parametrized by a vector θc of m × d +
Q × d(d + 1)/2 scalar parameters (the entries of Ac and of Pqc). Again, this
is redundant, but we ignore this issue for the time being.

3. Noise component. A simple noise model is given by

Rc
q = diag(σ2

1 , . . . , σ2
m)

that is, uncorrelated noise from channel to channel, with the same level in all
domains but not in all channels. This component is described by a vector θc of
only m parameters. In our application, we also use Rc

q = diag(σ2
1q , . . . , σ

2
mq)

meaning that the noise changes from domain to domain. We then need a
parameter vector θc of length mQ × 1.

4. As a final example, for modeling ‘point sources’, we also use Rc
q = Rc

�. This
component contributes identically in all channels. If, for instance, we assume
that this contribution Rc

� is known, then the parameter vector θc is void. If
Rc

� is known up to a scale factor, then θc is just a scalar, etc. . .
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3.2 Optimization

For a noise-free model containing only ‘classic ICA’ components, criterion φ(θ)
is a joint diagonalization criterion for which a very efficient algorithm exists [3].
In the noisy case, this is no longer true but it is possible, for simple component
models, to use the EM algorithm. The EM algorithm, however, is not convenient
for general component models and, in addition, EM appears too slow for our
purposes. Specialized optimization algorithms are thus required.

The Conjugate Gradient (CG) algorithm has been found well suited for min-
imizing φ(θ). Its implementation requires that ∂φ/∂θ be computed. Also, CG
only works well when properly pre-conditioned by (some approximation of) the
inverse of ∂2φ/∂θ2. Since φ(θ) actually is a negative log-likelihood in disguise,
its Hessian can be approximated by F(θ), the Fisher information matrix (FIM).
The FIM is also useful for computing (approximate) error bars on θ̂.

Hence we need to compute ∂φ/∂θ and (possibly an approximation of) ∂2φ/∂θ2.
This computation offers no particular difficulty in theory but our aim is to imple-
ment it in the framework of a library of components. It means that we seek to
organize the computations in such a way that each component model works as a
‘plug-in’.

Computing the gradient. Slightly abusing the notation, the derivative with
respect to θc takes the form

∂φ(θ)
∂θc

=
Q∑

q=1

trace
(
Gq(θ)

∂Rc
q(θ

c)
∂θc

)
(9)

where matrix Gq(θ) is defined as

Gq(θ) =
1
2
wqR−1

q (θ)
(
Rq(θ) − R̂q

)
R−1

q (θ) (10)

Hence the computation of ∂φ/∂θ at a given point θ = (θ1, . . . , θC) can be orga-
nized as follows. A first loop through all components computes R(θ) by adding
up the contribution Rc(θc) of each component. Then, a second loop over all
Q domains computes matrices {Gq(θ)}Q

q=1 which are stored in a common work
space. Finally, a third loop over all components concatenates all partial gradients
∂φ/∂θc, each component implementing the computation of the right hand side
of (9) in the best possible way, using the available matrices {Gq(θ)}Q

q=1.

Computing an (approximate) Hessian. The Fisher information matrix can
be partitioned component-wise with the off-diagonal block [F(θ)]cc′ depending
on components c and c′. This seems to be a problem for a plug-in architecture
because its principle requires that new component models can be introduced
(plugged in) independently of each other. Nonetheless, this requirement can be
full-filled because, the (c, c′) block of the FIM is

[F(θ)]cc′ =
1
2

∑

q

wqtrace

(
∂Rc

q(θc)
∂θc

R−1
q (θ)

∂Rc′

q (θc′
)

∂θc′ R−1
q (θ)

)
(11)
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Hence, the FIM can be computed by a double loop over c and c′ since it is only
necessary that the code for each component be able to return {∂Rc

q(θc)

∂θc }Q
q=1.

A straightforward implementation of this idea may be impractical, though,
because {∂Rc

q(θc)

∂θc }Q
q=1 is a set of |θc| × Q matrices, possibly very large. This

problem can be largely alleviated in the frequent case where components have
‘local’ variables, that is whenever θc can be partitioned as θc = (θc

0, θ
c
1, . . . , θ

c
Q)

where, for q > 0, vector θc
q influences only Rc

q and where θc
0 collects all the

remaining parameters, i.e. those which affect the covariance matrix over two
or more domains (the simplest example is the ‘classic’ ICA component: Rc

q =
aca†cσ2

qc, for which θc
0 = a and θc

q = σ2
qc for q = 1, . . . , Q). In that case, vector

θ can be partitioned into a ‘global part’ θ0 = (θ1
0 , . . . , θ

C
0 ) and Q local parts

θq = (θ1
q , . . . , θC

q ). With such a partitioning, the FIM has many zero blocks since
then [F(θ)]qq′ = 0 for 1 ≤ q �= q′ ≤ Q and the computations can be organized
much more efficiently. Space is lacking for giving more details here.

Indeterminations and penalization. We saw at section 3.1 that ‘natural’
component parametrization often are redundant. From a statistical point of view,
this is irrelevant: we seek ultimately to identify Rc = {Rc

q}
Q
q=1 as a member of

a family described by a mapping θc → Rc(θc) but this mapping does not need
to be one-to-one. The simplest example again is for Rc

q = aca†cσ2
qc which is

invariant if one changes ac to αac and σqc to α−1σqc. This is the familiar ICA
scale indetermination but Rc

q itself is perfectly well defined [2].
The only serious concern about over-parametrization is from the optimiza-

tion point of view. Redundancy makes the φ(θ) criterion flat in the redundant
directions and it makes the FIM a singular matrix. Finding non redundant re-
parametrizations is a possibility, but it is often simpler to add a penalty function
to φ(θ) for any redundantly parametrized component. For instance, the scale in-
determination of the classic ICA component Rc

q = aca†cσ2
qc when parametrized

θc
0 = ac and θc

q = σ2
qc (q > 1) is fixed by adding φc(θc) = g(‖ac‖2) to φ(θ), where

g(u) is any reasonable function which has a single minimum at, say, u = 1.

4 Conclusion

Our technique for component separation gains a lot of its flexibility from realiz-
ing that one can start with covariance matrix separation —i.e. the identification
of individual component terms in the domain-wise decomposition (6)— followed
by data separation according to (3). It is thus sufficient to identify matrices
Rc

q. Whether or not minimizing the covariance matching criterion φ(θ) leads
to uniquely identified components depends on the particular component models
picked from a ‘library of components’. Uniqueness (identifiability) can only be
decided on a case-by-case basis, either from analytical considerations or by in-
spection of the Fisher information matrix which can be numerically computed
using the component library. By using more or less constrained components, the
method ranges from totally blind to semi-blind, to non-blind.
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Some strong points of the approach are the following. Speed: the method is
potentially fast because large data sets are compressed into R̂, a possibly much
smaller object. Accuracy: the method is potentially accurate because it can
model complex components and then recover separated data via local Wiener
filtering. Flexibility: the method is flexible because it can be implemented via
a library of components with arbitrary structure. Noise: the method can take
noise into account without increased complexity since noise is not processed
differently from any other component. Prior: the implementation also allows
for easy inclusion of prior information about a component c if it can be cast in
the form of a prior probability distribution pc(θc) in which case one only need to
subtracting log pc(θc) from φ(θ) and the related changes can be delegated to the
component code. Varying resolution: in our application, and possibly others,
the input channels are acquired by sensors with channel-dependent resolution.
Accurate component separation can only be achieved if this effect is taken into
account. This can be achieved with relative simplicity if the data coefficients
entering in R̂q are Fourier coefficients.

This paper combines several ideas already known in the ICA literature: lump-
ing together correlated components into a single multidimensional component
is in [2]; minimization of a covariance-matching contrast φ(θ) derived from the
log-likelihood of a simple Gaussian model is found for instance in [3]; the exten-
sion to noisy models is already explained in [4]. The current paper goes one step
further by showing how arbitrarily structured components can be separated and
how the related complexity can be managed at the software level by a library of
components.
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marc.castella@int-evry.fr

2 CNRS, I3S, UMR 6070, BP.121, Sophia-Antipolis cedex, France
pcomon@i3s.unice.fr

Abstract. This paper deals with the problem of Blind Source Sepa-
ration. Contrary to the vast majority of works, we do not assume the
statistical independence between the sources and explicitly consider that
they are dependent. We introduce three particular models of dependent
sources and show that their cumulants have interesting properties. Based
on these properties, we investigate the behaviour of classical Blind Source
Separation algorithms when applied to these sources: depending on the
source vector, the separation may be sucessful or some additionnal inde-
terminacies can be identified.

1 Introduction

Independent Component Analysis (ICA) is now a well recognized concept, which
has fruitfully spread out to a wide panel of scientific areas and applications. Con-
trary to other frameworks where techniques take advantage of a strong informa-
tion on the diversity, for instance through the knowledge of the array manifold
in antenna array processing, the core assumption in ICA is much milder and
reduces to the statistical mutual independence between the inputs.

However, this assumption is not mandatory in Blind Source Separation (BSS).
For instance, in the case of static mixtures, sources can be separated if they are
only decorrelated when their nonstationarity or their color can be exploited.
Other properties such as the fact that sources belong to a finite alphabet can
alternatively be utilized [1,2] and do not require statistical independence.

Inspired from [3,4], we investigate the case of dependent sources, without
assuming nonstationarity nor color. To our knowledge, only few references have
tackled this issue [5,6].

2 Mixture Model and Notations

We consider a set of N source signals (si(n))n∈Z, i = 1, . . . , N . The dependence
on time of the signals will not be made explicit in the paper. The sources are
mixed, yielding a P -dimensional observation vector x = (x(n))n∈Z according to
the model:

x = As (1)

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 9–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



10 M. Castella and P. Comon

where s = (s1, . . . , sN)T, x = (x1, . . . , xP )T and A is a P × N matrix called the
mixing matrix. We assume that A is left-invertible.

Source separation consists in finding a N×P separating matrix B such that its
output y = Bx corresponds to the original sources. When only the observations
are used for this, the problem is referred to as the BSS problem. Introducing the
N × N global matrix G � BA, the BSS is problem is solved if G is a so-called
trivial matrix, i.e. the product of a diagonal matrix with a permutation: these
are well known ambiguities of BSS.

In this paper, we will study separation criteria as functions of G. Source
separation sometimes proceeds iteratively, extracting one source at a time (e.g.
deflation approach). In this case, we will write y = bx = gs where b and
g = bA respectively correspond to a row of B and G and y denotes the only
output of the separating algorithm. In this case, the separation criteria are con-
sidered as functions of g. Finally, we denote by E {.} the expectation opera-
tor and by Cum {.} the cumulant of a set of random variables. Cum4{y} is
equivalent to Cum {y, y, y, y} and, for complex variables, Cum2,2{y} stands for
Cum {y, y, y∗, y∗}.

3 Examples and Properties of Dependent Sources

We introduce in this section different cases of vector sources that are dependent
and that will be considered in this paper.

3.1 Three Dependent Sources

Binary phase shift keying (BPSK) signals have specificities that will allow us
to obtain source vectors with desired properties. In this paper, we will consider
BPSK sources that take values s = +1 or s = −1 with equal probability1/2. We
define the following source vector:
A1. s � (s1, s2, s3)T where s1 is BPSK; s2 is real-valued non Gaussian, indepen-

dent of s1 and satisfies E {s2} = E
{
s3
2

}
= 0; and s3 = s1s2.

Interestingly, the following lemma holds true:

Lemma 1. The sources s1, s2, s3 defined by A1 are obviously mutually depen-
dent. Nevertheless they are decorrelated and their fourth-order cross-cumulants
vanish, that is:

Cum {si, sj} = 0 except if i = j, (2)
Cum {si, sj , sk, sl} = 0 except if i = j = k = l. (3)

Proof. Using the definition of s1, s2 and their independence, one can easily check
that E {s1} = E {s2} = E {s3} = 0. For these centered random variables, it is
known that cumulants can be expressed in terms of moments:

Cum {si, sj} = E {sisj} (4)
Cum {si, sj, sk, sl} = E {sisjsksl} − E {sisj} E {sksl}

− E {sisk}E {sjsl} − E {sisl}E {sjsk} (5)
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Using again the definition of s1, s2 and their independence, it is then easy to
check all cases of equations (4) and (5) and to verify that these fourth order cross-
cumulants are indeed null. On the other hand, the third order cross-cumulant
reads:

Cum {s1, s2, s3} = E {s1s2s3} = E
{
s2
1s

2
2

}
= E

{
s2
1

}
E

{
s2
2

}
> 0 (6)

and this proves that s1, s2, s3 are mutually dependent. ��

Depending on s2, more can be proved about the source vector defined by A1.
For example, if the probability density function of s2 is symmetric, then s1 and
s3 are independent. On the contrary s2 and s3 are generally not independent.

An even more specific case is obtained when s2 is itself BPSK. In this case,
one can check that the sources (s1, s2, s3) are pairwise independent, although
not mutually independent.

3.2 Pairwise Independent Sources

We now investigate further the case of pairwise independent sources and intro-
duce the following source vector:

A2. s = (s1, s2, s3, s4)T where s1, s2 and s3 are independent BPSK and s4 =
s1s2s3.

This case has been considered in [3], where it has been shown that

∀i ∈ {1, . . . , 4}, Cum{si, si, si, si} = −2 , Cum {s1, s2, s3, s4} = 1 (7)

and all other cross-cumulants vanish. The latter cumulant value shows that the
sources are mutually dependent; although it can be shown that they are pairwise
independent. It should be clear that pairwise independence is not equivalent to
mutual independence but in an ICA context, it is relevant to recall the following
proposition, which is a direct consequence of Darmois’ theorem [7, p.294]:

Proposition 1. Let s be a random vector with mutually independent compo-
nents, and x = Gs. Then the mutual independence of the entries of x is equiv-
alent to their pairwise independence.

Based on this proposition, the ICA algorithm in [7] searches for an output vector
with pairwise independent component. Let us stress that this holds only if the
source vector has mutually independent components: pairwise independence is
indeed not sufficient to ensure identifiability as we will see in Section 4.2.

3.3 Complex Valued Sources

We consider quaternary phase shift keying (QPSK) sources which take their
values in {eı π

4 , e−ı π
4 , eı 5π

4 , e−ı 5π
4 } with equal probability 1/4. We then define the

following source vector:

A3. s = (s1, s2, s3, s4)T where s1, s2 and s3 are mutually independent QPSK and
s4 = s1s2s3.
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Based on the Equations (4) and (5) which hold for the above centered sources,
one can check the following proposition:

Lemma 2. The sources in A3 are dependent and Cum {s1, s2, s3, s
∗
4} = 1. How-

ever, they are second-order decorrelated and all their fourth order circular cross-
cumulants (i.e. with as many conjugates as non-conjugates) vanish, that is:

Cum
{
si, s

∗
j

}
= 0 and Cum {si, sj} = 0 except if i = j, (8)

Cum {si, sj , s
∗
k, s∗l } = 0 except if i = j = k = l. (9)

Actually, we can prove that the above Lemma, as well as Lemma 4 and Propo-
sition 6 still hold in the case when s1, s2 and s3 are second order circular and
have unit modulus: this is not detailed for reasons of space and clarity.

4 ICA Algorithms and Dependent Sources

4.1 Independence Is Not Necessarily Required

The sources given by A1 provide us with a specific example of dependent sources
that are sucessfully separated by several ICA methods:

Proposition 2. Let y = gs where the vector of sources is defined by A1. Then,
the function

g �→ |Cum4{y}|α, α ≥ 1 (10)

defines a MISO contrast function, that is, its maximization over the set of unit
norm vectors (‖g‖2 = 1) leads to a vector g with only one non-zero component.

Proof. The above proposition follows straightforwardly from Lemma 1 since the
proof of the validity of the above contrast functions only relies on the property
in Equation (3). ��

Considering again the argument in the proof, one should easily notice that the
above proposition can be generalized to the case of sources which satisfy:

A4. s = (s1, . . . , s3K) where: ∀i ∈ {0, . . . , K − 1}, s3i+1 is BPSK; s3i+2 is non
Gaussian and satisfies E {s3i+2} = E

{
s3
3i+2

}
= 0; s3i+3 = s3i+1s3i+2; and

the random variables {s3i+1, s3i+2 ; i = 0, . . . , K −1} are mutually indepen-
dent.

In addition, the above result can be generalized convolutive systems and to
MIMO (multiple input/multiple output) contrast functions as defined in [7,2]:

Proposition 3. Let y = Gs where the vector of sources is defined by A1. Then
the function:

G �→
N∑

i=1

|Cum4{yi}|α, α ≥ 1 (11)

is a MIMO contrast, that is, its maximization over the group of orthogonal ma-
trices leads to a solution G which is a trivial matrix (permutation, scaling).
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Many classical algorithms for BSS or ICA first whiten the data: it is known
that in so doing, they constrain matrix G to be orthogonal. In particular so
does the algorithm proposed in [7], which relies on the contrast function in (11).
It justifies that this algorithm successfully separates the sources A1. Actually,
any algorithm relying on a prewhitening and associated with a contrast function
based on the vanishing of the fourth-order cross cumulants (e.g. JADE) is able
to separate sources such as A1.

4.2 Pairwise Independence Is Not Sufficient

We now consider the pairwise independent sources given by A2 and show that
pairwise independence is not sufficient to ensure identifiability of the ICA model.
We first have the following preliminary result:

Lemma 3. Let y = gs where the vector of sources is defined by A2. Assume
that the vector (s1, s2, s3) takes all 23 possible values. If the signal y has values
in {−1, +1}, then g = (g1, g2, g3, g4) is either one of the solutions below:

{
∃i ∈ {1, . . . , 4} gi = ±1, and: ∀j �= i, gj = 0
∃i ∈ {1, . . . , 4} gi = ±1/2, and: ∀j �= i, gj = −gi

(12)

Proof. If y = gs, using the fact that s2
i = 1 for i = 1, . . . , 4, we have with the

particular sources given by A2:

y2 = g2
1+g2

2+g2
3+g2

4+2
[(

g1g2+g3g4

)
s1s2+

(
g1g3+g2g4

)
s1s3+

(
g2g3+g1g4

)
s2s3

]

Since (s1, s2, s3) take all possible values in {−1, 1}3, we deduce from y2 = 1 that
the following equations necessarily hold:

{
g2
1 + g2

2 + g2
3 + g2

4 = 1
g1g2 + g3g4 = g1g3 + g2g4 = g2g3 + g1g4 = 0

(13)

First observe that values given in (12) indeed satisfy (13). Yet, if a polynomial
system of N equations of degree d in N variables admits a finite number of
solutions1, then there can be at most dN distinct solutions. Hence we have found
them all in (12), since (12) provides us with 16 solutions for (g1, g2, g3, g4). ��

Using the above result, we are now able to specify the output of classical ICA
algorithms when applied to a mixture of sources which satisfy A2.

Constant modulus and contrasts based on fourth order cumulants.
The constant modulus (CM) criterion is one of the most known criteria for BSS.
In the real valued case, it simplifies to:

JCM(g) � E
{(

y2 − 1
)2

}
with: y = gs (14)

1 One can show that the number of solutions of (13) is indeed finite.
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Proposition 4. For the sources given by A2, the minimization of the constant
modulus criterion with respect to g leads to either one of the solutions given by
Equation (12).

Proof. We know that the minimum value of the constant modulus criterion is
zero and that this value can be reached (for g having one entry being ±1 and
other entries zero). Moreover, the vanishing of the constant modulus criterion
implies that y2 − 1 = 0 almost surely and one can then apply Lemma 3. ��

A connection can now be established with the fourth-order autocumulant if we
impose the following constraint:

E
{
y2

}
= 1 (or equivalently ‖g‖ = 1 since y = gs) (15)

Because of the scaling ambiguity of BSS, the above normalization can be freely
imposed. Under (15), we have Cum4{y} = E

{(
y2 − 1

)2
}

− 2 and minimizing
JCM(g) thus amounts to maximizing −Cum4{y}. Unfortunately, since Cum4{y}
may be positive or negative, no simple relation between |Cum4{y}| and JCM(g)
can be deduced from the above equation. However, we can state:

Proposition 5. Let y = gs where the vector of sources is defined by A2. Then,
under the constraint (15) (‖g‖ = 1), we have:

(i) The maximization of g �→ −Cum4{y} leads to either one of the solutions
given by Equation (12).

(ii) |Cum4{y}| ≤ 2 and the equality |Cum4{y}| = 2 holds true if and only if g is
one of the solutions given in Equation (12).

Proof. Part (i) follows from the arguments given above. In addition, using mul-
tilinearity of the cumulants and (7), we have for y = gs:

Cum4{y} = −2
(
g4
1 + g4

2 + g4
3 + g4

4

)
+ 24 (g1g2g3g4) (16)

The result then follows straightfowardly from the study of the polynomial func-
tion in Equation (16). Indeed, optimizing (16) leads to the following Lagrangian:

L = −2
4∑

i=1

g4
i + 24

4∏

i=1

gi − λ

(
4∑

i=1

g2
i − 1

)
(17)

After solving the polynomial system which cancels the Jacobian of the above
expresssion, one can check that all solutions are such that |Cum4{y}| ≤ 2. Details
are omitted for reasons of space. Part (ii) of the proposition easily follows. ��

Similarly to the previous section, the above proposition can be generalized to
MIMO contrast functions. In particular, this explains why, for a particular set of
mixing matrices such as that studied in [3], the pairwise maximization algorithm
of [7] still succeeded: a separation has luckily been obtained for the considered
mixing matrices and initialization point of the algorithm, but it actually would
not succeed in separating BPSK dependent sources for general mixing matrices.
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Let us stress also that the results in this section are specific to the contrast
functions given by (10) or (11). In particular, these results do no apply to algo-
rithms based on other contrast functions such as JADE, contrary to the results
in Sections 4.1 and 4.3.

4.3 Complex Case

The output given by separation algorithms in case of complex valued signals may
differ from the previous results which have been proved for real valued signals only.
Indeed, complex valued BSS does not always sum up to an obvious generalization
of the real valued case [8]. We illustrate it in our context and show that, quite
surprisingly, blind separation of the sources given by A3 can be achieved up to
classical inderterminations of ICA. This is in contrast with the result in Equation
(12) where additionnal indeterminacies appeared. First, we have:

Lemma 4. Let y = gs where the vector of sources is defined by A3. Assume
that the vector (s1, s2, s3) takes all 43 possible values. If the signal y is such that
its values satisfy |y|2 = 1, then g = (g1, g2, g3, g4) satisfies:

∃i ∈ {1, . . . , 4} |gi| = 1, and: ∀j �= i, gj = 0 (18)

Proof. If y = gs, using the fact that |si|2 = 1 for i = 1, . . . , 4, we have with the
particular sources given by A3:

|y|2 =
4∑

i=1

|gi|2 +
∑

i�=j

gig
∗
j sis

∗
j (19)

Since (s1, s2, s3) take all possible values in {1, ı, −1, −ı}3, we deduce from |y|2 =
1 that the following equations necessarily hold:

{
|g1|2 + |g2|2 + |g3|2 + |g4|2 = 1
g1g
∗
2 = g1g

∗
3 = g1g

∗
4 = g2g

∗
3 = g2g4∗ = g3g

∗
4 = 0

(20)

Solving for the polynomial system in the variables |g1|, |g2|, |g3| and |g4|, we
obtain that the solutions are the ones given in Equation (18). ��

Constant modulus and fourth-order cumulant based contrasts. In con-
trast with Propositions 4 and 5 we have the following result:

Proposition 6. Let y = gs where the sources satisfy A3. Then, the functions:

g �→ −E
{∣∣|y|2 − 1

∣∣2
}

and: (21)

g �→ |Cum2,2{y}| under constraint E
{
|y|2

}
= 1 (22)

are contrast functions, that is, their maximization leads to g satisfying (18).

Proof. The validity of the first contrast function is obtained with the same argu-
ments as in the proof of Proposition 4: we have |y|2 m.s.= 0, which yields (20) via



16 M. Castella and P. Comon

(19). In the case of independent sources, the proof of the validity of the second con-
trast involves only cumulants with equal number of conjugate and non conjugate
variables: invoking Lemma 2, one can see that the same proof still holds here. ��
Note that the same arguments can be applied to ICA methods such as the
pairwise algorithm in [2] or JADE [9]. Figure 1 illustrates our result.
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Fig. 1. Typical observed separation result of the sources A3 with the algorithm JADE
(left: sensors, right: separation result)
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Abstract. This paper addresses the problem of the blind signal ex-
traction of sources by means of an information theoretic and geometric
criterion. Our main result is the extension of the minimum support crite-
rion to the case of mixtures of complex signals. This broadens the scope
of its possible applications in several fields, such as communications.

1 Introduction

The paradigm of linear ICA consists in the decomposition of the observations
into a linear combination of independent components (or sources), plus some
added noise. The problem is named blind signal separation (BSS) when one tries
to recover all the involved sources, whereas, it is named blind signal extraction
(BSE) when one is interested in one or a subset of sources.

In the late 1970s, a powerful contrast function was proposed to solve the
problem of blind deconvolution [1]. This contrast function, which minimizes the
Shannon entropy of the output under a variance constraint on its signal com-
ponent, was a direct consequence of the entropy power inequality [2]. A similar
principle was much latter rediscovered in the field of ICA, where the minimiza-
tion of the mutual information of the outputs, under a covariance constraint,
was seen as a natural contrast function to solve the BSS problem [3]. Indeed,
provided that the inverse system exists, there is a continuum of contrast func-
tions based on marginal entropies which allows the simultaneous extraction of
an arbitrary number of source signals [4].

Since them, the ICA literature explored the properties of other generalized
entropy measures, like Renyi’s entropies, to obtain novel information theoretic
contrast functions [5,6]. A criterion, which involved the minimization of the sum
of ranges of the outputs, was proposed in [7] for solving the BSS problem with
order statistics. Some time latter, we independently proposed a similar criterion
(the minimum support criterion) which minimizes zero order Renyi’s entropy of
the output for solving the problem of the blind extraction of one of the sources
[8]. In [9] the minimum range criterion for extraction was rediscovered and proved
� Part of this research was supported by the MCYT Spanish project TEC2004-

06451-C05-03.
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to be free of erroneous minima, a very desirable property. The minimum support
and the minimum range criteria coincide only when all the involved signals have
convex support, otherwise they differ [10].

In this paper, we retake the minimum support criterion and extend its role as
contrast function for mixtures of complex source signals.

The paper is organized as follows. In section 2 we present the signal model.
Section 3 and section 4 detail some useful results and geometrical object defini-
tions. Section 5 presents the complex version of the minimum support criterion
and other extensions. Section 6 presents the simulations, and finally, section 7
discusses the conclusions.

2 Signal Model and Notation

We consider the standard linear mixing model of complex stationary processes
in a noiseless situation. The observations random vector obeys the following
equation

X = AS , (1)

where S = [S1, · · · , Sn]T ∈ Cn×1 is a random vector with independent compo-
nents, and A ∈ Cn×n is a mixing matrix of complex elements.

In order to extract one non-Gaussian source from the mixture, one can com-
pute the inner product of the observations with the vector u, to obtain the
output random variable or estimated source

Y = uHX = gHS , (2)

where gH = uHA denotes the vector with the coefficients of the mixture of the
sources at the output.

The Darmois-Skitovitch theorem [3] guarantees the identifiability of non-
Gaussian complex sources, up to a permutation, scaling and phase term. Let
ei, i = 1, . . . , n, denote the coordinate vectors; one source is extracted when

g = ‖g‖ejθei, i ∈ {1, . . . , n}. (3)

3 Support Sets and Geometric Inequalities

Consider two m-dimensional vectors of random variables A and B , whose re-
spective densities are fA(a) and fB(b).

Definition 1. The support set of a random vector A, which we denote by SA =
supp{A}, is the set of points for which its probability density function is nonzero,
i.e., SA = {a ∈ Rm : fA(a) > 0}.

Definition 2. The convex hull of the set SA, which we denote by SĂ = conv SA,
is the intersection of all convex sets in R

m which contain SA.
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In this paper, we will consider that all the support sets of our interest are compact
(bounded and closed), thus we will make no distinction between convex hull and
the convex closure.

Definition 3. The Minkowski sum of two given sets SA and SB is defined as
the set SA ⊕ SB = {a + b : a ∈ A, b ∈ B} which contains all the possible sums
of the elements of SA with the elements of SB.

In the case of two independent random vectors A and B , it is easy to observe
that the support of their sum SA+B is equal to the Minkowski sum of the original
support sets SA ⊕ SB .

The following famous theorem in geometry establishes the superadditivity of
the n-th root of the volume of a Minkowsky sum of two sets.

Theorem 1 (Brunn-Minkowski inequality in R
m). Let SA and SB be non-

empty bounded Lebesgue measurable sets in Rm such that SA ⊕ SB is also mea-
surable. Then

μm(SA ⊕ SB)1/m ≥ μm(SA)1/m + μm(SB)1/m (4)

The Brunn-Minkowski inequality is formulated for nonempty bounded measur-
able sets in Rm. However, we want to apply it to obtain a criterion that works
for complex data. The next section will help us in this task.

4 Isomorphisms Between Real and Complex Sets

The following bijective mapping

c = �{c} + j�{c} �→ T1(c) =
(

�{c}
�{c}

)
. (5)

defines a well-known isomorphism between the space of complex scalar numbers
C and the vector space R2 with the operation of addition and multiplication
by a real number. However, the multiplication of two complex numbers is not
naturally carried in R2. Hopefully, there is another isomorphism between the
space of complex scalar numbers c ∈ C and the subfield of the M2 vector space
of real 2 × 2 which carries the operation of multiplication. It is defined by the
following bijective mapping

c = �{c} + j�{c} �→ T2(c) =
(

�{c} −�{c}
�{c} �{c}

)
. (6)

The two previously presented isomorphisms allow one to express the following
operation of complex random variables

Y =
n∑

i=1

g∗i Si (7)
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as the equivalent real operation between real vectors of random variables

(
�{Y }
�{Y }

)
=

n∑

i=1

(
�{gi} �{gi}

−�{gi} �{gi}

)(
�{Si}
�{Si}

)
. (8)

Moreover, to any given set of complex numbers SA we can associate an area
μ2(A) which represents the area of the equivalent set T1(SA) = {T1(a) : a ∈ SA}
of R2 defined by the real and imaginary pairs of coordinates. Thus, the measure
of the support of a complex scalar random variable is defined as the measure of
support of the random vector formed by its real and imaginary parts

μc
1(SC) ≡ μ2

(
supp

{(
�{C}
�{C}

)})
. (9)

Note that the measure of the support of the complex scalar multiplication
g∗i Si is invariant to the phase of the complex scalar g∗i , because the phase term
only implies a rotation of the space. This can be better seen from the fact that

μc
1

(
S(g∗

i Si)

)
=

∣∣∣∣
�{gi} �{gi}

−�{gi} �{gi}

∣∣∣∣ μ2

(
supp

{(
�{Si}
�{Si}

)})
= |gi|2 μc

1(SSi)

5 The Complex Version of the Minimum Support
Criterion

Now we are ready to apply the Brunn-Minkowski theorem. We will implicitly
assume complex sources whose densities have bounded Lebesgue measurable
and non-empty supports. Under these conditions, we can exploit the previously
defined isomorphisms, between real and complex sets, to rewrite the Brunn-
Minkowski inequality in R

2 (see equation (4)) as an inequality for the measure
of the support of complex random variables

(μc
1(SY ))

1
2 ≥

n∑

i=1

(
μc

1(Sg∗
i Si)

) 1
2 =

n∑

i=1

|gi| (μc
1(SSi))

1
2 . (10)

A theorem, originally formulated by Lusternik and whose proof was later
corrected by Henstock and Macbeath [13], establishes the general conditions for
the equality to hold in the Brunn-Minkowski theorem.

Theorem 2 (Conditions for equality). Let SA and SB be nonempty bounded
Lebesgue m-dimensional measurable sets, let S′A and S̆A denote, respectively, the
complement and the convex closure of SA.

a) If μm(SA) = 0 and 0 < μm(SB) < ∞, then the necessary and sufficient con-
dition for the equality in Brunn-Minkowski theorem is that SA should consist
of one point only.
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b) If 0 < μm(SA)μm(SB) < ∞ the equality in Brunn-Minkowski theorem holds
if and only if

μm(S̆A ∩ S′A) = μm(S̆B ∩ S′B) = 0,

and the convex closures S̆A and S̆B are homothetic1.

By the application of theorem 2, the equality in (10) is only obtained when one
of the following conditions is true:

Case a) The mixture at the output is trivial, i.e.,

Y = g∗i Si, i ∈ {1, . . . , n}, (11)

which happens when the output is an arbitrary scaled and rotated version
of only one the sources.

Case b) When the sources whose contribution to the output does not vanish
have support sets which are all convex and homothetic.

The connection between the zero order Rényi’s entropy of a random vector in
R2 and the volume of its support set (see [11]) leads us to identify the zero order
entropy of a complex random variable with the joint zero order entropy of its
real and imaginary parts,

hc
0(Y ) = log μc

1(SY ) ≡ h0(�{Y }, �{Y }) . (12)

Then, we can use equation (10) to obtain a different inequality which relates
the zero order entropy of the output with those of the sources and which, at the
same time, prevents the equality to hold true for the situations described in the
case b). This new inequality is at the heart of the following result.

Theorem 3. If the measure of the support set of the complex sources if finite
and does not vanish for at least n − 1 of them,

μc
1(SSπi

) = 0, i = 1, . . . , n − 1, π perm. of {1, . . . , n}, (13)

the zero order entropy of the normalized output

Ψ(X,u) = hc
0

(
uH

‖u‖2
X

)
= hc

0

(
Y

‖u‖2

)
(14)

is a contrast function for the extraction of one of the sources. The global mini-
mum of this contrast function is obtained for the source (or sources) with smallest
scaled measure of support, i.e.,

min
u

Ψ(X,u) = min
i

hc
0

(
Si/‖a−i ‖2

)
, (15)

where a−i denotes the ith column of A−H , the inverse hermitian transpose of the
mixing matrix.
1 They are equal sets up to translation and dilation.
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Due to the lack of space, its proof is omitted. The result tells us that we can
extract one of the sources by minimizing the area of the support set of the
output.

Note that the theorem does not require the typical ICA assumption of the
circularity of the complex sources nor the mutual independence between their
real and imaginary parts.

The minimum support contrast function does not work for discrete sources
(drawn from alphabets of finite cardinality) because they are of zero measure, a
case not covered by the conditions of the theorem. Nevertheless, after replacing
the support sets of the original random variables by its convex hull, we return
to the conditions of the theorem, obtaining the well-behaved contrast function

Ψ(X̆ ,u) = log μc
1(S̆Y/‖u‖2) ≡ hc

0

(
Y̆

‖u‖2

)
. (16)

Indeed, in all of our experiments, and in similarity with the minimum range
contrast for the case of real mixtures [9], this contrast function was apparently
free of deceptive minima. Although we still don’t know whether this property is
true in general, we succeeded in proving the following result.

Theorem 4. For a mixture of n complex sources with bounded circular convex
hull, the minima of the contrast function Ψ(X̆,u) can only be attained at the
solutions of the extraction problem, i.e., there are no local deceptive minima.

6 Simulations

In order to optimize the contrast function we first parametrized a complex unit
norm vector u in terms of 2n − 2 angles (ignoring a common phase term). Let
R(1, k+1, αk, βk), for k = 1, . . . , n−1, denote a class of planar rotation matrices,
then

u = e1
T R(1, n, αn−1, βn−1) · · ·R(1, 2, α1, β1).

Since the extraction solutions are non-differentiable points of the contrast
function, we used the downhill simplex method of Nelder and Mead to optimize it
in low dimensions [14]. In high dimensions, an improved convergence is obtained
when combining the previous optimization technique with numerical gradient
and line-search methods. Each function evaluation requires the computation of
the planar convex hull of a set of T outputs. The optimal algorithms for this
task, have, in the worst case, a computational complexity of O(T log V ) where
V is the number of vertices of the convex hull [15].

Consider the sample experiment of 200 observations of a complex mixture
of two 16QAM sources (a typical constellation used in communications). The
illustration of figure 1 presents the graph of the contrast function Ψ(X̆ ,u) which
periodically tessellates the (α1, β1)-plane. The figure shows a contrast function
with no local deceptive minima, which is non-differentiable at those points where
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Fig. 1. Graph of the contrast function, with respect the parameters (α1, β1), for a
mixture of two 16QAM sources. The solutions to the extraction problem are at the
minima of the function.
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Fig. 2. The 16QAM source recovered by the extraction algorithm and the frontier of
the convex hull of its support (dashed line)

the Brunn-Minkowski equality holds true. The illustration of figure 2 presents the
16QAM source extracted by the previously described algorithm and the frontier
of the convex hull of its support.

7 Conclusions

We have presented a geometric criterion for the extraction of one indepen-
dent component from of a linear mixture of complex and mutually independent
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signals. The criterion favors the extraction of the source signals with minimum
scaled support and does not require the mutual independence between their real
and imaginary parts. Under certain given conditions, the criterion is proved to
be free of defective local minima, although, a general proof is still elusive.
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Abstract. In this paper, we address the problem of blind source sepa-
ration of non circular digital communication signals. A new Jacobi-like
algorithm that achieves the joint diagonalization of a set of symmet-
ric third-order tensors is proposed. The application to the separation of
non-gaussian sources using fourth order cumulants is particularly investi-
gated. Finally, computer simulations on synthetic signals show that this
new algorithm improves the STOTD algorithm.

1 Introduction

In the classical blind source separation problem, see e.g. [1] [2] [3] and [4], statis-
tics based matrices or tensors often have an identical decomposition. This known
decomposition is then used through a Jacobi-like algorithm to estimate the so-
called mixing matrix. Perhaps one of the most popular algorithms of that kind
is given in [1]. It is called JADE and its goal is to joint-diagonalize a set of
hermitian matrices. The algorithm in [5] is intended to “joint-diagonalize” a set
of complex symmetric matrices. The ICA algorithm in [2] is intended to diago-
nalize a fixed order (cumulant) tensor. The STOTD algorithm in [3] is intended
to “joint-diagonalize” a particular set of (cumulant) third order tensor.

Actually, principally in wireless telecommunication applications, non circular
signals are of importance, see e.g. [5][6][7][8]. The main goal of this paper is to
propose a novel approach that can combine “non-circular” statistics to circular
one easily for separation. It is based on a particular decomposition of symmetric
third order tensors. Notice that the circular part corresponds to the STOTD
algorithm [3] while the non-circular one is original.

We apply the proposed algorithm and compare it with STOTD using computer
simulations. They illustrate the usefulness to consider both kind of statistics.

2 The Proposed Algorithm

2.1 The “Non Circular” Algorithm

We consider N1 symmetric complex third-order tensors Tl, l = 1, · · · , N1, of
dimension N × N × N decomposed linearly as:

Dl = Tl ×1 U ×2 U ×3 U (1)

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 25–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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where Dl are also symmetric complex third-order tensors and U is a complex
unitary matrix. The notation in (1) is defined component-wise as

(Dl)j1j2j3 =
∑

k1,k2,k3

(Tl)k1k2k3(U)j1k1(U)j2k2(U)j3k3 . (2)

It is important to notice that our decomposition is different from the one in [3].
Indeed, there, the considered complex third-order tensors satisfy the following
decomposition

Dl = Tl ×1 U ×2 U∗ ×3 U∗ (3)

where Dl are also symmetric complex third-order tensors.
The goal is to estimate a unitary matrix U in such a way that tensors Dl

are (approximately) diagonal. For that task, it is rather classical to consider the
following quadratic criterion

C(U, {T}) =
N1∑

l=1

N∑

i=1

|(Dl)iii|2 (4)

to be maximized. It corresponds to the maximization of the sum of the squared
norm of all diagonals of the set of tensors {D} hence to the minimization of the
squared norm of all off diagonal components.

As we consider a Jacobi-like algorithm, we study the case N = 2. In that case
the unitary matrix U can be parameterized as

U =
(

cos(α) − sin(α) exp(jφ)
sin(α) exp(−jφ) cos(α)

)
(5)

where α and φ are two angles.
We can now propose the following result.

Proposition 1. The criterion in (4) can be written as

C(U, {T}) = uT B1u (6)

where
u = (cos(2α) sin(2α) sin(φ) sin(2α) cos(φ)) T (7)

and B1 is a real symmetric matrix whose expression is given in the proof.

Proof
With the property of symmetry of the tensor Tl that is to say

(Tl)ppk = (Tl)pkp = (Tl)kpp , (8)

we can write the two elements of the diagonals of one single (2 × 2 × 2) tensor
Dl

(Dl)111 = (Tl)111 cos3(α) − 3(Tl)112 sin(α) cos2(α)ejφ

+3(Tl)122 sin2(α) cos(α)ej2φ − (Tl)222 sin3(α)ej3φ

(Dl)222 = (Tl)111 sin3(α)e−j3φ + 3(Tl)112 cos(α) sin2(α)e−2jφ

+3(Tl)122 cos2(α) sin(α)e−jφ + (Tl)222 cos3(α).

(9)
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Then, we obtain the squared norms of the diagonals of this single (2 × 2 × 2)
tensor

|(Dl)111|2 + |(Dl)222|2 =
(
|(Tl)111|2 + |(Tl)222|2

) (
cos6(α) + sin6(α)

)

+ 2.25
(
|(Tl)112|2 + |(Tl)222|2

)
sin2(α)

+ 3 Re
{
(Tl)222(Tl)∗122e

jφ − (Tl)111(Tl)∗112e
−jφ

}
sin(2α) cos(2α)

+ 1.5 Re
{
(Tl)111(Tl)∗122e

−j2φ + (Tl)222 (Tl)∗112e
jφ

}
sin2(2α)

(10)

which can be written

|(Dl)111|2 + |(Dl)222|2 = uT Bl u (11)

where u is a real (3 × 1) vector such that uTu = 1 and defined by (7), and Bl is
a real symmetric matrix (3 × 3) defined by

(Bl)11 = |(Tl)111|2 + |(Tl)222|2

(Bl)12 = −1.5 Im {(Tl)222(Tl)∗122 + (Tl)111(Tl)∗112}

(Bl)13 = 1.5 Re {(Tl)222(Tl)∗122 − (Tl)111(Tl)∗112}

(Bl)22 = 0.25
(
|(Tl)111|2 + |(Tl)222|2

)

+2.25
(
|(Tl)112|2 + |(Tl)122|2

)

−1.5 Re {(Tl)111(Tl)∗122 + (Tl)222(Tl)∗112}

(Bl)23 = 1.5 Im {(Tl)111(Tl)∗122 − (Tl)222(Tl)∗112}

(Bl)33 = 0.25
(
|(Tl)111|2 + |(Tl)222|2

)

+2.25
(
|(Tl)112|2 + |(Tl)122|2

)

+1.5 Re {(Tl)111(Tl)∗122 + (Tl)222(Tl)∗112}

(12)

So, the maximization of the sum of the squared norms of the diagonals of the
set of tensors {Dl} is obtained by

N1∑

l=1

|(Dl)111|2 + |(Dl)222|2 = uT B1 u (13)

where the real matrix B1 is defined by

B1 =
N1∑

l=1

Bl (14)

which completes the proof of proposition.
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The maximization of the criterion in (6) can be easily find by computing
the eigenvector associated with the largest eigenvalue and then the angles are
obtained using

cos(α) =

√
1 +

1
2
u(1)

sin(α) exp(jφ) =
1

2 cos(α)
(u(3) + j u(2))

(15)

with α ∈ [−π/4, π/4].
Finally, the unknown unitary matrix U is obtained from the accumulation of

the successives Jacobi matrix which are taken transposed and conjugated.

2.2 The General Algorithm

In general one has to use all available useful statistics to solve a problem. Hence
we propose to combine by an optimal way our hereabove developments with
them of the STOTD algorithm [3]. As now seen, this can be done very easily.
For third order tensors that can be decomposed as in (3), it was shown in [3],
that in the case of N = 2, the criterion in (4) is written as

C(U, {T}) = uT B2u (16)

where B2 is a real symmetric matrix.
Hence an optimal combination of the two kind of tensors can be considered

altogether by simply searching the eigenvector of (1 − λ)B1 + λ B2 associated
with the largest eigenvalue, where λ is a real parameter with λ ∈ [0 1].

We can see that λ = 0 corresponds to the “non circular” algorithm called
NC-STOTD and λ = 1 corresponds to the STOTD algorithm.

In this paper, the optimal coefficient λ will be found by simulations (in fact
it would be possible to propose to find it by the minimization of a norm of the
covariance matrix from the parameters α and φ).

3 Link with Source Separation

In the source separation problem, an observed signal vector x[n] is assumed to
follow the linear model

x[n] = As[n] (17)

where n ∈ Z is the discrete time, s[n] the (N, 1) vector of N �= 2 unobservable
complex input signals si[n], i ∈ {1, . . . , N}, called sources, x[n] the (N, 1) vector
of observed signals xi[n], i ∈ {1, . . . , N} and A the (N, N) square mixing matrix
assumed invertible.

It is classical to consider that the sources si[n], with i ∈ {1, . . . , N}, are
zero-mean, unit power, stationary and statistically mutually independent.
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We also assume that the sources possess non zero high order cumulant (of
order under consideration) i.e. ∀i ∈ {1, . . . , N}, the R-th cumulant

Cum{si[n], . . . , si[n]︸ ︷︷ ︸
R terms

} = CR{si} (18)

is non zero for all i and for a fixed R ≥ 3.
We also assume that the matrix A is unitary. This can always be done as-

suming that a first whitening stage is applied onto the observations.
The blind source separation problem consists now in estimating a unitary

matrix H in such a way that the vector

y[n] = Hx[n] (19)

restores one of the different sources on each of its different components.
Perhaps one of the most useful way to solve the separation problem consists

in the use of a contrast functions. They correspond to objective functions which
depend on the outputs of the separating system and they have to be maximized
to get a separating solution. Let us now propose the following result.

Proposition 2. Let R be an integers such that R ≥ 3, using the notation

CR{y, i, j} = Cum{yi, yi, yi, yj1 , . . . , yjR−3︸ ︷︷ ︸
R−3 terms

} (20)

the function

JR(y) =
N∑

i,j1,...,jR−3=1

|CR{y, i, j}|2 (21)

is a contrast for white vectors y.

The proof is reported in a forthcoming paper. Now we show that contrast JR(y)
is linked to a joint-diagonalization criterion of a set of symmetric third order
tensor. Such a joint-diagonalization criterion is defined as in (4). This equivalence
is given according to the following result.

Proposition 3. With R ≥ 3, let TR be the set of M = NR−3 third order tensors

T(j1, . . . , jR−3) = (Ti,j,k(j1, . . . , jR−3))

defined as

Ti,j,k(j1, . . . , jR−3) = Cum{xi, xj , xk, xj1 , . . . , xjR−3︸ ︷︷ ︸
R−3 terms

} . (22)

Then, if H is a unitary matrix, we have

C(H, TR) = JR(Hx) . (23)

Hence the joint-diagonalization of third order symmetric tensors is a sufficient
condition for separation. Moreover different order of cumulant can be considered
onto the same framework.
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4 Simulations

We illustrate the performances of the proposed algorithm in comparison with
the STOTD algorithm (case where λ = 1) and the NC-STOTD one (case where
λ = 0) by Monte Carlo simulations in which we average over 500 iterations. In
our experiment, we consider two independent complex source signals which are
non circular and two noisy mixtures. We have taken the mixing matrix unitary
to avoid the whitening step which may degrade the performances.

The objective is to emphasize the existence of an optimal parameter λ which
allows an optimal performance of the general algorithm.

We get into two situations: one with the 5 states source distribution S1 de-
fined as:

{−1; −j; 0; β; jβ} with the probabilities
{

1
2(1+β) ;

1
2(1+β) ;

β−1
β ; 1

2β(1+β) ;
1

2β(1+β)

}
,

and the other one with the 4 states source distribution S2 defined as:

{−1; −j; 0; β; j ∗ β} with uniform probabilities.

These two sources are non-circular and in S1 the parameter β may be chosen
such that the cumulant C0

4{·} is more weighty than the cumulant C2
2{·} while

in S2 whatever the parameter β, the cumulant C2
2{·} is more weighty than the

cumulant C0
4{·}.

At each process, we take 10000 samples for each of the chosen source and we
take the same unitary mixing 2-by-2 matrix. The noise distribution is a zero-
mean Gaussian distribution. The signal to noise ratio (SNR) goes to obtain a
power of noise equal to: 0, 1/8, 1/4, 1/2 and 3/4 of the power of the source
signal. In order to find the optimal coefficient we vary λ from 0 to 1 with a 1/40
step.

We consider the following index of performance [4] which evaluates the prox-
imity of the estimated matrix Â, which is the separating matrix to the mixing
matrix A:

I(ÂA) =
1

N(N − 1)

⎛

⎝
N∑

i=1

⎛

⎝
N∑

j=1

|(ÂA)i,j |2

max� |(ÂA)i,�|2
− 1

⎞

⎠+
N∑

j=1

(
N∑

i=1

|(ÂA)i,j |2

max� |(ÂA)�,j |2
− 1

)⎞

⎠ ,

(24)

with N the dimension of the considered matrix B̂A.
In Fig.1 and Fig.2, we plot for different power of noise this index of perfor-

mance for the general algorithm called G-STOTD versus λ.
First, we can see in the two cases S1 and S2 that it exists an optimal coeffi-

cient λ which gives a better performance that the STOTD and the NC-STOTD
algorithms. So, we can tell that combining in an optimal way the statistics of
symmetry allows to improve the results of the ICA algorithm in the case of
non-circular sources.
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5 Conclusion

This paper propose a new general algorithm of joint diagonalization of com-
plex symmetric third-order tensors that allow not only to improve the STOTD
algorithm but opens new perspectives for non-circular sources.
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Abstract. We propose a new algorithm to impose independence con-
straints in one mode of the CP model, and show with simulations that
it outperforms the existing algorithm.

1 Introduction

One of the most fruitful tools in linear algebra-based signal processing is the Sin-
gular Value Decomposition (SVD) (4). Most other important algebraic concepts
use the SVD as building block, generalise or refine this concept for analysing
quantities that are characterised by only two variables. When the data has an
intrinsically higher dimensionality, higher-order generalizations of the SVD can
be used. An example of a multi-way decomposition method is the CP model
(also known as Canonical Decomposition (CANDECOMP) (3) or Parallel Fac-
tor Model (PARAFAC) (5)). Recently, a new interesting concept arose in the
biomedical field. In (1), the idea of combining Independent Component Analysis
(ICA) and the CP model was introduced. However, the multi-way structure was
imposed after the computation of the independent components. In this paper, we
propose an algorithm to impose the CP structure during the ICA computation.
We also performed some numerical experiments to compare our algorithms to
the algorithm proposed in (1).
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1.1 Basic Definitions

Definition 1. A 3rd-order tensor T has rank 1 if it equals the outer product of 3
vectors A1, B1, C1: tijk = aibjck for all values of the indices. The outerproduct
of A1, B1 and C1 is denoted by A1 ◦ B1 ◦ C1.
Definition 2. The rank of a tensor is defined as the minimal number of rank-1
terms in which the tensor can be decomposed.
Definition 3. The Kruskal rank or k-rank of a matrix is the maximal number r
such that any set of r columns of the matrix is linearly independent.
Definition 4. The Frobenius norm of a tensor T ∈ RI×J×K is defined as

||T ||F = (
I∑

i=1

J∑

j=1

K∑

k=1

t2ijk)
1
2 (1)

Notation Scalars are denoted by lower-case letters (a, b, . . . ), vectors are
written as capitals (A, B, . . . ) (italic shaped), matrices correspond to bold-face
capitals (A, B, . . . ) and tensors are written as calligraphic letters (A, B, . . . ).
This notation is consistently used for lower-order parts of a given structure. For
instance, the entry with row index i and column index j in a matrix A, i.e.
(A)ij , is symbolized by aij (also (A)i = ai and (A)i1i2...iN = ai1i2...iN ). The ith
column vector of a matrix A is denoted as Ai, i.e. A = [A1A2 . . .]. Italic capitals
are also used to denote index upper bounds (e.g. i = 1, 2, . . . , I).

� is the Khatri-Rao or column-wise Kronecker product.

1.2 Independent Component Analysis

Assume the basic linear statistical model

Y = M · X + N (2)

where Y ∈ RI is called the observation vector, X ∈ RJ the source vector and
N ∈ RI additive noise. M ∈ RI×J is the mixing matrix.

The goal of Independent Component Analysis is to estimate the mixing matrix
M, and/or the source vector X , given only realizations of Y . In this study, we
assume that I � J .

Blind identification of M in (2) is only possible when some assumptions about
the sources are made. One assumption is that the sources are mutually statisti-
cally independent, as well as independent from the noise components and that
at most one source is gaussian (2).

For more details, we refer to (9; 6).

1.3 The CP Model

The model. The CP model (5; 3; 15) of a three-way tensor T ∈ RI×J×K is
a decomposition of T as a linear combination of a minimal number R of rank-1
terms:

T =
R∑

r=1

λr Ar ◦ Br ◦ Cr (+E) (3)
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A pictorial representation of the CP model for third-order tensors is given in
figure 1.

T =
A1

B1
C1

λ1

+ . . . +
AR

BR

CR

λR

+ E
Fig. 1. Pictorial representation of the CP model

Consider a third-order (I × J × K) tensor T of which the CP model can be
expressed as

tijk =
R∑

r=1

airbjrckr, ∀i, j, k (4)

in which A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R. Another equivalent and useful
expression of the same CP model is given with the Khatri-Rao product. We
assume that min(IJ, K) � R.

Associate with T a matrix T ∈ RIJ×K as follows:

(T)(i−1)J+j,k = Tijk. (5)

This matrix has following structure:

T = (A � B) · CT . (6)

Comparing the number of free parameters of a generic tensor and the CP
model, it can be seen that this model is very restricted. The advantage of this
model is its uniqueness under mild conditions (7; 14):

rankk(A) + rankk(B) + rankk(C) � 2R + 2 (7)

with rankk(A) the k-rank of matrix A and R the rank of the tensor.

Computation of the CP decomposition. Originally, an alternating least-
squares (ALS) algorithm was proposed in order to minimize the least squares
cost function for the computation of the CP decomposition:

min
A,B,C

||T − A(B � C)T ||2. (8)

Due to the symmetry of the model in the different modes, the updates for all
modes are essentially identical with the role of the different modes shifted. As-
sume that B and C are fixed, the estimate of the other can be optimized with
a classical linear least squares problem:

min
A

||X − AZT ||2 (9)
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where Z equals B � C. This has to be repeated until convergence while matrices
in other modes are kept fixed in order to compute all factors of the decomposition.

Afterwards, it was also shown that the CP decomposition can be in theory
computed from an eigen value decomposition (EVD) (12; 13) under certain as-
sumptions among which the most restricting is that R � min{I, J}. This results
in a faster computation. However, when the model is only approximately valid,
this will only form the initialization of the ALS-procedure.

In (11), it is shown that the computation of the CP model, based on a si-
multaneous EVD is actually more robust than a single EVD. This again implied
the rank condition R � min{I, J}. As we will need this algorithm in the further
developments, we review the computational scheme here. Substitution of (5) in
(4) shows that any vector in the range of T, can be represented by an I × J
matrix that can be decomposed as:

V = A · D · BT (10)

with D diagonal. If the range is spanned by K matrices V1,V2, . . . ,VK , the
computation of the canonical decomposition can be obtained by the simultaneous
decomposition of the set {Vk}(1�k�K).

V1 = A · D1 · BT (11)
V2 = A · D2 · BT (12)

...
VK = A · DK · BT (13)

The best choice for these matrices in order to span the full range of this mapping
consists of the K dominant left singular matrices of the mapping in (5) (10).
In order to deal with these equations in a numerical proper way, the problem
can be formulated in terms of orthogonal unknowns (17; 11). Introducing a
QR-factorization A = QT R and an RQ-factorization BT = R̃ZT , leads to a
simultaneous generalized Schur decomposition:

QV1Z = R · D1 · R̃ (14)
QV2Z = R · D2 · R̃ (15)

...
QVKZ = R · DK · R̃. (16)

This simultaneous generalized Schur decomposition can be computed by an ex-
tended QZ-iteration (17).

Recently, in (8) it is shown that the canonical components can be obtained
from a simultaneous matrix diagonalization with a much less severe restriction
on R.
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2 Combination of ICA and CP Model

In this section, we review the tensorial extension of ICA (§2.1), called ’tensor
pICA’, as it was introduced by Beckmann (1). Then we present a new algo-
rithm to compute the CP decomposition of a tensor T where independence is
imposed to the factors in one mode (§2.2). For notational convenience, we will
restrict us to the three-way real case, but generalization to higher dimensions or
complex tensors is straightforward. In the following, we always assume that the
components of the third mode are independent. Due to the symmetric structure
of the PARAFAC model, equivalent equations can be derived for the other two
modes.

In formulas, we consider the matricized version of the real tensor T , given by
equation (6) where matrix C contains the independent source values, and the
mixing matrix M equals (A � B).

2.1 Tensor pICA

In (1), a generalization of the standard bilinear (two-way) exploratory analysis
to higher dimensions was derived as follows.

1. Perform an iteration step for the decomposition of the full data using the
twodimensional probabilistic ICA approach for the decomposition into a
compound mixing matrix MIJ×R and the associated source signals CK×R:
XIJ×K = MCT + Ẽ1.

2. Decompose the estimated mixing matrix M such that M = (A � B) + Ẽ2

via a column-wise rank-1 eigenvalue decomposition: each column in (A�B)
is formed by K scaled repetitions of a single column from A. In order to
obtain A and B, the matrices G1, . . . ,GR ∈ RI×J can be introduced as

(Gr)ij = m(i−1)J+j,r ∀i, j, r (17)

Ar and Br can then be computed as the dominant left and right singular
vector of Gr, 1 � r � R.

3. iterate decomposition of XIJ×K and M untill convergence, i.e. when ||Anew−
Aold||F + ||Bnew − Bold||F + ||Cnew − Cold||F < ε.

2.2 ICA-CP

The ordinary ICA problem is solved by diagonalising the fourth-order cumulant
(9). This cumulant can be written as following CP decomposition:

C(4)
y =

R∑

r=1

κxr Mr ◦ Mr ◦ Mr ◦ Mr (18)

With a mixing matrix M = A�B, this fourth-order cumulant can be expressed
as an eighth-order tensor with CP structure:

C(8)
y =

R∑

r=1

κxr Ar ◦ Br ◦ Ar ◦ Br ◦ Ar ◦ Br ◦ Ar ◦ Br (19)
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This can be seen as follows.
Define matrices E1, . . . ,ER ∈ RI×J as

(Er)ij = m(i−1)J+j,r ∀i, j, r (20)

When the model in (6) is exactly satisfied, Er can be decomposed as

(Er) = ArB
T
r r = 1, . . . , R (21)

which explains the CP decomposition in equation (19).
This CP decomposition can be computed in different ways, depending on the

rank R of the tensor. It is even not necessary to compute the full decomposition.
Once A and B are known, the mixing matrix (matrix A � B) can be computed
and the independent sources can be estimated from equation (6).

Rank R restricted by R � min{I, J}. In order to compute the mixing
matrix (A�B) from (19), associate a matrix H ∈ RIJ×I3J3

with C(8)
y as follows:

H(i−1)J+j,(k−1)I2J3+(l−1)I2J2+(m−1)IJ2+(n−1)IJ+(o−1)J+p = (C(8)
y )ijklmnop (22)

This mapping can be represented by a matrix H ∈ R
IJ×I3J3

:

H = (A � B) · Λ · (A � B � A � B � A � B)T . (23)

with Λ = diag{κ1, . . . , κR}. Substituting (22) in (19) shows that any vector in
the range of C(8)

y can be represented by an (I×J) matrix that can be decomposed
as:

V = A · D · BT (24)

with D diagonal. Any matrix in this range can be diagonalized by congruence
with the same loading matrices A and B. A possible choice of {Vk}(1�k�K)

consist of ’matrix slices’ obtained by fixing the 3rd to 8th index. An optimal
approach would be to estimate the R dominant left singular values of (23). The
joint decomposition of the matrices {Vk}(1�k�K) will give a set of equations
similar to equations (11) - (13). We have explained in §1.3 how to solve these
equations simultaneously.

3 Numerical Experiments

In this section we illustrate the performance of our algorithm by means of nu-
merical experiments and compare it to ’tensor pICA’.

Rank-R tensors T̃ ∈ R5×3×100, of which the components in the different modes
will be estimated afterwards, are generated in the following way:

T̃ =
T

||T ||F
+ σN

N
||N ||F

, (25)

in which T exactly satisfies the CP model with R = 3 independent sources in
the third mode (C) and N represents gaussian noise. All the source distributions
are binary (1 or -1), with an equal probability of both values. The sources are
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zero mean and have unit variance. The entries of the two other modes (A and
B) are drawn from a zero-mean unit-variance gaussian distribution.

We conduct Monte Carlo simulations consisting of 500 runs. We evaluate the
performance of the different algorithms by means of the normalized Frobenius
norm of the difference between the estimated and the real sources:

errorC =
||C − Ĉ||F

||C||F
(26)

In figure 2, we plot the mean value of the 500 simulations. The previously pro-
posed method tensor pICA is clearly outperformed by the new algorithm.
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Fig. 2. The mean value of errorC as a function of the noise level σN for the algorithms
ICA-CP (solid) and tensor pICA (dash-dash)

4 Conclusion

We proposed a new algorithm to impose the CP structure already during the ICA
computation for the case that the rank R was restricted by R � min{I, J}. We
showed with simulations that by taking this structure into account, the algorithm
outperformed tensor pICA. A follow-up paper will discuss an algorithm for the
case the rank R � min{I, J}. For a detailed comparison between CP and the
combination of ICA-CP, we refer to (16).
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Abstract. In this work, we deal with blind source separation of a class
of nonlinear mixtures. The proposed method can be regarded as an adap-
tation of the solutions developed in [1,2] to the considered mixing system.
Also, we provide a local stability analysis of the employed learning rule,
which permits us to establish necessary conditions for an appropriate
convergence. The validity of our approach is supported by simulations.

1 Introduction

The problem of blind source separation (BSS) concerns the retrieval of an un-
known set of source signals by using only samples that are mixtures of these
original signals. A great number of methods has been proposed for the case
wherein the mixture process is of linear nature. The cornerstone of the majority
of these techniques is the independent component analysis (ICA) [3]. In contrast
to the linear case, the recovery of the independence, which is the very essence of
ICA, does not guarantee, as a rule, the separation of the sources when the mix-
ture model is nonlinear. In view of this limitation, a more reasonable approach
is to consider constrained mixing systems as, for example, post-nonlinear (PNL)
mixtures [4] and linear-quadratic mixtures [2].

In this work, we investigate the problem of BSS in a particular class of nonlin-
ear systems which is related to a chemical sensing application. More specifically,
the contributions of this paper are the adaptation of the ideas presented in [1,2]
to the considered mixing system, as well as a study on some necessary con-
ditions for a proper operation of the obtained separating method. Concerning
the organization of the document, we begin, in Section 2, with a brief descrip-
tion of the application that has motivated us. After that, in Section 3, we ex-
pose the separation method and also a stability analysis of the learning rule. In
Section 4, simulations are carried out in order to verify the viability of the pro-
posal. Finally, in Section 5, we state our conclusions and remarks.

2 Motivation and Problem Statement

The classical methods for chemical sensing applications are generally based on
the use of an unique high-selective sensor. As a rule, these techniques demand
� Leonardo Tomazeli Duarte would like to thank CNPq (Brazil) for the financial

support.
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sophisticated laboratory analysis, which makes them expensive and time con-
suming. An attractive alternative to these methods relies on the use of an array
of less-selective sensors combined with a post-processing stage whose purpose is
exactly to extract the relevant information from the acquired data.

In [5,6], post-processing stages based on BSS methods were considered in the
problem of estimating the concentrations of several ions in a solution. In this sort
of application, a device called ion-sensitive field-effect transistor (ISFET) [5] may
be employed as sensor. In short, the ISFET is built on a MOSFET by replacing
the metallic gate with a membrane sensitive to the ion of interest, thus permitting
the conversion of chemical information into electrical one.

The Nikolsky-Eisenman (NE) model [5] provides a very simple and yet ade-
quate description of the ISFET operation. According to this model, the response
of the i-th ISFET sensor is given by:

xi = ci1 + ci2 log
(
si +

∑

j,j �=i

aijs
zi
zj

j

)
, (1)

where si and sj are the concentration of the ion of interest and of the concen-
tration of the j -th interfering ion, respectively, and where zi and zj denote the
valence of the ions i and j, respectively. The selective coefficients aij model the
interference process; ci1 and ci2 are constants that depends on some physical
parameters. Note that when the ions have the same valence, then the model (1)
can be seen as a particular case of the class of PNL systems, as described in [6].

In the present work, we envisage the situation in which zi �= zj. According
to the NE model, one obtains a tough nonlinear mixing model in this case. For
the sake of simplicity, we assume, in this paper, that the coefficients ci1 and ci2

are known (even if their estimations are not so simple). Considering a mixture
of two ions, such simplification leads to the following nonlinear mixing system
that will be considered in this work

x1 = s1 + a12s
k
2

x2 = s2 + a21s
1
k
1

, (2)

where k = z1/z2 and is known. We consider that k takes only positive integer
values. Indeed, in many actual applications, typical target ions are H3O

+, NH+
4 ,

Ca2+, K+, etc. Consequently, many cases correspond to k ∈ N and, in this paper,
we will focus on this case. Also, the sources are supposed positives, since they
represent concentrations. Finally, it is assumed that si are mutually independent,
which is equivalent to assume that there is no interaction between the ions.

3 Separation Method

For separating sources si from mixtures (2), we propose a parametric recursive
model (see (3) below), whose parameters wij will be adjusted by a simple ICA
algorithm. Consequently, equilibrium points and their stability are depending
both on a structural condition (due to the recursive nature of (3)) and on the
learning algorithm, as explained in subsection 3.3.
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3.1 Separating Structure

In this work, we adopted the following recurrent network as separating system:

y1(m + 1) = x1 − w12y2(m)k

y2(m + 1) = x2 − w21y1(m)
1
k

, (3)

where [w12 w21]T are the parameters to be adjusted. In order to understand
how this structure works, let s = [s1 s2]T denote a sample of the sources. By
considering (2), one can easily check that when [w12 w21]T = [a12 a21]T , then s
corresponds to an equilibrium point of (3). This wise approach to counterbalance
the action of the mixing system without relying on its direct inversion was firstly
developed in [1] regarding linear BSS. Its extension to the nonlinear case was
proposed in [2], in the context of source separation of linear-quadratic mixtures.

Naturally, an ideal operation of (3) as a separating system requires that
s = [s1 s2]T be the only equilibrium point when [w12 w21]T = [a12 a21]T . Unfor-
tunately, this is not the case as can be checked by setting y1(m+1) = y1(m) = y1

and y2(m + 1) = y2(m) = y2 in (3). From this, one observes that the determi-
nation of the equilibrium points of (3) leads to the following equation:

y1 = x1 − a12

(
x2 − a21y

(1/k)
1

)k

. (4)

After straightforward calculation, including a binomial expansion, (4) becomes

(1 + a12b0)y1 + a12

k−1∑

i=1

biy
1− i

k
1 + (a12bk − x1) = 0, (5)

where bi =
(
k
i

)
xi

2(−a21)(k−i).

By considering the transformation u = y
1
k
1 in (5), one can verify that the

solution of this expression is equivalent to the determination of the roots of a
polynomial of order k and, as a consequence, the number of equilibrium points
grows linearly as k increases. Thus, it becomes evident that the use of (3) is
appropriate only for small values of k. For instance, when k = 2 there are
just two equilibrium points: one corresponds to the sources themselves and the
other one corresponds to a mixture of these sources. In the next step of our
investigation, we shall verify the conditions to be satisfied so that the equilibrium
point associated with the sources be stable.

In view of the difficulty embedded in a global analyze of stability, we consider
the study of the local stability in the neighborhood of the equilibrium point
s = [s1 s2]T based on the first-order approximation of the nonlinear system (3).
This linearization can be expressed by using a vectorial notation as follows:

y(m + 1) ≈ c + Jy(m), (6)

where y(m) = [y1(m) y2(m)]T , c is a constant vector and J is the Jacobian
matrix of (3) evaluated at [s1 s2]T , which is given by:

J =

[
0 −a12ks

(k−1)
2

− 1
ka21s

( 1
k−1)

1 0

]
. (7)
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It can be proved that a necessary and sufficient condition for local stability of
a discrete system is that the absolute values of the eigenvalues of the Jacobian
matrix evaluated at the equilibrium point of interest be smaller than one [7].
Applying this result on (7), the following condition of local stability is obtained:

|a12a21s
( 1

k−1)
1 sk−1

2 | < 1. (8)

This is a first constraint of our strategy, given that this condition must be satis-
fied for each sample [s1 s2]T . In order to illustrate this limitation, the stability
boundaries in the (a12, a21) plane for several cases are depicted in Figure 1.
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(a) Influence of k: sources dis-
tributed between (0.1, 1.1) with
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Fig. 1. Stability boundaries in the (a12, a21) plane

3.2 Learning Algorithm

We consider a learning rule founded on the cancellation of nonlinear correla-
tions, given by E{f(yi)g(yj)}, between the retrieved sources [1]. The following
nonlinear functions were chosen: f(·) = (·)3 and g(·) = (·). Therefore, at each
time n, the iteration of the separating method consists of: 1) the computation
of yi, for each sample of the mixtures, according to the dynamics (3) and 2) the
update of the parameters wij according to:

w12(n + 1) = w12(n) + μE{y3
1 ȳ2}

w21(n + 1) = w21(n) + μE{y3
2 ȳ1}

, (9)

where μ corresponds to the learning rate, [y1 y2]T denotes the equilibrium point
of (3) and ȳi is a centering version of yi

1,2. One can check3 that (9) converges
1 More specifically, we adopt the following notation ȳr

i = yr
i − E{yr

i }.
2 Given that the signals are not supposed zero-mean, the centering of one the variables

in (9) is necessary, so that it converges when y1 and y2 are mutually independent.
3 Note that (9) converges when E{y3

i ȳj} = E{y3
i yj} − E{y3

i } E{yj} = 0.
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when E{y3
1y2} = E{y3

1}E{y2} and E{y3
2y1} = E{y3

2}E{y1}. Obviously, these
conditions are only necessary ones for the statistical independence between the
sources and, as a consequence, there may be particular sources for which such
strategy fails. On the other hand, this strategy provides a less complex algorithm
than those that deal directly with a measure of statistical independence.

In the last section, a stability condition concerning the separation structure
was provided. Likewise, as it will be seen in the sequel, it is possible to analyze the
stability of the learning rule (9). This study will permit us to determine whether
the separating equilibrium point, i.e., [w12 w21]T = [a12 a21]T , corresponds to a
stable one and, as a consequence, whether it is attainable for the learning rule.

3.3 Stability Analysis of the Learning Rule

According to the ordinary differential equation theory, it is possible, by assuming
that μ is sufficiently small, to rewrite (9) as:

dw12

dt
= E{y3

1 ȳ2}
dw21

dt
= E{y3

2 ȳ1}. (10)

A first point to be stressed is that the determination of all equilibrium points
of (10) is a rather difficult task. Even when k = 1 in (2), which corresponds to
the linear BSS problem, this calculation demands a great deal of effort [8].

Secondly, we are interested in the stability of the point [w12 w21]T = [a12 a21]T ,
but one must keep in mind that there are structural conditions to be assured so
that it corresponds to an equilibrium point of (10). For example, when k = 2, we
observed through simulations that this ideal adjustment of the separating system
usually guarantees the separation of the sources when the local condition (8) is
satisfied. Thus, in this situation and under the hypothesis of independent sources,
it is assured that E{y3

i ȳj} = E{s3
i s̄j} = 0.

As in Section 3.1, the local stability analysis is based on a first-order approx-
imation of (10). However, since we are dealing with a continuous dynamics in
this case, a given equilibrium point of the learning rule is locally stable when
the real parts of all eigenvalues of the Jacobian matrix are negatives [7]. After
straightforward calculations, one obtains the Jacobian matrix evaluated at the
equilibrium point [a12 a21]T

J =

[(
3E{y2

1ȳ2
∂y1
∂a12

} + E{ȳ3
1

∂y2
∂a12

}
) (

3E{y2
1ȳ2

∂y1
∂a21

} + E{ȳ3
1

∂y2
∂a21

}
)

(
3E{y2

2ȳ1
∂y2
∂a12

} + E{ȳ3
2

∂y1
∂a12

}
) (

3E{y2
2ȳ1

∂y2
∂a21

} + E{ȳ3
2

∂y1
∂a21

}
)
]

. (11)

Note that, assuming an ideal operation of the separating system, [y1 y2]T could
be replaced by [s1 s2]T , which permits us to express the stability conditions
of (9) in terms of some statistics of the sources.

The entries of the Jacobian matrix can be calculated by applying the chain
rule property on (3). For instance, it is not difficult to verify from that:

∂y1

∂a12
= −(yk

2 + a12kyk−1
2

∂y2

∂a12
). (12)
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Given that
∂y2

∂a12
= −1

k
a21y

1
k−1
1

∂y1

∂a12
, (13)

and substituting this expression in (12), one obtains:

∂y1

∂a12
=

−yk
2

1 − a12a21y
1
k−1
1 yk−1

2

. (14)

By conducting similar calculations, one obtains the other derivatives:

∂y2

∂a12
=

a21y
1
k−1
1 yk

2

k(1 − a12a21y
1
k−1
1 yk−1

2 )
(15)

∂y1

∂a21
=

ka12y
1
k
1 yk−1

2

1 − a12a21y
1
k−1
1 yk−1

2

(16)

∂y2

∂a21
=

−y
1
k
1

1 − a12a21y
1
k−1
1 yk−1

2

(17)

As it would be expected, when k = 1, one obtains from the derived expressions
the same conditions developed in [8] and [9] for the stability of the Hérault-Jutten
algorithm for linear source separation.

4 Experimental Results

Aiming to assess the performance of the proposed solution, experiments were
conducted for the cases k = 2 and k = 3. In both situations, the efficacy of the
obtained solutions was quantified according to the following index:

SNRi = 10 log

(
E{s2

i }
E{(si − yi)

2}

)
. (18)

From this, a global index can be defined as SNR = 0.5(SNR1 + SNR2).

k = 2. In a first scenario, we consider the separation of two sources uniformly
distributed between [0.1, 1.1]. The mixing parameters are given by a12 = 0.5 and
a21 = 0.5; a set of 3000 samples of the mixtures was considered and the number of
iterations regarding the learning algorithm (9) was defined to 3500 with μ = 0.05.
The initial conditions of the dynamics (3) were chosen as [y1(1) y2(1)]T = [0 0]T .
The results of this first case are expressed in the first row of Table 1. In Figure 2,
the joint distributions of the mixtures and of the retrieved signals are depicted
for a typical case (SNR = 35dB). Note that the outputs of the separating
system are almost uniformly distributed, which indicates that the separation
task was fulfilled. Also, we performed experiments by considering on each sensor
an additive white Gaussian noise with a signal-to-noise ratio of 17dB. The results
for this second scenario are depicted in the second row of Table 1.
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Table 1. Average SNR results over 100 experiments and standard deviation (STD)

SNR1 SNR2 SNR STD(SNR)

k = 2 (Scenario 1) 37.18 33.05 35.12 8.90

k = 2 (Scenario 2) 17.98 15.35 16.67 1.72

k = 2 (Scenario 3) 36.49 31.84 34.17 4.92

k = 3 (Scenario 1) 22.46 21.04 21.75 5.02
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Fig. 2. First scenario - k = 2

A third scenario was composed by a uniformly distributed source between
[0.3, 1.3] and a sinusoidal source varying in the range [0.2, 1.2]. In this case, the
mixing parameters are given by a12 = 0.6 and a21 = 0.6 and the constants
related to the separating system were adjusted as in the first experiment. Again,
the separation method was able to separate the original sources, as can be seen
in the third row of Table 1.

k = 3. The problem becomes more tricky when k = 3. Firstly, we observed
through simulations that, even for a separating point [w12 w21]T = [a12 a21]T

that satisfies the equilibrium condition (8), the structure (3) does not guarantee
source separation, since there can be another stable equilibrium solution that has
no relation with the sources. In this particular case, we observed, after performing
some simulations, that the adopted network may be attracted by a stable limit
cycle and, also, that it is possible to overcome this problem by changing the
initial conditions of (3) when a periodic equilibrium solution occurs.

A second problem in this case is related to the convergence of the learning
rule. Some simulations suggested the existence of spurious minima in this case.
These two problems result in a performance degradation of the method when
compared to the case k = 2, as can be seen in the last row of Table 1. In this
case, we considered a scenario with two sources uniformly distributed between
[0.3, 1.3] and mixing parameters given by a12 = 0.5 and a21 = 0.5. The initial
conditions of (3) were defined as [0.5 0.5]T . Also, we considered 3000 samples of
the mixtures and 10000 iterations of the learning algorithm with μ = 0.01.
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5 Conclusions

The aim of this work was to design a source separation strategy for a class of
nonlinear systems that is related to a chemical sensing application. Our approach
was based on the ideas presented in [1,2] in such a way that it may be viewed as an
extension of these works to the particular model considered herein. Concerning
the proposed technique, we investigated the stability of the separation structure
as well as the stability of the learning algorithm. This study permitted us to
obtain necessary conditions for a proper operation of the separation method.
Finally, the viability of our approach was attested by simulations.

A first perspective of this work concerns its application in a real problem of
chemical sensing. Also, there are several questions that deserve a detailed study
as, for example, the design of algorithms that minimizes a better measure of
independence between the retrieved sources (e.g. mutual information), including
an investigation of the separability of the considered model. Another envisaged
extension is to provide a source separation method for the most general case
of the Nikolsky-Eisenman model, which is given by (1): 1) by considering the
logarithmic terms; and 2) by considering the cases k ∈ Q. Actually, preliminary
simulations show that our proposal works for simple cases in k ∈ Q, such as
k = 1/3 and k = 2/3. However, there are tricky points in the theoretical analysis
conducted in this paper that are not appropriate to this new situation.
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Abstract. Independent Subspace Analysis (ISA) is a generalization of
ICA. It tries to find a basis in which a given random vector can be de-
composed into groups of mutually independent random vectors. Since
the first introduction of ISA, various algorithms to solve this problem
have been introduced, however a general proof of the uniqueness of ISA
decompositions remained an open question. In this contribution we ad-
dress this question and sketch a proof for the separability of ISA. The key
condition for separability is to require the subspaces to be not further
decomposable (irreducible). Based on a decomposition into irreducible
components, we formulate a general model for ISA without restrictions
on the group sizes. The validity of the uniqueness result is illustrated on
a toy example. Moreover, an extension of ISA to subspace extraction is
introduced and its indeterminacies are discussed.

With the increasing popularity of Independent Component Analysis, people
started to get interested in extensions. Cardoso [2] was the first to formulate
an extension denoted here as Independent Subspace Analysis. The general idea
is that for a given observation X we try to find an invertible matrix W such that
WX = (ST

1 , . . . ,ST
k )T with mutually independent random vectors Si. If all Si

are one-dimensional, this is ICA, and we have the well-known separability results
of ICA [3]. However without dimensionality restrictions, if mutual independence
of the vectors Si is the only restriction imposed on W, ISA cannot produce
meaningful results: if W simply is the identity and k = 1, then S1 = X, which is
independent of the (non-existing) rest. So, further restrictions are required for a
meaningful model. A common approach is to fix the group size in advance, see [5]
for a short review of ISA models. Here, we propose a more general concept based
on [5], namely irreducibility of the recovered sources Si that is the requirement
that any Si cannot be further decomposed. Our main contribution is a sound
proof for the separability of this model together with a confirming simulation,
thereby giving the details for the proposed ISA model from [5].

The manuscript is organized as follows. In the next section, we motivate the
existence of such a separability result by studying a toy example. Then we give
the sketch of the proof, and finally extend it to blind subspace extraction.
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1 Motivation

Usually ISA is seen as a byproduct of ICA algorithms, which are assumed to
decompose signals into components ‘as independent as possible’; the compo-
nents are then simply sorted to give a decomposition into higher-dimensional
subspaces. However this approach is not as straight-forward as it might seem,
as, strictly speaking, if ICA is performed on a data set that cannot be completely
decomposed into one-dimensional independent components, we are applying ICA
to a data set that does not follow the ICA model and have no theoretical results
predicting the behavior of ICA algorithms. Here we present some simulations,
which give a hint that indeed ISA might not be so unproblematic.

We generated a toy data set consisting of two independent sources, each of
which were not further decomposable. The first data set consisted of a wireframe
model of a 3-dimensional cube, the second data set was created from a solid
2-dimensional circle, see figure 1. We uniformly picked N = 10.000 samples
and mixed them in batch runs by applying M = 200.000 uniformly sampled
orthogonal matrices. The 200.000 matrices were sampled, by choosing random
matrices B with entries normally sampled with mean 0 and variance 1, which
then were symmetrically orthogonalized by A = (BBT )−0.5B. A mixture with
an orthogonal matrix deviating from the block-structure should also deviate from
independence within the blocks. As an ad-hoc measure for dependence within
the blocks, we used the forth-order cumulant tensor:

δD(X) =
3∑

i=1

5∑

j=4

5∑

k=1

5∑

l=1

cum2(Xi, Xj , Xk, Xl) .

This is motivated by the well-known and in ICA often used fact that the crosscu-
mulant tensor is zero, i.e. cum2(Y1,Y2,Y∗,Y∗) = 0, if Y1 and Y2 are indepen-
dent. We measured the deviation of our mixing matrices from block-structure
by simply taking the Frobenius-norm of the off-block-diagonal blocks:

off(A) :=
3∑

i=1

5∑

j=4

(a2
ij + a2

ji) .

If ISA actually guarantees a unique block-structure in fourth order, we should
get a dependence of 0 only if the mixing matrix itself is block-diagonal that is if
off A = 0. However, due to sampling errors, this is of course never reached, so we
estimate the minima of δD. Figure 2 shows the relation of off A and δD(AS),
and here we observe not only the expected minimum at off A = 0, but two
additional minima at off A = 2 and off A = 4. In order to take a closer look
at these three points, we chose three matrices A0, A2 and A4, corresponding
to the three local minima of the plot in Fig. 2. Starting with these matrices,
we performed in their neighborhood a search for matrices with a lower model
deviation. Again we sampled random orthogonal matrices, but this time biased
them to be close to the identity matrix, as we wanted to search locally. We
therefore again orthogonalized matrices as above, however chose the matrices B
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(a) 3-dimensional sources S1 (b) 2-dimensional sources S2

Fig. 1. Toy data set

to be not arbitrarily normally sampled, but took matrices whose entries were
normally sampled with mean 0 and variance v, which we then added to the
identity matrix, modifying A0, A2 and A4 in every step only if it would perform
a better block-independence. We evaluated this for v = 0.1, v = 0.01 and v =
0.001, each time running for 20.000 steps. The result of this is plotted in Fig.
3, and we indeed observe considerably better block-independence in the order
of 1.5 magnitudes in the neighborhood of A0 than in the neighborhoods of
A2 and A4. While the three local minima found by random sampling show
only small difference (δD(A0) = 0.0135, δD(A2) = 0.0107, δD(A4) = 0.0285),
local searches show up better minima for all three areas (δD(A0) = 0.0002,
δD(A2) = 0.0055, δD(A4) = 0.0053), especially the area around off A = 0. As
a side note, the final matrices A2 and A4 correspond to the product of a block-
diagonal matrix and a permutation matrices where one, respectively two indices
in each of the two off-diagonal blocks are non-zero.

This shows us that while we observe local minima of our block-dependency
measure on our data set, a closer inspection reveals that these minima are of
different quality and we actually have only a single global minimum. We conclude
that separability of ISA indeed should hold.

2 Uniqueness of ISA

In this section we present the proof of uniqueness of ISA. After explaining the
notion of irreducibility of a random vector, we show why this idea is essential
for the separability of ISA.

2.1 The ICA Model

Let us quickly repeat a few facts about ICA. The linear, noiseless ICA model
can be described by the equation X = AS, where S = (S1, . . . , Sn)T denotes
a random vector with mutually independent components Si (sources) and an
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Fig. 2. Relation between block-crosserror and block-independence. Note the two addi-
tional minima at off A = 2 and off A = 4.

invertible mixing matrix A. The task of ICA is the recovery of S, given only the
observations X. This is obviously only possible up to the indeterminacies scaling
and permutation, and it is well-known that recovery is possible up to exactly
these permutations if S is square-integrable and contains at most one Gaussian
component [3, 4].

2.2 The ISA Model

Loosening the requirement of mutual independence of the sources naturally
brings up the idea of describing ISA through the same equation X = AS, where
now S = (ST

1 ,ST
2 , . . . ,ST

n )T with mutually independent random vectors Si, how-
ever this time dependencies within the multidimensional Si are allowed. Obvious
indeterminacies of such a model are invertible linear transforms within the sub-
spaces Si (which can be seen as a generalization of scaling to higher dimensions)
and permutations of subspaces of the same size (which, again, is the higher di-
mensional generalization of the regular permutation seen in ICA). However this
model is not complete, since for any observation X a decomposition into mutu-
ally independent subspaces where dependencies within the subspaces are allowed
is given simply by X itself. Realizing this naturally brings up the requirement of
S to be ‘as independent as possible’. This is formally described by the following
definition.

Definition 1. A random vector S is said to be irreducible if it contains no
lower-dimensional independent component. An invertible matrix W is called a
(general) independent subspace analysis of X if WX = (ST

1 , . . . ,ST
k )T with

mutually independent, irreducible random vectors Si. Then (ST
1 , . . . ,ST

k ) is called
an irreducible decomposition of X.

Irreducibility is a key property in uniqueness of ISA and indeed, if we additionally
assume irreducibility, we can show that this essentially allows for separability of
ISA up to the above mentioned indeterminacies of higher dimensional scaling
and permutation of subspaces of the same size.
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Fig. 3. Search for local minima around off A = 0 (lower graph) and off A = 2 respec-
tively off A = 4 (upper two graphs)

2.3 Uniqueness of ISA

We will now prove uniqueness of Independent Subspace Analysis under the addi-
tional assumption of no independent Gaussian components. Indeed, any orthog-
onal transformation of two decorrelated (and hence independent) Gaussians is
again independent, so for such random vectors clearly such a strong identification
result would not be possible.

Theorem 1. Given a random vector X with existing covariance and no Gaus-
sian independent component, then an ISA of X exists and is unique except for
scaling and permutation.

Existence holds trivially, but uniqueness is not obvious. Defining the equivalence
relation ∼ on random vectors as X ∼ Y :⇔ X = AY for some A ∈ Gl(n), we
are easily able to show uniqueness given the following lemma:

Lemma 1. Let S = (ST
1 , . . . ,ST

N )T be a square-integrable decomposition of S
into irreducible, mutually independent components Si where no Si is a one-
dimensional Gaussian. If (XT

1 ,XT
2 )T is an independent decomposition of S, then

there is some permutation π of {1, . . . , N} such that X1 ∼ (ST
π(1), . . . ,S

T
π(l))

T and
X2 ∼ (ST

π(l+1), . . . ,S
T
π(N))

T for some l.

So, given an irreducible decomposition of a random variable S with no inde-
pendent Gaussian components, any decomposition of it into independent (not
necessarily irreducible) components ‘splits along the irreducible components’.

Using this lemma, Theorem 1 is easy to show: Given two irreducible decom-
positions (XT

1 , . . . ,XT
N )T and (ST

1 , . . . ,ST
M )T , we search for the smallest irre-

ducible component appearing, which we may assume to be X1. We then group
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(XT
2 , . . . ,XT

N )T into a (larger) random vector. As this independent decomposi-
tion splits along the irreducible components Si and for all j, dim(X1) ≤ dim(Sj),
X1 is identical to one of the Sj . We may remove both of these and go on itera-
tively, thus proving the theorem.

The more complicated part is the proof of Lemma 1, and due to space restric-
tions we can only sketch the proof.

Before starting, we note that due to the assumption of existing covariance,
we may whiten both X and S, in which case it is easy to observe that A is
orthogonal. For notational reasons, we will split up the mixing matrix A into
submatrices, the sizes of which are according to the sizes of Si and Xj :

(
X1

X2

)
=

(
A11 . . . A1N

A21 . . . A2N

)
⎛

⎜⎝
S1

...
SN

⎞

⎟⎠ (1)

so Xi =
∑N

k=1 AikSk. We now claim that in every pair {A1j ,A2j} one of the
two matrices is zero.

We fix k = k0 and show this claim for k0. Let us assume the converse,
that is that both rank(A1k0) �= 0 and rank(A2k0 ) �= 0. As A has full rank,
rank(A1k0) + rank(A2k0) ≥ dim(Sk0) =: D. This leaves us with two cases to
handle, rank(A1k0) + rank(A2k0) = D and rank(A1k0) + rank(A2k0) > D. Let
us first address the first case and show that this contradicts the irreducibility
of Sk0 .

Lemma 2. Assume

S = (A1|A2)
(

X1

X2

)

with independent random vectors X1 and X2 and A1, A2 such that rank(AT
1 )+

rank(AT
2 ) = dim(S) and rank(A1|A2) = dim(S). Then S is reducible.

Proof. Let D := dim(S) and d := dim
(
ker(AT

1 )
)
. Then dim

(
ker(AT

2 )
)

= D−d,
and we can find a linearly independent set {v1, . . . ,vd} such that vT

i A1 = 0 for
any 1 ≤ i ≤ d, and similarly a linearly independent set {vd+1, . . . ,vD} such that
vT

j A2 = 0 for any d + 1 ≤ j ≤ D. These two sets are guaranteed to be disjoint,
as rank(A1|A2) = dim(S). Using these vectors, we define

T :=

⎛

⎜⎝
vT

1
...

vT
D

⎞

⎟⎠ .

Then

TS = (TA1|TA2)
(

X1

X2

)
=

(
T1 0
0 T2

) (
X1

X2

)
=

(
T1X1

T2X2

)

with some full rank matrices T1 and T2. It follows that S is reducible, as X1

and X2 are independent and T is invertible. �	
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The other case, rank(A1k0) + rank(A2k0 ) > D is harder to prove and follows
some of the ideas presented in [4].

Lemma 3. Given (1), if there is some 1 ≤ k0 ≤ N such that rank(A1k0 ) +
rank(A2k0) > dim(Sk0), then Sk0 contains an irreducible Gaussian component.

This concludes the proof of Theorem 1.

2.4 Dealing with Gaussians

The section above explicitly excluded independent Gaussian components in order
to avoid additional indeterminacies. Recently, a general decomposition model
dealing with Gaussians was proposed in the form of the so-called non-Gaussian
component analysis (NGCA) [1]. It tries to detect a whole non-Gaussian subspace
within the data, and no assumption of independence within the subspace is
made. More precisely, given a random vector X, a factorization X = AS with
an invertible matrix A, S = (SN ,SG) and SN a square-integrable m-dimensional
random vector is called an m-decomposition of X if SN and SG are stochastically
independent and SG is Gaussian. In this case, X is said to be m-decomposable and
X is denoted to be minimally n-decomposable if X is not (n − 1)-decomposable.
According to our previous notation, SN and SG are independent components of
X. It has been shown that the subspaces of such decompositions are unique [6]:

Theorem 2. The mixing matrix A of a minimal decomposition is unique except
for transformations in each of the two subspaces.

Moreover, explicit algorithms can be constructed for identifying the subspaces
[6]. This result enables us to generalize Theorem 1 and to get a general decom-
position theorem, which characterizes solutions of ISA.

Theorem 3. Given a random vector X with existing covariance, an ISA of X
exists and is unique except for permutation of components of the same dimension
and invertible transformations within each independent component and within
the Gaussian part.

Proof. Existence is obvious. Uniqueness follows after first applying Theorem 2
to X and then Theorem 1 to the non-Gaussian part. �	

3 Independent Subspace Extraction

Having shown uniqueness of the decomposition, we are able to introduce Inde-
pendent (Irreducible) Subspace Extraction, which separates independent (irre-
ducible) subspaces out of the random vector.

Definition 2. A pseudo-invertible (n × m) matrix W is said to be an Indepen-
dent Subspace Extraction of an m-dimensional random vector X, if WX is an
independent component of X. If WX even is irreducible, then W is called an
Irreducible Subspace Extraction of X.
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This could lead to a wider variety of algorithms like deflationary approaches
which are already common in standard ICA. The interesting aspect here is that
we only strive to extract a single component, so Independent (Irreducible) Sub-
space Extraction could prove to be simpler to handle algorithmically than a
complete Independent Subspace Analysis, and thus play an important role in
applications (such as dimension reduction) that need to extract only a single
component or subspacespace.

4 Conclusion

Although Independent Subspace Analysis has become a common practice in the
last few years, separability of it has not been fully shown. We presented examples
that showed that ISA is not as unproblematic as it seems. Additionally we proved
uniqueness – up to higher-dimensional generalizations of the indeterminacies of
ICA – of ISA, given no independent Gaussians and showed how to combine this
together with existing theoretical results on NGCA to a full ISA uniqueness
result. Using these results, it is now possible to speak of the ISA of any given
random vector. Moreover, theorem 3 now gives an complete characterization of
decompositions of distributions into independent factors, which might prove to
be a useful result in general statistics.

Now that uniqueness of ISA has been shown for the theoretical limit of per-
fect knowledge of the recordings, the next obvious step is the conversion to the
real-world case, where only a finite number of samples of the observations are
known. Here, a decomposition of the mixtures X such that X = AS where
S = (ST

1 , . . . ,ST
N )T with irreducible (or merely independent) Si cannot be ex-

pected, as in this case we expect to always see some dependency due to sampling
errors. Due to uniqueness of ISA in the asymptotic case, identification of the un-
derlying sources should hold here too, given enough samples, but additional work
is required to show this in the future.
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Abstract. This paper derives a new algorithm that performs indepen-
dent component analysis (ICA) by optimizing the contrast function of
the RADICAL algorithm. The core idea of the proposed optimization
method is to combine the global search of a good initial condition with
a gradient-descent algorithm. This new ICA algorithm performs faster
than the RADICAL algorithm (based on Jacobi rotations) while still
preserving, and even enhancing, the strong robustness properties that
result from its contrast.

Keywords: Independent Component Analysis, RADICAL algorithm,
optimization on matrix manifolds, line-search on the orthogonal group.

1 Introduction

Independent Component Analysis (ICA) was originally developed for the blind
source separation problem. It aims at recovering independent source signals from
linear mixtures of these. As in the seminal paper of Comon [1], a linear instan-
taneous mixture model will be considered in this paper,

X = AS, (1)

where X , A and S are matrices in Rn×N , Rn×p and Rp×N respectively, with
p less or equal to n. The rows of S are assumed to be samples of independent
random variables. Thus, ICA provides a linear representation of the data X in
terms of components S that are statistically independent.

ICA algorithms are based on the inverse of the mixing model (1),

Z = WT X,

where Z and W are matrices in Rp×N and Rn×p, respectively. The aim of ICA
algorithms is to optimize over W the statistical independence of the p random
variables, whose samples are given in the p rows of Z. The statistical indepen-
dence is measured by a cost function

γ : R
n×p → R : W �→ γ(W ),

termed the contrast function.
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c© Springer-Verlag Berlin Heidelberg 2007



58 M. Journée, P.-A. Absil, and R. Sepulchre

In the remainder of this paper, we assume that the data matrix X has been
preprocessed by means of prewhitening and its dimensions have been reduced
by retaining the dominant p-dimensional subspace. Consequently, the contrast
function γ is defined on a set of square matrices, i.e,

γ : R
p×p → R : W �→ γ(W ).

Several contrast functions for ICA can be found in the literature. In this paper,
we consider the RADICAL contrast function proposed in [2]. Advantages of this
contrast are a strong robustness to outliers as well as to the lack of samples.

A good contrast for γ is not enough to make an efficient ICA algorithm. The
other ingredient is a suitable numerical method to compute an optimizer of γ.
This is the topic of the present paper. The authors of [2] optimize their contrast
by means of Jacobi rotations combined with an exhaustive search. This yields
the complete Robust Accurate Direct ICA aLgorithm (RADICAL). We propose a
new steepest-descent-based optimization method that reduces the computational
load of RADICAL.

The paper is organized as follows. The contrast function of RADICAL is de-
tailed in Section 2. Section 3 describes a gradient-descent optimization algorithm.
In Section 4, this local optimization is integrated within a global optimization
framework. The performance of this new ICA algorithm is briefly illustrated in
Section 5.

2 A Robust Contrast Function

Like many other measures of statistical independence, the contrast of RADI-
CAL [2] is derived from the mutual information [3]. The mutual information I(Z)
of a multivariate random variable Z = (z1 . . . , zp) is defined as the Kullback-
Leibler divergence between the joint distribution and the product of the marginal
distributions,

I(Z) =
∫

p(z1, . . . , zp) log
p(z1, . . . , zp)
p(z1) . . . p(zp)

dz1 . . . dzp. (2)

This quantity presents all the required properties for a contrast function: it
is nonnegative and equals zero if and only if the variables Z are statistically
independent. Hence, its global minimum corresponds to the solution of the ICA
problem.

The challenge is to get a good estimator of I(Z). A possible approach is to
express the mutual information in terms of the differential entropy of a univariate
random variable z,

S(z) =
∫

p(z) log(p(z))dz, (3)

for which efficient statistical estimators are available.
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According to definitions (2) and (3), the following holds,

I(Z) =
p∑

i=1

S(zi) − S(z1, . . . , zp). (4)

The introduction of the demixing model Z = WT X within (4) results in

γ(W ) =
p∑

i=1

S(i)(W ) − log(|W |) − S(x1, . . . , xp), (5)

where S(i)(W ) = S(eT
i WT X) and ei is the ith basis vector. The last term

of (5) is constant and its evaluation can be skipped by the ICA algorithm. An
estimator for the differential entropy of univariate variables was derived in [2] by
considering order statistics. Given a univariate random variable z defined by its
samples, the order statistics of z is the set of samples {z1, . . . , zN} rearranged
in non-decreasing order, i.e., z1 ≤ . . . ≤ zN . The differential entropy of z can be
estimated by the simple formula

S(z) =
1

N − m

N−m∑

j=1

log
(

N + 1
m

(z(j+m) − z(j))
)

, (6)

where m is typically set to
√

N . Function (5) with the differential entropies being
estimated by (6) is the contrast of the RADICAL algorithm [2].

This contrast presents several assets in terms of robustness. Its robustness to
outliers was underlined in the original paper [2]. Robustness to outliers means
that the presence of some corrupted entries in the observations data set X has
little influence on the position of the global minimizer of that contrast. This is a
key feature in many applications, especially for the analysis of gene expression
data [4], where each entry in the observation matrix results from individual
experiments that are likely to sometimes fail. The RADICAL contrast brings also
advances in terms of robustness to the lack of samples. This will be illustrated
in Section 5.

3 A Line-Search Optimization Algorithm

In accordance with the fact that the independence between random variables
is not altered by scaling, the contrast function (5) presents the scale invariance
property

γ(W ) = γ(WΛ),

for all invertible diagonal matrices Λ. Optimizing a function with such an invari-
ance property is a degenerate problem, which entails difficulties of theoretical
(convergence analysis) and practical nature unless some constraints are intro-
duced. In the case of prewhitening-based ICA, it is common practice to restrict
the matrix W to be orthonormal [1], i.e., WT W = I. Classical constrained op-
timization methods could be used. We favor the alternative to incorporate the
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constraints directly into the search space and to perform unconstrained opti-
mization over the orthogonal group, i.e.,

min
W∈Op

γ(W ) with Op = {W ∈ R
p×p|WT W = I}. (7)

Most classical unconstrained optimization methods — such as gradient-descent,
Newton, trust-region and conjugate gradient methods — have been generalized
to the optimization over matrix manifolds (see [5] and references therein).

The remainder of this section deals with the derivation of a line-search op-
timization method on the orthogonal group for the RADICAL contrast func-
tion (5). Line-search on a nonlinear manifold is based on the update formula

W+ = RW (tη), (8)

which consists in moving from the current iterate W ∈ Op in the search direction
η with a certain step size t to identify the next iterate W+ ∈ Op. t is a scalar
and η belongs to TW Op = {WΩ|Ω ∈ Rp×p, ΩT = −Ω}, the tangent space to Op

at W . The retraction RW is a mapping from the tangent space to the manifold.
More details about this notion can be found in [5]. Our algorithm selects the
Armijo point tA as step size and the opposite of the gradient of the cost function
γ at the current iterate as search direction.

The Armijo step size is defined by tA = βmα, with the scalars α > 0, β ∈ (0, 1)
and m being the first nonnegative integer such that

γ(W ) − γ(RW (βmα)) ≥ −σ〈gradγ(W ), βmαη〉W ,

where W is the current iterate on Op and σ ∈ (0, 1). This step size ensures a
sufficient decrease of the cost function at each iteration. The resulting line-search
algorithm converges to the set of points where the gradient of γ vanishes [5].

An analytical expression of the gradient of the RADICAL contrast (5) has
been derived in [6]. Let us just sketch the main points of this computation.
First, because of the orthonormality condition, the second term of (5) vanishes.
Furthermore, since the last term is constant, we have

gradγ(W ) =
p∑

i=1

gradS(i)(W ).

The gradient of S(i) is given by

gradS(i)(W ) = PTW

(
gradS̃(i)(W )

)
,

where S̃(i) is the extension of S(i) over Rp×p, i.e., S̃(i) = S(i)|Op , and PTW (Z)
is the projection operator, namely, in case of the orthogonal group, PTW (Z) =
1
2W (WT Z − ZT W ). The evaluation of the gradient in the embedding manifold
is performed by means of the identity

DS̃(i)(W )[Z] = 〈gradS̃(i)(W ), Z〉,



Optimization on the Orthogonal Group for ICA 61

with the metric 〈Z1, Z2〉 = tr(ZT
1 Z2) and where

DS̃(i)(W )[Z] = lim
t→0

S̃(i)(W + tZ) − S̃(i)(W )
t

is the standard directional derivative of S̃(i) at W in the direction Z. Since one
wants to compute the gradient on the orthogonal group, the direction Z can be
restricted to the tangent plane at the current iterate, i.e., Z ∈ TW Op.

As we have shown in [6], the gradient of the differential entropy estimator on
the orthogonal group Op is finally given by

gradS(i)(W ) = PTW

⎛

⎝ 1
N − m

N−m∑

j=1

(x(kj+m) − x(kj))eT
i

eT
i W (x(kj+m) − x(kj))

⎞

⎠ ,

where x(k) denotes the kth column of the data matrix X . The indices kj+m and
kj point to the samples of the estimated source zi, which are respectively at
positions j + m and j in the order statistics of zi. The computational cost for
the gradient is of the same order as for the contrast, namely O(pN log N).

More details about the Armijo point, the computation of gradients and, more
generally, about line-search algorithms on manifolds can be found in [5].

4 Towards a Global Optimization Scheme

The algorithm described in the previous section inherits all the local convergence
properties of line-search optimization methods [5]. Nevertheless, the contrast of
RADICAL presents many spurious local minima that do not properly separate
the observations X into independent sources. The line-search algorithm may thus
fail in the context of ICA. Nevertheless, it leads to an efficient ICA algorithm
when it is initialized within the basin of attraction of the global minimizer W∗. It
is therefore essential to find good initial candidates for the line-search algorithm.
The procedure proposed in this paper rests on empirical observations about the
shape of the contrast function γ(W ). Figure 1 represents the evolution of this
function as well as of the norm of its gradient along geodesic curves on the
orthogonal group Op for a particular benchmark setup (p=6, N=1000).

Figure 1 and extensive simulations not included in the present paper incite
us to view the contrast function of RADICAL as possessing a very deep global
minimum surrounded by many small local minima. Furthermore, the norm of
the gradient tends to be much larger within the basin of attraction of the global
minimizer. The norm of the gradient thus provides a criterion to discriminate
between points that are inside this basin of attraction and those that are outside.

Our algorithm precedes the gradient optimization with the global search of a
point where the gradient has a large magnitude. The search is performed along
particular geodesics of the orthogonal group, exploiting the low numerical cost
of Jacobi rotations. All geodesics on the orthogonal group Op have the form
Γ (t) = WetB, where W ∈ Op and B is a skew-symmetric matrix of the same
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Fig. 1. Evolution of the contrast and the norm of its gradient along geodesics of Op

size as W . Jacobi rotations correspond to B having only zero elements except one
element in the upper triangle and its symmetric counterpart, i.e., B(i, j) = 1 and
B(j, i) = −1 with i < j. The contrast function γ evaluated along such geodesics
has a periodicity of π

2 , i.e.,

γ(WetB) = γ(We(t+π
2 )B)

Such a geodesic is in fact a Jacobi rotation on the two-dimensional subspace
spanned by the directions i and j. This periodicity is an interesting feature for
an exhaustive search over the curvilinear abscissa t since it allows to define upper
and lower bounds for t.

Our algorithm evaluates the gradient at a fixed number of points that are
uniformly distributed on randomly selected geodesics of periodicity π

2 . This pro-
cess is pursued until a point with sufficient steepness is found. The steepness is
simply evaluated by the Frobenius norm of the gradient of γ. Such a point is
expected to belong to the basin of attraction of the global minimum and serves
as initialization for the line-search algorithm of the previous section.

5 Some Benchmark Simulations

This section evaluates the performance of the new algorithm against the perfor-
mance of the RADICAL algorithm. All results are obtained on benchmark setups
that artificially generate observations X by linear transformation of known sta-
tistically independent sources S.

Figure 2 illustrates that the new algorithm reaches the global minimum of the
contrast with less than half the computational effort required by the RADICAL
algorithm. These results are based on a benchmark with N = 1000 samples while
the dimension p of the problem varies from 2 to 8. For each p, five different data
matrices X are obtained by randomly mixing p sources chosen as sinusoids of
random frequencies and random phases. The indicated computational time is an
average over these five ICA runs.

Figure 3 highlights the robustness properties of the contrast discussed in
Section 2. The left graph results from a benchmark with p = 6 sources and



Optimization on the Orthogonal Group for ICA 63

2 3 4 5 6 7 8
0

10

20

30

40

50

60

Dimension (p)

T
im

e 
[s

ec
]

New algorithm
RADICAL

Fig. 2. Reduced computational time of the new ICA algorithm

N = 1000 samples. A given percent of the entries of the data set have been
artificially corrupted to simulate outliers. The right graph considers a bench-
mark with p = 6 sources, no outliers and a varying number of samples. The
quality of the ICA separation is measured by an index α1, which stands for a
good performance once it is close to zero. The left graph indicates that both the
new algorithm and the RADICAL algorithm are robust to these outliers while
classical ICA algorithms such as JADE [7] or FastICA [8] collapse immediately.
It should be noted that the new algorithm supports up to 3% of outliers on the
present benchmark and is thus more robust than RADICAL. Similarly, the right
graph of Figure 3 suggests that the new algorithm is more robust to the lack of
samples than RADICAL.
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Fig. 3. Robustness properties of the new ICA algorithm

6 Conclusions

The RADICAL algorithm [2] presents very desirable robustness properties: ro-
bustness to outliers and robustness to the lack of samples. These are essential
1 Given the demixing matrix W ∗ and the matrix W identified by the ICA algorithm,

α(W, W ∗) = min
Λ,P

‖WΛP − W ∗‖F

‖W ∗‖F
,

where Λ is a non-singular diagonal matrix and P a permutation matrix.
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for some applications, in particular for the analysis of biological data that are
usually of poor quality because of the few number of samples available and the
presence of corrupted entries resulting from failed experiments [4]. The RADI-
CAL algorithm inherits these robustness properties from its contrast function.
In this paper, we have shown that the computation of the demixing matrix by
optimization of the RADICAL contrast function can be performed in a more
efficient manner than with the Jacobi rotation approach considered in [2]. Our
new optimization process works in two stages. It first identifies a point that sup-
posedly belongs to the basin of attraction of the global minimum and performs
afterwards the local optimization of the contrast by gradient-descent from this
point. This new ICA algorithm requires less computational effort and seems to
enhance the robustness margins.
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Abstract. Given a time series of multicomponent measurements of an
evolving stimulus, nonlinear blind source separation (BSS) usually seeks
to find a “source” time series, comprised of statistically independent com-
binations of the measured components. In this paper, we seek a source
time series that has a phase-space density function equal to the product
of density functions of individual components. In an earlier paper, it was
shown that the phase space density function induces a Riemannian ge-
ometry on the system’s state space, with the metric equal to the local
velocity correlation matrix of the data. From this geometric perspective,
the vanishing of the curvature tensor is a necessary condition for BSS.
Therefore, if this data-derived quantity is non-vanishing, the observa-
tions are not separable. However, if the curvature tensor is zero, there is
only one possible set of source variables (up to transformations that do
not affect separability), and it is possible to compute these explicitly and
determine if they do separate the phase space density function. A longer
version of this paper describes a more general method that performs
nonlinear multidimensional BSS or independent subspace separation.

1 Introduction

Consider a set of data consisting of x̃(t), a time-dependent multiplet of n mea-
surements (x̃k for k = 1, 2, . . . , n). The usual objectives of nonlinear BSS are: 1)
to determine if these observations are instantaneous mixtures of n statistically
independent source components x(t)

x̃(t) = f [x(t)] (1)

where f is an unknown, possibly nonlinear, n-component mixing function, and, if
so, 2) to compute the mixing function. In most approaches to this problem [1,2],
the desired source components are required to be statistically independent in the
sense that their state space density function ρ(x) is the product of the density
functions of the individual components. However, it is well known that this
problem always has many solutions (see [3] and references therein). Specifically,
any observed density function can be integrated in order to construct an entire
family of functions f−1 that transform it into a separable (i.e., factorizable)
form.
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The observed trajectories of many classical physical systems [4] can be char-
acterized by density functions in phase space (i.e., (x̃, ˙̃x)-space). Furthermore, if
such a system is composed of non-interacting subsystems, the state space vari-
ables can be chosen so that the system’s phase space density function is separable
(i.e., is the product of the phase space density functions of the subsystems). This
fact motivates the approach to BSS described in this paper [5]: we search for a
function of the state space variable x̃ that transforms the observed phase space
density function ρ̃(x̃, ˙̃x) into a separable form. Unlike conventional BSS, this
“phase space BSS problem” has a unique solution in the following sense: either
the data are inseparable, or they can be separated by a mixing function that is
unique, up to transformations that do not affect separability (translations, per-
mutations, and possibly nonlinear rescaling of individual source components).
This form of the BSS problem has a unique solution because separability in
phase space is a stronger requirement than separability in state space. In other
words, if a choice of variables x leads to a separable phase space density function,
it also produces a separable state space density function; however, the converse
is not true. In particular, the above-mentioned procedure of using integrals of
the state space density function to transform it into separable form [3] cannot
be used to separate the phase space density function.

It was previously demonstrated [6] that the phase space density function of
a time series induces a Riemannian metric on the system’s state space and that
this metric can be directly computed from the local velocity correlation matrix
of the data. In the following Section, we show how this differential geometry can
be used to determine if there is a source coordinate system in which the phase
space density function is separable and, if so, to find the transformation between
the coordinate systems of the observed variables and the source variables. In a
technical sense, the method is straight-forward. The data-derived metric is dif-
ferentiated to compute the affine connection and curvature tensor on state space.
If the curvature tensor does not vanish, the observed data are not separable. On
the other hand, if the curvature tensor does vanish, there is only one possible
set of source variables (up to translations, permutations, and transformations of
individual components), and it is possible to compute these explicitly and de-
termine if they do separate the phase space density function. A longer version of
this paper [5] describes the solution of a more general BSS problem (sometimes
called multidimensional independent component analysis [MICA] or indepen-
dent subspace analysis) in which the source components can be partitioned into
groups, so that components from different groups are statistically independent
but components belonging to the same group may be dependent [7,8,9].

As mentioned above, this paper exploits a stronger criterion of statistical in-
dependence than conventional approaches (i.e., separability of the phase space
density function instead of separability of the state space density function). Fur-
thermore, the new method differs from earlier approaches on the technical level.
For example, the proposed method exploits statistical constraints on source time
derivatives that are locally defined in the state space, in contrast to the usual
criteria for statistical independence that are global conditions on the source time
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series or its time derivatives [10]. Furthermore, the nonlinearities of the mixing
function are unraveled by imposition of local second-order statistical constraints,
unlike many conventional approaches that rely on higher-order statistics [1,2].
In addition, the constraints of statistical independence are used to construct the
mixing function in a “deterministic” manner, without the need for parameter-
izing it (with a neural network architecture or other means) and without using
probabilistic learning methods [11,12]. And, the new method is quite general, un-
like some other techniques that are limited to the separation of post-nonlinear
mixtures [13] or other special cases. Finally, the use of differential geometry in
this paper should not be confused with existing applications of differential geom-
etry to BSS. In our case, the observed measurement trajectory is used to derive
a metric on the system’s state space, and the vanishing of the curvature tensor is
shown to be a necessary condition for separability of the data. In contrast, other
authors [14] define a metric on a completely different space, the search space of
possible mixing functions, so that “natural” (i.e., covariant) differentiation can
be used to expedite the search for the function that optimizes the fit to the
observed data.

2 Method

This Section describes how the phase space density function of the observed data
induces a Riemannian geometry on the state space and shows how to compute the
metric and curvature tensor of this space from the observed time series. Next,
we show that, if curvature tensor is non-vanishing, the observed data are not
separable. However, if the curvature tensor vanishes, we show how to determine
whether the data are separable, and, if they are, we show how to find the mixing
function, which is essentially unique.

Let x = x(t) (xk for k = 1, 2, . . . , n) denote the trajectory of a time series.
Suppose that there is a phase space density function ρ(x, ẋ), which measures
the fraction of total time that the trajectory spends in each small neighborhood
dxdẋ of (x, ẋ)-space (i.e., phase space). As discussed in [6], most classical physical
systems in thermal equilibrium with a “bath” have such a phase space density
function: namely, the Maxwell-Boltzmann distribution [4]. Next, define gkl(x) to
be the local second-order velocity correlation matrix [6]

gkl(x) =< (ẋk − ¯̇xk) (ẋl − ¯̇xl) >x (2)

where the bracket denotes the time average over the trajectory’s segments in a
small neighborhood of x and where ¯̇x =< ẋ >x, the local time average of ẋ.
In other words, gkl is a combination of first and second moments of the local
velocity distribution. Because this correlation matrix transforms as a symmetric
contravariant tensor, it can be taken to be a contravariant metric on the system’s
state space. Furthermore, as long as the local velocity distribution is not con-
fined to a hyperplane in velocity space, this tensor is positive definite and can be
inverted to form the corresponding covariant metric gkl. Thus, under these con-
ditions, the time series induces a non-singular metric on state space. This metric
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can then be used to compute the affine connection Γ k
lm and Riemann-Christoffel

curvature tensor Rk
lmn of state space by means of the standard formulas of

differential geometry [15]

Γ k
lm(x) =

1
2
gkn(

∂gnl

∂xm
+

∂gnm

∂xl
− ∂glm

∂xn
) (3)

and

Rk
lmn(x) = −∂Γ k

lm

∂xn
+

∂Γ k
ln

∂xm
+ Γ k

imΓ i
ln − Γ k

inΓ i
lm (4)

where we have used the Einstein convention of summing over repeated indices.
Now, assume that the data are separable and that x represents a set of source

variables; i.e., assume that the phase space density function ρ is equal to the
product of density functions of each component of x. It follows from definition
(2) that the metric gkl(x) is diagonal and has positive diagonal elements, each
of which is a function of the corresponding coordinate component. Therefore,
the individual components of x can be transformed in order to create a new
state space coordinate system in which the metric is the identity matrix and the
curvature tensor (4) vanishes. It follows that the curvature tensor must vanish
in every coordinate system, including the coordinate system x̃ defined by the
observed data

R̃k
lmn(x̃) = 0 (5)

In other words, the vanishing of the curvature tensor is a necessary consequence
of separability. Therefore, if this data-derived quantity does not vanish, the data
cannot be transformed so that their phase space density function is separable.

On the other hand, if the data do satisfy (5), there is only one possible sepa-
rable coordinate system (up to transformations that do not affect separability),
and it can be explicitly constructed from the observed data x̃(t). To see this, first
note that, on a flat manifold (e.g., (5)) with a positive definite metric, it is always
possible to explicitly construct a “Euclidean” coordinate system for which the
metric is the identity matrix. Furthermore, if a coordinate system has a diagonal
metric with positive diagonal elements that are functions of the corresponding
coordinate components, it can be derived from this Euclidean one by means
of an n-dimensional rotation, followed by transformations that do not affect
separability (i.e., translations, permutations, and transformations of individual
components). Therefore, because every separable coordinate system must have a
diagonal metric with the aforementioned properties, all possible separable coor-
dinate systems can be found by constructing a Euclidean coordinate system and
then finding all rotations of it that are separable. The first step is to construct
a Euclidean coordinate system in the following manner: 1) at some arbitrarily-
chosen point x̃0, select n small vectors δx̃(i) (i = 1, 2, . . . , n) that are orthonormal
with respect to the metric at that point (i.e., g̃kl(x̃0)δx̃(i)kδx̃(j)l = δij , where δij

is the Kronecker delta); 2) starting at x̃0, use the affine connection to repeat-
edly parallel transfer all δx̃ along δx̃(1); 3) starting at each point along the
resulting geodesic path, repeatedly parallel transfer these vectors along δx̃(2);
... continue the parallel transfer process along other directions ... n+1) starting
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at each point along the most recently produced geodesic path, parallel transfer
these vectors along δx̃(n). Finally, each point is assigned the geodesic coordinate
s (sk, k = 1, 2, . . . , n), where sk represents the number of parallel transfers of the
vector δx̃(k) that was required to reach it. Differential geometry [15] guarantees
that the metric of a flat, positive definite manifold will be the identity matrix in
a geodesic coordinate system constructed in this way. We can now transform the
data into this Euclidean coordinate system and examine the separability of all
possible rotations of it. The easiest way to do this is to compute the second-order
correlation matrix

σkl =< (sk − s̄k) (sl − s̄l) > (6)

where the brackets denote the time average over the entire trajectory and
s̄ =< s >. If this data-derived matrix is not degenerate, there is a unique rotation
that diagonalizes it, and the corresponding rotation of the s coordinate system
is the only candidate for a separable coordinate system (up to transformations
that do not affect separability). Its separability can be determined by explicitly
computing the data’s phase space density function in order to see if it factor-
izes in this rotated coordinate system. Alternatively, we can use higher-order
statistical criteria to see if the rotated s components are truly independent.

In summary, the BSS problem can be solved by the following procedure:

1. Use the data x̃(t) to compute the metric, affine connection, and curvature
of the state space [(2-4)].

2. If the curvature does not vanish at each point, the data are not separable.
3. If the state space curvature does vanish:

(a) Compute the transformation to a Euclidean coordinate system s and
transform the data into it.

(b) Find the rotation that diagonalizes the second-order correlation matrix σ
and transform to the corresponding rotation of the s coordinate system.

(c) Compute the phase space density function of the data in the rotated s
coordinate system.

(d) If the density function factorizes, the data are separable, and the rotated
s coordinates are the unique source variables (up to translations, per-
mutations, and transformations of individual components). If the density
function does not factorize, the data are not separable.

3 Discussion

This paper outlines a new approach to nonlinear BSS that is based on a notion of
statistical independence, which is characteristic of a wide variety of classical non-
interacting physical systems. Specifically, the new method seeks to determine if
the observed data are mixtures of source variables that have a phase-space den-
sity function equal to the product of density functions of individual components.
This criterion of statistical independence is stronger than that of conventional
approaches to BSS, in which only the state-space density function is required
to be separable. Because of the relative strength of this requirement, the new
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approach to BSS produces a unique solution in each case (i.e., data are either
inseparable or are separable by a unique mixing function), unlike the conven-
tional approach that always finds an infinite number of mixing functions. Given
a time series of observations in a measurement-defined coordinate system (x̃) on
the system’s state space, the basic problem is to determine if there is another co-
ordinate system (a source coordinate system x) in which the density function is
factorizable. The existence (or non-existence) of such a source coordinate system
is a coordinate-system-independent property of the time series of data (i.e., an
intrinsic or “inner” property). This is because, in all coordinate systems, there
either is or is not a transformation to such a source coordinate system. In general,
differential geometry provides mathematical machinery for determining whether
a manifold has a coordinate-system-independent property like this. In the case
at hand, we can induce a geometric structure on the state space by identifying its
metric with the local second-order correlation matrix of the data’s velocity [6].
Then, a necessary condition for BSS is that the curvature tensor vanishes in all
coordinate systems (including the measurement coordinate system). Therefore,
if this data-derived quantity is non-vanishing, the observations are not separable.
However, if the curvature tensor is zero, the data are separable if and only if the
density function is seen to factorize in a coordinate system that can be explicitly
constructed from the data-derived affine connection. In that case, these coordi-
nates are the unique source variables (up to transformations that do not affect
separability).

A longer version of this paper [5] describes the solution of a more general BSS
problem (sometimes called multidimensional ICA or independent subspace anal-
ysis) in which the source components are only required to be partitioned into
groups that are statistically independent of one another but contain statistically
interdependent variables [7,8,9]. The possible separable coordinate systems are a
subset of all coordinate systems in which the metric is block -diagonal (instead of
fully diagonal as in this paper). All of these “block-diagonal coordinate systems”
can be derived from geodesic coordinate systems constructed from geodesics
along a finite number of special directions in state space, and these special direc-
tions can be computed from algebraic equations involving the curvature tensor.
Thus, it is possible to construct every block-diagonal coordinate system and then
explicitly determine if the density function is separable in it. An exceptional sit-
uation arises if the metric can be transformed into a block-diagonal form with
two or more one-dimensional blocks. In this case, there is an unknown rotation
on this two-dimensional (or higher dimensional) subspace that is not determined
by the requirement of metric block-diagonality. However, much as in Sect. 2, this
rotation can be determined by applying other statistical requirements of sepa-
rability, such as block diagonality of the second-order state variable correlation
matrix or block-diagonality of higher-order local velocity correlation functions.
In reference [5], this procedure for performing multidimensional ICA is described
in detail, and it is illustrated with analytic examples, as well as with a detailed
numerical simulation of an experiment.
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What are the limitations of the applicability of this method? It is certainly
critical that there be a well-defined metric on state space. However, this will be
the case if the measurement time series is described by a phase space density
function, a requirement that is satisfied by the trajectories of a wide variety
of physical systems [6]. In practical applications, the measurements must cover
state space densely enough to be able to compute the metric, as well as its first
and second derivatives (required to calculate the affine connection and curvature
tensor). In the numerical simulation in [5], approximately 8.3 million short tra-
jectory segments (containing a total of 56 million points) were used to compute
the metric and curvature tensor on a three-dimensional state space. Of course,
if the dimensionality of the state space is higher, even more data will be needed.
So, a relatively large amount of data may be required in order to be able to
determine their separability. There are few other limitations on the applicability
of the technique. For example, computational expense is not prohibitive. The
computation of the metric is the most CPU-intensive part of the method. How-
ever, it can be distributed over multiple processors by dividing the observed data
into “chunks” corresponding to different time intervals, each of which is sent to a
different processor where its contribution to the metric (2) is computed. As ad-
ditional data are accumulated, they can be processed separately and then added
into the time average of the data that were used to compute the earlier estimate
of the metric. Thus, the earlier data need not be processed again, and only the
latest observations need to be kept in memory.
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Abstract. A framework named copula component analysis (CCA) for
blind source separation is proposed as a generalization of independent
component analysis (ICA). It differs from ICA which assumes indepen-
dence of sources that the underlying components may be dependent by
certain structure which is represented by Copula. By incorporating de-
pendency structure, much accurate estimation can be made in principle
in the case that the assumption of independence is invalidated. A two
phrase inference method is introduced for CCA which is based on the
notion of multi-dimensional ICA. Simulation experiments preliminarily
show that CCA can recover dependency structure within components
while ICA does not.

1 Introduction

Blind source separation (BSS) is to recover the underlying components from
their mixtures, where the mixing matrix and distribution of the components
are unknown. To solve this problem, independent component analysis (ICA) is
the most popular method to extract those components under the assumption
of statistically independence[1,2,3,4,5]. However, in practice, the independence
assumption of ICA cannot always be fully satisfied and thus strongly confines its
applications. Many works have been contributed to generalize the ICA model,[6]
such as Tree-ICA[7], Topology ICA[8]. A central problem of those works is how
to relax the independent assumption and to incorporate different kinds of de-
pendency structure into the model.

Copula [9] is a recently developed mathematical theory for multivariate
probability analysis. It separates joint probability distribution function into the
product of marginal distributions and a Copula function which represents the
dependency structure of random variables. According to Sklar theorem, given
a joint distribution with margins, there exists a copula uniquely determined.
Through Copula, we can clearly represent the dependent relation of variables
and analysis multivariate distribution of the underlying components.

The aim of this paper is to use Copula to model the dependent relations
between elements of random vectors. By doing this, we transform BSS into a
parametric or semi-parametric estimation problem which mainly concentrate on
the estimation of dependency structure besides identification of the underlying
components as ICA do.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 73–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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This paper is organized as follows: we briefly review ICA and its extensions in
section 2. The main conclusions of copula theory are briefly introduced in sec-
tion 3. In section 4, we propose a new model for BSS, named copula component
analysis (CCA) which takes dependency among components into consideration.
Inference method for CCA is presented in section 5. Simulation experiments are
presented in section 6. Finally, we conclude the paper and give some further
research directions.

2 ICA and Its Extensions

Given a random vector x, ICA is modeled as

x = As, (1)

where the source signals s = {s1, . . . , sn} assume to be mutually independent, A
and W = A− is the invertible mixing and demixing matrix to be solved so that
the recovered underlying components {s1, . . . , sn} is estimated as statistically
independent as possible.

Statistical independence of sources means that the joint probability density
of x and s can be factorized as

p(x) = p(As) =| det(W) | p(s)
p(s) =

∏n
i=1 pi(si)

(2)

The community has presented many extensions of ICA with different types of
dependency structures. For example, Bach and Jordan [7] assumed that depen-
dency can be modeled as a tree (or a forest). After the contrast function is ex-
tended with T-mutual information, Tree-ICA tries to find both a mixing matrix
A and a tree structure T by embedding a Chow-Liu algorithm into algorithm.
Hyvärinen etc. [8] introduced the variance into ICA model so as to model depen-
dency structure. Cardoso generalized the notion of ICA into multidimensional
ICA using geometrical structure.[6]

3 A Brief Introduction on Copula

Copula is a recently developed theory which separates the margin law and the
joint law and therefore gives dependency structure as a function. According to
Nelson [9], it is defined as follows:

Definition 1 (Copula). A bidimensional copula is a function C(x, y) : I2 �→ I
with following properties:

1. (x, y) ⊂ I2

2. C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1) ≥ 0, for x1 ≤ x2 and y1 ≤ y2;
3. C(x, 1) = x and C(1, y) = y.

It’s not hard to know that such defined C(x, y) is a cdf on I2. Multidimensional
version can be generalized in a same manner which presents in [9].
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Theorem 1 (Sklar Theorem). Given a multidimensional random vector x =
(x1, . . . , xn) ∈ Rn with its corresponding distribution function and density func-
tion ui = Fi(xi) and pi(xi), i = 1, . . . , n. Let F (x) : Rn �→ I denotes the joint
distribution, then there exists a copula C(·) : In �→ I so that

F (x) = C(u). (3)

where u = (u1, . . . , un).
If the copula is differentiable, the joint density function of F (x) is

P1,...,n(x) =
n∏

i=1

pi(xi)C′(u). (4)

where C′(u) = ∂C(u)
∂u1,...,∂un

.

Given a random vector x = (x1, . . . , xn) with mutually independent variables,
and their cdf F (x) =

∏
i Fi(xi). It is easy to obtain that the corresponding

copula function called Product Copula is C(u) =
∏

i ui and C′(u) = 1.

4 Copula Component Analysis

4.1 Geometry of CCA

As previously stated, ICA assumes that the underlying components are mutually
independent, which can be represented as (1). CCA also use the same represen-
tation (1) as ICA, but without independence assumption. Here, Let the joint
density function represents by Copula:

pc(x) =
N∏

i=1

pi(xi)C′(u) (5)

where the dependency structure is modeled by function C(u).
The goal of estimation is to minimize the distance between the ’real’ pdf of

random vector x and its counterpart of the proposed model. Given a random
vector x with pdf p(x), the distance between p(x) and pc(x) in a sense of K-L
divergence can be represented as

D(p‖pc) = Ep(x) log
p(x)
pc(x)

= Ep(x) log
p(x)∏
i pi(xi)

− Ep(x) log C′(u)
(6)

The first term on the right of (6) is corresponding to the K-L divergence between
p(x) and ICA model and the second term is corresponding to entropy of copula
C(x).
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Theorem 2. Given a random vector x = (x1, . . . , xn) ∈ Rn with pdf p(x) and
its joint pdf pc(x) =

∏n
i=1 pi(xi)C′(u), where ui = Fi(xi) is the cdf of xi and

dependency structure is presented by copula function C(u) : In �→ I,u ∈ Rn and
C′(u) = ∂nC(u)

∂u1,...,∂un
is the derivative of C(u). The K-L divergence D(p‖pc) is as

D(p‖pc) = I(x1, . . . , xn) + H(C′(u)). (7)

where H(·) is the Shannon differential entropy.

That is, the K-L divergence between p(x) and pc(x) equal to the sum of the
mutual information I(x) and copula entropy H for function u ∼ C′.

Using the invariant of K-L divergence, we now have the following corollary to
Theorem 2 for BSS problem s = Wx.

Corollary 1. With the same denotation of Theorem 2, the K-L divergence for
BSS problem is

D(p‖pc) = I(s1, . . . , sn) + H(C′(us)), (8)

where us denotes the marginal variable for sources s. Assume that the number
of sources equals to that of observations.

In other words, the distance between ICA model and the true model is presented
by dependency structure and its value equals to entropy of the underlying copula
function. It can be easily learned from (7) that if dependency structure was
incorporated into model, the distance between data and model can be further
closer than that of ICA model.

ICA is a special case when it assumes mutual independence of underlying
components. Actually, ICA only minimizes the first part of (7) under the as-
sumption of independence. This also explains why sometime ICA model is not
applicable when dependency relations between source components exist.

4.2 Multidimensional ICA

From the notion of multidimensional ICA generalized from ICA by Cardoso [6],
it can be derived that

p(x) =
m∏

k=1

pk(xk) =
m∏

k=1

pk(xik
, . . . , xik+1−1)

=
m∏

k=1

ik+1−1∏

l=ik

pk(xl)C′k(uk) =
n∏

i=1

pi(xi)
m∏

k=1

C′k(uk)

(9)

where Ck(·) is the copula with respect to pk(·). On the other side, the definition
of copula gives

p(x) =
n∏

i=1

pi(xi)C′(u) (10)

According to Sklar theorem, if all pi(·) exist, then C(·) is unique. Therefore, we
can derive the following result.
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Theorem 3. The copula corresponding to multidimensional ICA is factorial if
all the marginal pdf of component exist, that is

C′(u) =
m∏

k=1

C′k(uk) (11)

Proof. Because of the unique of C, the above (11) can be easily derived by
comparing (9) and (10).

The theorem can guide hypothesis selection of copula. That is, Copula should
be factorized as a product of sub-function with different type for dependency
structure of different sub-space.

Combining (7) and (11), we can derived the following:

D(p‖pc) = I(u1, . . . , un) +
m∑

k=1

H(C′k) (12)

It means that the distance between the true model and ICA model composes of
entropy of Copulas which corresponds to every un-factorial ICs spaces. There-
fore, if we want to derive a model much closer to the ’true’ one than ICA, we
should find dependency structure of each space, that is, approach the goal step
by step. This is one of the guide principles for designing algorithm of copula
component analysis.

5 Inference of CCA

5.1 General Framework

In this section, we study inference method for CCA based on the notion of
multidimensional ICA. Suppose the underlying copula function parameterized
by θ ∈ Θ, thus the estimation of CCA should infer the demixing matrix W and
θ. According to theorem 2, estimation of the underlying sources through our
model requires the minimization of the K-L divergence of (7) or (12). Thus the
objective function is

min D(p‖pc;W, θ) (13)

which composes of two sub-objective: min I(x1, . . . , xn;W) and minH(C′(u);
W, θ). Because u in the latter objective depends on the structure of IC spaces
derived from the former objective, we should handle the optimal problem min
I(x1, . . . , xn;W) at first. The first objective can be achieved by ICA algorithm.
For the second one we proposed the Infomax like principle given a parametric
family of copula.

We propose that the framework of CCA composes of two phrases:

1. Solve W through minimization of mutual information .
2. Determine W and θ so that the objective function (13) is minimized.
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5.2 Maximum Likelihood Estimation

Given the parametric model of Copula, maximum likelihood estimation can be
deployed under the constraint of ICA. Consider a group of independent ob-
servations x1, . . . , xT of n × 1 random vector X with a common distribution
P = C′θ(x)

∏T
i=1 pi(xi); θ ∈ Θ where pi(xi) is marginal distribution associated

with xi, and the log-likelihood is

L(W, θ) =
1
T

log C′θ(x)
T∏

i=1

pi(xi)

=
1
T

T∑

i=1

log pi(xi) +
1
T

log C′θ(x)

(14)

The representation is consist with two-phrase CCA framework in that the first
term on the right of equation (14) implies mutual information of x and that the
second term is empirical estimation of entropy of x. It is not hard to proof that

min D(p‖pc) ⇔ maxL(W, θ) (15)

5.3 Estimation of Copula

Suppose the IC subspaces have been correctly determined by ICA and then we
can identify the copula by minimizing the second term on the right of (7). Given
a class of Copula C(u; θ) with parameter vector θ ∈ Θ, and a set of sources
s = (s1, . . . , sn) identified from data set X, the problem is such a optimization
one

max
W,θ

Ep(s)(C′(us; W, θ)) (16)

By using Sklar theorem, the copula to be identified has been separate with
marginal distributions which are known except non-Gaussianity in ICA model.
Therefore, the problem here is a semi-parametric one and only need identifying
the copula.

Parametric method is adopted. First, we should select a hypothesis for copula
among many types of copula available. The selection depends on many factors,
such as priori knowledge, computational ease, and individual preference. Due to
space limitations, only few of them are introduced here. For more detail please
refer to [9].

When a set of sources s and a parametric copula C(·; θ) is prepared, the
optimization of (16) becomes an optimization problem which can be solved as
follows:

n∑

si=1

∂C′

∂θ
(u; θ) = 0 (17)

where many readily methods can be utilized.
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6 Simulation Experiments

In this section, simulation experiments are designed to compare CCA and ICA
on two typical cases to investigate whether CCA can perform better than ICA
as previous stated. One cases is with independent components and the other is
where there are dependent components.

We first apply both methods on independent components recovery from their
mixtures and then on recovery of components with dependency structure. In both
experiments, the basic case of BSS with two components are considered. Two
components are generated by bi-variate distribution associated with Gumbel
copula:

C(u, v) = exp
((

(− ln u)θ + (− ln v)θ
)−θ

)
(18)

where θ = 1, 5 respectively. Note that two components such generated are inde-
pendent when θ = 1 and thus compose of sources of ICA problem. The marginal
density of components are uniform. Sources are mixed by randomly generated
and invertible 2 × 2 matrix A. In our experiments, A is

A =
(

0.4936 0.9803
0.4126 0.5470

)

Both ICA and CCA are used to recover the components from their mixtures.
Without the attention to study model selection, Gumbel copula family is adopted
in CCA method.

The results are illustrated in Figure 1. Due to space limitations, we only
present copula density structure of sources and their recoveries by both methods
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Fig. 1. Simulation experiments. The left column is for independent component exper-
iments and the right column is for the experiment of components by Gumbel copula.
The top two sub-figure is sources and (a) and (b) is their corresponding copula density.
(c) and (d) is for ICA and (e) and (f) is for CCA.
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in Figure 1. Note that copula density structure should be a plane if two compo-
nents are independent, that is, C(u, v) = 1. It can be learned from figure 1 that
both methods works well when components are mutually independent and more
importantly that ICA always try to extracts components mutually independent
while CCA can recover the dependency between components successfully.

7 Conclusions and Further Directions

In this paper, a framework named Copula Component Analysis for blind source
separation is proposed as a generalization of ICA. It differs from ICA which as-
sumes independence of sources that the underlying components may be depen-
dent with certain structure which is represented by Copula. By incorporating
dependency structure, much accurate estimation can be made, especially in the
case where the assumption of independence is invalidated. A two phrase inference
method is introduced for CCA which is based on the notion of multidimensional
ICA. A preliminary simulated experiment demonstrates the advantage of CCA
over ICA on dependency structure discovery. Many problems remain to be stud-
ied in the future, such as Identifiability of the method, selection of copula model
and applications.
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Abstract. The discussion in this paper revolves around the notion of
separation problems. The latter can be thought of as a unifying concept
which includes a variety of important problems in applied mathematics.
Thus, for example, the problems of classification, clustering, image seg-
mentation, and discriminant analysis can all be regarded as separation
problems in which one is looking for a decision boundary to be used in or-
der to separate a set of data points into a number of (homogeneous) sub-
sets described by different conditional densities. Since, in this case, the
decision boundary can be defined as a hyperplane, the related separation
problems can be regarded as geometric. On the other hand, the problems
of source separation, deconvolution, and independent component analy-
sis represent another subgroup of separation problems which address the
task of separating algebraically mixed signals. The main idea behind the
present development is to show conceptually and experimentally that
both geometric and algebraic separation problems are very intimately
related, since there exists a general variational approach based on which
one can recover either geometrically or algebraically mixed sources, while
only little needs to be modified to go from one setting to another.

1 Introduction

Let X = {xi ∈ IRd, i = 1, . . . , N} be a set of N observations of a random variable

X which is described by M conditional densities {pk(x)
def
= p(x | X ∈ Ck)}M

k=1,
with Ck denoting a class to which a specific realization of X may belong. In
other words, the set X can be viewed as a mixture of realizations of M random
variables associated with different classes described by corresponding probability
densities. In this case, the problem of classification (or, equivalently, separation)
refers to the task of ascribing each observation xi to the class Ck which it has
most likely come from. The most challenging version of the above problem occurs
in the case when the decision has to be made given the observed set X alone.

The setting considered above is standard for a variety of important problems
in applied mathematics. Probably, the most famous examples here are unsu-
pervised machine learning and data clustering [1,2]. Signal detection and image
segmentation are among other important examples of the problems which could
be embedded into the same separation framework [3,4]. It should be noted that,
although a multitude of different approaches have been proposed previously to
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address the above problems, most of them are similar at the conceptual level.
Specifically, viewing the observations {xi} as points on either a linear or a non-
linear manifold Ω, the methods search for such a partition of the latter so that
the points falling at different subsets of Ω are most likely associated with differ-
ent classes Ck. Moreover, the boundaries of the partition, which are commonly
referred to as decision boundaries, are usually defined by means of geometric
descriptors. The latter, for example, can be hyperplanes in machine learning [1]
or active contours [4] in image segmentation. For this reason, we refer to the
problems of this type as the problems of geometric source separation (GSS), in
which case the data set X is considered to be a geometric mixture of unknown
sources.

In parallel to the case of GSS, there exists an important family of problems
concerned with separating sources that are mixed algebraically [5]. In a canonical
setting, the problem of algebraic source separation (ASS) can be formulated as
follows. Let S be a vector of M signals (sources) [s1(t), s2(t), . . . , sM (t)]T , with
t = 1, . . . , T being either a temporal or a spatial variable. Also, let A ∈ IRM×M

be an unknown mixing matrix of full rank. Subsequently, the problem of blind
source separation consists in recovering the sources given an observation of their
mixtures X = [x1(t), x2(t), . . . , xM (t)]T acquired according to1:

X = AS. (1)

Note that, in (1), neither the sources S nor the matrix A are known, and hence
the above estimation problem is conventionally referred to as blind. Note that
the problem of (algebraic) blind source separation constitutes a specific instance
of Independent Component Analysis, which is a major theory encompassing a
great number of applications [5]. Moreover, when M = 1 and A is defined to
be a convolution operator, the resulting problem becomes the problem of blind
deconvolution [6], which can also be inscribed in our framework of separation
problems.

The main purpose of this paper is to show conceptually and experimentally
that both GSS and ASS problems are intimately interrelated, since they can
be solved using the same tool based on variational analysis [7]. To define this
tool, let us first introduce an abstract, geometric separation operator ϕ : X �→
{Sk}M

k=1 that “sorts” the points of X into M complementary and mutually
exclusive subsets {Sk}M

k=1 which represent estimates of the geometrically mixed
sources. On the other hand, in the case of ASS, the separation operator is defined
algebraically as a de-mixing matrix W ∈ IRM×M such that:

S � WX, (2)

with S and X defined to be S = [s1(t), . . . , sM (t)]T and X = [x1(t), . . . , xM (t)]T ,
respectively.

Additionally, let yk be an estimate of either a geometric or an algebraic k-th
source signal, computed via applying either ϕ or W to the data. This estimate
1 Here and hereafter, the matrix A is assumed to be square which is merely a technical

assumption which can be dropped; this is discussed in the sequel.



On Separation of Signal Sources Using Kernel Estimates 83

can be characterized by its empirical probability density function (pdf) which
can be computed as given by:

p̃k(z) =
1

Nk

Nk∑

t=1

K(z − yk(t)), z ∈ IRd, (3)

where Nk is the size of the estimate (that is independent of k in the case of ASS).
Note that (3) defines a kernel based estimate of the pdf of yk when the kernel
function K(z) is normalized to have unit integral [8]. There exist a number of
possibilities for choosing K(z), among which the most frequent one is to define
the kernel in the form of a Gaussian density function. Accordingly, this choice
of K(z) is used throughout the rest of this paper.

The core idea of the preset approach is quite intuitive and it is based on
the assumption that the “overlap” between the informational contents of the
estimated sources has to be minimal. To minimize this “overlap”, we propose
to find the optimal separation operator (viz. either ϕ or W) as a minimizer
of the cumulative Bhattacharyya coefficient between the empirical pdfs of the
estimated sources, which is defined to be [9]:

BM =
2

M(M − 1)

∑

i<j

∫

IRd

√
p̃i(z) p̃j(z)dz, i, j = 1, . . . , M. (4)

It should be noted that, apart from the Bhattacharyya coefficient, a number
of alternative metrics are available to assess the distance between the probabil-
ity densities. Thus, for example, the Kullback-Leibler divergence was employed
in [10] and [5] to solve the problems of image segmentation and blind source
separation, respectively. However, for the reasons discussed below, we prefer us-
ing (4), since it results in comparatively more stable and reliable separation.
To demonstrate how BM can be used to unify the concept of separation, as
it appears in both geometric and algebraic settings, we turn to some specific
examples, among which the problem of image segmentation is chosen to be first.

2 Geometric Source Separation: Image Segmentation

In order to facilitate the discussion, we confine the derivations below to the case
of two segmentation classes. In this case, the values of a vector-valued image
I(u) : Ω ⊆ IR2 → IRd are viewed as a geometric mixture of two sources, viz. the
object of interest and its background. Consequently, the segmentation problem
can be reformulated as the problem of partitioning the domain of definition Ω
of I(u) (with u ∈ Ω) into two mutually exclusive and complementary subsets
Ω− and Ω+. These subsets can be represented by their respective characteristic
functions χ− and χ+, which can, in turn, be defined as χ−(u) = H(−ϕ(u)) and
χ+(u) = H(ϕ(u)), with H standing for the Heaviside function.

Given a level-set function ϕ(u), its zero level set {u | ϕ(u) ≡ 0, u ∈ Ω} is used
to implicitly represent a curve – active contour – embedded into Ω. For the sake
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of concreteness, we associate the subset Ω− with the support of the object of
interest, while Ω+ is associated with the support of corresponding background.
In this case, the objective of active-contour-based image segmentation is, given
an initialization ϕ0(u), to construct a convergent sequence of level-set functions
{ϕt(u)}t>0 (with ϕt(u)t=0 = ϕ0(u)) such that the zero level-set of ϕ∞(u) coin-
cides with the boundary of the object of interest.

The above sequence of level-set functions can be conveniently constructed
using the variational framework. Specifically, the sequence can be defined by
means of a gradient flow that minimizes the value of the cost functional (4). In
the case of two segmentation classes, the optimal level set ϕ�(u) is defined as:

ϕ�(u) = arg inf
ϕ(u)

{B2(ϕ(u))}, (5)

where
B2(ϕ(u)) =

∫

z∈IRN

√
p−(z | ϕ(u)) p+(z | ϕ(u)) dz. (6)

with p−(z | ϕ(u)) and p+(z | ϕ(u)) being the kernel-based estimates of the pdf’s
of the class and background sources.

In order to contrive a numerical scheme for minimizing (5), its first variation
should be computed first. The first variation of B2(ϕ(u)) (with respect to ϕ(u))
can be shown to be given by:

δB2(ϕ(u))
δϕ(u)

= δ(ϕ(u))V (u), (7)

where

V (u) =
1
2
B2(ϕ(u))(A−1

− − A−1
+ ) +

1
2

∫

z∈IRd

K(z − I(u))L(z | ϕ(u)) dz, (8)

with

L(z | ϕ(u)) =
1

A+

√
p−(z | ϕ(u))
p+(z | ϕ(u))

− 1
A−

√
p+(z | ϕ(u))
p−(z | ϕ(u))

. (9)

Note that, in the equations above, δ(·) stands for the delta function, and A−
and A+ are the areas of Ω− and Ω+ given by

∫
Ω χ−(u) du and

∫
Ω χ+(u) du,

respectively.
Finally, introducing an artificial time parameter t, the gradient flow of ϕ(u)

that minimizes (5) is given by:

ϕt(u) = −δB2(ϕ(u))
δϕ(u)

= −δ(ϕ(u))V (u), (10)

where the subscript t denotes the corresponding partial derivative, and V (u) is
defined as given by (8).

It should be added that, in order to regularize the shape of the active contour,
it is common to constrain its length and to replace the theoretical delta function
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δ(·) by its smoothed version δ̄(·). In this case, the final equation for the evolution
of the active contour becomes:

ϕt(u) = δ̄(ϕ(u)) (α κ(u) − V (u)) , (11)

where κ(u) is the curvature of the active contour given by κ(u)=−div
{
∇ϕ(u)
‖∇ϕ(u)‖

}

and α > 0 is a user-defined regularization parameter. Note that, in the segmen-
tation results reported in this paper, α was set to be equal to 1.

3 Blind Separation of Algebraically Mixed Sources

It is surprising how little has to be done to modify the separation approach of the
previous section to suit the ASS setting. Indeed, let Y = [y1(t), y2(t), . . . , yM (t)]T

be the matrix of estimated sources computed as Y = WX. Additionally, let
{p(z;wi)

def
= p̃i(z | W)}M

i=1 (where wT
i is the ith row of W) be the set of empirical

densities computed as at (3) and that correspond to the source estimates in Y.
Consequently, the optimal separation matrix W∗ can be found as:

W� = arg inf
W

{BM (W)}, (12)

where

BM (W) =
2

M(M − 1)

∫

IRd

∑

i<j

√
p(z;wi) p(z;wj), i, j = 1, . . .M. (13)

It should be noted that intrinsic in blind (algebraic) source separation is the
problem of permutation and normalization, as, using (2), the sources can only
be recovered in an arbitrary order and up to arbitrary multiplication factors.
While the order of the sources is rarely of importance, the normalization could
become an issue, especially from the viewpoint of numerical minimization. To
overcome this difficulty, it is common to prewhiten the mixtures X before they
are passed into the computations. In this case, it can be easily shown that the
optimal solution W� becomes a member of the orthogonal group O(M) = {W ∈
IRM×M | WWT = I}.

We solve this constrained minimization problem with the aid of Lagrange
multipliers {λαβ}α≤β . Consider the problem of minimizing

F (w1, ...,wM , λ) = BM (W) +
∑

α≤β

λαβ

(
wT

αwβ − δαβ

)
, (14)

where δαβ is Kronecker’s delta. Solving the equations

∂

∂wi
F (w1, ...,wM , λ) = 0T (∈ IR1×M ), (15)

together with WWT = I (details available from authors) leads to the charac-
terization of W∗ as a fixed point of the function

G(W) = (PPT )−1/2P, (16)
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where (PPT )1/2 is a symmetric square root and P = P(W) is defined as follows.
Let K̇(z) be the N × M matrix with (i, j)th element K ′(z − yj(i)) and let D(z)
be the diagonal matrix with diagonal elements

di(z) =

∑
j=1,...,M ;j 
=i

√
p(z;wj)√

p(z;wi)
. (17)

Then
PT =

1
NM (M − 1)

X
∫

IRd

K̇(z)D(z) dz. (18)

We solve (16) by iteration:

1. Initialize W, say W(0) = IM .
2. For l = 0, 1, ... to convergence, compute P(l) from (18), and update W(l) to

W(l+1) = G(W(l)) = (P(l)PT
(l))
−1/2P(l)).

4 Results

4.1 Image Segmentation

The image of Lizard shown in Subplot A of Fig. 1 is considered to be relatively
hard to segment due to the multimodality of the pdf related to the object class.
Moreover, the intensity distributions of the object and background classes of the
image are very similar, which makes it impossible to segment the image based on
gray-level information alone. To overcome this difficulty, the input image I(u)
was defined to be the bivariate image of the partial derivatives of Lizard, which
are shown in Subplots B and C of the figure.

Fig. 1. (Subplot A) Original image of Lizard; (Subplot B) Row-derivative of the image;
(Subplot C) Column-derivative of the image; (Subplot D) Initial segmentation; (Subplot
E) Separation by the Bhattacharyya flow; (Subplot F) Separation by the K-L flow
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The initial segmentation of Lizard and its segmentation obtained using the
proposed method are shown in Subplots D and E of Fig. 1, respectively. For the
sake of comparison, we have also segmented the image of Lizard using the active
contour that maximized the Kullback-Leibler (K-L) divergence between the em-
pirical pdf’s of the object and background classes. The resulting segmentation is
shown in Subplot F of Fig.1. It is obvious that the proposed approach (i.e., the
one that exploits the Bhattacharyya metric) is the best performer here.

It is worthwhile noting that the relatively worse performance of the image
segmentation using the K-L divergence seems to be stemming from the properties
of the functions involved in its definition, viz. of the logarithm. In particular,
the latter is known to be very sensitive to variations of its argument in vicinity
of relatively small values of the latter. Moreover, the logarithm is undefined at
zero, which makes computing the K-L gradient flow prone to the errors caused
by inaccuracies in estimating the tails of probability densities. On the other
hand, the square root is a well-defined function in vicinity of zero. Moreover,
for relatively small values of its argument, the variability of the square root is
considerably smaller than that of the logarithm. As a result, the Bhattacharyya
flow is much less susceptible to the influence of the inaccuracies mentioned above.

Fig. 2. (Subplots A1-A3) Original image sources; (Subplot B1-B3) Corresponding mix-
tures; (Subplot C1-C3) Estimated sources
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4.2 Blind Source Separation

Subplots A1-A3 of Fig. 2 show the original source images which have been used to
test the performance of the proposed separation methodology. The correspond-
ing mixtures obtained using a random mixing matrix A are shown in Subplots
B1-B3 of the same figure, whereas Subplots C1-C3 of Fig.2 show the source im-
ages estimated by applying 50 iterations of the fixed point algorithm described in
Section 3. One can see that the algorithm results in virtually perfect reconstruc-
tion of the image sources. For this case, the average interference-to-signal ratio
(ISR) was found to be equal to 0.0024, while minimizing the mutual information
between the estimated sources resulted in ISR equal to 0.036.

5 Conclusions

The present study has demonstrated the applicability and practicability of the
method for separating different components of a data signal based on the notion
of a distance between probability distributions. The latter was defined by means
of the Bhattacharyya coefficient which was shown to be advantageous over the
K-L divergence (and, hence, over the related criterion of mutual information) in
practical settings, in which class-conditional densities have to be estimated in a
non-paramentric manner. Additionally, the versatility of the proposed criterion
was demonstrated via its application to the problems of blind separation of both
geometrically and algebraically mixed sources. Thus, from a certain perspective,
the proposed method can be seen as unifying for the problems of both classes.
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Abstract. Delayed mixing is a problem of theoretical interest and prac-
tical importance, e.g., in speech processing, bio-medical signal analysis
and financial data modelling. Most previous analyses have been based
on models with integer shifts, i.e., shifts by a number of samples, and
have often been carried out using time-domain representation. Here, we
explore the fact that a shift τ in the time domain corresponds to a mul-
tiplication of e−iωτ in the frequency domain. Using this property an
algorithm in the case of sources≤sensors allowing arbitrary mixing and
delays is developed. The algorithm is based on the following steps: 1)
Find a subspace of shifted sources. 2) Resolve shift and rotation ambigu-
ity by information maximization in the complex domain. The algorithm
is proven to correctly identify the components of synthetic data. How-
ever, the problem is prone to local minima and difficulties arise especially
in the presence of large delays and high frequency sources. A Matlab im-
plementation can be downloaded from [1].

1 Introduction

Factor analysis is widely used to reconstruct latent effects from mixtures of
multiple effects based on the model

Xn,m =
∑

d

An,dSd,m + En,m, (1)

where En,m is additive noise. However, this decomposition is not unique since
Ã = AQ and S̃ = Q−1S yields same approximation as A,S. Consequently, con-
straints have been imposed such as Varimax rotation for Principal Component
Analysis (PCA) [2], statistical independence of the sources S as in Indepen-
dent Component Analysis (ICA)[3,4]. A related strategy is sparse coding where
the objective of minimizing the error is combined with a term penalizing the
non-sparsity of S [5].

Factor analysis in the setting of ICA is often illustrated by the so-called cock-
tail party problem. Here mixtures of several speakers are recorded in several
microphones forming the measured signal X. The task is to identify the sources
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S of each original speaker. However, even in an anechoic environment the mix-
ing model is typically not accurate because of different delays in the micro-
phones. Consider two microphones placed at distance L and L + h from a given
speaker. Under normal atmospheric conditions, the speed of sound is approx-
imately c = 344 m/s while a typical sampling rate is fs = 22 kHz. Then the
delay in samples between the two microphones is given by: #samples= fsh

c such
that the delay increases linearly with the difference in distance. Consequently, a
distance of 1 cm gives a delay of 0.6395 samples while h = 1m leads to a delay of
63.95 samples. Harshman and Hong [6] proposed a generalization of the factor
models in which the underlying sources have specific delays when they reach the
sensors. The model is called shifted factor analysis (SFA), and reads

Xn,m =
∑

d

An,dSd,m−τ̃n,d
+ En,m. (2)

In real acoustic environments we expect echoes due to paths that are created
by reflection off surfaces. To account for general delay mixing effects, the ICA
model has been generalized to convolutive mixtures, see e.g., [7,8,9]

Xn,m =
∑

τ,d

Aτ
n,dSd,m−τ + En,m. (3)

Here Aτ is a filter that accounts for the presence of each source in the sensors at
time delay τ . The shifted factor model, thus is a special case of the convolutive
model where the filter coefficients Aτ

n,d = An,d if τ̃n,d = τ else Aτ
n,d = 0.

In fact shifted mixtures are also seen in many other contexts. For instance,
astronomy where star motion Doppler effects induce frequency red shifts that
can be modelled using SFA. Here we will focus on the delayed source model.
In [6] strong support was found for the conjecture that the incorporation of
shifts can strengthen the model enough to make the parameters identifiable up
to scaling and permutation (essential uniqueness). We will demonstrate that this
conjecture is not correct when allowing for arbitrary shifts. Indeed, the model
is, as for regular factor analysis, ambiguous. In [10] an algorithm was proposed
to estimate the model. However, the algorithm has the following drawbacks.

1. All potential shifts have to be specified in the model.
2. Exhaustive integer search for the delays is expensive.
3. The model only accounts for shifts by whole samples.
4. The model is in general not unique.

Prior to the work of [6,10] Bell and Sejnowski [4] sketched how to handle time
delays in networks based on a model similar to equation 2. This was further
explored in [11]. Although their algorithms derive gradients to search for the
delays (alleviating the first two drawbacks above) the models are still based on
pure integer delays. In [12] a different model based on equally mixed sources,
i.e. A = 1, formed by moving averages incorporated non-integer delays by sig-
nal interpolation. Yeredor [13] solved the SFA model by joint diagonalization of
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Fig. 1. Example of activities obtained (black graph) when summing three components
(gray, blue dashed and red dash-dotted graphs) each shifted to various degrees (given in
samples by the colored numbers). Clearly, the resulting activities are heavily impacted
by the shifts such that a regular instantaneous ICA analysis would be inadequate.

the source cross spectra based on the AC-DC algorithm with non-integer shifts
for the 2 × 2 system. This approach was extended to complex signals in [14].
The algorithm is least squares optimal for equal number of sensors and sources.
More sensors than sources is not a problem for conventional ICA; we simply
reduce dimension by variance decomposition, this procedure is exact for noise-
less mixing. Due to the delays projection based dimensional reduction will not
reproduce the simple single delay structure, but rather lead to a more general
convolutive mixture. We will therefore aim at an algorithm for finding a shift
invariant subspace. Hence, solve equation 2 by use of the fact that a shift τ in
the time domain can be approximated by multiplication by the complex coeffi-
cients e−iωτ in the frequency domain. This alleviates the first three drawbacks
of the SFA algorithm. We will denote this algorithm a Shift Invariant Subspace
Analysis (SISA). To further deal with shift and rotation ambiguities, we impose
independence in the complex domain based on information-maximization (IM)
[4]. Hence, we form an algorithm for ICA with shifted sources (SICA). Notice,
that algorithms for ICA in the complex domain without shifts have previously
been derived, see for instance [9,15] and references therein.

2 Method and Results

In the following U will denote a matrix in the time domain, while Ũ denotes the
corresponding matrix in the frequency domain. U and Ũ denotes 3-way arrays
in the time and frequency domains respectively. Furthermore, U • V denotes
the direct product, i.e. element-wise multiplication. Also, ω = 2π f−1

M such that

Ũ(f) = U • e−i2π
f−1
M τ . Finally, the ith row of a matrix will be denoted Ui,:.

2.1 Shift Invariant Subspace Analysis (SISA)

In the following we will device an algorithm to find a shift invariant subspace
based on the SFA model. Consider the SFA model and its frequency transformed

Xn,m =
∑

d

An,dSd,m−τn,d
+ En,m, X̃n,f =

∑

d

An,dS̃d,fe−i2π
f−1
M τ n,d + Ẽn,f .

(4)
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In matrix notation this can be stated as

X̃f = Ã(f)S̃f + Ẽf . (5)

Due to Parseval’s identity the following holds

Cls =
∑

n,m

‖En,m‖2
F = 1

M

∑

n,f

‖Ẽn,f‖2
F . (6)

Thus, minimizing the least square error in the time and frequency domain is
equivalent. The algorithm will be based on alternatingly solving for A, S and τ .

S update: According to equation 5, Sf can be estimated as

S̃f = Ã(f)†
X̃f . (7)

Although, S is updated in the frequency domain the updated version has to
remain real when taking the inverse FFT. For S to be real valued the following
has to hold

S̃M−f+1 = S̃∗f , (8)

where ∗ denotes complex conjugate. This constraint is enforced by updating
the first �M/2� + 1 elements, i.e. up to the Nyquist frequency, while setting the
remaining elements according to equation 8.

A update: Let S̃(n)
d,f denote the delayed version of the source signal S̃d,f to the

nth channel, i.e. S̃(n)
d,f = S̃d,fe−i2π

f−1
M τ n,d . Then equation 2 can be restated as

Xn,: = An,:S(n) + En,:, (9)

This is the regular factor analysis problem giving the update

An,: = Xn,:S(n)†
. (10)

τ update: The least square error for the model stated in equation 5, is given
by

Cls = 1
M

∑

f

(X̃f − Ã(f)S̃f )H(X̃f − Ã(f)S̃f ), (11)

where H denotes the conjugate transpose. Define TND×1 = vec(τ ), i.e. the
vectorized version of the matrix τ such that Tn+(d−1)N = τ n,d. Let further

Q̃n,d,f = Ã(f)
n,dS̃d,f , Ẽf = X̃f − Ã(f)S̃f . (12)

Then the gradient of Cls with respect to τn,d is given as

gn+(d−1)N = ∂Cls

∂Tn+(d−1)N
= ∂Cls

∂τn,d
= −1

M

∑

f

2ω�[Q̃n,d,f Ẽ∗n,f ] (13)
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The Hessian has the following structure

Hn+(d−1)N,n′+(d′−1)N =

{
−2
M

∑
f ω2�[Q̃n,d,fQ̃∗n′,d′,f ] if n �= n′ ∧ d �= d′

−2
M

∑
f ω2�[Q̃n,d,f(Q̃∗n′,d′,f + Ẽ∗n′,f)] if n=n′ ∧ d=d′

(14)
As a result, τ can be estimated using the Newton-Raphson method

T ← T − ηH−1g, (15)

where η is a step size parameter that is tuned to keep decreasing the cost function.
The above iterative update for τ is sensitive to local minima. Thus, to improve
the algorithm from being stuck in suboptimal solutions τ was re-estimated by
the following cross-correlation procedure every 10th iteration. Let

R̃n,f = X̃n,f −
∑

d �=d′

Ã(f)
n,dS̃d,f , (16)

i.e. the signal at the nth sensor at frequency f when projecting all but the d′

source out of X̃. The cross-correlation between the d′ source and nth sensor is
given as c̃f = R̃∗n,f S̃d′,f , such that τn,d′ can be estimated as

t = arg max
m

|cm|, τn,d′ = t − (M + 1), An,d′ =
ct

Sd′,:ST
d′,:

. (17)

I.e. as the delay corresponding to maximum cross-correlation between the sensor
and source. The value of An,d′ corresponding to this delay is also given above.

2.2 SISA Is Not Unique

According to equation 5, the reconstructed signal in the complex domain is given

as X̃f ≈ Ã(f)S̃f = Ã(f)W̃(f)W̃(f)−1
S̃f .Such that W̃(f) = W • e−i2π

f−1
M τ̂ is a

rotation, scaling and shift matrix. Assume the inverse of W̃(f) is also a rotation,

scaling and shift matrix, i.e. W̃(f)−1
= V • e−i2π

f−1
M τ̌ . Since W̃(f)W̃(f)−1

= I,
we find

∑

d′′

Wd,d′′Vd′,d′′e−i2π
f−1
M (τ̂d,d′′+τ̌d′,d′′ ) =

{
0 for d �= d′∀ f
1 for d = d′∀ f

(18)

From f = 1 we obtain the relation V = W−1. For the remaining frequencies
this expression can only be valid if τ̂ dd′′ + τ̌ d′′d = 0 (diagonal elements) and
τ̂ dd′′ + τ̌ d′′d′ = kdd′ (off diagonal elements) where kdd′ denotes an arbitrary
constant. The first relation gives the constraint that τ̂ = −τ̌T . The second
relation further constraints all the elements of the columns of τ̂ to be equal.

Thus the ambiguity is given by W̃(f) = [W diag(e−i2π
f−1
M τ̂ )]. Where τ̂ is a

vector describing the shift ambiguity.
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Fig. 2. Results obtained by a shift invariant subspace analysis (SISA). Left panel: the
true factors forming a synthetic data set. To the left, the strength of the mixing A of
each source is indicated in gray color scale. In the middle, the three sources are shown
and to the right is given the time delays of each source to each channel. Right panel:
The estimated factors from the SISA analysis. Although, all the variance is explained
the decomposition has not identified the true underlying components but an ambiguous
mix. Clearly, as for regular factor analysis the SISA is not unique.

2.3 Shifted Independent Component Analysis (SICA)

A common approach to ICA is the maximum likelihood (ML) method [16] which
corresponds to the approach of maximizing information proposed in [4]. In the
framework of ML a non-gaussian distribution on the sources is assumed such that
ambiguity can be resolved up to the trivial ambiguities of scale, permutation and
source shifting relative to the time delays.

Define, Ũf = W̃(f)S̃f , i.e. the sources at frequency f when transformed
according to the rotation and shift ambiguity described in the previous section.
The ambiguity can be resolved by maximizing the log-likelihood assuming the
(non-gaussian) Laplace distribution p(Ũf ) ∝ e−|Ũd,f |, i.e.

p(S̃f |W, τ̂ ) =
∏

f

p(S̃f |W, τ̂ ) =
∏

f

|det(W̃(f))|p(W̃(f)S̃f ) (19)

Such that the log-likelihood as a function of W and τ̂ becomes

L(W, τ̂ ) =
∑

f

ln | det(W̃(f))| −
∑

d

|W̃(f)S̃f |d (20)

By maximizing L(W, τ̂ ) W and τ̂ is estimated and a new unambiguous S solu-
tion found by S̃f = W̃(f)S̃f . The corresponding mixing and delays can be esti-
mated alternating between the A and τ update. We initialized A as A = AW−1

and τ i,d by the cross-correlation procedure.
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Fig. 3. Result obtained using the SICA on the decomposition found using SISA. By
imposing independence, e.g., requiring the amplitudes in the frequency domain to be
sparse, the rotation and shift ambiguity inherited in the model is resolved. Clearly
the true underlying components and their respective mixing are correctly identified.
However, a local minimum has been found, resulting in errors in the estimation of the
delays particularly for the first component.

3 Discussion

Traditionally, ICA analysis is based on subspace analysis often using singular
value decomposition (SVD). The sources are then found by rotating the vectors
spanning the subspace according to a measure of independence. Similarly, we de-
rived the SISA algorithm to find a shift invariant subspace by alternating least
squares. Shift and rotation ambiguities were solved by imposing independence
on the amplitudes of the frequency transform of the sources. While SVD has
a closed form solution the SISA algorithm is non-convex. Estimating both A,
S and each delay in τ using the cross-correlation procedure has a closed form
solution for fixed values of τ , S and A. While the cross correlation procedure
only finds integer delays the Newton-Rhapson procedure can estimate the non-
integer delays. The cross-correlation procedure greatly reduces the algorithm’s
vulnerability to local minima, however due to the alternating least squares esti-
mation the problem cannot be circumvented completely. Furthermore, the prob-
lem becomes increasingly difficult for high frequency sources and large shifts
due to additional local minima. In an example we saw this happen: The SICA
algorithm failed in correctly identifying the delays of the first component; the
component with the highest frequencies. A multistart strategy was invoked, we
choose the best of ten random initializations to obtain a good initial solution for
the estimation of the shift invariant subspace. While our algorithm was based
on likelihood maximization, Yeredor [13] developed an algorithm based on joint
diagonalization. The present SISA is potentially useful as a preprocessing step
for this latter algorithm when estimating less sources than sensors.
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Previous work based on integer shifts conjectured the decomposition to be
unique [6]. When using integer shifts some shifts might perform better than oth-
ers due to a better integer rounding error. Hence, this might be why the integer
shifts formed seemingly unique solutions. However, as demonstrated in figure 2
the shifted factor analysis model is not in general unique. But, by imposing inde-
pendence unique solutions can be obtained up to trivial permutation, scaling and
specific onset relative to the delays of the sources as demonstrated in figure 3. The
shift/delay model may prove useful for a wide range of data where ICA already
has been employed. Furthermore, the extra information of delays can be useful
for spatial source localization when combined with information of position of the
sensors. Future work will focus on implementing additional constraints such as
non-negativity and attempt to further improve the identifiability in the presence
of many local minima. The current algorithm can be downloaded from [1].
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Abstract. We extend the Gaussian scale mixture model of dependent subspace
source densities to include non-radially symmetric densities using Generalized
Gaussian random variables linked by a common variance. We also introduce the
modeling of skew in source densities and subspaces using a generalization of
the Normal Variance-Mean mixture model. We give closed form expressions for
subspace likelihoods and parameter updates in the EM algorithm.

1 Introduction

The Gaussian scale mixture representation can be extended to vector subspaces to yield
a model of non-affine dependency, sometimes referred to as “variance dependency” [8].
Hyvärinen [8,9] has recently proposed such a model for Independent Subspace Analysis
of images. A similar approach is developed by Eltoft, Kim et al. [11,6], which is referred
to as Independent Vector Analysis (IVA). In the IVA model, the EM algorithm is used
with a particular case of the multivariate Gaussian scale mixture involving a Gamma
mixing density.

In [10] a method is proposed for convolutive blind source separation in reverber-
ative environments using a frequency domain approach with sources having variance
(scale) dependency across frequencies. Typically in the frequency domain approach to
blind deconvolution, the “permutation problem” arises when the signals are unmixed
separately at each frequency. Due to the permutation ambiguity inherent in ICA [1], the
frequency components of each source are output in arbitrary order at each frequency,
and some matching heuristic must be employed to reconstruct the complete spectra of
the sources. The IVA model allows the modeling of dependency of the frequency com-
ponents of sources, while maintaining the mutual independence of the sources.

Variance dependency also arises in EEG/MEG analysis. In particular, the electro-
magnetic signals generated by muscles in the scalp, face, and ears will commonly acti-
vate together in various facial expressions. In this case, the individual muscle signals are
not related or dependent in phase, but their variance increases and decreases together as
the components are activated and deactivated together. Variance dependency may also
exist among cortex regions that are simultaneously active in certain contexts.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 97–104, 2007.
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The densities employed in models proposed previously for speech use only a par-
ticular dependent subspace density model, which may limit the flexibility of the model
in application to more general domains such as communications and biological signal
processing. We propose a general method for constructing multivariate Gaussian scale
mixtures, giving an example of a multivariate dependent logistic density.

We also propose a scale mixture of Generalized Gaussians model, in which a gener-
alized Gaussian random vector with independent components, is multiplied by a com-
mon scalar variance parameter, which is distributed Generalized Inverse Gaussian. This
yields a generalization of the generalized hyperbolic density of Barndorff-Nielsen [3].

Finally we show how to use the Normal variance-mean mixtures to model skew in
dependent subspaces. The location and “drift” parameters can be updated in closed form
using the EM algorithm and exploiting the conditional Gaussianity and closed form
formula for the posterior moment in terms of derivatives of the multivariate density
function.

2 General Dependent Gaussian Scale Mixtures

In this section we show how general dependent multivariate densities can be derived
using scalar Gaussian scale mixtures,

x = ξ1/2z

where z is a standard Normal random variable, and ξ is a non-negative random variable.

2.1 Example Densities

Examples of Gaussian scale mixtures include the generalized Gaussian density, which
has the form,

GG(x; ρ) =
1

2Γ (1 + 1
ρ)

e−|x|
ρ

It is a Gaussian scale mixture for 0 < ρ ≤ 2. The scale mixing density is related to a
positive alpha stable density of order ρ/2.

The generalized Cauchy has the form,

GC(x; α, ν) =
αΓ (ν + 1/α)
2Γ (ν)Γ (1/α)

1
(1 + |x|α)ν+1/α

The Generalized Cauchy is a Gaussian scale mixture for ν > 0 and 0 < α < 2. The
scale mixing density is related to the Gamma density.

The generalized Logistic, also called the symmetric Fisher’s z distribution [3], has
the form,

GL(x; α) =
Γ (2α)
Γ (α)2

e−αx

(1 + e−x)2α

The Generalized Logistic is a Gaussian scale mixture for all α > 0. The scale mixing
density is related to the Kolmogorov-Smirnov distance statistic [2,3,7].
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2.2 Multidimensional Analogues

If x is distributed according to the Gaussian scale mixture density p(x), then,

p(
√

x) =
1

(2π)1/2

∫ ∞

0

ξ−1/2e−
1
2 ξ−1xp(ξ)dξ (1)

We can construct a random vector by multiplying the same scalar random variable ξ1/2

by a Gaussian random vector,
x = ξ1/2z

where z ∼ N (0, I). For the density of x we then have,

p(x) =
1

(2π)d/2

∫ ∞

0

ξ−d/2e−
1
2 ξ−1‖x‖2p(ξ)dξ

If ξ−1 is a Gamma random variable, then the density of x can be written in terms of the
modified Bessel function of the second kind [6].

In general, taking the kth derivative of both sides of (1), we find,

dk

dxk
p(

√
x) =

(−2)−k

(2π)1/2

∫ ∞

0

ξ−k−1/2e−
1
2 ξ−1xp(ξ)dξ

Thus, if d is odd, then with k = (d − 1)/2,

π−(d−1)/2(−D)(d−1)/2p(
√

x) =
1

(2π)d/2

∫ ∞

0

ξ−d/2e−
1
2 ξ−1xp(ξ)dξ

and we can write the density of p(x)

d odd : p(x) = π−(d−1)/2(−D)(d−1)/2p(
√

x)
∣∣
x=‖x‖2 (2)

For even d, the density of p(x) can be written formally in terms of the Weyl fractional
derivative. However as the fractional derivative is is not generally obtainable in closed
form, we consider a modification of the original univariate scale density p(ξ),

p̃(ξ) =
ξ−1/2p(ξ)∫∞

0 ξ−1/2p(ξ)dξ

With this modified scale density, the density of x evaluated at
√

x becomes,

p(
√

x) =
Z

(2π)1/2

∫ ∞

0

e−
1
2 ξ−1xp̃(ξ)dξ (3)

where,

Z =
∫ ∞

0

ξ−1/2p(ξ)dξ

Proceeding as we did for odd d, taking the kth derivative of both sides of (3), with
k = d/2, we get,

d even : p(x) = Z−1
√

2π−(d−1)/2(−D)d/2p(
√

x)
∣∣
x=‖x‖2 (4)
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2.3 Posterior Moments of Gaussian Scale Mixtures

To use scale mixtures in the EM context, it is necessary to calculate posterior moments
of the scaling random variable. This section indicates how this is accomplished [5].
Differentiating under the (absolutely convergent) integral we get,

p′(x) =
d

dx

∫ ∞

0

p(x|ξ)p(ξ)dξ = −
∫ ∞

0

ξ−1xp(x, ξ) dξ

= −xp(x)
∫ ∞

0

ξ−1p(ξ|x) dξ

Thus, with p(x) = exp(−f(x)), we see that,

E(ξ−1
i |xi) =

∫ ∞

0

ξ−1
i p(ξi|xi) dξi = − p′(xi)

xip(xi)
=

f ′(xi)
xi

(5)

Similar formulae can be derived for higher order posterior moments, and moments of
multivariate scale parameters. These results are used in deriving EM algorithms for
fitting univariate and multivariate Gaussian scale mixtures.

2.4 Example: 3D Dependent Logistic

Suppose we wish to formulate a dependent Logistic type density on R3. The scale
mixing density in the Gaussian scale mixture representation for the Logistic density is
related to the Kolmogorov-Smirnov distance statistic [2,3,7], which is only expressible
in series form. However, we may determine the multivariate density produced from the
product,

x = ξ1/2z

where x, z ∈ R3, and z ∼ N (0, I). Using the formula (2) with d = 3, we get,

p(x) =
1
8π

sinh
(

1
2‖x‖

)

‖x‖ cosh3
(

1
2‖x‖

)

3 Non-radially Symmetric Dependency Models

A possible limitation of the Gaussian scale mixture dependent subspace model is the
implied radial symmetry of vectors in the subspace, which leads to non-identifiability
of features within the subspace—only the subspace itself can be identified. However, a
similar approach using multivariate Generalized Gaussian scale mixtures can be devel-
oped, in which the multivariate density becomes a function of the p-norm of the sub-
space vector rather than the radially symmetric 2-norm, maintaining the directionality
and identifiability of the within-subspace features, while preserving their (non-affine)
dependence.

The mixing density of the generalized hyperbolic distribution is the generalized in-
verse Gaussian, which has the form,

N †(δ, κ, λ) =
(κ/δ)λ

2Kλ(δκ)
ξλ−1 exp

(
− 1

2

(
δ2ξ−1+ κ2ξ

))
(6)
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where Kλ is the Bessel K function, or modified Bessel function of the second kind.
The moments of the generalized inverse Gaussian [6] are given by,

E
(
ξr

)
=

(
δ

κ

)r
Kλ+r(δκ)
Kλ(δκ)

(7)

The isotropic generalized hyperbolic distribution [3] in dimension d,

GH(δ, κ, λ) =
1

(2π)d/2

κd/2

δλKλ(δκ)

Kλ−d/2

(
κ

√
δ2 + ‖x‖2

)

(
δ2 + ‖x‖2

)d/4−λ/2
(8)

is derived as a Gaussian scale mixture with N †(δ, κ, λ) mixing density. Now, for a
generalized Gaussian scale mixture,

p(x) =
1

Z(p)

∫ ∞

0

ξ−
∑

i p−1
i exp

(
−ξ−1∑

i|xi|pi
)
p(ξ) dξ (9)

where,

Z(p) = 2d
d∏

i=1

Γ (1 + 1/pi)

with N † mixing density p(ξ), the posterior density of ξ given x is also N †,

p(ξ|x) = N †
(√

δ2 + 2 ‖x‖p̄
p , κ, λ − d/p̄

)
(10)

where p̄ is the harmonic mean d/
∑

i p−1
i , and

‖x‖p �
(

d∑

i=1

|xi|pi

)1/p̄

For x we then get the anisotropic distribution,

p(x; δ, κ, λ,p) =
1

Z(p)
κd/p̄

δλKλ(δκ)

Kλ−d/p̄

(
κ
√

δ2 + 2 ‖x‖p̄
p

)

(
δ2 + 2 ‖x‖p̄

p

)(d/p̄−λ)/2
(11)

Using (7) and (10), we have,

E
(
ξ−1|x

)
=

κ√
δ2 + 2 ‖x‖p̄

p

Kλ−d/p̄−1

(
κ
√

δ2 + 2 ‖x‖p̄
p

)

Kλ−d/p̄

(
κ
√

δ2 + 2 ‖x‖p̄
p

) (12)

The EM algorithm does not require that the complete log likelihood be maximized
at each step, but only that it be increased, yielding the generalized EM (GEM) algo-
rithm [4,13]. We employ this method here to increase the complete likelihood in (9)
(see [13,12]).
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4 Skew Models

4.1 Construction of Multivariate Skew Densities from Gaussian Scale Mixtures

Given a Gaussian scale mixture x = ξ1/2z,

p(x) =
1

(2π)d/2|Σ|1/2

∫ ∞

0

ξ−d/2 exp
(
− 1

2ξ−1xT Σ−1x
)
p(ξ) dξ

we have, trivially, for arbitrary β,

p(x) exp(βT Σ−1x)
ϕ
(

1
2βT Σ−1β

) =
1

(2π)d/2|Σ|1/2
×

∫ ∞
0 ξ−d/2 exp

(
− 1

2 ξ−1xT Σ−1x + βT Σ−1x − 1
2 ξ βT Σ−1β

) p(ξ) exp
(

1
2 ξ βT Σ−1β

)

ϕ
(

1
2βT Σ−1β

) dξ

(13)

where ϕ(t)=E exp tξ is the moment generating function of ξ. Now (13) can be written,

p̃(x) =
1

(2π)d/2|Σ|1/2

∫ ∞

0

ξ−d/2 exp
(
− 1

2 ξ−1 ‖x − ξβ‖2
Σ−1

)
p̃(ξ; β) dξ (14)

where,

p̃(x) =
p(x) exp(βT Σ−1x)

ϕ
(

1
2 ‖β‖2

Σ−1

) , p̃(ξ; β) =
p(ξ) exp

(
1
2 ξ ‖β‖2

Σ−1

)

ϕ
(

1
2‖β‖2

Σ−1

)

We have thus constructed a skewed density p̃(x) in terms of the isotropic density p(x)
and the moment generating function ϕ of the scale mixing density p(ξ). The skewed
density is a that of a location-scale mixture [3] of the Gaussian z ∼ N (0, Σ

)
,

x = ξ1/2z + ξ β.

4.2 EM Algorithm Posterior Updates

We now assume arbitrary location parameter μ, along with drift β, and structure matrix
Σ. To use the EM algorithm with the Gaussian complete log likelihood in (14), we need
to calculate posterior expectation of ξ−1.

We do this using the method of §2.3. If we take the derivative of − log p(x−μ) with
respect to 1

2 ‖x − μ‖2
Σ−1 , then we get,

∂

∂ 1
2‖x − μ‖2

Σ−1

(
− log

∫
p(x − μ, ξ)dξ

)

=
∫

ξ−1p(x − μ, ξ) dξ∫
p(x − μ, ξ) dξ

=
∫

ξ−1p̃(x − μ, ξ) dξ∫
p̃(x − μ, ξ) dξ

= E(ξ−1|x)

Thus, from (2) and (4), with k � �d/2� (the greatest integer less than d/2) we have,

E(ξ−1|x) =
−1

‖x − μ‖Σ−1

p(k+1)
(
‖x − μ‖Σ−1

)

p(k)
(
‖x − μ‖Σ−1

)
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where p(k) is kth derivative of the univariate scale mixture p(x).

4.3 Closed Form Parameter Updates

Given N observations {xk}N
k=1, the μ that maximizes the complete log likelihood is

found to be,

μ =
1
N

∑
k γkxk − β

1
N

∑
k γk

(15)

where γk = E(ξ−1|xk).
The estimation equation to be solved for β, which does not involve the posterior

estimate of ξk, is,
ϕ′

(
1
2‖β‖2

Σ−1

)

ϕ
(

1
2‖β‖2

Σ−1

) β = c − μ (16)

where c = 1
N

∑
k xk. This gives β in terms of μ up to a scale factor. Given μ, the

optimal β, denoted β∗, may be found by first determining ζ � 1
2‖β∗‖2

Σ−1 from,

h(ζ) �
(

ϕ′(ζ)
ϕ(ζ)

)2

ζ = 1
2 ‖c − μ‖2

Σ−1

assuming that the univariate function h is invertible. Then β∗ is given as,

β∗ =
ϕ(ζ)
ϕ′(ζ)

(
c − μ

)

Given β∗, we may determine the optimal μ∗ by substituting β∗ into (15). Repeated
iteration constitutes a coordinate ascent EM algorithm for μ and β.

An alternative method suggests itself: if we fix the norm of β in the mixing density,
then we can solve for new estimates of μ and β simultaneously. Let,

a � 1
N

∑
k γk , b � 1

N

∑
k γkxk , τ �

ϕ′
(

1
2‖β‖2

Σ−1

)

ϕ
(

1
2‖β‖2

Σ−1

)

Then from (15) and (16), we have,

a μ∗ + β∗ = b

μ∗ + τβ∗ = c

Solving for the components μi, βi, i = 1, . . . , d, we get,
[

a 1
1 τ

] [
μ∗i
β∗i

]
=

[
bi

ci

]
⇒ μ∗i =

τbi − ci

aτ − 1
, β∗i =

aci − bi

aτ − 1

For the structure matrix, Σ, setting the complete log likelihood gradient to zero, we get,

Σ = 1
N

∑
k γk(xk − μ)(xk − μ)T − 2

N

∑
k(xk − μ)βT

= 1
N

∑
k γk(xk − μ − γ−1

k β)(xk − μ − γ−1
k β)T −

(∑
k γ−1

k

)
ββT .
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5 Conclusion

We have shown how to derive general multivariate Gaussian scale mixtures in terms
of scalar Gaussian scale mixtures, and how to optimize them using an EM algorithm.
We generalized the spherically (or ellipsoidally) symmetric Gaussian scale mixture by
introducing a generalization of Barndorff-Nielsen’s generalized hyperbolic density us-
ing Generalized Gaussian scale mixtures, yielding a multivariate dependent anisotropic
model. We also introduced the modeling of skew in ICA sources, deriving a general
form of skewed multivariate Gaussian scale mixture, and an EM algorithm to update
the location, drift, and structure parameters.
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Abstract. In recent years, there has been an increasing interest in de-
veloping new algorithms for digital signal processing by applying and
generalising existing numerical linear algebra tools. A recent result shows
that the FastICA algorithm, a popular state-of-the-art method for lin-
ear Independent Component Analysis (ICA), shares a nice interpretation
as a Newton type method with the Rayleigh Quotient Iteration (RQI),
the latter method wellknown to the numerical linear algebra community.
In this work, we develop an analogous theory of single vector iteration
ICA methods. Two classes of methods are proposed for the one-unit lin-
ear ICA problem, namely, power ICA methods and inverse iteration ICA
methods. By means of a scalar shift , scalar shifted versions of both power
ICA method and inverse iteration ICA method are proposed and proven
to be locally quadratically convergent to a correct demixing vector.

1 Introduction

Independent Component Analysis (ICA) is a standard statistical tool for solv-
ing the Blind Source Separation (BSS) problem. Recently, there has been an
increasing interest in developing new algorithms for digital signal processing by
applying and generalising existing numerical linear algebra tools. In this work,
we develop a theory of one-unit linear ICA algorithms in the framework of single
vector iteration methods, which are efficient numerical linear algebra tools for
computing one eigenvalue-eigenvector pair of a real symmetric matrix.

The FastICA algorithm, developed by the Finnish school, is one of the most
popular algorithms for the linear ICA problem. Recent work in [1,2] suggests a
strong connection between FastICA and the Rayleigh Quotient Iteration (RQI)
method, which is wellknown to the numerical linear algebra community. A deeper
result further shows that FastICA shares a nice interpretation as a Newton type
method similar to RQI [3]. Other than being interpreted as a Newton method,
RQI was originally developed as a single vector iteration method, specifically, a
scalar shifted inverse iteration method [4]. In this work, we propose two classes
of single vector iteration method for the one-unit linear ICA problem, namely,
power ICA methods and inverse iteration ICA methods.
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This paper is organised as follows. Section 2 briefly introduces the one-unit
linear ICA model with the motivation of developing single vector iteration ICA
methods. By means of a scalar shift , scalar shifted versions of both power
ICA method and inverse iteration ICA method are proposed in Section 3 and
Section 4, respectively. Both scalar shifted ICA methods are proven to be locally
quadratically convergent to a correct demixing vector. As an aside, the stan-
dard FastICA can be considered as a special case of the scalar shifted power
ICA method. Finally in Section 5, several numerical experiments are provided
to verify the theoretical results regarding the local convergence properties of the
proposed algorithms.

2 The One-Unit Linear ICA Model

We consider the standard noiseless linear instantaneous ICA model, Z = AS,
where S ∈ Rm×n represents n samples of m sources with m � n, the full rank
matrix A ∈ Rm×m is the mixing matrix, and Z ∈ Rm×n is the observed mixtures,
see [5]. The source signals S are assumed to be unknown, having zero mean and
unit variance, being mutually statistically independent, and at most one being
Gaussian.

The task of linear ICA is to recover the sources S by estimating the mixing
matrix A given only the mixtures Z. By finding a matrix V ∈ Rm×m such that
W = V Z = V AS with E[ww�] = I, the whitened demixing linear ICA model
can be formulated as Y = X�W , where W ∈ Rm×n is the whitened mixture,
X ∈ Rm×m is the demixing matrix with X�X = I, and Y ∈ Rm×n is the
recovered signal.

Let us denote by Sm−1 := {x ∈ Rm| ‖x‖ = 1} the (m − 1)-dimensional unit
sphere and by X = [x1, . . . , xm] the orthogonal demixing matrix. In this work,
we study the so-called one-unit linear ICA problem, which estimates only one
source at one time. It is equivalent to seeking an x ∈ Sm−1 which gives a correct
estimation of one single source. A generic contrast function of the one-unit linear
ICA, which was proposed for developing the FastICA algorithm [5], can be given
as follows

f : Sm−1 → R, f(x) := E[G(x�w)], (1)

where G : R → R is usually assumed to be even and differentiable. Under certain
weak assumptions, it has been shown that a correct demixing vector x∗ ∈ Sm−1

is a critical point of f , refer to [2] for details.
Recall the critical point condition of the contrast function f as follows

E
[
G′(x�w)w

]
= γx, (2)

with G′ being the first derivative of G and γ ∈ R. One might consider the expres-
sion E[G′(x�w)w] as a nonlinear operator acting on x ∈ Rm. Thus, a solution
(γ, x) of the critical point equation as in (2) can be treated as an eigenvalue-
eigenvector pair of this nonlinear operator. We can rewrite (2) as

E

[
G′(x�w)w�x

x�w
w

]
= γx ⇐⇒ E

[
G′(x�w)

x�w
w w�

]
x = γx. (3)
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It is known that the operator E

[
G′(x�w)

x�w
w w�

]
∈ Rm×m can be made positive

definite by choosing the function G carefully [2], e.g., two functions widely used
for FastICA, G(a) = log cosh(a) and G(a) = a4 both do the job. In this way, the
expression E[G′(x�w)w] can be decomposed as a product of a positive definite
matrix with a vector.

Let H : R → R be smooth with H(a) ≥ 0 for all a ∈ R, we define

B : Sm−1 → R
m×m, B(x) := E

[
H(x�w)w w�

]
. (4)

Similar to (3) we then define

F : Sm−1 → R
m, F (x) := B(x)x. (5)

Notice that such a B(x) is a real symmetric matrix. Therefore the key work of
this paper is to develop a theory of single vector iteration methods for solving
the one-unit linear ICA problem, which is completely analogous to the numerical
linear algebra tools for the real symmetric eigenvalue problem.

3 Power ICA Methods

According to the multiplicative decomposition of the nonlinear operator F sug-
gested in (5), a simple power method applied to the matrix part B(x) can be
formulated as follows

η : Sm−1 → Sm−1, x 	→ B(x)x
‖B(x)x‖ . (6)

Let x∗ ∈ Sm−1 be a correct demixing vector. By the assumption of zero mean
and unit variance of the sources, the expression B(x∗) gives an invertible matrix
with two positive eigenvalues, namely, λ1 = E

[
H(x∗�w)

]
> 0 occurring with

multiplicity m−1 and single λ2 = E
[
H(x∗�w)(x∗�w)2

]
> 0. The corresponding

eigenvector of the eigenvalue λ2 is x∗, i.e. B(x∗)x∗ = λ2x
∗ holds. We therefore

have proven.

Lemma 1. Let x∗ ∈ Sm−1 be a correct demixing vector. Then x∗ is a fixed point
of the power ICA method η. 
�
By taking the first derivative of η at x∗ in any direction ξ ∈ Tx∗Sm−1, one gets
D η(x∗)ξ �= 0. That is, by a Taylor-type argument, the algorithmic map η does
not correspond to a locally quadratically fast algorithm. Here, TxSm−1 = {ξ ∈
Rm|x�ξ = 0} denotes the tangent space of the unit sphere Sm−1 at a point
x ∈ Sm−1.

In the rest of this section, we will modify the power ICA method (6) to obtain
second order convergence in the framework of a scalar shift strategy, which has
been successfully used in developing the RQI [4] and generalising a simple one-
unit ICA method proposed by Regalia and Kofidis [6,3]. Let us define a smooth
function ρ : Sm−1 → R. We construct a scalar shifted nonlinear operator acting
on Sm−1 as follows
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Fs : Sm−1 → R
m, Fs(x) := (B(x) − ρ(x)I) x. (7)

Let x = x∗, one gets Fs(x∗) = λsx
∗ with λs = E

[
H(x∗�w)(x∗�w)2

]
− ρ(x∗).

To formulate a well-defined power method based on the operator as in (7), it
is necessary to have λs �= 0, i.e., ρ(x∗) �= E

[
H(x∗�w)(x∗�w)2

]
. Moreover, if

λs < 0, the corresponding power method is then not differentiable at the point
x∗ following a similar argument as for the standard FastICA in [3]. Therefore,
by introducing a sign correction term, see [3], we formulate the scalar shifted
power ICA method as follows

ηs : Sm−1 → Sm−1, x 	→
1

τ(x) (B(x)x − ρ(x)x)

‖ 1
τ(x) (B(x)x − ρ(x)x) ‖

, (8)

where τ(x) = x�B(x)x − ρ(x). The following lemma is then immediate.

Lemma 2. Let x∗ ∈ Sm−1 be a correct demixing vector and ρ : Sm−1 → R a
smooth map with ρ(x∗) �= E

[
H(x∗�w)(x∗�w)2

]
. Then x∗ is a fixed point of the

scalar shifted power ICA method ηs. 
�
Now we will study the additional conditions on the scalar shift ρ, which fulfils
already the condition stated in Lemma 2, such that the algorithmic map ηs is
locally quadratically convergent to a correct demixing vector x∗. Define

F̃s(x) =
Fs(x)
τ(x)

. (9)

By a straightforward computation, the first derivative of ηs at x∗ in direction
ξ ∈ Tx∗Sm−1 can be computed as

D ηs(x)ξ|x=x∗ =
1

‖F̃s(x∗)‖

(
I − F̃s(x∗)

‖F̃s(x∗)‖
F̃s(x∗)�

‖F̃s(x∗)‖

)

︸ ︷︷ ︸
=:P (x∗)

D F̃s(x)ξ|x=x∗ , (10)

where P (x∗) is an orthogonal projection operator onto the orthogonal comple-
ment of the span of x∗. Thus one has

D ηs(x)ξ|x=x∗ = 0 ⇐⇒ D F̃s(x)ξ|x=x∗ = γx∗. (11)

Now by the chain rule, we compute

D F̃s(x)ξ|x=x∗ = D 1
τ(x)ξ|x=x∗Fs(x∗) + 1

τ(x∗) DFs(x)ξ|x=x∗ (12)

with

DFs(x)ξ|x=x∗ =(E[H(x∗�w)] + E[H ′(x∗�w)(x∗�w)])ξ
− D ρ(x)ξ|x=x∗x∗ − ρ(x∗)ξ.

(13)

According to the fact that the first summand in (12) and the second summand
in (13) give already a scalar multiple of x∗, the expression in (10) vanishes if and
only if

ρ(x∗) = E[H(x∗�w)] + E[H ′(x∗�w)(x∗�w)]. (14)

Therefore, following a Taylor-type argument, we conclude
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Theorem 1. Let x∗ ∈ Sm−1 be a correct demixing vector and ρ : Sm−1 → R a
smooth map such that

ρ(x∗) �= E
[
H(x∗�w)(x∗�w)2

]
, and

ρ(x∗) = E[H(x∗�w)] + E[H ′(x∗�w)(x∗�w)].

Then the scalar shifted power ICA method ηs is locally quadratically convergent
to x∗. 
�

Naturally, a simple choice of the scalar shift ρ to make ηs locally quadratically
convergent can be constructed by

ρp : Sm−1 → R, ρp(x) := E[H(x�w)] + E[H ′(x�w)(x�w)]. (15)

We denote the corresponding algorithmic map by η̂s using ρp as the scalar shift.

Remark 1. If one defines H(a) = G′(a)
a as suggested in (3), the resulting algo-

rithm is essentially the same as the FastICA/ANPICA algorithm in [3].

4 Inverse Iteration ICA Methods

Recall the result in Section 3 that the expression B(x∗) is indeed an invertible
matrix. In this section, we propose power-type methods applied on the inverse
of B(x) and its scalar shifted generalisations. We call them inverse iteration ICA
methods. Firstly, we define a nonlinear operator acting on Sm−1 as

K : Sm−1 → R
m, K(x) := B(x)−1x. (16)

Note that the above operator K is locally well defined at least in an open neigh-
borhood Uε(x∗) ⊂ Sm−1 around x∗. It is also worthwhile to notice that K(x)
can be computed efficiently by solving the following linear system for u ∈ R

m,

B(x)u = x. (17)

Thus a simple inverse iteration ICA method based on K can be formulated as

ζ : Sm−1 ⊃ Uε(x∗) → Sm−1, x 	→ B(x)−1x

‖B(x)−1x‖ . (18)

By the fact that B(x∗)−1x∗ = 1/λ1x
∗, we just have proven

Lemma 3. Let x∗ ∈ Sm−1 be a correct demixing vector. Then x∗ is a fixed point
of the inverse iteration ICA method ζ. 
�

Again, by showing that the first derivative of ζ at x∗ in any ξ ∈ Tx∗Sm−1 does
not vanish in general, i.e., D ζ(x∗)ξ �= 0, we conclude that the algorithmic map
ζ is not locally quadratically convergent to x∗. Once more, we will modify the
inverse iteration ICA method as in (18) in the framework of scalar shift strategy
to obtain second order convergence.
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Let ρ : Sm−1 → R be smooth. We define a scalar shifted nonlinear operator
as follows

Ks : Sm−1 → R
m, Ks(x) := (B(x) − ρ(x)I)−1

x. (19)

Such an operator is well defined if and only if, for any x ∈ Sm−1, B(x)−ρ(x)I is
nonsingular. Now let x = x∗. As discovered in Section 3, the matrix B(x∗) has
only two positive eigenvalues λ1 = E

[
H(x∗�w)

]
and λ2 = E

[
H(x∗�w)(x∗�w)2

]
.

Further analysis shows

(i) If ρ(x∗) = λ1, the resulting operator B(x∗) − ρ(x∗)I is of rank one, i.e. Ks

is not defined at x∗;
(ii) If ρ(x∗) = λ2, the matrix B(x∗) − ρ(x∗)I is of rank m − 1. Although the

operator Ks is still not defined, one can rescue the situation, i.e. remove the
pole, by replacing the inversion by the classical adjoint, which has been used
to handle a similar situation when analysing RQI in [7].

We therefore define
K̃s(x) := adj (B(x) − ρ(x)I) x. (20)

Note that K̃s is locally well defined in Uε(x∗) ⊂ Sm−1 and K̃s(x∗) = (λ1 −
λ2)m−1x∗. We now propose the following iteration method, still called the scalar
shifted inverse iteration ICA method,

ζs : Sm−1 ⊃ Uε(x∗) → Sm−1, x 	→ adj (B(x) − ρ(x)I) x

‖ adj (B(x) − ρ(x)I) x‖ . (21)

We can now state

Lemma 4. Let x∗ ∈ Sm−1 be a correct demixing vector and ρ : Sm−1 → R a
smooth map with ρ(x∗) �= E

[
H(x∗�w)

]
. Then x∗ is a fixed point of the scalar

shifted inverse iteration ICA method ζs. 
�
By similar arguments as in Section 3, to make the first derivation of ζs at x∗ in
direction ξ ∈ Tx∗Sm−1 vanish, i.e. D ζs(x)ξ|x=x∗ = 0, is equivalent to requiring

D K̃s(x)ξ|x=x∗ = γx∗. (22)

A tedious computation shows that the equation in (22) holds true if and only if

ρ(x∗) = E[H(x∗�w)(x∗�w)2] − E[H ′(x∗�w)(x∗�w)]. (23)

Therefore we just proved

Theorem 2. Let x∗ ∈ Sm−1 be a correct demixing vector and ρ : Sm−1 → R a
smooth map such that

ρ(x∗) �= E
[
H(x∗�w)

]
, and

ρ(x∗) = E[H(x∗�w)(x∗�w)2] − E[H ′(x∗�w)(x∗�w)].

Then the scalar shifted inverse iteration ICA method ζs is locally quadratically
convergent to x∗. 
�
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A natural and simple choice of the scalar shift ρ to make ζs locally quadratically
convergent to x∗ can be constructed by choosing

ρi : Sm−1 → R, ρi(x) := E[H(x�w)(x�w)2] + E[H ′(x�w)(x�w)]. (24)

It is clear that, in general, ρi(x∗) �= E[H(x∗�w)(x∗�w)2]. Therefore one can
construct the following algorithmic map locally, using ρi as the scalar shift,

ζ̂s : Sm−1 ⊃ Uε(x∗) → Sm−1, x 	→
1

κ(x)

(
(B(x) − ρi(x)I)−1x

)

‖ 1
κ(x) ((B(x) − ρi(x)I)−1x) ‖

, (25)

with κ(x) = x�(B(x)−ρi(x)I)−1x. The convergence properties as in Theorem 2
apply to ζ̂s as well.

5 Numerical Experiments

In this section, we will verify the results in Theorem 1 and 2 by several exper-
iments. Local convergence properties of two scalar shifted single vector itera-
tion ICA methods, namely η̂s and ζ̂s, are investigated and compared with the
classical FastICA/ANPICA. We specify the function H for both single vector
iteration ICA methods by choosing H(a) = log cosh(a) and the function G for
FastICA/ANPICA by G(a) = log cosh(a), as well. A toy set of sources is illus-
trated in Fig. 1(a). It is well known that the mutual statistical independence
can only be ensured if the sample size n tends to infinity. In this experiment,
therefore, we set n = 107 artificially high.

All three methods are initialised by the same demixing vector. However it
is worthwhile to notice that these algorithms can converge to different correct
demixing vectors. We only show a case where it happens that they all converge
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Fig. 1. Local convergence properties of scalar shifted single vector iteration ICA meth-
ods (scalar shifted power ICA method vs. scalar shifted inverse iteration ICA method)
and FastICA/ANPICA
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to the same correct demixing vector x∗, see Fig. 1. The error is measured by
the distance of the accumulation point x∗ to the current iterate xk, i.e., by the
norm ‖xk −x∗‖. The numerical results in Fig. 1(b) show that both scalar shifted
single vector iteration ICA methods, namely η̂s and ζ̂s, share the the same local
quadratic convergence properties with the classical FastICA/ANPICA.

Acknowledgment

National ICT Australia is funded by the Australian Government’s Department
of Communications, Information Technology and the Arts and the Australian
Research Council through Backing Australia’s Ability and the ICT Research
Centre of Excellence programs.

References

1. Douglas, S.: Relationships between the FastICA algorithm and the Rayleigh Quo-
tient Iteration. In: Rosca, J., Erdogmus, D., Pŕıncipe, J.C., Haykin, S. (eds.) ICA
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of Non-Negative Tensor Factorization
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Abstract. The applications of Non-Negative Tensor Factorization
(NNTF) is an important tool for brain wave (EEG) analysis. For it to
work efficiently, it is essential for NNTF to have a unique solution. In this
paper we give a sufficient condition for NNTF to have a unique global
optimal solution. For a third-order tensor T we define a matrix by some
rearrangement of T and it is shown that the rank of the matrix is less
than or equal to the rank of T . It is also shown that if both ranks are
equal to r, the decomposition into a sum of r tensors of rank 1 is unique
under some assumption.

1 Introduction

In the past few years, Non-Negative Tensor Factorization (NNTF) is becom-
ing an important tool for brain wave (EEG) analysis through Morlet wavelet
analysis (for example, see Miwakeichi [MMV] and Morup [MHH]). The NNTF
algorithm is based on Non-Negative Matrix Factorization (NNMF) algorithms,
amongst the most well-known algorithms contributed by Lee-Seung [LS]. Re-
cently, Chichoki et al. [CZA] deals with a new NNTF algorithm using Csiszar’s
divergence. Furthermore, Wang et al. [WZZ] also worked on NNMF algorithms
and its interesting application in preserving privacy in datamining fields. These
algorithms converged to some stationary points and do not converge to a global
minimization point. In fact, it is easily shown that the problem has no unique
minimization points in general (see [CSS]). In applications of NNTF for EEG
analysis, it is important for NNTF to have a unique solution. However this
uniqueness problem has not been addressed sufficiently as far as the authors are
aware of. Similarly as in Non-Negative Matrix Factorization (NNMF), it seems
that the uniqueness problem has not been solved. However we managed to ob-
tain the uniqueness and proved it. (see Proposition 1). In this paper we give a
sufficient condition for NNTF to have a unique solution and for the usual NNTF
algorithm to find its minimization point in the case when NNTF exists strictly,
not approximation (see Theorem 3).

� The research is supported partially by User Science Institute in Kyushu University
(Special Coordination Funds for Promoting Science and Technology).
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2 Quadratic Form

As the NNMF problem is a minimization of a quadratic function, we shall first
review quadratic functions generally. Let us consider the quadratic form defined
by f(x) = xT Ax−2bT x where A is a n×n symmetric matrix and b is a n vector.
The symmetric matrix A is a diagonalized by an orthogonal matrix P as

PAPT = diag(e1, . . . , en).

Then by assigning y = (y1, . . . , yn)T = Px and c = (c1, . . . , cn)T = Pb, we
obtain the equality

f(x) = yT (PAPT )y − 2cT y =
∑

i

(eiy
2
i − 2ciyi) =

∑

i

(
ei(yi − ci

ei
)2 − c2

i

ei

)
.

We assume that the matrix A is positive definite. Then,when f(x) reaches its
minimum at y = (PAPT )−1c = (PAPT )−1Pb = PA−1b in Rn, with the value
f(A−1b) = −bT A−1b at x = PT y = A−1b ∈ Rn. The minimal value is under the
condition x ≥ 0. Here, some basic facts will be explained. Let a ∈ Rn and let
h : Rn → R be a function defined as h(x) = ‖x − a‖2, where ‖·‖ stands for the
common Euclidean norm.

Lemma 1. On the arbitrary closed set S of Rn, h(t), t ∈ S takes a global
minimal value in S.

Proof. Choose an arbitrary t0 ∈ S, and set s = h(t0) and U = h−1([0, s]) ∩ S.
The set U is a closed subset of Rn. By triangular inequality, we know that
h(t) ≥ ‖ t‖ − ‖a‖. Since s ≥ h(t) for t ∈ U , it holds that ‖ t‖ ≤ s + ‖a‖ which
shows that U is bounded. Hence, since U is bounded and closed, it is compact.
Thus h(t), t ∈ U becomes a closed map, and h(U) is also compact. That is,
h(t), t ∈ U takes a global minimum value, say s0. Thus, it holds that for t ∈ S,
h(t) > s if t /∈ U , and h(t) ≥ s0 if t in U . This means that s0 is the global
minimum of h on S. �	

Lemma 2. Let S be a closed convex subset of Rn. Then h(t), t ∈ S reaches a
global minimal value at a unique point in S.

Proof. The existence of a global minimal value follows from Lemma 1. Let x and
y be points in Rn which attain a global minimal value r := minz∈S f(z). Note
that x, y ∈ S ∩ ∂Br(z0), where Br(a) := {x | ‖x − a‖ ≤ r} and ∂Br(a) := {x |
‖x − a‖ = r}. Since S ∩ Br(a) is also convex, tx + (1 − t)y ∈ S ∩ Br(a) for each
0 ≤ t ≤ 1. If x 
= y, then ‖a − (x + y)/2‖ < r, which is contradiction. Therefore
x = y. �	

Let D = diag(
√

e1, . . . ,
√

en), z = DPx and S = { z ∈ Rn | x ≥ 0 }. Note that S
is a convex set of Rn and f(x) = h(z) for a = D−1Pb. Therefore f(x) reaches a
global minimal value at a unique point under the condition x ≥ 0.
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The following are some basic facts about matrix decompositions. Let A, W
and H be m×n, m× r and r ×n matrix respectively. Then ‖A − WH ‖ for any
H with H ≥ O and any W with W ≥ O reaches a global minimal value at a
unique m × n matrix WH but W and H are not unique. We state this precisely
below.

Proposition 1. The following properties hold:

1. If r = rank(A), there exist W and H such that A = WH.
2. If r > rank(A), there exists an infinite number of pairs of W and H such

that A = WH.
3. Let r = rank(A). Then if A = WH = W ′H ′ there exists a non-singular ma-

trix X such that W ′ = WX, H ′ = X−1H ([CSS, Full-Rank Decomposition
Theorem]).

4. If r < rank(A), there exists no pair of W and H such that A = WH.

Proof. (1) In this case, let W be a matrix whose columns are linearly independent
vectors of length m. From the assumption it is clear that the columns of A are
expressed as linear combination of columns of W hence A = WH .

(2) In this case, put s = rank(A), (r > s). By property (1), we know there
exists a m × s matrix W1 and a s × m matrix H1 such that A = W1H1. Place

W =
(
W1 W2

)
and H =

(
H1

H2

)
where W2 and H2 are m × (r − s) matrix and

(r − s) ×n matrix respectively and satisfy W2H2 = 0. There are infinitely many
such pairs of (W2, H2), and for all of those it clearly holds that A = WH .

(3) From r = rank(A), in the expression of A = WH = W ′H ′, the columns
of W and W ′ are linearly independent respectively. Hence we have W ′ = WX
for some regular r × r matrix X . From this the rest of (3) is derived trivially.

(4) Since rank(WH) ≤ r, it is impossible to have A = WH . �	

3 Non-Negative Matrix Factorization

It is well known NNMF (Non-Negative Matrix Factorization) is not unique
([CSS]). Let V , W and H be a m × n, m × r and r × n matrix respectively.
For a matrix A, we denote by Aij the (i, j)-component of A and its Frobenius
norm is defined by

‖A‖F :=
√

tr(AT A) =
√∑

i,j

A2
ij ,

where tr takes the sum of all diagonal entries.

Lemma 3. Fixing H, f(W ) =‖V −WH ‖F attains the minimum at the solution
W of the equation W (HHT ) = V HT . Especially, if HHT is non-singular, the
minimum is attained at the unique point W = V HT (HHT )−1.
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Proof. It holds that

f(W ) =
∑

i,j

(Vij −
∑

p

WipHpj)2

=
∑

i,j

(
∑

p,q

WipHpjWiqHqj − 2
∑

p

VijWipHpj + V 2
ij

)

=
∑

i,p,q

(HHT )pqWipWiq − 2
∑

i,p

(V HT )ipWip +
∑

i,j

V 2
ij .

Therefore f(W ) is a quadratic function of Wij (i = 1, 2, · · · , m, j = 1, 2, · · · , r).
Put

x = (W11, . . . , W1r, . . . , Wm1, . . . , Wmr)T ∈ R
mr,

a = ((V HT )11, . . . , (V HT )1r, . . . , (V HT )m1, . . . , (V HT )mr)T ∈ R
mr

and define a mr × mr matrix M by diag(HHT , . . . , HHT ). Then, M is positive
semidefinite and f(W ) is expressed as

f(W ) = xT Mx − 2aT x +
∑

i,j

V 2
ij .

Assume that HHT is non-singular. Then M is positive definite and thus the
minimum of f(W ) is attained at the unique point x = M−1a, that is, WT =
(HHT )−1(V HT )T , equivalent to, W = V HT (HHT )−1. The minimum value is

f(W ) =‖V ‖2
F − ‖WH ‖2

F (1)

and we also have ‖WH ‖2
F = tr(WT V HT ) = tr((HHT )−1(V HT )T (V HT )). �	

Since ‖ V − WH ‖F =‖ V T − HT WT ‖F , fixing W , ‖ V − WH ‖F attains the
minimum at the unique point V = (WT W )−1WT V if WT W is non-singular.

We recall the Lee-Seung NNMF Algorithm for the Frobenius norm property.

Theorem 1 ([LS]). The Frobenius norm ‖V −WH ‖F is non-increasing under
the update rules:

Hij ← Hij
(WT V )ij

(WT WH)ij
Wij ← Wij

(V HT )ij

(WHHT )ij

Now we propose the following improvement of the Lee-Seung NNMF Algo-
rithm for the Frobenius norm property. For matrices X with X ≥ 0 and Y ,
let tmax(X, Y ) = max{t | (1 − t)X + tY ≥ O, 0 ≤ t ≤ 1}.
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Theorem 2. The Frobenius norm ‖ V − WH ‖F is non-increasing under the
update rules:

H ←

⎧
⎨

⎩

(1 − h0)(WT W )−1WT V + h0H, if WT W is non-singular and h0 > 0

Hij
(WT V )ij

(WT WH)ij
, otherwise

W ←

⎧
⎨

⎩

(1 − w0)V HT (HHT )−1 + w0W, if HHT is non-singular and w0 > 0

Wij
(V HT )ij

(WHHT )ij
, otherwise

where h0 = tmax((WT W )−1WT V, H) and w0 = tmax(V HT (HHT )−1, W ).

Proof. If either WT W is singular or h0 = 0, the claim follows from Theorem 1.
Suppose both WT W is non-singular and h0 > 0. By Lemma 3, fixing W , ‖V −
WH ‖F takes minimum at (WT W )−1WT V without the assumption x ≥ 0. Let
us denote H ′ = (1 − h0)(WT W )−1WT V + h0H for clarity. On the line from H
to H ′, the Frobenius norm decreases and thus ‖ V − WH ‖F ≥‖ V − WH ′ ‖F .
Clearly H ′ ≥ 0 which follows from the definition of h0. �	

4 Non-Negative Tensor Factorization

4.1 Existence of a Global Optimal Solution

Let R≥0 be the set of all non-negative real numbers. Let T be a third-order
tensor in R

a×b×c
≥0 . Let X =

(
x1 . . . xr

)
, Y =

(
y1 . . . yr

)
and Z =

(
z1 . . . zr

)
be

a×r, b×r and c×r matrices, respectively. We define a function f over R
(a+b+c)r
≥0

as

f(X, Y, Z) =
∑

ijk

(
tijk −

∑

�

Xi�Yj�Zk�

)2

.

Let Sb = {x ∈ Rb
≥0 | ‖x‖ = 1} be an intersection of an unit sphere in Rb with

Rb
≥0. Put S = (Ra)×r × (Sb)×r × (Sc)×r for short, where M×r = M ×· · ·×M (r

times). Then S is a closed subspace of R
(a+b+c)r
≥0 and the image f(S) coincides

with the full image f(R(a+b+c)r
≥0 ). Let (X, Y, Z) ∈ S. Then X ≥ O, Y ≥ O,

Z ≥ O and ‖yj ‖ = ‖zj ‖ = 1 for all j. Noting that

∑

i,j,k

(
∑

�

Xi�Yj�Zk�

)2

≥
∑

i,j,k

(Xi�Yj�Zk�)2 = ‖x� ‖2

if
∑

i,j,k (
∑

� Xi�Yj�Zk�)
2 is bounded, ‖ X ‖F is also bounded and thus so is S.

Hence, we can apply the proof of Lemma 1 for the function f on S instead of h
and we obtain an existence of a global minimal value.
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4.2 Uniqueness

We show the uniqueness under some assumption. First,several facts are pre-
sented. For convenience, we define

X1 ◦ · · · ◦ Xk = (x(1)
1 ⊗ · · · ⊗ x

(k)
1 , . . . , x(1)

r ⊗ · · · ⊗ x(k)
r )

for matrices X1 = (x(1)
1 , . . . , x

(1)
r ), . . ., Xk = (x(k)

1 , . . . , x
(k)
r ) with r-columns.

For u = (1, . . . , 1)T ∈ Rr, we have f(X, Y, Z) =‖ T − (X ◦ Y ◦ Z)u ‖2
F . For a

transformation Mσ = (mij) among {1, . . . , r} σ, a permutation matrix Mσ is
defined by mij = δiσ(j). For a permutation matrix Mσ it does hold that

MT
σ = Mσ−1 = M−1

σ .

Proposition 2. In a general P , the following equation does not hold

(X1P ) ◦ · · · ◦ (XrP ) = (X1 ◦ · · · ◦ Xr)P.

However, if P is a permutation matrix, and P1, . . . , Pr are diagonal matrices,

(X1P ) ◦ · · · ◦ (XrP ) = (X1 ◦ · · · ◦ Xr)P
(X1P1) ◦ · · · ◦ (XrPr) = (X1 ◦ · · · ◦ Xr)P1 · · ·Pr

does hold.

Lemma 4. Let A and C be m× r matrices and B and D be n× r matrices, and
Q be r × r non-singular matrix. Assume that A ◦ B = (C ◦ D)Q and rank(C) =
rank(C ◦ D) = r Then there exists a permutation matrix P = Mσ such that both
of PQ and QP−1 become diagonal matrices and A = CQX and B = DP−1X−1

hold for some diagonal matrix X. Further suppose that A, B, C, D ≥ 0. Let Q1/2

be a r×r matrix whose (i, j)-component is the square root of the (i, j)-component
of Q. Then Q1/2 is a real matrix, and both A = CQ1/2X and B = DQ1/2X

−1

hold for some diagonal matrix X.

Proof. We use the notations A = (a1, . . . ar), B = (b1, . . . br) = (bij), C =
(c1, . . . cr), D = (d1, . . . dr) = (dij), Q = (qij). Since ⊗ is a bilinear operation
and rank(C ◦ D) = r, it holds that dk 
= 0 (∀k) and that dk // d� implies k = �.
Since A ◦ B = (C ◦ D)Q, we have

ak ⊗ bk =
∑

�

q�kc� ⊗ d�,
∀k, and bikak =

∑

�

q�kdi�c�,
∀i, k.

Since Q is non-singular, for each k there exists a permutation σ(k) such that
qσ(k)k 
= 0. Now we will show that for each � there exists an i such that bi� 
= 0.
Assume that bs = 0 for some s. Then, it holds that

∑
� q�sc� ⊗ d� = 0, and since

rank(C ◦ D) = r, it holds that q�s = 0 (∀�). This contradicts to the fact that
Q is non-singular. Therefore, for each �, there exists a τ(�) such that bτ(�)� 
= 0.
Then, it follows

q�kbikdτ(k)� = q�kbτ(k)kdi�,
∀i, k, �
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from the equality

bτ(k)kbikak =
∑

�

bikq�kdτ(k)�c� =
∑

�

bτ(k)kq�kdi�c�,
∀i, k

and rank(C) = r. On the assumption of q�k 
= 0, since di� =
dτ(k)�

bτ(k)k
· bik for all

i it holds that d� =
dτ(k)�

bτ(k)k
bk. Especially it holds that dτ(k)� 
= 0. That is, it

holds that d� // bk. Hence, by rank(C ◦ D) = r, if q�k 
= 0, then � = σ(k). This
implies that there exists a permutation matrix P = Mσ such that both of PQ

and QP−1 are diagonal. Then, if we choose X = diag
(

dτ(k)σ(k)

bτ(k)k

)
, it holds that

ak = qσ(k)k ·
dτ(k)σ(k)

bτ(k)k
cσ(k), bk =

bτ(k)k

dτ(k)σ(k)
dσ(k),

∀k

that is, it holds that A = CQX, B = DP−1X−1. Further, on the assump-

tion of Q ≥ 0, if we choose Y = diag
(√

qσ(k)kdτ(k)σ(k)

bτ(k)k

)
, it holds that A =

CQ1/2Y, B = DQ1/2Y
−1. These completes the proof of Lemma 4. �	

We should note that the factorization (X ◦ Y ◦ Z) has the scalar uncertainty
such that for scalars a, b, c, it holds

(a′X) ◦ (b′Y ) ◦ (c′Z) = (abc)(X ◦ Y ◦ Z).

where (a′, b′, c′) denotes any permutation of (a, b, c). Now we give a sufficient con-
dition that NNTF has the unique global solution. From now set u = (1, . . . , 1)T ∈
Rr and let fl1(T ) be a a × bc matrix whose (i, j + b(k − 1))-component is tijk.
Then the following theorem holds.

Theorem 3. For f(X, Y, Z) =‖T−(X◦Y ◦Z)u‖2
F , we assume rank(fl1(T )) = r

and min f(X, Y, Z) = 0. Then, under the condition rank(Y ) = rank(Y ◦ Z) = r,
the optimal global point is unique up to permutations and scalar uncertainty.

Proof. By triangular inequality we have

‖(X1 ◦ Y1 ◦ Z1)u − (X0 ◦ Y0 ◦ Z0)u‖F ≤ f(X0, Y0, Z0) + f(X1, Y1, Z1) = 0,

and thus (X0 ◦ Y0 ◦ Z0)u = (X1 ◦ Y1 ◦ Z1)u which is equivalent to the fol-
lowing equation X0(Y0 ◦ Z0)T = X1(Y1 ◦ Z1)T . By Proposition 1 (3), there
exists a non-singular matrix Q such that X = X0(QT )−1, Y ◦ Z = (Y0 ◦
Z0)Q. From Lemma 4, for some permutation matrix P and diagonal matrix
D1, it holds that D2 := PQ is a diagonal matrix and Y = Y0QD1 and Z =
Z0P

−1D−1
1 . Hence, noting P−1 = PT , it holds that X = X0P

−1D−1
2 , Y =

Y0P
−1D2D1, Z = Z0P

−1D−1
1 . Up to scalar uncertainty, (X, Y, Z) is equal to

(X0P
−1, Y0P

−1, Z0P
−1) = (X0, Y0, Z0)P−1, and also it is, up to permutation,

equal to (X0, Y0, Z0). �	
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In general, it does not hold (X0 ◦ Y0 ◦ Z0)u = (X1 ◦ Y1 ◦ Z1)u, but we can show
the following property.

Proposition 3. For the function f(X, Y, Z) =‖ T − (X ◦ Y ◦ Z)u ‖2
F , assume

that (X0, Y0, Z0), (X1, Y1, Z1) are two stationary points which attain the minimal
value such that f(X0, Y0, Z0) = f(X1, Y1, Z1). Then it holds that

‖(X0 ◦ Y0 ◦ Z0)u‖F =‖(X1 ◦ Y1 ◦ Z1)u‖F .

Proof. Since f(X, Y, Z) =‖ fl1(T ) − X(Y ◦ Z)T ‖2
F , from the equation (1), we

have ‖fl1(T )‖2
F − ‖X0(Y0 ◦ Z0)T ‖2

F =‖fl1(T )‖2
F − ‖X1(Y1 ◦ Z1)T ‖2

F . That is,
it holds that ‖X0(Y0 ◦ Z0)T ‖F =‖X1(Y1 ◦ Z1)T ‖F . �	
Finally we remark that the equality

‖X0(Y0 ◦ Z0)T ‖F =‖Y0(Z0 ◦ X0)T ‖F =‖Z0(X0 ◦ Y0)T ‖F .

5 Conclusion

For a third-order tensor T and each r, there exists a sum of r tensors of rank 1
which is the closest to T in the sense of Frobenius norm (Existence property).
Generally, a global optimal solution is not unique for NNTF. For this problem
we proved that if T is of rank r the rank of the matrix made by an arrangement
of T is less than or eaual to r, and that if the equality of both ranks holds
the decomposition of T into a sum of r tensors of rank 1 is unique under some
condition (Uniqueness property).
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Abstract. With the advent of high-throughput data recording meth-
ods in biology and medicine, the efficient identification of meaningful
subspaces within these data sets becomes an increasingly important chal-
lenge. Classical dimension reduction techniques such as principal com-
ponent analysis often do not take the large statistics of the data set into
account, and thereby fail if the signal space is for example of low power
but meaningful in terms of some other statistics. With ‘colored subspace
analysis’, we propose a method for linear dimension reduction that evalu-
ates the time structure of the multivariate observations. We differentiate
the signal subspace from noise by searching for a subspace of non-trivially
autocorrelated data; algorithmically we perform this search by joint low-
rank approximation. In contrast to blind source separation approaches
we however do not require the existence of sources, so the model is ap-
plicable to any wide-sense stationary time series without restrictions.
Moreover, since the method is based on second-order time structure, it
can be efficiently implemented even for large dimensions. We conclude
with an application to dimension reduction of functional MRI recordings.

1 Introduction

Dimension reduction considers the question of removing a noise subspace from
a larger multivariate signal. Classically, a signal is differentiated from noise by
having a higher variance, and algorithms such as principal component analy-
sis (PCA) in the linear case remove the low-variance components. This can be
extended to nonlinear settings, which results in methods including nonlinear
PCA [1], kernel PCA [2] and ISOMAP [3], to name but a few. These techniques
are well-developed and powerful if the noise is comparatively low (in terms of
power i.e. variance) when compared to the signal; in other words a signal mani-
fold has to be ‘visible’ in the local covariance matrix. However the methods fail
to capture signals that are deteriorated by noise of similar or stronger power.

Broadly speaking, there are two solutions to extract signals from higher-
variance noise: (a) use higher-order statistics of the data to differentiate signal
from noise, or (b) use additional information of the data such as temporal struc-
ture to define a signal manifold. (a) leads to the recently proposed non-Gaussian
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component analysis (NGCA) [4,5,6], which is a semiparametric statistical frame-
work for searching non-Gaussian subspaces—there are a few algorithmic imple-
mentations such as the multi-index projection pursuit. The noise subspace is
characterized simply by being Gaussian. NGCA tries to detect the non-Gaussian
signal subspace within the data, and in contrast to independent component anal-
ysis no assumption of independence within the subspace is made.

More precisely, given a random vector x, a factorization x = As with an
invertible matrix A, s = (sN , sG) and sN a square-integrable n-dimensional
random vector is called an n-decomposition of x if sN and sG are stochastically
independent and sG is Gaussian. In this case, x is said to be n-decomposable.
x is denoted to be minimally n-decomposable if x is not (n − 1)-decomposable.
It has been shown that the minimal NGCA signal subspaces of a minimally
n-decomposable decomposition are unique [5]. This method is clearly the only
available alternative to second-order approaches if i.i.d. signals are given.

However, if the observations possess additional structure such as temporal de-
pendencies, approach (b) provides an often simpler dimension reduction frame-
work. Frequently, it is implicitly taken by methods that preprocess the data by
transforming them into for example a Fourier or a Wavelet basis, which uses
the time structure only in the preprocessing step. The assumption is that in the
transformed domain, variance-based methods then suffice.

Here, we take approach (b) in a more direct fashion, and propose a novel
method that takes the idea of NGCA and its underlying algorithms [4,6], namely
the decomposition into a maximally white and ‘another’ signal, to the temporal
domain, and apply it to the extraction of the signal subspace of fMRI data sets.

2 Colored Subspace Analysis (CSA)

The goal of CSA is to determine a basis of a random process such that in this
basis as many components as possible are white (i.i.d.). The remaining com-
ponents then span the ‘colored subspace’, onto which we project for dimension
reduction.

Let x(t) be an (observed) d-dimensional real stochastic process and A an
invertible real matrix such that x(t) = As(t). As in NGCA, an n-temporal-
decomposition of s(t) is defined by s(t) = (sC(t), sW (t)). Here sC(t) is an n-
dimensional square-integrable wide-sense stationary random process and sW (t)
is i.i.d., such that the auto-crosscorrelation of sW (t) and sC(t) vanishes. Splitting
up A = (AC ,AW ) accordingly yields the generative model x(t) = ACsC(t) +
AW sW (t). With W := A−1 =: (W�

C ,W�
W )�, the dimension reduction con-

sists of projecting x(t) onto the lower-dimensional signal sC(t) = WCx(t). Note
that the more traditional model x(t) = AGsG(t) + n(t) using full-rank noise
n(t) is included in the above model, simply by adding the n-dimensional part
of n(t) lying in the image of AG to sG(t). Out claim then is that we cannot
distinguish between signal and noise in the signal subspace without additional
assumptions.
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2.1 Indeterminacies

The subspace given by the range of WC is denoted as the colored subspace
of x(t). Clearly, the coefficients of A or W cannot be unique. However, from
similar arguments as below, it can be shown that the colored subspace itself is
unique if the n-temporal decomposition is minimal in the sense that no (n − 1)-
temporal-decomposition of x(t) exists; we have to assume that the noise subspace
is maximal as we do not make any assumptions on sC(t).

2.2 Algorithm

The key assumption of the model is that the sC(t) and sW (t) have no common
autocorrelations, i.e.—after centering—that Rs(τ) := E(s(t + τ)s(t)�) is block
diagonal of the form

Rs(τ) =
RsC(τ) 0

0 RsW (τ)
(1)

for all τ . Moreover, the noise component sW (t) is characterized by being i.i.d.,
hence RsW (τ) = 0 for τ �= 0. It can be shown that minimality of the colored
subspace is guaranteed if n is chosen maximal such that there still exists a τ �= 0
with full-rank RsC(τ). The factorization model now provides that the observed
autocorrelations Rx(τ) can be factorized into

Rx(τ) = ARs(τ)A�. (2)

As preprocessing, we first remove correlations by PCA, which guarantees that
Rx(0) = I. Since the basis in the signal and noise subspaces are non-unique,
we may choose coordinates as normalization such that without loss of generality
RsC (0) = I and RsW (0) = I, hence Rs(0) = I according to (1). Then A is
orthogonal, because AA� = ARs(0)A� = Rx(0) = I.

So the model factorization (2) together with the block structure (1) implies
that A and hence the colored subspace can be algorithmically detected by block-
diagonalizing one symmetrized R̄x(τ) = 1/2(Rx(τ) + Rx(τ)�). Robustness can
be increased by performing orthogonal joint block-diagonalization [7, 8] of mul-
tiple or all R̄x(τ) for τ �= 0.

The dimension n of the signal subspace can be determined as

n := max
τ �=0

rank R̄x(τ),

which in practice has to be replaced by a thresholded or adaptive rank calculation
to allow for noise and finite-sample effects. Using the fact that RsW (τ) = 0, τ �= 0
more explicitly, we get

Rx(τ) = (AC ,AW )Rs(τ)(AC ,AW )� = ACRsC (τ)A�C .

Hence after joint block-diagonalization, the colored subspace is given by the
non-zero eigenvalues—which in the finite-sample case has to be approximated.

This model is closely related to the BSS-algorithms AMUSE [9], SFA [10]
for one and SOBI [11], TDSEP [12] for multiple autocovariance matrices. The
difference is that no generative data model is necessary—CSA is applicable to
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any wide-sense stationary random process; the signal subspace is automatically
and uniquely determined, and additional assumptions within the data subspace
(such as autodecorrelated sources) are not necessary. This is analogous to the
step from ICA to NGCA as discussed in the introduction.

Interestingly, the two models of ICA and autodecorrelation can also be com-
bined, see e.g. JADETD [13], where JADE and TDSEP are combined with
R(τ), τ �= 0 for ICA in the presence of i.i.d. Gaussian noise. Similar combina-
tions are possible for corresponding dimension reduction frameworks. A review
of related cost functions is given in [14].

2.3 Block-Diagonalization by Joint Low-Rank Approximation

Recently, the authors have presented a method for extracting a single non-zero
block from a set of matrices distributed by unitary transformations [14]. There
we focused on the NGCA problem and proposed a procedure called joint low-
rank approximation (JLA) with a set {Mk}K

k=1 of transformed block matrices
as Rx(τ) in Eq.(2) for τ �= 0. The reduction matrix W0, which extracts the
non-Gaussian part of the data x can be determined by maximizing L(W0) =∑K

k=1 ‖W0MkW�
0 ‖2

Fro over Stiefel manifold W0 ∈ Vn(Rd), where ‖C‖2
Fro =

tr(CC∗). It can be shown that the true reduction matrix is the unique maximizer
of L up to equivalence in the Stiefel manifold. By taking derivative of L, we get
the equation

W0

K∑

k=1

Mk(W0) = ΛW0,

which can be solved by iterative eigenvalue decomposition, where Mk(W0) :=
MkW�

0 W0M∗
k +M∗

kW
�
0 W0Mk. Examples of such matrix sets for NGCA case

are:

(a) fourth-order cumulant tensor, i.e. Q(kl) := (cum(xi, xj , xk, xl) ) for all (k, l),
(b) Hessian of log characteristic function, i.e. Mk := ∂2

∂ζ∂ζ� log E[exp(iζ�x)]+Id.

For the second case, we developed somewhat sophisticated choices and updates of
the frequency vectors ζk which is necessary to improve the performance of JLA.
In the case of CSA, we commonly fix the autocovariance matrices in advance,
but informative lags τ can be chosen by a similar idea. Algorithm 1 shortly
summarizes how JLA is applied to our autocovariance data set.

3 Simulations

As a simple toy example, we consider n = 3-dimensional colored signals in d =
10-dimensional data. The colored signals are three sinusoids of equal frequency
and varying phase, which have been instantaneously gaussianized, see figure 1(a),
so methods based on higher-order statistics such as NGCA cannot work. They
have been embedded in white Gaussian noise of approximately equal power. The
resulting 10-dimensional data set is then mixed by a matrix A with coefficients
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Algorithm 1: Joint low-rank approximation for CSA
Input: d × T sample matrix X of a multivariate time series, number of

autocovariances K, source dimension n
Output: CSA projection W

prewhiten data
calculate eigenvalue decomposition (EVD) of covariance E0Λ0E�

0 = Cov(X)

V ← Λ
−1/2
0 E�

0

Y ← VX

estimate autocovariance matrices
for τ ← 1 . . . K do

Mτ ← (T − τ )−1Y(:, 1 : T − τ + 1)Y(:, τ : T )�

initialize JLA algorithm
calculate EVD EΛE� =

∑
τ Mτ + M�

τ

W ← E(:, 1 : n)�

I ← {1, . . . , K}
iterate JLA, possibly quit loop earlier
for i ← 1 . . . K do

M ←
∑

τ∈I MτW�WM�
τ + M�

τ W�WMτ

calculate EVD M = EiΛiE�
i

W ← Ei(:, 1 : n)�

determine τ0 with minimal ‖WMτW�‖4
F /‖Mτ‖2

F

remove τ0 from I

W ← WV

chosen from an standard normal distribution; the mixtures x(t) are shown in
figure 1(b). The resulting SNR is -5dB, so distinction of signal from the noise
subspace by power (→ PCA) cannot work either, as will also be shown later.

We first apply CSA with K = 10 autocovariance matrices and known signal
subspace dimension n = 3. If we multiply the recovered projection WC with
the mixing matrix A, we expect WCA to have strong contributions in the first
n × n-block and close to zero entries everywhere else. This is the case indicating
that CSA works fine, see Hinton-diagram in figure 1(c). Indeed a possible error-
index e(WCSA) := ‖(WCSAA)(:, n + 1 : d)‖F is low (0.0139): If we perform
similar joint block diagonalization-based search for the projection, extending the
SOBI algorithm, we also achieve an approximate signal projection, however with
an increased error of 0.0363. If however only PCA is applied, the resulting error
is high with e(WPCA) = 5.12, see figure 1(d).

A more systematical comparison of the three methods is achieved when we
perform the above experiment for a batch run of length 100, with randomly
chosen A in each run. The resulting statistics, figures 1(e-f), confirm the superior
performance of CSA in terms of recovery error, as well as computational time
(with respect to the extension of SOBI).
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Fig. 1. Toy example of an n = 3-dimensional signal (a) in d = 10 dimensions (b). CSA
outperforms the other methods (c-f). See text for details.

4 Signal-Subspaces in fMRI Data

Functional magnetic-resonance imaging (fMRI) can be used to measure brain
activity. Multiple MRI scans are taken in various functional conditions; the
extracted task-related component reveals information about the task-activated
brain regions. Classical power-based methods fail to blindly recover the task-
related component as it is very small with respect to the total signal, usually
around one percent in terms of variance. Hence we propose to use the auto-
covariance structure (in this case spatial autocovariances) in combination with
CSA to properly reduce the data dimension.
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fMRI data with 98 images (TR/TE = 3000/60 msec) were acquired with
five periods of rest and five photic simulation periods with rest. Simulation and
rest periods comprised 10 repetitions each, i.e. 30s. Resolution was 3 × 3 × 4
mm. The slices were oriented parallel to the calcarine fissure. Photic stimulation
was performed using an 8 Hz alternating checkerboard stimulus with a central
fixation point and a dark background with a central fixation point during the
control periods [15]. The first scans were discarded for remaining saturation
effects. Motion artifacts were compensated by automatic image alignment.

In order to compare the performance of CSA versus standard PCA-based di-
mension reduction in varying source data dimension, we reduce the total data
to p ∈ {2, 5, 10, 20, 50, 98} dimensions by PCA. Then we either apply CSA or
PCA and order the components in decreasing order of the eigenvalues (of to-
tal autocovariance or covariance respectively). We analyze how well the task-
related component with the known task vector v ∈ {0, 1}98 is contained in a
component by f(i) := (W0(i, :)v)2, where W0 is the separating matrix. In or-
der to allow for finite-sample effects, we compare the recovered subspace for all
varying reduced dimensions n by comparing it to the total power by plotting
c(n) =

∑n
i=1 f(i)/

∑p
i=1 f(i) versus n, see figure 2.

For strongly reduced data p ≤ 5, both methods capture the task component
for low n, PCA more so than CSA. But in more realistic data settings p ≥ 10,
necessary for full data evaluation, CSA consistently needs n = 5 components to
guarantee that the task-related component is contained in the signal subspace
(with cumulative contribution ratio .8 for p ≤ 20), whereas PCA needs already
n = 18 components to guarantee the same for p = 20, and more so for larger p.

This illustrates that CSA can be used as preprocessing tool for fMRI data
much more efficiently than PCA, albeit at a somewhat higher computational
cost.

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

c(
n)

p=2
p=5
p=10
p=20
p=50
p=98

(a) CSA

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

c(
n)

p=2
p=5
p=10
p=20
p=50
p=98

(b) PCA

Fig. 2. Comparison of CSA (left) and PCA (right) for dimension reduction

Conclusions. We have presented a generally applicable, efficient method for
linear dimension reduction that separates a subspace with nontrivial autocor-
relations (color) from the white remainder. Results on toy and real data are
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promising. Presently, we are working on a statistically sound estimation of the
subspace dimension as well as on a generalization without prewhitening. More-
over, we are planning to study the performance of CSA on other medical imaging
applications. We believe that the method may provide a useful tool for prepro-
cessing to allow for more efficient analysis in a lower-dimensional signal subspace
still capturing fine-grained and low-power statistics of the observations.
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Abstract. Renyi’s entropy-based criterion has been proposed as an ob-
jective function for independent component analysis because of its re-
lationship with Shannon’s entropy and its computational advantages in
specific cases. These criteria were suggested based on “convincing” exper-
iments. However, there is no theoretical proof that globally maximizing
those functions would lead to separate the sources; actually, this was
implicitly conjectured. In this paper, the problem is tackled in a theoret-
ical way; it is shown that globally maximizing the Renyi’s entropy-based
criterion, in its general form, does not necessarily provide the expected
independent signals. The contrast function property of the correspond-
ing criteria simultaneously depend on the value of the Renyi parameter,
and on the (unknown) source densities.

1 Introduction

Blind source separation (BSS) aims at recovering underlying source signals from
mixture of them. Under mild assumptions, including the mutual independence
between those sources, it is known from Comon [1] that finding the linear trans-
formation that minimizes a dependence measure between outputs can solve the
problem, up to acceptable indeterminacies on the sources. This procedure is
known as Independent Component Analysis (ICA).

This problem can be mathematically expressed in a very simple way. Con-
sider the square, noiseless BSS mixture model: a K-dimensional vector of inde-
pendent unknown sources S = [S1, . . . , SK ]T is observed via an instantaneous
linear mixture of them X = AS, X = [X1, . . . , XK ]T, where A is the full-rank
square mixing matrix. Many separation methods are based on the maximization
(or minimization) of a criterion. A specific class of separation criteria is called
“contrast functions” [1]. The contrast property ensures that a given criterion is
suitable to achieve BSS. Such a function i) is scale invariant, ii) only depends on
the demixing matrix B and of the mixture densities iii) reaches its global maxi-
mum if and only if the transfer matrix W = BA is non-mixing [1]. A matrix W
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is said non-mixing if it belongs to the subgroup W of the general linear group
GL(K) of degree K, and is defined as:

W .= {W ∈ GL(K) : ∃P ∈ PK, Λ ∈ DK,W = PΛ} (1)

In the above definition PK and DK respectively denote the groups of permuta-
tion matrices and of regular diagonal matrices of degree K.

Many contrast functions have been proposed in the literature. One of the most
known contrast function is the opposite of mutual information I(Y) [2] where
Y = BX, which can be equivalently written as a sum of differential entropies
h(.):

I(Y) .=
K∑

i=1

h(Yi) − h(Y) =
K∑

i=1

h(Yi) − log | detB| − h(X). (2)

The differential (Shannon) entropy of X ∼ pX is defined by

h(X) .= −E[log pX ]. (3)

Since I(Y) has to be minimized with respect to B, its minimization is equivalent
to the following optimization problem under a prewhitening step:

max
B∈ SO(K)

C(B), C(B) .= −
K∑

i=1

h(biX), problem 1 (4)

where bi denotes the i-th row of B and SO(K) is the special orthogonal group

SO(K) .= {W ∈ GL(K) : WWT = IK , detW = +1}

with IK the identity matrix of degree K. The B ∈ SO(K) restriction, yielding
log | detB| = 0, results from the fact that, without loss of generality, the source
can be assumed to be centered and unit-variance (E[SST] = IK and A ∈ SO(K)
if the mixtures are whitened [8]). Clearly, if W = BA, problem 1 is equivalent
to problem 2:

max
W∈ SO(K)

C̃(W), C̃(W) .= −
K∑

i=1

h(wiS). problem 2

Few years ago, it has been suggested to replace Shannon’s entropy by Renyi’s
entropy [4,5]. More recent works still focus on that topic (see e.g. [7]). Renyi’s
entropy is a generalization of Shannon’s one in the sense that they share the
same key properties of information measures [10]. The Renyi entropy of index
r ≥ 0 is defined as:

hr(X) .=
1

1 − r
log

∫

Ω(X)

pr
X(x)dx, (5)

where r ≥ 0 and limr→1 hr(X) = h1(X) = h(X) and Ω(X) .= {x : pX(x) > 0}.
Based on simulation results, some researchers have proposed to modify the
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above BSS contrast C(B) defined in problem 1 by the following modified
criterion

Cr(B) .= −
K∑

i=1

hr(Yi), (6)

assuming implicitly that the contrast property of Cr(B) is preserved even for
r �= 1. This is clearly the case for the specific values r = 1 (because obviously
C1(B) = C(B)) and r = 0 (under mild conditions); this can be easily shown
using the Entropy Power and the Brunn-Minkowski inequalities [3], respectively.
However, there is no formal proof that the contrast property of Cr(B) still holds
for other values of r.

In order to check if this property may be lost in some cases, we restrict our-
selves to see if a necessary condition ensuring that Cr(B) is a contrast function is
met. More specifically, the criterion C̃r(W) should admit a local maximum when
W ∈ W . To see if this condition is fulfilled, a second order Taylor development
of C̃r(W) is provided around a non-mixing point W� ∈ W in the next section.
For the sake of simplicity, we further assume K = 2 and that a prewhitening is
performed so that we shall constraint W ∈ SO(2) since it is sufficient for our
purposes, as shown in the example of Section 3 (the extension to K ≥ 3 is easy).

2 Taylor Development of Renyi’s Entropy

Setting K = 2, we shall study the variation of the criterion C̃r(W) due to a
slight deviation of W from any W� ∈ W ∩SO(2) of the form W ← EW� where

E .=
[

cos θ sin θ
− sin θ cos θ

]
(7)

and θ 	 0 is a small angle. This kind of updates covers the neighborhood of
W� ∈ SO(K): if W,W� ∈ SO(2), there always exists Φ ∈ SO(2) such that
W = ΦW�; Φ can be written as E and if W is further restricted to be in the
neighborhood of W�, θ must be small enough. In order to achieve that aim, let
us first focus on a first order expansion of the criterion, to analyse if non-mixing
matrices are stationary points of the criterion. This is a obviously a necessary
condition for Cr(B) to be a contrast function.

2.1 First Order Expansion: Stationarity of Non-mixing Points

Let Z be a random variable independent from Y . From the definition of Renyi’s
entropy given in eq. (5), it comes that Renyi’s entropy of Y + εZ is

hr(Y + εZ) =
1

1 − r
log

∫
pr

Y +εZ(x)dx, (8)

where the density pY +εZ reduces to, up to first order in ε [9]:

pY +εZ(y) = pY (y) − ε
∂E[(Z|Y = x)pY (x)]

∂x

∣∣∣∣
x=y

+ o(ε). (9)
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Therefore, we have:

pr
Y +εZ(y) = pr

Y (y) − rεpr−1
Y (y)

∂[E(Z|Y = x)pY (x)]
∂x

∣∣∣∣
x=y

+ φ(ε, y), (10)

where φ(ε, y) is o(ε). Hence, noting that log(1+a) = a+o(a) as a → 0, equations
(8) and (9) yield1

hr(Y + εZ) = hr(Y ) − ε
r

1 − r

∫
pr−1

Y (y)[E(Z|Y )pY ]′(y)dy∫
pr

Y (y)dy
+ o(ε). (11)

But, by integration by parts, one gets

1
r − 1

∫
pr−1

Y (y)[E(Z|Y )pY ]′(y)dy = −
∫

pr−1
Y (y)E(Z|Y = y)p′Y (y)dy, (12)

yielding

−ε
r

1 − r

∫
pr−1

Y (y)[E(Z|Y )pY ]′(y)dy∫
pr

Y (y)dy
= −εr

∫
pr−1

Y (y)E(Z|Y = y)p′Y (y)dy∫
pr

Y (y)dy
.

(13)
From the general iterated expectation lemma (p. 208 of [6]), the right-hand side
of the above equality equals

−εr
E[pr−2

Y (Y )p′Y (Y )Z]∫
pr

Y (y)dy
= εE[ψr(Y )Z], (14)

if we define the r-score function ψr(Y ) of Y as

ψr(Y ) .= −rpr−2
Y (Y )p′Y (Y )∫

pr
Y (y)dy

= − 1
pY (Y )

(pr
Y )′(Y )∫
pr

Y (y)dy
. (15)

Observe that the 1-score reduces to the score function of Y , defined as −(log pY )′.
Then, using eq. (11), noting Y = EW�S, cos θ = 1+o(θ) and sin θ = θ+o(θ),

the criterion C̃r(EW�) becomes up to first order in θ:

C̃r(EW�) = −hr(Y1) − hr(Y2)

≈ C̃r(W�) ± θ
{

E[ψr(S1)S2] − E[ψr(S2)S1]
}
. (16)

The sign of θ in the last equation depends on matrix W�; for example, if W� =
I2, it is negative, and if the rows of I2 are permuted in the last definition of W�,
it is positive.

Remind that the criterion is not sensitive to a left multiplication of its argu-
ment by a scale and/or permutation matrix. For instance, C̃r(W�) = C̃r(I2) =
−hr(S1) − hr(S2). It results that since independence implies non-linear decor-
relation, both expectations vanish in eq. (16) and C̃r(W) admits a stationary
point whatever is W� ∈ W .
1 Provided that there exist ε� > 0 and an integrable function Φ(y) > 0 such that for

all y ∈ R and all |ε| < ε�, φ(ε, y)/ε < Φ(y). It can be shown that this is indeed the
case under mild regularity assumptions.
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2.2 Second Order Expansion: Characterization of Non-mixing
Points

Let us now characterize these stationary points. To this end, consider the second
order expansion of pY +εZ provided in [9] (Z is assumed to be zero-mean to
simplify the algebra):

pY +εZ = pY +
1
2
ε2E(Z2)p′′Y + o(ε2). (17)

Therefore, since Renyi’s entropy is not sensitive to translation we have, for r > 0:

hr(Y + εZ) = hr(Y ) +
ε2

2
r

1 − r

∫
pr−1

Y (y)p′′Y (y)dy∫
pr

Y (y)dy
︸ ︷︷ ︸

.
=Jr(Y )

var(Z) + o(ε2), (18)

where Jr(Y ) is called the r-th order information of Y . Observe that the first
order information reduces to J1(Y ) = E[ψ2

Y,r], i.e. to Fisher’s information [2].
In order to study the “nature” of the stationary point reached at W� (mini-

mum, maximum, saddle), we shall check the variation of C̃r resulting from the
update W ← EW� up to second order in θ. Clearly, cos θ = 1 − θ2/2 + o(θ2)
and tan θ = θ + o(θ2), the criterion then becomes:

C̃r(EW�)=−hr(Y1) − hr(Y2)
=−hr(S1 + tan θS2) − hr(S2 − tan θS1) − 2 log | cos θ|

= C̃r(W�)− θ2

2
[Jr(S1)var(S2) + Jr(S2)var(S1)]−2 log |1 − θ2

2
| + o(θ2)

= C̃r(W�) − θ2

2
[Jr(S1)var(S2) + Jr(S2)var(S1)−2] + o(θ2) (19)

where we have used Hr(αY ) = Hr(Y ) + log |α|, for any real number α > 0.
This clearly shows that if the sources share a same density with variance var(S)
and r-th order information Jr(S), the sign of C̃r(EW�)− Cr(W�) equals, up to
second order in θ to sign(1 − Jr(S)var(S)). In other words, the criterion reaches
a local minimum at any W ∈ W if Jr(Si)var(Si) < 1, instead of an expected
global maximum. In this specific case, maximizing the criterion does not yield
the seeked sources.

3 Example

A necessary and sufficient condition for a scale invariant criterion f(W),
W ∈ SO(K) to be an orthogonal contrast function is that the set of its global
maximum points matches the set of the orthogonal non-mixing matrices, i.e.
argmaxW∈SO(K) f(W) = W . Hence, in the specific case where the two sources
share the same density pS , it is necessary that the criterion admits (at least) a
local maximum at non-mixing matrices. Consequently, according to the results
derived in the previous section, the Jr(S)var(S) < 1 inequality implies that the
sources cannot be recovered through the maximization of Cr(B).
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3.1 Theoretical Characterization of Non-mixing Stationary Points

The above analysis would be useless if the Jr(S)var(S) < 1 inequality is never
satisfied for non-Gaussian sources. Actually, it can be shown that simple and
common non-Gaussian densities satisfies this inequality. This is e.g. the case
of the triangular density. We assume that both sources S1, S2 share the same
triangular density pT

2:

pT (s) .=

⎧
⎪⎨

⎪⎩

1−|s/
√

6|√
6

if |s| ≤
√

6

0 otherwise .
(20)

Observe that E[Si] = 0, var(Si) = 1, i ∈ {1, 2}, and note that using integration
by parts, the r-th order information can be rewritten as

Jr(Y ) = r

∫
pr−2

Y (y)[p′Y (y)]2dy∫
pr

Y (y)dy
.

Then, for S ∈ {S1, S2} and noting u
.= 1 − s/

√
6:

Jr(S) =
r

6

∫√6

0 (1 − s/
√

6)r−2ds
∫√6

0 (1 − s/
√

6)rds
=

r

6

∫ 1

0 ur−2du
∫ 1

0
urdu

=

⎧
⎨

⎩

r(r + 1)/[6(r − 1)] if r > 1

∞ if r ≤ 1

Thus Jr(S)var(S) < 1 if and only if r(r + 1)/[6(r − 1)] < 1. But for r ≥ 1, the
last inequality is equivalent to 0 > r(r +1)− 6(r− 1) = (r − 2)(r − 3). Therefore
Jr(S)var(S) < 1 if and only if 2 < r < 3, as shown in Figure 1(a). We conclude
that for a pair of triangular sources, the criterion Cr(B) is not a contrast for
2 < r < 3.

3.2 Simulation

Let us note Y = [Y1, Y2]T , Y = WθS, where Wθ is a 2D rotation matrix of angle
θ of the same form of E but where θ can take arbitrary values [0, π]. The criterion
−(hr(Y1)+hr(Y2)) is plotted with respect to the transfer angle θ. Obviously, the
set of non-mixing points reduces to W = {Wθ : θ ∈ {kπ/2|k ∈ Z}}. Drawing
this figure requires some approximations, and we are aware about the fact that it
does not constitute a proof of the violation of the contrast property by itself; this
proof is provided in the above theoretical development where it is shown that
out of any problem of e.g. density estimation or exact integration approximation,
Renyi’s entropy is not always a contrast for BSS. The purpose of this plot is,
complementary to Section 2, to show that in practice, too, the use of Renyi’s
entropy with arbitrary value of r might be dangerous.

Figure 1(b) has been drawn as follows. For each angle θ ∈ [0, π], the exact
triangular probability density function pT is used to compute the pdf of sin θS

2 This density is piecewise differentiable and continuous. Therefore, even if the density
expansions are not valid everywhere, eq. (19) is still of use.
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Fig. 1. Triangular sources. (a): log(Jr(S)var(S)) vs r. (b): Estimated Renyi’s criterion

C̃r(E) vs θ. The criterion is not a contrast function for r = 2.5 and r = 5.

and cos θS, S ∼ pT , by using the well-known formula of the pdf of a transfor-
mation of random variables. Then, the output pdfs are obtained by convoluting
the independent sources scaled by sin θ and cos θ. Finally, Renyi’s entropy is
computed by replacing exact integration by Riemannian summation restricted
on points were the output density is larger than τ = 10−4 to avoid numerical
problems resulting from the log operator. At each step, it is checked that the
pdfs of sin θS, cos θS, Y1 and Y2 integrate to one with an error smaller than τ
and that the variance of the outputs deviates from unity with an error smaller
than τ . Note that at non-mixing points, the exact density pT is used as the
output pdf to avoid numerical problems.

The two last plots of Figure 1(b) clearly indicate that the problem could be
emphasized even when dealing with an approximated form of Renyi’s entropy.
On the top of the figure (r = 1), the criterion C̃r(W) = C̃(W) (or more pre-
cisely, Cr(B) = C(B)) is a contrast function, as expected. On the middle plot
(r = 2.5), C̃r(Wθ) admits a local minimum point when Wθ ∈ W (this results
from Jr(S)var(S) < 1), and thus violates a necessary requirement of a contrast
function. Finally, on the last plot (r=5), the criterion is not a contrast even
though Jr(S)var(S) > 1 since the set of global maximum points of the criterion
does not correspond to the set W .

4 Conclusion

In this paper, the contrast property of a well-known Renyi’s entropy based cri-
terion for blind source separation is analyzed. It is proved that at least in one
realistic case, globally maximizing the related criterion does not provide the ex-
pected sources, whatever is the value of Renyi’s exponent; the transfer matrix
W globally maximizing the criterion might be a mixing matrix, with possibly
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more than one non-zero element per row. Even worst, it is not guaranteed that
the criterion reaches a local maximum at non-mixing solutions ! Actually, the
only thing we are sure is that the criterion is stationary for non-mixing matri-
ces. This is a mere information since if the criterion has a local maximum (resp.
minimum) point at mixing matrices, then a stationary point might also exist at
mixing solution, i.e. at W such that the components of WS are not proportional
to distinct sources. Consequently, the value of Renyi’s exponent has to be chosen
with respect to the source densities in order to satisfy

∑K
i=1 Jr(Si)var(Si) > K

(again, this is not a sufficient condition: it does not ensure that the local max-
imum is global). Unfortunately, the problem is that the sources are unknown.
Hence, nowadays, the only way to guarantee that Cr(B) is a contrast function
is to set r = 1 (mutual information criterion) or r = 0 (log-measure of the
supports criterion, this requires that the sources are bounded); it can be shown
that counter-examples exist for any other value of r, including r = 2. To con-
clude, we would like to point out that contrarily to the kurtosis criterion case,
it seems that it does not exist a simple mapping φ[.] (such as e.g. the absolute
value or even powers) that would match the set argmaxB φ[Cr(B)] to the set
{B : BA ∈ W} where W is the set of non-mixing matrices, because there is no
information about the sign of the relevant local optima.
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Abstract. In this paper we propose a Variational Bayesian (VB) es-
timation approach for Blind Sources Separation (BSS) problem, as an
alternative method to MCMC. The data are M images and the sources
are N images which are assumed piecewise homogeneous. To insure these
properties, we propose a piecewise Gauss-Markov model for the sources
with a hidden classification variable which is modeled by a Potts-Markov
field. A few simulation results are given to illustrate the performances of
the proposed method and some comparison with other methods (MCMC
and VBICA) used for BSS, are presented.

Introduction

We consider the problem of sources separation in the case of instantaneous mix-
ture with noisy images. We propose to use the Bayesian inference which gives
the possibility to take into account uncertainties and all prior knowledge on the
model of sources and observations. We assign priors to the noise, to the sources,
to the mixing matrix and to all the hyperparameters of the model and obtain
the expression of the posterior of all the unknowns. However, using this pos-
terior to compute its mode, its mean or its exploration needs approximation.
Classical methods of approximations are i) numerical methods such as MCMC
which requires in practice a great computational effort, ii) analytical methods
such as asymptotic approximation of Laplace which is more easily practicable
but makes typically a rough approximation.

In this paper we propose an alternative approximation method which is based
on a variational approach which offers a practical framework in term of efficiency
and precision[1],[2]. Indeed the goal is to give an approximation to marginal
likelihood or the model evidence which is the distribution of the data knowing the
model. The model evidence is obtained by integrating over the hidden variables
of the joined posterior law. Using variational approximation of the posterior
law is not new in image processing and in particular in image segmentation [3].
However, in our knowledge its use in blind image separation with a particular
mixture of Gaussians with a Potts Markov model is new. The hidden Potts
Markov model is and many works exist on different approximations such Mean
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Field Approximation (MFA) [4],[5] to resolve the problem. Here we propose a
global variational approach that insures us to maximize free energy with a more
complex hierarchical model since our problem is extended to sources separation
problem.

1 Sources Separation Model

An instantaneous sources separation problem can be written as:

x(r) = As(r) + ε(r), (1)

Where:

- x(r) = {xi(r), i = 1, · · · , M} is a set of M images (observations) and r ∈ R =
{1, · · · , R} is a pixel position with R the total number of pixels.
- A is an unknown mixture matrix with dimension (M, N),
- s(r) = {sj,r, j = 1, · · · , n} is a set of N unknown components (sources images);

In the following, we assume that the errors ε(r) are centered, white, Gaussian
with inverse covariance matrix Σε = diag

[
1

σ2
ε1

, · · · , 1
σ2

εM

]
.

Now, if we note by x = {x(r), r ∈ R}, s = {s(r), r ∈ R} and ε = {ε(r), r ∈
R}, then we can write

x = As + ε. (2)

and
p(x|s, Σε) =

∏

r

N (As(r), Σ−1
ε ) (3)

We note that Σε is an inverse covariance matrix.

1.1 Sources Modelization

We propose to model the prior marginal law of each source sj(r) by a mixture
of Gaussians model:

p(sj(r)) =
K∑

k=1

p(zj(r) = k) N (mjk, σ2
j k

) (4)

which implies that p(sj(r)|zj(r) = k) = N (mjk, σ2
j k

) where p(zj(r) = k) = αj,k

and
∑

k αj,k = 1. This model is appropriate for the image sources which we con-
sider, where the discrete valued hidden variables zj(r) ∈ {1, · · · , Kj} represent
the classification labels of the source images pixels sj(r). To insure some spatial
regularity to these labels, they are modelized by a Potts-Markov random field:

p(zj(r)|zj(r′), r′ �= r, r ∈ R) ∝ exp

⎡

⎣βj

∑

r′∈V(r)

δ(zj(r) − zj(r′))

⎤

⎦ .

The parameters βj controls the mean size of regions.
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1.2 Prior Models for the Mixing Matrix and the Hyperparameters

Mixing matrix model: We consider a Gaussian distribution law for mixture
matrix, so the prior distribution of A is given by:

π(A|A0, Γ 0) = N (A0, Γ 0). (5)

Inverse covariance noise model: We assign a Wishart distribution to the
covariance of noise Σε

π(Σε|νε0 , Σε0) ∝ |Σε|
(νε0 −M−1)

2 exp−1
2
Tr

{
ΣεΣ

−1
ε0

}
(6)

Where νε0 is the number of degrees of freedom and Σε0 is the prior covariance
matrix.

Means and variances of different classes: We assign Gaussian laws to the
means:

π(mz|μ0, T0) = N (μ0, T0), (7)

and Wishart law to the inverse covariances

π(Σz|ν0, V0) = W(ν0, V0). (8)

2 Variational Bayesian Algorithm

Our goal is to obtain a separable approximation q(s, z, θ) = q(s, z) q(θ) for the
joint posterior law p(s, z, θ|x, M) of (s, z) and θ = (A, Σε, mz, Σz). The idea
is thus to minimize the Kullback Leibler divergence between the approximate
distribution law q(s, z)q(θ) and the joint posterior law on the hidden variables
and the parameters p(s, z, θ|x):

KL[q(s, z|x, M)q(θ|x, M)||p(s, z, θ|x))] =
∫

dθ

∫
ds

∑

z

q(s, z|x, M)q(θ|x, M) ln
q(s, z|x, M)q(θ|x, M)

p(s, z, θ|x)

where M is the model. In case of sources separation M represents the number of
sources N . Developing this expression at one side and looking to the expression
of the evidence p(x|M) at the other-side, it is easy to show that:

KL[q(s, z|x, M)q(θ|x, M)||p(s, z, θ|x))] = ln p(x|M) − F(q(s, z), q(θ)) (9)

where F is given by:

F(q(s, z), q(θ)) =
∫

dθq(θ)

⎡

⎣
∫

ds
∑

z

q(s, z) ln
p(x, s, z|θ, M)

q(s, z)
+ ln

p(θ|M)
q(θ)

⎤

⎦

(10)
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which is called free energy of the model. From these relations we see that min-
imizing KL is equivalent to maximizing F . The distribution of the variational
approximation q(s, z) and q(θ) must belong to a family of distributions sim-
pler than that of the posterior distribution p(s, z, θ|x). Obtaining expressions
for q(s, z) and q(θ) is done iteratively. The family of distributions is selected
such that q be in the same family than the true posterior distributions. [2] [6]
noted that important simplifications are made when updating the variational
equations if the choice of the distributions of the variables conditionally to their
parameters is done from conjugated exponential families model. In this case, the
posterior distribution has analytically stables and intuitive forms.

To optimize F(q(s, z), q(θ)) we simply equate to zero the functional deriva-
tives with respect to each distribution q. In summary, the two main hypothesis
of the proposed method are: i) posterior independence between (s, z) and θ, ii)
separable conjugate priors for all the hyperparameters.

This last hypothesis associated with dF
dq = 0 results to:

q(θi) ∝ exp(< log p(x|θ, M) >q(θ|i))π(θi), (11)

where < f(x) >q= Eq {f(x)} =
∫

q(x)f(x)dx.

2.1 Approximate Posterior Laws for Mixing Matrix and
Hyperparameters

Approximation posterior law for mixing matrix: We note by Av the
vector wise representation of a matrix defined by :Av = [A(1,.), · · · , A(m,.)]t. By
taking the functional derivative of Eq.(10) and equating to zero dF

dq(A) = 0, we
get the update:

q(A) ∝ π(A) exp(< ln p(x|s, Σε) >q(Σε)q(s)) (12)

With the appropriate conjugate prior π(A) that we chosen in (5), it is easy to
see that q(A|Ã, Σ̃A) = N (Ã, Σ̃A), with:

Σ̃A = RΣ̃ε ⊗ (
∑

z(r)

q(z(r))Σ̃
−1

s|z) +
∑

r

Σ̃ε ⊗ (
∑

z(r)

q(z(r))s̃z(r)s̃t
z(r)) + ΣA (13)

and Ãv = Σ̃
−1

A

⎡

⎣
∑

r

Σ̃ε(xt(r) ⊗ (
∑

z(r)

q(z(r))s̃t
z(r))) + Γ pAp

⎤

⎦ (14)

Approximate posterior law for noise inverse covariance: q(Σε) is ob-
tained by equating to zero dF

dq(Σε) = 0 which results to:

ln(q(Σε)) =
(R + νε0 − m − 1)

2
ln |Σε| − 1

2
(ΣεQε) (15)

where Qε = Σ−1
ε0 + Q + RDA(

∑
z q(z)Σ̃

−1

s|z , Σ̃
−1

A , Ã). For the definition of DA

and for more details see [7], defining a posterior wishart distribution with a mean
matrix Σ̃ε = (R + νε0)Q−1

ε .
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Approximate posterior laws for mz and Σz: By writing F as a func-
tion of mz and Σz only we can differentiate with respect to these hyperpa-
rameters to yield the following update equations : q(mz|m̃z, T̃z) = N (m̃z, T̃z),
q(Σz|ν̃z , Ṽz) = W(ν̃z, Ṽz). The details of deriving the update equations are
omitted due to the space constraints. They can be obtained in [8].

2.2 Approximate Posterior Laws for Hidden Variables

Approximate posterior distribution q(s|z): The expression of q(s|z) is
obtained by dF

dq(s(r)|z(r)) = 0 which results to :

ln q(s(r)|z(r))=−1
2
s(r)tQs(r)+(ÃtΣ̃εx(r))ts(r)−1

2
(s(r)−mz)tΣz(s(r)−mz)

with Q = Ã′Σ̃εÃ + F (Σ̃ε, Σ̃
−1

A ) which is quadratic in s(r). For the definition

of F (Σ̃ε, Σ̃
−1

A ) and for more details see [7]. In summary, we obtain
q(s(r)|z(r)) = N (s̃z(r), Σ̃s|z) with

Σ̃s|z = Q + Σz (16)

s̃z(r) = Σ̃
−1

s|z[Ã
tΣ̃εx(r) + Σzmz] (17)

Approximate posterior law for labels variables: Deriving an expression
for q(z|x, M) is the most difficult task in this paper due to its Markovian model.
Hopefully, using the four nearest neighbors neighborhood system often used in
image processing, it is easy to divide z into two subsets zN and zB in the
manner of a chess-board. From this, we only need to work with the distributions
qzB (zB) and qzN (zN ). Thus, each white pixel (respectively black) has its four
black neighbors (respectively white). All the white pixels (respectively black),
knowing the black pixels (respectively white), are thus independent. We can thus
write:

qz(z|x, M) = qzN (zN |x, M)qzB (zB|x, M).

The expression of qzB is obtained by dF
dqzB

= 0:

qzB (zB|x, m) ∝ exp{< ln p(zB|zN , β) >q(zN ) +HB(r)} (18)

where:

HB(r) =< ln p(s|z, mz, Σz) + ln p(x|s, z, A, Σε) >q(θ),q(s|z),q(zN )

Expanding these expressions, we obtain:

qzB (zB|x, m) ∝
∏

r∈RB

exp
{

β
∑

r′

∑

k

δ(zr − zr′)q(zr′ = k) + HB(r)
}
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with:

HB(r) = −1
2
s̃t

z(r)Σ̃z s̃z(r) − 1
2
Tr

{
Σ̃zΣ̃

−1

s|z
}

+ m̃t
zΣ̃zs̃z(r)

− 1
2
m̃t

zΣ̃zm̃z − 1
2
Tr

{
Σ̃zT−1

z

}

+
R

2

M∑

i=1

Ψ(
ν + R + 1 − i

2
) + M ln 2 + ln |Σ̃ε|

− R

2
Tr

⎧
⎨

⎩Σ̃εDA(
∑

z(r)

q(z(r))Σ̃
−1

s|z, Σ̃
−1

A , Ã)

⎫
⎬

⎭ − 1
2
Tr

{
Σ̃εQ

}

In the same manner, we obtain an expression for qzN (zN |x, M)

qzN (zN |x, M) ∝
∏

r∈RN

exp
{

β
∑

r′

∑

k

δ(z(r) − z(r′))q(z(r′) = k) + HN (r)
}

(19)
where:

HN (r) =< ln p(s|z, mz, Σz) + ln p(x|s, z, A, Σε) >q(θ),q(s|z),q(zB)

Given all these expressions, the general iterative algorithm obtained and pro-
posed consists in updating successively

⎧
⎪⎪⎨

⎪⎪⎩

q(s|z, x, θ, M), using (16, 17)
qzB (zB|zN , x, M), using (18)
qzN (zN |zB , x, M), using (19)
q(θi|s, z, x, θ|i, M), using (13, 14, 15)

Once these iterations converged, one can use these laws to provide estimation
for {s, z and θ}.

3 Free Energy Estimation

The estimate of F enables us to have a criterion of convergence. The maxi-
mization of the free energy is made by an iterative procedure (Figure: 2, (a)),
following a total iteration which contains an update of all the parameters. We
use a threshold on ΔF

F to stop the iterations. Since calculations of the parameters
for all the q functional are already made, it is easy to calculate F :

F = < ln p(x|s, z, A, Σε) >q(s|z),q(A),q(Σε) − < KL(q(s|z)||p(s|z)) >q(z)

− KL(q(A)||p(A)) − KL(q(Σε)||p(Σε)) − KL(q(mz)||p(mz))
− KL(q(Σz)||p(Σz))

We also use the final values of F for model selection.
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4 Results

To evaluate the performance of our method we generate synthetic data with:

A =
[
0.86 0.44
0.50 0.89

]
, Σε =

[
10 0
0 10

]
, mz =

[
−1 1
1 −1

]
, Σz =

[
0.01 0.01
0.01 0.01

]
and

β = 1.5. We choose to compare with MCMC method that had been proposed
with the same modelization (Figure 1: (d), (e)) This enables us to see a gain in
computation time.

We also compared with the method (VBICA [8]) (Figure 1: (c), (E)). This
method uses a mixture of Gaussian with an independent model on the coefficients
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Fig. 1. Results of separation for two images X1 et X2 (b) obtained by an instantaneous
mixture of S1 et S2 (a) every images is modelized by Markov model. In (c), (d) and
(e) are represented sources obtained by three different methods VB ICA, MCMC and
the proposed approach with their associated segmentation.
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Fig. 2. (a) evolution of F during the iterations (b) Final values of F for simulated
data composed with 4 mixed images obtained from 3 sources. F has been normalized
with respect to its minimum value for N = 4. The maximum is obtained for the right
sources number 3.
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of mixture contrary to the method we propose. This type of model is often
used in a variational estimation[1],[2] considering the a priori law are always
selected in separable families. Our method converges at the end of 120 iterations
(Figure 2: (a)) whereas method (VBICA) reached 500 iterations without conver-
gence for a degree of tolerance on F of 1e−4. F enables us to make the suitable
choice of the model. For a simulated example with three sources we compute the
converged values of F for different number of sources from 2 to 7. As it is shown
in the (figure 2: (b)), maximum of F is 3 which is the good result.

5 Conclusion

In this paper we propose a new approach for sources separation problem based on
Bayesian estimation and variational approximation. Variational approximation
is applied to the posterior law obtained with a more complex source model.
The proposed source model is marginally a mixture of Gaussians but also we
assigned a Potts model to its hidden variable which enforces the homogeneity
and compactness of the pixel positions in the same class. Compared to VBICA,
our source model is reacher but also due to the Potts model, it is non-separable.
This makes the expressions of the posterior law more complex. However, the main
benefice of the complex modelization of the sources is that the hidden variables
now can be used as a non-supervised segmentation result. The proposed method
then does simultaneously separation and segmentation.
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Abstract. Cyclostationary signals can be met in various domains, such as 
telecomunications and vibration analysis. Cyclostationarity allows to model 
repetitive signals and hidden periodicities such as those induced by modulation 
for communications and by rotating machines for vibrations. In some cases, the 
fundamental frequency of these repetitive phenomena can be known. The 
algorithm that we propose aims at extracting one cyclostationary source, whose 
cyclic frequency is a priori known, from a set of observations. We propose a 
new criterion based on second order statistics of the measures which is easy to 
estimate and leads to extraction with very good accuracy.  

Keywords: Source extraction, cyclostationarity, second order statistics, vibra-
tion analysis. 

1   Introduction 

The method we propose here has been developed within the frame of vibration 
analysis applied to rotating machinery monitoring. Rotating machines produce 
vibrations whose characteristics depend on the machine state. These vibrations can 
thus be used to monitor systems such as engines, roller bearings, toothed gearings [1]. 
One of the problems that arises for complex systems is that each vibration sensor 
receives a mixture of the vibrations produced by the different parts of the system. 
These vibrations are usually wideband and spread over much of the spectrum. 

Though these different contributions can be separated neither in the time domain 
nor in the frequency domain, some hope still lays in their cyclostationary features. 
Indeed, due to their symmetric geometry and repetitive movements, each part of the 
system produces random but repetitive vibrations which are cyclostationary at 
specific frequencies [2], [3], [4]. In order to avoid early wearing, the different parts 
are usually designed with different characteristics, ensuring that the system will 
seldom come back to its initial position. This precaution also ensures that these all 
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produce vibrations cyclostationary at different cyclic frequencies. Furthermore, the 
rotation speed is ususally known or easy to measure, so that these frequencies can be 
computed. 

We are interested here in the case when one peculiar part of the system, whose cyclic 
frequency is a priori known, is to be monitored, and no other assumption about the other 
parts is made except that, if cyclostationary, their cyclic frequencies are different from 
the one we are interested in. The methods previously developped [5], [6], which 
suppose that all the cyclic frequencies of the sources are known, are not fitted to this 
case. We thus developped a new source extraction algorithm based on the only 
cyclostationary properties of the source to be extracted. In order to derive an algorithm 
as simple and robust as possible, we chose to base the extraction criterion on second 
order statistics. We first present the principle of the method, with thorough calculations 
in the two sources two mixtures case and application to three different cases. 

2   Principle of the Method 

2.1   Criterion 

The method will be described and proofs will be given in the two sources and two 
mixtures case. We assume that the two mixtures are additive and we call the source 
vector [ ]isS = , the mixture vector [ ]ixX =  and the mixing matrix [ ]ijaA =  (all real 

valued), where { }22,1),( ∈ji  and represent respectively lines and columns. They are 

related by: 

ASX =  (1) 

The source 1s  is supposed to be cyclostationary at a known frequency 0α . The 

source 2s  can be either stationary or cyclostationary at any cyclic frequency except to 

0α . The sources are supposed to be uncorrelated and their respective powers are 

denoted 2
1σ  and 2

2σ . Estimating both sources would mean estimating a B matrix 

such that BXZ =  is an estimate of the source vector S. Our goal is only to retrieve 
the first source on the first estimate vector component, i.e. to find coefficients 11b  and 

12b  such that 

2121111 xbxbz +=  (2) 

is an estimate of 1s . The method that we propose consists in maximizing 

cyclostationarity at frequency 0α  on 1z  and minimizing the power of 1z , in order to 

ensure that only the cyclostationary source is kept on that estimate. 
The criterion that we chose to minimize is given by: 

( )
( )
( )0

0
,

0

1

1

1211 α

z

z

R

R
bbC =  (3) 
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where ( )0
1zR  and ( )0

0

1

α

zR  are coefficients of the Fourier series decomposition of the 

autocorrelation function of 1z  respectively for cyclic frequencies 0 and 0α  and zero 

time lag. 

2.2   Theoretical Validation of the Criterion 

In the 2*2 case, the estimate 1z  can be written as a function of the mixing matrix A, 

the demixing coefficients 11b  and 12b , and the sources. 

( ) ( ) 2221212111211211111 sababsababz +++=  (4) 

There exist an infinity of coefficients pairs ( )1211,bb  that can lead to the extraction 

of 1s  on 1z , which are all the pairs satisfying  

12

22

12

11

a

a

b

b
−=  (5) 

Let us show that minimizing the chosen criterion leads to these solutions. From eq. 
(3) and (4), we derive: 

( )
( )

( )
( ) ( )00

,
0

1

0

1

2
2

2
21121111

2
22121211

2
1

1211 αα

σσ

ss Rabab

abab

R
bbC

+
+

+=  (6) 

It is easy to see that this criterion reaches an absolute minimum for any coefficients 
pair ( )1211,bb  that satisfies equation (5). Therefore, for a fixed value of one of the 

coefficients, the criterion exhibits an absolute minimum versus the other one, and this 
minimum corresponds to one of the solutions. 

2.3   Criterion Evaluation 

The criterion is estimated from the statistics of the measures. The different statistics to 
be estimated are: 

( ) ( ) ( )[ ]∫ −=
0

0

2*

0

1
0

T
tj

jix dtetxtxE
T

R απα  (7) 

with 

0
0

1

α
=T  (8) 

where the cyclic frequency { }0,0 αα ∈  and i and j can take the values { }2,1 . 

Assuming that the cyclostationary signal 1s  is cycloergodic, the ensemble averaging 

[ ]...E  can be replaced by temporal synchronized averaging, i.e. averaging over cyclic 

periods of the signal, which leads to the following estimator: 
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( ) ( ) ( )∫ −=
0

0

2*

0

1
0ˆ

NT
tj

jix dtetxtx
NT

R απα  (9) 

The criterion can then be computed for any value of ( )1211,bb  by : 

( ) ( ) ( ) ( )
( ) ( ) ( )0ˆ0ˆ0ˆ

0ˆ0ˆ0ˆ
,ˆ

0

21

0

2

0

1

2121

1211
2

12
2
11

0
1211

02
12

02
11

1211 ααα
xxxx

xxxx

RbbRbRb

RbbRbRb
bbC

++

++
=  (10) 

The coefficient 11b  is arbitrarily set to 1 and the criterion is computed for different 

values of 12b  (with a step 0.01) until it reaches a minimum. If 12b  increases until it 

reaches a given threshold, the strategy is reversed: 12b  is set to one and 11b  made to 

vary. 

3   Simulations 

In the following sections, the method is applied to three different cases, each with two 
sources and two mixtures. The first case includes one artificial cyclostationary source 
and one stationary source. The second one includes two cyclostationary sources at 
different cyclic frequencies. In the last case, one of the sources is a real, vibrations 
signal and the other one is an artificial stationary source. 

In each case, we apply the algorithm to a set of different mixing matrices randomly 
generated. Their four coefficients ija   are random real numbers equally distributed 

over the interval [ ]1,1− . In order to evaluate the performance of the method, we 

compute the mean square error between the cyclostationary source to be extracted and 
its estimate. Both are normalised before computing the error, in order to take into 
account the indeterminacy over the estimate amplitude. This error is computed for 
each of the random matrices and given in dB relatively to the power of the source. 
The parameters were estimated over 100 realisations for all the simulations. 

3.1   One Cyclostationary Source and One Stationary Source 

The first simulation was performed over a simple cyclostationary signal 

( ) ( ) ( )tftats 01 2cos π=  (11) 

with ( )ta  a random white noise. This signal is second order cyclostationary at 

frequency 00 2 f=α . The second source is chosen to be a random white noise. Both 

sources are uncorrelated and have power equal to one. 
Note that the two sources are both wideband and cannot be separated directly in the 

frequency domain, so that classical second order source separation methods such as 
SOBI fail to separate these two peculiar sources. 

The algorithm was applied to these sources with 100 different mixing matrices 
generated as previously described. Fig. 1 shows the estimation error versus the 
determinant of the mixing matrix. It shows that the source was estimated with a –20 
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dB accuracy for 98% of the matrices, and with a –30 dB accuracy for 95% of the 
matrices. For most of the mixing matrices, the source was estimated with very good 
accuracy, close to –40 dB. The only matrices leading to a poor estimation are ill 
conditioned ones, whose determinant is close to zero. 
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Fig. 1. Mean square error (in dB) between source 1s  and its estimate represented versus the 
determinant of the mixing matrix for one cyclostationary source and one stationary source 

3.2   Two Cyclostationary Sources 

Source 1s  is the same cyclostationary source as in section 3.1, while source 2s  is a 

cyclostationary source built the same way with cyclic frequency 02 αα ≠ . Both 

sources have power equal to one. 
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Fig. 2. Mean square error (in dB) between source 1s  and its estimate represented versus the 
determinant of the mixing matrix for two cyclostationary sources 
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Fig. 2 shows the results obtained over 100 randomly generated mixing matrices. 
This figure shows that the results are really  good, since source 1s  was estimated with 

–20 dB accuracy for 99% of the mixing matrices, and –30 dB accuracy for 97% of the 
mixing matrices. The estimation accuracy is between  –30 dB and –60 dB for well 
conditioned matrices. 

3.3   Real Vibration Source and Stationary Source 

For this last simulation, we mixed the same stationary source 2s  as in section 3.1 

with a real damaged roller bearing vibration that was the source to be estimated. The 
vibration was recorded at 100kHz sampling frequency and the vibration spectrum 
spreads over the whole recorded frequency range. 

Damaged roller bearing vibrations were shown to be wide sense cyclostationary 
and one of their cyclic frequencies, which corresponds to the frequency of the shocks 
over the damaged part, can be computed from the rotation speed and the location of 
the damage. For the vibration that we used, this frequency is Hz1950 =α . We 

computed the criterion at this very frequency in order to achieve extraction. Both 
sources were normalised so as to have the same power and separation was performed 
with 100 randomly generated mixing matrices.  

As in the artificial signal cases, the source is estimated with very good accuracy. 
Though the roller bearing vibration is a complex signal, that exhibits several 
cyclostationary frequencies, the knowledge of one of them is enough to extract the 
vibration from a set of additive mixtures. 

Table 1. sumarises the results obtained in the three studied cases and shows that the 
proposed algorithm achieves extraction with very good accuracy whatever the nature 
of the second source can be, provided that it is not cyclostationary at the same 
frequency as the one to be extracted. 

Table 1. Percentage of good estimates for a given accuracy depending on the nature of the 
sources 

 Cyclostationary 
/ Stationary 

Both 
cyclostationary 

Vibration / 
Stationary 

- 20 dB 98 % 99 % 98 % 

- 30 dB 95 % 97 % 92 % 

4   Conclusion 

We presented here a new source extraction method for cyclostationary source. The 
method is based on second order statistics of the sources and only two hypotheses are 
made about the sources : they are uncorrelated at order two and the source to be 
extracted exhibits at least one cyclic frequency that it does not share with the other 
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sources and that is a priori known. These hypotheses are realistic when coping with 
vibration signals. The method has been presented here in the two sources and two 
additive mixtures cases. The criterion to be minimised in order to achieve the 
extraction was shown to exhibit a unique minimum leading to perfect extraction. The 
method was applied to different mixtures of artificial or real sources and shown to 
achieve proper estimation for most of the mixing matrices. It can be easily extended 
to the N*N case. The set of solutions is then given by a set of (N-1) equations with N 
unknown variables. This will be presented in further publications. 
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Abstract. In this paper, we propose to use the Huber M -estimator cost
function as a contrast function within the complex FastICA algorithm of
Bingham and Hyvarinen for the blind separation of mixtures of indepen-
dent, non-Gaussian, and proper complex-valued signals. Sufficient and
necessary conditions for the local stability of the complex-circular Fas-
tICA algorithm for an arbitrary cost are provided. A local stability anal-
ysis shows that the algorithm based on the Huber M -estimator cost has
behavior that is largely independent of the cost function’s threshold pa-
rameter for mixtures of non-Gaussian signals. Simulations demonstrate
the ability of the proposed algorithm to separate mixtures of various
complex-valued sources with performance that meets or exceeds that ob-
tained by the FastICA algorithm using kurtosis-based and other contrast
functions.

1 Introduction

In complex-valued blind source separation (BSS), one possesses a set of measured
signal vectors

x(k) = As(k) + ν(k), (1)

where A is an arbitrary complex-valued (m × m) mixing matrix, such that
A = AR + jAI , s(k) = [s1(k) · · · sm(k)]T is a complex-valued signal of sources,
and si(k) = sR,i(k) + jsI,i(k), where j =

√
−1, and ν(k) contains circular

Gaussian uncorrelated noise. In most treatments of the complex-valued BSS
task, the {si(k)} are assumed to be statistically-independent, and A is full rank.
The goal is to obtain a separating matrix B such that

y(k) = Bx(k) (2)

contains estimates of the source signals. In independent component analysis
(ICA), the linear model in (1) may not hold, yet the goal is to produce signal
features in y(k) that are as independent as possible.

One of the most-popular procedures for complex-valued BSS is the complex
circular FastICA algorithm in [1]. This algorithm first prewhitens the mixtures
x(k) to obtain v(k) = Px(k) such that E{v(k)vH (k)} = I, after which the
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rows of a unitary separation matrix W are adapted sequentially such that
y(k) = Wv(k) contains the separated sources. For mixtures of sources that
are proper, such that E{s2

i (k)} = 0 for all i, this algorithm appears to separate
such complex mixtures given enough snapshots N for an appropriate choice of
algorithm nonlinearity. Several algorithm nonlinearities are suggested as possible
candidates, although little work has been performed to determine the suitability
of these choices for general complex-valued source signals. More recently, several
researchers have explored the structure of the complex-valued BSS task for mix-
tures of non-circular sources, such that E{s2

i (k)} �= 0 [2]–[4]. In what follows, we
limit our discussion to the complex-circular source distribution case, as several
practical applications involve mixtures of complex-circular sources.

In this paper, we extend our recent work on employing the Huber M -estimator
cost function from robust statistics as a FastICA algorithm contrast [5] to the
complex-valued BSS task for mixtures of proper sources (E{s2

i (k)} = 0). We pro-
vide the complete form of the local stability condition for the complex-circular
FastICA algorithm omitted in [1]. We then propose a single-parameter nonlin-
earity for the algorithm and show through both theory and simulations that the
algorithm’s performance is largely independent of the cost function’s threshold
parameter for many source distributions, making it a robust choice for separat-
ing complex-valued mixtures with unknown circularly-symmetric source p.d.f.’s.
Simulations comparing various contrast choices for the complex circular FastICA
algorithm show that ours based on the Huber M -estimator cost often works bet-
ter than others based on kurtosis maximization or heuristic choice.

2 Complex Circular FastICA Algorithm

We first give the general form of the single-unit FastICA algorithm for extract-
ing one non-Gaussian-distributed proper source from an m-dimensional complex
linear mixture [1] and study its local stability properties. The algorithm assumes
that the source mixtures have been prewhitened by a linear transformation P
where v(k) = Px(k) contains uncorrelated entries, such that the sample covari-
ance of v(k) is the identity matrix. For the vector wt = [w1t · · · wmt]T , the
complex circular FastICA update is

yt(k) = wT
t v(k) (3)

w̃t = E{yt(k)g(|yt(k)|2)v∗(k)} − E{g(|yt(k)|2) + |yt(k)|2g′(|yt(k)|2)}wt (4)

wt+1 =
w̃t√
w̃H

t w̃t

, (5)

where yt(k) is the estimated source at time k and algorithm iteration t, g(u)
is a real-valued nonlinearity, g′(u) = dg(u)/du, and the expectations in (4) are
computed using N -sample averages. This algorithm is formulated in [1] as the
solution to the following optimization problem:

maximize
∣∣E{G(|yt(k)|2)} − E{G(|n|2)}

∣∣2 (6)

such that E{|yt(k)|2} = 1, (7)
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where n has a circularly-symmetric unit-variance Gaussian distribution and G(u)
is a real-valued even-symmetric but otherwise “arbitrary non-linear contrast
function” [1] producing g(u) = dG(u)/du. The criterion in (6) is described as the
square of a simple estimate of the negentropy of yt(k). Several cost functions are
suggested as possible choices for G(u), including G(u) =

√
a1 + u for a1 ≈ 0.1 ,

G(u) = log (a2 + u) for a2 ≈ 0.1, and the kurtosis-based G(u) = 0.5u2, although
no verification of (9) for the first two choices of G(u) and any well-known non-
Gaussian distributions has been given.

In [1], the authors give the following necessary condition for the above al-
gorithm to be locally-stable at a separating solution, where si possesses the
distribution of the source extracted in yt(k):

(E{g(|si|2) + |si|2g′(|si|2) − |si|2g(|si|2)}) �= 0. (8)

This condition is not sufficient, however, for local stability of the algorithm,
as the curvature of the cost function has not been considered in [1]. Although
omitted for brevity, we can show that the necessary and sufficient local stability
conditions for the algorithm about a separating solution are

[E{g(|si|2) + |si|2g′(|si|2) − |si|2g(|si|2)}]
×[E{G(|si|2)} − E{G(|n|2)}] < 0. (9)

This result can be compared to that for the real-valued FastICA algorithm in
[6], which shows a somewhat-different relationship. Thus, it is necessary and
sufficient for the two real-valued quantities on the left-hand-side of the inequality
in (9) to be non-zero and have different signs for the complex circular FastICA
algorithm to be locally-stable.

3 A Huber M-Estimator Cost Function for the Complex
Circular FastICA Algorithm

In [5], a novel single-parameter cost function based on the Huber M -estimator
cost in robust statistics [7] was proposed for the real-valued FastICA algorithm.
Unlike most other cost functions, the one chosen in [5] has certain nice practical
and analytical properties. In particular, it is possible to show that there always
exists a nonlinearity parameter for the cost function such that two sufficient
conditions for local stability of the algorithm are met. We now extend this work
to design a novel cost function for the complex-circular FastICA algorithm.

As the algorithm in [1] implicitly assumes mixtures of proper source signals,
we propose to choose G(|yt(k)|2) such that the amplitude of yt(k) is maximized
according to the Huber M -estimator cost. Thus, we have

G(u) =

⎧
⎨

⎩

u

2
u < θ2

θu1/2 − θ2

2
u ≥ θ2

(10)



A Robust Complex FastICA Algorithm 155

where θ > 0 is a threshold parameter designed to trade off the parameter es-
timation quality with the estimate’s robustness to outliers and lack of prior
distributional knowledge. The corresponding algorithm nonlinearities are

g(u) ≡ ∂G(u)
∂u

=

⎧
⎪⎨

⎪⎩

1
2

u < θ2

θ

2
u−1/2 u ≥ θ2

(11)

g′(u) ≡ dg(u)
du

=

{
0 u < θ2

−θ

4
u−3/2 u ≥ θ2.

(12)

After some simplification, we can implement the circular complex FastICA up-
date using the above nonlinearities as

w̃t = 2E{yt(k)hθ(|yt(k)|)v∗(k)} − E{tθ(|yt(k)|) + hθ(|yt(k)|)}wt (13)

hθ(u) =

{
1 u < θ
θ

u
u ≥ θ

, tθ(u) =
{

1 u < θ
0 u ≥ θ.

(14)

The functions hθ(u) and tθ(u) depend on the threshold parameter θ, and the
choice of this nonlinearity will be considered in the next section. Table 1 lists a
short MATLAB script for implementing the multiple-unit version of this algo-
rithm, in which the QR decomposition is used for signal deflation.

Table 1. Complex circular FastICA algorithm with Huber M -estimator cost

%--------------------------------------------------------------------
[N,m]=size(x); R = (1/N)*(x’*x); v = x/chol(0.5*(R+R’)); W = eye(m);
for i=1:iter

y = v*W;
absy = abs(y);

t = (absy<theta);
h = t + theta*(1-t)./absy;

W = 2*(v’*(y.*h)) - W*diag(sum(t+h));
[W,T] = qr(W);

end

%--------------------------------------------------------------------

4 On the Local Stability of the Huber M-Estimator Cost
for FastICA

Given the new stability condition in (9), what can be said about the circularly-
symmetric Huber M -estimator cost function when it is used in the complex
FastICA algorithm? The following two theorems, proven in the Appendix, illus-
trate two properties about this cost. These theorems make statements about the
p.d.f. of u = |si|2, the squared amplitude of the extracted source. The theorems
are non-trivial extensions of the theorems presented in [5].
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Theorem 1: Let g(u) and g′(u) have the forms in (11) and (12), respectively.
Then, so long as the random variable u is not exponentially-distributed, there
always exists a value of θ such that

E{g(u)} + E{ug′(u)} − E{ug(u)} �= 0. (15)

Theorem 2: Let G(u) have the form in (10). Then, so long as the random
variable u is not exponentially-distributed, there always exists a value of θ such
that

E{G(u)} − E{G(|n|2)} �= 0. (16)

Note that if si is unit-variance circular Gaussian, the p.d.f. of u = |si|2 is ex-
ponential (p(u) = e−u for u ≥ 0). Taken together, these two theorems do not
ensure (9) for all non-Gaussian proper source distributions. They suggest, how-
ever, that the design range for θ could be significant for many distributions.
We substantiate this claim through the analysis below and by simulations in
the next section. These results are significant because, to our knowledge, few if
any statements about the stability of a specific non-kurtosis-based cost function
within the complex FastICA algorithm have been given in the scientific litera-
ture. Moreover, it is unlikely that such results could be easily found given the
complexity of the integrals for other g(y) choices (e.g. g(y) = 0.5(a1 + y)−1/2 for
a1 ≈ 1).

We have evaluated the range of θ values for which (9) is satisfied for five
well-known zero-mean, unit-power, non-Gaussian distributions: 4-QAM-{±1}+
j{±1}, 16-QAM-{± 1√

10
± 3√

10
}+ j{± 1√

10
± 3√

10
}, 64-QAM-{± 1√

42
± 3√

42
±

5√
42

± 7√
42

} + j{± 1√
42

± 3√
42

± 5√
42

± 7√
42

}, the uniform amplitude cir-

cular distribution such that |si| is equally probable for 0 ≤ |si| ≤
√

2 and
is zero otherwise, and the exponential amplitude distribution in which |si| is
exponentially-distribution with E{|si|2} = 1. For all of these five distributions,
the Huber M -estimator cost produces an algorithm that is locally-stable for θ
in the range [0, |smax|), where smax is the maximum possible value of si(k) ad-
mitted by the source p.d.f. Thus, any positive value of θ that places part of the
nonlinear portion of g(u) within the range of |si(k)|2 often results in a locally-
convergent algorithm. Again, this evaluation does not guarantee that the chosen
cost function will always work, but it suggests that one does not need to design
specific values of θ to achieve separation.

In practice, one may not know what θ value to choose to obtain separation
of a particular source mixture. As was suggested in [5] in the real-valued case,
we recommend that one randomize the value of θ over a range of positive values
during coefficient adaptation. The main observed effect using such randomization
is a slight slowdown in convergence speed.

5 Simulations

We now explore the performance of the FastICA algorithm with various cost
function via simulations. In these simulations, m = 15-source mixtures were
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Fig. 1. E{γ} vs. number of snapshots N for the various algorithms in the simulation
example

generated consisting of three 4-QAM, three 16-QAM, three 64-QAM, three uni-
form and three exponential amplitude circular-distributed independent sources,
and a random mixing matrix. The multi-unit FastICA procedure was applied to
this data for numbers of snapshots ranging from N = 100 to N = 5000 and for
different θ values. The performance factor computed is the separation cost

γ =
1

2m

⎛

⎝
m∑

i=1

m∑

l=1

|cil|2

max
1≤i≤m

|cil|2
+

|cil|2

max
1≤l≤m

|cli|2

⎞

⎠−1 (17)

with C = WPA as obtained at convergence of the algorithm. One hundred
iterations were averaged to obtain each data point shown.

Fig. 1 compares the performance of FastICA with the Huber cost function
and θ = 0.9 and with the Huber cost function and a uniformly-randomized θ in
the range 0.5 ≤ θ ≤ 1 at each iteration with three other versions of FastICA
– using G(y) =

√
a1 + y or g(y) = 1

2
√

a1+y
for a1 ≈ 0.1, G(y) = log (a2 + y)

or g(y) = 1
a2+y for a2 ≈ 0.1, and the kurtosis-based choice G(y) = 0.5y2 or

g(y) = y. As can be seen, the Huber cost function-based versions outperform the
algorithms based on previously-proposed contrast functions. More significantly,
our algorithm version with a randomized threshold parameter θ provides good
separation performance across all sample sizes; performance deviations were less
than ±1dB from the algorithm with a fixed θ = 0.9 value.

Fig. 2 illustrates the performance sensitivity of the FastICA algorithm with
Huber M -estimator cost to the value of θ for these signal mixtures. As can be
seen, the algorithm performs well for values of θ satisfying 0.1 ≤ θ ≤ 1, and its
performance degrades gracefully for higher θ values.
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Fig. 2. E{γ} vs. θ for the FastICA algorithm with Huber M -estimator cost in the
simulation example

6 Conclusions

In many blind source separation and independent component analysis algo-
rithms, the cost function used to measure signal independence is a design param-
eter. In this paper, we have considered Huber’s single-parameter M -estimator
cost function for use within the complex-valued FastICA algorithm for proper
source mixtures. The algorithm obtained is computationally-simple, and the pro-
cedure works well for a wide range of threshold parameters θ. The reasons for
the algorithm’s robust behavior for a wide range of the threshold parameter is
indicated through a stability analysis.
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7 Appendix

Proof of Theorem 1: Assume without loss of generality that u is unit variance.
Consider the terms on the left-hand-side of (15) for the nonlinearities in (11) and
(12), and define f1(θ) = 2(E{g(u)} + E{ug′(u)} − E{ug(u)}). Then, we obtain

f1(θ) =
∫ ∞

θ2
u−1/2(u3/2 − θu − u1/2 +

θ

2
)p(u)du. (18)

For Eq. (15) not to hold, f1(θ) = 0 for all possible values of θ. Suppose that the
slightly-more-general condition

f1(θ) = c1θ + c2 (19)

is true, where c1 and c2 are unknown constants. Such a condition justified when
p(u) is smooth, as f1(θ) an then be modeled by a polynomial approximation -
see the comment below. Then,

∂f1(θ)
∂θ

= p(θ2)θ +
∫ ∞

θ2
(
1
2
u−1/2 − u1/2)p(u)du = c1 (20)

∂2f1(θ)
∂θ2

= p′(θ2) + p(θ2) = 0, (21)

which yields the relationship

p′(u) = −p(u). (22)

The only distribution p(u) satisfying (22) is the exponential distribution, i.e.
p(u) = e−u for u ≥ 0. Thus, the theorem follows. Note that if si is circular
Gaussian-distributed, |si|2 has an exponential distribution, although other dis-
tributions for si could lead to an exponential distribution for |si|2.

Proof of Theorem 2: Substituting (10) into the left-hand-side of (16), defining
f2(θ) = 2E{G(u) − G(|n|2)}, and simplifying yields the expression

f2(θ) = −
∫ ∞

θ2
(u1/2 − θ)2[p(u) − pn(u)]du, (23)

where pn(u) = e−u for u ≥ 0. For Eq. (16) not to hold, f2(θ) = 0 for all possible
values of θ. Suppose that the slightly-more-general condition

f2(θ) = c1θ + c2 (24)

is true, where c1 and c2 are unknown constants. Then,

∂f2(θ)
∂θ

= 2
∫ ∞

θ2
(u1/2 − θ)[p(u) − pn(u)]du = c1 (25)

∂2f2(θ)
∂θ2

= −2
∫ ∞

θ2
[p(u) − pn(u)]du = 0. (26)
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For (24) to hold for all θ > 0, we must have

p(u) = pn(u), (27)

which results in c1 = 0, c2 = 0, and finally f2(θ) = 0. Thus, the theorem follows.
Comment : In both of the above proofs, fi(θ) is a continuous function of θ

given a continuous smooth amplitude-squared distribution p(u). Thus, we can
express fi(θ) as a polynomial function of θ with coefficients ci. Now, for the
condition fi(θ) = 0, we must have all ci = 0. Clearly, it is impossible that c0 = 0
and all ci not equal to 0 for i > 0 and the condition fi(θ) = 0, because any
change in θ would make fi(θ) not equal to zero. Hence, fi(θ) defines only one
function and therefore only one distribution p(u) has fi(θ) = 0. In both of the
above proofs, the exponential distribution yields fi(θ) = 0.
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Abstract. This paper concerns our general recurrent neural network
structures for nonlinear blind source separation, especially suited to poly-
nomial mixtures. We here focus on linear-quadratic mixtures. We intro-
duce an extended structure, with additional free parameters as compared
to the structure that we previously proposed. We derive the equilibrium
points of our new structure, thus showing that it has no spurious fixed
points. We analyze its stability in detail and propose a practical pro-
cedure for selecting its free parameters, so as to guarantee the stability
of a separating point. We thus solve the stability issue of our previous
structure. Numerical results illustrate the effectiveness of this approach.

1 Introduction

Blind source separation (BSS) methods aim at restoring a set of N unknown
source signals sj(n) from a set of P observed signals xi(n) which are mixtures
of these source signals [1], with P = N in the standard configuration considered
hereafter. In the simplest case, the observed signals are Linear Instantaneous
(LI) mixtures of the source signals. Denoting A = [aij ] the matrix composed
of these unknown mixture coefficients aij and s(n) = [s1(n) . . . sN (n)]T and
x(n) = [x1(n) . . . xP (n)]T the source and observation vectors respectively, the
mixing model reads in matrix form

x(n) = As(n). (1)

One of the very first solutions to this LI-BSS problem reported in the literature is
the Hérault-Jutten artificial neural network [2]. This network has a recurrent (or
feedback) structure, i.e. each of its outputs yi(n) consists of an LI combination of
input xi(n) and of all other outputs yj(n) with j �= i, using adequate combination
coefficients estimated from the outputs by means of an unsupervised algorithm.
Such a recurrent structure is not mandatory however, i.e. the same class of LI
mappings from the signals xi(n) to the signals yi(n) may also be achieved by a
feedforward structure, where each output yi(n) is derived only as an LI combi-
nation of all inputs xi(n). The latter structure is simpler than the recurrent one

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 161–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



162 Y. Deville and S. Hosseini

and is therefore the one mainly used today for LI mixtures. The same evolution
occurred for convolutive mixtures, i.e. an approach based on a recurrent struc-
ture was first proposed by Nguyen and Jutten [3] and extended by Charkani and
Deville [4],[5] but other approaches, based on feedforward structures, were then
preferred, since they also provide the considered linear (convolutive) mappings.

The situation is quite different for nonlinear mixtures, which are now receiving
increasing attention. We especially showed in [6]-[8] that recurrent structures are
much more attractive than feedforward ones for polynomial mixtures. Building
upon our above-mentioned experience on recurrent structures, we proposed in
[6]-[8] a general approach for polynomial mixtures and we investigated it in more
detail in the case of linear-quadratic mixtures. The higher-order recurrent neural
network that we proposed for such mixtures was shown to be promising, but its
applicability is limited by stability constraints.

This paper also focuses on linear-quadratic mixtures (references of previously
published BSS approaches for such mixtures are provided in [7]-[8]). Our main
contributions then consist in : (i) introducing a more general higher-order recur-
rent neural network structure than in [6]-[8], (ii) providing a detailed theoretical
analysis of its fixed points and their stability, depending on its parameter values,
and (iii) deriving a practical method for selecting these values so as to guarantee
stability at a separating point. As a spin-off, we also obtain stability conditions
for our previous network. This confirms that it cannot operate with any signals,
while its extended version can.

2 Mixing and Separating Models

We here consider an instantaneous mixing model, where two observed signals
x1(n) and x2(n) consist of linear combinations of two source signals s1(n) and
s2(n), added to quadratic terms, i.e. terms proportional to s1(n)s2(n). Taking
into account BSS scale indeterminacies, the rescaled mixing model reads [7]-[8]

x1(n) = s1(n) − L12s2(n) − Q1s1(n)s2(n) (2)
x2(n) = −L21s1(n) + s2(n) − Q2s1(n)s2(n). (3)

For each time n, a recurrence is performed to compute the values of the outputs
yi of the feedback network that we now introduce in this paper. We denote as m
the index associated to this recurrence and yi(m) the successive values of each
output in this recurrence at time n1. This recurrence reads

y1(m + 1) = x1(n) + l11y1(m) + l12y2(m) + q1y1(m)y2(m) (4)
y2(m + 1) = x2(n) + l21y1(m) + l22y2(m) + q2y1(m)y2(m) (5)

where lij and qi are the adaptive weights of the proposed neural network.

1 These successive output values therefore also depend on n. This index n is omitted
in the notations yi(m) however, in order to improve readability and to focus on the
recurrence on output values for given input values x1(n) and x2(n).
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As compared to our previous papers [6]-[8], we here consider the same mix-
ing model (2)-(3), but we propose an extended version (4)-(5) of our previous
recurrent neural network, where we introduce the linear feedback terms l11 and
l22 from each output yi(m) to the input with the same index. In other words,
our previous network is a specific case of the new one, obtained by forcing

l11 = 0 and l22 = 0. (6)

By analyzing the stability of our previous and extended networks, we will show
below that the constraint (6) does not make it possible to handle all signal values
and we will introduce adequate values of l11 and l22 for solving this problem.

3 Fixed and Separating Points

The stability of the recurrence (4)-(5) is analyzed for fixed points (i.e. equilibrium
points) of this recurrence. The first step of this investigation therefore consists
in determining these fixed points, i.e. the points (yE

1 , yE
2 ) which are such that

y1(m + 1) = y1(m) = yE
1 and y2(m + 1) = y2(m) = yE

2 . (7)

As may be seen by combining (4)-(5) and (7), the fixed points of the recurrence
(4)-(5) depend: (i) on the inputs xi(n), and therefore on the source values and
mixing parameters through the mixing equations (2)-(3), and (ii) also on the
network weights lij and qi. Our eventual goal will be to adapt the network weights
lij and qi so as to achieve BSS, i.e. so as to make the network outputs yi(m) equal
to the source signals, up to BSS indeterminacies. Therefore, before considering
that adaptation, we here determine all network weights which are such that one
of the associated fixed points corresponds to BSS without permutation, i.e. to

yE
1 = k1s1(n) and yE

2 = k2s2(n) (8)

where k1 and k2 are two arbitrary scale factors. In other words, for given mixture
parameters in (2)-(3), we look for all network weights lij and qi and scale factors
ki such that Eq. (2)-(5) and (7)-(8) are met whatever the source values si(n).
Our calculations, which are skipped here due to space limitations, yield

l11 = − 1
k1

+ 1 (9)

l12 =
L12

k2
= L12l

′
22 (10)

q1 =
Q1

k1k2
= Q1l

′
11l
′
22 (11)

l21 =
L21

k1
= L21l

′
11 (12)

l22 = − 1
k2

+ 1 (13)

q2 =
Q2

k1k2
= Q2l

′
11l
′
22 (14)
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with
l′11 = 1 − l11 and l′22 = 1 − l22. (15)

The first expressions in (10)-(12) and (14) show that we thus obtain an infinite
number of solutions, due to the two arbitrary scale factors ki with which the
sources appear in the network outputs. There is a one-to-one correspondence
between these factors and the two network weights l11 and l22 as shown by (9)
and (13). One may therefore consider the weights l11 and l22 as the primary
parameters, select them (freely at this stage), and then assign accordingly the
other network weights, using the second expressions in (10)-(12) and (14).

For these weight values, we know by construction that the network has at
least one fixed point, i.e. the point defined by (8) with (9) and (13). We must
then determine all fixed points for these weight values, because the network
may converge to any of these points (depending on their stability) and we should
especially determine whether each of them yields separated sources. This topic is
addressed by looking for all solutions of Eq. (2)-(5), (7), (10)-(12) and (14)-(15).
Long calculations then yield two solutions, more easily expressed by defining

α = Q2 + Q1L21 (16)
β = −(Q2L12 + Q1) (17)
γ = 1 − L12L21 (18)

εy1 = ±1 (19)
εT1 = εy1 sgn(l′11l

′
22) sgn(−αs1(n) + βs2(n) + γ). (20)

These solutions then read

yE
1 =

1
2l′11α

{[αs1(n) + βs2(n) + γ] − εT1[−αs1(n) + βs2(n) + γ]} (21)

yE
2 =

1
βl′22

{−αl′11y
E
1 + [αs1(n) + βs2(n)]}. (22)

These two solutions correspond to the two possible values of εy1 in (19) and are
more easily expressed with respect to εT1. The first solution, corresponding to
εT1 = 1, reads

yE
1 =

1
l′11

s1(n) and yE
2 =

1
l′22

s2(n). (23)

This solution yields BSS without permutation (and with scale factors). It is
nothing but the above solution (8), as shown by (9), (13) and (15). The second
solution, corresponding to εT1 = −1, reads

yE
1 =

1
l′11

[
β

α
s2(n) +

γ

α

]
and yE

2 =
1
l′22

[
α

β
s1(n) − γ

β

]
. (24)

This additional solution yields BSS with a permutation (and with scale factors
and additive constants).

We thus only obtain the classical BSS solutions, with indeterminacies associ-
ated to nonlinear mixtures. In other words, for these weight values, this network
does not yield spurious fixed points, i.e. fixed points such that the outputs are
still mixtures of the sources. We now analyze the stability of these fixed points.
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4 Stability Condition

The considered network is a two-dimensional nonlinear dynamic system, since
the evolution of its state vector [y1(m), y2(m)]T is defined by the nonlinear equa-
tions (4)-(5). The linear stability of any such system at a given fixed point may
be analyzed by considering a first-order approximation of its evolution equations
at that point. The new value of a small disturbance added to the state vector
is thus expressed as the product of a matrix H, which defines the first-order
approximation of the system, by the former value of that disturbance (see e.g.
details in [9]). The (asymptotic) stability of the system at the considered point is
guaranteed by constraining the moduli of both eigenvalues of the corresponding
matrix H to be lower than 1. Our calculations show that this condition may be
expressed as ⎧

⎨

⎩

T > −D − 1
T < D + 1
D < 1

(25)

where D and T are resp. the determinant and trace of H. The stability region
thus obtained in the (D, T ) plane is bounded by a triangle which includes the
origin (see the figure in [9], which also indirectly confirms (25)).

By computing the matrix H of the system defined by (4)-(5) and applying
condition (25) to each of the above two fixed points (here derived with respect to
the observations x1(n) and x2(n), i.e. without using (2)-(3)), long calculations
yield the following results. The fixed point corresponding to εy1 = −1 never
meets the stability condition (25). For the fixed point corresponding to εy1 = 1,
this condition reads

|l′11l′22|
√

δy1 − 2Al′11 − 2Bl′22 + 4 > 0 (26)

|l′11l′22|
√

δy1 − Al′11 − Bl′22 < 0 (27)

with

δy1 = [Q2x1(n) − Q1x2(n) + γ]2 − 4α[x1(n) + x2(n)L12] (28)

A =
Q1

2β

[
−Q2x1(n) + Q1x2(n) + γ − sgn(l′11l

′
22)

√
δy1

]
+ 1 (29)

B =
Q2

2α

[
−Q2x1(n) + Q1x2(n) − γ + sgn(l′11l

′
22)

√
δy1

]
+ 1. (30)

5 Limitations of Our Previous Network

The stability condition (26)-(27) especially applies to the more specific network
that we proposed in [6]-[8], which corresponds to (6) as explained above, and
therefore to l′11 = 1 and l′22 = 1. Inserting these values in (26)-(27) shows that our
previous network yields a stable fixed point only for some values of the mixing
coefficients and observed signals, and therefore of the source signals. To clearly
illustrate this phenomenon with an example, one may consider the simple case

L12 = 0, L21 = 0, Q1 = Q2 = Q > 0. (31)
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It may be shown that our previous network then only yields stability for a
limited domain of source values, which consists of a strip in the (s1(n), s2(n))
plane, defined by

− s1(n) − 1
Q

< s2(n) < −s1(n) +
3
Q

. (32)

6 A Method for Stabilizing Our New Network

6.1 Analysis of Stability Condition

Condition (26)-(27) is of high theoretical interest, because it completely defines
the stability of the considered fixed point. However, it does not show easily if and
how l′11 and l′22 may be selected in order to ensure stability at the considered fixed
point for any given observed signal values. To address that topic, we consider
l′11 as the primary variable and l′22 as the secondary variable, and we express
it as l′22 = λl′11, where λ is a parameter. For any fixed λ, we first investigate
whether there exist values of l′11 such that (26)-(27) is met, in order to eventually
determine if there exist values of l′11 and λ (and therefore l′22) such that (26)-
(27) is met. In other words, we first determine the intersection of the part of the
(l′11, l

′
22) plane where (26)-(27) is met and of a given line in that plane, defined by

l′22 = λl′11 (with λ �= 0). Using the latter expression of l′22, Eq. (26)-(27) become

|λ|
√

δy1(l
′
11)

2 − 2(A + Bλ)l′11 + 4 > 0 (33)

|λ|
√

δy1(l
′
11)

2 − (A + Bλ)l′11 < 0. (34)

For a given λ, (28)-(30) show that A and B do not depend on l′11 and l′22. (33)-
(34) then yield two inequalities with respect to l′11, which are solved as follows.
For (34), any (non-zero) λ is suitable and the solutions of (34) for a given λ are

l′11 = μ
A + Bλ

|λ|
√

δy1

with 0 < μ < μmax (35)

where μmax = 1. It may then be shown that, taking (33) into account in addition
still yields (35), but now with μmax defined as follows. Denoting

C(λ) =
(A + Bλ)2

|λ|
√

δy1

(36)

we have

μmax =

{
1 if C(λ) ≤ 4
1 −

√
1 − 4

C(λ) otherwise . (37)

The above analysis shows that any value of λ yields a non-empty interval of
solutions for l′11. For a given λ, a simple and safe approach therefore consists in
selecting for l′11 the value situated in the middle of the allowed range (35), i.e.

l′11 =
μmax

2
A + Bλ

|λ|
√

δy1

(38)
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with μmax defined by (37). We should eventually propose a method for selecting
λ. As stated above, any (non-zero) value of λ is acceptable. A simple solution is
λ = ±1, which gives the same ”weight” to l′11 and l′22 = λl′11. Moreover, the sign
of λ may be chosen as follows. As explained above, the considered fixed point
correspond to εy1 = 1. Since l′22 = λl′11 in addition, (20) here reduces to

εT1 = sgn(λ) sgn(−αs1(n) + βs2(n) + γ). (39)

Therefore, if λ has the same sign as (−αs1(n) + βs2(n) + γ), then εT1 = 1, so
that the considered stable fixed point yields the non-permuted sources defined in
(23). Otherwise, the permuted sources of (24) are obtained. We thus guarantee
that both solutions are obtained by successively applying our approach with two
opposite values of λ. Moreover, if the source and mixture coefficients are such
that the sign of (−αs1(n)+βs2(n)+γ) is known, then selecting λ also with that
sign guarantees (local) convergence to the non-permuting point. Otherwise, this
version of our approach yields a permutation issue, to be further investigated.

6.2 Summary of Proposed Method

Based on the above analysis, the following procedure is guaranteed to yield local
convergence towards a separating point:

1. Select λ as explained above.
2. Set l′11 according to (38), taking into account sgn(l′11l′22) = sgn(λ).
3. Set l′22 = λl′11.
4. Set all other network parameters according to (10)-(12) and (14)-(15).

7 Numerical Results

To illustrate the performance of our approach, we consider observations defined
by (2)-(3) at a single time n (the same test could then be repeated for different
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Fig. 1. Divergence of previous network (left), convergence of new network (right)
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times). We use s1(n) = −1, s2(n) = −2 and mixing coefficients defined by
(31), with Q = 0.5. We first implement our previous network [6]-[8] by running
10 steps of the recurrence (4)-(5) with (6), (10)-(12) and (14), starting from
y1(1) = 0, y2(1) = 0. The resulting trajectory of (y1(m), y2(m)) is provided in
Fig. 1. This shows that the network diverges very rapidly. This is in agreement
with the fact that condition (32) is not met here. We then implement our new
network by running the recurrence (4)-(5) as above but with parameters selected
as explained in Section 6.2 (with λ = 1). The network then converges to the
solution (23), as shown in Fig. 1 (we here have l′11 = l′22 = 0.4). Moreover, it
converges very rapidly. This shows the effectiveness of the proposed approach.

8 Conclusion

In this paper, we introduced a new BSS neural network structure which solves
the stability issue of our previous network. We plan to investigate whether other
aspects of its operation may be further improved by taking advantage of its free
parameters, especially λ. We will also develop algorithms to adapt the network
weights so that they converge towards separating points.

Acknowledgment. Y. Deville would like to thank Y. Naudet for drawing his
attention to linear-quadratic mixtures, which first resulted in the approach pre-
sented in [6], which was then developed in [7]-[8].
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Abstract. In the paper we present new Alternating Least Squares
(ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their
extensions to 3D Nonnegative Tensor Factorization (NTF) that are ro-
bust in the presence of noise and have many potential applications,
including multi-way Blind Source Separation (BSS), multi-sensory or
multi-dimensional data analysis, and nonnegative neural sparse coding.
We propose to use local cost functions whose simultaneous or sequential
(one by one) minimization leads to a very simple ALS algorithm which
works under some sparsity constraints both for an under-determined
(a system which has less sensors than sources) and over-determined
model. The extensive experimental results confirm the validity and high
performance of the developed algorithms, especially with usage of the
multi-layer hierarchical NMF. Extension of the proposed algorithm to
multidimensional Sparse Component Analysis and Smooth Component
Analysis is also proposed.

1 Introduction - Problem Formulation

Nonnegative Matrix Factorization (NMF) and its multi-way extensions: Non-
negative Tensor Factorization (NTF) and Parallel Factor analysis (PARAFAC)
models with sparsity and/or non-negativity constraints have been recently pro-
posed as promising and quite efficient tools for processing sparse signals, images,
or general data [1,2,3,4,5,6,7,8]. From a viewpoint of data analysis, NMF/NTF
provides nonnegative and usually sparse common factors or hidden (latent) com-
ponents with physiological meaning and interpretation [6,9]. NMF, NTF, and
Sparse Component Analysis (SCA) are used in a variety of applications, ranging
from neuroscience and psychometrics to chemometrics [10,1,6,7,9,11,12].

In this paper, we propose new Hierarchical Alternating Least Squares (HALS)
algorithms for NMF/NTF. By incorporating the regularization and penalty
terms into the local squared Euclidean norms, we are able to achieve sparse
and local representations of the desired solution, and to alleviate the problem of
getting stuck in local minima.
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We impose nonnegativity and sparsity constraints to the following NTF (i.e.,
standard PARAFAC with nonnegativity constraints) model [3]:

Xq = ADqS̃ + Eq, (q = 1, 2, . . . , Q) (1)

where Xq ∈ R
I×T
+ are frontal slices (matrices) of the observed 3D tensor data

or signals X ∈ RI×T×Q, Dq ∈ R
J×J
+ are diagonal scaling matrices, A =

[a1, a2, . . . , aJ ] ∈ R
I×J
+ is a mixing or basis matrix, S̃ ∈ R

J×T
+ represents un-

known sources or hidden (nonnegative and sparse) components, and Eq ∈ RI×T

represents the q-th frontal slice of the tensor E ∈ RI×T×Q representing a noise
or error. In the special case for Q = 1, the model simplifies to the standard
NMF model. The objective is to estimate the set of all nonnegative matrices:
A, {Dq}, S̃1. The problem can be converted to a tri-NMF model by applying
averaging of frontal slices: In this section, we develop the alternative algorithm
which converts the problem to a simple tri-NMF model (under condition that
all frontal slices Xq have the same dimension):

X = ADS̃ + E = AS + E, (2)

where X =
∑Q

q=1 Xq, D =
∑Q

q=1 Dq = diag{dq1, dq2, . . . , dqJ}, E =
∑Q

q=1 Eq,
and S = DS̃ is a scaled matrix of sources. The above system of linear al-
gebraic equations can be represented in an equivalent scalar form as follows
xit =

∑
j aijsjt + eit, or equivalently in the vector form: X =

∑
j aj sj + E

where sj are rows of S, and aj are columns of A (j = 1, 2, . . . , J). Such a simple
model provides improved performance if the noise (in the frontal slices) is not
correlated.

The majority of NMF/NTF algorithms for BSS applications works only if the
following assumption T >> I ≥ J is held, where J is known or can be estimated
using SVD. In the paper, we propose the NMF algorithm that can work also for
an under-determined case, i.e. T >> J > I, if signal representations are enough
sparse. Our objective is to estimate the mixing (basis) matrix A and the sources
S, subject to nonnegativity and sparsity constraints.

2 Locally Regularized ALS Algorithm

The most of known and used adaptive algorithms for NMF are based on alternat-
ing minimization of the squared Euclidean distance expressed by the Frobenius
norm:

DF (X ||AS) =
1
2
‖X − AS‖2

F + αA||A||1 + αS ||S||1, (3)

subject to nonnegativity constraints of all the elements in A and S, where
||A||1 =

∑
ir air, ||S||1 =

∑
jt sjt, and αA and αS are nonnegative regularization

coefficients controlling sparsity of the matrices [9].
1 Usually, the common factors, i.e., matrices A and S̃ are normalized to unit length

column vectors and rows, respectively, and are forced to be as sparse as possible.
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The basic approach to NMF is alternating minimization or alternating projec-
tion: the specified cost function is alternately minimized with respect to two sets
of the parameters {sjt} and {aij}, each time optimizing one set of arguments
while keeping the other one fixed [9,1].

In this paper we consider minimization of the set of local squared Euclidean
cost functions:

D
(j)
F (X(j)||ajsj) =

1
2
‖(X(j) − ajsj)‖2

F + α
(j)
A JA(aj) + α

(j)
S JS(sj), (4)

for j = 1, 2, . . . , J , subject to nonnegativity constraints for all elements: aij ≥ 0
and sjt ≥ 0, where

X(j) = X −
∑

p�=j

apsp, (5)

aj ∈ RI×1 are columns of the basis mixing matrix A, sj ∈ R1×T are rows

of S, α
(j)
A ≥ 0 and α

(j)
S ≥ 0 are local parameters controlling a sparsity level

of the individual vectors, and the penalty terms JA(aj) =
∑

i aij and JS(sj) =∑
t sjt enforce sparsification of the columns in A and the rows in S, respectively.

The construction of such a set of local cost functions follows from the simple
observation that the observed data can be decomposed approximately as follows
X =

∑J
p=1 apsp + E or more generally X =

∑J
p=1 λpapsp + E with λ1 ≥ λ2 ≥

. . . ≥ λJ > 0.
The gradients of the cost function (4) with respect to the unknown vectors

aj and sj are expressed by

∂D
(j)
F (X(j)||ajsj)

∂sj

= aT
j ajsj − aT

j X(j) + α
(j)
S , (6)

∂D
(j)
F (X(j)||ajsj)

∂aj
= ajsjs

T
j − X(j)sT

j + α
(j)
A , (7)

where the scalars α
(j)
S and α

(j)
A are added/substracted component-wise. By

equating the gradient components to zero and assuming that we enforce the
nonnegativity constraints with a simple ”half-rectifying” nonlinear projection,
we obtain a new set of sequential learning rules:

sj ←
[

1
aT

j aj
(aT

j X(j) − α
(j)
S )

]

+

aj ←
[

1
sjs

T
j

(X(j)sT
j − α

(j)
A )

]

+

, (8)

for j = 1, 2, . . . , J , where [ξ]+ = max{ε, ξ}, and ε is a small constant to avoid
numerical instabilities (usually ε = 10−16).

Remark 1. In practice, it is necessary to normalize in each iteration step the
column vectors aj and the row vectors sj to unit length vectors (in the sense
of norm lp norm (p = 1, 2, ..., ∞)). In the special case of l2 norms the above
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algorithms can be further simplified by neglecting the denominator in (8). After
estimating the normalized matrices A and S̃, we estimate the diagonal matrices
as follows:

Dq =
[
diag{A+ Xq S̃

+}
]

+
, (q = 1, 2, . . . , Q) (9)

Remark 2. In this paper we have applied a simple nonlinear half-wave rectify-
ing projection [sjt]+ = max{ε, sjt}, ∀t (element-wise) in order to impose non-
negativity constraints. However, other nonlinear projections or filtering can be
applied to extract sources (not necessary nonnegative) with specific properties.
First of all, the proposed method can be easily extended for semi-NMF and
semi-NTF, where nonnegativity constraints are imposed only for some prese-
lected sources, i.e, rows of the matrix S and/or some selected columns of the
matrix A if some a priori information is available. Furthermore, instead of us-
ing the simple nonlinear half-rectifying projection, we can apply more complex
nonlinear projections and filtering to estimate bipolar sources which have some
specific properties, for example, sources can be bounded, sparse or smooth. In
order to estimate the sparse bipolar sources, we can apply well-known adaptive
(soft or hard) shrinking nonlinear transformations (e.g, the nonlinear projection
can be defined as: Psr(sjt) = sjt for |sjt| > δ and Psr(sjt) = 0 otherwise, with
the adaptive threshold δ > 0). Alternatively, we may apply a power nonlin-
ear element-wise transformation: Psp(sjt) = sign(sjt)|sjt|1+γs , ∀t, where γs is
a small coefficient which controls a sparsity/density level of individual sources
[11]. In order to achieve smoothness of the estimated sources, we may apply a
local averaging operator (such as MA or ARMA models) or low pass filtering
which gradually enforces some level of smoothness during an iterative process.

3 Possible Extensions and Improvements

To deal with the factorization problem (1) efficiently, we adopt several ap-
proaches from constrained optimization and multi-criteria optimization, where
we minimize simultaneously several cost functions using alternating switching
between the sets of parameters: {A}, {S}.

The above simple algorithm can be further extended or improved (in respect
of convergence rate and performance). First of all, different cost functions can be
used for estimation of the rows in the matrix S and the columns in the matrix A.
Furthermore, the columns of A can be estimated simultaneously, instead one by
one. For example, by minimizing the set of cost functions in (4) with respect to
sj , and simultaneously the cost function (3) with normalization of the columns
aj to unit l2-norm, we obtain the new ALS learning algorithm in which the rows
of S are updated locally (row by row) and the matrix A is updated globally (all
columns aj simultaneously):

sj ←
[
aT

j X(j) − α
(j)
S

]

+
, (j = 1, . . . , J), A ←

[
(XST − αA)(SST )−1

]

+
(10)

with normalization (scaling) of the columns in A to the unit length.
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Secondly, instead of the standard gradient descent approach we can apply
the Quasi-Newton method [13,14] for estimation of matrix A. Since the Hessian
∇2

A(DF ) = II ⊗SST ∈ RIJ×IJ of DF (X||AS) has the diagonal block structure
with the same blocks, we can simplify the update of A with the Newton method
to the very simple form:

A ←
[
A − ∇A(DF (X||AS))H−1

A

]
+

, (11)

where ∇ADF (X ||AS) = (AS − X)ST ∈ RI×J , and HA = SST ∈ RJ×J . The
matrix HA may be ill-conditioned, especially if S is sparse, and due to this the
Levenberg-Marquardt approach is used to control ill-conditioning of the Hessian.
Thus we have developed the following NMF/NTF algorithm:

sj ←
[
aT

j X(j) − α
(j)
S

]

+
, A ←

[
A − (AS − X)ST (SST + λIJ )−1

]

+
, (12)

for j = 1, . . . , J , where λ ← λ0 exp{−τk}, k is an index of a current alternating
step, and IJ ∈ RJ×J is an identity matrix.

Since the alternating minimization technique in NMF is not convex, the selec-
tion of initial conditions is very important. Our algorithms are initialized with
random uniform matrices. Thus, to minimize the risk of getting trapped in local
minima of the cost functions, we use some steering technique that comes from
a simulated annealing approach. The solution is triggered with the exponential
rule. For our problems, we set heuristically λ0 = 100 and τ = 0.02.

3.1 Multi-layer NMF/NTF

In order to improve the performance of the NTF algorithms proposed in this
paper, especially for ill-conditioned and badly scaled data and also to reduce
risk of getting stuck in local minima in non-convex alternating minimization
computations, we have developed a simple hierarchical multi-stage procedure
[15] combined together with multi-start initializations, in which we perform a
sequential decomposition of nonnegative matrices as follows. In the first step,
we perform the basic decomposition (factorization) Xq ≈ A(1)D(1)

q S(1) using
any available NTF algorithm. In the second stage, the results obtained from
the first stage are used to build up a new tensor Ŝ1 from the estimated frontal

slices defined as X̂
(1)

q = S(1)
q = D(1)

q S(1), (q = 1, 2, . . . , Q) and in the next
step we perform the similar decomposition for the new available frontal slices:

X̂
(1)

q = S(1)
q ≈ A(2)D(2)

q S(2), using the same or different update rules. We con-
tinue our decomposition taking into account only the last achieved components.
The process can be repeated arbitrarily many times until some stopping crite-
ria are satisfied. In each step, we usually obtain gradual improvements of the
performance. Thus, our NTF model has the form:

Xq ≈ A(1)A(2) · · · A(L)D(L)
q S(L), (q = 1, 2, . . . , Q), (13)

with final results A = A(1)A(2) · · · A(L), S = S(L) and Dq = D(L)
q .
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Fig. 1. (left) Original 10 sparse source signals ; (middle) observed 6 mixed sig-
nals with randomly generated mixing matrix A ∈ R

6×10 (under-determined
case); (right) estimated 10 source signals using our new algorithm (12); For 10
layers we achieved the following performance: SIRs for A and S are as fol-
lows: SIRA = 38.1, 37.0, 35.9, 32.4, 28.2, 33.1, 34.5, 41.2, 25.1, 25.1[dB] and SIRS =
23.1, 32.7, 35.2, 26.2, 29.8, 22.5, 41.8, 29.3, 30.2, 32.5[dB], respectively

Physically, this means that we build up a system that has many layers or
cascade connections of L mixing subsystems. The key point in our approach is
that the learning (update) process to find parameters of matrices S(l) and A(l) is
performed sequentially, i.e. layer by layer. In fact, we found that the hierarchical
multi-layer approach is necessary to apply in order to achieve high performance
for all the proposed algorithms.

4 Simulation Results

All the NTF algorithms presented in this paper have been extensively tested for
many difficult benchmarks for signals and images with various statistical distri-
butions and additive noise, and also for preliminary tests with real EEG data.
Due to space limitations we present here only the selected simulations results in
Figs.1–2. The synthetic benchmark illustrated in Fig.1(left) contains sparse non-
negative and weakly statistically dependent 10 source components. The sources
have been mixed by the randomly generated full rank matrix A ∈ R

6×10
+ . The

typical mixed signals are shown in Fig.1(middle). The results obtained with the
new algorithm (12) with α

(j)
S = 0.05 are illustrated in Fig.1(right) with average

Signal-to-Interference (SIR) level greater than 25 [dB].
Since the proposed algorithms (alternating techniques) perform a non-convex

optimization, the estimated components are initial condition dependent. To es-
timate the performance in a statistical sense, we present the histograms of 100
mean-SIR samples for estimation of S (Fig.2). We tested the two different algo-
rithms (combination of the algorithms) – algorithm (10): ALS for A and HALS
for X (αA = 0, α

(j)
S = 0.05), and algorithm (12): quasi-Newton for A and HALS

for S.
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Fig. 2. Histograms of 100 mean-SIR samples for estimating S from Monte Carlo anal-
ysis performed using the following algorithms with 10 layers: (left) ALS for A and
HALS for S (10); (right) quasi-Newton for A and HALS for S (12)

5 Conclusions and Discussion

The main objective and motivation of this paper is to derive simple algorithms
which are suitable both for under-determined and over-determined cases. We
have proposed the generalized and flexible cost function (controlled by sparsity
penalty) that allows us to derive a family of robust and efficient alternating least
squares algorithms for NMF and NTF. Exploiting gradient and Hessian proper-
ties, we have derived a family of efficient algorithms for estimating nonnegative
sources even if the number of sensors is smaller than the number of hidden
nonnegative sources under assumption that the sources are sufficiently sparse
and not strongly overlapped. This is the unique modification of the standard
ALS algorithm, and to the authors’ best knowledge, the first time such a cost
function and algorithms have been applied to NMF and NTF. The proposed
algorithm gives also better performance (SIRs ans speed) than the ordinary
ALS algorithm for NMF, and also some applications of the FOCUSS algorithm
[16,17]. We implemented the discussed algorithms in our NMFLAB/NTFLAB
MATLAB Toolboxes [18]. The algorithms may be also promising for other appli-
cations, such as Sparse Component Analysis, Smooth Component Analysis and
EM Factor Analysis because they relax the problems of getting stuck to in local
minima much better than the standard ALS algorithm.

We have motivated the use of the proposed models in three areas of data
analysis (especially, EEG and fMRI) and signal/image processing: (i) multi-
way blind source separation, (ii) model reduction and selection, and (iii) sparse
image coding. Our preliminary experiments are promising. The models can be
further extended by imposing additional, natural constraints such as smooth-
ness, continuity, closure, unimodality, local rank - selectivity, and/or by taking
into account a prior knowledge about specific 3D, or more generally, multi-way
data.
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Obviously, there are many challenging open issues remaining, such as global
convergence, an optimal choice of the associated parameters.
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Abstract. A common problem in independent component analysis after
prewhitening is to optimize some contrast on the orthogonal or unitary
group. A popular approach is to optimize the contrast only with respect
to a single angle (Givens rotation) and to iterate this procedure. In this
paper we discuss the choice of the sequence of rotations for such so-called
Jacobi-based techniques, in the context of joint block-diagonalization
(JBD). Indeed, extensive simulations with synthetic data, reported in
the paper, illustrates the sensitiveness of this choice, as standard cyclic
sweeps appear to often lead to non-optimal solutions. While not be-
ing able to guarantee convergence to an optimal solution, we propose a
new schedule which, from empirical testing, considerably increases the
chances to achieve global minimization of the criterion. We also point out
the interest of initializing JBD with the output of joint diagonalization
(JD), corroborating the idea that JD could in fact perform JBD up to
permutations, as conjectured in previous works.

1 Introduction

Joint diagonalization techniques have received much attention in the last fif-
teen years within the field of signal processing, and more specifically within
the fields of independent component analysis (ICA) and blind source separation
(BSS). JADE, one of the most popular ICA algorithms developed by Cardoso
and Souloumiac [1], is based on orthonormal joint diagonalization (JD) of a set
of cumulant matrices. To this purpose the authors designed a Jacobi algorithm
for approximate joint diagonalization of a set of matrices [2]. In a BSS parlance,
JADE allows for separation of determined linear instantaneous mixtures of mu-
tually independent sources, exploiting fourth-order statistics. Other standard
BSS techniques involving joint diagonalization include the SOBI algorithm [3],
TDSEP [4], stBSS [5] and TFBSS [6], which all rely on second-order statistics
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of the sources, namely covariance matrices in the first through third case and
spatial Wigner-Ville spectra in the fourth case; see [7] for a review.

Joint block-diagonalization (JBD) came into play in BSS when Abed-Meraim,
Belouchrani and co-authors extended the SOBI algorithm to overdetermined
convolutive mixtures [8]. Their idea was to turn the convolutive mixture into
an overdetermined linear instantaneous mixture of block-dependent sources,
the second-order statistics matrices of the source vector thus becoming block-
diagonal instead of diagonal. Hence, the joint diagonalization step in SOBI
needed to be replaced by a JBD step. Another area of application can be found
in the context of multidimensional ICA or independent subspace analysis [9,10].
Its goal is to linearly transform an observed multivariate random vector such
that its image is decomposed into groups of stochastically independent vectors.
It has been shown that by using fourth-order cumulants to measure the inde-
pendence, JADE now translates into a JBD problem [11]; similarly also SOBI
and other JD-based criteria can be extended to this group ICA setting [12, 13].

Abed-Meraim et al. have sketched several Jacobi strategies in [14, 15, 16]: the
JBD problem is turned into a minimization problem, where the matrix parame-
ter (the joint block-diagonalizer) is constrained to be unitary (because of spatial
prewhitening). The minimizer is searched for iteratively, as a product of Givens
rotations, each rotation minimizing a block-diagonality criterion around a fixed
axis, which we refer to as ‘pivot’. Convergence of the algorithm is easily shown,
but convergence to an optimal solution (which minimizes the chosen JBD crite-
rion) is not guaranteed. In fact, we observed that results vary widely according to
the choice of the successive pivots (which we refer to as ‘schedule’) and the initial-
ization of the algorithm, which is not discussed in previous works [14,15,16]. The
main contributions of this paper are 1) to point out that the choice of the rotation
schedule is a sensitive issue which greatly influences the convergence properties of
the Jacobi algorithm, as illustrated on extensive simulations with synthetic data,
2) to propose a new schedule, which, from empirical testing, offers better chances
to converge to the optimal solution (while still not guaranteeing it), as compared to
the standard cyclic Jacobi technique. We also point out the interest of initializing
JBD with the output of JD, corroborating the idea that JD could in fact perform
JBD up to permutations, as suggested by Cardoso in [10], more recently conjec-
tured by Abed-Meraim and Belouchrani in [16] and partially proved in [11, 17].

The paper is organized as follows. Section 2 briefly describes the Jacobi ap-
proach to approximate JBD, with fixed equal block sizes. Section 3 compares
the convergence results obtained with three choices of initialization/schedule on
generated sets of matrices exactly joint block-diagonalizable, with various size,
block size and set dimension. Section 4 reports conclusions.

2 Jacobi Approximate Joint Block-Diagonalization

2.1 Approximate Joint Block-Diagonalization

Let A = {A1, . . . ,AK} be a set of K complex matrices of size n×n. The problem
of approximate JBD consists of finding a unitary matrix U ∈ C

n×n such that
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∀k ∈ �1, K� := {1, . . . , K}, the matrices

UAk UH = Bk

are as block-diagonal as possible. More precisely, let us denote L the (fixed)
length of the diagonal blocks and m = n/L the number of blocks. Writing for
k ∈ �1, K�

Ak =

⎡

⎢⎣
Ak11 . . . Ak1m

...
...

Akm1 . . . Akmm

⎤

⎥⎦

where Akij is a subblock of dimensions L × L, ∀(i, j) ∈ �1, m�
2, our block-

diagonality criterion is chosen as

boff (Ak) :=
∑

1≤i�=j≤m

‖Akij‖2
F . (1)

Here ‖B‖2
F =

∑
ij |bij |2 denotes the Frobenius norm. We look for U by mini-

mizing the cost function

Cjbd(V; A) :=
K∑

i=1

boff
(
VAi VH

)

with respect to V ∈ U(n), where U(n) is the set of unitary n × n-matrices.

2.2 The Jacobi Approach

Jacobi approaches rely on the fact that any unitary matrix V ∈ U(n) can be
written as a product of complex Givens matrices G(p, q, c, s) ∈ U(n), 1 ≤ p <
q ≤ n, defined as everywhere equal to the identity In except for [G(p, q, c, s)]pp =
[G(p, q, c, s)]qq = c, [G(p, q, c, s)]pq = s̄, [G(p, q, c, s)]qp = −s, with (c, s) ∈ R×C

such that c2 + |s|2 = 1. The Jacobi approach consists of iteratively applying
the same Givens rotation to all the matrices in set A, with (p, q) chosen as to
minimize criterion Cjbd. In other words, for fixed p and q, one iteration of the
method consists of the following two steps:

– compute (c�, s�) = argminc,s Cjbd(G(p, q, c, s); A)
– ∀k ∈ �1, K�, Ak ← G(p, q, c�, s�)Ak G(p, q, c�, s�)H

Let I1, . . . , Im be the partition of �1, n� defined by Ii = �(i − 1)L + 1, i L�,
and let i(k) = �i/L� give the index i of the interval Ii to which k belongs. Let
Bk = G(p, q, c, s)Ak G(p, q, c, s)H , k ∈ �1, K�. Bk is everywhere equal to Ak,
except for its pth and qth rows and columns, which depend on c and s, such
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that [18, 17]

bkpp = c2 akpp + |s|2 akqq + c s akpq + c s̄ akqp

bkqq = c2 akqq + |s|2 akpp − c s akpq − c s̄ akqp

bkpj = c akpj + s̄ akqj (j ∈ Ii(p), j 	= p)
bkjp = c akjp + s akjq (j ∈ Ii(p), j 	= p)
bkqj = −s akpj + c akqj (j ∈ Ii(q), j 	= q)
bkjq = −s̄ akjp + c akjq (j ∈ Ii(q), j 	= q)

Using the fact that the Frobenius norm is invariant to rotations, minimization of
criterion Cjbd(G(p, q, c, s); A) with respect to (c, s) can be shown to be equivalent
to the maximization of

C′jbd(c, s) :=

K∑

k=1

⎧
⎨

⎩|bkpp|2 + |bkqq |2+
∑

j∈Ii(p),j �=p

|bkpj |2 + |bkjp|2+
∑

j∈Ii(q),j �=q

|bkqj |2 + |bkjq |2
⎫
⎬

⎭

However, the latter criterion is constant if p and q belong to the same interval
Ii(p) (i.e, i(p) = i(q)). Details of above derivations can be found in [18, 17].

It may be shown [15, 16] that the maximization of C′jbd(c, s) boils down to
the constrained maximization of a linear quadratic form. This optimization can
be achieved using Lagrange multipliers. The computation of the latter requires
solving a polynomial of degree 6 in the complex case (i.e, U ∈ Cn×n), and of
degree 4 in the real case (i.e, U ∈ Rn×n). First order approximations of the
criterion are also considered in [15,16] to simplify its maximization. A tensorial
rank-1 approximation is also found in [19]. For real matrices, when both Ak

and U belong to Rn×n, maximization of C′jbd(c, s) directly amounts to rooting
a polynomial of order 4 (without requiring a Lagragian parametrization), as
sketched in [19] and developed in [18, 17].

So far, the indices p and q have been fixed. However, the important issue
appears not to be how to maximize C′jbd(c, s), which can be done exactly in
a way or another, but how to choose these pivots (p, q). Similarly to JD, the
convergence of the proposed (joint) block-diagonalization scheme is guaranteed
by construction, whatever the chosen rotation schedule [18,17]. If convergence to
the global minimum was in practice usually observed with joint diagonalization
schemes, this is certainly not the case for joint block-diagonalization, where we
found convergence to be very sensitive to initialization and rotation schedule, as
illustrated in the next section.

3 Simulations

The employed algorithms as well as some of the following examples are freely
available for download at [20]. The programs have been realized in MATLAB,
and sufficient documentation is given to reproduce the results and extend the
algorithms. We propose to test the following initialization/schedule strategies.
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(M1) The first method is inspired from the standard cyclic Jacobi approach
[2, 21], which consists of systematically sweeping the pivots one after the
other, except for the fact that the couples (p, q) are chosen not to include
the diagonal blocks. The algorithm is initialized with the identity matrix,
i.e U = In. The algorithm is stopped when all the values of s� are lower
than 10−4 within a sweep.

(M2) The second method is identical to (M1) except for the fact that the algo-
rithm is initialized with the matrix Ujdr provided by joint diagonalization
of A, as obtained from [2].

(M3) The third method is inspired from the classical Jacobi method for the
diagonalization of a normal matrix [21] and consists, after initialization
as in (M2), of choosing at each iteration the pivot (p, q) ensuring a maxi-
mum decrease of criterion Cjbd. This requires computing all the differences
|
∑K

k=1 boff (Bk)−boff (Ak) | for all couples (p, q) and to pick up the cou-
ple which yields the largest difference value. The algorithm stops when 20
successive values of s� are all lower than 10−4.

For simplicity, the three methods are tested in the real case. The three methods
are applied to 100 random draws of K real matrices exactly joint block-
diagonalizable in a real common orthogonal basis (optimal rotation angles are thus
computed by rooting a polynomial of order 4 like in [18, 17]). Various values of L
(size of the blocks), m (number of blocks) and K (number of matrices) are consid-
ered. The number of failures over the 100 realizations (i.e, the number of times the
methods do not converge to a solution such that Cjbd = 0) is reported in Table 1.

Table 1. Number of failures of methods M1, M2 and M3 over 100 random realizations
of K matrices exactly block-diagonalizable in a common orthonormal basis

m 2

L 2 4 6

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

M1 1 4 4 1 2 32 33 25 10 11 55 33 21 24 16

M2 0 0 0 0 0 11 1 0 0 0 43 2 0 0 0

M3 0 0 0 0 0 5 0 0 0 0 14 0 0 0 0

m 3

L 2 4 6

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

M1 3 14 11 18 8 68 54 38 33 32 84 60 48 51 52

M2 0 0 0 0 0 29 5 1 2 0 53 10 8 7 8

M3 0 0 0 0 0 15 1 0 3 1 44 0 0 2 8

m 4

L 2 4 6

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

M1 5 30 21 19 16 87 75 68 60 59 99 83 77 77 75

M2 0 0 0 0 0 47 7 6 4 2 88 15 8 4 10

M3 0 0 0 0 0 21 5 4 2 3 65 8 2 0 5
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Fig. 1. Evolution of criterion Cjbd for a random set A such that m = 3, L = 4,
K = 3. Using a 2.60 GHz Pentium 4 with 1 Go RAM, the computation times for this
particular dataset are: (M1 - 1.2 s), (M2 - 0.3 s), (M3 - 1.2 s). The three methods
succeed in minimizing the criterion.
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Fig. 2. Evolution of criterion Cjbd for a random set A such that m = 4, L = 6, K = 3.
Using a 2.60 GHz Pentium 4 with 1 Go RAM, the computation times for this particular
dataset are: (M1 - 28.4 s), (M2 - 4.1 s), (M3 - 6.9 s). Only (M3) succeeds in minimizing
the criterion.

The results emphasize the importance of the initialization and the choice of
the schedule. Failure rates of (M1) are very high, in particular when m and L
increase. (M2) and (M3), which are both initialized by joint diagonalization, give
much better results, with (M3) being in nearly every case more reliable than
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(M2). However, none of the two methods systematically converge to a global
minimum of Cjbd when m ≥ 3, and, interestingly, the methods do not usually
fail on the same data sets. Also, Fig. 1 and Fig. 2 show that (M3) only need a
few iterations after JD to minimize Cjbd. This indicates the validity of the claim
from [16], that JD minimizes the joint block-diagonality Cjbd, however only up
to a permutation. In the above simulation, the permutation is then discovered
by application of the JBD algorithm — this also explains why in Figures 1
and 2, when (M2) is used, the cost function after JD only decreases in discrete
steps, corresponding to identified permutations.

Audio results of the separation of a convolutive mixture with 3 observations
and 2 sources, obtained with the generalization of SOBI using our pivot selection
scheme and followed by a SIMO identification step removing filtering ambiguities
are found at [22], following the approach described in [23].

4 Conclusions

The main algorithmic conclusion of this paper is: Jacobi algorithms for joint
block-diagonalization bring up convergence problems that do not occur in joint
diagonalization and that still need to be properly addressed. However we pro-
posed a strategy (method (M3)) which considerably reduces the failure rates
of the straightforward approach (M1). The fact that lower failure rates are ob-
tained with (M2) and (M3), which are initialized with joint diagonalization,
tend to corroborate the conjecture that JBD diagonalization could be achieved
up to an arbitrary permutation of columns via JD [10, 16], but it still does not
explain why this permutation cannot be solved by minimization of Cjbd. This
is a question we are currently working on, and for which partial results exist
already [11, 17]. Moreover, extensions to the case of varying, possibly unknown
block sizes are interesting [11], with respect to both the optimization and the
application in the field of ICA.
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19. De Lathauwer, L., Févotte, C., De Moor, B., Vandewalle, J.: Jacobi algorithm for
joint block diagonalization in blind identification. In: Proc. 23th Symposium on
Information Theory in the Benelux, Louvain-la-Neuve, Belgium, (Mai 2002), pp.
155–162 (2002)

20. http://www.biologie.uni-regensburg.de/Biophysik/Theis/researchjbd.html
21. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The Johns Hopkins

University Press, Baltimore (1996)
22. http://www.tsi.enst.fr/∼fevotte/bass demo.html
23. Févotte, C., Debiolles, A., Doncarli, C.: Blind separation of FIR convolutive mix-

tures: application to speech signals. In: Proc. 1st ISCA Workshop on Non-Linear
Speech Processing, Le Croisic, France (May 20-23, 2003)

http://service.tsi.enst.fr/cgi-bin/valipub_download.cgi?dId=34
http://www.biologie.uni-regensburg.de/Biophysik/Theis/researchjbd.html
http://www.tsi.enst.fr/~fevotte/bass_demo.html


Speeding Up FastICA

by Mixture Random Pruning

Sabrina Gaito and Giuliano Grossi

Dipartimento di Scienze dell’Informazione
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Abstract. We study and derive a method to speed up kurtosis-based
FastICA in presence of information redundancy, i.e., for large samples. It
consists in randomly decimating the data set as more as possible while
preserving the quality of the reconstructed signals. By performing an
analysis of the kurtosis estimator, we find the maximum reduction rate
which guarantees a narrow confidence interval of such estimator with
high confidence level. Such a rate depends on a parameter β easily com-
puted a priori combining together the fourth and the eighth norms of
the observations.

Extensive simulations have been done on different sets of real world
signals. They show that actually the sample size reduction is very high,
preserves the quality of the decomposition and impressively speeds up
FastICA. On the other hand, the simulations also show that, decimating
data more than the rate fixed by β, the decomposition ability of FastICA
is compromised, thus validating the reliability of the parameter β. We
are confident that our method will follow to better approach real time
applications.

1 Introduction

Independent Component Analysis (ICA) ([1,2,3,4]) is a method to identify a
set of unknown and generally non-Gaussian source signals whose mixtures are
observed, under the only assumption that they are mutually independent. ICA
has become more and more popular and, thanks to the few assumptions needed
and its feasibility, it is applied in many areas such as blind source separation
(BSS) which we are interested in [5].

More in general, ICA aim is to describe a very large set of data in terms
of variables better capturing the essential structure of the problem. In many
cases, due to the huge amount of data, it is crucial to make ICA analysis as fast
as possible. From this point of view, one of the most popular algorithm is the
well-known FastICA [6], which is based on the optimization of some nonlinear
contrast functions [7] characterizing the non-Gaussianity of the components.
Because of its widespread uses, in this paper we refer only to the kurtosis-based
FastICA [6].
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Our aim is to speed up FastICA by a suitable pruning of the linear mixtures
that preserves the output quality. Essentially, the method proposed consists in
randomly select a subset of data of size d′ less than the original size d whose
sample kurtosis is not too far from the right one. More in details, we perform an
analysis of the kurtosis estimator on the sub-sample with the purpose to find the
minimum reduction ratio ρ = d′

d which guarantees a narrow confidence interval
with high confidence level.

In particular, we identify a data-dependent parameter, called β, which com-
bines both fourth and eighth norms of the observations, from which the reduction
rate depends on.

The main step in our method is to compute β on the mixed signals and obtain
the actual reduction ratio ρ = β

δε2 , where ε and δ are the fixed confidence interval
parameters of the sub-sample kurtosis. Then we randomly decimate the sample
and we apply FastICA to the reduced dataset.

To assess the reliability of β many simulations have been done on different sets
of both real world and artificial signals. The experiments show that, accordingly
to the β, a consistent ratio of reduction can be normally applied when the sample
size is considerable, achieving a great benefit in terms of computation time.
Furthermore, since β (and consequently ρ) decreases also with respect to the
number of signals n, the simulations show that the computation time is weakly
affected by n. Moreover, the experiments give also prominence that when forcing
the reduction ratio over the bounds derived by our analysis, the reconstruction
error of FastICA grows noticeably.

Section 2 describes the pruning methodology. The effect of the data reduction
will be analyzed in term of analysis of the kurtosis estimator in Section 3. In the
same section the statistical meaning of the parameter β is explained. In Section 4
we apply the method on a large set of real signals extracted from audio signals
showing the performance of the proposed method.

2 Random Pruning

The model we assume for ICA is instantaneous and the mixture is linear and
noiseless:

X = AS,

where the n × d matrices X and S are respectively the observed mixtures and
the mutually independent unknown signals, while A is a full rank n × n mixing
matrix. Thus, n is the number of mixed non-Gaussian signals and d is their
length. Therefore, for each i ∈ [1 . . n] the i-th row xi of X represents a i.i.d.
sample of size d of the random variable xi representing the i-th mixture.

The goal of ICA is to estimate the demixing matrix Ŵ ≈ A−1 in order to
reconstruct the original sources signals

Ŝ = ŴX.
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Kurtosis-based FastICA is a very simple fixed-point algorithm with satisfac-
tory performance, but it is time consuming for large scale real signals because
its computational complexity is O(nd3) [6].

In order to spare running time, before running FastICA we operate a random
pruning on the mixtures procedure reducing the data by decimating the sample
up to the minimum size allowed by β.

Denoting with ‖xi‖p the usual p-norm, the overall procedure, with the pre-
processing pruning preliminary phase, can be summarized in the following steps:

Pruning preprocessing

1. β(xi) =
‖xi‖8

8

‖xi‖8
4

∀i ∈ [1 . . n]

2. β = max
xi

β(xi)

3. d′ =
1

δε2
(dβ − 1) ≈ dβ

δε2

4. random draw Id′ ⊆ [1 . . d] of size d′

5. ∀i ∈ [1 . . n] ∀j ∈ Id′ yij = xij so that yi = (yij1 , . . . , yijd′ )
FastICA

1. Perform FastICA on the matrix Y (whose i-th row is yi) instead
of X, obtaining Ŵ by maximizing the sequence kurt

[
wT

i Y
]
, where

wT
i is the i-th row of Ŵ

2. Reconstruct the signals Ŝ = ŴX.

Note that the decimation process throws away the same set of intermediate
data points in all mixtures.

3 Theoretical Motivation

In this section we look for a lower bound for the reduction ratio ρ. The main
step in FastICA where the sample size is relevant is when the kurtosis is being
estimated on the data set.

Assuming, as usual, that each mixture xi has zero mean and unitary variance,
the kurtosis of each random variable xi reduces to its fourth moment M4[xi].
Thus we analyze the effects coming from the use of a reduced data set in terms
of confidence interval of the sample fourth moment.

The fourth moment estimate is generally performed on the whole sample xi

of size d via the sample fourth moment M̂
d

4[xi]:

M̂
d

4[xi] =
1
d

d∑

t=1

x4
it,

having the following mean and variance:

E
[
M̂

d

4[xi]
]

= M4[xi], var
[
M̂

d

4[xi]
]

=
1
d
(M8[xi] − (M4[xi])2).
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Let us now estimate M4[xi] on the basis of the sub-sample yi.
Using the Chebyschev inequality we obtain the probability bounds:

Pr
{

M4[xi](1 − ε) ≤ M̂
d′

i

4 [yi] ≤ M4[xi](1 + ε)
}

≥ 1 −
var

[
M̂

d′
i

4

]

ε2(M4[xi])2

= 1 − M8[xi] − (M4[xi])2

d′ε2(M4[xi])2
.

Setting the previous term equal to the confidence 1−δ, fixing the margin of error
ε and introducing the sample moments, we derive the minimum sample size d′i
which respects the probability bound above:

d′i =
M̂

d

8[xi] − (M̂
d

4[xi])2

δε2(M̂4[xi])2
.

Expressing the sample moments in terms of norms:

M̂
d′

4 [xi] =
1
d′

‖xi‖4
4 and M̂

d′

8 [xi] =
1
d′

‖xi‖8
8,

we obtain:

d′i =
1

δε2

(
d‖xi‖8

8

‖xi‖8
4

− 1
)

.

It is evident that the minimum allowed sample size depends on the ratio of the
two norms ‖xi‖8

8 and ‖xi‖8
4. Their statistical meaning is related to the variance

of the estimator of the fourth moments estimated on the whole sample as:

var
[
M̂d

4 [xi]
]

=
1
d2

(‖xi‖8
8 − 1

d
‖xi‖8

4)

Of course a low variance implies a good estimate and the possibility of highly
reduce the sample size d′i.

Since it holds that:
1
d

≤ ‖xi‖8
8

‖xi‖8
4

≤ 1,

we note that the better ratio for the variance is ‖xi‖8
8 = 1

d‖xi‖8
4. On the other

side, the variance of the estimator is highest when ‖xi‖8
8 = ‖xi‖8

4.
Introducing the parameter

β = max
xi

‖xi‖8
8

‖xi‖8
4

the minimum allowed sample size is:

d′ =
1

δε2
(dβ − 1) ≈ dβ

δε2

and the reduction ratio is:

ρ =
d′

d
=

β

δε2
.
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4 Numerical Experiments

In this section we report the summary of extensive computer simulations ob-
tained from the executions of FastICA on different set of sampled source signals:
speech, musical and environmental sounds of various nature, mixed with ran-
domly generated matrix. All the experiments have been carried out on Pentium
P4 (2GHz, 1GB RAM) through software environment MATLAB 7.0.1.

The main purpose of the simulations is to apply the preprocessing pruning
technique in order to appreciate the performance of FastICA both in terms of
computation complexity and of quality of the reconstructed signals. Specifically,
we are interested in validating the reliability of the parameter β observing the
performance decay. This attitude may find application in real time scenarios
where high sampling rate can make prohibitive the use of the ICA technique.

All signals considered in the experiments are very big (order of magnitude 105

and 106) because for short sample size FastICA sometimes fails to converge or
gets stuck at saddle points [8].

To measure the accuracy of the demixing matrix we use the performance index
reported in [9], which represents a plausible measure of discrepancy between the
product matrix P = (pij)n×n = AŴ and the identity matrix, defined as:

Err =
n∑

i=1

⎛

⎝
n∑

j=1

|pij |
max

k
|pik| − 1

⎞

⎠ +
n∑

j=1

⎛

⎝
n∑

i=1

|pij |
max

k
|pkj |

− 1

⎞

⎠ .

Due to the limit of space we present here only the most illustrative example,
which examines signals of size d = 106. Table 1 shows the results on different
groups of n signals (with 2 ≤ n ≤ 10).

Table 1. Average performance index and average computation time of FastICA on
various groups of signals (from 2 to 10 with d = 106). Second column reports the
reduction ratio ρ < 1, third and fourth columns report the performance index both with
full and reduced sample size respectively. The last two columns report the computation
times in both the cases. The numbers between brackets are the standard deviations
calculated on the 30 trials.

n ρ < 1 Err (ρ = 1) Err (ρ < 1) Time (ρ = 1) Time (ρ < 1)

2 0.03 (0.01) 0.02 (0.05) 0.03 (0.02) 2.5 (0.9) 0.1 (0.0)

3 0.27 (0.01) 0.04 (0.02) 0.05 (0.02) 4.5 (0.8) 1.3 (0.6)

4 0.25 (0.07) 0.11 (0.11) 0.11 (0.05) 6.7 (0.8) 1.7 (0.6)

5 0.22 (0.07) 0.18 (0.07) 0.33 (0.63) 9.4 (1.3) 2.1 (0.7)

6 0.19 (0.07) 0.37 (0.15) 0.46 (0.14) 12.0 (1.7) 2.4 (0.9)

7 0.16 (0.06) 0.62 (0.70) 0.97 (0.97) 14.7 (1.1) 2.4 (1.0)

8 0.16 (0.06) 1.08 (0.75) 1.44 (1.12) 18.5 (2.1) 2.9 (1.1)

9 0.12 (0.04) 1.23 (1.30) 1.75 (2.70) 26.5 (3.8) 2.8 (0.9)

10 0.11 (0.04) 1.43 (0.29) 1.91 (2.23) 33.5 (3.4) 2.8 (1.0)
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For each group we randomly generated 30 mixtures in order to observe, on
average, both the time of convergence and the performance index of FastICA for
the whole and the reduced samples respectively. All the experiments are obtained
at confidence level 0.9 and margin of error 0.1.

Based on the simulations we can draw the following conclusions.

1. Sample size is highly reduced (up to one hundred times) while the quality
of the decomposition is preserved, as highlighted by the performance index.
Here, in particular, β = ρ ∗ 10−3 is sufficiently small, lying in the range
between 10−5 and 10−4.

2. The discrepancy between the error given by the whole sample and that given
by the pruned sample increases very slowly with n (number of signals) as
shown graphically in Fig. 1 (the lowest two errors corresponding to the third
and fourth column of Table 1).

3. To assess the reliability of β, in the same figure we report the data obtained
with a reduction ratio of one order of magnitude under that provided by
analysis, i.e., with ρsub = 10−1ρ (highest error in the graphic). This experi-
ment shows that the error grows noticeably.

4. As far as computation time is concerned, Fig. 2 (average times corresponding
to the fifth and sixth column of Table 1) highlights the impressive gain of the
computational cost. This gain depends on the fact that the computational
cost is cubic with respect to sample size. Moreover, it can be noticed that in
our pruning FastICA the computation time depends weakly on the number
of signals because β decreases with respect to n.

2 3 4 5 6 7 8 9 10
0

1
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3

4

5

6

7

8

# mixed signals

E
rr

or

Full samples (ρ = 1)

Reduced samples (ρ < 1)

Reduced samples (10−1ρ)

Fig. 1. Three average errors measured for various groups of signals (d = 106): the first is
obtained with ρ = 1 (without reduction), the second decimated with ρ = β∗103 (where
β is computed in according to the previous analysis) and the third with ρsub = β ∗ 102

(reducing β of one order of magnitude)



Speeding Up FastICA by Mixture Random Pruning 191

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

# mixed signals

T
im

es

Full samples (ρ = 1)

Reduced samples (ρ < 1)

Fig. 2. Average times of FastICA on different groups of signals of full and reduced size:
the first is obtained with ρ = 1 (without reduction), the second by decimation with
ρ = β ∗ 103

5 Conclusions

The contribution of this paper is the derivation of a signal-dependent parameter
useful to randomly decimate high-dimensional mixtures in order to reduce the
time in kurtosis-based FastICA executions. Such a parameter has been validated
both in terms of rigorous high-order moments analysis and by means of computer
simulations on real word signals. The results encourage to study the pruning
technique deeper by exploring different sub-sampling methodologies and different
contrast functions used in ICA. Finally, we are confident that our method can be
used in real-time applications dealing with high sampling rate, where the online
decimation permits to reasonably reduce the mixture size enabling FastICA to
operate tightly.
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Abstract. This paper deals with the problem of the blind separation
of convolutive mixtures of sources. We present a novel method based on
a new non orthogonal joint block diagonalization algorithm (NO − JBD)
of a given set of matrices. The main advantages of the proposed method
are that it is more general and a preliminary whitening stage is no more
compulsorily required. The proposed joint block diagonalization algo-
rithm is based on the algebraic optimization of a least mean squares
criterion. Computer simulations are provided in order to illustrate the
effectiveness of the proposed approach in three cases: when exact block-
diagonal matrices are considered, then when they are progressively per-
turbed by an additive Gaussian noise and finally when estimated corre-
lation matrices are used. A comparison with a classical orthogonal joint
block-diagonalization algorithm is also performed, emphasizing the good
performances of the method.

1 Introduction

In the signal processing community, many works have been recently dedicated to
the study of the problem of joint decomposition of matrices or tensors because
of their numerous applications especially in blind source separation and array
processing [1]-[14].

Here, we are interested in the problem of the blind separation of convolutive
mixtures of sources. That is why this communication is dedicated to the so-
called joint block-diagonalization of matrices problem. In such a decomposition,
the wanted matrices are block diagonal ones1. Such a problem has been already
considered in [1][4][7] but under the constraint that the joint-block diagonalizer
is an orthogonal (unitary in the complex case) matrix. Our purpose, here, is to

1 A block diagonal matrix is a block matrix in which the off-diagonal block terms are
zero matrices and the diagonal matrices are square.
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discard this unitary constraint. To that aim, we show how the (non necessarily
orthogonal) joint-block diagonalizer can be algebraically estimated by minimi-
zing a least mean squares criterion, leading to a new non-orthogonal joint block-
digonalization algorithm. Some computer simulations are provided in order to
illustrate the good behaviour of the proposed algorithm. Then, it is shown how
this algorithm finds application in blind source separation where it is applied,
here, to a set of observations correlation matrices at different time delays.

The rest of this communication is organized as follows. The problem statement
and the proposed joint block-diagonalization algorithm are both introduced in
the Section 2. In the Section 3, we show how this algorithm can be applied
to solve the problem of blind separation of convolutive mixtures of sources.
Computer simulations are provided in both sections to illustrate the effectiveness
of the proposed algorithm and to compare it with another one based on an
orthogonal joint block-diagonalization.

2 Non-orthogonal Joint Block-Diagonalization Problem

2.1 Problem Statement

The non-orthogonal joint block-diagonalization problem is stated in the following
way: let us consider a set M of Nm, Nm ∈ N∗ square invertible matrices Mi

∈ RM×M , i ∈ {1, . . . , Nm} which all admit the following decomposition:

Mi = ADiAT , or Di = BMiBT , ∀i ∈ {1, . . . , Nm} (1)

where Di =

⎛

⎜⎝
Di1 . . . 0

. . .
0 . . . Dir

⎞

⎟⎠, ∀i ∈ {1, . . . , Nm}, are N × N block diagonal

matrices with Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} are nj ×nj square matrices so
that n1+ . . .+nr = N (in our case, we will assume that all the matrices have the
same size i.e N = r × nj , ∀j ∈ {1, . . . , r}) and where 0 denotes the nj × nj null
matrix. A is the M × N (M ≥ N) full rank matrix and B is its pseudo-inverse
(or generalized Moore-Penrose inverse).

The non-orthogonal joint block-diagonalization problem consists in estimating
the matrix A and the matrices Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} (or more
simply the matrix B only) from the matrices set M. The case of an orthogonal
matrix A has been already considered in [7] where a first solution is proposed.

2.2 Joint Block-Diagonalization Algorithm

In this communication, we propose to consider the following cost function

CBD(C) =
Nm∑

k=1

‖OffBdiag{CT MkC}‖2, (2)
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where the operator OffBdiag{·} denotes the zero-block-diagonal matrix and C =
BT . Thus:

M =

⎛

⎜⎜⎜⎜⎝

M11 M12 . . . M1r

M21 . . . . . .
...

... . . . . . .
...

Mr1 Mr2 . . . Mrr

⎞

⎟⎟⎟⎟⎠
⇒ OffBdiag{M} =

⎛

⎜⎜⎜⎜⎝

0 M12 . . . M1r

M21
. . .

...
...

. . .
...

Mr1 Mr2 . . . 0,

⎞

⎟⎟⎟⎟⎠
. (3)

Let C = [C1, · · · ,Cr], where Cj, j ∈ {1, · · · , r}, are r block matrices of dimen-
sion M × nj . The cost function (2) can be rewritten as:

CBD(C) =
Nm∑

k=1

r∑

i,j=1(i�=j)

‖CT
i MkCj‖2 =

Nm∑

k=1

ni∑

m=1

nj∑

n=1

r∑

i,j=1(i�=j)

|(cm
i )T Mkcn

j |2 (4)

where cn
j , ∀n ∈ {1, . . . , nj} stand for the nj column vectors of matrices Cj ,

∀j ∈ {1, . . . , r}. Then:

CBD(C) =
Nm∑

k=1

ni,nj∑

m,n=1

r∑

i,j=1(i�=j)

((cm
i )T Mkcn

j )((cm
i )T Mkcn

j )T

=
Nm∑

k=1

ni,nj∑

m,n=1

r∑

i,j=1(i�=j)

(cm
i )T (Mkcn

j (cn
j )T MT

k )cm
i

=
ni∑

m=1

r∑

i=1

(cm
i )T

⎡

⎣
r∑

j=1(j �=i)

nj∑

n=1

Nm∑

k=1

Mkcn
j (cn

j )T MT
k

⎤

⎦ cm
i

=
ni∑

m=1

r∑

i=1

(cm
i )T Qi(Ci)c

m
i (5)

where Qi(Ci) =
∑r

j=1(j �=i)

∑nj

n=1

∑Nm

k=1 Mkcn
j (cn

j )T MT
k is a symmetric matrix.

As cn
j (cn

j )T is rank one, ∀j = 1, . . . , r, and ∀n = 1, . . . , nj , the matrix Qi(Ci)
possesses N −(r−1)nj = nj eigenvectors associated with null eigenvalues. Then,
the minimization of this quadratic form under the unit norm constraint can be
achieved by taking the nj unit eigenvectors associated with the nj smallest eigen-
values of Qi(Ci). However since matrix Qi for a given i also depends on column
vectors of matrix C, we propose to use an iterative procedure. The proposed
non-orthogonal joint block-diagonalization (denoted by NO − JBD) writes:

∀i ∈ {1, . . . , r} with l ∈ N∗ and given C(0)

i
an initial matrix, do (a) and (b)

(a) Calculate Qi(C
(l)

i
)

(b) Find the ni lowest eigenvalues λm
i

(l), m ∈ {1, . . . , ni} and the associated
eigenvectors cm

i
(l), m ∈ {1, . . . , ni} of matrix Qi(C

(l)

i
)

Stop after a given number of iterations or when |λm
i

(l) − λm
i

(l−1)| ≤ ε where ε is
a given small positive threshold.
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2.3 Computer Simulations

We present simulations to illustrate the effectiveness of the proposed algorithm.
We consider a set D of Nm = 11 (resp. 31, 56, 96) matrices, randomly chosen
(according to a Gaussian law) of mean 0 and variance 1. Initially these matrices
are exactly block-diagonal, then random noise matrices of mean 0 and variance
σ2

b are added. A signal to noise ratio can be defined as SNR = 10 log( 1
σ2

b
). To

measure the quality of the separation, the following performance index (which
is an extension of the one introduced in [10]) is used:

I(G)=
1

r(r − 1)

⎡

⎣
r∑

i=1

⎛

⎝
r∑

j=1

‖(G)i,j‖2

max
�

‖(G)i,�‖2 − 1

⎞

⎠+
r∑

j=1

⎛

⎝
r∑

i=1

‖(G)i,j‖2

max
�

‖(G)�,j‖2 − 1

⎞

⎠

⎤

⎦

where (G)i,j∀i, j ∈ {1, . . . , r} is the (i, j)-th (square) block matrix of G = ĈT A.
All the displayed results have been averaged over 30 Monte-Carlo trials. On the
Fig. 1, the performance index of algorithm NO − JBD is displayed versus the
number of used matrices (left) and versus the SNR (right). These curves illustrate
the good behaviour of the algorithm since I ≈ −110 dB at high SNR.
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Fig. 1. Left: performance index versus number of matrices, right: performance index
versus SNR

3 Separation of Convolutive Mixtures of Sources

3.1 Model and Assumptions

We consider a convolutive finite-duration impulse response (FIR) model given by

xi(t) =
n∑

j=1

L∑

�=0

hij(�)sj(t − �) + nj(t), ∀i = 1, . . . , m (6)
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where sj(t), ∀j = 1, . . . , n are the n sources, xi(t), i = 1, . . . , m, are the m > n
observed signals, hij(t) is the real transfer function between the j-th source and
i-th sensor with an overall extent of (L+1) taps. ni(t), ∀i = 1, . . . , m are additive
noises. Our developments are based on the two following assumptions:

Assumption A: Each source signal is a real temporally coherent signal. More-
over they are uncorrelated two by two, i.e., for all pairs of sources (si(t),sj(t))
with i 	= j, for all time delay τij , we have Rij(t, τij) = 0, where Rij(t, τ) denotes
the cross-correlation function between the sources si(t) and sj(t). It is defined
as follows: Rij(t, τ) = E{si(t)sj(t+ τ)}, where E{.} stands for the mathematical
expectation.

Assumption B: The noises ni(t), i = 1, . . . , m, are assumed real stationary
white random signals, mutually uncorrelated, independent from the sources, with
the same variance σ2

n. The noises correlation matrix can be written as:

Rn(τ) = E{n(t)nT (t + τ)} = σ2
nδ(τ)Im (7)

where δ(τ) stands for the Delta impulse, Im for the m × m identity matrix and
(.)T for the transpose operator.

Let us now recall how the convolutive mixing model can be reformulated into
an instantaneous one [4][7].

Considering the vectors S(t), X(t) and N(t) respectively defined as:

S(t) = [s1(t), . . . , s1(t − (L + L′) + 1), . . . , sn(t − (L + L′) + 1)]T

X(t) = [x1(t), . . . , x1(t − L′ + 1), . . . , xm(t − L′ + 1)]T

N(t) = [n1(t), . . . , n1(t − L′ + 1), . . . , nm(t − L′ + 1)]T

and the (M × N) matrix A, where M = mL′ and N = n(L + L′):

A =

⎛

⎜⎝
A11 . . . A1n

...
. . .

...
Am1 . . . Amn

⎞

⎟⎠

where

Aij =

⎛

⎜⎜⎜⎜⎝

hij(0) . . . . . . hij(L) 0 . . . 0

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0
0 . . . 0 hij(0) . . . . . . hij(L)

⎞

⎟⎟⎟⎟⎠
(8)

are (L′ × (L + L′)) matrices, the model described by Eq. (6) can be written in
matrix form as:

X(t) = AS(t) + N(t) (9)

In order to have an over-determined model, L′ must be chosen such that mL′ ≥
n(L + L′). We assume, here, that the matrix A is full rank. Because of the As-
sumption A, all the components of S(t) are temporally coherent signals. More-
over, two different components of this vector are correlated at least in one non
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null time delay. With regard to the noise vector N(t), the Assumption B holds
for each of its components involving that its correlation matrix RN(τ) reads:

RN(τ) = E{N(t)NT (t + τ)}

=

⎛

⎜⎜⎜⎜⎝

σ2
nĨL′(τ) 0L′ . . . 0L′

0L′
. . . . . .

...
...

. . . . . . 0L′

0L′ . . . 0L′ σ2
nĨL′(τ)

⎞

⎟⎟⎟⎟⎠
(10)

where ĨL′(τ) is the L′× L′ matrix which contains ones on the τ th superdiagonal
if 0 ≤ τ < L′ or on the |τ |th subdiagonal if −L′ ≤ τ ≤ 0 and zeros elsewhere.
Then, we have:

RX(t, τ) − RN (τ) = ARS(t, τ)AT = RY (t, τ) (11)

Because sources signals are spatially uncorrelated and temporally coherent, the
matrices RS(t, τ), ∀τ are block diagonal matrices. To recover the mixing matrix
A, the matrices RY (t, τ), ∀τ and ∀t can be joint block diagonalized without any
unitarity constraint about the wanted matrix A.

Notice that in this case, the recovered sources after inversion of the system
are obtained up to a permutation and up to a filter but we will not discuss about
these indeterminations in this communication.

3.2 Computer Simulations

We present simulations to illustrate the effectiveness of the proposed algorithm in
the blind source separation context and to establish a comparison with another
algorithm (O − JBD) for the orthogonal joint block diagonalization of matrices.
While our algorithm is directly applied on the correlation matrices of the ob-
servations, the second algorithm is applied after a pre-whitening stage on the
correlation matrices of the pre-whitened observations. We consider m = 4 mix-
tures of n = 2 speech source signals sampled at 8 kHz, L = 2 and L′ = 4. These
signal sources are mixed according to the following transfer function matrix
whose components are randomly generated:

A[z] =

⎛

⎜⎜⎝

0.9772 + 0.2079z−1 − 0.0439z−2 −0.6179 + 0.7715z−1 + 0.1517z−2

−0.2517 − 0.3204z−1 + 0.9132z−2 −0.1861 + 0.4359z−1 − 0.8805z−2

0.0803 − 0.7989z−1 − 0.5961z−2 0.5677 + 0.6769z−1 + 0.4685z−2

−0.7952 + 0.3522z−1 + 0.4936z−2 −0.2459 + 0.8138z−1 − 0.5266z−2

⎞

⎟⎟⎠

where A[z] stands for the z transform of A(t). On the Fig. 2, we have displayed
the performance index versus the number of matrices (left) and versus the SNR.
One can check that the obtained performance are better with the NO − JBD
algorithm than with the O − JBD algorithm. One can also evaluate the block-
diagonalization error defined as:
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Fig. 2. Left: performance index versus number of matrices, right: performance index
versus SNR

E = 10 log10{ 1
Nm

∑Nm

k=1 ‖OffBdiag{BRY (t, τk)BT ‖2
F } where B is the pseudo-

inverse of the mixing matrix A and ‖.‖F denotes the Frobenius norm. Finally, a
comparaison of the block-diagonalization error with the NO − JBD and O − JBD
algorithms versus the number of matrices (resp. SNR) is given in the left of
Fig. 3 (resp. its right).
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Fig. 3. Left: block-diagonalization error versus number of matrices, right: block-
diagonalization error versus SNR

4 Discussion and Conclusion

In this paper, we have proposed a new joint block diagonalization algorithm
for the separation of convolutive mixtures of sources that does not rely upon a
unitary constraint. We have illustrated the usefulness of the proposed approach
thanks to computer simulations: the considered algorithm has been applied to
source separation using the correlation matrices of speech sources evaluated over
different time delays.
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Hicham Ghennioui1,2, Nadège Thirion-Moreau1, Eric Moreau1,
Abdellah Adib2,3, and Driss Aboutajdine2

1 STD, ISITV, av. G. Pompidou, BP56, F-83162 La Valette du Var Cedex, France
ghennioui@gmail.com, {thirion,moreau}@univ-tln.fr

2 GSCM-LRIT, FSR, av. Ibn Battouta, BP1014, Rabat, Maroc
3 DPG, IS, av. Ibn Battouta, BP703, Rabat, Maroc

adib@israbat.ac.ma, aboutaj@ieee.org

Abstract. This paper addresses the problem of the non-unitary ap-
proximate joint block diagonalization (NU − JBD) of matrices. Such a
problem occurs in various fields of applications among which blind sep-
aration of convolutive mixtures of sources and wide-band signals array
processing. We present a new algorithm for the non-unitary joint block-
diagonalization of complex matrices based on a gradient-descent algo-
rithm whereby the optimal step size is computed algebraically at each
iteration as the rooting of a 3rd-degree polynomial. Computer simula-
tions are provided in order to illustrate the effectiveness of the proposed
algorithm.

1 Introduction

In the recent years, the problem of the joint decomposition of matrices or tensors
sets have found interesting solutions through signal processing applications in
blind source separation and array processing.

One of the first considered problem was the joint-diagonalization of matri-
ces under the unitary constraint, leading to the nowadays well-known JADE [4]
and SOBI [2] algorithms. The following works have addressed either the prob-
lem of the joint-diagonalization of tensors [5][7][12] or the problem of the joint-
diagonalization of matrices but discarding the unitarity constraint [6][10][14]
[15][16][17].

A second type of matrices decomposition has proven to be useful in blind
source separation, telecommunications and cryptography. It consists in joint
zero-diago-nalizing several matrices either under the unitary constraint [1] or
not [9][10]. Most of the proposed (unitary) joint-diagonalization and/or zero-
diagonalization algorithms have been applied to the problem of the blind sepa-
ration of instantaneous mixtures of sources.

Finally, a third particular type of matrices decomposition arises in both the
wide-band sources localization in correlated noise fields and the blind separation

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 201–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



202 H. Ghennioui et al.

of convolutive mixtures of sources problems. It is called joint block-diagonalization
since the wanted matrices are block diagonal matrices1 in such a decomposition.
Such a problem has been considered in [3][8] where the block-diagonal matrices
under consideration have to be positive definite and hermitian matrices and the
required joint-block diagonalizer is a unitary matrix.

In this paper, our purpose is to discard this unitary constraint. To that aim, we
generalize the non unitary joint-diagonalization approach proposed in [16] to the
non-unitary joint block-diagonalization of several complex hermitian matrices.
The resulting algorithm is based on a gradient-descent approach whereby the
optimal step size is computed algebraically at each iteration as the rooting of a
3rd-degree polynomial. The main advantage of the proposed algorithm is that
it is relatively general since the only needed assumption about the complex
matrices under consideration is their hermitian symmetry. Finally, the use of
the optimal step size speeds up the convergence.

The paper is organized as follows. We state the considered problem in the
Section 2. In the Section 3, we present the algebraical derivations leading to the
proposed non-unitary joint block-diagonalization algorithm. Computer simula-
tions are provided in the Section 4 in order to illustrate the behaviour of the
proposed approach.

2 Problem Statement

The non-unitary joint block-diagonalization problem is stated in the following
way: let us consider a set M of Nm, Nm ∈ N∗ square matrices Mi ∈ CM×M ,
i ∈ {1, . . . , Nm} which all admit the following decomposition:

Mi = ADiAH or Di = BMiBH , ∀i ∈ {1, . . . , Nm} (1)

where Di =

⎛

⎜⎝
Di1 . . . 0

. . .
0 . . . Dir

⎞

⎟⎠, ∀i ∈ {1, . . . , Nm}, are N × N block diagonal

matrices with Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} are nj × nj square matrices
so that n1 + . . .+ nr = N (in our case, we assume that all the matrices have the
same size i.e. N = r × nj , j ∈ {1, . . . , r}) and where 0 denotes the nj × nj null
matrix. A is the M × N (M ≥ N) full rank matrix and B is its pseudo-inverse
(or generalized Moore-Penrose inverse).

The non-unitary joint bloc-diagonalization problem consists in estimating the
matrix A and the matrices Dij , i ∈ {1, . . . , Nm}, j ∈ {1, . . . , r} from only the
matrices set M. The case of a unitary matrix A has been considered in [8] where
a first solution is proposed.

1 A block diagonal matrix is a square diagonal matrix in which the diagonal elements
are square matrices of any size (possibly even), and the off-diagonal elements are
0. A block diagonal matrix is therefore a block matrix in which the blocks off the
diagonal are the zero matrices and the diagonal matrices are square.
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3 Non-Unitary Joint Block-Diagonalization Using a
Gradient Approach

In this section, we present a new algorithm to solve the problem of the non-
unitary joint block-diagonalization. We propose to consider the following cost
function

CBD(B) =
Nm∑

i=1

‖OffBdiag{BMiBH}‖2
F , (2)

where ‖.‖F stands for the Frobenius norm and the operator OffBdiag{·} denotes
the zero block-diagonal matrix. Thus:

M =

⎛

⎜⎜⎜⎜⎝

M11 M12 . . . M1r

M21 . . . . . .
...

... . . . . . .
...

Mr1 Mr2 . . . Mrr

⎞

⎟⎟⎟⎟⎠
⇒ OffBdiag{M} =

⎛

⎜⎜⎜⎜⎝

0 M12 . . . M1r

M21
. . .

...
...

. . .
...

Mr1 Mr2 . . . 0

⎞

⎟⎟⎟⎟⎠
� E (3)

Our aim is to minimize the cost function (2).
To make sure that the found matrix B keeps on being invertible, it is updated

according to the following scheme (see [17]):

B(m) = (I + W(m−1))B(m−1) ∀m = 1, 2, . . . , (4)

where B(0) is some initial guess, B(m) denotes the estimated matrix B at the
m-th iteration, W(m−1) is a sufficiently small (in terms of Frobenius norm) zero-
block diagonal matrix and I is the identity matrix.

Denoting M(m)
i = B(m−1)MiB(m−1)H ∀i = 1, . . . , Nm and ∀m = 1, 2, . . .,

where (·)H stands for the transpose conjugate operator, then at the m-th itera-
tion, the cost function can be expressed versus W(m−1) rather than B(m). We
now have:

CBD(W(m−1)) =
Nm∑

i=1

‖OffBdiag{(I + W(m−1))M(m)
i (I + W(m−1))H}‖2

F (5)

or more simply C(m)
BD (W) �

∑Nm

i=1 ‖OffBdiag{(I + W)M(m)
i (I + W)H}‖2

F .
At each iteration, the wanted matrix W is then updated according to the

following adaptation rule:

W(m) = −μ∇CBD(W(m−1)) ∀m = 1, 2, . . . (6)

where μ is the step size or adaptation coefficient and where ∇CBD(W(m−1))
stands for the complex gradient matrix defined, like in [13], by:

∇CBD(W(m−1)) = 2
∂CBD(W(m−1))

∂W(m−1)∗ ∀m = 1, 2 . . . (7)

where (·)∗ is the complex conjugate operator. We now have to calculate the

complex gradient matrix ∇C(m)
BD (W) = 2∂C(m)

BD (W)

∂W∗ .
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3.1 Gradient of the Cost Function C(m)
BD (W)

LetD(m)
i andE(m)

i respectively denote the block-diagonal and zero block-diagonal
matrices extracted from the matrix M(m)

i (M(m)
i = E(m)

i +D(m)
i ). As W is a zero-

block diagonal matrix too, the cost function C(m)
BD (W) can be expressed as:

C(m)
BD (W) =

Nm∑

i=1

‖OffBdiag{M(m)
i } + OffBdiag{M(m)

i WH} + OffBdiag{WM(m)
i }

+ OffBdiag{WM(m)
i WH}‖2

F

=
Nm∑

i=1

‖E(m)
i + D(m)

i WH + WD(m)
i + WE(m)

i WH‖2
F

=
Nm∑

i=1

tr{(E(m)
i +D(m)

i WH +WD(m)
i +WE(m)

i WH)H(E(m)
i +D(m)

i WH

+ WD(m)
i + WE(m)

i WH)} (8)

where tr{.} stands for the trace operator. Then, using the linearity property of
the trace and assuming to simplify the derivations that the considered matrices
are hermitian, we finally find that:

C(m)
BD (W) =

Nm∑

i=1

tr{E(m)H
i E(m)

i } + 2tr{E(m)H
i (D(m)

i WH + WD(m)
i )}

+ tr{WD(m)H
i D(m)

i WH + D(m)H
i WHWD(m)

i }
+ 2tr{E(m)H

i WE(m)
i WH}

+ tr{WD(m)H
i WD(m)

i + D(m)H
i WHD(m)

i WH}
+ 2tr{WE(m)H

i WH(D(m)
i WH + WD(m)

i )}
+ tr{WE(m)H

i WHWE(m)
i WH} (9)

Using now the following properties [11]

tr{PQR} = tr{RPQ} = tr{QRP} (10)
∂tr{PXH}

∂X∗
= P (11)

∂tr{PX}
∂X∗

= 0 (12)

dtr{P} = tr{dP} (13)
dtr{PXHQX} = tr{PdXHQX + PXHQdX} (14)
∂tr{PXHQX}

∂X∗
= QXP (15)
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It finally leads to the following result:

∇C(m)
BD (W) = 4

Nm∑

i=1

(
E(m)H

i D(m)
i + WD(m)H

i D(m)
i + E(m)H

i WE(m)
i

+ WE(m)H
i WHD(m)

i + WE(m)
i WHWE(m)H

i + D(m)
i WHD(m)H

i

+ D(m)
i WHWE(m)H

i + WD(m)
i WE(m)H

i

)
. (16)

3.2 Seek of the Optimal Step Size

The expression (16) is then used in the gradient descent algorithm (6). To ac-
celerate its convergence, the optimal step size μ is computed algebraically at
each iteration. To that aim, one has to calculate C(m)

BD (W ← −μ∇C(m)
BD (W)), but

here we use C(m)
BD (W ← μF(m) = −μOffBdiag{∇C(m)

BD (W)}). F(m) is the anti-
gradient matrix. We use OffBdiag{∇C(m)

BD (W)} instead of ∇C(m)
BD (W) because

W is a sufficiently small (in terms of norm) zero block-diagonal matrix and thus
only the off block-diagonal terms are involved in the descent of the criterion. We
now have to seek for the optimal step μ ensuring the minimization of the cost
function C(m)

BD (μF(m)). This step is determined by the rooting of the 3rd-degree
polynomial (18) which is obtained as the derivative of the 4rd-degree polynomial
C(m)

BD (μF(m)) with respect to μ:

C(m)
BD (μF(m)) = a

(m)
0 + a

(m)
1 μ + a

(m)
2 μ2 + a

(m)
3 μ3 + a

(m)
4 μ4, (17)

∂C(m)
BD (μF(m))

∂μ
= 4a

(m)
4 μ3 + 3a

(m)
3 μ2 + 2a

(m)
2 μ + a

(m)
1 , (18)

where the coefficients have been found to be equal to:

a
(m)
0 =

Nm∑

i=1

tr{E(m)H
i E(m)

i } (19)

a
(m)
1 =

Nm∑

i=1

tr{E(m)H
i (D(m)

i FH + FD(m)
i ) + (D(m)

i FH + FD(m)
i )HE(m)

i }(20)

a
(m)
2 =

Nm∑

i=1

tr
{
E(m)H

i FE(m)
i FH + FE(m)H

i FHE(m)
i

+ (D(m)
i FH + FD(m)

i )H(D(m)
i FH + FD(m)

i )
}

(21)

a
(m)
3 =

Nm∑

i=1

tr
{
(D(m)

i FH + FD(m)
i )HFE(m)

i FH

+ FE(m)H
i FH(D(m)

i FH + FD(m)
i )

}
(22)

a
(m)
4 =

Nm∑

i=1

tr{F(m)E(m)H
i F(m)HF(m)E(m)

i F(m)H}. (23)
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The optimal step μ corresponds to the root of the polynomial (18) attaining the
absolute minimum in the polynomial (17).

3.3 Summary of the Proposed Algorithm

The proposed non-unitary joint block-diagonalization based on a gradient algo-
rithm denoted by JBDNU,G is now presented below:

Denote the Nm square matrices as M(0)
1 ,M(0)

2 , . . . ,M(0)
Nm

Given initial estimates W(0) = 0 and B(0) = I
For m = 1, 2, . . .

For i = 1, . . . , Nm

Compute M(m)
i as

M(m)
i = B(m−1)M(m−1)

i B(m−1)H

Compute ∇C(m)
BD (W) whose expression is given by equation (16)

EndFor
Set F(m) = −OffBdiag{∇C(m)

BD (W)}
Compute the coefficients a

(m)
0 , . . . , a

(m)
4 thanks to (19), (20), (21), (22) and

(23)
Set the optimal step μ by the research of the root of the polynomial (18)
attaining the absolute minimum in the polynomial (17)
Set W(m) = μF(m) and B(m) = (I + W(m−1))B(m−1)

EndFor

4 Computer Simulations

In this section, we perform simulations to illustrate the behaviour of the proposed
algorithm. We consider a set D of Nm = 11 (resp. 31, 101) matrices, randomly
chosen (according to a Gaussian law of mean 0 and variance 1). Initially these
matrices are exactly block-diagonal, then matrices with random entries chosen
from a Gaussian law of mean 0 and variance σ2

b are added. The signal to noise
ratio (SNR) is then defined by SNR = 10 log( 1

σ2
b

) . We use the following perfor-
mance index which is an extension of that introduced in [12]:

I(G)=
1

r(r − 1)

⎡

⎣
r∑

i=1

⎛

⎝
r∑

j=1

‖(G)i,j‖2

max
�

‖(G)i,�‖2 − 1

⎞

⎠+
r∑

j=1

⎛

⎝
r∑

i=1

‖(G)i,j‖2

max
�

‖(G)�,j‖2 − 1

⎞

⎠

⎤

⎦

where (G)i,j∀i, j ∈ {1, . . . , r} is the (i, j)-th matrix block (square) of G = B̂A.
The displayed results are averaged over 30 Monte-Carlo trials. In this example,
they were obtained considering M = N = 12, r = 3 and real and symmetric
matrices. On the left of Fig. 1 we display the performance index obtained with
the proposed algorithm versus the number of used matrices for different values
of the SNR. On its right we have plotted the evolution of the performance index
versus the SNR.
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Fig. 1. Left: performance index versus number Nm of used matrices for different values
of the SNR (SNR=10 dB (×), 20 dB (◦), 50 dB (�) and 100 dB (+)). Right: performance
index versus SNR for different size of the matrices set to be joint block-diagonalized
(Nm=11 (×), 31 (◦), 101 (+)).

5 Discussion and Conclusion

In this paper, we have proposed a new algorithm (named JBDNU,G) based on a
gradient approach to perform the non-unitary joint block-diagonalization of a
given set of complex matrices. One of the main advantages of this algorithm is
that it applies to complex hermitian matrices. This algorithm finds application
in blind separation of convolutive mixtures of sources and in array processing.
In the context of blind sources separation, it should enable to achieve better
performances by discarding the unitary constraint. In fact, starting with a pre-
whitening stage is a possible way to amount to a unitary square mixture of
sources to be able to use unitary joint-decomposition algorithms. But such a
pre-whitening stage imposes a limit on the attainable performances that can be
overcome thanks to non-unitary algorithms.
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Abstract. We introduce Model-free Toolbox (MFBOX), a Matlab tool-
box for analyzing multivariate data sets in an explorative fashion. Its
main focus lies on the analysis of functional Nuclear Magnetic Resonance
Imaging (fMRI) data sets with various model-free or data-driven tech-
niques. In this context, it can also be used as plugin for SPM5, a popular
tool in regression-based fMRI analysis. The toolbox includes BSS algo-
rithms based on various source models including ICA, spatiotemporal
ICA, autodecorrelation and NMF. They can all be easily combined with
higher-level analysis methods such as reliability analysis using projective
clustering of the components, sliding time window analysis or hierarchi-
cal decomposition. As an example, we use MFBOX for the analysis of an
fMRI experiment and present short comparisons with the SPM results.
The MFBOX is freely available for download at http://mfbox.sf.net.

1 Introduction

With the increasing complexity and dimensionality of large-scale biomedical data
sets, classical analysis techniques yield way to more powerful methods that can
take into account higher-order relationships in the data. Such often explorative
methods have been popular in the field of engineering and statistics for quite
some time, however they perpetrate into the application areas such as psychol-
ogy, biology or medicine in a much slower fashion. This is partially due to the
fact that visual and simple tools for more complex analyses are rarely available.
In this contribution, we present a toolbox, MFBOX, for performing blind source
separation of complex tasks with appropriate pre- and postprocessing methods.
One of our main goals is to provide a simple toolbox that allows for the model-free
analysis of fMRI data sets [14], although MFBOX may just as well be applied to
other recordings. The graphical user interface of MFBOX enables users to easily
try out various model-free algorithms, together with additional pre- and post-
processing and reliability analysis. The design of the toolbox is modular, so it
can be easily extended to include your algorithm of choice. It can integrate into
SPM5 [1] and can be used to perform model-free analysis of biomedical image
time series such as fMRI or PET data sets. The toolbox is realized in MATLAB,
and has been tested on Linux, Windows and Mac OS. The paper itself is orga-
nized as follows: In the next section, we present the core features of MFBOX,

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 209–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. The data flow of the MFBOX application. The user interface is divided into
the spm mf box part and the mfbox compare ic part.

from preprocessing to Blind Source Separation (BSS) and higher-order analysis
itself to postprocessing. We then illustrate the usage of MFBOX on a complex
fMRI experiment, and conclude with an outlook.

2 Features of the MFBOX

The MFBOX application includes two main graphical interfaces, spm mf box
which gives access to all processing possibilities and mfbox compare ic which
allows for easy comparison of different results. Any of the algorithms can also
be used separately from the main toolbox interface and additionally a batch run
command mfbox runbatch is provided to ease the analysis of multiple data sets.
The workflow can be divided into modular stages, also see figure 1:

– Preprocessing
– Model-free processing and higher-level analysis
– Postprocessing

2.1 Preprocessing

The preprocessing stage can include one or more preprocessing steps in a row
where the precedence can be easily controlled. The purpose of this stage is to
select regions of interest to apply the model-free algorithms on or enhance the
effectiveness of the main processing algorithms by denoising or transforming the
original sequence data.
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datavalue mask selection by bounds on voxel values
denoise high quality Local ICA (lICA) based 3d denoising [4]
infomap gridding using a Self-Organizing Maps (SOM) [12] based on the infor-

mation content of the voxels
remmean different mean removal options
roiselect mask selection by loadable masks
selectslices rectangular mask selection in voxel space
varthreshold mask selection by bounds on voxel variances

Recommended standard options are to mask out the parts of the signal which
are outside the brain and regions uninteresting for the Blood Oxygenation Level
Dependent Contrast (BOLD) effect like blood support system. Moreover the
analysis can be enhanced by only using the white matter voxels. How this mask
selection is achieved depends on the available data. If structural data is available
the preprocessing option roiselect can use the data from a segmentation step.
Otherwise the mask selection can be accomplished by datavalue or varthreshold
selection.

2.2 Model-Free Analysis and Higher-Level Analysis

Given a multivariate data set x(t), our goal is to find a new basis W such
that Wx(t) fulfills some statistical properties. If we for example require the
transformed random vector to be statistically independent, this is denoted as
Independent Component Analysis [8]. Independent Component Analysis (ICA)
can be applied to solve the BSS problem, where x(t) is known to be the mixture
of some underlying hidden independent sources. Depending on the data set also
other models are of interest, as for e.g. depending on the data set. The MFBOX
currently includes three different paradigms for tackling the BSS problem and
for each of these fundamental types it contains different algorithms to perform
the separation.

1. ICA algorithms
PearsonICA spatial ICA algorithm which employs a fast fixed point algo-

rithm as extension of FastICA [8] where the nonlinearity is estimated
from the data and automatically adjusted at each step [9]

JADE spatial ICA algorithm which is based on the approximate diagonal-
ization of the fourth cumulant tensor [3]

stJADE spatiotemporal version of the JADE algorithm [15], for an impres-
sion on how the spatiotemporal weighting can enhance the separation of
a real data set see figure 2

TemporalICA temporal ICA [2] optionally using Projection Approxima-
tion Subspace Tracking (PAST) [17] for the temporal Principal Compo-
nent Analysis (PCA) reduction

hrfICA semi-blind spatial ICA algorithm using the Haemoglobin Response
Function (HRF) function to incorporate prior knowledge about the as-
sumed sources
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2. second order algorithms
mdSOBI Multidimensional version of the Second Order Blind Identification

(SOBI) [16] algorithm, which is based on second-order autodecorrelation
stSOBI Spatio-temporal version of the SOBI algorithm [15]

3. other decomposition algorithms
hNMF a Nonnegative Matrix Factorization (NMF) decomposition algo-

rithm using hyperplane clustering [5]

These base BSS algorithms can be combined with different types of higher-
level analysis methods. These three methods share the fact that they apply a
previously selected BSS algorithm multiple times in order to extract additional
statistics e.g. for reliability. The methods will be explained in the following.

Reliability analysis with projective k-means clustering. A common prob-
lem in explorative data analysis is how to access the reliability of the obtained
results. A proven method of reliability analysis in statistics is bootstrapping i.e.
to randomly subsample the same methods as before and compare the results
from multiple different random sub sample runs, see e.g. [6, 7]. For most BSS
algorithms this leads to a permutation problem (namely identifying correspond-
ing Independent Component (IC)) since there is an inherent permutation and
scaling, especially sign, invariance of BSS. Here we use projective k-means clus-
tering [5] for the assignment and to evaluate the quality of a component using
the resulting cluster size. It is essentially a k-means-type algorithm, which acts
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Fig. 2. Evaluation of some of the higher level algorithms present in the MFBOX on a
real data set using the stJADE algorithm with 10 components. In both graphs α = 1
is the situation where only temporal ICA is performed whereas at α = 0 only spatial
ICA is performed.
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on samples in the projective space RP
n of all lines of Rn. This models the scaling

indeterminacy of ICA more precisely than projection onto its hypersphere since
it also deals with the sign invariance. The result (figure 2) is explained by the fact
that the spatial dimension of the data is strongly smoothed and reveals a some
structure. Hence it does not follow the usual linear ICA model of independently
drawn samples from an identically distributed random variable. The temporal
dimension does not expose such additional structure and is less smoothed by the
data acquisition and so the temporal ICA should be more stable.

Hierarchical analysis of component maps. Another common issue in data-
driven BSS methods is how to choose the number of components and how to
evaluate the large amount of possibly interesting components the process might
yield without means to identify the ones which are interesting in the current
problem. The hierarchical analysis tries to overcome this problem by extracting
different numbers of components and extracting a hierarchical structure form
the relations between the timecourses and the component maps of the extracted
sources. This yields a tree structure of the components which can be used to
easily navigate to the components which are of interest in an experiment. For
more detailed implementation details see also [11].

Sliding time-window analysis. Usualy ICA cannot deal with non-stationary
data, so most commonly approximations or windowing techniques are used. In
ordinary ICA, the whole data set is transformed, and as many component maps
as time steps are reconstructed. Window ICA [10] groups the observations in
windows of a fixed size, and extracts components out of each of them. Correlation
analysis then gives corresponding components over the whole time interval, thus
yielding additional structure in a single full-scale component map.

2.3 Import, Export and Postprocessing

The MFBOX has rich im- and export possibilities to load and save data, masks,
designs, reference brain masks, and parameters from different formats as Ana-
lyze, Nifti, plain MATLAB, and its own file format.

selectcomp semi-manual selection, labeling and grouping of extracted
components

denoise lICA based 3d denoising [4] of the extracted components

3 Using the MFBOX on fMRI Recording of an Wisconsin
Card Sorting Test (WCST)

In this part we will demonstrate the results from using the MFBOX on a real
world data set. After a short introduction into the nature of the data we will
present the result and compare it to the standard SPM result. The WCST is
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Fig. 3. Result of a stJADE run with α=1.0, selecting the whole brain area as mask,
and after applying spatial and temporal mean removal. The component network in the
prefrontal cortex and a more compact network at the parietal/occipital lobe is clearly
visible.

a traditional neuropsychological test that is sensitive to frontal lobe dysfunc-
tion and allows to assess the integrity of the subjects’ executive functions. The
WCST-task primarily activates the dorsolateral prefrontal cortex that is respon-
sible for executive working memory operations and cognitive control functions.
The given fMRI data set originates from a modified version of the WCST [13].
Its aim is to segregate those network components participating in the above
mentioned process. At first, a number of stimulus cards are presented to the
participants. Afterwards the subject is asked to match additional cards to one
of the stimulus cards with respect to a sorting criterion unknown to the subject.
In fact, the subject has to discover it by trial and error (Sorting dimensions
include: the color of symbols, their shape or the number of displayed symbols
on the card). Sorting dimension changes if a previously defined number of cor-
rect answers have been given consecutively. Three different test variants of the
WCST were applied

Task A. No instructions of dimensions (very close to the original WCST)
Task B. Instruction of dimensional change as sorting criterion changes.
Task C. Reminder of dimension prior to each trial; subject knows in advance

the attribute that was searched for in the test.

Our results largely verify the findings of [13], as can be seen in figure 3(a). In
addition to the stimulation of the prefrontal cortex, an increased activity in the
parietal lobe as well as in the occipital lobe was revealed by our stJADE algo-
rithm. The increased activity in the rear section of the brain (see figure 3(b))
was also discovered by the model-free algorithm. The complete summary of one
stJADE analysis of the data set is shown in figure 4. The classification into
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Fig. 4. A complete BSS analysis output as provided by the SVG export function of
the MFBOX. The component labeled stimulus indicates the one which has the highest
correlation with the stimulus. The components labeled artifact are most likely artifacts,
two of them are also grouped together such that the number of displayed components
is 9 although 10 components were extracted by stJADE.
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stimulus component and artifacts was done after the analysis using the reliabil-
ity analysis and a Minimum Description Length (MDL)-likelihood based noise
estimator included in the MFBOX.

4 Conclusion

The MFBOX is an easy to use but nonetheless powerful instrument for explo-
rative analysis of fMRI data. It includes several modern BSS algorithms and due
to its highly modular structure it can easily be extended with novel as well as
classical approaches.
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Abstract. We propose an eigenvector algorithm (EVA) with reference
signals for blind deconvolution (BD) of multiple-input multiple-output
infinite impulse response (MIMO-IIR) channels. Differently from the con-
ventional EVAs, each output of a deconvolver is used as a reference signal,
and moreover the BD can be achieved without using whitening tech-
niques. The validity of the proposed EVA is shown comparing with our
conventional EVA.

1 Introduction

This paper deals with a blind deconvolution (BD) problem for a multiple-input
and multiple-output (MIMO) infinite impulse response (IIR) channels. To solve
this problem, we use eigenvector algorithms (EVAs) [6,7,12]. The first proposal of
the EVA was done by Jelonnek et al. [6]. They have proposed the EVA for solving
blind equalization (BE) problems of single-input single-output (SISO) channels
or single-input multiple-output (SIMO) channels. In [12], several procedures for
the blind source separation (BSS) of instantaneous mixtures, using the gener-
alized eigenvalue decomposition (GEVD), have been introduced. Recently, the
authors have proposed an EVA which can solve BSS problems in the case of
MIMO static systems (instantaneous mixtures) [8]. Moreover, based on the idea
in [8], an EVA was derived for MIMO-IIR channels (convolutive mixtures) [9].

In the EVAs in [8,9], an idea of using reference signals was adopted. Researches
applying this idea to solving blind signal processing (BSP) problems, such as
the BD, the BE, the BSS, and so on, have been made by Jelonnek et al. (e.g.,
[6]), Adib et al. (e.g., [2]), Rhioui et al. [13], and Castella, et al. [3]. In [8,9],
differently from the conventional methods, only one reference signal was utilized
for recovering all the source signals simultaneously.

However, the EVA in [9] has difference performances for a different choice of
the reference signal (see section 4), and in order to recover all source signals, it

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 218–226, 2007.
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y(t)s(t) z(t)

n(t)

H(z)

x(t)f T(z) reference
signal

output
signal

W(z)

G(z)

Fig. 1. The composite system of an unknown system and a deconvolver, and a reference
system

must be taken into account how to select appropriate eigenvectors from the set
of eigenvectors calculated by the EVA. In this paper, in order to circumvent such
a tedious (or nasty) task, the output of a deconvolver which is used to recover
source signals is used as a reference signal. Accordingly, deflation techniques
are needed to recover all source signals. The method proposed in [3] is almost
same as the proposed EVA. However, the proposed EVA can achieve the BD
without using whitening techniques. Moreover, the proposed EVA provides good
performances compared with our conventional EVA [9] (see section 4).

The present paper uses the following notation: Let Z denote the set of all
integers. Let C denote the set of all complex numbers. Let Cn denote the set
of all n-column vectors with complex components. Let Cm×n denote the set
of all m × n matrices with complex components. The superscripts T , ∗, and
H denote, respectively, the transpose, the complex conjugate, and the complex
conjugate transpose (Hermitian) of a matrix. The symbols block-diag{· · ·} and
diag{· · ·} denote respectively a block diagonal and a diagonal matrices with the
block diagonal and the diagonal elements {· · ·}. The symbol cum{x1,x2,x3,x4}
denotes a fourth-order cumulant of xi’s. Let i = 1, n stand for i = 1, 2, · · · , n.

2 Problem Formulation and Assumptions

We consider a MIMO channel with n inputs and m outputs as described by

y(t) =
∑∞

k=−∞H(k)s(t − k) + n(t), t ∈ Z, (1)

where s(t) is an n-column vector of input (or source) signals, y(t) is an m-column
vector of channel outputs, n(t) is an m-column vector of Gaussian noises, and
{H(k)} is an m × n impulse response matrix sequence. The transfer function of
the channel is defined by H(z) =

∑∞
k=−∞H(k)zk, z ∈ C.

To recover the source signals, we process the output signals by an n × m
deconvolver (or equalizer) W (z) described by

z(t) =
∑∞

k=−∞W (k)y(t − k)

=
∑∞

k=−∞G(k)s(t − k) +
∑∞

k=−∞W (k)n(t − k), (2)

where {G(k)} is the impulse response matrix sequence of G(z) := W (z)H(z),
which is defined by G(z) =

∑∞
k=−∞ G(k)zk, z ∈ C. The cascade connection of

the unknown system and the deconvolver is illustrated in Fig. 1.
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Here, we put the following assumptions on the channel, the source signals, the
deconvolver, and the noises.

A1) The transfer function H(z) is stable and has full column rank on the unit
circle |z| = 1, where the assumption A1) implies that the unknown system has
less inputs than outputs, i.e., n < m, and there exists a left stable inverse of the
unknown system.
A2) The input sequence {s(t)} is a complex, zero-mean and non-Gaussian ran-
dom vector process with element processes {si(t)}, i = 1, n being mutually inde-
pendent. Each element process {si(t)} is an i.i.d. process with a variance σ2

si
�= 0

and a nonzero fourth-order cumulant γi �= 0 defined as

γi = cum{si(t), si(t), s∗i (t), s
∗
i (t)} �= 0. (3)

A3) The deconvolver W (z) is an FIR channel of sufficient length L so that the
truncation effect can be ignored.
A4) The noise sequence {n(t)} is a zero-mean, Gaussian vector stationary pro-
cess whose component processes {nj(t)}, j = 1, m have nonzero variances σ2

nj
,

j = 1, m.
A5) The two vector sequences {n(t)} and {s(t)} are mutually statistically in-
dependent.

Under A3), the impulse response {G(k)} of the cascade system is given by

G(k) :=
∑L2

τ=L1
W (τ)H(k−τ), k ∈ Z, (4)

where the length L := L2 − L1 + 1 is taken to be sufficiently large. In a vector
form, (4) can be written as

g̃i = H̃w̃i, i = 1, n, (5)

where g̃i is the column vector consisting of the ith output impulse response of
the cascade system defined by g̃i := [gT

i1, g
T
i2, · · · , gT

in]T ,

gij := [· · · , gij(−1), gij(0), gij(1), · · ·]T , j = 1, n (6)

where gij(k) is the (i, j)th element of matrix G(k), and w̃i is the mL-column
vector consisting of the tap coefficients (corresponding to the ith output) of the
deconvolver defined by w̃i :=

[
wT

i1, w
T
i2, · · · , wT

im

]T ∈ CmL,

wij := [wij(L1), wij(L1 + 1), · · · , wij(L2)]
T ∈ CL, (7)

j = 1, m, where wij(k) is the (i, j)th element of matrix W (k), and H̃ is the n×m
block matrix whose (i, j)th block element H ij is the matrix (of L columns and
possibly infinite number of rows) with the (l, r)th element [H ij ]lr defined by
[Hij ]lr := hji(l − r), l = 0, ±1, ±2, · · ·, r=L1, L2, where hij(k) is the (i, j)th
element of the matrix H(k).

In the multichannel blind deconvolution problem, we want to adjust w̃i’s (i
= 1, n) so that

[g̃1, · · · , g̃n] = H̃ [w̃1, · · · , w̃n] = [δ̃1, · · · , δ̃n]P , (8)
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where P is an n × n permutation matrix, and δ̃i is the n-block column vector
defined by

δ̃i := [δT
i1, δ

T
i2, . . . , δ

T
in]T , i = 1, n (9)

δij :=
{

δ̂i, if i = j,
(· · · , 0, 0, 0, · · ·)T , otherwise.

(10)

Here, δ̂i is the column vector (of infinite elements) whose rth element δ̂i(r) is
given by δ̂i(r) = diδ(r − ki), where δ(t) is the Kronecker delta function, di is
a complex number standing for a scale change and a phase shift, and ki is an
integer standing for a time shift.

3 Eigenvector Algorithms (EVAs)

3.1 Analysis of Eigenvector Algorithms with Reference Signals for
MIMO-IIR Channels

In order to solve the BD problem, the following cross-cumulant between zi(t)
and a reference signal x(t) (see Fig. 1) is defined;

Dzix = cum{zi(t), z∗i (t), x(t), x∗(t)}, (11)

where zi(t) is the ith element of z(t) in (2) and the reference signal x(t) is
given by fT (z)y(t), using an appropriate filter f(z). The filter f (z) is called a
reference system. Let a(z) := HT (z)f(z) = [a1(z),a2(z),· · ·,an(z)]T , then x(t)
= fT (z)H(z)s(t) = aT (z)s(t). The element ai(z) of the filter a(z) is defined as
ai(z) =

∑∞
k=−∞ ai(k)zk and the reference system f(z) is an m-column vector

whose elements are fj(z) =
∑L2

k=L1
fj(k)zk, j = 1, m.

Jelonnek et al. [6] have shown in the single-input case that by the Lagrangian
method, the maximization of |Dzix| under σ2

zi
= σ2

sρi
leads to a closed-form so-

lution expressed as a generalized eigenvector problem, where σ2
zi

and σ2
sρi

denote
the variances of the output zi(t) and a source signal sρi(t), respectively, and ρi

is one of integers {1, 2, · · · , n} such that the set {ρ1, ρ2,· · ·,ρn} is a permutation
of the set {1, 2,· · ·,n}. In our case, Dzix and σ2

zi
can be expressed in terms of

the vector w̃i as, respectively,

Dzix = w̃H
i B̃w̃i, σ2

zi
= w̃H

i R̃w̃i, (12)

where B̃ is the m×m block matrix whose (i, j)th block element Bij is the matrix
with the (l, r)th element [Bij ]lr calculated by cum{y∗i (t−L1 − l+1), yj(t−L1 −
r + 1), x∗(t), x(t)} (l, r = 1, L) and R̃ = E[ỹ∗(t)ỹT (t)] is the covariance matrix
of m-block column vector ỹ(t) defined by

ỹ(t) :=
[
yT

1 (t), yT
2 (t), · · · , yT

m(t)
]T ∈ CmL, (13)

yj(t) := [yj(t-L1), yj(t-L1-1), · · · , yj(t-L2)]
T ∈ CL, (14)
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j = 1, m. Therefore, by the similar way to as in [6], the maximization of |Dzix|
under σ2

zi
= σ2

sρi
leads to the following generalized eigenvector problem;

B̃w̃i = λiR̃w̃i. (15)

Moreover, Jelonnek et al. have shown that the eigenvector corresponding to
the maximum magnitude eigenvalue of R̃†B̃ becomes the solution of the blind
equalization problem in [6], which is referred to as an eigenvector algorithm
(EVA). Note that since Jelonnek et al. have dealt with SISO-IIR channels or
SIMO-IIR channels, the constructions of B̃, w̃i, and R̃ in (15) are different
from those proposed in [6,7]. In this paper, we want to show how the eigenvector
algorithm (15) works for the BD of the MIMO-IIR channel (1).

To this end, we use the following equalities;

R̃ = H̃
H

Σ̃H̃, B̃ = H̃
H

Λ̃H̃, (16)

where Σ̃ is the block diagonal matrix defined by

Σ̃ := block-diag{Σ1, Σ2, · · · , Σn}, (17)
Σi := diag{· · · , σ2

si
, σ2

si
, σ2

si
, · · ·}, i = 1, n, (18)

and Λ̃ is the block diagonal matrix defined by

Λ̃ := block-diag{Λ1, Λ2, · · · , Λn}, (19)
Λi := diag{· · · , |ai(−1)|2γr, |ai(0)|2γi, |ai(1)|2γi, · · ·}, (20)

i = 1, n. Since both Σ̃ and Λ̃ become diagonal, (16) shows that the two matrices
R̃ and B̃ are simultaneously diagonalizable.

Here, let the eigenvalues of the diagonal matrix Σ̃−1Λ̃ is denoted by

λi(k) := |ai(k)|2γi/σ2
si

, i = 1, n, k ∈ Z. (21)

We put the following assumption on the eigenvalues λi(k)′s.
A6) All the eigenvalues λi(k)′s are distinct for i = 1, n and k ∈ Z.

Theorem 1. Suppose the noise term n(t) is absent and the length L of the de-
convolver is infinite (that is, L1 = −∞ and L2 = ∞). Then, under the assump-
tions A1) through A6), the n eigenvector w̃i’s corresponding to the n nonzero
eigenvalues λi(k)′s of matrix R̃†B̃ for i = 1, n and an arbitrary k ∈ Z become
the vectors w̃i’s satisfying (8).

Outline of the proof: Based on (15), we consider the following eigenvector
problem;

R̃
†
B̃w̃i = λiw̃i. (22)

Then, from (16), (22) becomes

(H̃
H

Σ̃H̃)†H̃
H

Λ̃H̃w̃i = λiw̃i. (23)
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Under L1 = −∞ and L2 = ∞, we have the following equations;

(H̃
H

Σ̃H̃)† = H̃
†
Σ̃
†
H̃

H†
, H̃

H†
H̃

H
= I, (24)

which are shown in [11] along with their proofs. Then it follows from (23) and
(24);

H̃
†
Σ̃
−1

Λ̃H̃w̃i = λiw̃i. (25)

Multiplying (25) by H̃ from the left side and using (24), (25) becomes

Σ̃
−1

Λ̃H̃w̃i = λiH̃w̃i. (26)

By (22), Σ̃−1Λ̃ is a diagonal matrix with diagonal elements λi(k), i = 1, n
and k ∈ Z, and thus (22) and (26) show that its diagonal elements λi(k)′s are
eigenvalues of matrix R̃†B̃. Here we use the following fact;

lim
L→∞

(rank R̃)/L = n, (27)

which is shown in [10] and its proof is found in [4]. Using this fact, the other
remaining eigenvalues of R̃†B̃ are all zero. From the assumption A6), the n
nonzero eigenvalues λi(k) �= 0, i = 1, n, obtained by (26), that is, the n nonzero
eigenvectors w̃i, i = 1, n, corresponding to n nonzero eigenvalues λi(k) �= 0,
i = 1, n, obtained by (22) become n solutions of the vectors w̃i satisfying (8).

3.2 How to Choose a Reference Signal

In [9], a reference system f (z) is appropriately chosen, and then all source sig-
nals can be recovered simultaneously from the observed signals. However, the
performances obtained by the EVA in [9] change with the way of choosing a ref-
erence system (see section 4) and moreover, the EVA has such a complicated task
that the way of selecting appropriate eigenvectors from the set of eigenvectors
calculated from the EVA must be taken into account.

In this paper, by adopting xi(t) = w̃T
i ỹi(t) as a reference signal, we want to

circumvent such a tedious (or nasty) task. To this end, (11) can be reformulated
as

Dzixi = cum{zi(t), z∗i (t), xi(t), x∗i (t)}, i = 1, n, (28)

The vector w̃i in xi(t) is given by an eigenvector obtained from the EVA at the
previous time, that is, xi(t) = w̃T

i (t − 1)ỹi(t), where the value of w̃T
i (t − 1) is

assumed to be fixed. By using xi(t), the matrix B̃ is calculated, which is denoted
by B̃i(t), and then the eigenvector w̃T

i (t) at time t can be obtained from the
EVA using B̃i(t). By repeating this operation, the BD can be achieved. Then
it can be seen that as the EVA works successfully, xi(t) gradually becomes a
source signals sρi(t − ki). Namely, the diagonal elements of Λ̃ in (19) gradually
become zeros except for one element corresponding to sρi(t−ki). This means that
when the eigenvectors of R̃†B̃i(t) are calculated for achieving the BD, it is only
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enough that we select the eigenvector corresponding to the absolute maximum
eigenvalue of R̃†B̃i(t). This is the reason why we can circumvent the tedious
task by using the reference signal. After all, the EVA is implemented as follows:

Set initial values: w̃i(0), R̃(0), B̃i(0)
for tl = 1 : tlall

for t = td(tl − 1)+1:tdtl
xi(t) = w̃T

i (tl − 1)ỹi(t)
Calculate R̃(t) and B̃i(t) by a moving average.

end
Calculate the eigenvector w̃i(tl) associated with the absolute maximum
eigenvalue |λi| from (22).

end

where tlall
denotes the total number of iterations and td denotes the number of

data samples for estimating the matrices R̃(t) and B̃i(t). Note that R̃ is not
needed to estimate iteratively, but for the sake of our convenience, this way is
adopted.

Here it is worth noting that when the above algorithm is implemented, it
may happen that each output of a deconvolver provides the same source signal.
Therefore, in order to avoid such a situation, we apply a deflation approach, that
is, the Gram-Schmidt decorrelation [1] to the eigenvectors w̃i(tl) for i = 1, n.

4 Simulation Results

To demonstrate the validity of the proposed method, many computer simulations
were conducted. Some results are shown in this section. The unknown system
H(z) was set to be the same channel with two inputs and three outputs as in [9].
Also, other setup conditions, that is, the source signals si(t)’s, the noises ni(t)’s,

SNR (dB)
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Fig. 2. The performances of the proposed EVA and our conventional EVA with varying
SNR levels, in the cases of 5,000 data samples
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and their SNR levels were the same as in [9]. As a measure of performances, we
used the multichannel intersymbol interference (MISI) [5], which was the average
of 30 Monte Carlo runs. In each Monte Carlo run, the number of iterations tlall

was set to be 10, and the number of data samples td was set to be 5,000. For
comparison, our conventional EVA in [9] was used, where the conventional EVA
does not need deflation approaches.

Fig. 2 shows the results of performances of the EVAs when the SNR levels were
respectively taken to be 5 through 40 dB for every 5 dB, where there are three
kinds of reference signals, (a) x(t) =

∑3
i=1 fi(5)yi(t − 5), where each parameter

fi(5) was randomly chosen from a Gaussian distribution with zero mean and
unit variance, (b) x(t) = f2(2)y2(t − 2), where f2(2) also was randomly chosen
from the Gaussian distribution, (c) xi(t) = w̃T

i (t − 1)ỹi(t), i = 1, 3. The last
reference signal (c) corresponds to the proposed EVA, while the other two (a)
and (b) correspond to our conventional EVA.

From Fig. 2, it can be seen that the proposed EVA provides better perfor-
mances than our conventional EVA [9].

5 Conclusions

We have proposed an EVA for solving the BD problem. Using the output of a
deconvolver as a reference signal, the tedious task of our conventional EVA can
be circumvented. The simulation results have demonstrated the effectiveness of
the proposed EVA. However, from the simulation results, one can see that all
our EVAs have such a drawback that it is sensitive to Gaussian noise. Therefore,
as a further work, we will propose an EVA having such a property that the BD
can be achieved as little insensitive to Gaussian noise as possible.
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Abstract. We present a robust algorithm for independent component
analysis that uses the sum of marginal quadratic negentropies as a depen-
dence measure. It can handle arbitrary source density functions by using
kernel density estimation, but is robust for a small number of samples
by avoiding empirical expectation and directly calculating the integra-
tion of quadratic densities. In addition, our algorithm is scalable because
the gradient of our contrast function can be calculated in O(LN) using
the fast Gauss transform, where L is the number of sources and N is the
number of samples. In our experiments, we evaluated the performance
of our algorithm for various source distributions and compared it with
other, well-known algorithms. The results show that the proposed al-
gorithm consistently outperforms the others. Moreover, it is extremely
robust to outliers and is particularly more effective when the number of
observed samples is small and the number of mixed sources is large.

1 Introduction

In the last decade, Independent Component Analysis (ICA) has shown to be
a great success in many applications, including sound separation, EEG signal
analysis, and feature extraction. ICA shows quite a good performance for sim-
ple source distributions, if given assumptions hold well, but its performance is
degraded for sources with skewed or complex density functions [1]. Several ICA
methods are currently available for arbitrary distributions, but these methods
have not yet shown practical performance when the number of sources is large
and the number of observed samples is small, thus preventing their application
to more challenging real-world applications, such as blind source separation for
non-stationary mixing environments and frequency-domain BSS for convolutive
mixtures [2].

The problem of ICA for arbitrary distributions mainly arises from the diffi-
culty of estimating marginal entropies that usually appear in the contrast func-
tion derived from mutual information. Direct estimation of marginal entripies
without parametric assumptions involves excessive computation, including nu-
merical integration, and is sensitive to outliers because of the log terms. Sev-
eral approximations are available, but these still rely on higher order statistical
terms that are also sensitive to outliers. Different estimators of entropy [3] or
dependence measure based on canonical correlations [1] have been suggested to

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 227–235, 2007.
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overcome this problem and have shown promising performance. In addition, there
have been approaches using nonparametric mutual information via Renyi’s en-
tropy [4] for ICA [5]. However, this method requires sign correction by kurtosis
because Renyi’s entropy does not have a maximum at a Gaussian distribution [6].

In this paper, we define the concept of quadratic negentropy, replace the orig-
inal negentropy with quadratic negentropy in the original definition of mutual
information, and obtain a new contrast function for ICA. Using kernel density es-
timation along with quadratic negentropy can reduce the integration terms into
sums of pairwise interactions between samples. The final contrast function can
be calculated efficiently using the fast Gauss transform, guaranteeing scalability.
The performance of our algorithm consistently outperforms the best existing al-
gorithms for various source distributions and the existence of outliers, especially
when the number of observed samples is small and the number of mixed sources
is large.

This paper is organized as follows. In Section 2, we review the basic problem
of ICA and the contrast function using negentropy. In Section 3, we define a new
contrast function for ICA using quadratic negentropy along with kernel density
estimation. We also apply the fast Gauss transform to reduce computation. In
Section 4, we evaluate the performance of the derived algorithm on various source
distributions, varying the number of sources and the number of samples, to
compare the proposed algorithm with other, well-known algorithms, such as
FastICA and KernelICA.

2 Background on ICA

In this section, we briefly review the basic problem of ICA and the contrast
function using original negentropy.

2.1 The Basic Problem of ICA

Let s1, s2, ..., sL be L statistically independent source random variables that are
linearly mixed by some unknown but fixed mixing coefficients to form m observed
random variables x1, x2, ..., xL. For example, source variables can be the voices of
different people at a location and observation variables represent the recordings
from several microphones at the location. This can be written in matrix form as

x = As (1)

where x = (x1, x2, ..., xL)T , s = (s1, s2, ..., sL)T , and A is an L × L matrix. The
basic problem of ICA is to determine W, the inverse of mixing matrix A, to
recover the original sources from observations, by using N samples of observation
x under the assumption that sources are independent of each other.

2.2 Contrast Function Using Negentropy

Mutual information between components of estimated source vectors is known
to be a natural contrast function for ICA because it has a zero value when



Robust Independent Component Analysis Using Quadratic Negentropy 229

the components are independent and a positive value otherwise. In addition,
it is well known that mutual information can be represented using joint and
marginal negentropies [7], as follows:

I(x) = J(x) −
N∑

i=1

J(xi) +
1
2

log
∏

Vii

detV
(2)

where x is a vector random variable of dimension N, xi is the i-th component of x,
V is the covariance matrix of x, and J(x) is the negentropy of a random variable
x, which can be represented using Kullback-Leibler divergence, as shown below.
The proof is based on the fact that only the first and second order moment of
Gaussian density are nonzero and that log pφ(ξ) is a polynomial of degree 2 [7].

J(x) = DKL(px||pφ) =
∫

px(ξ) log
px(ξ)
pφ(ξ)

dξ (3)

where φ is a Gaussian random variable that has the same mean and variance with
x, and pφ is the pdf of φ. As a result, it is nonnegative, invariant to invertible
transforms and zero if px ≡ pφ.

If we assume x be whitened, then the last term of Eq. (2) becomes zero and
only negentropy terms remain. Now, we define the contrast function of ICA using
mutual information, as

C(Ŵ) = −I(ŝ) =
L∑

i=1

J(ŝi) − J(ŝ). (4)

In Eq. (4), ŝ = Ŵx is the estimated sources using the current estimate of
the unmixing matrix Ŵ, and ŝi is the i-th component of ŝ. We assume that the
observation is whitened and thus can restrict the unmixing matrix to rotations
only, thus making the first term constant and the third term zero in Eq. (2).
The final contrast function of ICA using negentropy can be interpreted as the
total nongaussianity of the estimated source components.

3 ICA Using Quadratic Negentropy

3.1 Contrast Function Using Quadratic Negentropy

We replace the KL divergence with the L2 distance in Eq. (3) and obtain
quadratic negentropy defined as

Jq(x) =
∫

(px(ξ) − pφ(ξ))2 dξ. (5)

We can easily show that it is nonnegative, invariant under rotational trans-
form, and zero if px ≡ pφ. Assuming x is whitened and using quadratic negen-
tropy instead of the original negentropy in Eq. (4), we obtain

Cq(Ŵ) = −Iq(ŝ) =
L∑

i=1

Jq(ŝi) − Jq(ŝ). (6)
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In addition, Jq(ŝ) is constant because the quadratic negentropy is invariant
under a rotational transform. Ignoring the constant gives us

Cq(Ŵ) =
L∑

i=1

Jq(ŝi) =
L∑

i=1

∫
(p̂ŝi(ξ) − 1√

2π
e−ξ2/2)2dξ (7)

where p̂ŝi is the estimated marginal pdf of ŝi. Here ŝi has zero mean and unit
variance because Ŵ is rotation and x is whitened. Thus pφ in (5) becomes a
standard Gaussian pdf.

To be a contrast function, Eq. (6) and (7) should have a global maximum when
components are independent. We hope this can be proved for general source
distributions, but currently we have proof only for Laplacian distributions and
further work is needed.

3.2 Kernel Density Estimation

Using kernel density estimation, p̂ŝi can be estimated as

p̂ŝi(y) =
1
N

N∑

n=1

G(y − ŝi(n), σ2) (8)

where N is the number of observed samples, ŝi(n) is the n-th observed sample
of i-th estimated source, and G(y, σ2) is a Gaussian kernel defined as

G(y, σ2) =
1√
2πσ

e−y2/2σ2
. (9)

Interestingly, the calculation of integration involving quadratic terms of p̂ŝi

estimated as (8) can be simplified as pairwise interactions between samples [8].
Simplifying Eq. (7) using this yields

Cq(Ŵ)=
L∑

i=1

(
1

2
√

π
+

1
N2

N∑

n=1

N∑

m=1

G(ŝi(n)−ŝi(m), 2σ2)− 2
N

N∑

n=1

G(ŝi(n), 1+σ2)
)

,

(10)
which is our final contrast function to maximize. Obtaining the partial derivative
of Cq(Ŵ) with respect to wij yields

∂Cq

∂wij
=

N∑

n=1

(
2 · G(ŝi(n), 1 + σ2)ŝi(n)

N · (1 + σ2)

−
N∑

m=1

G(ŝi(n) − ŝi(m), 2σ2)(ŝi(n) − ŝi(m))
N2 · σ2

)
xj(n)

(11)

where symmetry with respect to m and n is utilized to simplify equation. Also
note that ŝi(n) =

∑L
j=1 wijxj(n).
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3.3 Efficient Computation Using Fast Gauss Transform

It takes O(LN2) time to directly compute the gradient given in Eq. (11). To
reduce the computation we use the fast Gauss transform [9] that evaluates the
following in O(N + N ′) time, given ‘source’ points x = {x1, ..., xN} and ‘target’
points y = {y1, ..., yN ′}.

FGT (yj,x,q, h) =
N∑

i=1

qie
−(yj−xi)

2/h2
, j = 1, ..., N ′ (12)

where q = {q1, ..., qN} are weight coefficients and h is the bandwidth parameter.
Using Eq. (12), Eq. (10) can be rewritten as

Cq(Ŵ) =
L∑

i=1

(
1

2
√

π
+

1
N2

N∑

n=1

FGT (ŝi(n), ŝi,1,
√

2σ)
2
√

πσ
− 2

N

N∑

n=1

G(ŝi(n), 1+σ2)
)

,

(13)
and the partial derivative in Eq. (10) can be rewritten as

∂Cq

∂wij
=

N∑

n=1

(
2 · G(ŝi(n), 1 + σ2)ŝi(n)

N · (1 + σ2)

− FGT (ŝi(n), ŝi, ŝi,
√

2σ) − FGT (ŝi(n), ŝi,1,
√

2σ)
2
√

π · N2 · σ3

)
xj(n)

(14)

where ŝi = {ŝi(1), ..., ŝi(N)} and 1 is an N-dimensional one vector.
Now, Eq. (13) and Eq. (14) can be computed in O(LN) by performing the

fast Gauss transform 2L times.

3.4 Steepest Descent on Stiefel Manifold

The set of orthogonal matrices is a special case of the Stiefel manifold and a
gradient of a function can be computed based on the canonical metric of the
Stiefel manifold [10]. Unconstrained optimization on the Stiefel manifold is more
efficient than orthogonalizing the weight matrix per each iteration. In this paper,
we used the steepest descent with a bracketed backtracking line search along
geodesics.

3.5 Parameter Selection and Convergence Criterion

Our learning rule has one parameter: the bandwidth parameter σ of the kernel
density estimation. We used σ = 1.06 × N−1/5 [11].

We calculated the value of the contrast function per each iteration to check
convergence. If the difference between iterations becomes less than a given ratio
τ = 10−8 of the contrast function, then it is regarded as convergence.

In general, ICA contrast functions have multiple local maxima. This is also
true for our contrast function, and we needed a fixed number of restarts to find
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a good local optimum. We restarted our algorithm four times with a conver-
gence criterion τ = 10−6 and picked the best one as an initial estimate for final
optimization.

4 Experimental Results

We conducted an extensive set of simulation experiments using a variety of
source distributions, sample numbers, and components. The 18 source distribu-
tions used in our experiment were adopted from the KernelICA paper [1]. They
include subgaussian, supergaussian and nearly Gaussian source distributions and

Table 1. LEFT: The normalized Amari errors (×100) for mixtures of identical
source distributions (top left) and random source distributions (bottom left). L: num-
ber of mixed components, N: number of samples, Fast: FastICA, Np: NpICA, Kgv:
KernelICA-KGV, Imax: extended infomax ICA, QICA: our method. For identical
sources, simulation is repeated 100 times for each of the 18 source distributions for
L = {2, 4}, 50 times for L = 8, and 20 times for L = 16. For random sources, simu-
lation is repeated 2000 times for L = {2, 4}, 1000 times for L = 8, and 400 times for
L = 16. RIGHT: Amari errors for each source distributions for L = 2 and N = 1000.

L N Fast Np Kgv Imax QICA

2
100 20.6 20.3 16.3 21.3 15.7
250 13.0 12.9 8.6 14.4 7.7

1000 6.5 9.8 3.0 8.5 2.9

4
100 28.6 23.0 28.4 23.1 18.9
250 16.8 13.9 19.2 14.5 9.8

1000 6.9 6.5 7.2 8.7 3.6

8
250 30.2 20.9 31.3 18.1 15.9

1000 10.6 7.8 20.6 8.2 4.7
2000 6.4 4.7 14.4 6.2 2.8

16
1000 26.2 17.3 30.4 11.1 12.4
2000 11.8 12.5 26.1 6.6 6.9
4000 7.1 6.9 21.3 4.8 4.3

L N Fast Np Kgv Imax QICA

2
100 18.0 13.6 13.4 19.0 12.0
250 11.3 7.2 6.3 13.1 6.1

1000 5.6 2.8 2.4 6.7 2.5

4
100 24.5 18.1 26.3 21.2 14.9
250 13.7 8.5 14.1 13.1 6.9

1000 5.7 2.6 3.4 5.9 2.5

8
250 25.4 14.8 30.0 16.0 10.1

1000 6.3 2.9 13.4 6.0 2.7
2000 4.0 1.7 5.6 4.1 1.8

16
1000 12.5 8.5 27.9 7.9 4.1
2000 4.3 2.6 27.0 4.3 2.3
4000 2.9 1.2 20.3 2.9 2.0

pdfs Fast Np Kgv Imax QICA

a 4.7 5.6 3.0 2.1 2.7
b 5.5 4.1 3.0 2.7 2.4
c 2.3 3.1 1.6 3.0 2.1

d 7.2 8.8 5.7 6.4 6.4
e 5.7 0.9 1.3 3.3 1.6
f 4.7 26.9 1.5 1.6 1.5
g 1.7 30.0 1.3 1.1 1.3
h 5.8 5.7 4.5 3.4 3.6
i 9.4 14.9 9.5 6.9 7.3

j 7.0 29.7 1.4 11.4 1.4
k 5.8 3.3 2.8 4.9 2.7
l 12.1 4.8 5.5 8.2 4.8

m 3.5 14.9 1.4 4.3 1.4
n 5.7 10.7 1.8 22.3 1.9
o 4.4 3.1 3.6 4.2 3.9

p 3.8 1.1 1.5 8.0 1.6
q 21.8 4.3 2.1 53.2 2.5
r 6.0 3.5 2.9 5.1 3.5

mean 6.5 9.8 3.0 8.5 2.9
std 4.5 9.7 2.1 12.2 1.7
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Fig. 1. Robustness to outliers for L = 2, N = 1000. Up to 25 observations are cor-
rupted by adding +5 or -5. The experiment is repeated 1000 times with random source
distributions.

unimodal, multimodal, symmetric, and skewed sources. We varied the number
of samples from 100 to 4000 and the number of components from 2 to 16.

Comparisons were made with four existing ICA algorithms: the FastICA algo-
rithm [12], the KernelICA-KGV algorithm [1], the extended infomax algorithm
[13] using tanh nonlinearity, and the NpICA algorithm [14]. Software programs
were downloaded from corresponding authors’ websites and were used with de-
fault parameters, except for the extended infomax algorithm, which is our own
implementation. Note that KernelICA-KGV also has four restarts as a default to
obtain initial estimates. The performance was measured using the Amari error
[15], which is invariant to permutation and scaling, lies between 0 and L−1 and
is zero for perfect demixing. We normalized the Amari error by dividing it by
L−1, where L is the number of independent components.

We summarized our results in Table 1. Consistent performance improvement
over existing algorithms was observed. The improvement was significant if the
number of components was large and the number of observations was small.
However, the performance gain became smaller as the number of observations
increased. Amari errors for each source pdf are also shown separately for two-
components and 1000 observations. The proposed method showed the small-
est standard deviation among the five methods. All of the methods, except for
KernelICA-KGV and the proposed method had problems with specific pdfs.

Another interesting result was the high performance of the extended infomax
algorithm for a large number of components. For L = 16, it showed the best
performance among the five methods. But further experiments with outliers
discouraged its practical use.

Fig. 1 shows the result of the outlier experiment. We randomly chose up to
25 observations and added the value +5 or -5 to a single component in the
observation, which was the same as the one in the KernelICA paper. The results
show that our method is extremely robust to outliers.
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5 Conclusions

We have proposed a robust algorithm for independent component analysis that
uses the sum of marginal quadratic negentropies as a dependence measure. The
proposed algorithm can handle arbitrary source distributions and is scalable with
respect to the number of components and observations. Experimental results
have shown that the proposed algorithm consistently outperforms others. In
addition, it is extremely robust to outliers and more effective when the number
of observed samples is small and the number of mixed sources is large.

The proposed contrast function is not guaranteed to have the same maximum
with the original one. Empirically, however, our method shows good perfor-
mance and can be applied to cases where a limited number of observations is
available.
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Abstract. In a previous work, the authors have introduced a Mixture
of Laplacians model in order to cluster the observed data into the sound
sources that exist in an underdetermined two-sensor setup. Since the
assumed linear support of the ordinary Laplacian distribution is not valid
to model angular quantities, such as the Direction of Arrival to the set of
sensors, the authors investigate the performance of a Mixture of Warped
Laplacians to perform efficient source separation with promising results.

1 Introduction

Assume that a set of M microphones x(n) = [x1(n), . . . , xM (n)]T observes a
set of N sound sources s(n) = [s1(n), . . . , sN (n)]T . The case of instantaneous
mixing, i.e. each sensor captures a scaled version of each signal with no delay in
transmission, will be considered with negligible additive noise. The instantaneous
mixing model can thus be expressed in mathematical terms, as follows:

x(n) = As(n) (1)

where A represents the mixing matrix and n the sample index. The blind source
separation problem provides an estimate of the source signals s, based on the
observed microphone signals and some general source statistical profile.

The underdetermined source separation problem (M < N) is a challenging
problem. In this case, the estimation of the mixing matrix A is not sufficient for
the estimation of nonGaussian source signals s, as the pseudo-inverse of A can
not provide a valid solution. Hence, this blind estimation problem can be divided
into two sub-problems: i) estimating the mixing matrix A and ii) estimating the
source signals s.

In this study, we will assume a two sensor instantaneous mixing approach. The
combination of several instruments into a stereo mixture in a recording studio
follows the instantaneous mixing model of (1). The proposed approach can thus
be used to decompose a studio recording into the separate instruments that
exist in the mixture for many possible applications, such as music transcription,
object-based audio coding and audio remixing.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 236–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The solution of the two above problems is facilitated by moving to a sparser
representation of the data, such as the Modified Discrete Cosine Transform
(MDCT). In the case of sparse sources, the density of the data in the mix-
ture space shows a tendency to cluster along the directions of the mixing matrix
columns. It has been demonstrated [6] that the phase difference θn between the
two sensors can be used to identify and separate the sources in the mixture.

θn = atan
x2(n)
x1(n)

(2)

Using the phase difference information between the two sensors is equivalent
to mapping all the observed data points on the unit-circle. The strong super-
Gaussian characteristics of the individual components in the MDCT domain are
preserved in the angle representation θn. We can also define the amplitude rn of
each point x(n), as follows:

rn =
√

x1(n)2 + x2(n)2 (3)

In a previous work [6], we proposed a clustering approach on the observed θn

to perform source separation. In order to model the sparse characteristics of the
source distributions, we introduced the following Mixture of Laplacians (MoL)
that was trained using an Expectation-Maximisation (EM) algorithm on the
observed angles θn of the input data.

p(θn) =
N∑

i=1

αiL(θ, ci, mi) =
N∑

i=1

αicie
−2ci|θn−mi| (4)

where N is the number of the Laplacians in the mixture, mi defines the mean
and ci ∈ R+ controls the “width” of the distribution. Once the model is trained
each of the Laplacians of the MoL should be centred on the Direction of Arrival
(DOA) of the sources in the majority of the cases, i.e. the angles denoted by
the columns of the mixing matrix. One can perform separation using optimal
detection approaches for the individual trained Laplacians.

There is a shortcoming in the previous assumed model. The model in (4)
assumes a linear support for θn, which is not valid as the actual support for θn

wraps around ±90o. The linear support is not a problem if the sources are well
contained within [−90o, 90o]. To overcome this problem, we proposed a strategy
in [6], where in each update we check whether any of the centres are closer to
any of the boundaries (±90o). In this case, all the data points and the estimated
centres mi are rotated, so that the affected boundary (−90o or 90o) is mapped
to the middle of the centres mi that feature the greatest distance. This seemed
to alleviate the problem in the majority of cases, however, it still serves as a
heuristic solution.

To address this problem in a more eloquent manner, one can introduce
wrapped distributions to provide a more complete solution. In the literature,
there exist several “circular” distributions, such as the von Mises distribution
(also known as the circular normal distribution). However, this definition is
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rather difficult to optimise in an EM perspective. In this study, we examine the
use of an approximate warped-Laplacian distribution to model the periodicity
of 180o that exists in atan(·) with encouraging results.

2 A Mixture of Warped Laplacians

The observed angles θn of the input data can be modelled, as a Laplacian
wrapped around the interval [−90o, 90o] using the following additive model:

Lw(θ, c, m) =
1

2T − 1

T∑

t=−T

ce−2c|θ−m−180t|

=
1

2T − 1

T∑

t=−T

L(θ − 180t, c, m) ∀ θn ∈ [−90o, 90o] (5)

where T ∈ Z+ denotes the number of ordinary Laplacians participating in the
wrapped version. The above expression models the wrapped Laplacian by an
ordinary Laplacian and its periodic repetitions by 180o. This is an extension of
the wrapped Gaussian distribution proposed by Smaragdis and Boufounos [7]
for the Laplacian case. The addition of the wrapping of the distribution aims
at mirroring the wrapping of the observed angles at ±90o, due to the atan(·)
function. In general, the model should have T → ∞ components, however, it
seems that in practice a small range of values for T can successfully approximate
the full warped probability density function.

In a similar fashion to Gaussian Mixture Models (GMM), one can introduce
Mixture of Warped Laplacians (MoWL) in order to model a mixture of angular
or circular sparse signals. A Mixture of Warped Laplacians can thus be defined,
as follows:

p(θ) =
N∑

i=1

αiLw(θ, ci, mi) =
N∑

i=1

αi
1

2T − 1

T∑

t=−T

cie
−2ci|θ−mi−180t| (6)

where αi, mi, ci represent the weight, mean and width of each Laplacian respec-
tively and all weights should sum up to one, i.e.

∑N
i=1 αi = 1. The Expectation-

Maximization (EM) algorithm has been proposed as a valid method to train a
mixture model [1]. Consequently, the EM can be employed to train a MoWL
over a training set. We derive the EM algorithm, based on Bilmes’s analysis [1]
for the estimation of a GMM. Bilmes estimates Maximum Likelihood mixture
density parameters using the EM [1]. Assuming K training samples for θn and
Mixture of Warped Laplacians densities (6), the log-likelihood of these training
samples θn takes the following form:

I(αi, ci, mi) =
K∑

n=1

log
N∑

i=1

αiLw(θn, ci, mi) (7)
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Fig. 1. An example of the Wrapped Laplacian for T = [−1, 0, 1] c = 0.01 and m = 45o

Introducing unobserved data items that can identify the components that
“generated” each data item, we can simplify the log-likelihood of (7) for Warped
Laplacian Mixtures, as follows:

J(αi, ci, mi)=
K∑

n=1

N∑

i=1

(
log αi−log(2T + 1)+log

T∑

t=−T

L(θ − 180t, ci, mi)

)
p(i|θn)

(8)
where p(i|θn) represents the probability of sample θn belonging to the ith Lapla-
cian of the MoWL. In a similar manner, we can also introduce unobserved data
items to identify the individual Laplacian of the ith Warped Laplacian that
depends on θn.

H(αi, ci, mi) =
K∑

n=1

N∑

i=1

(log αi − log(2T + 1) + log ci (9)

−
T∑

t=−T

2ci|θ − 180t − mi|p(t|i, θn))p(i|θn) (10)

where p(t|i, θn) represents the probability of sample θn belonging to the ith

Warped Laplacian and the tth individual Laplacian. The updates for p(t|i, θn),
p(i|θn) and αi can be given by the following equations:

p(t|i, θn) =
L(θn − tπ, mi, ci)∑T

t=−T L(θn − 180t, mi, ci)
(11)

p(i|θn) =
αiLw(θn, mi, ci)∑N
i=1 αiLw(θn, mi, ci)

(12)

αi ← 1
K

K∑

n=1

p(i|θn) (13)
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In a similar manner to [6], one can set ∂H(αi, ci, mi)/∂mi = 0 and solve for mi

for the recursive update for mi, as follows:

∂H

∂mi
=

K∑

n=1

T∑

t=−T

2cisgn(θn − 180t − mi)p(t|i, θn)p(i|θn) = 0 ⇒ (14)

K∑

n=1

T∑

t=−T

θn − 180t

|θn − 180t − mi|
p(t|i, θn)p(i|θn) = mi

K∑

n=1

T∑

t=−T

p(t|i, θn)p(i|θn)
|θn − 180t − mi|

⇒

(15)

mi ←
∑K

n=1

∑T
t=−T

θn−180t
|θn−180t−mi|p(t|i, θn)p(i|θn)

∑K
n=1

∑T
t=−T

1
|θn−180t−mi|p(t|i, θn)p(i|θn)

(16)

Similarly, one can set ∂H(αi, ci, mi)/∂ci = 0, to solve for the estimate of ci:

∂H

∂ci
=

K∑

n=1

(c−1
i − 2

T∑

t=−T

|θn − 180t − mi|p(t|i, θn))p(i|θn) = 0 ⇒ (17)

ci ←
∑K

n=1 p(i|θn)

2
∑K

n=1

∑T
t=−T |θn − 180t − mi|p(t|i, θn)p(i|θn)

(18)

Once the MoWL is trained, optimal detection theory and the estimated in-
dividual Laplacians can be employed to provide estimates of the sources. The
centre of each warped Laplacian mi should represent a column of the mixing ma-
trix A in the form of [cos(mi) sin(mi)]T . Each warped Laplacian should model
the statistics of each source in the transform domain and can be used to perform
underdetermined source separation.

A “Winner takes all” strategy attributes each point (rn, θn) to only one of
the sources. This is performed by setting a hard threshold at the intersections
between the trained Warped Laplacians. Consequently, the source separation
problem becomes an optimal decision problem. The decision thresholds θopt

ij be-
tween the i-th and the j-th neighbouring Laplacians are given by the following
equation:

θopt
ij =

ln αici

αjcj
+ 2(cimi + cjmj)

2(ci + cj)
(19)

Using these thresholds, the algorithm can attribute the points with θopt
ij < θn <

θopt
jk to source j, where i, j, k are neighbouring Laplacians (sources). Having at-

tributed the points x(n) to the N sources, using the proposed thresholding tech-
nique, the next step is to reconstruct the sources. Let Si ∩K represent the point
indices that have been attributed to the ith source. We initialise ui(n) = 0, ∀
n = 1, . . . , K and i = 1, . . . , N . The source reconstruction is performed by sub-
stituting:

ui(Si) = [cos(mi) sin(mi)]x(Si) ∀ i = 1, . . . , N (20)
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Fig. 2. Estimation of the mean using MoL with the shifting strategy (left) and the
warped MoL (right)

3 Experiments

In this section, we evaluate the algorithm proposed in the previous section. We
will use Hyvärinen’s clustering approach [4], O’Grady and Pearlmutter’s [5] Soft
LOST algorithm’s and the MoL-EM Hard as proposed in a previous work [6],
to demonstrate several trends using artificial mixtures or publicly available
datasets1. In order to quantify the performance of the algorithms, we are es-
timating the Signal-to-Distortion Ratio (SDR) from the BSS EVAL Toolbox [2].
The frame length for the MDCT analysis is set to 64 msec for the test signals
sampled at 16 KHz and to 46.4 msec for those at 44.1 KHz. We initialise the
parameters of the MoL and MoWL, as follows: αi = 1/N and ci = 0.001 and
T = [−1, 0, 1] (for MoWL only). The centres mi were initialised in both cases
using a K-means step. The initialisation of mi is important, as if we choose
two initial values for mi that are really close, then it is very probable that
the individual Laplacians may not converge to different clusters. To provide a
more accurate estimation of mi, training is initially performed using a “reduced”
dataset, containing all points that satisfy rn > 0.2, provided that the input sig-
nals are scaled to [−1, 1]. The second phase is to use the “complete” dataset to
update the values for αi and ci.

3.1 Artificial Experiment

In this experiment, we use 5 solo audio uncorrelated recordings (a saxophone,
an accordion, an acoustic guitar, a violin and a female voice) of sampling fre-
quency 16 KHz and duration 8.19 msec. The mixing matrix is constructed as
in (21), choosing the angles in Table 1. Two of the sources are placed close to
the wrapping edges (−80o, 60o) and three of them are placed rather closely at

1 All the experimental audio results are available online at:
http://www.commsp.ee.ic.ac.uk/∼nikolao/lmm.htm
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−40o, −20o, 10o, in order to test the algorithm’s resilience to the wrapping at
±90o. In Table 1, we can see the estimated angles of the original MoL Hard
with the shifting solution and the MoWL. In both cases, the algorithms esti-
mate approximately the same means mi, which are very close to the original
ones. In Fig. 2, the convergence of the means mi in the two cases is depicted.
The proposed warped solution seems to converge smoothly and faster without
the perturbations caused by the shifting solution in the previous algorithm. Note
that Fig. 2(a) depicts the angles after the rotating steps to demonstrate the shift-
ing of ψi in the original MoL solution. Their performance in terms of SDR is
depicted in Table 2. Hyvärinen’s approach is very prone to initialisation, how-
ever, the results are acquired using the best run of the algorithm. This could
be equally avoided by using a K-means initialisation step. The Soft Lost algo-
rithm managed to separate the sources in most cases, however, there were some
audible artifacts and clicks that reduced the calculated quality measure. To ap-
preciate the results of this rather difficult problem, we can spot the improvement
performed by the methods compared to the input signals. It seems that the pro-
posed algorithm performs similarly to MoL Hard and the Hyvärinen’s approach,
which implies that the proposed solution to approximate the wrapping of the
pdf is valid.

A =
[

cos(ψ1) cos(ψ2) . . . cos(ψN )
sin(ψ1) sin(ψ2) . . . sin(ψN )

]
(21)

Table 1. The five angles used in the artificial experiment and their estimates using
the MoL and MoWL approaches

ψ1 ψ2 ψ3 ψ4 ψ5

Original −80o −40o -20o 10o 60o

Estimated MoL −81.52o −45.45o −23.45o 12.59o 64.18o

Estimated MoWL −81.59o −44.98o −23.59o 12.18o 64.19o

3.2 Real Recording

In this section, we tested the algorithms with the Groove dataset, available by
(BASS-dB) [3], sampled at 44.1 KHz. The “Groove” dataset features four widely
spaced sources: bass (far left), distortion guitar (center left), clean guitar (center
right) and drums (far right). In Table 2, we can see the results for the four
methods in terms of SDR. The proposed MoWL approach managed to perform
similarly to the previous MoL EM, despite the small spacing of the sources
and the source being placed at the edges of the solution space, which implies
that the warped Laplacian model manages to model the warping of θn without
any additional steps. The proposed MoL approaches managed to outperform
Hyvärinen and Soft LOST approach for the majority of the sources. Again, the
LOST approach still introduces several audio artifacts and clicks.
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Table 2. The proposed MoWL approach is compared in terms of SDR (dB) with
MoL-EM hard, Hyvärinen’s, soft LOST and the average SDR of the mixtures

Artificial experiment Groove Dataset
s1 s2 s3 s4 s5 s1 s2 s3 s4

Mixed
Signals -6.00 -13.37 -26.26 -6.67 -6.81 -30.02 -10.25 -6.14 -21.24

MoWL-EM hard 6.07 -2.11 5.62 4.09 6.15 4.32 -4.35 -1.16 3.27
MoL-EM hard 6.69 0.32 7.66 3.65 6.03 2.85 -4.47 -0.86 3.28
Hyvärinen 6.53 -1.16 7.60 4.14 5.79 3.79 -3.72 -1.13 1.49
soft LOST 4.58 -4.01 5.09 1.67 3.93 4.54 -5.77 -1.74 3.62

4 Conclusions

The problem of underdetermined source separation is examined in this study. In
a previous work, we proposed to address the two-sensor problem by clustering
using a Mixture of Laplacian approach on the source Direction of Arrival (DOA)
θn to the sensors. In this study, we address the problem of wrapping of θn using
a Warped Mixture of Laplacians approach. The new proposed approach features
similar performance and faster convergence to MoL hard and seems to be able
to separate sources that are close to the boundaries (±900) without any extra
trick and therefore serves as a valid solution to the problem.
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Abstract. This paper introduces an extension of an earlier method of the author
for separating stationary sources, based on the joint approximated diagonalization
of interspectral matrices, to the case of cyclostationary sources, to take advantage
of their cyclostationarity. the proposed method is based on the joint block approx-
imate diagonlization of cyclic interspectral density. An algorithm for this diago-
nalization is described. Some simulation experiments are provided, showing the
good performance of the method.

1 Introduction

Blind source separation aims at recovering sources from their unknown mixtures [1].
All separation methods are based on some “non properties” of the source signals. Early
methods which do not exploit the time structure of the signals would require non Gaus-
sianity of the sources. However, by exploiting the time structure, one can separate mix-
tures of Gaussian sources provided that the sources are not independent identically dis-
tributed (iid) in time., that is one (or both) of the two “i” in “iid” is not met. If only the
first “i” is not met, one has stationary correlated sources and separation can be achieved
by considering the lagged covariances or inter-spectra between mixtures signals. This
is the basis of most second order separation methods [2, 3, 4]. If the second “i” in “iid”
is not fulfilled, one has nonstationary sources and separation methods can again be
developed using only second order statistics [5, 6]. However, “nonstationarity” is a too
general non property to be practical, the above works actually focus only on a particular
aspect of it: They assume temporal independence (or more accurately ignore possible
temporal dependency) and focus only on the variation of variance of the signal in time
and assume that this variation is slow enough to be adequately estimated nonparametri-
cally. In this paper, we consider another aspect of non stationarity: the cyclostationarity.
The variance of the source is also variable in time but in an (almost) periodic manner.
Further, the autocovariance between the source at different time points does not de-
pend only on the delay as in the stationary case, but also on time as well and again in
a (almost) periodic manner. Thus the “nonstationary” method in [6] may not work as
this source variance can vary rapidly since the period (frequency) can be short (high).
Moreover, such method ignores the lagged autocovariance of the sources, which pro-
vide important useful information for the separation. The “stationary” methods [2, 3, 4]
still work in general if one takes as lagged covariances the average lagged covariances

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 244–251, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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over time. In fact the usual lagged covariance estimator when applied to cyclostation-
ary signal actually estimates the average lagged covariance. However, such methods
ignore the specificity of cyclostationary signals and thus don’t benefice from it and fur-
ther would fail if the sources are noncorrelated (but has variance varying periodically
with time). Our method is specially designed to exploit this specificity. There have been
several works on blind separation of cyclostationary sources [7, 8, 9, 10]. Our work is
different in that we work with cyclic inter-spectral densities while the above works are
mainly based on cyclic cross-covariances. Our work may be viewed as an extension of
our earlier work for blind separation of stationary sources [4] based on the joint approx-
imate diagonalization of a set of inter-spectral matrices. As said earlier, this method still
works for cyclostationary sources, provided that their average spectra are different up to
a constant factor. The present method exploits the extra information of cyclostationarity
and thus yields better performance and also can be dispensed with the above restriction.

2 Cyclostationary Signals

A discrete time (possibly complex value) process {X(t)} is said to be cyclostationary
(or almost periodically correlated) if its mean function t �→ E[X(t)] and its covariance
functions t �→ cov{X(t + τ), X(t)} are almost periodic [11]. The definition of almost
periodicity is rather technical, but here we consider only zero mean cyclostationary
process with a finite “number of cycles”, for which an equivalent definition is that there
exists a finite subset A of (−1/2, 1/2] such that

E[X(t + τ)X∗(t)] =
∑

α∈A
R(α; τ)ei2παt, ∀t, ∀τ. (1)

where ∗ denotes the complex conjugate. The function τ �→ R(α; τ) is called the cyclic
autocovariance function of cycle α. From (1), it can be computed as

R(α; τ) = lim
T→∞

1
T

T∑

t=1

E[X(t + τ)X∗(t)]e−i2παt (2)

Note that for α /∈ A, the last right hand side yields zero by (1). Thus we may define
R(α, τ) for all α, τ by the above right hand side, and A as the set {α : R(α; ·) �= 0}.

We shall assume that the function R(α; ·) admits a Fourier transform f(α; ·), called
the cyclic spectral density of cycle α:

f(α; ν) =
∞∑

τ=−∞
R(α; τ)e−i2πντ ⇔ R(α; τ) =

∫ 1

0

f(α; ν)ei2πντ dν.

Note It can be seen from (2) that R(−α; τ) = R∗(α; −τ)e−i2πατ . This means that if
A contains α, it must contain −α.

Let α1, . . . , αq be in A, the matrix of general j, k element R(αk − αj ; τ)ei2παjτ

can be seen to be the average autocovariance of lag τ of the vector process
{[X(t)ei2πα1t · · · X(t)ei2παqt]T }, since
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R(αk − αj ; τ)ei2παjτ = lim
T→∞

1
T

T∑

t=1

E[X(t + τ)X∗(t)]ei2παj(t+τ)e−i2παkt

Therefore this matrix as a function of τ is of type positive and it follows that its Fourier
transform is a non negative (matrix) function. In other words:

⎡

⎢⎣
f(0; ν − α1) · · · f(αq − α1; ν − α1)

...
. . .

...
f(α1 − αq; ν − αq) · · · f(0; ν − αq)

⎤

⎥⎦ ≥ 0 (3)

In particular, f(0; ·) ≥ 0. The functions R(0; ·) and f(0; ·) may be viewed as the av-
erage covariance function and spectral density of the process {X(t)}. Since R(0; 0) =
limT→∞ T−1

∑T
t=1 E[|X(t)|2] > 0, 0 ∈ A. By taking α1 = 0, one see that the matrix

in (3) can contain all the cyclic spectral densities of cycle in A and possibly some other
vanishing cyclic spectral densities (since its cycle is not in A) as well.

The natural estimator of R(α; τ) based on an observed sample X(1), . . . , X(T ) is

R̂(α; τ) =
1
T

min(T,T−τ)∑

t=max(1,1−τ)

X(t + τ)X∗(t)e−i2παt. (4)

From this estimator, one may construct an estimator for f(α; ν) as

f̂(α; ν) =
T−1∑

τ=1−T

kM (τ)R̂(α; τ)e−i2πντ (5)

where kM (·) is a given lag windows, often of the form k(·/M) with k being some given
even function taking the value 1 at 0, and M is a window width parameter.

3 The Mixture Model and Separation Method

We consider the simplest mixture model in which the mixing is instantaneous without
noise and there is a same numbers of mixtures as the sources: X(t) = AS(t) where
X(t) and S(t) denote the vectors of mixtures and of sources at time t, and A is a
square matrix. The sources are assumed to be independent cyclostationary processes. It
is easily seen that the observed mixtures are also cyclostationary, with the set of cycle
frequencies contained in the union of the sets of cycle frequencies of the sources, which
we denote by A. The goal is to recover the sources from their mixtures. For simplicity,
we shall assume that A is known. In practice, such set can be estimated. Further, it is
not important that A be accurately known.

We define the cyclic autocovariance function RX(α; ·) of cycle α of the vector pro-
cess {X(t)} similar to (2) except that X(t) is replaced by X(t) and ∗ is understood
as the transpose conjugate. Clearly RX(α; τ) = ARS(α; τ)A∗ where RS(α; ·) is the
cyclic autocovariance function of cycle α of the vector source process {S(t)}. The in-
dependence of the sources implies that the matrices RS(α; τ) are diagonal for all α, τ
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(of course if α /∈ A this matrix vanishes and is of no interest). Similarly, we define the
cyclic spectral density of cycle α of the vector process {X(t)} as the Fourier transform
fX(α; ·) of RX(α; ·). Again, we have fX(α; ν) = AfS(α; ν)A∗ where fS(α; ·) is the
cyclic spectral density of cycle α of the vector process {S(t)}, which is diagonal for all
frequencies and all α.

The analogue of the matrix in (3) is the block matrix

C(ν) =

⎡

⎢⎣
C11(ν) · · · C1K(ν)

...
. . .

...
CK1(ν) · · · CKK(ν)

⎤

⎥⎦ (6)

where

Cjk(ν) =

⎡

⎢⎣
fXjXk

(0; ν − α1) · · · fXjXk
(αq − α1; ν − α1)

...
. . .

...
fXjXk

(α1 − αq; ν − αq) · · · fXjXk
(0; ν − αq)

⎤

⎥⎦ (7)

fXjXk
denoting the jk element of fX . The relation fX(α; ν) = AfS(α; ν)A∗ implies

that C(ν) = (A ⊗ Iq)D(ν)(A∗ ⊗ Iq) where D is defined similar to C but with fSjSk

(the jk element of fS) in place of fX , Iq is the identity matrix of order q and ⊗ denotes
the Kronecker product:

A ⊗ M =

⎡

⎣
A11M A12M · · ·
A21M A22M · · ·

...
...

. . .

⎤

⎦ ,

Aij being the elements of A. The independence of the sources implies that the matrix
D is block diagonal (Djk = 0 except when j = k). Thus our idea is to find a separation
matrix B such that B ⊗ Iq block diagonalizes all the matrices C(ν) in the sense that
the matrices (B ⊗ Iq)C(ν)(B∗ ⊗ Iq) are block diagonal (of block size q) for all ν.

In practice, the matrices C(ν) have to be replaced by their estimators Ĉ(ν). This
estimator is naturally built from the estimators f̂X(α; ν) of fX(α; ν), defined similarly
as in (5) with R̂(α; τ) replaced by R̂X(α; τ), the estimator of RX(α; τ). The last esti-
mator is defined similarly as in (4) with X(t) replaced by X(t). As the lag window kM

in (5) has the effect of a smoothing, the (cyclic) spectral density estimator at a given fre-
quency actually does not estimate the spectral density at this frequency but the average
density over a frequency band centered around it. Therefore, we shall limit ourselves to
the matrices Ĉ(ν) for ν on some finite grid, so that we have only a finite set of matri-
ces to be block diagonalized. The spacing of the grid would be directly related to the
resolution of the spectral estimator. Of course, since the Ĉ(ν) are not exactly equal to
C(ν), one cannot block diagonalize them exactly but only approximately, according to
some block diagonality measure, which will be introduced below.

It is important that the estimator Ĉ(ν) be non negative as C(ν) is. One can ensure
that this is the case regardless of the data, by chosing the (real) window kM in (5) such
that

∑
τ kM (τ)e−2πντ is real and non negative for all ν. Indeed, there then exists a

real window k
1/2
M (not unique) such that

∑
τ kM (τ)e−2πντ = |

∑
τ k

1/2
M (τ)e−2πντ |2

or kM (τ) =
∑

u k
1/2
M (u − τ)k1/2

M (u). Therefore
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f̂X(α; ν) =
1
T

∑

τ

[∑

u

k
1/2
M (u − τ)k1/2

M (u)
][∑

v

X̃(v + τ)X̃∗(v)e−i2παv

]
e−i2πντ

where X̃(t) = X(t) for 1 ≤ t ≤ T, = 0 otherwise. The last right hand side equals, after

summing up with respect to τ : T−1
∑

u

∑
v(kM �X̃ν)(v+u) k

1/2
M (u)X∗(v)ei2π(ν−α)v

where X̃ν(t) = X̃(t)e−i2πνt and � denotes the convolution. Let t = u+v and summing
up again first with respect to u, one gets

f̂X(α; ν) =
1
T

∑

t

(kM � X̃ν)(t) (k1/2
M � X∗ν−α)(t).

This formula shows that Ĉ(ν) is the sample covariance of certain vector sequence,
hence is non negative, and can be used for the calculation of Ĉ(ν).

4 Joint Block Approximate Diagonalization

The separation method in previous section leads to the problem of joint
approximate block diagonalizing a set of positive definite block matrices Ĉ(νm), m =
1, . . . , M , of block size q, by a matrix of the form B ⊗ Iq . Following [4] we take
as the measure of block diagonality of a Hermitian non negative block matrix M:
(1/2)[log detDiag(M) − log det(M)] where Diag denotes the operator which builds
a bloc diagonal matrix from its argument. This measure is always positive and can be
zero if and only if the matrix M is block diagonal. Indeed, each diagonal block Mii

of M, being non negative, can be diagonalized by a unitary matrix Ui. Thus the matri-
ces UiMiiU∗i are diagonal with diagonal elements being also those of UMU∗ where
U is the block diagonal matrix with diagonal block Ui. Hence by the Hadamard in-
equality [12],

∏
i det(UiMiiU∗i ) ≥ detUMU∗ with equality if and only if UMU

is diagonal. This yields the announced result, since the right and left hand sides of the
above inequality are no other than detDiag(M) and det(M), and UMU∗ diagonal is
the same as M is block diagonal.

Therefore we consider the joint block diagonality criterion

1
2

M∑

m=1

{log detDiag[(B ⊗ Iq)Ĉ(νm)(B ⊗ Iq)] − log det[(B ⊗ Iq)Ĉ(νm)(B∗⊗ Iq)]}.

(8)
Note that the last term in the above curly bracket { } may be replaced by 2q log det |B|
since these two terms differ by log det[C(νm)] which does not depend on B.

The algorithm in [13] can be adapted to solve the above problem. For lack of space,
we here only describe how it works. Starting from a current value of B, it consists in
performing successive transformations, each time on a pair of rows of B, the i-th row
Bi· and the j-th row Bj· say, according to

[
Bi·
Bj·

]
← Tij

[
Bi·
Bj·

]
,
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where Tij is a 2 × 2 non singular matrix, chosen such that the criterion is decreased
and whose expression is given later. Once this is done, the procedure is repeated with
another pair of rows. The processing of all the K(K − 1)/2 is called a sweep. The
algorithm consists of repeated sweeps until convergence is achieved. Put

gij =
M∑

m=1

1
Mq

tr[C−1
ii (m;B)Cij(m;B)], 1 ≤ i �= j ≤ K, (9)

ωij =
M∑

m=1

1
Mq

tr[C−1
ii (m;B)Cjj(m;B)], 1 ≤ i �= j ≤ K.

where Cij(m;B) stands for the ij block of (B ⊗ Iq)C(νm)(B∗ ⊗ Iq) for short. The
matrix is Tij given by
[

1 0
0 1

]
− 2

1 + hijhji − h∗ijh
∗
ji +

√
(1 + hijhji − h∗ijh

∗
ji)2 − 4hijhji

[
0 hij

hji 0

]

where hij and hji are the solution of
[

ωij 1
1 ωji

] [
hij

h∗ji

]
=

[
gij

g∗ji

]
.

Note 1. In the case where the signal X(t) is real, R̂X(α; τ) = R̂T
X(−τ)ei2πατ , T

denoting the transpose, hence fX(α; −ν) = fT
X(α; α + ν). It follows that

fXjXk
(αm − αl; −ν − αl) = fXkXj (αm − αl; ν + αm).

We already know that if A contain α it must contain −α. Thus it is of interest to choose
α1 = 0 and αj = −αq+2−j , 2 ≤ j ≤ q (which implies that q is odd, unless 1/2 ∈ A,
in this case q may be even with αq/2+1 = 1/2)1. Then the above right hand side can
be written as fXkXj (αq+2−l − αq+2−m; ν − αq+2−m), with αq+1 = 0 by convention.
Therefore by (7): Cjk(−ν) = ΠCT

kj(ν)ΠT for some permutation matrix Π, hence
C(−ν) = (IK ⊗ Π)CT (ν)(IK ⊗ ΠT ). It follows that for a real matrix B

(B ⊗ Iq)C(−ν)(B∗ ⊗ Iq) = (IK ⊗ Π)[(B ⊗ Iq)C(ν)(B∗ ⊗ Iq)]T (IK ⊗ ΠT ),

and thus the measure of block diagonality of the matrix in the above left hand side is
the same as that of (B ⊗ Iq)C(ν)(B∗ ⊗ Iq). It is then of interest to consider a grid
of frequencies ν1, . . . , νM with M even and νm = −νM+1−m mod 1, so as to reduce
the number of matrices to be block diagonalized by half, since the term corresponding
to νm in (8) can be grouped with the one corresponding to νM+1−m. One may take
νm = (m − 1/2)/M which yield a regular grid of spacing 1/M .

Note 2. In the case where the signals are real, the matrix B must be constrained to be
real, that is the minimization of (8) must be done over the set of real matrices. It can be
shown that the algorithm is the same as before but the gij are now defined as the real
part of the right hand side of (9).

1 {α1, . . . , αq} need not be equal to A but can be a subset of A.
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5 Some Simulation Examples

We consider two cyclostationary sources constructed as Gaussian stationary autore-
gressive (AR) processes of second order, modulated with sine waves cos(α2πt) and
cos(α3πt) respectively. Thus they have cycle frequencies 0, ±α2 and 0, ±α3 respec-
tively. We take α2 = 0.3/π = 0.0955 and α3 = 0.7/π = 0.2228 (the same as
in [9]). The AR coefficients are 1.9 cos(0.16π), −0.952 and cos(0.24π), −0.52 for the
first and second sources, respectively. This corresponds to the AR polynomials with
roots 0.95e±i0.16π and 0.5e±i0.24π respectively.

Four hundred series of length 256 are generated for each source. The 2 sources are

mixed according to the mixing matrix A =
[

1 1
−1 1

]
and our method is applied to

obtain the separation matrix B. The number of positive frequency bins is set to 4. To
quantify the quality of the separation, we introduce two contamination coefficients c12

and c21 defined as follows. First the global matrix G = BA is formed, then its rows is
eventually permuted such that |G11G22| ≥ |G12G21|, Gij denoting the elements of G.
Finally c12 = G12/G11 and c21 = G21/G22.

Table 1 shows the mean square of the contamination coefficients and of their prod-
ucts, all multiplied by 256 which is the length of the observed series (since the variance
of the estimator should be asymptotically inversely proportional to this length). The
mean number of iterations is also listed. For comparison, the values for the stationary
method in [4] is also given. This method amounts to running our algorithm with no cy-
cle frequency: q = 1 and α1 = 0, which means that one just ignore the cyclostationarity
of the sources and considers them as stationary (with spectrum being the average spec-
trum over time). It can be seen that cyclostationary method yields better results than
the stationary method. However, the algorithm converges a little more slowly and each
iteration is also more costly computationally.

Table 1. Mean square of the contamination coefficients and of their products and mean number of
iterations, obtained from the cyclostationary and stationary methods. The sources are modulated
AR processes.

256(mean c2
12) 256(mean c2

21) 256(mean c12c21) mean # iterations
cyclostationary method 0.3707 0.0310 0.0010 5.86

stationary method 0.5513 0.1250 −0.0628 3.97

In a second test, we consider two cyclostationary sources constructed as (temporally)
independent Gaussian processes of unit variance, modulated in the same way as before.
Thus the sources are uncorrelated but have variance varying periodically. Therefore, the
stationary methods, which amount to considers the sources as stationary with spectrum
being the average spectrum over time, would fail since the average sources spectra are
constant. Table 2 compares the results of the cyclostationary and stationary methods.
It can be seen the stationary method fails completely, as expected. The cyclostationary
still works reasonably well, although less well than in the case where the sources are
modulated AR processes. The “nonstationarity” method in [6] is also not suitable since
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the variance function vary too fast. Indeed, the variance function of the sources have
frequencies α1 and α2 respectively, which corresponds to the periods 1/α1 = π/0.3 =
10.472 and 1/α1 = π/0.7 = 4.4880. Thus in order to “see” the variation of the source
variances one has to estimate them in a moving window of size less than 4 which is to
short.

Table 2. Mean square of the contamination coefficients and of their products and mean number of
iterations, obtained from the cyclostationary and stationary methods. The sources are modulated
independent Gaussian processes of unit variance.

256(mean c2
12) 256(mean c2

21) 256(mean c12c21) mean # iterations
cyclostationary method 0.6638 0.6131 −0.2586 8.27

stationary method 74.4639 72.8648 −72.5062 4.43
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Abstract. Recently, several algorithms have been proposed for inde-
pendent subspace analysis where hidden variables are i.i.d. processes. We
show that these methods can be extended to certain AR, MA, ARMA
and ARIMA tasks. Central to our paper is that we introduce a cascade
of algorithms, which aims to solve these tasks without previous knowl-
edge about the number and the dimensions of the hidden processes. Our
claim is supported by numerical simulations. As an illustrative appli-
cation where the dimensions of the hidden variables are unknown, we
search for subspaces of facial components.

1 Introduction

Independent Subspace Analysis (ISA) [1] is a generalization of Independent Com-
ponent Analysis (ICA). ISA assumes that certain sources depend on each other,
but the dependent groups of sources are still independent of each other, i.e.,
the independent groups are multidimensional. The ISA task has been subject
of extensive research [1,2,3,4,5,6,7,8]. In this case, one assumes that the hidden
sources are independent and identically distributed (i.i.d.) in time. Temporal
independence is, however, a gross oversimplification of real sources including
acoustic or biomedical data. One may try to overcome this problem, by as-
suming that hidden processes are, e.g., autoregressive (AR) processes. Then we
arrive to the AR Independent Process Analysis (AR-IPA) task [9,10]. Another
method to weaken the i.i.d. assumption is to assume moving averaging (MA).
This direction is called Blind Source Deconvolution (BSD) [11], in this case the
observation is a temporal mixture of the i.i.d. components.

The AR and MA models can be generalized and one may assume ARMA
sources instead of i.i.d. ones. As an additional step, these models can be extended
to non-stationary integrated ARMA (ARIMA) processes, which are important,
e.g., for modelling economic processes [12].

In this paper, we formulate the AR-, MA-, ARMA-, ARIMA-IPA generaliza-
tions of the ISA task, when (i) one allows for multidimensional hidden compo-
nents and (ii) the dimensions of the hidden processes are not known. We show
that in the undercomplete case, when the number of ‘sensors’ is larger than the
number of ‘sources’, these tasks can be reduced to the ISA task.
� Corresponding author.
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2 Independent Subspace Analysis

The ISA task can be formalized as follows:

x(t) = Ae(t), where e(t) =
[
e1(t); . . . ; eM (t)

]
∈ R

De (1)

and e(t) is a vector concatenated of components em(t) ∈ Rdm
e . The total dimen-

sion of the components is De =
∑M

m=1 dm
e . We assume that for a given m, em(t)

is i.i.d. in time t, and sources em are jointly independent, i.e., I(e1, . . . , eM ) = 0,
where I(.) denotes the mutual information (MI) of the arguments. The dimen-
sion of the observation x is Dx. Assume that Dx > De, and A ∈ RDx×De has
rank De. Then, one may assume without any loss of generality that both the
observed (x) and the hidden (e) signals are white. For example, one may apply
Principal Component Analysis (PCA) as a preprocessing stage. Then the am-
biguities of the ISA task are as follows [13]: Sources can be determined up to
permutation and up to orthogonal transformations within the subspaces.

2.1 The ISA Separation Theorem

We are to uncover the independent subspaces. Our task is to find orthogonal
matrix W ∈ RDe×Dx such that y(t) = Wx(t), y(t) =

[
y1(t); . . . ;yM (t)

]
,

ym = [ym
1 ; . . . ; ym

dm
e

] ∈ R
dm

e , (m = 1, . . . , M) with the condition that components
ym are independent. Here, ym

i denotes the ith coordinate of the mth estimated
subspace. This task can be solved by means of a cost function that aims to
minimize the mutual information between components:

J1(W) .= I(y1, . . . ,yM ). (2)

One can rewrite J1(W) as follows:

J2(W) .= I(y1
1 , . . . , y

M
dM

e
) −

M∑

m=1

I(ym
1 , . . . , ym

dm
e

). (3)

The first term of the r.h.s. is an ICA cost function; it aims to minimize mutual
information for all coordinates. The other term is a kind of anti-ICA term; it aims
to maximize mutual information within the subspaces. One may try to apply a
heuristics and to optimize (3) in order: (1) Start by any ’infomax’ ICA algorithm
and minimize the first term of the r.h.s. in (3). (2) Apply only permutations
to the coordinates such that they optimize the second term. Surprisingly, this
heuristics leads to the global minimum of (2) in many cases. In other words, in
many cases, ICA that minimizes the first term of the r.h.s. of (3) solves the ISA
task apart from the grouping of the coordinates into subspaces. This feature was
observed by Cardoso, first [1]. The extent of this feature is still an open issue.
Nonetheless, we call it ‘Separation Theorem’, because for elliptically symmetric
sources and for some other distribution types one can prove that it is rigorously
true [14]. (See also, the result concerning local minimum points [15]). Although
there is no proof for general sources as of yet, a number of algorithms apply this
heuristics with success [1,3,15,16,17,18].
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2.2 ISA with Unknown Components

Another issue concerns the computation of the second term of (3). If the dm
e di-

mensions of subspaces em are known then one might rely on multi-dimensional
entropy estimations [8], but these are computationally expensive. Other methods
deal with implicit or explicit pair-wise dependency estimations [16,15]. Interest-
ingly, if the observations are indeed from an ICA generative model, then the
minimization of the pair-wise dependencies is sufficient to get the solution of the
ICA task according to the Darmois-Skitovich theorem [19]. This is not the case
for the ISA task, however. There are ISA tasks, where the estimation of pair-wise
dependencies is insufficient for recovering the hidden subspaces [8]. Nonetheless,
such algorithms seem to work nicely in many practical cases.

A further complication arises if the dm
e dimensions of subspaces em are not

known. Then the dimension of the entropy estimation becomes uncertain. Meth-
ods that try to apply pair-wise dependencies were proposed to this task. One
can find a block-diagonalization method in [15], whereas [16] makes use of kernel
estimations of the mutual information.

Here we shall assume that the separation theorem is satisfied. We shall apply
ICA preprocessing. This step will be followed by the estimation of the pair-wise
mutual information of the ICA coordinates. These quantities will be considered
as the weights of a weighted graph, the vertices of the graph being the ICA
coordinates. We shall search for clusters of this graph. In our numerical studies,
we make use of Kernel Canonical Correlation Analysis [4] for the MI estimation.
A variant of the Ncut algorithm [20] is applied for clustering. As a result, the
mutual information within (between) cluster(s) becomes large (small).

The problem is that this ISA method requires i.i.d. hidden sources. Below, we
show how to generalize the ISA task to more realistic sources. Finally, we solve
this more general problem when the dimensions of the subspaces are not known.

3 ISA Generalizations

We need the following notations: Let z stand for the time-shift operation, that is
(zv)(t) := v(t − 1). The N order polynomials of D1×D2 matrices are denoted as
R[z]D1×D2

N := {F[z] =
∑N

n=0 Fnzn,Fn ∈ RD1×D2}. Let ∇r[z] := (I−Iz)r denote
the rth order difference operator, where I is the identity matrix, r ≥ 0, r ∈ Z.

Now, we are to estimate unknown components em from observed signals x.
We always assume that e takes the form like in (1) and that A ∈ RDx×Ds is of
full column rank.

1. AR-IPA: The AR generalization of the ISA task is defined by the following
equations: x = As, where s is a multivariate AR(p) process i.e, P[z]s = Qe,
Q ∈ RDs×De , and P[z] := IDs −

∑p
i=1 Piz

i ∈ R[z]Ds×Ds
p . We assume that

P[z] is stable, that is det(P[z] �= 0), for all z ∈ C, |z| ≤ 1. For dm
e = 1 this

task was investigated in [9]. Case dm
e > 1 is treated in [10]. The special case

of p = 0 is the ISA task.
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2. MA-IPA or Blind Subspace Deconvolution (BSSD) task: The ISA task is
generalized to blind deconvolution task (moving average task, MA(q)) as
follows: x = Q[z]e, where Q[z] =

∑q
j=0 Qjz

j ∈ R[z]Dx×De
q .

3. ARMA-IPA task: The two tasks above can be merged into a model, where
the hidden s is multivariate ARMA(p,q): x = As, P[z]s = Q[z]e. Here
P[z] ∈ R[z]Ds×Ds

p , Q[z] ∈ R[z]Ds×De
q . We assume that P[z] is stable. Thus

the ARMA process is stationary.
4. ARIMA-IPA task: In practice, hidden processes s may be non-stationary.

ARMA processes can be generalized to the non-stationary case. This gen-
eralization is called integrated ARMA, or ARIMA(p,r,q). The assumption
here is that the rth difference of the process is an ARMA process. The cor-
responding IPA task is then

x = As, where P[z]∇r[z]s = Q[z]e. (4)

4 Reduction of ARIMA-IPA to ISA

We show how to solve the above tasks by means of ISA algorithms. We treat
the ARIMA task. Others are special cases of this one. In what follows, we as-
sume that: (i) P[z] is stable, (ii) the mixing matrix A is of full column rank,
and (iii) Q[z] has left inverse. In other words, there exists a polynomial matrix
W[z] ∈ R[z]De×Ds such that W[z]Q[z] = IDe .1

The route of the solution is elaborated here. Let us note that differentiating
the observation x of the ARIMA-IPA task in Eq. (4) in rth order, and making
use of the relation zx = A(zs), the following holds:

∇r[z]x = A (∇r[z]s) , and P[z] (∇r[z]s) = Q[z]e. (5)

That is taking ∇r[z]x as observations, one ends up with an ARMA-IPA task.
Assume that Dx > De (undercomplete case). We call this task uARMA-IPA.
Now we show how to transform the uARMA-IPA task to ISA. The method is
similar to that of [22] where it was applied for BSD.

Theorem. If the above assumptions are fulfilled then in the uARMA-IPA task,
observation process x(t) is autoregressive and its innovation x̃(t) := x(t) −
E[x(t)|x(t−1),x(t−2), . . .] = AQ0e(t), where E[·|·] denotes the conditional ex-
pectation value. Consequently, there is a polynomial matrix WAR[z] ∈ R[z]Dx×Dx

such that WAR[z]x = AQ0e.

Due to lack of space the proof is omitted here. Thus, AR fit of x(t) can be used
for the estimation of AQ0e(t). This innovation corresponds to the observation of
an undercomplete ISA model (Dx > De)2, which can be reduced to a complete
1 One can show for Ds > De that under mild conditions Q[z] has an inverse with

probability 1 [21]; e.g., when the matrix [Q0, . . . ,Qq ] is drawn from a continuous
distribution.

2 Assumptions made for Q[z] and A in the uARMA-IPA task implies that AQ0 is of
full column rank and thus the resulting ISA task is well defined.
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ISA (Dx = De) using PCA. Finally, the solution can be finished by any ISA
procedure. The reduction procedure implies that hidden components em can be
recovered only up to the ambiguities of the ISA task: components of (identical
dimensions) can be recovered only up to permutations. Within each subspaces,
unambiguity is warranted only up to orthogonal transformations.

The steps of our algorithm are summarized in Table 1.

Table 1. Pseudocode of the undercomplete ARIMA-IPA algorithm

Input of the algorithm
Observation: {x(t)}t=1,...,T

Optimization
Differentiating: for observation x calculate x∗ = ∇r[z]x
AR fit: for x∗ estimate ŴAR[z]

Estimate innovation: x̃ = ŴAR[z]x∗

Reduce uISA to ISA and whiten: x̃
′
= ŴPCAx̃

Apply ICA for x̃
′
: e∗ = ŴICAx̃

′

Estimate pairwise dependency e.g., as in [16] on e∗

Cluster e∗ by Ncut: the permutation matrix is P
Estimation

ŴARIMA-IPA[z] = PŴICAŴPCAŴAR[z]∇r[z]

ê = ŴARIMA-IPA[z]x

5 Results

In this section we demonstrate the theoretical results by numerical simulations.

5.1 ARIMA Processes

We created a database for the demonstration: Hidden sources em are 4 pieces
of 2D, 3 pieces of 3D, 2 pieces of 4D and 1 piece of 5D stochastic variables, i.e.,
M = 10. These stochastic variables are independent, but the coordinates of each
stochastic variable em depend on each other. They form a 30 dimensional space
together (De = 30). For the sake of illustration, the 3D (2D) sources emit ran-
dom samples of uniform distributions defined on different 3D geometrical forms
(letters of the alphabet). The distributions are depicted in Fig. 1a (Fig. 2b).
30,000 samples were drawn from the sources and they were used to drive an
ARIMA(2,1,6) process defined by (4). Matrix A ∈ R60×60 was randomly gen-
erated and orthogonal. We also generated the polynomial Q[z] ∈ R[z]60×30

5 and
the stable polynomial P[z] ∈ R[z]60×60

1 randomly. The visualization of the 60
dimensional process is hard: a typical 3D projection is shown in Fig. 1c. The
task is to estimate original sources em using these non-stationary observations.
rth-order differencing of the observed ARIMA process gives rise to an ARMA
process. Typical 3D projection of this ARMA process is shown Fig. 1d. Now, one
can execute the other steps of Table 1 and these steps provide the estimations of
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the hidden components êm. Here, we estimated the AR process and its order by
the methods detailed in [23]. Estimations of the 3D (2D) components are pro-
vided in Fig. 1e (Fig. 1f). In the ideal case, the product of matrix AQ0 and the
matrices provided by PCA and ISA, i.e., G := (PŴICAŴPCA)AQ0 ∈ RDe×De

is a block permutation matrix made of dm
e ×dm

e blocks. This is shown in Fig. 1g.

(a) (b) (c) (d)

(e) (f ) (g)

Fig. 1. (a-b) components of the database. (a): 3 pieces of 3D geometrical forms, (b):
4 pieces of 2D letters. Hidden sources are uniformly distributed variables on these
objects. (c): typical 3D projection of the observation. (d): typical 3D projection of the
rth-order difference of the observation, (e): estimated 3D components, (f): estimated
2D components, (g): Hinton diagram of G, which – in case of perfect estimation –
becomes a block permutation matrix.

5.2 Facial Components

We were interested in the components that our algorithm finds when indepen-
dence is a crude approximation at best. We have generated another database
using the FaceGen3 animation software. In our database we had 800 different
front view faces with the 6 basic facial expressions. We had thus 4,800 images
in total. All images were sized to 40 × 40 pixel. Figure 2a shows samples of the
database. A large X ∈ R4800×1600 matrix was compiled; rows of this matrix were
1600 dimensional vectors formed by the pixel values of the individual images.
The columns of this matrix were considered as mixed signals. This treatment
replicates the experiments in [24]: Bartlett et al., have shown that in such cases,
undercomplete ICA finds components resembling to what humans consider facial
components. We were interested in seeing the components grouped by undercom-
plete ISA algorithm. The observed 4800 dimensional signals were compressed by
PCA to 60 dimensions and we searched for 4 pieces of ISA subspaces using the
algorithm detailed in Table 1.

The 4 subspaces that our algorithm found are shown in Fig. 2b. As it can
be seen, the 4 subspaces embrace facial components which correspond mostly to
mouth, eye brushes, facial profiles, and eyes, respectively. Thus, ICA finds inter-
esting components and MI based ISA groups them sensibly. The generalization
up to ARIMA-IPA processes is straightforward.
3 http://www.facegen.com/modeller.htm

http://www.facegen.com/modeller.htm
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(a)

(b)

Fig. 2. (a) Samples from the database. (b) Four subspaces of the components. Distinct
groups correspond mostly to mouth, eye brushes, facial profiles, and eyes, respectively.

6 Conclusions

We have extended the ISA task in two ways. (1) We solved problems where the
hidden components are AR, MA, ARMA, or ARIMA processes. (2) We suggested
partitioning of the graph defined by pairwise mutual information to identify
the hidden ISA subspaces under certain conditions. The algorithm does not
require previous knowledge about the dimensions of the subspaces. An artificially
generated ARIMA process was used for demonstration. The algorithm provided
sensible grouping of the estimated components for facial expressions.
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Abstract. The problem of blind inversion of Wiener systems can be considered 
as a special case of blind separation of post-nonlinear instantaneous mixtures. 
In this paper, we present an approach for nonlinear deconvolution of one signal 
using a genetic algorithm. The recovering of the original signal is achieved by 
trying to maximize an estimation of mutual information based on higher order 
statistics. Analyzing the experimental results, the use of genetic algorithms is 
appropriate when the number of samples of the convolved signal is low, where 
other gradient-like methods may fail because of poor estimation of statistics.  

Keywords: Independent component analysis, signal deconvolution, blind 
source separation, Wiener systems, genetic algorithms, mutual information. 

1   Introduction 

This paper deal with a particular class of nonlinear systems, composed by a linear 
subsystem followed by a memoryless nonlinear distortion. This class of nonlinear 
systems, also known as Wiener systems (Figure 1), can model a considerable range of 
actual systems in nature, such as the activity of individual primary neurons in 
response to prolonged stimuli [1], the dynamic relation between muscle length and 
tension [2], and other situations in biology, industry and psychology. 

Source
(s)

Linear filter
(H)

Nonlinear distortion
(f)

Observation
(x)  

Fig. 1. A Wiener system (linear filter + nonlinear distortion) 

The inverse configuration for a Wiener system is known as a Hammerstein system 
and consists of a nonlinear distortion followed by a linear filter. 
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Observation
(x)

Estimation
(y)

Nonlinear distortion
(finv)

Linear filter
(W)  

Fig. 2. A Hammerstein system (nonlinear distortion + linear filter) 

We propose in this contribution the use of genetic algorithms (GA) for the 
nonlinear blind inversion of the (nonlinear) convolved mixed signal. The aim of the 
genetic algorithm is to give more aptitude to those individuals who represent a 
solution giving a minimal result of a mutual information estimation measure between 
a known number of pieces of the observed signal (x). In this way, the best solution 
given by the genetic algorithm must represent a valid estimation signal (y) of the 
original source (s). 

Genetic algorithms have been previously applied in linear deconvolution [3] and 
linear and nonlinear blind source separation [4,5,6,7]. The theoretic framework for 
using source separation techniques in the case of blind deconvolution is presented in 
[8]. There, a quasi-nonparametric gradient approach is used, minimizing the mutual 
information of the output as a cost function to deal with the problem. This work was 
extended in [9].  

The paper has been organized as follows: Section 2 describes the preliminary 
issues and the inversion main guidelines. Section 3 explains the genetic algorithm 
which will accomplish blind inversion, specially concerning chromosome 
representation and fitness function expression. Section 4 presents the experimental 
results showing the performance of the method. As a final point, section 5 presents 
the conclusions of this contribution. 

2   Blind Inversion of Nonlinear Channels 

2.1   Nonlinear Convolution 

We suppose that the original source (s) is an unknown, non-Gaussian, time 
independent and identically distributed (i.i.d.) process. The filter H is linear, unknown 
and invertible. Finally, the nonlinear distortion f is invertible and differentiable. 
Following this notation, the observation x can be modeled as: 

x = f(H · s) (1) 

where f is the nonlinear distortion and: 
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is an infinite dimension Toeplitz matrix which represents the action of the filter h to 
the signal s(t). The matrix H is non-singular provided that the filter h is invertible, i.e. 
satisfies ( ) ( ) ( ) ( ) ( )tthththth δ== −− 11 ** , where δ(t) is the Dirac impulse. The infinite  
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dimension of vectors and matrix is due to the lack of assumption on the filter order. If 
the filter h is a finite impulse response (FIR) filter of order Nh, the matrix dimension 
can be reduced to the size Nh. In practice, because infinite-dimension equations are 
not tractable, we have to choose a pertinent (finite) value for Nh. 

2.1   Nonlinear Deconvolution 

The process of nonlinear blind inversion of the observed signal (x) assumes solving a 
Hammerstein system  (Figure 1). Therefore, the algorithm should calculate the 
unknown inverse nonlinear distortion (finv), followed by the unknown inverse filter 
(W): 

y = W(g · x) (3) 

The goal of the proposed algorithm will be to minimize mutual information  
(Eqn. 4), as it is assumed that mutual information vanishes when the samples in the 
measured signal are mutually statistically independent: 

( ) ( )( ) ( ) ( )( ) ( )YHyHyyHtyH
T

limYI TT

T

TtT
−=

⎭
⎬
⎫

⎩
⎨
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+
= −

−=∞→
∑ τ,...,

12

1

 
(4) 

where τ is arbitrary due to the stationary assumption. 

3   Genetic Algorithm for Nonlinear Blind Deconvolution 

Nonlinear blind deconvolution can be handled by a genetic algorithm which evolves 
individuals corresponding to different inverse filters and nonlinear distortions. Each 
individual represent a potential solution and it is evaluated according to a measure of 
statistical independence. This is a problem of global optimization: minimizing or 
maximizing a real valued function )(xf  in the parameter space P∈x . This 

particular type of problems is suitable to be solved by a genetic algorithm. GAs are 
designed to move the population away from local minima that a traditional hill 
climbing algorithm might get stuck in. They are also easily parallelizable and their 
evaluation function can be any that assigns to each individual a real value into a 
partially ordered set. 

3.1   GA Characterization 

The proposed canonical genetic algorithm can be generally characterized by the 
following features: 

− Encoding Scheme. The genes will represent the coefficients of the unknown 
deconvolution filter W (real coding) and the unknown nonlinear distortion f. This 
nonlinear function may be approximated by n-th order odd polynomials. An initial 
decision must therefore be taken about the length of the inverse filter (s) and the 
order of the polynomial (n). 

− Initialization Procedure.  Genes within the chromosome are randomly initialized. 
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Fig. 3. Encoding scheme in the genetic algorithm for the odd coefficients of the polynomial 
(fpoly j) approximating the inverse nonlinearity and the linear filter coefficients (wi). The values 
of the variables stored in the chromosome are real numbers.  

− Fitness Function. The chosen evaluation function must give higher scores for those 
chromosomes representing estimations which maximize statistical independence. 
According to the central limit theorem, a simple approach as maximizing a higher 
order statistic like kurtosis absolute value demonstrates to be a good estimator. 
However, as dependence is supposed to exist between the samples due to time 
delays, a better estimator is achieved by dividing the observed signal in several 
“sub-signals” (in the simulations 10 partitions were made) and then computing 
kurtosis in each of them. Finally, the expression for the chosen fitness function is: 

Kurt
1

eval ( ) ( )
n

i
i

w kurt y
=

=∑  (5) 

where 
4

2 2

E( )
( ) 3

E( )

x
kurt x

x
= −  and the iy  are each of the partitions of the estimated 

signal obtained after applying the nonlinear inverse function (finv) and the inverse 
filter w (both encoded in the chromosome w ) to the observation x .  

− Genetic Operators. Typical crossover and mutation operators will be used for the 
manipulation of the current population in each iteration of the GA. The crossover 
operator is “Simple One-point Crossover”. The mutation operator is “Non-
Uniform Mutation” [10]. This operator makes the exploration-exploitation trade-
off be more favorable to exploration in the early stages of the algorithm, while 
exploitation takes more importance when the solution given by the GA is closer to 
the optimal. 

− Parameter Set. Population size, number of generations, probability of mutation  
and crossover and other parameters relative to the genetic algorithm operation  
were chosen depending on the characteristics of the mixing problem. Generally  
a population of 50-80 individuals was used, stopping criteria was set between  
100-150 iterations, crossover probability is 0.8 per chromosome and mutation 
probability is typically set between 0.05 and 0.08 per gene. 
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3.2   GA Scheme 

The operation of the algorithm can be illustrated by the following figure: 

1. Random initialization of the population

5. Was the 
maximum number 
of iterations 
reached?

No

Yes

2. Apply genetic operators to the 
population

i. Crossover          ii. Mutation

3. Evaluate the fitness of each chromosome
The fitness function value for each estimation y 
(determined by chromosome  gi ) is calculated

4. Selection of the individuals which will 
take part in the next generation

Elitism + Selection

6. Solution ( )f= ⋅y W x

0. Normalization of the observed 
mixture.

( )σ
−= x x

x
x

 

Fig. 4. Genetic algorithm operation for nonlinear blind deconvolution 

4   Experimental Results 

After the description of the proposed algorithm, some experimental results using 
uniform random sources are presented. In all the experiments, the source signal is an 
uniform random source with zero mean and unit variance. As the performance criterion, 
we have used the crosstalk between the estimations (y) and the sources (s), measured in 
decibels. Also, the unknown filter is the low-pass filter ( ) 11 0.5H Z z−= +  and we 

applied a strong non-linearity such as f(x)=atanh (10x) . 
Genetic algorithm was configured with a crossover probability of 0.8, mutation 

probability 0.08 per gene, population size is 50, and the stopping criterion is 100 
generations. 

In the first experiment, we applied the former configuration to a random generated 
signal of t=1900 samples. As the algorithm is non-deterministic, it was run with the 
same configuration 10 times. The average crosstalk is shown in the equation below: 
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( ( ), ( )) 13.6CTalk t t dB= −s y  (6) 

Figure 5 shows the evolution of the fitness of the best individual (left) and the 
average fitness (right) of each generation along each iteration, showing the smooth 
convergence of the algorithm. 
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Fig. 5. Genetic algorithm operation for nonlinear blind deconvolution 

Figure 6 shows how the algorithm cancels the nonlinear part of the Wiener system 
(which it is the most difficult component). 

Secondly, the number of samples was decreased to t=500 sample, maintaining the 
rest of parameters. Thus, we can determine whether the algorithm still works when 
the number of samples is low. 
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Fig. 6. First experiment, when t=1900 samples. Left: effect of the original distortion (f) over 
the filtered signal. Center: effect of the inverse nonlinearity (finv) over the observed signal (x). 
Right: composition of finv over f. In the ideal situation, should be linear. 
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The algorithm was again run 10 times, obtaining an average crosstalk of: 

( ( ), ( )) 10.7CTalk t t dB= −s y  (7) 

Although, this results would not be satisfactory for a linear convolution situation, the 
nature of this case where exists a strong nonlinearity and the number of samples is not 
sufficient makes the operation of the algorithm quite acceptable. 
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Fig. 7. Second experiment, when t=500 samples. Left: effect of the original distortion (f) over 
the filtered signal. Center: effect of the inverse nonlinearity (finv) over the observed signal (x). 
Right: composition of finv over f. In the ideal situation, should be linear. 

5   Conclusion 

This contribution discusses an appropriate application of genetic algorithms to the 
complex problem of nonlinear blind deconvolution. Using a simple approach based 
on kurtosis calculation and mutual information approximation, the proposed 
algorithm demonstrates, as it was shown by the experimental results, an effective 
operation even when the number of samples is low.  
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Abstract. Hyperspectral unmixing, as a blind source separation (BSS)
problem, has been intensively studied from independence aspect in the
last few years. However, independent component analysis (ICA) can not
totally unmix all the materials out because the sources (abundance frac-
tions) are not statistically independent. In this paper a complexity con-
strained nonnegative matrix factorization (CCNMF) for simultaneously
recovering both constituent spectra and correspondent abundances is
proposed. Three important facts are exploited: First, the spectral data
are nonnegative; second, the variation of the material spectra and abun-
dance images is smooth in time and space respectively; third, in most
cases, both of the material spectra and abundances are localized. Ex-
perimentations on real data are provided to illustrate the algorithm’s
performance.

1 Introduction

Hyperspectral sensors collect imagery simultaneously in hundreds of narrow and
contiguously spaced spectral bands, with wavelengths ranging from 0.4 to 2.5μm.
Owing to the low spatial resolution of the sensor, disparate substances may
contribute to the spectrum measured from a single pixel, causing it to be a
“mixed” pixel. Consequently, the extraction of constituent spectra from a mixed
spectrum, as well as their proportions, is important to both civilian and military
applications in which subpixel detail is valuable. So hyperspectral unmixing is a
necessary preprocessing step for hyperspectral applications [1,2].

Linear spectral unmixing [1] is a commonly accepted approach to analyze the
massive volume of data. In addition, due to the difficulty of obtaining a priori
knowledge about the endmembers, unsupervised hyperspectral unmixing tries to
identify the endmembers and abundances directly from the observed data with-
out any user interaction [3]. Unsupervised linear hyperspectral unmixing falls
into the class of blind source separation (BSS) problems [4]. Therefore, inde-
pendent component analysis (ICA) is naturally selected to unmix hyperspectral
data [5,6]. However, the source (abundance fraction) independence assumption
of ICA is violated because the sum of abundance fractions is constant, implying
statistical dependence among them, which compromises the applicability of ICA
to hyperspectral data [7].

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 268–276, 2007.
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Recently, Stone [8] has proposed a complexity based BSS algorithm, called
complexity pursuit, which studies the complexity of sources instead of the in-
dependence. We introduces the algorithm to unmix hyperspectral data [9], and
proves that the undercomplete case, i.e., the number of bands (mixtures num-
ber) is much larger than that of endmembers (sources number), is an advantage
rather than a limitation. However, it neglects the nonnegativity of both spec-
tra and abundances, which could lead to unmixing results with negative values
that are obviously meaningless. Lately, nonnegative matrix factorization (NMF)
[10,11], which is a useful technique in representing high dimensional data into
nonnegative components, has been extended to unmix hyperspectral data by
enforcing the smoothness constraints in spectra and abundances, called SCNMF
[12]. For each estimated endmember, it selects the closest signature from a spec-
tral library as the endmember spectrum. However, the best match is not reliable
due to the strong atmospheric and environmental variations [13]. The results of
the method are given for comparative analysis in the experimental section.

In this paper, we develop a complexity constrained NMF (CCNMF) that in-
corporates the complexity and locality constraints into NMF. Three important
facts are exploited: First, the spectral data are nonnegative; second, the varia-
tion of endmember spectra and abundances is smooth due to the high spectral
resolution and low spatial resolution of hyperspectral data [14]; third, in many
cases, both of the endmember spectra and abundances are localized: part of
the reflectance spectra are small due to the atmospheric and environmental ef-
fects; and the fractions of each endmember are often localized in the scene. The
experimental results validate the efficiency of the approach.

The rest of the paper is organized as follows. Section 2 reviews the complexity
based hyperspectral unmixing. Section 3 presents the CCNMF algorithm. Sec-
tion 4 evaluates the performance of our proposed algorithm on two real data.
Section 5 sets out our conclusion.

2 Complexity Based BSS Algorithm for Hyperspectral
Unmixing

In this section, we first present the linear superposition model for the reflectances,
then give a brief introduction of the complexity based BSS algorithm for hyper-
spectral unmixing.

2.1 Linear Spectral Mixture Model

Hyperspectral data is a three dimensional array with the width and length cor-
responding to spatial dimensions and the spectral bands as the third dimension,
which are denoted by I, J and L in sequence. Let R be the image cube with each
spectrum Rij being an L×1 pixel vector. Let M be an L×P spectral signature
matrix that each column vector Mp corresponds to an endmember spectrum and
P is the number of endmembers in the image. Let S be the abundance cube (the
length of each dimension is I, J and P respectively) and every column Sij be
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a P × 1 abundance vector associated with Rij , with each element denoting the
abundance fraction of relevant endmember present in Rij . The simplified linear
spectral mixture model for the pixel with coordinate (i, j) can be written as

Rij = MSij + n (1)

where n is noise that can be interpreted as receiver electronic noise. Meanwhile,
endmember spectra and fractional abundances are subject to

Mlp ≥ 0 (1 ≤ l ≤ L), Sijp ≥ 0,

P∑

p=1

Sijp = 1 (2)

which are called nonnegativity and full additivity respectively [2].

2.2 Complexity Based BSS Algorithm

Instead of the assumption of independence in ICA, complexity based BSS algo-
rithm makes the complexity of the extracted signal to be as low as possible. One
simple measure of complexity can be formulated in terms of predictability. The
predictability of the hyperspectral data is composed of two parts

F (R) = F (M) + F (S) (3)

F (M) is the predictability of the spectral signatures, which is defined as

F (M) =
P∑

p=1

ln

L∑

l=1

(Mp − Mlp)2

L∑

l=1

(M̃lp − Mlp)2
=

P∑

p=1

ln
Vp

Up
(4)

M̃lp = λSM̃(l−1)p + (1 − λS)M(l−1)p 0 ≤ λS ≤ 1 (5)

Vp is the overall variance of the spectral signature Mp in which Mp is the mean
value. Up is a measure of the temporal “roughness” of the signature. M̃lp is the
short-term moving average to predict Mlp, with λS being the predictive rate.
Maximizing the ratio Vp/Up means: (i) Mp has a nonzero range, (ii) the values
in Mp change slowly. Consequently, F (M) characterizes the smoothness of the
spectral signature.

F (S) is the predictability of the abundance cube, which is defined as

F (S) =
P∑

p=1

ln

I,J∑

i,j=1

(Sp − Sijp)2

I,J∑

i,j=1

χ(Sijp)

(6)

where Sp is the mean value of the pth abundance image except Sijp. The energy
function of Gibbs distribution is used to formulate χ(Sijp), which measures the
local correlation of Sijp. That is,
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χ(Sijp) =
∑

i′j′∈Nijp

ωi′j′φ(Sijp − Si′j′p, δ) (7)

where Nijp is the nearest neighborhood of Sijp, ωi′j′ is a weighting factor, δ is a
scaling factor, and φ(ξ, δ) is the potential function, which takes the form [15]

φ(ξ, δ) = δ ln[cosh(ξ/δ)] (8)

We assume δ = 0.1, ωi′j′ = 1 and Nijp = {(i − 1)j, (i + 1)j, i(j − 1), i(j + 1)}.
Similarly, F (S) characterizes the spatial correlation of each abundance image.

3 Complexity Constrained NMF (CCNMF)

NMF uses alternating minimization of a cost function subject to nonnegativ-
ity constraints. The most widely used cost function is the euclidean distance
function (two matrices R′ and S′ are introduced that each row is obtained by
converting the band and abundance images of R and S into vectors respectively.
The dimensions of them are L×K and P ×K, where K is the number of pixels)

E(M,S′) =
1
2
‖R′ − MS′‖2 =

1
2

∑

l,k

(R′lk − (MS′)lk)2 (9)

To represent the local constraints of the spectra and abundances, nonsmooth
NMF [16], which explicitly controls the degree of locality, is used.

nsE(M,S′) =
1
2
‖R′ − MCS′‖2, C = (1 − α)I +

α

P
11T (10)

where C ∈ RP×P is a “nonsmoothing” matrix, I is the identity matrix, 1 is a
vector of ones, the notation (·)T is matrix transposition, and the parameter α
(0 ≤ α ≤ 1) explicitly controls the extent of nonsmoothness of C, which is set
to 0.5 in the experiments.

Taking into consideration complexity constraints, the cost function of CCNMF
can be formulated as

D(M,S′) = nsE(M,S′) + θMJM (M) + θS′JS′(S′) (11)

JM (M) =
1
2
‖M̃ − M‖2, JS′(S′) =

|χ(S′)|
‖S′ − S′‖2

(12)

θM and θS′ are regularization parameters, M̃ and χ(S′) are L × P and P ×
K matrices, with the element M̃lp and χ(S′pk) at the (l, p) and (p, k) position
respectively, | · | is the sum of matrix elements, and S′ is a P × K matrix with
the entries in the pth row equaling to Sp. (12) are the approximations of the
reciprocals of (4) and (6) respectively. The numerator of (4) is neglected because
function nsE(M,S′) ensures the extracted spectrum is not constant, while that
of (6) is reserved to avoid the abundances of adjacent pixels being equal.
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The general additive update rules can be constructed as

M ← M − μ. ∗ ∂D(M,S′)
∂M

, S′ ← S′ − ν. ∗ ∂D(M,S′)
∂S′

(13)

where “.*” denotes element-wise multiplication. Taking the derivatives of
D(M,S′) with respect to M and S′ and after some algebraic manipulations,
the gradients about M and S′ are

∂D(M,S′)
∂M

= −(R′ − MCS′)(CS′)T − θM (M̃ − M) (14)

∂D(M,S′)
∂S′

= −(MC)T (R′ − MCS′) + θS′
∂JS′(S′)

∂S′
(15)

where

∂JS′(S′)
∂S′

=

⎛

⎜⎝

∂|χ(S′)|
∂S′

‖S′ − S′‖2
+

2|χ(S′)|(S′ − S′)
(
‖S′ − S′‖2

)2

⎞

⎟⎠ (16)

Choosing the step sizes from [11], the multiplicative rules are given below

M ← M. ∗ (R′(CS′)T + θM (M̃ − M))./(MCS′(CS′)T ) (17)

S′ ← S′. ∗ ((MC)T R′ − θS′
∂JS′(S′)

∂S′
)./((MC)T MCS′) (18)

where “./” denotes element-wise division. In addition, to ensure the full additiv-
ity of abundance cube, S′ should be normalized

S′pk ←
S′pk

P∑
p=1

S′pk

, 1 ≤ p ≤ P, 1 ≤ k ≤ K (19)

One hurdle of the NMF problem is the existence of local minima due to the
nonconvexity of the objective function. But through adding complexity and local
constraints, the feasible solution set is confined and the nonuniqueness of solution
is alleviated. At last, we summarize the CCNMF algorithm.

1. Use virtual dimensionality (VD) method [17] to find the number of end-
members P involved in the mixture data.
2. Initialize M and S′ with non-negative values.
3. For t = 1, 2, . . . , until D(M,S′) ≤ tol, for a tolerance value tol ∈ R,
update M and S′ by (17) and (18), and then normalize S′ by (19).

4 Experimental Results

In this section, the data being analyzed were collected by the Hyperspectral
Digital Imagery Collection Experiment (HYDICE) system. It is composed of 210
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channels with spectral resolution 10 nm acquired in the 0.4-2.5 micron region.
To evaluate the performance of SCNMF and CCNMF, spectral angle distance
(SAD) and Root-Mean-Square Error (RMSE) are employed (The definitions are
omitted here due to the length of the paper. Readers are referred to [18] for
details). The ground truth of the data are computed according to [9].

4.1 Washington D.C. Data

Figure 1 shows a subscene of size 30 × 30 extracted from the Washington D.C.
data set. After low signal-to-noise ratio (SNR) bands are removed, only 191
bands remain (i.e., L=191). Using VD method to estimate P , it is equal to 4.

Fig. 1. The subscene (30 × 30) extracted from Washington D.C. data set

(a) grass (b) trail (c) tree (d) water

Fig. 2. Abundance maps estimated using SCNMF

(a) grass (b) trail (c) tree (d) water

Fig. 3. Abundance maps estimated using CCNMF

Firstly, SCNMF is applied to the data set. Figure 2 presents the estimated
abundance maps. Except that the grass and trail are detected in Figure 2(a)
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Fig. 4. Urban scene (307 × 307) extracted from HYDICE data set

(a) asphalt (b) grass (c) roof (d) tree

Fig. 5. Abundance maps estimated using SCNMF

and 2(b), the other two maps are still mixtures. Then CCNMF is utilized, and the
results are displayed in Figure 3. Different from Figure 2, all the four abundances:
grass, trail, tree and water are successfully extracted. Table 1 quantifies the
unmixing results using the two performance metrics.

Table 1. SAD-based similarity and RMSE-based error scores between the unmixing
results of Washington D.C. data by SCNMF and CCNMF and the ground truth (The
numbers in bold represent the best performance)

Method
Endmember

grass trail tree water

SCNMF
0.1349 0.1075 0.24 0.2926 (SAD)

0.2435 0.1628 0.2299 0.2152 (RMSE)

CCNMF
0.1031 0.1299 0.1886 0.1673
0.2272 0.2071 0.1403 0.0975

4.2 Urban Data

The data to be used were obtained from a HYDICE scene of 307 × 307 pixels
shown in Figure 4. After low signal-to-noise ratio (SNR) bands are removed, a
total of 162 bands are used in the experiment. The estimated number of end-
members using the VD method is 4.
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(a) asphalt (b) grass (c) roof (d) tree

Fig. 6. Abundance maps estimated using CCNMF

The estimated abundances using SCNMF are illustrated in Figure 5. Only
grass and tree are detected in Figure 5(b) and 5(d), the other two are still
unmixed. Contrarily, all the four endmembers are separated out by CCNMF, as
displayed in Figure 6. Likewise, Table 2 quantifies the unmixing results.

Table 2. SAD-based similarity and RMSE-based error scores between the unmixing
results of urban data by SCNMF and CCNMF and the ground truth (The numbers in
bold represent the best performance)

Method
Endmember

asphalt grass roof tree

SCNMF
0.2704 0.2608 0.32 0.1887 (SAD)

0.2468 0.2093 0.2301 0.1792 (RMSE)

CCNMF
0.189 0.111 0.2942 0.1005
0.1559 0.1247 0.2228 0.1017

5 Conclusion

We have presented a complexity constrained NMF (CCNMF) for hyperspectral
unmixing. The algorithm extends the original NMF by incorporating the com-
plexity and locality constraints, which accord with the three characteristics of
hyperspectral data. Its effectiveness has been tested by comparison to SCNMF
with data from HYDICE data sets. The experimental results show that CCNMF
has the potential of providing more accurate estimates of both endmember spec-
tra and abundance maps.
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Abstract. In this paper we apply a novel smooth component analysis algorithm 
as ensemble method for prediction improvement. When many prediction 
models are tested we can treat their results as multivariate variable with the 
latent components having constructive or destructive impact on prediction 
results. We show that elimination of those destructive components and proper 
mixing of those constructive can improve the final prediction results. The 
validity and high performance of our concept is presented on the problem of 
energy load prediction. 

1   Introduction 

The blind signal separation methods have applications in telecommunication, 
medicine, economics and engineering. Starting from separation problems, BSS 
methods are used in filtration, segmentation and data decomposition tasks [5,11]. In 
this paper we apply the BSS method for prediction improvement in case when many 
models are tested. 

The prediction problem as other regression tasks aims at finding dependency 
between input data and target. This dependency is represented by a specific model 
e.g. neural networks [7,13]. In fact, in many problems we can find different 
acceptable models where the ensemble methods can be used to improve final results 
[7].  Usually solutions propose the combination of a few models by mixing their 
results or parameters [1,8,18]. In this paper we propose an alternative concept based 
on the assumption that prediction results contain the latent destructive and 
constructive components common to all the model results [16]. The elimination of the 
destructive ones should improve the final results. To find the latent components we 
apply blind signal separation methods with a new algorithm for smooth component 
analysis (SmCA) which is addressed for signals with temporal structure [4]. The full 
methodology will be tested in load prediction task [11]. 

2   Prediction Results Improvement 

We assume that after the learning process each prediction result includes two types of 
latent components: constructive, associated with the target, and destructive, associated 
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with the inaccurate learning data, individual properties of models, missing data, not 
precise parameter estimation, distribution assumptions etc. Let us assume there is m 
models. We collect the results of particular model in column vector xi, i=1,…, m, and 
treat such vectors as multivariate variable X = [x1, x2…xm]T, X∈Rm×N, where N  
means the number of observations. We describe the set of latent components as 

T
nkk ],,ˆ,...,ˆ,ˆ[ 121 sssssS += , S∈Rn×N, where jŝ  denotes constructive component and si is 

destructive one [3]. For simplicity of further considerations we assume nm = . Next 
we assume the relation between observed prediction results and latent components as 
linear transformation 

ASX = , (1) 

where matrix A∈Rn×n represents the mixing system. The (1) means matrix X 
decomposition by latent components matrix S and mixing matrix A.   

 

Fig. 1. The scheme of modelling improvement method by multivariate decomposition 

Our aim is to find the latent components and reject the destructive ones (replace 
them with zero). Next we mix the constructive components back to obtain improved 
prediction results as 

T
nkk ],...,,ˆ,...,ˆ,ˆ[ˆˆ

121 00sssASAX +== . (2) 

The replacement of destructive signal by zero is equivalent to putting zero in the 
corresponding column of A. If we express the mixing matrix as A = [a1, a2…an] the 
purified results can be described as 

[ ]S00aaaSAX nkk ,...,,,...,,ˆˆ
121 +== , (3) 

Where Â =[a1,a2…ap, 0p+1, 0p+2…0n]. The crucial point of the above concept is proper 
A and S estimation. It is difficult task because we have not information which 
decomposition is most adequate. Therefore we must test various transformations 
giving us components of different properties. The most adequate methods to solve the 
first problem seem to be the blind signal separation (BSS) techniques. 
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3   Blind Signal Separation and Decomposition Algorithms  

Blind signals separation (BSS) methods aim at identification of the unknown signals 
mixed in the unknown system [2,4,10,15]. There are many different methods and 
algorithms used in BSS task. They explore different properties of data like: 
independence [2,10], decorrelation [3,4], sparsity [5,19], smoothness [4], non-
negativity [12] etc. In our case, we are not looking for specific real signals but rather 
for interesting analytical data representation of the form (1). To find the latent 
variables A  and S  we can use a transformation defined by separation matrix 
W∈Rn×n, such that  

WXY = . (4) 

where Y is related to S. We also assume that Y satisfies the following relation 

PDSY = ,  (5) 

where P is a permutation matrix and D is a diagonal matrix [4,10]. The relation (5) 
means that estimated signals can be rescaled and reordered in comparison to the 
original sources. These properties are not crucial in our case, therefore Y can be 
treated directly as estimated version of sources S. There are some additional 
assumptions depending on particular BSS method.  We focus on methods based on 
decorrelation, independent component analysis and smooth component analysis.  

Decorrelation is one of the most popular statistical procedures for the elimination of 
the linear statistical dependencies in the data. It can be performed by diagonalization 
of the correlation matrix Rxx=E{XXT}. It means that matrix W should satisfy the 
following relation  

EWWRR == T
xxyy , (6) 

where E is any diagonal matrix. There are many methods utilizing different matrix 
factorisation leading to the decorrelation matrix W, Table 1 [6,17]. The decorrelation 
is not effective separation method and it is used typically as preprocessing, in general. 
However, we find it very useful for our analytical representation. 

Table 1. Methods of decorrelation possible for models decomposition 

Method Form correlation Cholesky EIG (PCA) 
Factorisation Rxx= Rxx

½ Rxx
½ Rxx=GTG Rxx=UΣUT 

Decorrelation W= Rxx
-½ W=G-T W=UT 

Independent component analysis, ICA, is a statistical tool, which allows 
decomposition of observed variable X into independent components Y = [y1,y2…yn]

T 
[2,4,10]. Typical algorithms for ICA explore higher order statistical dependencies in a 
dataset, so after ICA decomposition we have got signals (variables) without any linear 
and non-linear statistical dependencies. To obtain independent components we 
explore the fact that the joint probability of independent variables can be factorized by 
the product of the marginal probabilities 
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One of the most popular method to obtain (8) is to find such W that minimizes the 
Kullback-Leibler divergence between py(Y) and qy(Y) [5]  
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There are many numerical algorithms estimating independent components like 
Natural Gradient, FOBI, JADE or FASTICA [2,4,10].   

Smooth Component Analysis, SmCA, is a method of the smooth components 
finding in a multivariate variable [4]. The analysis of signal smoothness is strongly 
associated with the definitions and assumptions about such characteristics [9,17]. For 
signals with temporal structure we propose a new smoothness measure  

))min()(max()min()max(

|)1()(|
1

)( 2

yyyy

yy
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−+−

−−
=
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=

δ

N

k

kk
N

P , 
(9) 

where symbol δ(.) means Kronecker delta, and P(y)∈[0,1]. Measure (9) has simple 
interpretation: it is maximal when the changes in each step are equal to range 
(maximal change), and is minimal when data are constant. The Kronecker delta term 
is introduced to avoid dividing by zero. The range calculated in denominator is 
sensitive to local data, what can be avoided using extremal values distributions. 

The components are taken as linear combination of signals xi and should be as 
smooth as possible. Our aim is to find such W = [w1, w2…wn] that for WXY = we 
obtain Y = [y1, y2…yn]

T where 1y  maximizes P(y1) so we can write 

))((maxarg
1||||

1 xww
w

TP
=

= . (10) 

Having estimated the first 1−n  smooth components the next one is calculated as 
most smooth component of the residual obtained in Gram-Schmidt orthogonalization: 

)))(((maxarg
1

11||||
xyyxww

w
∑

−

==
−=

n

i

T
ii

T
n P , (11) 

where niT
ii K1, == xwy . As the numerical algorithm for finding nw  we can 

employ the conjugate gradient method with golden section as a line search routine. 
The algorithm outline for initial )0()0(,)0( iii rand gpw −== is as follows:  

1. Identify the indexes l  for extreme signal values: 

)()(maxarg
1

max lkl T
i

Nl

xw
K∈

= , 

)()(minarg
1

min lkl T
i

Nl

xw
K∈

= , 

(12) 
 

(13) 
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2. Calculate gradient of )( xw T
iP : 
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where )1()()( −−=Δ lll xxx  , 

3. Identify the search direction (Polak-Ribiere formula[19]) 

( ) )1()()(
)1()1(

)1()()( −+−=
−−

−− kkk ikk

kkk
ii

i
T

i

ii
T

i pgp
gg

ggg , (15) 

4. Calculate the new weights: 

)()( )()1( kkkk iii pww ⋅+=+ α , (16) 

where )(kα  is found in golden search. 

The above optimization algorithm should be applied as a multistart technique with 
random initialization [14]. 

4   Component Classification  

After latent component are estimated by e.g. SmCA we need to label them as 
destructive or constructive. The problem with proper signal classification can be 
difficult task because obtained components might be not pure constructive or 
destructive due to many reasons like improper linear transformation assumption or 
other statistic characteristics than explored by chosen BSS method [21]. 
Consequently, it is possible that some component has constructive impact on one 
model and destructive on the other. There may also exist components destructive as a 
single but constructive in a group. Therefore, it is advisable to analyze each subset of 

the components separately. In particular, we eliminate each subset (use the matrix Â ) 
and check the impact on the final results. Such process of component classification as 
destructive or constructive is simple and works well but for many components it is 
computationally extensive. 

5   Generalized Mixing 

As was mentioned above, the latent components can be not pure so their impact 
should have weight other than 0. It means that we can try to find the better mixing 

system than described by Â . The new mixing system can be formulated more general 
than linear, e.g. we can employ MLP neural network:  

))]([( )2()1()1()1()2()2( bbSBgBgX ++=
)

, (17) 
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where g(i)(.) is a vector of nonlinearities, B(i)(.) is a weight matrix and b(i)(.) is a bias 
vector respectively for i-th layer, i=1,2. The first weight layer will produce results 

related to (4) if we take AB ˆ)1( = . But we employ also some nonlinearities and the 
second layer, so in comparison to the linear form the mixing system gains some 
flexibility.  If we learn the whole structure starting from system with initial weights of 

AB ˆ)0()1( = , we can expect the results will be better, see Fig. 2.  

  
 

Fig. 2. The concept of filtration stage 

6   Electricity Consumption Forecasting 

The tests of proposed concept were performed on the problem of energy load 
prediction [11]. Our task was to forecast the hourly energy consumption in Poland in 
24 hours basing on the energy demand from last 24 hours and calendar variables: 
month, day of the month, day of the week, and holiday indicator. We learned six MLP 
neural networks using 1851 instances in training, 1313 – in validation, and 1313 – in 
testing phase. The networks have the structure: M1=MLP(5,12,1) M2=MLP(5,18,1), 
M3=MLP(5,24,1), M4=MLP(5,27,1), M5=MLP(5,30,1), M6=MLP(5,33,1), where in 
parenthesis you can find the number of neurons in each layer.  The quality of the 
results is measured with Mean Absolute Percentage Error: 

∑ =
−⋅= N

i y
yy

N i

iiMAPE
1

ˆ1 , (18) 

where i is the index of observation, N- number of instances, iy - real load value, and 

iŷ - predicted value. 

In Table 2 we can observe the MAPE values for primary models, effects of 
improving the modelling results with particular decomposition, and with decom-
position supported by neural networks remixing. The last column in Table 2 shows 
percentage improvement of the best results from each method versus the best primary 
result.   
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Table 2. Values of MAPE for primary models and after  

ModelsMethods
M1 M2 M3 M4 M5 M6

Best
result

%

Primary results 2.392 2.365 2.374 2.402 2.409 2.361 2.361 -
Decorr. 2.304 2.256 2.283 2.274 2.255 2.234 2.234 5.4
Smooth 2.301 2.252 2.357 2.232 2.328 2.317 2.232 5.5
ICA 2.410 2.248 2.395 2.401 2.423 2.384 2.248 4.8
Decorr&NN 2.264 2.241 2.252 2.247 2.245 2.226 2.226 5.7
Smooth&NN 2.224 2.227 2.223 2.219 2.232 2.231 2.219 6.0
ICA&NN 2.327 2.338 2.377 2.294 2.299 2.237 2.237 5.3

 

M1 M2 M3 M4 M5 M6
2.2

2.25

2.3

2.35

2.4

2.45

Models

M
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P
E

 

 
Primary models Smooth Improv. Smooth&Neural

 

Fig. 3. The MAPE for primary models, improvement with SmCA, and improvement by 
SmCA&NN 

To compare the obtained results with other ensemble methods we applied also 
bagging and boosting techniques for the presented problem of energy load prediction.  
They produced predictions with MAPE of 2.349 and 2.226, respectively, what means 
results slightly worse than SmCA with neural generalisation.  

7   Conclusions 

The Smooth Component Analysis as well as the other Blind Signal Separation 
methods can be successfully used as a novel methodology for prediction 
improvement. The practical experiment with the energy load prediction confirmed the 
validity of our method. Due to lack of space we compare SmCA approach only with 
basis BSS methods like decorrelation and ICA. For the same reason extended 
comparison with other ensemble methods was left as the further work.  
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Abstract. Many linear ICA techniques are based on minimizing a non-
linear contrast function and many of them use a hyperbolic tangent (tanh)
as their built-in nonlinearity. In this paper we propose two rational func-
tions to replace the tanh and other popular functions that are tailored
for separating supergaussian (long-tailed) sources. The advantage of the
rational function is two-fold. First, the rational function requires a signif-
icantly lower computational complexity than tanh, e.g. nine times lower.
As a result, algorithms using the rational functions are typically twice
faster than algorithms with tanh. Second, it can be shown that a suitable
selection of the rational function allows to achieve a better performance
of the separation in certain scenarios. This improvement might be sys-
tematic, if the rational nonlinearities are selected adaptively to data.

1 Introduction

In this paper, a square linear ICA is treated (see e.g. [4,3]),

X = AS, (1)

where X is a d × N data matrix. The rows of X are the observed mixed signals,
thus d is the number of mixed signals and N is their length or the number of
samples in each signal. Similarly, the unknown d×N matrix S includes samples
of the original source signals. A is an unknown regular d × d mixing matrix.

As usual in linear ICA, it is assumed that the elements of S, denoted sij , are
mutually independent i.i.d. random variables with probability density functions
(pdf) fi(sij) i = 1, . . . , d. The row variables sij for all j = 1, . . . , N , having the
same density, are thus an i.i.d. sample of one of the independent sources denoted
by si. It is assumed that at most one of the densities fi(·) is Gaussian, and the
unknown matrix A has full rank. In the following, let W denote the demixing
matrix, W = A−1.
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Many popular ICA methods use a nonlinear contrast function to blindly sep-
arate the signals. Examples include FastICA [5], an enhanced version of the
algorithm named EFICA [7], and recursive algorithm EASI [2], Extended In-
fomax [1], and many others. Adaptive choices of the contrast functions were
proposed in [6,8].

In practical large-scale problems, the computational speed of an algorithm is a
factor that limits its applications. The main goal of this paper is to propose suit-
able rational functions that can be quickly evaluated when used instead of tanh
and other nonlinearities, and yet achieve the same or better performance. We
design such suitable rational nonlinearities for algorithms FastICA and EFICA,
based on our recent analytical results on their asymptotic performances, see [5,7].
It is believed that the nonlinearities proposed here will work well when applied
to other methods as well.

The structure of the paper is as follows. In section II we present a brief descrip-
tion of algorithms FastICA and EFICA, and the analytic expressions that char-
acterize the asymptotic performance of the methods. In section III we propose
A) two general-purpose rational nonlinearities that have similar performance
as tanh, and B) nonlinearities that are tailored for separation of supergaussian
(heavy tailed) sources.

2 FastICA, EFICA, and Their Performance

In general, the FastICA algorithm is based on minimization/maximization of
the criterion c(w) = E[G(wT Z)], where G(·) is a suitable nonlinearity, called
a contrast function, applied elementwise to the row vector wT Z; see [4]. Next,
w is the unitary vector of coefficients to be found that separates one of the
independent components from a mixture Z. Here Z denotes a mean-removed
and decorrelated data, Z = C−1/2 (X − X) where Ĉ is the sample covariance
matrix, Ĉ = (X − X)(X − X)T /N and X is the sample mean of the mixture
data.

In the following, in accordance with the standard notation [4], g(·) and g′(·)
denote the first and the second derivative of the function G(·). The application
of g(·) and g′(·) to the vector wT Z is elementwise. Classical widely used func-
tions g(·) include “pow3”, i.e. g(x) = x3 (then the algorithm performs kurtosis
minimization), “tanh”, i.e. g(x) = tanh(x), and “gauss”, g(x) = x exp(−x2/2).

The algorithm FastICA can be considered either in one unit form, where only
one row w of the estimated demixing matrix Ŵ is computed, or in symmetric
form, which estimates the whole matrix Ŵ. The outcome of the symmetric
FastICA obeys the orthogonality condition meaning that the sample correlations
of the separated signals are exactly zeros.

Recently, it was proposed to complete the symmetric FastICA by a test of
saddle points that eliminates convergence to side minima of the cost function,
which may occur for most nonlinearities g(·) [9]. The test consists in checking if
possible saddle points exist for each pair of the signal components exactly half-
way between them in the angular sense. This test requires multiple evaluations
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of the primitive (integral) function of g(·), i.e. G(·). If the intention is to perform
the test of saddle points in a fast manner, then it is desired that G is a rational
function as well.

We introduced recently a novel algorithm called EFICA [7], which is essen-
tially an elaborate modification of the FastICA algorithm employing a
data-adaptive choice of the associated nonlinearities used in FastICA, and thus
reaching a very small asymptotic error. The algorithm is initialized by perform-
ing a symmetric FastICA with a fixed nonlinearity. After that, the algorithm uses
an idea of a generalized symmetric FastICA, and an adaptive choice of nonlin-
earities, which may be different for each signal component separately. The final
demixing matrix does not obey the orthogonality condition. See [7] for details.
For the purpose of this paper we shall assume that the adaptive selection of the
nonlinearity in the EFICA algorithm is turned off and a fixed nonlinearity g(·)
is used instead.

Assume now, for simplicity, that all signal components have the the same
probability distribution with the density f(·). It was shown in [9] and in [7]
that the asymptotic interference-to-signal ratio of the separated signals (one off-
diagonal element of the ISR matrix) for the one-unit FastICA, for the symmetric
FastICA and for EFICA is, respectively,

ISR1U =
1
N

γ

τ2
, ISRSYM =

1
2N

[
1
2

+
γ

τ2

]
(2)

ISREF =
1
N

γ(γ + τ2)
τ2γ + τ2(γ + τ2)

(3)

where

γ = β − μ2

τ = |μ − ρ|

μ =
∫

s g(s) f(s) ds
ρ =

∫
g′(s) f(s) ds

β =
∫

g2(s) f(s) ds

and the integration proceeds over the real line1.
It can be easily seen that

ISREF = ISR1U
1/N + ISR1U

1/N + 2 ISR1U
(4)

and

ISREF ≤ min {ISR1U, ISRSYM} . (5)

It is well known that all three ISR’s are simultaneously minimized, when the
nonlinearity g(·) is proportional to the score function of the distribution of the
sources, g(x) = ψ(x) = −f ′(x)/f(x). To be more accurate the optimum nonlin-
earity may have the form g(x) = c1ψ(x) + c2x, where c1 and c2 are arbitrary
1 Note that it is the orthogonality constraint that makes the ISR of the symmetric

FastICA lower bounded by 1/(4N).
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constants, c1 �= 0. The choice of the constants c1, c2 does not make any influence
on the algorithm performance. For this case it was shown EFICA is maximally
efficient: the ISR in (3) in fact equals the respective Cramér-Rao-induced lower
bound [9,7].

3 Optimality Issues

From the end of the previous section it is clear that it is not possible to suggest
a nonlinearity that would be optimum for all possible probability distributions
of the sources. The opposite is true, however: for each nonlinearity g there exists
a source distribution fg such that all other nonlinearities, that are not linear
combinations of g and x, perform worse in separating the data having this dis-
tribution (in the sense of mean ISR). The density fg can be found by solving
the equation

g(x) = −c1

f ′g(x)
fg(x)

+ c2 x = −c1
d

dx
[log fg(x)] + c2 x (6)

and has the solution

fg(x) = exp
{

− 1
c1

∫
g(x)dx +

c2

2c1
x2 + c3

}
. (7)

The constants c1, c2, and c3 should be selected in the way that f is a valid pdf,
i.e. is nonnegative, its integral over the real line is one and have zero mean and
the variance one.

For example, the nonlinearity tanh is optimum for the source distributions of
the form

ftanh = C0 exp(−C1x
2)(coshx)C2 (8)
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Fig. 1. Probability density functions (8) for which tanh is the optimum nonlinearity
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where C0, C1, and C2 are suitable constants. It can be shown that for any C2 it
is possible to find C0 and C1 such that ftanh is a valid density function.

Examples of probability densities for which the tanh is the optimum nonlin-
earity are shown in Figure 1. The pdf’s are compared with the standard Gaussian
pdf, which would be obtained for C2 = 0. The figure explains why tanh works
very well for so many different pdf’s: it includes supergaussian distributions for
C2 < 0 and subgaussian, even double modal distributions for C2 > 0.

4 All-Purpose Nonlinearities

In this subsection we propose two rational functions that can replace tanh in
FastICA and in other ICA algorithms,

g1(x) =
x

1 + x2/4
, g2(x) =

x(2 + |x|)
(1 + |x|)2 . (9)

The former one has very similar behavior as tanh in a neighborhood of zero, and
the latter one has a global behavior that is more similar to tanh, see Figure 2.
For example, if x → ±∞, then g2(x) approaches ±1. These rational functions
will be called RAT1 and RAT2, for easy reference.
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Fig. 2. Comparison of nonlinearities (a) TANH, RAT1 and RAT2 and (b) GAUSS,
EXP3 and RAT3(4), discussed in Section 5. In diagram (b), the functions were scaled
to have the same maximum value, 1.

The speed of evaluation of tanh and the rational functions can be compared
as follows. In the matlab notation, put x = randn(1, 1000000). It was found that
the evaluation of the command y = tanh(x); takes 0.54 s, evaluation of RAT1 via
command y = x./(1 + x.̂2/4); requires 0.07 s and evaluation of RAT2 via the
pair of commands h = x.∗sign(x)+1; and y = x.∗(h+1)./h.̂2; requires 0.11 s.
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The computations were performed on HP Unix workstation, using a matlab
profiler. We can conclude that evaluation of RAT1 is nine times faster than
tanh, and evaluation of RAT2 is 5 times faster than tanh. As a result, FastICA
using nonlinearity RAT1 is about twice faster that FastICA using tanh.

Performance of the algorithms using nonlinearities RAT1 and RAT2 appears
to be very similar to that of the same algorithms using tanh for many probability
distributions of the sources.

Assume, for example, that the source distribution belongs to the class of gen-
eralized Gaussian distribution with parameter α, which will be denoted GG(α)
for easy reference. The pdf of the distribution is proportional to exp(−βα|x|)α

where βα is a suitable function of α such that the distribution has unit variance.
The asymptotic variance of one-unit FastICA (2) with the three nonlinearities

is plotted as a function of α in Figure 3 (a). The variance is computed for
N = 1000. We can see that performance of the algorithm with nonlinearity RAT1
is very similar to that of nonlinearity TANH. Performance of RAT2 is slightly
better than the previous two ones, if the sources are supergaussian (spiky), i.e.
for α < 2, and slightly worse when the distribution is subgaussian (α > 2).
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Fig. 3. Performance of one unit FastICA with nonlinearities (a) TANH, RAT1 and
RAT2 and (b) GAUSS, EXP1 and RAT3(4), discussed in Section 5, for sources with
distribution GG(α) as a function of the parameter α

The advantage of RAT2 compared to RAT1 is that while the primitive func-
tion of g1(x) is G1(x) = 2 log(1 + x2/4) and it is relatively complex to evaluate,
the primitive function of g2(x) is rational, G2(x) = x2/(1+|x|) and can be evalu-
ated faster. This might be important for the test of saddle points. It is, however,
possible to combine both approaches and use RAT1 in the main iteration, and
the primitive function of RAT2 in the test of saddle points.

It can be shown that the asymptotic variance ISR1U goes to infinity for any
nonlinearity in rare cases, when the source pdf is a linear combination of a
supergaussian and a subgaussian distributions (τ in (2) is zero). An example is
shown in Figure 4, where ISR1U is plotted for sources s = βb +

√
1 − β2l as a
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function of parameter β, where b and l stand for binary (BPSK) and Laplacean
random variables, respectively. Performances of nonlinearities TANH and RAT1
appear to be very similar, while a performance of RAT2 is slightly different.
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Fig. 4. Performance of one unit FastICA with nonlinearities TANH, RAT1 and RAT2
for sources of the type s = βb +

√
1 − β2l and N = 1000

5 Nonlinearities for Supergaussian Sources

In [5] the following nonlinearity was proposed for separation of supergaussian
(long-tailed) sources,

g(x) = x exp(−x2/2). (10)

For a long time, this nonlinearity was considered the best known one for the sep-
aration of supergaussian sources. In [7] it was suggested to use the nonlinearity

g(x) = x exp(−η|x|) (11)

where η = 3.348 was selected. This nonlinearity will be referred as EXP1. This
constant is the optimum constant for the nonlinearity of the form (11) pro-
vided that the distribution of the sources is Laplacean, i.e. GG(1). It was shown
that the latter nonlinearity outperforms the former one for most of distributions
GG(α) where 0 < α < 2. It was also shown in [7] that for the sources with
the distribution GG(α) with α ∈ (0, 1/2] the asymptotic performance of the
algorithm monotonically grows with increasing η.

In this paper we suggest to use the following nonlinearity, denoted as RAT3(b),
for easy reference,

g3b(x) =
x

(1 + b|x|)2 . (12)

We note that like in the case of the nonlinearity EXP, the slope of the function
at x = 0 increases with growing parameter b. This phenomenon improves the
asymptotic performance of the algorithm in separation of highly supergaussian
(long-tailed) sources, but makes the convergence of the algorithm more difficult.
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We found that the choice b = 4 is quite good a trade-off between the performance
and the ability to converge.

Evaluation of the nonlinearity RAT3(b) was found to be about five times
faster than evaluation of EXP1. Performance of the algorithm using the 3 non-
linearities in separating sources with the distribution GG(α), α < 2, is shown in
Figure 3(b).

6 Conclusions

The rational nonlinearities were shown to be highly viable alternatives to classi-
cal ones in terms of speed and accuracy. Matlab code of EFICA, utilizing these
nonlinearities can be downloaded at the second author’s web page.
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Abstract. FastICA is arguably one of the most widespread methods for
independent component analysis. We focus on its deflation-based imple-
mentation, where the independent components are extracted one after
another. The present contribution evaluates the method’s speed in terms
of the overall computational complexity required to reach a given source
extraction performance. FastICA is compared with a simple modification
referred to as RobustICA, which merely consists of performing exact line
search optimization of the kurtosis-based contrast function. Numerical
results illustrate the speed limitations of FastICA.

1 Introduction

Independent component analysis (ICA) aims at decomposing an observed random
vector into statistically independent variables [1]. Among its numerous applica-
tions, ICA is the most natural tool for blind source separation (BSS) in instan-
taneous linear mixtures when the source signals are assumed to be independent.
Under certain identifiability conditions, the independent components correspond
to the sources up to admissible scale and permutation indeterminacies [1].

Two main approaches to ICA have been proposed to date. In the original defi-
nition of ICA carried out in early works such as [1] and [2], the independent com-
ponents are extracted jointly or simultaneously, an approach sometimes called
symmetric. On the other hand, the deflation approach estimates the sources one
after another [3], and has also been shown to work successfully to separate con-
volutive mixtures [4]. Due to error accumulation throughout successive deflation
stages, it is generally acknowledged that joint algorithms outperform deflation-
ary algorithms without necessarily incurring an excessive computational cost.

The FastICA algorithm [5], [6], [7], originally put forward in deflation mode,
appeared when many other ICA methods had already been proposed, such as
COM2 [1], JADE [2], COM1 [8], or the deflation methods by Tugnait [4] or
Delfosse-Loubaton [3]. A thorough comparative study was carried out in [9],
where FastICA is found to fail for weak or highly spatially correlated sources.
More recently, its convergence has been shown to slow down or even fail in the
presence of saddle points, particularly for short block sizes [10].

The objective of the present contribution is to carry out a brief critical review
and experimental assessment of the deflationary kurtosis-based FastICA algo-
rithm. In particular, we aim at evaluating objectively the algorithms’ speed and

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 293–300, 2007.
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efficiency. For the sake of fairness, FastICA is not compared to joint extraction
algorithms [1], [2], [3] but only to a simple modification called RobustICA, pos-
sibly the simplest deflation algorithm that can be thought of under the same
general conditions.

2 Signal Model

The observed random vector x ∈ CL is assumed to be generated from the in-
stantaneous linear mixing model:

x = Hs + n (1)

where the source vector s = [s1, s2, . . . , sK ]T ∈ CK is made of K ≤ L unknown
mutually independent components. The elements of mixing matrix H ∈ CL×K

are also unknown, and so is the noise vector n, which is only assumed to be
independent of the sources. Our focus is on block implementations, which, con-
trary to common belief, are not necessarily more costly than adaptive (recursive,
on-line, sample-by-sample) algorithms, and are able to use more effectively the
information contained in the observed signal block. Given a sensor-output sig-
nal block composed of T samples, ICA aims at estimating the corresponding
T -sample realization of the source vector.

3 FastICA Revisited

3.1 Optimality Criteria

In the deflation approach, an extracting vector w is sought so that the estimate

z
def= wHx (2)

maximizes some optimality criterion or contrast function, and is hence expected
to be a component independent from the others. A widely used contrast is the
normalized kurtosis, which can be expressed as:

K(w) =
E{|z|4} − 2E2{|z|2} − |E{z2}|2

E2{|z|2} . (3)

This criterion is easily seen to be insensitive to scale, i.e., K(λw) = K(w),
∀λ �= 0. Since this scale indeterminacy is typically unimportant, we can impose,
without loss of generality, the normalization ‖w‖ = 1 for numerical convenience.
The kurtosis maximization (KM) criterion started to receive attention with the
pioneering work of Donoho [11] and Shalvi-Weinstein [12] on blind equalization,
and was later employed for source separation even in the convolutive-mixture
case [4]. Contrast (3) is quite general in that it does not require the observations
to be prewhitened and can be applied to real- or complex-valued sources without
any modification.
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To simplify the source extraction, the kurtosis-based FastICA algorithm [5],
[6], [7] first applies a prewhitening operation resulting in transformed observa-
tions with an identity covariance matrix, Rx

def= E{xxH} = I. In the real-valued
case, contrast (3) then becomes equivalent to the fourth-order moment criterion:

M(w) = E{|z|4}, (4)

which must be optimized under a constraint, e.g., ‖w‖ = 1, to avoid arbitrar-
ily large values of z. Under the same constraint, criteria (3) and (4) are also
equivalent if the sources are complex-valued but second-order circular, i.e., the
non-circular second-moment matrix Cx

def= E{xxT} is null. Consequently, con-
trast (4) is less general than criterion (3) in that it requires the observations to
be prewhitened and the sources to be real-valued, or complex-valued but circu-
lar. Indeed, the extension of the FastICA algorithm to complex signals [13], [14]
is only valid for second-order circular sources. In the remainder, we shall restrict
our attention to sources fulfilling these requirements.

3.2 Contrast Optimization

Under the constraint ‖w‖ = 1, the stationary points of M(w) are obtained as a
collinearity condition on E{xzz∗2}:

E
{
|wHx|2xxH

}
w = λw (5)

where λ is a Lagrangian multiplier. As opposed to the claims of [5], eqn. (5) is
a fixed-point equation only if λ is known, which is not the case here; λ must
be determined so as to satisfy the constraint, and thus it depends on w0, the
optimal value of w: λ = M(|w0

Hx|4}.
For the sake of simplicity, λ is arbitrarily set to a deterministic fixed value

[5], [7], so that FastICA becomes an approximate standard Newton algorithm,
as eventually pointed out in [6]. In the real-valued case, the Hessian matrix of
M(w) is approximated as

E{(wTxxTw)xxT} ≈ E{wTxxTw}E{xxT} = wTw = I (6)

As a result, the kurtosis-based FastICA reduces to a gradient-descent algorithm
with a judiciously chosen fixed step size leading to cubic convergence:

w+ = w − 1
3

E{x(wTx)3} (7)

w+ ← w+/‖w+‖. (8)

This is a particular instance of the family of algorithms proposed in [4].

4 RobustICA

A simple quite natural modification of FastICA consists of performing exact line
search of the kurtosis contrast (3):

μopt = argmax
μ

K(w + μg). (9)
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The search direction g is typically (but not necessarily) the gradient: g =
∇wK(w). Exact line search is in general computationally intensive and presents
other limitations [15], which explains why, despite being a well-known optimiza-
tion method, it is very rarely used. However, for criteria that can be expressed
as rational functions of μ, such as the kurtosis, the constant modulus [16], [17]
and the constant power [18], [19] contrasts, the optimal step size μopt can easily
be determined by finding the roots of a low-degree polynomial.

At each iteration, optimal step-size (OS) optimization performs the following
steps:

S1) Compute OS polynomial coefficients.
For the kurtosis contrast, the OS polynomial is given by:

p(μ) =
4∑

k=0

akμk. (10)

The coefficients {ak}4
k=0 can easily can be obtained at each iteration from the

observed signal block and the current values of w and g (their expressions are
not reproduced here due to the lack of space; see [20] for details). Numerical
conditioning in the determination of μopt can be improved by normalizing the
gradient vector.

S2) Extract OS polynomial roots {μk}4
k=1.

The roots of the 4th-degree polynomial (quartic) can be found at practically
no cost using standard algebraic procedures known since the 16th century such
as Ferrari’s formula [15].

S3) Select the root leading to the absolute maximum:

μopt = arg max
k

K(w + μkg).

S4) Update w+ = w + μoptg.

S5) Normalize as in (8).

For sufficient sample size, the computational cost per iteration is (5L + 12)T
flops whereas that of FastICA’s iteration (7) is 2(L + 1)T flops. A flop is con-
ventionally defined as a real product followed by an addition.

To extract more than one independent component, the Gram-Schmidt-type
deflationary orthogonalization procedure proposed for FastICA [5], [6], [7] can
also be used in conjunction with RobustICA. After step S4, the updated ex-
tracting vector is constrained to lie in the orthogonal subspace of the extracting
vectors previously found.

5 Numerical Experiments

The experimental analysis of this section aims at evaluating objectively the speed
and efficiency of FastICA and RobustICA in several simulation conditions. The
influence of prewhitening on the methods’ performance is also assessed.
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Performance-complexity trade-off. Noiseless unitary random mixtures of K in-
dependent unit-power BPSK sources are observed at the output of an L = K
element array in signal blocks of T samples. The search for each extracting vec-
tor is initialized with the corresponding canonical basis vector, and is stopped
at a fixed number of iterations. The total cost of the extraction can then be
computed as the product of the number of iterations, the cost per iteration per
source (Sec. 4) and the number of sources. Prewhitening, if used, also adds to
the total cost. The complexity per source per sample is given by the total cost
divided by KT . As a measure of extraction quality, we employ the signal mean
square error (SMSE), a contrast-independent criterion defined as

SMSE =
1
K

K∑

k=1

E
{
|sk − ŝk|2

}
. (11)

The estimated sources are optimally scaled and permuted before evaluating the
SMSE. This performance index is averaged over 1000 independent random real-
izations of the sources and the mixing matrix. Extraction solutions are computed
directly from the observed unitary mixtures (methods labelled as ‘FastICA’ and
‘RobustICA’) and after a prewhitening stage based on the SVD of the observed
data matrix (‘pw+FastICA’, ‘pw+RobustICA’). The cost of the prewhitening
stage is of the order of 2K2T flops.

Fig. 1 summarizes the performance-complexity variation obtained for T = 150
samples and different values of the mixture size K. Clearly, the best fastest per-
formance is provided by RobustICA without prewhitening: a given performance
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sizes K, with signal blocks of T = 150 samples
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Fig. 2. Average extraction quality against signal block size for unitary mixtures of K =
10 sources and a total complexity of 400 flops/source/sample: (a) without prewhitening,
(b) with prewhitening. ‘×’: SNR = 10 dB; ‘�’: SNR = 20 dB; ‘◦’: SNR = 40 dB

level is achieved with lower cost or, alternatively, an improved extraction qual-
ity is reached with a given complexity. The use of prewhitening worsens Ro-
bustICA’s performance-complexity trade-off and, due to the finite sample size,
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imposes the same SMSE bound for two methods. Using prewhitening, FastICA
improves considerably and becomes slightly faster than RobustICA.

Efficiency. We now evaluate the methods’ performance for a varying block sam-
ple size T . Extractions are obtained by limiting the number of iterations per
source, as explained above. To make the comparison meaningful, the overall com-
plexity is fixed at 400 flops/source/sample for all tested methods. Accordingly,
since RobustICA is more costly per iteration than FastICA, it performs fewer
iterations per source. Isotropic additive white real Gaussian noise is present at
the sensor output, with signal-to-noise ratio:

SNR =
trace(HHT)

σ2
nL

. (12)

Results for the minimum mean square error (MMSE) receiver are also obtained
by jointly estimating the separating vectors assuming that all transmitted sym-
bols are used for training. The MMSE can be considered as a performance bound
for linear extraction.

Fig. 2(a) shows the results without prewhitening for random unitary mixtures
of K = 10 sources and three different SNR values (10 dB, 20 dB and 40 dB). Ro-
bustICA attains the MMSE bound for block sizes of about 1000 samples for the
tested SNR levels; the required block size can be shown to decrease for smaller K.
FastICA seems to require longer block sizes, particularly for noisier conditions
at the given overall complexity. As shown in Fig. 2(b), the use of prewhitening
in the same experiment worsens the performance-complexity ratio of RobustICA
while improving that of FastICA, making both methods’ efficiency comparable.

6 Conclusions

The computational complexity required to reach a given source extraction qual-
ity is put forward as a natural objective measure of convergence speed for
BSS/ICA algorithms. The kurtosis-based FastICA method can be considered
as a gradient-based algorithm with constant step size. Its speed is shown to
depend heavily on prewhitening and sometimes on initialization. Without the
performance limitations imposed by the second-order preprocessing, a simple
algebraic line optimization of the more general kurtosis contrast proves com-
putationally faster and more efficient than FastICA even in scenarios favouring
this latter method. Although not demonstrated in this paper, RobustICA is also
more robust to initialization [20], and the optimal step-size technique it relies
on proves less sensitive to saddle points or local extrema [17], [19].
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Abstract. We propose the kernel-based nonlinear independent compo-
nent analysis (ICA) method, which consists of two separate steps. First,
we map the data to a high-dimensional feature space and perform di-
mension reduction to extract the effective subspace, which was achieved
by kernel principal component analysis (PCA) and can be considered
as a pre-processing step. Second, we need to adjust a linear transforma-
tion in this subspace to make the outputs as statistically independent
as possible. In this way, nonlinear ICA, a complex nonlinear problem, is
decomposed into two relatively standard procedures. Moreover, to over-
come the ill-posedness in nonlinear ICA solutions, we utilize the minimal
nonlinear distortion (MND) principle for regularization, in addition to
the smoothness regularizer. The MND principle states that we would
prefer the nonlinear ICA solution with the mixing system of minimal
nonlinear distortion, since in practice the nonlinearity in the data gen-
eration procedure is usually not very strong.

1 Introduction

Independent component analysis (ICA) aims at recovering independent sources
from their mixtures, without knowing the mixing procedure or any specific
knowledge of the sources. In particular, in this paper we consider the general
nonlinear ICA problem. Assume that the observed data x = (x1, · · · , xn)T are
generated from an independent random vector s = (s1, · · · , sn)T by a nonlin-
ear transformation x = H(s), where H is an unknown real-valued n-component
mixing function. (For simplicity, it is usually assumed that the number of ob-
servable variables equals that of the original independent variables.) The general
nonlinear ICA problem is to find a mapping G : Rn → Rn such that y = G(x)
has statistically independent components.

In thegeneralnonlinear ICAproblem, inorder tomodelarbitrarynonlinearmap-
pings, one may need to resort to a flexible nonlinear function approximator, such as
the multi-layer perceptron (MLP) network or the radius basis function (RBF) net-
work, to represent the nonlinear separation system G or the mixing system H (see,
� This work was partially supported by a grant from the Research grants Council of

the Hong Kong Special Administration Region, China.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 301–308, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



302 K. Zhang and L. Chan

e.g. [1]). In such away, parameters at different locations of the network are adjusted
simultaneously. This would probably slow down the learning procedure.

Kernel-based methods has also been considered for solving the nonlinear blind
source separation (BSS) problem [5,10].1 These methods exploit the temporal
information of sources for source separation, and do not enforce mutual indepen-
dence of outputs. In [5], the data are first implicitly mapped to high-dimensional
feature space, and the effective subspace in feature space is extracted. TD-
SEP [13], a BSS algorithm based on temporal decorrelation, is then performed
in the extracted subspace. Denote by d the reduced dimension. This method
produces d outputs and one needs to select from them n outputs, as an estimate
of the original sources. This method produces successful results in many exper-
iments. However, a problem is that its outputs may not contain the estimate of
the original sources, due to the effect of spurious outputs. Moreover, this method
may fail if some sources lack specific time structures.

In this paper we propose a kernel-based method to solve nonlinear ICA. The
separation system G is constructed using the kernel methods, and unknown pa-
rameters are adjusted by minimizing the mutual information between outputs
yi. The first step of this method is similar to that in [5], and kernel principal
component analysis (PCA) is adopted to construct the feature subspace of re-
duced dimension. In the second step we solve a linear problem—we adjust the
n × d linear transformation matrix W to make the outputs statistically inde-
pendent. As stated in [5], standard linear ICA algorithms do not work here. We
derive the algorithm for learning W, which is in a similar form to the traditional
gradient-based ICA algorithm.

We then consider suitable regularization conditions with which the proposed
kernel-based nonlinear ICA leads to nonlinear BSS. In the general nonlinear
ICA problem, although we do not know the form of the nonlinearity in the data
generation procedure, fortunately, the nonlinearity in the generation procedure
of natural signals is usually not strong. Hence, provided that the nonlinear ICA
outputs are mutually independent, we would prefer the solution with the mixing
transformation as close as possible to linear. This information, formulated as
the minimal nonlinear distortion (MND) principle [12], can help to reduce the
indeterminacies in solutions of nonlinear ICA greatly. MND and smoothness are
incorporated for regularization in the kernel-based nonlinear ICA.

2 Kernel-Based Nonlinear ICA

Kernel-based learning has become a popular technique, in that it provides an
elegant way to tackle nonlinear algorithms by reducing them to linear ones in
some feature space F , which is related to the original input space Rn by a
possibly nonlinear map Φ. Denote by x(i) the ith sample of x. The dot prod-
ucts of the form Φ(x(i)) · Φ(x(j)) can be computed using kernel representations
k(x(i),x(j)) = Φ(x(i)) · Φ(x(j)). Thus, any linear algorithm formulated in terms
of dot products can be made nonlinear by making use of the kernel trick, without
1 Note that kernel ICA [3] actually performs linear ICA with the kernel trick.
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knowing explicitly the mapping Φ. Unfortunately, ICA could not be kernelized
directly, since it can not be carried out using dot products.

However, the kernel trick can still help to perform nonlinear ICA, in an analo-
gous manner to the development of kTDSEP, which is a kernel-based algorithm
for nonlinear BSS [5]. Kernel-based nonlinear ICA involves two separate steps.
The first step is the same as that in kTDSEP: the data are implicitly mapped
to a high-dimensional feature space and its effective subspace is extracted. As
a consequence, the nonlinear problem in input space is transformed to a linear
one in the reduced feature space. In the second step, a linear transformation
in the reduced feature space is constructed such that it produces n statistically
independent outputs. In this way nonlinear ICA is performed faithfully, without
any assumption on the time structure of sources.

Many techniques can help to find the effective subspace in feature space F .
Here we adopt kernel PCA [11], since the subspace it produces gives the smallest
reconstruction error in feature space. The effective dimension of feature space,
denoted by d, can be determined by inspection on the eigenvalues of the kernel
matrix. Let x be a test point, and let k̃(x(i),x) = Φ̃(x(i)) · Φ̃(x), where Φ̃ de-
notes the centered image in feature space. The pth centered nonlinear principal
component of x, denoted by zp, is in the form (for details see [11]):

zp =
T∑

i=1

α̃pik̃(x(i),x) (1)

Let z = (z1, · · · , zd)T . It contains all principal components of the images Φ(x)
in feature space. Consequently, in the following we just need find a n × d matrix
W which makes the components of

y = Wz (2)

as statistically independent as possible.

2.1 Can Standard Linear ICA Work in Reduced Feature Space?

As claimed in [5], applying standard linear ICA algorithms, such as JADE [4]
and FastICA [6], to the signals z does not give successful results. In our problem,
zp, p = 1, · · · , d, are nonlinear mixtures of only n independent sources, and we
aim at transforming zp to n signals (generally n � d) which are statistically
independent, with a linear transformation. But standard ICA algorithms, such
as the natural gradient algorithm [2] and JADE, assume that W is square and
invertible and try to extract d independent signals from zi. So they can not give
successful results in our problem.

Although FastICA, which aims at maximizing the nongaussianity of outputs,
can be used in a deflationary manner, its relation to maximum likelihood of the
ICA model or minimization of mutual information between outputs is established
when the linear ICA model holds and W is square and invertible [7]. When the
linear ICA model does not hold, just like in our problem, nongaussianity of
outputs does not necessarily lead to the independence between them. In fact,
if we apply FastICA in a deflationary manner to zi, the outputs yi will be
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extremely nongaussian, but they are not necessarily mutually independent. The
extreme nongaussianity of yi is because theoretically, with a properly chosen
kernel function, by adjusting the ith row of W the mapping from x to yi covers
quite a large class of continuous functions.

2.2 Learning Rule

Now we aim to adjust W in Eq. 2 to make the outputs yi as independent as
possible. This can be achieved by minimizing the mutual information between yi,
which is defined as I(y) =

∑n
i=1 H(yi)−H(y) where H(·) denotes the differential

entropy. Denote by J the Jacobian matrix of the transformation from x to y,
i.e. J = ∂y

∂x , and by J1 the Jacobian matrix of the transformation from x to z,
i.e. J1 = ∂z

∂x .2 Due to Eq. 2, one can see J = W · J1. We also have H(y) =
H(x) + E log | detJ|. Consequently,

I(y) =
n∑

i=1

H(yi) − H(y) = −
n∑

i=1

log pyi(yi) − E log | det(W · J1)| − H(x)

As H(x) does not depend on W, the gradient of I(y) w.r.t. W is

∂I(y)
∂W

= E[ψ(y) · zT ] − E[J−T · JT
1 ] (3)

where ψ(y) = (ψ1(y1), · · · , ψn(yn))T with ψi being the score function of pyi ,

defined as ψi = −(log pyi)′ = − p′
yi

pyi
. W can then be adjusted according to Eq. 3

with the gradient-based method. Note that the gradient in Eq. 3 is in a similar
form to that in standard ICA, and the only difference is that the second term
becomes −E[W−T ] in standard ICA3.

In standard ICA, we can obtain correct ICA results even if the estimation of
the densities pyi or the score functions ψi is not accurate. But in the nonlinear
case, they should be estimated accurately. We use the mixture of 5 Gaussian’s
to model pyi . After each iteration of Eq. 3, parameters in the Gaussian mixture
model are adjusted by the EM algorithm to adapt the current outputs yi.

3 With Minimum Nonlinear Distortion

Solutions to nonlinear ICA always exist and are highly non-unique [8]. In fact,
in the general nonlinear ICA problem, nonlinear BSS is impossible without ad-
ditional prior knowledge on the mixing model [9]. Smoothness of the mapping
2 J1 is involved in the obtained update rule Eq. 3. Since k̃(x(i),x) = Φ̃(x(i)) · Φ̃(x) =

k(x(i),x)− 1
T

∑T
p=1 k(xp,x)− 1

T

∑T
q=1 k(x(i),x(q))+ 1

T2

∑T
p=1

∑T
q=1 k(x(p),x(q)). We

have ∂k̃(x(i),x)
∂x = ∂k(x(i),x)

∂x − 1
T

∑T
p=1

∂k(x(p),x)
∂x . According to Eq. 1, the pth row of

J1 is then
∂zp

∂x =
∑T

i=1 α̃pi
∂k̃(x(i),x)

∂x . This can be easily calculated and saved in the
first step of our method for later use.

3 Assuming that W is square and invertible, the natural gradient ICA algorithm is
obtained multiplying the right-hand side of ∂I(y)

∂W by WT W [2]. However, as W in
Eq. 2 is n × d, the natural gradient for W could not be derived in this simple way.
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G provides a useful regularization condition to lead nonlinear ICA to nonlinear
BSS [1]. But it seems not sufficient, as shown by the counterexample in [9].

In this paper, in addition to the smoothness regularization, we exploit the
“minimal nonlinear distortion” (MND) principle [12] for regularization of non-
linear ICA. MND has exhibited quite good performance for regularizing non-
linear ICA, when the nonlinearity in the data generation procedure is not very
strong [12]. The objective function to be minimized thus becomes

J(W) = I(y) + λ1R1(W) + λ2R2(W) (4)

where R1 denotes the regularization term for achieving MND, R2 is that for en-
forcing smoothness, and λ1 and λ2 are corresponding regularization parameters.

3.1 Minimum Nonlinear Distortion

MND states that, under the condition that the separation outputs yi are mu-
tually independent, we prefer the nonlinear mixing mapping H that is as close
as possible to linear. So R1 is a measure of ”closeness to linear” of H. Given a
nonlinear mapping H, its deviation from the affine mapping A∗, which fits H
best among all affine mappings A, is an indicator of its “closeness to linear”
or the level of its nonlinear distortion. Mean square error (MSE) is adopted
to measure the deviation, since it greatly facilitates the following analysis. Let
x∗ = (x∗1, · · · , x∗n)T = A∗y. R1 can be defined as the total MSE between xi and
x∗i (here we assume that both x and y are zero-mean):

R1 = E{(x − x∗)T (x − x∗)} , where (5)
x∗ = A∗ỹ, and A∗ = argA min E{(x − Ay)T (x − Ay)}

The derivative of R1 w.r.t. A∗ is ∂R1
∂A∗ = −2E{(x − A∗y)yT }. Setting the

derivative to 0 gives A∗: E{(x − A∗ỹ)ỹT } = 0 ⇔ A∗ = E{xyT }[E{yyT }]−1.
We can see that due to the adoption of MSE, A∗ can be obtained in closed form.
This will greatly simplify the derivation of learning rules.

We then have R1 = Tr
(
E[(x−A∗y)(x−A∗y)T ]

)
= −Tr

(
E[xyT ]{E[yyT ]}−1 ·

E[yxT ]
)
+const. Since in the learning process, yi are approximately independent

from each other, they are approximately uncorrelated. We can also normalize the
variance of yi after each iteration. Consequently E[yyT ] = I. Let L = E[xzT ].
we have E[xyT ] = LWT . Thus R1 = −Tr(LWT WLT ) + const. This gives

∂R1

∂W
= −2WLT L (6)

It was suggested to initialize λ1 in Eq. 4 with a large value at the beginning of
training and decreasing it to a small constant during the learning process [12].
A large value for λ at the beginning helps to reduce the possibility of getting
into unwanted solutions or local optima. As training goes on, the influence of the
regularization term is reduced, and G gains more freedom. In addition, initializing
G to an almost identity mapping would also be useful. This can be achieved by
simply initializing W with W = E[xzT ]{E[zzT ]}−1.
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The MND principle can be incorporated in many nonlinear ICA/BSS methods
to avoid unwanted solutions, under the condition that the nonlinearity in the
mixing procedure is not too strong. As an example, for kTDSEP [5], MND
provides a way to select a subset of output components corresponding to the
original sources [12].

3.2 Smoothness: Local Minimum Nonlinear Distortion

Both MND and smoothness are used for regularization in our nonlinear ICA
method. In fact, the smoothness regularizer exploiting second-order derivatives
is related to MND. Particularly, enforcing local closeness to linear of the trans-
formation at every point will lead to such a smoothness regularizer [12].

For a one-dimensional sufficiently smooth function g(x), its second-order Tay-
lor expansion in the vicinity of x is g(x+ε) ≈ g(x)+

(
∂g
∂x

)T ·ε+ 1
2εT Hxε. Here ε is

a small variation of x and Hx denotes the Hessian matrix of g. Let �ij = ∂2g
∂xi∂xj

.
It can be shown [12] that if we use the first-order Taylor expansion of g at x to
approximate g(x + ε), the square error is

∣∣∣
∣∣∣g(x + ε) − g(x) −

( ∂g

∂x

)T

· ε
∣∣∣
∣∣∣
2

≈ 1
4

∣∣∣∣εT Hxε
∣∣∣∣2 =

1
4

( n∑

i,j=1

�ijεiεj

)2

≤ 1
4

( n∑

i=1

�2
ii + 2

n∑

i,j=1,i�=j

�2
ij

)( n∑

i=1

ε4
i + 2

n∑

i,j=1,i�=j

ε2
i ε

2
j

)
=

1
4
||ε||4 ·

n∑

i,j=1

�2
ij

The above inequality holds due to the Cauchy’s inequality. We can see that in
order to make g locally close to linear at every point in the domain of x, we
just need minimize

∫
Dx

∑n
i,j=1 �2

ijdx. When the mapping is vector-valued, we
need apply this regularizer to each output of the mapping. R2 in Eq. 4 can then
be constructed as R2 =

∫
Dx

∑n
i,j=1 Pijdx, where Pij �

∑n
l=1

(
∂2yl

∂xi∂xj

)2. The

derivation of ∂R2
∂W is straightforward. In the result, ∂2zp

∂xi∂xj
is involved. It can be

computed and saved in the first step of kernel-based nonlinear ICA.

4 Experiments

According to the experimental results in [1] and our experience, mixtures of
subgaussian sources are more difficult to be separated well, than those of super-
gaussian sources. So for saving space, here we just present some experimental
results on separating two subgaussian sources. The sources are a sawtooth signal
(s1) and an amplitude-modulated waveform (s2), with 1000 samples. xi are gen-
erated in the same form as the example in Sec. 4 of [5], i.e. x = Bs + cs1s2, but
here c = (−0.15, 0.5)T . The waveforms and scatterplots of si and xi are shown
in Fig. 1, from which we can see that the nonlinear effect is significant.

The regularization parameter for enforcing smoothness is λ2 = 0.2, and that
for enforcing MND, λ1, decays from 0.3 to 0.01 during the learning process.
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Fig. 1. Source and their nonlinear mixtures. Left: waveforms of sources. Middle: scat-
terplot of sources. Right: scatterplot of mixtures.

We chose the polynomial kernel of degree 4, i.e. k(a,b) = (aT b + 1)4, and
found d = 14. Here we compare the separation results of four methods/schemes,
which are linear ICA (FastICA is adopted), kernel-based nonlinear (kNICA)
without explicit regularization, kNICA with only the smoothness regularization,
and kNICA with both smoothness and MND regularization. Table 1 shows the
SNR of the recovered signals. Numbers in parentheses are the SNR values after
trivial indeterminacies are removed.4 Fig. 2 shows the scatterplots of yi obtained
by various schemes. In this experiment, clearly kNICA with the smoothness and
MND regularization gives the best separation result.

Table 1. SNR of the separation results on various methods (schemes)

Channel FastICA kNICA (no regu.) kNICA (smooth) kNICA (smooth & MND)

No. 1 3.72 (4.59) 9.25(9.69) 11.1(14.4) 12.1 (16.5)
No. 2 5.76 (6.04) 6.07(8.19) 8.9(12.7) 15.4 (25.1)
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Fig. 2. Scatterplot of yi obtained by various methods/schemes. (a) FastICA. (b) kNICA
without explicit regularization. (c) kNICA with the smoothness regularizer. (d) kNICA
with the smoothness and MND regularization.

4 We applied a 1-8-1 MLP, denoted by T , to yi to minimize the square error between
si and T (yi). In this way trivial indeterminacies are removed.
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5 Conclusion

We have proposed to solve the nonlinear ICA problem using kernels. In the first
step of the method, the data are mapped to high-dimensional feature space and
the effective subspace is extracted. Thanks to the kernel trick, in the second
step, we need to solve a linear problem. The algorithm in the second step was
derived, in a form similar to standard ICA. In order to achieve nonlinear BSS,
we incorporated the minimal nonlinear distortion principle and the smoothness
regularizer for regularization of the proposed nonlinear ICA method. MND helps
to overcome the ill-posedness of nonlinear ICA, under the condition that the
nonlinearity in the mixing procedure is not very strong. This condition usually
holds for practical problems.
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Abstract. Blind source extraction (BSE) is of advantages over blind
source separation (BSS) when obtaining some underlying source signals
from high dimensional observed signals. Among a variety of BSE al-
gorithms, a large number of algorithms are based on linear prediction
(LP-BSE). In this paper we analyze them from practical point of view.
We reveal that they are, in nature, minor component analysis (MCA) al-
gorithms, and thus they have some problems that are inherent in MCA
algorithms. We also find a switch phenomenon of online LP-BSE algo-
rithms, showing that different parts of a single extracted signal are the
counterparts of different source signals. The two issues should be noticed
when one applies these algorithms to practical applications. Computer
simulations are given to confirm these observations.

1 Introduction

Blind source extraction (BSE) [1] is a powerful technique that is closely related
to blind source separation (BSS). The basic task of BSE is to estimate some of
underlying source signals that are linearly combined in observations. Compared
with BSS, BSE has some advantages [1]. An attractive one is its ability to extract
a small subset of source signals from high-dimensional observed signals. Hence
it is often recommended to be used in EEG/MEG fields and alike [1,2,3].

There are many BSE algorithms for extracting source signals based on their
temporal structures [1,4]. Among them there is a class of algorithms based on
linear prediction. For example, Cichocki, Mandic, and Liu et al. [2,6,7,8] proposed
several BSE algorithms based on short-term linear prediction. Barros et al. [5]
proposed a BSE algorithm based on long-term linear prediction. Later Smith et
al. [3] proposed a BSE algorithm combining short-term prediction and long-term
prediction. And recently Liu et al.[9] extended a basic linear prediction based
algorithm to the one suitable for noisy environment.

In this paper we consider some possible problems when applying the linear
prediction based BSE (LP-BSE) algorithms to practical applications, especially
EEG/MEG fields.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 309–316, 2007.
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2 The Linear Prediction Based Algorithms

Suppose that unknown source signals s(k) = [s1(k), · · · , sn(k)]T are zero-mean
and spatially uncorrelated, and suppose that x(k) = [x1(k), · · · , xn(k)]T is a
vector of observed signals, which is a linear instantaneous mixture of source
signals by x(k) = As(k), where k is time index and A ∈ Rn×n is an unknown
mixing matrix of full rank. The goal of BSE is to find a demixing vector w
such that y(k) = wT x(k) = wT As(k) is an estimate of a source signal. To cope
with ill-conditioned cases and to make algorithms simpler and faster, before
extraction whitening [1] is often used to transform the observed signals x(k) to
z(k) = Vx(k) such that E{z(k)z(k)T } = I, where V ∈ Rn×n is a prewhitening
matrix and VA is an orthogonal matrix.

Assuming that the underlying source signals have temporal structures, the
class of LP-BSE algorithms is derived by minimizing the normalized mean square
prediction error given by [6,8]

J1 =
E{e(k)2}
E{y(k)2} =

E{(y(k) − bT y(k))2}
E{y(k)2} (1)

where y(k) = wT x(k), b = [b1, b2, · · · , bP ]T , y(k) = [y(k −1), y(k−2), · · · , y(k −
P )]T and P is AR order that is set before running algorithms. If one performs
the whitening and normalizes the demixing vector w, the objective function (1)
reduces to [2,5]:

J2 = E{e(k)2} = E{(y(k) − bT y(k))2} (2)

where y(k) = wT z(k) = wT Vx(k) and ‖w‖ = 1.
Without loss of generality, we only consider the objective function (2) in the

following. After some algebraic calculations, from (2) we obtain

J2 = E{e(k)2} = wT R̂zw = wT VAR̂sAT VT w = qT R̂sq, (3)

in which q = AT VT w, and

R̂z = Rz(0) −
P∑

p=1

bpRz(p) −
P∑

q=1

bqRz(−q) +
P∑

p=1

P∑

q=1

bpbqRz(q − p) (4)

R̂s = Rs(0) − 2
P∑

p=1

bpRs(p) +
P∑

p=1

P∑

q=1

bpbqRs(q − p) (5)

where Rz(p) = E{z(k)z(k − p)T }, and Rs(p) = E{s(k)s(k − p)T } is a diagonal
matrix due to the assumptions. Also, R̂s is a diagonal matrix, whose diagonal
elements are given by

ρi = ri(0) − 2
P∑

p=1

bpri(p) +
P∑

p=1

P∑

q=1

bpbqri(q − p), i = 1, · · · , n (6)
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where ri is the autocorrelation function of si.
Now we calculate the concrete value of ρi. Suppose when J2 achieves its min-

imum, b achieves b∗ = [b∗1, b∗2, · · · , b∗p]T . We express all the source signals as

si(k) =
P∑

p=1

b∗psi(k − p) + ei(k), i = 1, · · · , n (7)

where ei(k) is called residual processes. Then we have

ri(0) = E
{( P∑

p=1

b∗psi(k − p) + ei(k)
)( P∑

q=1

b∗qsi(k − q) + ei(k)
)}

=
P∑

p=1

P∑

q=1

b∗pb
∗
qri(q − p) + 2E{ei(k)si(k)} − E{ei(k)2} (8)

where we use the relationship (7). On the other hand, we also have

ri(0) = E
{( P∑

p=1

b∗psi(k − p) + ei(k)
)
si(k)

}
=

P∑

p=1

b∗pri(p) + E{ei(k)si(k)}. (9)

Substitute (8) and (9) into (6), we obtain

ρi = E{ei(k)2}, (10)

implying that ρi(i = 1, · · · , n) are just the powers of residual processes of linear
prediction to the source signals given the coefficients b∗p(p = 1, · · · , P ). Obviously,
calculating the minimum of J2 is equivalently finding the minimum among all
ρi(i = 1, · · · , n), which are the eigenvalues of R̂s and are also the ones of R̂z.
And the demixing vector w is the associated eigenvector. Thus the LP-BSE
algorithms are in nature the MCA algorithms [10,11,15].

3 Analysis of the LP-BSE Algorithms

It is recognized that MCA algorithms have some flaws in practical applications
[10,11]. First, in practice the small eigenvalues of the covariance matrix R̂z are
often close to each other, which reduces the estimate accuracy of associated
eigenvectors [14] and brings difficulties to global convergence [10,11]. Moreover
the performance of MCA algorithms often suffers from outliers and noise [12].

Naturally, the LP-BSE algorithms inherit some of these flaws when dealing
with high dimensional observed signals. Take the extraction of event-related
potentials as an example. The number of sensor signals are often larger than 64,
and some underlying source signals have similar time structures [13]. According
to (10) and (7) the small eigenvalues of R̂z are close to each other, which makes
the estimation of the minor eigenvector sensitive to sensor noise [12].
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Now consider online versions of LP-BSE algorithms. Suppose the current ex-
tracted source is s1(k), whose current residual process’s power level is e2

1(k). This
implies that given the prediction AR order P in algorithms, e2

1(k) is the smallest
among all e2

j(k), j = 1, · · · , n. If at time k+1, s1(k+1)’s true AR order starts to
change but the given prediction AR order does not change, e2

1(k+1) may become
larger1. Then there may be another source signal, say s2(k +1), whose e2

2(k +1)
with the given prediction order is smaller than that of s1(k + 1). Consequently,
the algorithms switch to extract s2(k +1). Therefore the extracted signal is still
mixed by the two source signals in the sense that the first part of the extracted
signal is the counterpart of s1 and the second part is the counterpart of s2. We
call this the switch phenomenon. The essential reason to the existence of the
switch phenomenon is the use of the fixed prediction order that is set before
performing LP-BSE algorithms. Similarly, if the true AR coefficients of source
signals vary fast and bi(i = 1, · · · , P ) cannot be adjusted in the same pace, the
switch phenomenon may also occur. Remind that in the EEG data processing,
especially in the even-related brain potential extraction, the underlying source
signals’ AR order and coefficients may quickly vary. Thus the phenomenon may
occur in these cases.

4 Simulations

In the first simulation we illustrated unsatisfying performance of LP-BSE algo-
rithms due to their MCA nature. We used the data set ABio7, a benchmark in
ICALAB [17]. Three typical LP-BSE algorithms, i.e. the ones in [2,7,8], were
used to extract these signals. To make comparison, we intuitively gave a PCA-
like BSE algorithm, a variation of our algorithm [4], as follows2:

w = PCAi

( P∑

i=1

Rz(τi)
)

= PCAi(R̃z), (11)

where Rz(τi) = E{z(k)z(k − τi)T }, τi was time delay, and PCAi(R̃z) was the
operator that calculated the i-th principal eigenvector of R̃z. Using a priori
knowledge one can choose a specific set of time delays to achieve better perfor-
mance [4]. Actually, (11) is only a framework, and can be implemented offline or
online by using many efficient and robust methods [14,16]. Note that the PCA-
like BSE algorithm obtains principal eigenvectors, while the LP-BSE algorithms
obtain minor ones. All the algorithms were implemented offline.

The source signals were randomly mixed and whitened. Then each algorithm
was performed on these signals. The step-size of the algorithm in [8] was 0.1.

1 It also may become smaller. So in this case the switch phenomenon does not occur.
2 Note that we present the PCA-like algorithm in purpose to show that the class

of LP-BSE algorithms may not achieve satisfying results when applied to practical
applications. Admittedly, better algorithms than the algorithm may be developed,
which is not the topic in this paper.



Linear Prediction Based Blind Source Extraction Algorithms 313

The learning rate parameter μ0 of the algorithm in [7] (see Equ.(16) in [7]) was
0.5. The extraction performance was measured by

PI =
1

n − 1

( n∑

i=1

q2
i

maxi q2
i

− 1
)

(12)

where q = [q1, · · · , qn] = wT VA was a global vector, V was the whitening
matrix, A was the mixing matrix and w was the demixing vector obtained by
algorithms. PI’s value lay in [0,1] for any vector q = [q1, · · · , qn]. The smaller it
was, the better the extraction performance was. Simulations were independently
carried out 50 trials. The results are shown in Table 1, from which we can see
that the LP-BSE algorithms generally performed poorly.

Table 1. The averaged performance indexes of the algorithms in the first simulation.
For the three LP-BSE algorithms the parameter P was the prediction order, while for
the PCA-like algorithm P meant that the time delay set was {1, · · · , P}.

P 1 2 3 4 5 6 7 8 9 10 12 20 30 40 50 400

Alg. (11) 0.00 0.00 0.01 0.09 0.02 0.07 0.01 0.01 0.06 0.02 0.01 0.05 0.04 0.07 0.03 0.01

Alg. [8] 0.19 0.17 0.17 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Alg. [2] 0.02 0.00 0.07 0.07 0.06 0.03 0.03 0.02 0.04 0.08 0.10 0.05 0.06 0.07 0.08 0.14

Alg. [7] 0.11 0.14 0.11 0.09 0.12 0.09 0.10 0.11 0.13 0.12 0.13 0.06 0.13 0.08 0.16 0.08

In the second simulation we used the 122-dimension MEG data set (Fig.1 (a))
in [18] to show performance of a typical LP-BSE algorithm in extracting hori-
zontal eye movements, which occurred at about the 4000-th sampling point and
the 15500-th sampling point. Since the movements resulted from the same group
of muscles, we safely believed that artifacts associated with the movements oc-
curring at different time should appear in the same extracted signal.

After performing the same preprocessing as that in [18], we used the offline
LP-BSE algorithm in [8] to extract the artifacts with different levels of data di-
mension reduction. Its step-size was 0.5 and prediction order was 10. The results
are shown in Fig.1 (b), where y1, y2, y3 and y4 were extracted by the LP-BSE
algorithm with data dimension reduced to 120, 80, 60, and 40, respectively. y5

was extracted by the PCA-like algorithm (11) without data dimension reduction
(τi = {1, · · · , 5}). y6 was extracted by FastICA, which was also used in [18]. Since
Vigário et al. have shown that FastICA can perfectly extract the horizontal eye
movent artifacts, we regarded y6 as a benchmark. From y1 − y3 we see that the
artifacts were not perfectly extracted, since the horizontal eye movement arti-
fact at about the 15500-th sampling point was not extracted. Although in y4 all
the artifacts were extracted, it was mixed by artifacts resulting from eye blinks
[18]. Besides, we see that the extraction performance of the LP-BSE algorithm
was affected by the dimension reduction. When the dimension was reduced to a
certain degree, the extraction performance became relatively better. In contrast,
in y5 all the horizontal eye movement artifacts were extracted without mixed
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Fig. 1. A subset of the MEG data set [18] (a) and extracted artifacts (b)

by other artifacts, and we found the extraction quality was not affected by the
data dimension (the extraction results with dimension reduction are not shown
here due to limited space). We also ran other LP-BSE algorithms and almost
obtained the same results. Due to space limit we omit the report.

In the last simulation we showed the switch phenomenon of online LP-BSE
algorithms. We generated three AR(6) Gaussian signals of 5-second duration
time (Fig.2). Each source signal had zero mean and unit variance. The sampling
frequency was 1000 Hz. The AR coefficients of each signal were unchanged during
the first 2.5 second, given by:

source1 : b = [−1.6000, 0.9000, −0.2000, 0.0089, 0.0022, −0.0002]
source2 : b = [−0.1000, −0.4300, 0.0970, 0.0378, −0.0130, 0.0009]
source3 : b = [−2.3000, 2.0400, −0.8860, 0.1985, −0.0216, 0.0009]

And hereafter the AR coefficients changed to:

source1 : b = [−1.6000, 0.9000, −0.2000, 0.0089, 0.0022, −0.0002]
source2 : b = [−2.3000, 2.0400, −0.8860, 0.1985, −0.0216, 0.0009]
source3 : b = [−0.1000, −0.4300, 0.0970, 0.0378, −0.0130, 0.0009]

We used the online version of the LP-BSE algorithm in [8] to extract a signal.
Its step-size was 0.01 and prediction order was 10. The result is shown in Fig.2
(see y1), from which we see that the first part of y1 (before 2.5 second) was
the counterpart of source signal s3, but from 3.6 second or so the signal was
clearly the counterpart of source signal s1. To further confirm this, we measured
the similarity between the extracted signal and the source signals, using the
performance index PI2 = −10 lg(E{(s(k) − s̃(k))2})(dB), where s(k) was the
desired source signal, and s̃(k) was the extracted signal (both of them were
normalized to be zero-mean and unit-variance). The higher PI2 is, the better
the performance. Denote by Part1 the extracted signal’s segment from 2.0 s to
2.5 s, and denote by Part2 the extracted signal’s segment from 4.0 s to 5.0 s.
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The PI2 of Part1 measuring the similarity between Part1 and the counterpart
of s3 was 18.5 dB, showing Part1 was very similar to the counterpart of s3. The
PI2 of Part2 measuring the similarity between Part2 and the counterpart of s1

was 19.7 dB, showing Part2 was very similar to the counterpart of s1.
Next we used an online version of the PCA-like algorithm (11), implemented

by the OJAN PCA algorithm [16], to extract a source signal. The extracted
signal is shown in Fig.2 (see y2), from which we can see that the extracted signal
was just s3 and the switch phenomenon did not occur. We also calculated the
algorithm’s PI2 at Part1 and Part2. The PI2 of Part1 measuring the similarity
between Part1 and the counterpart of s3 was 22.3 dB, showing Part1 was very
similar to the counterpart of s3. The PI2 of Part2 measuring the similarity
between Part2 and the counterpart of s3 was 19.9 dB, showing Part2 was very
similar to the counterpart of s3 as well. The results show that the online version
has well extracted the whole source signal s3.
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Fig. 2. Segments of the AR source signals (s1, s2, s3) and the extracted signals. y1 was
extracted by the online LP-BSE algorithm in [8], while y2 was extracted by the online
version of the algorithm (11).

5 Conclusion

In this paper we analyze a class of linear prediction based BSE algorithms,
revealing that they are in nature the MCA algorithms and showing a switch
phenomenon of their online versions. Based on these results, careful attentions
should be paid when one applies these algorithms to practical applications such
as EEG and MEG fields.
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Abstract. In this paper, we are interested in the separation of audio
sources from their instantaneous or convolutive mixtures. We propose a
new separation method that exploits the sparsity of the audio signals
via an �p-norm based contrast function. A simple and efficient natural
gradient technique is used for the optimization of the contrast function in
an instantaneous mixture case. We extend this method to the convolutive
mixture case, by exploiting the property of the Fourier transform. The
resulting algorithm is shown to outperform existing techniques in terms
of separation quality and computational cost.

1 Introduction

Blind Source Separation (BSS) is an approach to estimate and recover indepen-
dent source signals using only the information within the mixtures observed at
each channel. Many algorithms have been proposed to solve the standard blind
source separation problem in which the mixtures are assumed to be instanta-
neous. A fundamental and necessary assumption of BSS is that the sources are
statistically independent and thus are often separated using higher-order statis-
tical information [1]. If extra information about the sources is available at hand,
such as temporal coherency [2], source nonstationarity [3], or source cyclosta-
tionarity [4], then one can remain in the second-order statistical scenario, to
achieve the BSS.

In the case of non-stationary signals (including audio signals), certain solu-
tions using time-frequency analysis of the observations exist [5]. Other solutions
use the statistical independence of the sources assuming a local stationarity to
solve the BSS problem [6]. This is a strong assumption that is not always verified
[7]. To avoid this problem, we propose a new approach that handles the general
linear instantaneous model (possibly noisy) by using the sparsity assumption of
the sources in the time domain. Then, we extend this algorithm to the convolu-
tive mixture case, by transforming the convolutive problem into instantaneous
problem in the frequency domain, and separating the instantaneous mixtures
in every frequency bin. The use of sparsity to handle this model, has arisen in
several papers in the area of source separation [8,9]. We first present a spar-
sity contrast function for BSS. Then, in order to achieve BSS, we optimize the
considered contrast function using an iterative algorithm based on the relative
gradient technique.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 317–324, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In the following section, we discuss the data model that formulates our prob-
lem. Next, we detail the different steps of the proposed algorithm. In Section 4,
some simulations are undertaken to validate our algorithm and to compare its
performance to other existing BSS techniques.

2 Instantaneous Mixture Case

2.1 Data Model

Assume that N audio signals impinge on an array of M ≥ N sensors. The
measured array output is a weighted superposition of the signals, corrupted by
additive noise, i.e.

x(t) = As(t) + w(t) t = 0, . . . , T − 1 (1)

where s(t) = [s1(t), · · · , sN (t)]T is the N × 1 sparse source vector, w(t) =
[w1(t), · · · , wM (t)]T is the M × 1 complex noise vector, A is the M × N full
column rank mixing matrix (i.e., M ≥ N), and the superscript T denotes the
transpose operator. The purpose of blind source separation is to find a separating
matrix, i.e. a N × M matrix B such that ŝ(t) = Bx(t) is an estimate of the
source signals.

Before proceeding, note that complete blind identification of separating matrix
B (or equivalently, the mixing matrix A) is impossible in this context, because
the exchange of a fixed scalar between the source signal and the corresponding
column of A leaves the observations unaffected. Also note that the numbering of
the signals is immaterial. It follows that the best that can be done is to determine
B up to a permutation and scalar shifts of its columns, i.e., B is a separating
matrix iff:

Bx(t) = PΛs(t) (2)

where P is a permutation matrix and Λ a non-singular diagonal matrix.

2.2 Sparsity-Based BSS Algorithm

Before starting, we propose to use ’an optional’ whitening step which set the
mixtures to the same energy level and reduces the number of parameters to be
estimated. More precisely, the whitening step is applied to the signal mixtures
before using our separation algorithm. The whitening is achieved by applying a
N × M matrix W to the signal mixtures in such a way Cov(Wx) = I in the
noiseless case, where Cov(·) stands for the covariance operator. As shown in [2],
W can be computed as the inverse square root of the noiseless covariance matrix
of the signal mixtures (see [2] for more details). In the following, we apply our
separation algorithm on the whitened data:

xw(t) = Wx(t).

We propose an iterative algorithm for the separation of sparse audio signals,
namely the ISBS for Iterative Sparse Blind Separation. It is well known that
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audio signals are characterized by their sparsity property in the time domain
[8,9] which is measured by their �p norm where 0 ≤ p < 2. More specifically, one
can define the following sparsity based contrast function

Gp(s) =
N∑

i=1

[Jp(si)]
1
p , (3)

where

Jp(si) =
1
T

T−1∑

t=0

|si(t)|p. (4)

The algorithm finds a separating matrix B such as,

B = argmin
B

{Gp(B)} , (5)

where

Gp(B) � Gp(z), (6)

and z(t) � Bxw(t) represents the estimated sources. The approach we choose
to solve (5) is inspired from [10]. It is a block technique based on the processing
of T received samples and consists in searching iteratively the minimum of (5)
in the form:

B(k+1) = (I + ε(k))B(k) (7)
z(k+1)(t) = (I + ε(k))z(k)(t) (8)

where I denotes the identity matrix. At iteration k, a matrix ε(k) is deter-
mined from a local linearization of Gp(B(k+1)xw). It is an approximate Newton
technique with the benefit that ε(k) can be very simply computed (no Hessian
inversion) under the additional assumption that B(k) is close to a separating
matrix. This procedure is illustrated in the following:
At the (k+1)th iteration, the proposed criterion (4) can be developed as follows:

Jp(z
(k+1)
i ) =

1
T

T−1∑

t=0

∣∣∣∣∣∣
z
(k)
i (t) +

N∑

j=1

ε
(k)
ij z

(k)
j (t)

∣∣∣∣∣∣

p

=
1
T

T−1∑

t=0

|z(k)
i (t)|p

∣∣∣∣∣∣
1 +

N∑

j=1

ε
(k)
ij

z
(k)
j (t)

z
(k)
i (t)

∣∣∣∣∣∣

p

.

Under the assumption that B(k) is close to a separating matrix, we have

|ε(k)
ij | � 1
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and thus, a first order approximation of Jp(z
(k+1)
i ) is given by:

Jp(z
(k+1)
i ) ≈ 1

T

T−1∑
t=0

|z(k)
i (t)|p + p

N∑
j=1

�e(ε(k)
ij )�e

(
|z(k)

i (t)|p−1e−jφ
(k)
i (t)z

(k)
j (t)

)

− �m(ε(k)
ij )�m

(
|z(k)

i (t)|p−1e−jφ
(k)
i (t)z

(k)
j (t)

)

(9)
where �e(x) and �m(x) denote the real and imaginary parts of x and φ

(k)
i (t) is

the argument of the complex number z
(k)
i (t).

Using equation (9), equation (3) can be rewritten in more compact form as:

Gp

(
B(k+1)

)
= Gp

(
B(k)

)
+ �e

{
Tr

(
ε(k)R(k)HD(k)H

)}
(10)

where (·) denotes the conjugate of (·), Tr(·) is the matrix trace operator and the
ijth entry of matrix R(k) is given by:

R(k)
ij =

1
T

T−1∑

t=0

|z(k)
i (t)|p−1e−jφ

(k)
i (t)z

(k)
j (t) (11)

D(k) =
[
diag

(
R(k)

11 , . . . , R(k)
NN

)] 1
p−1

. (12)

Using a gradient technique, ε(k) can be chosen as:

ε(k) = −μD(k)R(k)
(13)

where μ > 0 is the gradient step. Replacing (13) into (10) leads to,

Gp

(
B(k+1)

)
= Gp

(
B(k)

)
− μ‖D(k)R(k)‖2. (14)

So μ controls the decrement of the criterion. Now, to avoid the algorithm’s
convergence to the trivial solution B = 0, one normalizes the outputs of the
separating matrix to unit-power, i.e. ρ

(k+1)
zi � 1

T

∑T−1
t=0 |z(k+1)

i (t)|2 = 1, ∀ i.
Using first order approximation, this normalization leads to:

ε
(k)
ii =

1 − ρ
(k)
zi

2ρ
(k)
zi

. (15)

After convergence of the algorithm, the separation matrix B = B(K) is applied
to the whitened signal mixtures xw to obtain an estimation of the original source
signals. K denotes here the number of iterations that can be either chosen a priori
or given by a stopping criterion of the form ‖B(k+1) − B(k)‖ < δ where δ is a
small threshold value.
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3 Convolutive Mixture Case

Unfortunately, instantaneous mixing is very rarely encountered in real-world
situations, where multipath propagation with large channel delay spread occurs,
in which case convolutive mixtures are considered. In this case, the signal can
be modeled by the following equation:

x(t) =
L∑

l=0

H(l)s(t − l) + w(t) (16)

where H(l) are M × N matrices for l ∈ [0, L] representing the impulse response

coefficients of the channel and the polynomial matrix H(z) =
L∑

l=0

H(l)z−l is

assumed to be irreducible (i.e. H(z) is of full column rank for all z).
If we apply a short time Fourier transform (STFT) to the observed data x(t),

the model in (16) (in the noiseless case) becomes approximately

Sx(t, f) ≈ H(f)Ss(t, f) (17)

where Sx(t, f) is the mixture STFT vector, Ss(t, f) is the source STFT vector
and H(f) is the channel Fourier Transform matrix. It shows that, for each
frequency bin, the convolutive mixtures reduce to simple instantaneous mixtures.
Therefore we can apply our ISBS algorithm for each frequency and separate the
signals. As a result, in each frequency bin, we obtain the STFT source estimate

Sŝ(t, f) = B(f)Sx(t, f). (18)

It seems natural to reconstruct the separated signals by aligning these Sŝ(t, f)
obtained for each frequency bin and applying the inverse short time Fourier
transform. For that we need first to solve the permutation and scaling ambiguities
as shown next.

3.1 Removing the Scaling End Permutation Ambiguities

In this stage, the output of the separation filter is processed with the permutation
matrix Π(f) and the scaling matrix C(f).

G(f) = Π(f)C(f)B(f) . (19)

The scaling matrix C(f) is a N × N diagonal matrix found as in [11] by C(f) =
diag[B(f)#]. For the permutation matrix Π(f), we exploit the continuity prop-
erty of the acoustic filter in the frequency domain [12]. To align the estimated
sources at two successive frequency bins, we test of the closeness of
G(fn)G(fn−1)# to a diagonal matrix. Indeed, by using the representation (19),
one can find the permutation matrix by minimizing:

Π(fn) = arg min
Π̃

⎧
⎨

⎩
∑

i�=j

(
Π̃C(fn)B(fn)G(fn−1)#

)2

ij

⎫
⎬

⎭ . (20)
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In our simulations, we have used an exhaustive search to solve (20). How-
ever, when the number of sources is large, the exhaustive search becomes pro-
hibitive. In that case, one can estimate Π(fn) as the matrix with ones at
the ijth entry satisfying |M(fn)|ij = max

k
|M(fn)|ik and zeros elsewhere with

M(fn) = C(fn)B(fn)G(fn−1)#. This solution has the advantage of simplicity
but may lead to erroneous solution in difficult context. An alternative solution
would be to decompose Π(fn) as product of elementary permutations1 Π(pq).
The latter is considered at a given iteration, only if it decrease criterion (20), if

|M(fn)|2pq + |M(fn)|2qp > |M(fn)|2pp + |M(fn)|2qq

Finally, we obtain:

Π(fn) =
∏

nb of iterations

∏

1≤p<q≤N

Π̃(pq), (21)

Π̃(pq) being either the identity matrix or the above permutation matrix Π(pq)

depending on the binary decision rule define above. We stop the iterative process,
when all matrices Π̃(pq) are equal to the identity. We have observed that one or,
at most, two iterations are sufficient to get the desired permutation. Finally, we
apply the updated separation matrix G(f) to the frequency domain mixture:

Sŝ(t, f) = G(f)Sx(t, f). (22)

4 Simulation Results

We present here some numerical simulations to evaluate the performance of
our algorithm. We consider an array of M = 2 sensors receiving two audio
signals in the presence of stationary temporally white noise of covariance σ2I
(σ2 being the noise power). 10000 samples are used with a sampling frequency
of 8Khz (this represents 1.25sec recording). In order to evaluate the performance
in the instantaneous mixture case, the separation quality is measured using the
Interference to Signal Ratio (ISR) criterion [2] defined as:

ISR
def=

∑

p�=q

E
(
|(BA)pq |2

)
ρq

E (|(BA)pp|2) ρp
(23)

where ρi = E(|si(t)|2) is the ith source power evaluated here as 1
T

∑T−1
t=0 |si(t)|2.

Fig. 1-(a) represents the two original sources and their mixtures in the noiseless
case. In Fig. 1-(b), we compare the performance of the proposed algorithm in
instantaneous mixture case, to the Relative Newton algorithm developed by
Zibulevsky et al. in [9] where the case of sparse sources is considered and to SOBI
algorithm developed by Belouchrani et al. in [2]. We plot the residual interference
between separated sources (ISR) versus the SNR. It is clearly shown that our
algorithm (ISBS) performs better in terms of ISR especially for low SNRs as
compared to the two other methods. In Fig. 2-(a), we represent the evolution of
1 Π(pq) is defined such as way that for a given vector y, ỹ = Π(pq)y iff ỹ(k) = y(k),

for k /∈ {p, q}, ỹ(p) = y(q) and ỹ(q) = y(p).
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Fig. 1. (a) Up the two original source signals and bottom the two signal mixtures. (b)
Interference to Signal Ratio (ISR) versus SNR for 2 audio sources and 2 sensors in
instantaneous mixture case.

the ISR as a function of the iteration number. A fast convergence rate is observed.
In Fig. 2-(b), we compare, in the 2 × 2 convolutive mixture case the separation
performance of our algorithm, Deville’s algorithm in [13], Parra’s algorithm in
[14] and extended version of Zibulevsky’s algorithm to the convolutive mixture
case. The filter coefficients are chosen randomly and the channel order is L = 128.
We use in this experiment the ISR criterion defined for the convolutive case in
[14] that takes into account the fact the source estimates are obtained up to a
scalar filter. We observe a significant performance gain in favor of the proposed
method especially at low SNR values. Moreover, the complexity of the proposed
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in instantaneous mixture case. (b) ISR versus SNR for 2 × 2 convolutive mixture case.
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algorithm is equal to 2N2T + O(N2) flops per iteration whereas the complexity
of the Relative Newton algorithm in [9] is 2N4 + N3T + N6/6.

5 Conclusion

This paper presents a blind source separation method for sparse sources in in-
stantaneous mixture case and its extension to the convolutive mixture case. A
sparse contrast function is introduced and an iterative algorithm based on gra-
dient technique is proposed to minimize it and perform the BSS. Numerical
simulation results have been given evidence the usefulness of the method. The
proposed technique outperforms existing solutions in terms of separation quality
and computational cost in both instantaneous and convolutive mixture cases.
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A Criterion for Blind Source Separation
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Abstract. Blind source separation is commonly based on maximizing measures
related to independence of estimated sources such as mutual statistical indepen-
dence assuming non-Gaussian distributions, decorrelation at different time-lags
assuming spectral differences or decorrelation assuming source non-stationarity.

Here, the use of an alternative model for source separation is explored which
is based on the assumption that sources emit signal energy at mutually different
times. In the limiting case, this corresponds to only a single source being “active”
at each point in time, resulting in mutual disjointness of source signal supports
and negative mutual correlations of source signal envelopes. This assumption will
not be fulfilled perfectly for real signals, however, by maximizing disjointness of
estimated sources (under a linear mixing/demixing model) we demonstrate that
source separation is nevertheless achieved when this assumptions is only partially
fulfilled.

The conceptual benefits of the disjointness assumption are that (1) in certain
applications it may be desirable to explain observed data in terms of mutually
disjoint “parts” and (2) the method presented here preserves the special physical
information assigned to amplitude zero of a signal which corresponds to the ab-
sence of energy (rather than subtracting the signal mean prior to analysis which
for non zero-mean sources destroys this information).

The method of disjoint component analysis (DCA) is derived and it is shown
that its update equations bear remarkable similarities with maximum likelihood
independent component analysis (ICA). Sources with systematically varied de-
grees of disjointness are constructed and processed by DCA and Infomax and
Jade ICA. Results illustrate the behaviour of DCA and ICA under these regimes
with two main results: (1) DCA leads to a higher degree of separation than ICA,
(2) DCA performs particularly well on positive-valued sources as long as they are
at least moderately disjoint, and (3) The performance peak of ICA for zero-mean
sources is achieved when sources are disjoint (but not independent)1 .

1 Introduction

Representation of measured data in terms of a number of generating causes or under-
lying “sources" is an important problem that has gained widespread attention in recent

1 This research was supported by the EC under the DIRAC integrated project IST-027787.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 325–332, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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years, either with the goal of extracting known-to-exist sources from measurements
(blind source separation), or in order to find an efficient—possibly lower-dimensional—
description of given data (exploratory data analysis).

We propose and investigate a novel technique, “disjoint component analysis" (DCA)
that is based on the goal of extracting components with maximally disjoint support
from given data, i.e., it is sought to describe the data in terms of components of which
as few as possible should be activated at any single time (or sample) point. Ideally, only
a single source process would account for a single sample of measured data. Since this
goal is too strong for real-world data, we demonstrate that it can be significantly relaxed
while still retaining the beneficial characteristics of the method.

Disjoint support between generating source processes may constitute a relevant gen-
eral principle in domains where other assumptions, e.g., statistical independence and the
implied effective physical separation of generating source processes, have to be postu-
lated or justified post-hoc rather than deduced a-priori. In some cases such as com-
municating speakers or densely interconnected nervous cells in the brain, theoretical
considerations argue in favor of dependencies between source processes. Even though
such dependencies might turn out to be largely negligible in some domains, it does ap-
pear to be worthwhile to consider the implications of incorporating such dependencies
into the models.

In the opposite direction (and with a different intention than ours), some authors have
argued that sources that are often regarded as independent can effectively be modeled as
being “w-disjoint orthogonal" [10]. We are demonstrating a close formal link between
algorithms derived from striving for independent and disjoint representations, respec-
tively, which may be seen as an indication that both notions may contain similarities
that we have not yet fully appreciated.

In relation to existing techniques, DCA differs from ICA [2,4] since the disjointness
assumption corresponds to a source model with dependent sources. Sparse-coding ap-
proaches [9], unlike DCA, impose a sparse prior on each source but do not incorporate
a mutual disjointness of sources. Non-negative matrix factorisation approaches [6] and
l1-norm minimization methods [5] aim to obtain a parts-based description of the data
with fundamentally different algorithms than DCA.

2 Disjoint Component Analysis

2.1 Derivation of Algorithm

Consider N observed signals x(t) = [x1(t), . . . , xN (t)]T which are assumed to be
generated from N underlying sources s(t) = [s1(t), . . . , sN (t)]T by multiplication
with a mixing system A as

x(t) = As(t) (1)

It is sought to linearly transform the observations by a matrix W to obtain output signals

y(t) = Wx(t) (2)

with components y(t) = [y1(t), . . . , yN (t)]T . When source reconstruction is desired,
these should resemble the sources up to arbitrary rescaling and permutation. When an
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Fig. 1. Disjoint component analysis of four sources (top left) which are not strictly disjoint but
exhibit significant overlap. Sources were mixed with a randomly chosen 4 × 4 mixing matrix to
yield observation signals (bottom left) which were successfully separated into the original sources
up to arbitrary permutation, rescaling and sign flip (top right) using DCA.

exploratory data analysis view is adopted, the output signals should convey a signal
representation that is meaningful in some to-be-specified sense.

A central notion in our approach is the overlap between two output signals yi and yj

which we define as2

oij = E(|yi| |yj |), (3)

where E(·) denotes expectation and sample index t is omitted where convenient. With
oij ≥ 0 and oij = 0 if and only if yi(t) yj(t) = 0 for all t and i �= j, two signals yi

and yj have disjoint support if oij = 0. In this case, yi and yj are called disjoint, i.e., at
most one of the signals is non-zero at any time.

For strictly disjoint source signals s(t) and a non-singular matrix A, strictly dis-
joint outputs can be obtained that resemble the sources up to arbitrary permutation and
rescaling. Note that in this case sources are not mutually independent but exhibit statis-
tical dependencies through the negative correlations of their signal envelopes or signal
power time-courses.

2 Different definitions of the overlap, involving other non-linear functions of the output signals,
are possible but beyond the scope of the present paper.
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While it is not possible in general to linearly transform an arbitrary signal x(t) into
a signal y(t) with only disjoint components, finding minimally overlapping outputs is a
natural goal as it corresponds to a signal description in terms of processes out of which
only a small number is active at any given time. A natural choice to obtain maximally
disjoint, minimally overlapping output signals is minimization of the function

H =
1
2

∑

i�=j

oij =
1
2

∑

i�=j

E(|yi| |yj |) (4)

The global minimum H = 0 is attained only for strictly disjoint signals where for all
t any signal yi(t) �= 0 if and only if yj(t) = 0 for all j �= i. Substituting 2 into 4, the
partial derivatives are given by

∂H

∂wij
= E

(
sign(yi)xj

∑

k �=i

|yk|
)

(5)

which in matrix notation is easily rewritten as

∇H = E
(
−yxH + ||y||1sign(y)xH

)
(6)

where ||y||1 =
∑

i |yi| denotes the 1-norm of y.
Right-multiplication with WT W yields an expression similar to the natural gradient

ICA algorithm of [1],

∇̃H = E
(
−yyH + ||y||1sign(y)yH

)
W. (7)

Gradients (6) and (7) are similar to the corresponding gradients derived from infomax
or maximum-likelihood ICA with a sparse prior, however, we emphasize that the mean
has not been removed from the output signals (i.e., source estimates) y(t).

Without constraints the gradients converge to the trivial solution W = 0. To remove
the scaling ambiguity each row wi of matrix W is fixed to unit-norm ||wi||2 = 1.
Hence, each row Δi of ∇H is projected according to

Δ⊥i = Δi − (ΔH
i wi)wi (8)

resulting in the projected gradient matrix Δ⊥ that is then used for gradient descent. The
final update rule for matrix W with a step size of η is

W ← W − η Δ⊥ (9)

for the ordinary gradient (6) and similarly for (7). Periodic row re-normalization of W
is applied to keep it on the constraint manifold for non-infinitesimal η.

3 Evaluation

3.1 Synthetic Data Generation

Disjoint sources si(t) are generated from mutually independent signals ζi(t) by multi-
plying them with disjoint masking functions μi(t) ∈ {0, 1} for all i, t and

si(t) = μi(t) ζi(t) (10)

E(μi μj) = 0 if i �= j (11)
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Fig. 2. Separation performance of DCA and ICA in terms of signal-to-interference ratio (SIR) in
dB after separation. Performance is given for data class 1 (left panel, sources with positive and
negative observation values) and data class 2 (right panel, sources with positive only observation
values) as a function of overlap γ. A value of γ = 0 corresponds to strictly disjoint sources (sta-
tistical dependencies between sources through negative correlation of signal envelopes); γ = 0.5
corresponds to statistically independent sources; and γ = 1.0 corresponds to fully overlapping,
not disjoint sources (statistical dependencies through positive correlation of signal envelopes).
Mean and variance of performance for 100 separation runs, each with independently generated
data, are given for each condition.

These sources may then be used to generate observations by multiplication with a ma-
trix A according to Eq. 1.

Strictly disjoint sources with zero overlap are not expected to be an appropriate
model for real data. Hence, sources with variable masker overlap γij , which may de-
pend on the source pair (i, j),

γij = E(μiμj) / E(μ2
i ) (12)

with E(μ2
i ) = const for all i are also generated. In the experiments reported below

masker overlap γij is chosen such that a value of γij = 1 corresponds to a source pair
(si, sj) exhibiting mutual statistical dependence through maskers with positive corre-
lation. The value γij = 0 corresponds to strictly disjoint sources that exhibit mutual
statistical dependence through maskers with negative correlation. Finally, a value of
γij = 0.5 coincides with statistically independent sources (si, sj) because of uncorre-
lated maskers (and statistically independent ζi(t)).

The signal generation scheme was inspired by a functional magnetic resonance imag-
ing (fMRI) experiment design [3].

3.2 Separation of Synthetic Sources

Four sources were generated according to the scheme described above, mixed with a
randomly chosen mixing matrix and processed with the natural gradient disjoint com-
ponent analysis algorithm (Eq. 7) with regularization (Eq. 8). The underlying mutually
independent signals ζi(t) were chosen as a speech signal (ζ1), i.i.d. noise from a normal
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distribution with zero-mean and unit-variance (ζ2), i.i.d. noise from a uniform distri-
bution on the interval [0, 1] (ζ3), and a sine wave (ζ4). The maskers μi(t) were chosen
such that γij = 0.6 for source pairs (1, 2), (2, 3), (3, 4), (1, 4), and γij = 0.4 for source
pairs (1, 3), (2, 4). Source signals, observed (mixed) signals and output signals are dis-
played in Fig. 1, demonstrating that the algorithm performs successful separation even
though sources are not strictly disjoint but show significant overlap. Similarly, the algo-
rithm successfully separates mixtures of four strictly disjoint sources with γij = 0 for
all i �= j (data not shown here).

3.3 Variable Degree of Overlap

The goal of this experiment was to systematically study the influence of the degree of
overlap on the performance of the disjoint component analysis algorithm. Results are
reported for the gradient version of the algorithm (Eq. 6) with regularization (Eq. 8).
Results for the natural gradient version are virtually identical and not reported separately.

Sources were generated based on two different underlying signal classes. In the first
part of the experiment (“data class 1"), two sources s1 and s2 were generated from
ζ1 and ζ2 that were drawn as i.i.d. signals from a zero-mean and unit-variance normal
distribution, hence containing positive and negative values. In the second part of the
experiment (“data class 2"), ζ1 and ζ2 were chosen to be i.i.d. signals from a uniform
distribution on the interval [0, 1], hence containing only positive values.

For both data sets the single overlap parameter γ was varied from 0 (no overlap,
source dependence through negative masker correlation) via 0.5 (50% overlap, statis-
tically independent sources) to 1.0 (full overlap, source dependence through positive
masker correlation) in steps of 0.1.

Hence, 11 data set conditions were generated for each of the two data classes. For
each condition, disjoint component analysis was performed on 100 individual datasets
drawn independently according to the description above. This resulted in a total of 2200
datasets each with 10000 samples for each of the two sources.

Fig. 2 shows the results with mean and variance of signal separation in dB signal-
to-interference ratio (SIR) after separation separately for data class 1 (left panel) and
data class 2 (right panel). For data class 1 with sources that adopt positive and negative
values, DCA separation performance shows no significant dependence on the overlap
parameter γ except (as expected) for complete overlap at γ = 1 where the algorithm es-
sentially attempts to separate two i.i.d. normally distributed sources which is ill-posed.
In all other cases of data class 1, DCA separation is excellent with about 100 dB SIR.

The results look different for data class 2 with positive only source values. Separation
remains excellent for data sets with a small overlap (0.0 ≤ γ ≤ 0.4), with again about
100 dB SIR. In the case of independent sources at γ = 0.5, separation is still very good
at 80 dB. Performance breaks down for large overlaps (1.0 ≥ γ ≥ 0.6), an effect which
we attribute to the positivity of the sources.

3.4 Comparison with Independent Component Analysis

The same data generated for section 3.3 was re-analyzed with natural gradient infomax
ICA [1,2] using the ICA toolbox [7,8] with logistic function non-linearity. For com-
parison, a simple gradient approach with fixed step size and sign function non-linearity
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was also used and gave virtually identical results for data class 1. On data class 2, the
fixed step gradient approach gave qualitatively similar results but was outperformed by
the referenced ICA toolbox in terms of SIR separation performance. All source signals
have been checked to have positive kurtosis. Processing of the same signal with the jade
algorithm [4] gave virtually identical results.

Results in Fig. 2 show that in most cases ICA results in a poorer SIR than DCA. For
data class 1, ICA shows excellent signal separation for strictly disjoint sources (γ =
0.0). Performance is significantly lower, though still good, for independent sources,
which seems to stand in contradiction to the independence assumption. As expected,
performance decreases towards sources with strong overlap (γ = 1.0).

For data class 2, ICA performs best when sources are independent (γ = 0.5) with
a drop off in performance towards both lower and higher source overlaps, which is
plausible due to ICA’s independence assumption.

4 Conclusion

Disjoint component analysis (DCA) has been shown to yield good performance for
strictly disjoint and moderately disjoint data sets. For data with high overlap between
sources (weakly disjoint), performance depends on the specific type of data, with good
performance for data sets with sources that take positive and negative observation val-
ues, and a break-down of performance in case of purely positive source data.

We have shown that under certain approximations DCA is closely related to indepen-
dent component analysis (ICA), albeit both start from significantly different assump-
tions. The empirical algorithm evaluation showed a better separation performance for
DCA than for ICA under most conditions. Interestingly, ICA produced the best perfor-
mance not for statistically independent sources but for strictly disjoint ones (cf. also
ICA 2006 oral presentation of I.C. Daubechies).

Results presented here appear to warrant a closer investigation of the differences and
similarities of both algorithm classes. It would be desirable to gain experience with a
wider range of synthetic and natural data than could be presented here. We are tempted
to speculate that DCA might be appropriate in particular for analyzing data where the
independence assumption is not strictly fulfilled, where a data representation in terms
of disjoint components is preferable to independent components, and where signals are
comprised of positive only measurement values. This could be the case, e.g., for brain
signals such fMRI, for data from dialog speech signals, and for comparably short signal
sequences where independence cannot be fully attained due to finite sample effects.
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Abstract. In this paper I present a Minimum Description Length Es-
timator for number of sources in an anechoic mixture of sparse signals.
The criterion is roughly equal to the sum of negative normalized maxi-
mum log-likelihood and the logarithm of number of sources. Numerical
evidence supports this approach and compares favorabily to both the
Akaike (AIC) and Bayesian (BIC) Information Criteria.

1 Signal and Mixing Models

Consider the following model in time domain:

xd(t) =

L∑

l=1

sl(t − (d − 1)τl) + nd(t) , 1 ≤ d ≤ D (1)

This model corresponds to an anechoic Uniform Linear Array (ULA) with L
souces and D sensors. In frequency domain, (1) becomes

Xd(k, ω) =
L∑

l=1

e−iω(d−1)τlSl(k, ω) + Nd(k, ω) (2)

We use the following notations: X(k, ω) for the D-complex vector of components
(Xd(k, ω))d, S(k, ω) for the L-complex valued vector of components (Sl(k, ω))l,
and A(ω) the D × L complex matrix whose (d, l) entry is Ad,l(ω) = e−iω(d−1)τl .

In this paper I make the following statistics assumptions:

1. (H1) Noise signals (nd)1≤d≤D are Gaussian i.i.d. with zero mean and un-
known variance σ2;

2. (H2) Source Signals are unknown, but for every time-frequency point (k, ω),
at most one signal Sl(k, ω) is nonzero, among the total of L signals;

3. (H3) The number of source signals L is a random variable.

The probem is to design a statistically principled estimator for L, the num-
ber of source signals. In this paper I study the Minimum Description Length
approach for this problem.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 333–340, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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For this model, the measured data is Ξ = {(Xd(k, ω))1≤d≤D , 1 ≤ k ≤
T, 1 ≤ ω ≤ F}. Furthermore the number of sensors D is also known. The rest of
parameters are unknown. I denote θ = (θ′, L), where:

θ′ =
(
{(Sl(k, ω))1≤l≤L ; 1 ≤ k ≤ T, 1 ≤ ω ≤ F} , (τl)1≤l≤L , σ2) (3)

Notice that hypothesis (H2) above imposes a constraint on set (Sl(k, ω))1≤l≤L,
for every (k, ω). More specifically, the L complex vector (Sl(k, ω))1≤l≤L has to
lay in one of the L 1-dimensional coordinate axes (that is, all but one component
has to vanish). This fact has a profound implication on estimating the complexity
penalty associated to the parameters set. Some real world signals may satisfy
(H2) only approximately. For instance [1] studies this assumption for speech
signals.

1.1 Prior Works

The signal and mixing model described before has been analyzed by many works
before.

In the past series of papers [2,3,4,5,6,7] the authors studied (1), and several
generalizations of this model in the following respects. Mixing model: each chan-
nel may have an attenuation factor (equivalently, τl may be complex); Noise
statistics: noise signals may have inter-sensor correlations; Signals: more sig-
nals may non-vanish at each time-frequency point (maximum number allowed is
D − 1); more recently we have considered temporal, and time-frequency, depen-
dencies on signal statistics.

A similar model, and a similar sparsness assumption, has been used by the
DUET algorithm [1], or by [8], [9].

Similar assumptions to [5] have been made by [10] for an instantaneous mixing
model. As the authors mentioned there, as well in [11,12], and several others,
a new signal separation class is defined by sparsness assumption, called Sparse
Component Analysis (SCA). In this vein, this present paper proposes a look at
the Minimum Description Length paradigm in the context of Sparse Component
Analysis.

Before discussing the new results of this paper, I would like to comment on
other approaches to the BSS problem. Many other works dealt with the mixing
model (1), or its generalizations to a fully echoic model. A completely different
class of algorithms is furnished by the observation that, in frequency domain,
the echoic model simply becomes an instantaneous mixing model. Therefore
standard ICA techniques can be applied, as in [13,14] to name a few. Next, one
has to connect frequency domain components together for the same source. The
permutation ambiguity is the main stumbling block. Several approaches have
been proposed, some based on ad-hoc arguments, [15,9]. A more statistically
principled approach has been proposed and used by Zibulevsky [16] and in more
recent papers, as well as by other authors, by assuming a stochastic prior model
for source signals. The Maximum A Posteriori (MAP), or Minimum Mean Square
Error (MMSE) estimators can be derived. While principly they are superior to
Maximum Likelihood type estimators derived in [4,5], or mixed estimators such
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as [1,8,9], they require a good prior stochastic model. This makes difficult the
comparison between classes of BSS solutions.

In the absence of noise, the number of sources can be estimated straightfor-
wardly by building a histogram of the instantaneous delay (τ), or for a more
general model see [10].

As I mention later, the MDL paradigm here may be well applied in conjunction
with other signal estimators, in particular with the MAP estimators described
before.

2 Estimators

Assume the mixing model (1) and hypotheses (H1),(H2),(H3). Then its associ-
ated likelihood is given by

L(θ) := P (Ξ|θ) =
∏

(k,ω)

1

πDσ2D
exp

(
− 1

σ2 ‖X(k, ω) − A(ω)S(k,ω)‖2
)

(4)

In the next subsection the maximum likelihood estimator for θ′, and the maxi-
mum likelihood value are going to be derived.

Following a long tradition of statistics papers, consider the following frame-
work. Let P (X) denote the unknown true probability of data (measurements),
P (X |θ) denote the data likelihood given the model (1) and (H1-H3). Then
the estimation objective is to minimize the misfit between these two distribu-
tions measured by a distance between the two distribution functions. One can
choose the Kullback-Leibler divergence, and obtain the following optimization
criterion:

J(θ)=D(PX ||PX|θ) :=

∫
log

P (X)

P (X|θ)dP (X)=

∫
log P (X) dP (X)−

∫
log P (X|θ) dP (X)

(5)

Since the first term does not depend on θ, the objective becomes maximization
of the second term:

θ̂ = argmaxθE[log PX|θ(X|θ)] (6)

where the expectation is computed over the true data distribution PX . However
the true distribution is unknown. A first approximation is to replace the expec-
tation E by average over data points. Thus one obtains the maximum likelihood
estimator (MLE):

θ̂ML = argmaxθ
1

N

N∑

t=1

log PX|θ(Xt|θ) (7)

where N is the number of sample points (Xt)1≤t≤N .
As is well known in statistical estimation (see [17,18]), the MLE is usually

biased. For discrete parameters, such as number of source signals, this bias has
a bootstraping effect that monotonically increases the likelihood and makes the
number of parameter estimation impossible through naive MLE. Several ap-
proaches proposed to estimate and make correction for this bias. In general, the
optimization problem is restated as:
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θ̂ = argminθ

[
− 1

N

N∑

t=1

log P (Xt|θ) + Φ(θ, N)

]
(8)

Following e.g. [18] we call Φ the regret. Akaike [17] proposes the following regret:

ΦAIC(θ, N) =
|θ|0
N

(9)

where |θ|0 represents the total number of parameters. Schwarz [19] proposes a
different regret, namely

ΦBIC(θ, N) =
|θ|0 log N

2N
(10)

In a statistically plausible interpretation of the world, Rissanen [20] obtains for
regret the shortest possible description of the model using the universal distri-
bution function of Kolmogorov, hence the name Minimum Description Length,

ΦMDL(θ, N) = Coding LengthKolmogorov p.d.f.(Model(θ, N)) (11)

Based on this interpretation, Φ(θ, N) represents a measure of the model
complexity.

My approach here is the following. I propose the following regret function

ΦMDL−BSS(θ, N) = log2(L) +
L log2(M)

N
(12)

where M represents precision in optimization estimation of delay parameters
τ (for instance the number of grid points of an 1-D exhaustive search). Thus
the optimization in (8) is carried out in two steps. First, for fixed L, the log
likelihood is optimized over θ′:

θ̂′
MLE(L) = argmaxθ′P (X|θ′, L) , MLV (L) = P (X|θ̂′

MLE , L) (13)

Here MLV denotes the Maximum Likelihood Value. Then L is estimated via:

L̂MDL−BSS = arminL

[
− log(MLV (L)) + log2(L) +

L log2(M)

N

]
(14)

In the next subsection I present the computation of the Maximum Likelihood
Value (MLV). Then, in the following subsection I argue the particular form (12)
for Φ(θ, N) inspired by the MDL interpretation. In same subsection I also present
difficulties in a straightforward application of AIC or BIC criteria.

2.1 The Maximum Likelihood Value

The material from this subsection is presented in more detail in [4]. Results are
summarized here for the benefit of the reader.

The constraint (H2) assumed in section 1 can be recast by introducing the
selection variable V (k, ω): V (k, ω) = l iff Sl(k, ω) �= 0, and the complex ampli-
tudes G(k, ω). Thus a slightly different parametrization of the model is obtained.
The new set of parameters is now ψ = (ψ′, L) where

ψ′ =
(
{(G(k, ω), V (k, ω)) ; 1 ≤ k ≤ T, 1 ≤ ω ≤ F} , (τd)1≤d≤D , σ2) (15)

The signals in θ′ are simply obtained through: SV (k,ω)(k, ω) = G(k, ω), and
Sl(k, ω) = 0 for l �= V (k, ω).
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The likelihood (4) becomes:

L(ψ) =
1

πDNσ2DN
exp

⎛

⎝− 1

σ2

∑

(k,ω)

‖X(k, ω) − G(k, ω)AV (k,ω)(ω)‖2

⎞

⎠ (16)

where N is the number of time-frequency data points, and Al(ω) denotes the lth

column of matrix A(ω). The optimization over G is performed immediately, as
a least square problem. The optimum value is replaced in L(ψ):

logL((V )k,ω, (τl)l, L) = −DN log(π)−DN log(σ2)− 1

σ2

∑

k,ω

[
‖X(k, ω)‖2 − 1

D
|〈X(k, ω), AV (k,ω)(ω)〉|2

]

The optimization over (V )k,ω and (τl)1≤l≤L is performed iteratively as in the
K-means algorithm:

– For a fixed set of delays (τl)l, the optimal selection variables are

V (k, ω) = argmaxm|〈X(k, ω), Am(ω)〉| (17)

– For a fixed selection map (V (k, ω))k,ω, consider the induced partition Πm =
{(k, ω) ; V (k, ω) = m}. Then τm is obtained by solving L 1-dimensional
optimization problems

τm = argmaxτ

∑

(k,ω)∈Πm

|〈X(k, ω),Am(ω; τ )〉|2 (18)

This steps are iterated until convergence is reached (usually is a relatively small
number of steps, e.g. 10). Denote V̂MLE(k, ω) and τ̂lMLE the final values, and
replace these values into L. The noise variance parameter is estimated by max-
imizing L over σ2,

σ̂2
MLE =

1

N

∑

(k,ω)

[
‖X(k, ω)‖2 − 1

D
|〈X(k, ω),AV̂MLE(k,ω)(ω; τ̂MLE〉|2

]
(19)

Finally, the log maximum likelihood value becomes:

log(MLV (L)) =
1

N
log(L(ψ̂′

MLE ; L)) = −D log(π) − 1 − D log(σ̂2
MLE) (20)

where ψ̂′MLE denoted the optimal parameter set ψ′ containing the combined
optimal values (V̂MLE(k, ω))(k,ω), (ĜMLE(k, ω))(k,ω), (τ̂l)1≤l≤L, σ̂2

MLE .

2.2 Number of Sources Estimation

The next step is to establish the regret function. As mentioned earlier the ap-
proach here is to use an estimate of the Minimum Description Length of the
model (1) together with hypotheses (H1-H3). In general this is an impossible
task since the Kolmogorov’s universal distribution function is unkown. However
the L-dependent part of the model description is embodied in the mixing pa-
rameters (τl)1≤l≤L, and the selection map (V (k, ω))(k,ω). Approximating by a
uniform distribution in the space of delays with a finite discretization of, say,
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M levels, and no prior preferential treatment of one source signal versus the
others, an upper bound on the description length is obtained as the code length
of an entropic encoder for this data added to the description length of the entire
sequence of models with respect to the Kolmogorov universal distribution:

l∗(Model; N) ≤ Llog2(M) + Nlog2(L) + C(Model) (21)

This represents an upper bound since l∗(Model; N) is supposed to represent the
optimal description (minimal description) length, whereas the description splits
into two parts: the sequence of models parametrized by ψ and N , and then, for
a given (L, N) the entropic length of ψ. This clearly represents only one possible
way of encoding the pair (Model(ψ), N).

This discussion justifies the following choice for the regret function ΦMDL−BSS

ΦMDL−BSS(L, N) =
L log2(M) + N log2(L)

N
= log2(L) +

L log2(M)

N
(22)

as mentioned earlier in (12).
Before presenting experimental evidence supporting this approach, I would

like to comment on AIC and BIC criteria. The main difficulty comes from the
estimation of the number of parameters. Notice that, using θ description, the
number of parameters becomes LN+L+2, whereas in ψ description, this number
is only 2N + L + 2. The difference is due to that fact that the set of realizable
signal vectors (Sl)1≤l≤L lays in a collection of L 1-dimensional spaces. Thus this
can be either modeled as a collection of L variables, or by 2 variables: complex
amplitude, and a selection map V . Consequently, the regret function for AIC
can be either L + L+2

N , or 2 + L+2
N . Similarly, for BIC the regret function can

be L log(N)/2 + (L+2)log(N)
2N , or log(N) + (L+2)log(N)

2N . The criterion I propose
in (22) interpolates between these two extrema, and, in my opinion, it captures
better the actual size of model parametrization.

3 Experimental Evaluation

Consider the following setup. A Uniform Linear Array (ULA) with a variable
number of sensors runging from 2 to 5, and distance between adjacent sensors of
5 cm, that records anechoic mixtures of signals coming from L ≤ 6 sources. The
sources are spread uniformly with a minimum of 30 degrees separation. Additive
Gaussian noise of average SNR ranging from 10dB to 100dB has been added
to recordings. The signals were TIMIT voices sampled at 16 KHz, and each of
length 38000 samples (roughly 3 male and female voices saying “She had a dark
suit in a greasy wash water all year”).

For this setup, the noise was varied in 10dB steps, and number of sources
ranged from 1 to 6. The delay optimization (18) was performed through a grid
search with step 0.05 samples. Since τmax = 2.4, there were M = 96 possi-
ble values of τ . Thus log2(M)

N = 1.7 10−4 and the correction term L log2(M)
N in

ΦMDL−BSS had no influence. Similarly, the L
N term in AIC and L log(N)

N =
3 10−4 L in BIC are too small. Therefore the only meaningful AIC and BIC were
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given by the former regret functions. To summarize, the source number estimator
is given by:

L̂MDL−BSS = argminL [−log MLV (L) + log2(L)] (23)

L̂AIC = argminL [−log MLV (L) + L] (24)

L̂BIC = argminL [−log MLV (L) + L log(N)] (25)

where the optimization is done by exhaustive search for L over the range 1 to
10. For a total of 1680 experiments (10 levels of noise x 4 number of sensors x 6
number of sources x 7 realizations), the histogram of estimation error has been
obtained. For each of the three estimators, the histogram is rendered in Figure 1.
Statistical performance of these estimators is presented in Table at right.

Fig. 1. The histograms of estimation errors for MDL-BSS criterion (left bar), AIC
criterion (middle bar), BIC criterion (right bar). Table with statistical performance of
the three estimators.

4 Conclusions

The MDL-BSS estimator clearly performed best among the three estimators, since
the error distribution is the most concentrated to zero, in every sense: the num-
ber of errors is the smallest, the average error is the smallest, the variance is the
smallest, the bias is the smallest. Estimation error is explained by a combination
of two factors: 1) source signals (voices) do not satisfy the hypothesis (H2), in-
stead there is always an overlap between time-frequency signal supports; and 2)
the estimates for location, noise variance, and separated signals were biased; this
bias compounded and inverted the minimum position. The other two estimators
(AIC, and BIC) were biased towards underestimating the number of sources.

This paper provides a solid theoretical footing for a statistical criterion to es-
timate number of source signals in an anechoic BSS scenario with sparse signals.
Extension to other mixing models (such as instantaneous) is obvious. The regret
function stays the same, only the MLV is modified. The same approach can be used
to other Sparse Component Analysis, and this analysis will be done elsewhere.

The numerical simulations confirmed the estimation performance.
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Abstract. Separation of underdetermined mixtures is an important
problem in signal processing that has attracted a great deal of atten-
tion over the years. Prior knowledge is required to solve such problems
and one of the most common forms of structure exploited is sparsity.

Another central problem in signal processing is sampling. Recently, it
has been shown that it is possible to sample well below the Nyquist limit
whenever the signal has additional structure. This theory is known as
compressed sensing or compressive sampling and a wealth of theoretical
insight has been gained for signals that permit a sparse representation.

In this paper we point out several similarities between compressed
sensing and source separation. We here mainly assume that the mixing
system is known, i.e. we do not study blind source separation. With a
particular view towards source separation, we extend some of the results
in compressed sensing to more general overcomplete sparse representa-
tions and study the sensitivity of the solution to errors in the mixing
system.

1 Compressed Sensing

Compressed sensing or compressive sampling is a new emerging technique in
signal processing, coding and information theory. For a good place of departure
see for example [1] and [2]. Assume that a signal y is to be measured. In general
y is assumed to be a function defined on a continuous domain, however, for the
discussion here it can be assumed to be a finite vector, i.e. y ∈ R

Ny say. In a
standard DSP textbook we learn that one has to sample a function on a contin-
uous domain at least at its Nyquist rate. However, assume that we know that y
has a certain structure, for example we assume that y can be expressed as

y = Φs, (1)

where Φ ∈ RNy×Ns and where we allow Ns ≥ Ny, i.e. we allow Φs to be an
overcomplete representation of y. Crucially, we assume s to be sparse, i.e. we as-
sume that only a small number of elements in s are non-zero or, more generally,
� This research was supported by EPSRC grant D000246/1. MED acknowledges sup-

port of his position from the Scottish Funding Council and their support of the
Joint Research Institute with the Heriot-Watt University as a component part of
the Edinburgh Research Partnership.
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that most of the energy in s is concentrated in a few coefficients. It has recently
been shown that, if a signal has such a sparse representation, then it is possible
to take less samples (or measurements) from the signal than would be suggested
by the Nyquist limit. Furthermore, one is then often still able to reconstruct the
original signal using convex optimisation techniques [1] and [2].

The simplest scenario are measurements taken as follows:

x = My, (2)

where x ∈ RNx with Nx < Ny. Extensions to noisy measurements can be made [2],
i.e. one can consider the problem of approximating y given a noisy measurement:

x̃ = x + e = My + e. (3)

The ability to reconstruct the original signal relies heavily on the structure
of y and different conditions have been derived under which one can exactly or
approximately recover y. For example, if y = Φs and s has only a small number
of non-zero elements, then linear programming can exactly recover y if enough
measurements have been taken. Similar results have been derived in the case
where s is not exactly sparse, but where the ordered coefficients in s decay with
a power law. In this case y can be recovered up to some small error. We give
examples of these theorems below. More details can be found in for example [2]
and the references therein.

2 Relationship to Source Separations

Sparsity has also often been exploited for source separation. In particular, the
problem of underdetermined blind source separation has been solved using the
fact that an orthogonal transform can often be found in which the data is sparse
[3] [4] [5] [6]. More general, possibly over-complete dictionaries have been used
for source separation in [7].

Let us assume a quite general source separation scenario. A set of sources, say
g1,g2, . . . , each represented in a column vector, are collected into a matrix

G = [g1 g2 . . .]T (4)

and similarly, the set of observations f1, f2, . . . are gathered in a matrix F. The
relationship between the sources G and the observations F is then modelled by
a general linear operator A:

F = A(G). (5)

Note that this operator does not have to be a matrix and can also represent
for example convolutions, so that the above model incorporates a wide range of
source separation problems.

The connection to compressive sampling becomes evident if instead of collect-
ing the sources and observations in a matrix, we interleave them into vectors as:

x = [f1[1] f2[1] . . . f1[2] f2[2] . . .]T (6)

and
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y = [g1[1] g2[1] . . . g1[2] g2[2] . . .]T . (7)

We further assume that the operator A can be expressed in matrix form M so
that the mixing system becomes:

x = My, (8)

which is exactly the compressive sampling measurement equation1.
If we have more sources g than observations f , where the length of each obser-

vation and each source is assumed to be equal, then we have less measurements
than samples in y. We therefore require knowledge of additional structure if
we want to be able to (approximately) reconstruct y. We can, for example, as-
sume the existence of a sparse representation of y of the form y = Φs, where s
is sparse. Note that we do not assume that Φ is an orthogonal transform and
explicitly allow Φ to be overcomplete, i.e. to have more columns than rows.

Let us look at a simple example of an instantaneous mixture. In this case, A
is the Nf × Ng mixing matrix and the matrix M becomes matrix diagonal:

M =

⎡

⎢⎢⎢⎣

A 0 · · · 0
0 A · · · 0
...

. . .
0 0 · · · A

⎤

⎥⎥⎥⎦ , (9)

Where 0 is a Nf × Ng matrix of zeros. Similarly, assume a convolutive model,
in which the impulse responses, say h1,1,h2,1,h3,1 and h1,2,h2,2,h3,2 and so on
are interleaved into the matrix H as follows:

H =

⎡

⎢⎣
h1,1[n] h2,1[n] h3,1[n] h1,1[n − 1] · · ·
h1,2[n] h2,2[n] h3,2[n] h1,2[n − 1] · · ·

...

⎤

⎥⎦ . (10)

The measuring matrix then becomes:

M =

⎡

⎢⎢⎢⎣

H · · ·0
0 H · · ·0
...

. . .
0 0 · · ·H

⎤

⎥⎥⎥⎦ , (11)

where again 0 is a Nf ×Ng matrix of zeros. Also, depending on boundary assump-
tions, the first and last rows of M might only contain part of the matrix H.

3 Theoretic Results

The source separation problem is equivalent to the decoding problem faced in
compressive sampling and theoretical results from the compressive sampling
literature therefore also apply to the source separation problem. However, in
1 We could have alternatively stacked the vectors f1, f2, . . . (and/or g1,g2, . . . ) on top

of each other to produce a permutation of the above model.
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compressive sampling, the measurement matrix M can often be ‘designed’ to
fulfil certain conditions2. Furthermore, in the current compressive sampling lit-
erature, Φ is normally assumed to be the identity matrix or an orthogonal trans-
form. In source separation, the measuring system is not normally at our control.
Furthermore, orthogonal transform are often not available to sufficiently ‘spar-
sify’ many signals of interest.

In this paper we address these problems and extend several results from the
compressed sensing literature to more general sparse representations. We start
by reviewing some of the important results on compressed sensing [8], which
we here write in terms of the m-restricted isometry condition of the matrix
P = MΦ.

3.1 m-Restricted Isometry

For any matrix P and integer m, define the m-restricted isometry δm(P) as the
smallest quantity such that:

(1 − δm(P)) ≤ ‖PΓy‖2
2

‖y‖2
2

≤ (1 + δm(P)), (12)

for all Γ : |Γ | ≤ m and all y. Here |Γ | is a set of indices and PΓ the associated
submatrix of P with all columns removed apart from those with indices in Γ . δm

is then a measure of how much any sub-matrices of P with size m can change the
norm of a vector, hence the name. The quantities (1 − δm(P)) and (1 + δm(P))
can be understood as lower and upper bounds on the squared singular values of
all possible sub-matrices of P with m or less columns.

3.2 Estimation Error Bounds

As examples of the types of theorems available in the compressive sampling
literature, we here state two of the fundamental results (these can be found in
[2] and references therein), which rely on δm(MΦ) to be small3.

Theorem 1. (Exact Recovery) Assume that s has a maximum of m non-zero
coefficients and that x = MΦs and that δ2m(MΦ) + δ3m(MΦ) < 1, then the
solution to the linear program:

min ‖ŝ‖, such that x = MΦŝ (13)

recovers the exact representation y = Φs.
2 ‘Design’ here often means taking a random matrix drawn from certain distributions.
3 Note that Georgiev et al. [9] have also studied a similar problem in relationship to

blind source separation. However, the results in [9] are concerned with identifiability
of both y and A. The theorems given here assume knowledge of A but are stronger
than those in [9] in that they also states that we can use convex optimisation methods
to identify the sources. Furthermore, theorem 2 is valid for more general sources and
does not require the existence of an exact m-term representation.
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A similar result can be derived for noisy observations and a further generalisation
was derived in [8] for signals for which the original signal is not m-sparse, but
has a power law decay, i.e. the magnitude of the ordered coefficients decays as
|sik

| ≤ Ck−
1
p , where p ≤ 1. In particular, for an i.i.d. Gaussian observation error

with variance σ2, we have:

Theorem 2. (Dantzig selector) Assume that s can be reordered so that |sik
| ≤

ck−
1
p for p ≤1. For some m assume that δ2m(MΦ) + 3δ3m(MΦ) < 1. For

λ =
√

2 log Nx the solution to:

min ‖ŷ‖1 : ‖MT (x − Mŷ)‖∞ ≤ λσ (14)

obeys the bound:
‖s − s̃‖2

2 ≤ C2(log Nx)σpc1− p
2 . (15)

This can be extend trivially to a bound on the error in the signal space:

‖y − ỹ‖2
2 = ‖Φs − Φs̃‖2

2 ≤ C2(log Nx)σpc1− p
2 ‖Φ‖2

2. (16)

3.3 Random Mixing Conditions

In source separation, the mixing system should be considered independently from
the dictionary Φ in which the signal has a sparse representation. The theorems
above are based on δm(MΦ), which is required to be small. In this and the next
section we derive new results that give insight into this quantity by considering
M and Φ separately.

The first theorem is a slight modification from [10]4,5:

Theorem 3. Assume that M ∈ RNx×Ny is a random matrix with columns
drawn uniformly from the unit sphere and let Φ ∈ RNy×Ns have restricted isome-
try δm(Φ) < 1, then there exists a constant c, such that for m ≤ cNx log(Ns/m):

(1 − δPm(M)) ≤ ‖MΦΓ s‖2
2

‖Φs‖2
2

≤ (1 + δPm(M)), (17)

and

(1 − δm(Φ))(1 − δPm(M)) ≤ ‖MΦΓ s‖2
2

‖s‖2
2

≤ (1 + δPm(M))(1 + δm(Φ)), (18)

holds with probability

≥ 1 − 2(eNs/m)m(12/δPm)me−
Nx
2 (δ2

Pm
/8−δ3

m/24). (19)

4 Note, that there are a range of other distributions for which this theorem would
hold, see [10] for details.

5 Since the first submission of this manuscript we became aware of the paper [11],
which contains very similar results.
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Proof (Outline). The proof that equation (17) holds is similar to the proof given
in [10] with the only difference that Theorem 5.1 in [10] can be shown to hold for
any m dimensional subspace, and where N in theorem 5.2 in [10] can be replaced
by Ns. The restricted isometry in equation (18) then follows by bounding ||Φs||22
from above and below using the restricted isometry (1 − δm(Φ)) ≤ ||Φs||22 ≤
(1 + δm(Φ)).

Therefore, for any dictionary Φ with δm(Φ) < 1 and for M sampled uniformly
from the unit sphere, δm(MΦ) ≤ δm(Φ) + δPm(M) + δm(Φ)δPm(M) with high
probability, whenever m ≤ CNx/ log(Ns/Nx).

3.4 Non-random Mixing Matrix Conditions

Unfortunately, theorem 3 assumes randomly generated mixing systems, which
is rather restrictive. We therefore derive conditions that relate the measurement
matrix M , the dictionary Φ and δm(MΦ).

To bound δm(MΦ) we define the (to our knowledge novel) concept of M -
coherence:

μM(Φ) = max
i,j:i�=j

|φT
i MT Mφj |. (20)

This quantity measures the coherence in the dictionary as ‘seen through’ the
measuring matrix. We also need the quantities:

amin = min
i

‖Mφi‖2
2 and amax = max

i
‖Mφi‖2

2, (21)

which measure how much the measuring matrix can deform elements of the dic-
tionary. We assume that amin ≥ mμM(Φ), then by the Gersgorin disk theorem
for the eigenvalues of ΦΓMT MΦΓ , we find that all squared singular values σ2

of the matrix MΦΓ with |Γ | ≤ m are bounded by:

amin − mμM(Φ) ≤ σ2 ≤ amax + mμM(Φ). (22)

We therefore have the bound:

amin − mμM(Φ) ≤ ‖MΦΓ s‖2
2

‖s‖2
2

≤ amax + mμM(Φ). (23)

Using a = max{amax − 1, 1 − amin} we have6 the bound on δm(MΦ) of

δm(MΦ) ≤ a + mμM(Φ), (24)

which is in terms of quantities that are easy to determine for a given dictionary
Φ and measurement matrix M.
6 Note that we have the bound ‖M‖2 ≥ amax ≥ amin ≥ 0.
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3.5 Sensitivity to Errors in M

In most source separation applications the mixing system is not given a priori
and has to be estimated. This leads to the question of robustness of the method
to errors in the estimation of the measuring matrix M.

Assume we have an estimated mixing system M̃ = M + N and estimated
sources s̃ such that x̃ = M̃Φs̃ and such that s̃ is supported on m̃ elements. Also
assume that x = MΦs is the true generating system with s supported on m
elements. Further assume that ‖x̃ − x‖2 ≤ 2ε.

If δm+m̃(M̃Φ) < 1, then we have the bound:

‖y − ỹ‖2 ≤ ‖M̃Φs − M̃Φs̃‖2‖Φ‖2√
1 − δm+m̃(M̃Φ)

. (25)

Replacing M̃Φs with MΦs+NΦs and using ‖MΦs−M̃Φs̃‖ ≤ 2ε together with
the triangle inequality, we get the bound:

‖y − ỹ‖2 ≤ 2ε + ‖Ny‖2‖Φ‖2√
1 − δm+m̃(M̃Φ)

≤ 2ε + ‖N‖2‖Φ‖2‖y‖2√
1 − δm+m̃(M̃Φ)

. (26)

4 Discussion and Conclusion

Underdetermined mixtures are a form of compressive sampling. Source separa-
tion is therefore equivalent to the decoding problem faced in compressive sam-
pling. This equivalence opens up many new lines of enquiry, both in compressive
sampling and in source separation.

On the one hand, as done in this paper, results form compressive sampling
shed new insight into the source separation problem. For example, theorems 1
and 2 state that for signals with a sparse underlying representation, whether ex-
act, or with decaying coefficients, convex optimisation techniques can be used to
recover or approximate the original signal from a lower dimensional observation.
Furthermore, results from compressive sampling give bounds on the estimation
error for sources that have a sparse representation with decaying coefficients.
The error is a function of this coefficient decay and properties of the matrix
mapping the sparse representation into the mixed domain. In the source sepa-
ration literature, linear programming techniques have been a common approach
[3] [4] [7] and the new theory gives additional justification for the application
of these techniques and, what is more, provides estimation bounds for certain
problems.

The main novel contribution of this paper was an extension of recent results
from compressive sampling to allow for more general, possibly over-complete dic-
tionaries for the sparse representation. In source separation, the mixing matrix
is in general unrelated to the dictionary and the main contribution of this paper
was to derive conditions on the dictionary, the mixing system and their inter-
action that allow the application of standard compressive sampling results to
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the more general source separation problem. In particular we have disentangled
the dictionary and the measurement matrix and could shown that for randomly
generated mixing systems, the required conditions hold with high probability.
For more general mixing systems, we have presented bounds on this condition,
which are functions of simple to establish properties of the mixing system, the
overcomplete dictionary and their interaction. If the mixing system has to be
estimated as in many source separation settings, errors in this estimate will in-
fluence the estimates of the sources. The theory in subsection 3.5 gives bounds
on this error.

Not only does source separation benefit from progress made in compressive
sampling, compressive sampling has also much to learn from the extensive work
done on source separation. For example, in source separation, the mixing system
is not known in general and has to be estimated together with the sources. Many
different estimation techniques have therefore been developed in the source sepa-
ration community able to estimate the mixing system. This suggests an extension
of compressive sampling to blind compressive sampling (BCS). Different scenar-
ios seem possible depending on the application and, in our notation, either Φ or
M (or both) might be unknown or known only approximately. Preliminary work
in this direction has shown encouraging first results and more formal studies are
currently undertaken.
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Abstract. This paper describes a new blind source separation method
for instantaneous linear mixtures. This new method coined GMCA (Gen-
eralized Morphological Component Analysis) relies on morphological di-
versity. It provides new insights on the use of sparsity for blind source
separation in a noisy environment. GMCA takes advantage of the sparse
representation of structured data in large overcomplete signal dictionar-
ies to separate sources based on their morphology. In this paper, we
define morphological diversity and focus on its ability to be a helpful
source of diversity between the signals we wish to separate. We intro-
duce the blind GMCA algorithm and we show that it leads to good re-
sults in the overdetermined blind source separation problem from noisy
mixtures. Both theoretical and algorithmic comparisons between mor-
phological diversity and independence-based separation techniques are
given. The effectiveness of the proposed scheme is confirmed in several
numerical experiments.

Introduction

Hereafter, we address the classical blind source separation problem. The m × t
data matrix X is the concatenation of m mixtures {xi}i=1,··· ,m each of which
being the instantaneous linear combination of n sources {si}i=1,··· ,n stored in
the n × t matrix S:

X = AS + N (1)

where A is the mixing matrix and N models noise or model imperfections. In
this setting, the aim of blind source separation (BSS) techniques is to estimate
both the sources S and the mixing matrix A. BSS is clearly an ill-posed in-
verse problem which requires additional prior information in order to be solved.
Previous work addressing BSS issues clearly emphasized on the need for di-
versity between the sources to be separated. From a statistical point of view,
ICA-like source separation methods use statistical independence (more precisely
mutual information) as a kind of “diversity measure” to distinguish between the
sources. In [1], the authors proved that maximizing any measure of independence

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 349–356, 2007.
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is equivalent to minimizing mutual information. ICA algorithms are then devised
according to particular approximations of mutual information.

Recently, sparsity has raised interest in a wide range of applications. Briefly,
a signal is said to be sparse in representation Φ if most of the entries of α
such that x = αΦ are almost zero and only a few have significant amplitudes.
Sparsity-based BSS methods have recently been devised. In [2], a BSS algorithm
is described in which it is taken advantage of sparsity to enhance the diversity
between independent sources. Several studies (see [3] and references therein)
have explored the extreme sparse case as they considered sources with strictly
disjoint (and thus orthogonal) supports. In Section 1, we define a particular
sparsity-based diversity measure coined morphological diversity. We propose a
new effective BSS algorithm coined GMCA which separates the mixed sources
based on their morphological diversity. In Section 2, numerical experiments are
given showing how GMCA performs well to separate sources from noisy mixtures.

1 The GMCA Framework

Notations and Definitions

Let x be a 1×t signal and Φ a signal dictionary. For the sake of simplicity, we will
first assume that Φ is orthonormal. In this case, x has a unique representation α
in Φ such that x = αΦ readily obtained as α = xΦT . The support S0,Φ (x) of x

in Φ is defined as S0,Φ (x) =
{
t
∣∣∣
∣∣α[t]| > 0

}
where α[t] is the t-th entry of α. Let

us also define the δ-support of x in Φ as : Sδ,Φ (x) =
{
t
∣∣∣
∣∣α[t]| > δ‖x‖∞

}
. We

then say that two sources s1 and s2 are δ-disjoint in Φ if Sδ,Φ(s1)∩Sδ,Φ(s2) = ∅.
Sources with strictly disjoint supports in Φ are obviously δ-disjoint with δ = 0.

1.1 Generalized Morphological Component Analysis

Sparse coding: Let us first assume that the mixing matrix A is known. In the
GMCA framework, the data are modelled as a linear combination of several
sources as in Equation 1. Furthermore, the sources {si}i=1,··· ,n are assumed
to be the linear combination of so-called morphological components (see [4]) :
si =

∑D
k=1 ϕik. By definition, those morphological components are assumed to be

sparse in different orthonormal bases {Φk}k=1,··· ,D. Based on these assumptions,
the GMCA algorithm endeavors to estimate the sources via the estimation of
those morphological components :

{ϕik} = Arg min
{ϕik}

‖X − AS‖2
2 + 2λ

n∑

i=1

D∑

k=1

‖ϕikΦT
k ‖�1 (2)

In [5], we proposed solving this optimization problem by estimating iteratively
and alternately each multichannel morphological component {ϕik} via a “block-
coordinate”-like algorithm (see [6]). The product AS is then split into n × D
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terms. Introducing the data residual Xik = X −
∑
{j,l}�={i,k} aiϕjl, where ai is

the i-th column of A, the morphological components are estimated one at a time
according to : ϕik = Argminϕik

‖Xik − aiϕik‖2
2 + 2λ‖ϕikΦT

k ‖�1 .
This equation has an exact solution known as soft-thresholding (see [7]). This

sparse decomposition is closely linked to a sparse coding stage as already exposed
in [8].

Dictionary learning: In the previous paragraph, we assumed that the mixing
matrix was known and we showed that estimating the morphological components
(and thus the sources) boils down to a sparse coding step. We consider now
that the morphological components are fixed and we want to learn the mixing
mixing matrix A. This dictionary learning issue has already been addressed by
extensive work for a wide range of applications. Refer to [8] and references therein
for more on that question. Following the same estimation scheme we introduced
previously, we propose to estimate each column of A assuming the morphological
components are fixed as follows: ai = Argminai ‖X −

∑
j �=i ajsj − aisi‖2

2. This
update clearly leads to a least-squares estimate of the columns of A : ai =(
X −

∑
j �=i ajsj

)
sT

i /‖si‖2
2.

1.2 The GMCA Algorithm for Blind Source Separation

Owing to the “block-coordinate”-like structure of our optimization scheme, for
a fixed threshold λ, the blind GMCA algorithm estimates alternately the dif-
ferent parameters in the model i.e. the columns of A and the morphological
components. The blind GMCA algorithm is as follows.

1. Set the number of iterations Imax and threshold λ(0)

2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance),

For i = 1, · · · , n
For k = 1, · · · , D

• Compute the residual term r
(h)
ik assuming the current estimates of ϕ{pq}�={ik},

ϕ̃
(h−1)
{pq}�={ik} are fixed:

r
(h)
ik = ãi(h−1)T (

X −
∑

{p,q}�={i,k} ãp(h−1)
ϕ̃

(h−1)
{pq}

)

• Estimate the current coefficients of ϕ̃
(h)
ik by Thresholding with threshold λ(h):

α̃
(h)
ik = Δλ(h)

(
r
(h)
ik ΦT

k

)

• Get the new estimate of ϕik by reconstructing from the selected coefficients α̃
(h)
ik

:
ϕ̃

(h)
ik = α̃

(h)
ik Φk

Update ai assuming ap �=k(h)
and the morphological components ϕ̃

(h)
pq are fixed :

ãi(h)
= 1

‖s̃
(h)
i ‖2

2

(
X −

∑n
p �=i ãp(h−1)

s̃
(h)
p

)
s̃
(h)T

i where s̃
(h)
i =

∑D
k=1 ϕ̃

(h)
ik

– Decrease the thresholds λ(h) following a given strategy
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Note that the value of λ fixes a certain sparsity level in the sparse coding stage.
When λ is “high”, the sparse coding step will select the most “significant” fea-
tures in the data which are very likely to belong to the true morphological
components. As already introduced in [5] and [7], the threshold λ decreases to-
wards λ(min)

progressively incorporating new features. The purpose of such a
thresholding scheme is twofold: i) it provides numerical stability to the algo-
rithm, ii) it gives robusteness to noise as the morphological components {ϕik}
are first estimated from their most significant coefficients in {Φk}. The sparse
coding step is quite similar to a thresholding-based “denoising”. Handling noisy
mixtures then boils down to fixing the final threshold λmin. Typically, in the
white Gaussian noise case, λmin = 3σ where σ is the noise standard deviation.

1.3 A Fast GMCA Algorithm

When Φ is orthogonal: Note that the above GMCA algorithm is a multichannel
extension of MCA (Morphological Component Analysis - see [9,4]) which has
been devised in the single channel case. In [4], we showed that MCA is likely
to solve the �0 decomposition (and thus the �1 decomposition when the two
problems are equivalent - see [10] and references therein) of sparse signals in the
overcomplete dictionary Φ = [Φ1, · · · ,ΦD]. Nevertheless, in the multichannel
case, this sparse coding step requires the use of D transforms for each of the n
sources leading to a prohibitive computational cost. Interestingly, if we restrict
ourselves to the case where Φ is orthonormal, the problem in Equation 2 becomes
simpler:

ΘS = Arg min
ΘS

‖ΘX − AΘS‖2
2 + 2λ

n∑

i=1

‖ΘS‖�1 (3)

where ΘS = SΦT . The sources and the mixing matrix can be estimated in the
sparse domain Φ which drastically reduces the computational burden. Assuming
that A is nearly orthonormal1 leads to a very simple sparse coding step:

ΘS = Δλ

(
A†ΘX

)
(4)

where Δλ (.) is the soft-thresholding operator with threshold λ and A† is the
pseudo-inverse of A. In that setting, estimating A leads straightforwardly to a
simple least-squares estimate :

A = ΘXΘS
T

(
ΘSΘS

T
)−1

(5)

Interestingly, we show in [5] that alternating the updates in Equation 4 and
Equation 5 provides a fixed-point algorithm the convergence condition of which
is the following: ΘSΔλ (ΘS)T =

(
Δλ (ΘS)Δλ (ΘS)T

)

In [5], we give heuristics supporting the good convergence of our algorithm.
In the same paper, we also show that the same fast blind GMCA algorithm can
be used with non-orthonormal Φ.
1 In practice, even if this assumption is very stringent and seldom true, the algorithm

performs well.
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1.4 Morphological Diversity

At the beginning of this section we introduced a particular sparsity-based di-
versity measure to distinguish the sources. A classical sparsity-based diversity
measure (see [3]) leads to separate sources with strictly disjoint supports in a
sparsifying representation Φ. Nevertheless, most natural signals seldom have
strictly disjoint supports in most practical dictionaries Φ (e.g. discrete cosine,
wavelets, bandlets ... etc.). In [7], we slightly relaxed this assumption by consid-
ering sources with disjoint supports in an overcomplete signal dictionary made
of a union of orthonormal bases Φ = [Φ1

T ,Φ2
T ]T . In this paper, we introduce

a new sparsity-based diversity measure which relaxes the strict disjoint support
assumption.

The genesis - a deterministic diversity measure: In the next section, we switch
from the deterministic point of view we adopted in the above, and examine
the concept of morphological diversity from the statistical side. In the former
viewpoint, separable sources are such that there exists a sparse representation Φ
in which these signals have δ-disjoint supports. Heuristically, given sources e.g.
images which are “visually” and in that sense morphologically different, there
exists a dictionary Φ and a value of δ for which these sources are sparse and have
δ-disjoint supports. In that setting, the way Φ is chosen specifies which signals
are distinguishable. In practice, in image processing, taking Φ to be the union
of the curvelet frame [11] and the local discrete cosine representation leads to
good separation results for a wide range of images.

From a probabilistic viewpoint: The minimization problem in Equation 2 can
also be interpreted as Maximum A Posteriori estimator of the morphological
components assuming: 1) the coefficients of the morphological components are
generated independently from the same Laplacian law with zero mean and pre-
cision λ, 2) the entries of the mixing matrix are uniformly distributed, 3) the
additive noise follows a Gaussian distribution with zero mean and identity co-
variance matrix. Then what is the meaning of morphological diversity in a sta-
tistical framework? The point is that sources generated independently from the
same iid sparse stochastic process are very likely to have δ-disjoint supports
for some value of δ. For instance, let us assume that the sources s1 and s2

are independently generated from the same Laplacian probability density in the
sparse Φ-domain. Indeed, each entry of the coefficient vector αi=1,2 is drawn
according to: Pα(αi[k]) = μ

2 exp (−μ|αi[k]|). We would like to assess the proba-
bility for such sources to have δ-disjoint supports. Define the proposition Hτ =
“|α1[t�]| = ‖α1‖∞ > τ, |α2[t�]| = ‖α2‖∞ > τ and ∀t �= t�, |αi=1,2[t]| ≤ τ”.
Hτ states that s1 and s2 have strictly τ -joint supports; otherwise, if Hτ is false
then s1 and s2 have at least τ -disjoint supports. We define P|α|>τ = Pα(|α| > τ)
and P|α|≤τ = Pα(|α| ≤ τ). As the entries of each vector αi=1,2 are indepen-
dently generated from the same probability density function Pα, then P (Hτ ) si
such that: P (Hτ ) = T exp (−2μτ) (1 − exp (−μτ))2(T−1). As, in practice, T =
dN � 1, sources generated independently from the same sparse probability den-
sity function are τ -disjoint. In other words, from a statistical viewpoint, sparse
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independent sources are morphologically diverse with very high probability. In
that sense a separation technique based on morphological diversity is closely
related to ICA in a statistical framework.

ICA and GMCA from an algorithmic viewpoint: The fast blind GMCA method
introduced in section 1.3 can be expressed as a fixed-point algorithm the con-
vergence condition of which asks that the matrix ΘSΔλ (ΘS)T be symmetric,
for all values of λ. Interestingly, as summarized in [12], this condition can be
related to the convergence condition of some ICA algorithms which require the
symmetry of matrix E {f(BX)BX} where B is a demixing matrix and f(.) is
the so-called score function. The thresholding operator Δλ (.) in blind GMCA
is similar in its role to the score function of ICA algorithms. A specific and im-
portant feature of the thresholding Δλ (.) is that it evolves as the threshold λ
decreases from one iteration to the next of the blind GMCA algorithm. In [5],
we give heuristics showing that this “evolving” score function is likely to avoid
local false mimima of the objective thus providing some numerical stability to
the algorithm. A clear difference lies in the estimation of A instead of a demixing
matrix B; this distinction is important as GMCA is also designed to handle data
in a noisy environment.

2 Results

The last paragraph emphasized on sparsity as the key for very efficient source
separation methods. In this section, we will compare several BSS techniques
with GMCA in an image separation context. We choose 3 different reference
BSS methods: i) JADE: the well-known ICA (Independent Component Analy-
sis) based on fourth-order statistics (see [13]), ii) Relative Newton Algorithm:
the separation technique we already mentioned. This seminal work (see [14])
paved the way for sparsity in Blind Source Separation. In the next experiments,
we used the Relative Newton Algorithm (RNA) on the data transformed by a
basic orthogonal bidimensional wavelet transform (2D-DWT), iii) EFICA: this
separation method improves the FastICA algorithm for sources following gener-
alized Gaussian distributions (which can be well-suited for some sparse signals).
EFICA was also applied after a 2D-DWT of the data where the assumptions
on the source distributions are appropriate. Figure 1 shows the original sources
(top pictures) and the 2 mixtures (bottom pictures). The original sources s1

and s2 have unit variance. The matrix A that mixes the sources is such that
x1 = 0.25s1 + 0.5s2 + n1 and x2 = −0.75s1 + 0.5s2 + n2 where n1 and n2 are
Gaussian noise vectors (with decorrelated samples) such that the SNR equals
10dB. The noise covariance matrix ΓN is diagonal. Figure 2 depicts the behav-
ior of the mixing matrix criterion ΩA = ‖In − PÃ†A‖1 (Ã is the estimate of
A) as the signal-to-noise ratio (SNR in dB) increases. When the mixing ma-
trix is perfectly estimated, ΩA = 0, otherwise ΩA > 0. First, JADE does not
perform well; it points out the importance of choosing an appropriate diversity
measure to separate the sources. Thus, fourth-order statistics are not well suited
to the source images in these experiments. Secondly, RNA and EFICA behave
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Fig. 1. Left pictures: the 256 × 256 source images. Right pictures: two different
mixtures. Gaussian noise is added such that the SNR is equal to 10dB.
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Fig. 2. Evolution of the mixing matrix criterion ΔA as the noise variance varies: solid
line: GMCA, dashed line: JADE, (�): EFICA, (+): RNA. Abscissa: SNR in dB.
Ordinate: mixing matrix criterion value.

rather similarly. Finally, GMCA provides the best results giving mixing matrix
criterion values that are approximately 2 times lower than RNA and EFICA.
These results clearly show that i) sparsity enhances the distinguishability of the
sources, ii) morphological diversity is a well-performing diversity measure and
GMCA is well suited to account for that measure.

3 Conclusion

In this paper we introduced a new diversity measure to distinguish between
sources: the morphological diversity. It states that morphologically diverse sig-
nals should be separated in so-called sparse representations. The recent advances
in harmonic analysis and overcomplete representation theory make morpholog-
ical diversity a practical way to disentangle source processes from mixtures.
We proposed a new algorithm coined blind GMCA (Generalized Morphologi-
cal Component Analysis) to address the blind source separation problem based
on morphological diversity. Numerical experiments show that GMCA performs
notably well. Furthermore, GMCA is an effective algorithm designed to han-
dle noisy mixtures. Further work will focus on extending the algorithm to the
underdetermined blind source separation issue.
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Abstract. We give general identifiability conditions on the source matrix in
Blind Signal Separation problem. They refine some previously known ones. We
develop a subspace clustering algorithm, which is a generalization of the k-plane
clustering algorithm, and is suitable for separation of sparse mixtures with big-
ger sparsity (i.e. when the number of the sensors is bigger at least by 2 than
the number of non-zero elements in most of the columns of the source matrix).
We demonstrate our algorithm by examples in the square and underdetermined
cases. The latter confirms the new identifiability conditions which require less
hyperplanes in the data for full recovery of the sources and the mixing matrix.

1 Introduction

A goal of the Blind Signal Separation (BSS) is the recovering of underlying source
signals of some given set of observations obtained by an unknown linear mixture of the
sources. In order to decompose the data set, different assumptions on the sources have
to be made. The most common assumption nowadays is statistical independence of the
sources, which leads to the field of Independent Component Analysis (ICA), see for
instance [2], [6] and references therein. ICA is very successful in the linear complete
case, when as many signals as underlying sources are observed, and the mixing matrix
is non-singular. In [3] it is shown that the mixing matrix and the sources are identifiable
except for permutation and scaling. In the overcomplete or underdetermined case, less
observations than sources are given. It can be seen that still the mixing matrix can be
recovered [4], but source identifiability does not hold. In order to approximatively detect
the sources, additional requirements have to be made, usually sparsity of the sources.
We refer to [7,9,10,11] and reference therein for some recent papers on sparsity and
underdetermined ICA (m < n).

2 Blind Source Separation Using Sparseness

Definition 1. A vector v ∈ Rm is said to be k-sparse if v has at least k zero entries. A
matrix S ∈ Rm×n is said to be k-sparse if each column of it is k-sparse.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 357–364, 2007.
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The goal of Blind Signal Separation of level k (k-BSS) is to decompose a given
m-dimensional random vector X into

X = AS (1)

with a real m × n-matrix A and an n × N -dimensional k-sparse matrix S. S is called
the source matrix, X the mixtures and A the mixing matrix. We speak of complete,
overcomplete or undercomplete k-BSS if m = n, m < n or m > n respectively.

More generally, when a solution to the above problem doesn’t exist, we formulate
least square BSS problem as follows:

find a best approximation of X by AS, such that S is k-sparse, i.e.

minimize|X − AS‖ (2)

under constraints A ∈ R
m×n,S ∈ R

n×N and S is k-sparse (3)

In the following without loss of generality we will assume m � n: the undercomplete
case can be reduced to the complete case by projection of X.

3 Identifiability Conditions

The following identifiability conditions are extension and refinement of those in [5].
The extension is for the case of bigger sparsity i.e. when the source matrix is at least
(n − m + 2)-sparse. The refinement can be seen, for instance, when n � m + 2 and
the source matrix is (n − m + 1)-sparse. The provided examples illustrate both cases.
Assume that:

(H1) the indeces {1, ..., N} are divided in two groups N1 and N2 such that
(a) for any index i ∈ {1, ..., n} there exist ki � m different sets of indeces Ii,j ⊂

{1, ..., n}, j = 1, ..., ki each of which contains i, such that |Ii,j | � m − 1,
(b) for any set Ii,j from (a) there exist mi,j > |Ii,j | vectors s1, ..., smi,j from the

set S1 := {S(:, j), j ∈ N1}, such that each of them has zero elements in places with
indeces not in Ii,j , the rank of the set {s1, ..., smi,j } is full (i.e. equal to |Ii,j |), and

(c)
⋂ki

j=1 Ii,j = {i}.
(H2) Every m vectors from the group {S(:, j), j ∈ N2} are linearly independent.

Theorem 1 (Matrix identifiability). Let the assumptions (H1) and (H2) be satisfied.
Then, in the set of all matrices with dimension m × n there is a subset of a full measure
A such that, if X = AS and A ∈ A, then A is uniquely determined by X up to
permutation and scaling of the columns.

Sketch of the proof. The condition (H1) (c) implies that for any column ai of the mix-
ing matrix there exists less that |Ii,j | detectable subspaces in the data which intersection
is this column. One more subspace is reserved for ”confirmation” that their intersection
is indeed a column of the mixing matrix. Their intersection is stable under small per-
turbation of the columns, so ”most” of the matrices will exclude false intersection (not
corresponding to a column). ”Detectable subspace” here means that it contains at least
|Ii,j | + 1 data vectors (columns of X) different from zero and any |Ii,j | from them are
linearly independent (follows from (H1) (b)), so such a subspace can be detected by an
algorithm. Condition (H2) ensures that there is no false intersection of subspaces (not
corresponding to a column of A).
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4 Affine Hyperplane Skeletons of a Finite Set of Points

The solution {(n0
i , b

0
i )}k

i=1 of the minimization problem:

minimize f
(
{(nT

i , bi)}k
i=1

)
=

N∑

j=1

min
1�i�k

|nT
i xj − bi|l (4)

subject to ‖ni‖ = 1, bi ∈ R, i = 1, ..., k, (5)

defines affine hyperplane k(l)-skeleton of X ∈ Rm×N , introduced for l = 1 in [8] and
for l = 2, in [1]. It consists of a union of k affine hyper-planes

Hi = {x ∈ R
m : n0

i
T
x = b0

i }, i = 1, ..., k,

such that the sum of minimum distances raised to power l, from every point xj to them
is minimal. Consider the following minimization problem:

minimize
N∑

j=1

min
1�i�k

|ñT
i x̃j |l (6)

subject to ‖ñi‖ = 1, i = 1, ..., k, (7)

where ñi = (ni, bi), x̃j = (xj , −1). Its solution ñi defines hyperpane skeleton in
Rm+1, consisting of a union of k hyperplanes

H̃i = {x̃ ∈ R
m+1 : ñT

i x̃ = 0}, i = 1, ..., k,

such that the sum of minimum distances raised to power l, from every point x̃j to them
is minimal. The restriction of H̃i to Rm gives Hi. The usefulness of working in Rm+1

can be seen for l = 2, if we denote by X̃i the i-th cluster

X̃i = {x̃j : min
1�p�k

|ñT
p x̃j |2 = |ñT

i x̃j |2} (8)

for some given {ñT
i }k

i=1. Then the following minimization problem

minimize vT
i X̃iX̃T

i vi (9)

subject to v ∈ R
m+1, ‖vi‖ = 1, (10)

will produce a solution {v0
i }k

i=1 (consisting of eigenvectors corresponding to the mini-
mal eigenvalues) for which f in (4) will not increase, i.e. f({v0

i }k
i=1) � f({ñi}k

i=1).
So we arrived to the following analogue of the classical k-means clustering

algorithm.

Hyperplane clustering algorithm. (see the pseudocode of the subspace clustering al-
gorithm below in the particular case when ri = 1). Apply iteratively the following two
steps until convergence:
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1) Cluster assignment - forming X̃i, i = 1, ..., k by (8),
2) Cluster update - solving the eigenvalue problem (9), (10).

Such kind of analogue of the classical k-means clustering algorithm, (working in Rm

instead in R
m+1) was introduced by Bradley and Mangasarian in [1] and called k-plane

clustering algorithm.
Since our hyperplane clustering algorithm is equivalent to the k-plane clustering

algorithm, it has the same properties, i.e. termination after finite number of steps at a
cluster assignment which is locally optimal, i.e. f in (4) cannot be decreased by either
reassigning of a point to a different cluster plane, or by defining a new cluster plane for
any of the clusters (see Theorem 3.7 in [1]).

Affine Subspace Skeleton
The solution of the following minimization problem

minimize F ({Ui}k
i=1) =

N∑

j=1

min
1�i�k

ri∑

s=1

|uT
i,sxj − bi,s|l (11)

subject to ‖ui,s‖ = 1, bi,s ∈ R, i = 1, ..., k, (12)

s = 1, ..., ri,uT
i,pui,q = 0, p �= q, (13)

where where Ui = {ui,s}ri
s=1, will be called affine subspace skeleton. It consists of a

union of k affine subspaces Si = {x ∈ R
m : uT

i,sx = bi,s, s = 1, ..., ri} each with
codimension ri, i = 1, ..., k, such that the sum of minimum distances raised to power l,
from every point xj to them is minimal. Consider the following minimization problem:

minimize F̃ ({Ũi}k
i=1) =

N∑

j=1

min
1�i�k

ri∑

s=1

|ũT
i,sx̃j |l (14)

subject to ‖ũi,s‖ = 1, ∈ R, i = 1, ..., k, (15)

s = 1, ..., ri, ũT
i,pũi,q = 0, p �= q, (16)

where Ũi = {ũi,s}ri
s=1, ũi,s = (ui,s, bi,s), x̃j = (xj , −1). Its solution ñi,s defines a

subspace skeleton in Rm+1, consisting of a union of k subspaces

S̃i = {x̃ ∈ R
m+1 : ñT

i,sx̃ = 0, s = 1, ..., ri}, i = 1, ..., k,

such that the sum of minimum distances raised to power l, from every point x̃j to them
is minimal. The restriction of S̃i to Rm gives Si (a non-trivial fact).

Similarly to the hyperspace clustering algorithm, we can write the following ana-
logue of the classical k-means clustering algorithm for finding the subspace skeleton,
when l = 2.

Subspace clustering algorithm. (see the pseudocode below)
It consists of two steps applied alternatively until convergence:

1) Cluster assignment - forming X̃i, i = 1, ..., k by: for given k orthonormal families
of vectors {ñi,s}ri

s=1, i = 1, ..., k, put

X̃i =
{
x̃j :

ri∑

s=1

|ũT
i,sx̃j |2 = min

1�i�k

ri∑

s=1

|ũT
i,sx̃j |2

}
. (17)
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2) Cluster update - for every i = 1, ..., k, solving the minimization problem

minimize
ri∑

s=1

trace(VT
i X̃iX̃T

i Vi) (18)

under orthogonality constraints VT
i Vi = Iri , (19)

where Vi has dimensionality (n + 1 × ri).
For any i, it will produce a solution V0

i - a matrix with columns equal to the eigen-
vectors corresponding to the ri smallest eigenvalues of the matrix X̃iX̃T

i (a non-trivial
fact) and F̃ in (14) will not increase, i.e. F̃ ({V0

i }k
i=1) � F̃ ({Ũi}k

i=1).
This algorithm terminates in a finite number of steps (similarly to the Bradley-

Mangasarian algorithm) to a solution which is locally optimal, i.e. F̃ in (14) cannot
be decreased by either reassigning of a point to a different cluster subspace, or by defin-
ing a new cluster subspace for any of the clusters.

Algorithm 1. Subspace clustering algorithm
Data: samples x(1), . . . ,x(T )
Result: estimated k subspaces S̃i ⊂ R

n+1, i = 1, ..., k given by the orthonormal bases
{ũi,s}ri

s=1 of their orthogonal complements S̃⊥
i .

Initialize ε > 0 and randomly ũi,s = (ui,s, bi,s) with |ũi,s| = 1, i = 1, . . . , k,1

s = 1, . . . , ri.
do (Until the difference of F̃ calculated in two subsequent estimates of {Ũi}k

i=1 is less
than ε)

Cluster assignment.
for t ← 1, . . . , T do

Add x̃(t) = (x(t),−1) to cluster X̃i (a matrix), where i is chosen to minimize2 ∑ri
s=1 |uT

i,sxj − bi,s|2 (distance to the subspace Si).
end
Cluster update.
for i ← 1, . . . , k do

Calculate the i-th cluster correlation C := X̃iX̃T
i .3

Choose eigenvectors vs, s = 1, ..., ri of C corresponding to the ri minimal4

eigenvalues.
Set ũi,s ← vs/|vs|, s = 1, ..., ri, Ũi = ∪ri

s=1ũi,s.5

end
end

Algorithm for Identification of the Mixing Matrix

1) Cluster the columns {X(:, j) : j ∈ N1} in k groups Hi, i = 1, ..., k such that the
span of the elements of each group Hi produces ri-codimensional subspace and these
ri-codimensional subspaces are different.

2) Calculate any basis of the orthogonal complement of each of theseri-codimensional
subspaces.
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3) Find all possible groups such that each of them is composed of the elements of at
least m bases in 2), and the vectors in each group form a hyperplane. The number of
these hyperplanes gives the number of sources n. The normal vectors to these hyper-
planes are estimations of the columns of the mixing matrix A (up to permutation and
scaling).

In practical realization all operations in the above algorithm are performed up to
some precision ε > 0.

Source Recovery Algorithm

1. Repeat for j = 1 to N :
2.1. Identify the subspace Hi containing xj := X(:, j), or, in practical situation with

presence of noise, identify Hi to which the distance from xj is minimal and project xj

onto Hi to x̃j ;
2.2. if Hi is produced by the linear hull of column vectors ap1 , ...,apm−ri

, then find

coefficients Lj,l such that x̃j =
m−ri∑

l=1

Lj,lapl
. These coefficients are uniquely deter-

mined generically (i.e. up to measure zero) for x̃j (see [5], Theorem 3).
2.3. Construct the solution sj = S(:, j): it contains Lj,l in the place pl for l =

1, ..., m − ri, the other its components are zero.
It is clear that such found (A,S) is a solution to the least square BSS problem defined

by (2).

5 Computer Simulation Examples

First example. We created artificially four source signals, sparse of level 2, i.e. each
column of the source matrix contains at least 2 zeros (shown in Figure 1). They are
mixed with a square nonsingular randomly generated matrix A:

A =

⎛

⎜⎝

0.4621 0.6285 0.5606 0.4399
0.2002 0.4921 0.5829 0.3058
0.8138 0.4558 0.2195 0.2762
0.2899 0.3938 0.5457 0.7979

⎞

⎟⎠ .

The mixed sources are shown in Fig.2, the recovered sources by our algorithm are
shown in Fig. 3. The created signals are superposition of sinusoidal signals, so it is clear
that they are dependent and ICA methods could not separate them (lack of space prevent
us to show the results of applying ICA algorithms). The estimated mixing matrix with
our subspace clustering algorithm is

M =

⎛

⎜⎜⎝

0.6285 0.4399 0.4621 0.5606
0.4921 0.3059 0.2002 0.5829
0.4558 0.2762 0.8138 0.2195
0.3938 0.7979 0.2899 0.5457

⎞

⎟⎟⎠ .
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Second Example. Now we create six signals with level of sparsity 4, i.e. each column
of the source matrix has 4 zeros. We mixed them with a randomly generated matrix
with dimension (3 × 6):

H =

⎛

⎝
0.8256 0.3828 0.4857 0.4053 0.7720 0.2959
0.2008 0.7021 0.0197 0.5610 0.6182 0.6822
0.5273 0.6004 0.8739 0.7218 0.1476 0.6686

⎞

⎠ .

The estimated mixing matrix with our subspace hyperplane clustering algorithm is

M =

⎛

⎝
0.2959 0.4857 0.8256 0.4053 0.3828 0.7720
0.6822 0.0197 0.2008 0.5610 0.7021 0.6182
0.6686 0.8739 0.5273 0.7218 0.6004 0.1476

⎞

⎠ .

Here the number of hyperplanes presented in the data are 9, while the number of all
possible hyperplanes (according to the identifiability conditions in [5]) when all com-
bination of 4 zeros in the columns of the source matrix are present, are 15.
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Fig. 1. Example 1: original source signals (left) and mixed ones (right)
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Fig. 2. Left: Example 1 - separated signals. Right: Example 2 - original source signals
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Fig. 3. Example 2: mixed signals (left) and separated signals (right)

6 Conclusion

We presented new identifiability conditions for sparse BSS problem, allowing less hy-
perplanes in the data points for full recovery of the original sources and the mixing
matrix. New subspace clustering algorithm is designed for subspace detection, based
on eigenvalue decomposition. The square and the underdetermined cases for signals
with bigger sparsity are illustrated by examples.
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Abstract. In underdetermined blind source separation problems, it is
common practice to exploit the underlying sparsity of the sources for
demixing. In this work, we propose two sparse decomposition algorithms
for the separation of linear instantaneous speech mixtures. We also show
how a properly chosen dictionary can improve the performance of such
algorithms by improving the sparsity of the underlying sources. The first
algorithm proposes the use of a single channel Bounded Error Subset
Selection (BESS) method for robustly estimating the mixing matrix. The
second algorithm is a decomposition method that performs a constrained
decomposition of the mixtures over a stereo dictionary.

1 Introduction

In the blind source separation(BSS) problem, we have mixtures of several source
signals and the goal is to separate them with as little prior information as possi-
ble. In this work, we study the instantaneous underdetermined BSS case, where
we have more sources than mixtures. We are concerned with separating mixtures
of speech signals when the mixing matrix and number of underlying sources are
unknown. This problem is intrinsically ill-defined and its solution requires some
additional assumptions compared to its overdetermined counterpart. The diffi-
culty of the underdetermined setup can be somewhat alleviated if there exists
a representation where all the sources are rarely simultaneously active, which
entails finding a representation where the sources are sparse. Some authors have
shown that speech signals are sparser in the time-frequency than in the time
domain, and that there exists several other representations such as wavelets
packets, where different degrees of sparsity can be obtained [12]. It has been
shown that better separation can indeed be achieved by exploiting such sparsity
[7],[6],[11].

In this paper, we investigate methods for performing BSS using overcomplete
dictionaries in the underdetermined case. The fundamental success of the sepa-
ration depends on two factors, namely the type of dictionary used and the type
of decomposition method employed. We study both areas. For the first case, we
demonstrate how the underlying sparsity of the sources can be improved using
a KSVD-based [3] trained dictionary. For the second case, we propose the use
of the Bounded Error Subset Selection(BESS) [5] method as a robust method

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 365–372, 2007.
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for estimating the mixing matrix, even in the presence of additive noise in the
mixture. Furthermore, we propose a multichannel sparse decomposition method
for extracting the underlying sources.

The remainder of this paper is organized as follows. In section 2 we give a
mathematical description of the problem and an explanation of how sparsity is
used in source separation. In section 3, we show how the right dictionary can
improve the underlying sparsity of the sources. In section 4, we illustrate how
single channel sparse decomposition algorithms fail to distribute some coefficients
to the proper source, setting the stage for multichannel methods. Finally, we
detail a decomposition algorithm with directionality constraints and discuss its
benefits.

2 Mixture Model for an Arbitrary Dictionary

For a problem where we have M mixtures of N sound sources and M ≤ N , our
goal is to separate the sources into individual tracks. We are concerned with the
underdetermined linear instantaneous mixture model, which can be formulated
mathematically as follows,

x(t) = As(t) + q(t), (1)

where s(t) is an unknown N × 1 vector containing the source data, x(t) is a
known M × 1 observation vector, q(t) is the M × 1 additive noise vector, t is the
sample index and A is an unknown M ×N mixing matrix. Over T time samples,
we have the following expression,

X = AS + Q, (2)

where X = [x(1])x(2]) . . . x(T )], S = [s(1)s(2) . . . s(T ])], Q = [q(1)q(2) . . . q(T )].
One approach to solving this problem is to assume that the sources are suf-

ficiently sparse in a given representation. To solve the underdetermined BSS
problem using sparsity, one can decompose the signal into a dictionary where
the source signals are known to be sparse or use a Sparse Decomposition (SD)
algorithm to find a sparse representation for an overcomplete dictionary. In the
rest of this section, we illustrate how sparsity can lead to separation, then show
how sparsity in alternative representations can be exploited. To simplify the
discussion, let us assume without loss of generality that M = 2 and N = 3. As-
suming there is no additive noise for illustrative purposes, we can expand Eq. 2
as follows

[
x1

x2

]
=

[
a11 a12 a13

a21 a22 a23

]
×

⎡

⎣
s1

s2

s3

⎤

⎦ (3)

By looking at the ratio x1
x2

for the case when only the jth source is active, we get

x1

x2
=

a1j

a2j
(4)
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Hence a scatter plot of x1 v/s x2 for the case where the sources never overlapped
would reveal 3 distinct lines such that the jth source corresponds to the line with
gradient a1j

a2j
. Separation can be easily achieved for Eq. 4. The general thinking

is that the sparser the sources are, the less likely they are to be active at the
same time, resulting in better separation. The same argument can be applied
when the data is represented in a different dictionary. The dictionary can be
a basis matrix or an overcomplete matrix and each column is referred to as a
dictionary atom. We can express signal,{sj}N

j=1, in terms of the dictionary, D
and coefficient matrix, C such that

ST = DC. (5)

Substituting in Eq. 2, We get

X = ACT DT , (6)

where C is a K × M coefficient matrix and D is a T × K matrix. Thus, it is
clear that the sparsity of the source is inherently limited by the dictionary used.
In the following section we illustrate how the quest for a sparse representation
entails finding a good dictionary. In the rest of the paper, we consider the case
where we have 2 mixtures and 3 sources.

3 Effect of Dictionary on Signal Sparsity

In this section, we illustrate the importance of dictionary selection for BSS algo-
rithms that rely on sparsity. Although, it has already been well established that
speech signal exhibits different degrees of sparsity in different representations
[11],[12], we do not know what is the optimally sparse representation for speech
signals or whether optimal sparsity offers sufficient improvement in separation
quality over standard overcomplete dictionaries such as the Cosine Packet(CP)
dictionary[8]. In the absence of an optimal representation, we resort to trained
dictionaries to demonstrate that a properly chosen dictionary can offer significant
performance improvement. In this section, we present some numerical results to
illustrate that indeed the trained dictionary offers better sparsity than the CP
dictionary. In section 4, we compare their impact on separation.

3.1 Dictionary Design

The CP dictionary was designed using the Atomizer and Wavelab Matlab tool-
boxes[1], with dimensions 128×896. The matched dictionary, of the same size as
the CP dictionary, was designed using a KSVD method [3]. This method takes
after the Vector Quantization technique used in codebook design and tends to
promote a sparse structure. The speech data used for training the dictionary
had to be first formatted into frames of length T , with a standard windowing
technique.

To compare the sparsity improvement of the matched and unmatched dic-
tionaries for speech signals, we use a standard sparse decomposition method,
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the Orthogonal Matching Pursuit(OMP)[8]. Sparsity for a dictionary was eval-
uated as the minimum number of coefficients required to represent the signal
in that dictionary using OMP. Using three different speakers, we trained three
dictionaries. The first, dictionary1, was trained using speaker 1 only, the sec-
ond, dictionary12, was trained with speaker 1 and 2, and the third was trained
using all three speakers. The signal from each speaker was then independently
decomposed in the CP dictionary and the three trained dictionaries.

3.2 Sparsity Comparison

We summarize the sparsity of the original sources for each dictionary in Fig. 1.
In all three experiments, source1 is clearly much sparser with the KSVD dictio-
nary than the CP. The most important observation is that all speakers exhibit
a very high sparsity improvement with dictionary123. A study of the number of
dictionary atoms concurrently used by simultaneous sources reveals that indeed
the sparsest dictionary, dictionary123, results in the lowest number of overlap-
ping atoms. For space consideration, details are omitted here. Hence, for our
purposes, dictionary123 is sparsest available dictionary for the sources under
study.
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Fig. 1. Number of nonzero coefficients when using OMP. Dictionary1 is trained us-
ing source1 only. Dictionary12 is trained using source1 and source2. Dictionary123 is
trained using source1, source2 and source3.

4 Sparse Decomposition Methods for Separation

Our goal in this section is to introduce two algorithms for underdetermined BSS.
The first algorithm is a single channel BESS, which is shown to be a robust
technique for estimating the mixing matrix. The second algorithm performs a
constrained decomposition of the two mixture signals over a stereo dictionary.

4.1 Single Channel BESS as a Robust Estimate of the Mixing
Matrix

In Fig.2(a), we show the scatter plot for coefficients from performing single chan-
nel BESS independently on the each mixture signal. There are two interesting
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observations about this plot. First, there is a set of coefficients that appear on
the axes, and second, there is a different set of coefficients clustered along the
mixing matrix columns. The coefficients on the axes are dictionary elements that
appear in one mixture but not in the other, and cannot be separated using this
method. The coefficients along the matrix orientation share the same dictionary
atoms for both mixtures and belong to a single source. We propose using only
the dictionary atoms common to both mixtures in estimating the mixing matrix.

A well known method for estimating the mixing matrix is performing a Hough
transform on the coefficients of the sparse decomposition. This basically entails
finding the histogram of angles, arctan c1

c2
, for all the coefficients pairs (c1, c2) of

the decomposed mixtures. The mixing matrix columns show up as peaks on the
histograms. The quality of the estimate depends on the how well the peaks can
be estimated. We combine this method with the BESS decomposition discussed
above, and compare the results with the Hough transform of the coefficients of
the Modified Discrete Cosine Transform(MDCT) of the mixtures.

We find that both methods provide equally good estimates, but that the BESS
technique is more robust in the presence of additive noise. Fig. 2(b) shows the
histogram for MDCT coefficients and fig. 2(c) shows the results for the BESS
method, in the presence of noise. We can clearly see that the peaks position
gets blurred in the presence of noise with the MDCT transform, while the new
method provides more robust estimate of the peaks under noisy conditions.

4.2 A Decomposition Method with Directionality Constraints

Inspired by the stereo dictionary method of Gribonval [7], we propose an al-
gorithm that performs a constrained decomposition of the two mixture signals.
This require prior knowledge or estimation of the mixing matrix. We detail the
algorithm below and contrast it with stereo dictionary decomposition method.

Given a T × K dictionary, D, consisting of {di}K
i=1 and two mixtures vectors,

x1, and x2, the decomposition is given as follows,

1. At iteration M = 1, the nth residual, RM
n is initialized to nth mixture signal,

xn. Each channel has a set of coefficients, cn,i = 0, where i is the index of
the dictionary atom. A list of the available dictionary atoms is kept tracked
in list, Li. All indices are included at initialization. At each iteration, a
dictionary atom is picked and the coefficients associated with that atom are
computed.

2. For picking the dictionary atom, we use the same criteria as [7], i.e., we
pick the atom, k, that is maximally correlated to both mixtures channels,
k = argmaxk| < RM

1 , dk >2 + < RM
2 , dk >2 |

3. Next we find the projection of the residuals of each channel onto the kth

dictionary element. Denoting this projection pairs as, ct = [< RM
1 , dk >, <

RM
2 , dk >], we proceed to constrain it to lie along one the mixing matrix

columns.
4. By finding the inner product of this projection pair with the mixing matrix

columns, we finding the closest column as, J = argmaxJ | < ct, aJ > |, where
J is the column index.
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(a) Scatter plot of
2 independent BESS
decomposition

(b) Histogram of all
MDCT coefficients

(c) Histogram of BESS
coefficients, common to
both mixtures

Fig. 2. Coefficients of 2 mixtures in the presence of additive noise at sensors

5. We then set the coefficient for the kth atom to be equal to < ct, aJ >, and
remove the index of this dictionary element from index list, Li.

6. We check the reconstruction error of both mixtures signal and increment the
iteration if necessary.

Stages 1 and 2 are essentially the same as the StereoMP. However, stage 2 can
be replaced by some other criteria for picking the dictionary element. In stage 3
through 5, we constrain the coefficients of a particular dictionary elements to lie
along one of the columns of the mixing matrix. The difference between doing the
projection during the decomposition as opposed to after is that error between
ct × dk and < ct, aJ > ×ct × dk can be reassigned to another dictionary element
during the decomposition.

4.3 Results

We computed commonly used performance indices[4] for the above mentioned
algorithm for 2 cases, a CP dictionary and a KSVD-trained dictionary. For the
purpose of this experiment, we used three 10 seconds long male speech tracks
and artificially mixed them using a predefined mixing matrix. The experiments
were run on frames of 512 points with a 50% overlap and the dictionary used
was of size 512 × 4608. In Fig. 3, we compared the results for the CP dictionary
and the trained dictionary. We find that the trained dictionary offers a Signal-to-
Interference Ratio (SIR) improvement of 4 to 9 dB over the CP dictionary and
Signal-to-Artifact Ratio (SAR) improvement of of 3 to 4 dB. Also, not shown
here for space consideration is an improvement in Signal-to-Distortion Ratio
(SDR) similar to the SAR. This confirms the claim in section 3 that dictionary
selection is a very important part of the separation process.

We also found that our method to have comparable SIR to Gribonval’s method,
but with a noticeable improvement numerically and subjectively in distortion and
artifacts. This improvement in distortion metrics confirms our previous claim that
redistributing the coefficient projection error indeed improves the quality of the
separation.Thedownside, however, is that a larger number of iterations is required.
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Fig. 3. Performance Comparison between CP and Trained dictionaries for algorithm
of section 4.2

5 Conclusion

We discussed the implications of sparsity on source separation and explored
different avenues to maximize separation for given signals. We looked at both
the dictionary selection problem and selection of decomposition algorithms, and
used the BESS method as a robust estimate of the mixing matrix. In this work,
we clearly illustrated how the choice of the proper dictionary makes a difference
in the sparsity of the coefficients and the resulting separation. Furthermore, we
proposed a decomposition method which constrains the coefficients at each iter-
ation, and demonstrated its performance. We currently in process of developing
an extension of the BESS method that could be extended to multichannel source
separation.
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Abstract. We consider the problem of blindly separating time-varying
instantaneous mixtures. It is assumed that the arbitrary time depen-
dency of the mixing coefficient, is known up to a finite number of pa-
rameters. Using sparse (or sparsified) sources, we geometrically identify
samples of the curves representing the parametric model. The parame-
ters are found using a probabilistic approach of estimating the maximum
likelihood of a curve, given the data. After identifying the model param-
eters, the mixing system is inverted to estimate the sources. The new
approach to blind separation of time-varying mixtures is demonstrated
using both synthetic and real data.

1 Introduction

Most of the research in the area of blind source separation, has been focused
on the instantaneous model. In recent years, more attention is being directed
towards convolutive and time-varying problems which represent the majority of
real-world mixtures. In blind separation of time-varying instantaneous mixtures,
the sources are mixed with time-varying coefficients. It is assumed that the
sources are not filtered nor are delayed prior to being mixed.

Many studies have addressed this problem by using an adaptive form of sta-
tionary blind source separation algorithms [4,6,7]. Some have even utilized parti-
cle filtering in order to track the mixing coefficients [2]. These approaches assume
that the variation of the mixing system is small, in order to enable the extraction
of the statistical nature of the mixtures. A different idea was employed in [9,10],
where a parametric model of the mixing coefficients was used in the case of a
linear or periodic dependency of the mixing system on time. This approach can
be more efficient for larger variations in comparison to the adaptive algorithms.

The case where the mixing system is an arbitrary function of time, with large
variations, is still overlooked. In this paper, the model of the mixing coefficients
is arbitrary. We assume that it is known up to a finite number of parameters, and
that the sources are sparse (or can be sparsely represented using an appropriate
transform). For such sources, the value of the mixing coefficients can be identified
over many time instances. We interpret these instances geometrically, as samples
of curves representing the parametric model. Estimating the parameters, requires
the grouping of the time instances and assigning them to a curve. This is done
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by using a probabilistic approach of estimating the maximum likelihood of a
curve given the data. After identifying the model parameters, the mixing system
is inverted to estimate the sources.

2 Time-Varying Instantaneous Mixtures

In the problem of blind separation of time-varying (or position-varying in the
case of images) instantaneous mixtures, sensors xi(t) receive sources, sj(t), which
are linearly mixed by a matrix, A(t), with time-dependent elements aij(t)1:

x(t) = A(t)s(t) + n(t), (1)

where n(t) is an additive noise with known or unknown parameters. We can
usually assume the form of aij(t) by using some knowledge about the physics of
the problem2:

aij(t) = gij(αijk
; t), (2)

where the function gij is known up to some finite number of parameters αijk
.

The index k = 1, .., N , where N is the number of unknown parameters.
To illustrate a system of 2 sensors receiving data from position-varying instan-

taneous mixtures of 2 sources, consider Fig. 1. The semi-reflective glass mixes an
image and a reflection. The position-varying mixing is obtained by non-uniform
illumination.

The objective of the blind source separation problem is to estimate the sources,
sj , and the unknown mixing parameters, αijk

, from the observed mixtures, xi.
One of the ways for doing so, is to identify the matrix A(t) and apply its pseudo-
inverse to the observations x(t)3:

ŝ(t) = A(t)†x(t) = s(t) + A(t)†n(t), (3)

where A(t)† stands for the pseudo-inverse of A(t). Similar to the case of instan-
taneous mixtures, where the separation is up to scaling and permutation of the
original sources, we assume that the blind separation of time-varying instanta-
neous mixtures is up to a time-varying scaling and permutation of the sources.
Therefore, we can define our separation problem to account for this fact and
rewrite it as follows:

x(t) = Ã(t)s̃(t) + n(t), (4)

where ãij(t) = aij(t)/a1j (t) and s̃j(t) = a1jsj(t). Similar to Eq. (2), we define
g̃ij(αijk

; t), such that

ãij(t) = g̃ij(α̃ijk
; t) =

gij(αijk
; t)

g1j (α1jk
; t)

. (5)

1 In the case of images, the spatial coordinate y replaces t in the equations.
2 If the function is unknown, we can still assume that it is an analytic function and

therefore, can be approximated by a polynomial (representing its Taylor expansion).
3 Presuming the noise is low.
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Fig. 1. A setup for acquiring spatial varying instantaneous mixtures: two pictures are
positioned opposite to each other while a semi-reflective glass is mounted on the optical
axis of one of them. First mixture is acquired using uniform lighting. A second mixture
is acquired using a non-uniform illumination by a fluorescent lamp. This setup mimics
a physical situation, where the position-varying mixing parameter cannot be avoided.

The time-varying scaled estimated sources, can be found by using

ŝ(t) = Ã(t)†x(t). (6)

The problem is how to estimate Ã(t) using only the observed mixtures x(t).

3 Geometric Approach to Separation of Sparse Signals

Sparse signal is characterized by a small percentage of samples with nonzero
value. It can be instrumental in estimation of the mixing matrix [5]. If a signal
is not sparse, it can be sparsified by using a linear transformation to a domain
in which it is sparsely represented [11]4.

Sparse signals can be geometrically interpreted to identify Ã(t). If we observe
during some time instance t0, the existence of a nonzero signal in the sensors,
the most probable assumption would be that the signal was originated from a
single source. We can see from Eq. (4) that if only the jth source is active during
t0, ãij(t0) can be found by:

ãij(t0) =
xi(t0) − ni(t0)
x1 (t0) − n1 (t0)

≈ xi(t0)
x1 (t0)

. (7)

4 By knowing the parametric form of A(t), a transformation can be chosen such that
T [A(t)s(t)] ≈ A(t)T [s(t)] and the blind source separation can be solved in the trans-
formed sparse domain.
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Since sj is rarely active, we have several non-uniform samples of the continuous
curve ãij(t). The obstacle is that when one observes a nonzero signal in the sensors,
it is not known to which source it corresponds. Thus, the problem requires to group
time instances in which the received signal was originated from the same source.

4 Probabilistic Framework for Identifying Ã(t)

We want to construct a framework for grouping time instances originated from
the same sensor and estimating the α̃ijk

parameters. This framework is necessary
since correct estimation of α̃ijk

solves the grouping problem and vice versa,
correct grouping estimates α̃ijk

.
Suppose we take all the time instances t0...tM−1 in which a nonzero (or above

some threshold) signal was detected. For each individual time instance tl, we
define the ratio ri(tl) ≡ xi(tl)/x1 (tl).

A maximum likelihood approach for estimating α̃ijk
would be to maximize:

α̃ijk
= arg max

α̃ijk

J(α̃ijk
) ≡ arg max

α̃ijk

P [ri(t0...tM−1) | α̃ijk
]. (8)

Using Bayes’ rule, we can calculate the conditional probability of the right
hand side of Eq. (8) by:

J(α̃ijk
) ≡ P [ri(t0...tM−1) | α̃ijk

] =
P [α̃ijk

| ri(t0...tM−1)]P [ri(t0...tM−1)]
P [α̃ijk

]
. (9)

Since prior information regarding the distribution of α̃ijk
is not available, a uni-

form distribution is assumed. Omitting P [α̃ijk
], which is assumed to be constant,

and omitting P [ri(t0...tM−1)], which does not depend on α̃ijk
, does not affect the

maximization of Eq. (9) with respect to α̃ijk
. Therefore, estimating α̃ijk

using
the maximum likelihood approach would be to maximize:

α̃ijk
= arg max

α̃ijk

J̃(α̃ijk
) ≡ arg max

α̃ijk

P [α̃ijk
| ri(t0...tM−1)]. (10)

In order to evaluate the conditional probability P [α̃ijk
| ri(t0...tM−1)], we first

construct a density estimation to get a certain ratio on a specific time, given the
measurements xi(tl) and x1(tl). It can be done using a kernel density estimation:

f̂(ri, t | xi(tl), x1 (tl)) =
1

Mhrht
K

(
ri − ri(tl)

hr
,
t − tl
ht

)
, (11)

where M is the number of time instances a signal was detected, K is a multi-
variate kernel density estimator, and hr, ht are the kernel support in the r and
t axes respectively.

Using the law of total probability, f̂(ri, t) can be found by calculating:

f̂(ri, t) =
M−1∑

l=0

f̂(ri, t | xi(tl), x1 (tl))P [xi(tl), x1 (tl)]. (12)

We interpret the probability P [xi(tl), x1(tl)] as a measure of the correctness
of calculating ãij(tl) using Eq. (7). If the noise is at least one order of magnitude
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smaller than the observed signals, the approximation of Eq. (7) holds. If the
noise parameters can be estimated, for example in the case of normal distributed
noise with a known variance σ2, the probability of the noise being an order of
magnitude smaller than the measurement xi(tl) or x1 (tl), is5:

P [xi(tl), x1 (tl)] ≡ min{
|xi(tl)|∫

−|xi(tl)|

1
σ
√

20π
e−

v2

20σ2 dv,

|x1 (tl)|∫

−|x1 (tl)|

1
σ
√

20π
e−

v2

20σ2 dv}.

(13)
We want to evaluate the conditional probability of ãij(t) represented by α̃ijk

parameters given the ratio of the measurements ri(t0...tM−1), i.e. Eq. (10). Since
we know from Eq. (5) that ãij(t) = g̃ij(α̃ijk

; t), we can calculate this probability
using a line integral over a scalar field, being the density f̂(ri, t):

J̃(α̃ijk
) ≡ P [α̃ijk

| ri(t0...tM−1)] =

t2∫

t1

f̂(gij(α̃ijk
; t), t)

√
1 + [g̃′ij(α̃ijk

; t)]2dt,

(14)
where g̃′ij stands for the derivation with respect to t, and t1, t2 are the observation
start and stop time respectively.

The optimization can be done using the Newton method, starting from several
initial points as follows:

1. Take as an initial guess a vector of α̃
(0)
ijk

parameters.

2. Use the vector α̃
(m)
ijk

obtained from the previous step and construct the gra-

dient vector ∇J̃(α̃(m)
ijk

) and the Hessian matrix HJ̃ (α̃(m)
ijk

) using:

∂J̃(α̃(m)
ijk

)

∂α̃
(m)
ijk

=
∂P [α̃(m)

ijk
| ri(t0...tM−1)]

∂α̃
(m)
ijk

(15)

∂2J̃(α̃(m)
ijk

)

∂α̃
(m)
ijk

∂α̃
(m)
ijp

=
∂2P [α̃(m)

ijk
| ri(t0...tM−1)]

∂α̃
(m)
ijk

∂α̃
(m)
ijp

. (16)

3. Update the estimated parameters:

α̃
(m+1)
ijk

= α̃
(m)
ijk

− HJ̃(α̃(m)
ijk

)∇J̃(α̃(m)
ijk

). (17)

4. Repeat steps 2 and 3 until convergence.

The initial points can be chosen by using an approach similar to that of
the Hough transform in image processing [1]. The grouping problem resolved
by issuing each time instance to the maximum which maximized Eq. (10) with
sufficient probability.
5 In the case where the noise parameters are unknown, we assume that P [xi(tl), x1(tl)]

is constant.
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A few implementation remarks are in order:

– The integral of Eq. (14) should be found indefinitely. Therefore, we suggest
using the Epanechnikov radially symmetric kernel [8] which is defined as:

K(r, t) =
{

2
π (1 − r2 − t2) (r2 + t2) ≤ 1

0 othewise
(18)

– If g̃ij(α̃ijk
) makes the indefinite integral of Eq. (14) unsolvable, an approxi-

mation for g̃ij(α̃ijk
) can be used.

– It is usually preferable to define b̃ij(t) ≡ arctan(ãij(t)) in order to eliminate
the noise amplification accompanying the calculation of xi(t)/x1 (t). The
definition of ri(tl) to be inserted in Eq. (11) should be changed to ri(tl) ≡
arctan(xi(tl)/x1 (tl)). After optimizing for the α̃ijk

parameters, ãij(t) can
be found using ãij(t) = tan(b̃ij).

5 Results

We tested our approach on both synthetic and real mixtures. For synthetic mix-
tures, 2 random signals were drawn from an exponential distribution and mixed
with the diagonal matrix A(t) with diagonal coefficients: ajj(t) = αjj1 t2+αjj2 t+
αjj3 . Random noise with normal distribution was added to the mixtures yield-
ing a mixture-to-noise ratio of 26 dB. The setup depicted in Fig. 1 was build.
Real mixtures were acquired with a Canon D100 digital camera connected to a
computer. The PSNR, which was estimated by taking consecutive identical pic-
tures, was 40 dB. We defined b̃2j (t) ≡ arctan(ã2j (t)) and assumed that a second

Fig. 2. Estimated b̃2j (t) for the synthetic (left) mixture and b̃2j (y) for the real (right)
mixture. The estimated b̃2j (t) or b̃2j (y) using our algorithm and quadratic approxima-
tion is depicted by the solid line. The true b̃2j (t), for the synthetic mixture, is depicted
by the dashed line. Scattered dots represents r2 (tn) or r2 (yn), where tn and yn are all
the time instances or pixels where the signal (or its derivative) was above a threshold.
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Table 1. Signal-to-Noise Ratio of the Synthetic Example

Mixture/Estimated s1 [dB] s2 [dB]

x1 -15 8
x2 10 -10

Estimated 16 21

order polynomial is the estimated Taylor expansion of b̃2j (t). Since images are
not naturally sparse, a derivation with respect to the y axis (along the rows) was
applied to the image mixtures. We initiated our algorithm with several starting
parameters and the algorithm converged to two local maxima. Fig. 2 shows the
results of identifying b̃2j (t) for the synthetic and the real mixtures. It can be
seen that the algorithm produces a close approximation. Table 1 summarizes
the results of inverting the system of the synthetic example. The signal-to-noise
ratio has improved dramatically after the separation.

Fig 3. shows the results of inverting the system of the real mixture to recover the
separated images. As it can be seen, the estimated images are separated properly.

Fig. 3. Results of separating the real mixtures: [Top] The mixtures. [Bottom] Estimated
separated sources.
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6 Conclusion

The proposed approach is general in that it can be applied to any type of
position-varying or time-varying mixing model. As such, it is useful in various
optical cases where the mixing lens cannot be assumed to acquire distortionless
images. Likewise in various time domain problems, the mixing characteristic vary
with time. Whereas in simple linear or quadratic forms of varying mixing pa-
rameters a simple solution can be obtained according to our approach, in other
cases a solution is possible by solving integral equations numerically. Further
extension of this study is now in progress, separating time-varying convolutive
mixtures by using a proper transformation to a time frequency domain in which
the problem is of time-varying instantaneous form (see [3] for details).
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Abstract. A nonparametric Bayesian extension of Independent Com-
ponents Analysis (ICA) is proposed where observed data Y is modelled
as a linear superposition, G, of a potentially infinite number of hidden
sources, X. Whether a given source is active for a specific data point
is specified by an infinite binary matrix, Z. The resulting sparse rep-
resentation allows increased data reduction compared to standard ICA.
We define a prior on Z using the Indian Buffet Process (IBP). We de-
scribe four variants of the model, with Gaussian or Laplacian priors on X
and the one or two-parameter IBPs. We demonstrate Bayesian inference
under these models using a Markov Chain Monte Carlo (MCMC) algo-
rithm on synthetic and gene expression data and compare to standard
ICA algorithms.

1 Introduction

Independent Components Analysis (ICA) is a model which explains observed
data, yt (dimension D) in terms of a linear superposition of independent hidden
sources, xt (dimension K), so yt = Gxt + εt, where G is the mixing matrix
and εt is Gaussian noise. In the standard ICA model we assume K = D and
that there exists W = G−1. We use FastICA [1], a widely used implementation,
as a benchmark. The assumption K = D may be invalid, so Reversible Jump
MCMC [2] could be used to infer K. In this paper we propose a sparse implemen-
tation which allows a potentially infinite number of components and the choice
of whether a hidden source is active for a data point, allowing increased data
reduction for systems where sources are intermittently active. Although ICA is
not a time-series model it has been used successfully on time-series data such as
electroencephalograms [3]. It has also been applied to gene expression data [4],
the application we choose for a demonstration.

2 The Model

We define a binary vector zt which acts as a mask on xt. Element zkt specifies
whether hidden source k is active for data point t. Thus

Y = G(Z � X) + E (1)
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where � denotes element-wise multiplication and X, Y, Z and E are concate-
nated matrices of xt, yt, zt and εt respectively. We allow a potentially infinite
number of hidden sources, so that Z has infinitely many rows, although only a fi-
nite number will have non-zero entries. We assume Gaussian noise with variance
σ2

ε , which is given an inverse Gamma prior IG
(
σ2

ε ; a, b
)
.

We define two variants based on the prior for xkt: infinite sparse Factor Anal-
ysis (isFA) has a unit Gaussian prior; infinite Independent Components Analysis
(iICA) has a Laplacian(1) prior. Other heavy tailed distributions are possible
but are not explored here. Varying the variance is redundant because we infer
the variance of the mixture weights. The prior on the elements of G is Gaussian
with variance σ2

G, which is given an inverse Gamma prior. We define the prior on
Z using the Indian Buffet Process with parameter α (and later β) as described
in Section 2.1 and in more detail in [5]. We place Gamma priors on α and β.

All four variants share

εt ∼ N
(
0, σ2

ε I
)

σ2
ε ∼ IG (a, b) (2)

gk ∼ N
(
0, σ2

G

)
σ2

G ∼ IG (c, d) (3)
Z ∼ IBP(α, β) α ∼ G (e, f) (4)

The differences between the variants are summarised here.

xkt ∼ N (0, 1) xkt ∼ L(1)
β = 1 isFA1 iICA1

β ∼ G (1, 2) isFA2 iICA2

2.1 Defining a Distribution on an Infinite Binary Matrix

Start with a finite model. We derive our distribution on Z by defining a
finite K model and taking the limit as K → ∞. We then show how the infinite
case corresponds to a simple stochastic process.

We assume that the probability of a source k being active is πk, and that the
sources are generated independently. We find

P (Z|π) =
K∏

k=1

N∏

t=1

P (zkt|πk) =
K∏

k=1

πmk

k (1 − πk)N−mk (5)

where N is the total number of data points and mk =
∑N

t=1 zkt is the number
of data points for which source k is active. We put a Beta( α

K , 1) prior on πk,
where α is the strength parameter. Due to the conjugacy between the binomial
and beta distributions we are able to integrate out π to find

P (Z) =
K∏

k=1

α
K Γ (mk + α

K )Γ (N − mk + 1)
Γ (N + 1 + α

K )
(6)
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Take the infinite limit. By defining a scheme to order the non-zero rows of
Z (see [5]) we can take K → ∞ and find

P (Z) =
αK+

∏
h>0 Kh!

exp {−αHN}
K+∏

k=1

(N − mk)!(mk − 1)!
N !

(7)

where K+ is the number of active features, HN =
∑N

j=1
1
j is the N -th harmonic

number, and Kh is the number of rows whose entries correspond to the binary
number h.

Go to an Indian Buffet. This distribution corresponds to a simple stochastic
process, the Indian Buffet Process. Consider a buffet with a seemingly infinite
number of dishes (hidden sources) arranged in a line. The first customer (data
point) starts at the left and samples Poisson(α) dishes. The ith customer moves
from left to right sampling dishes with probability mk

i where mk is the number
of customers to have previously sampled that dish. Having reached the end of
the previously sampled dishes, he tries Poisson(α

i ) new dishes.
If we apply the same ordering scheme to the matrix generated by this process

as for the finite model, we recover the correct exchangeable distribution. Since the
distribution is exchangeable with respect to the customers we find by considering
the last customer that P (zkt = 1|z−kt) = mk,−t

N where mk,−t =
∑

s�=t zks, which
is used in sampling Z. By exchangeability and considering the first customer, the
number of active sources for a data point follows a Poisson(α) distribution, and
the expected number of entries in Z is Nα. We also see that the number of active
features, K+ =

∑N
t=1 Poisson(α

t ) = Poisson(αHN ) which grows as α log N for
large N .

Two parameter generalisation. A problem with the one parameter IBP is
that the number of features per object, α, and the total number of features,
Nα, are both controlled by α and cannot vary independently. Under this model,
we cannot tune how likely it is for features to be shared across objects. To
overcome this restriction we follow [6], introducing β, a measure of the feature
repulsion. The ith customer now samples dish k with probability mk

β+i−1 and
samples Poisson( αβ

β+i−1 ) new dishes.
We find P (zkt = 1|z−kt, β) = mk,−t

β+N−1 . The marginal probability of Z becomes

P (Z|α, β) =
(αβ)K+

∏
h>0 Kh!

exp {−αHN (β)}
K+∏

k=1

B(mk, N − mk + β) (8)

where HN (β) =
∑N

j=1
β

β+j−1 .

3 Inference

Given the observed data Y, we wish to infer the hidden sources X, which sources
are active Z, the mixing matrix G, and all hyperparameters. We use Gibbs sam-
pling, but with Metropolis-Hastings (MH) steps for β and sampling new features.
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We draw samples from the marginal distribution of the model parameters given
the data by successively sampling the conditional distributions of each parameter
in turn, given all other parameters.

Hidden sources. We sample each element of X for which zkt = 1. We denote
the k-th column of G by gk and εt|zkt=0 by ε−kt. For isFA we find the conditional
distribution is a Gaussian:

P (xkt|G,x−kt,yt, zt) = N
(

xkt;
gT

k ε−kt

σ2
ε + gT

k gk
,

σ2
ε

σ2
ε + gT

k gk

)
(9)

For iICA we find a piecewise Gaussian distribution, which it is possible to sample
from analytically given the Gaussian c.d.f. function F

P (xkt|G,x−kt,yt, zt) =
{

N
(
xkt; μ−, σ2

)
xkt > 0

N
(
xkt; μ+, σ2

)
xkt < 0 (10)

where μ± =
gT

k ε−kt ± σ2
ε

gT
k gk

and σ2 =
σ2

ε

gT
k gk

(11)

Active sources. To sample Z we first define the ratio of conditionals, r

r =
P (yt|G,x−kt, z−kt, zkt = 1, σ2

ε )
P (yt|G,x−kt, z−kt, zkt = 0, σ2

ε )︸ ︷︷ ︸
rl

P (zkt = 1|z−kt)
P (zkt = 0|z−kt)︸ ︷︷ ︸

rp

(12)

so that P (zkt = 1|G,X−kt,Y,Z−kt) = r
r+1 . From Section 2.1 the ratio of priors

is rp = mk,−t

β+N−1−mk,−t
. To find P (yt|G,x−kt, z−kt, zkt = 1) we must marginalise

over all possible values of xkt.

P (yt|G,x−kt, z−kt, zkt = 1) =
∫

P (yt|G,xt, z−kt, zkt = 1)P (xkt)dxkt (13)

For isFA, using Equation (9) and integrating we find rl = σ exp
{

μ2

2σ2

}
. For iICA

we use Equation (11) and integrate above and below 0 to find

rl = σ

√
π

2

[
F (0; μ+, σ) exp

{
μ2

+

2σ2

}
+ (1 − F (0; μ−, σ)) exp

{
μ2−
2σ2

}]
(14)

Creating new features. Z is a matrix with infinitely many rows, but only
the non-zero rows can be held in memory. However, the zero rows still need
to be taken into account. Let κt be the number of rows of Z which contain 1
only in column t, i.e. the number of features which are active only at time t.
New features are proposed by sampling κt with a MH step. We propose a move
ξ → ξ∗ with probability J(ξ∗|ξ), following [7], we set to be equal to the prior on
ξ∗. This move is accepted with probability min (1, rξ→ξ∗) where

rξ→ξ∗ =
P (ξ∗|rest)J(ξ|ξ∗)
P (ξ∗|rest)J(ξ∗|ξ) =

P (rest|ξ∗)P (ξ∗)P (ξ)
P (rest|ξ)P (ξ)P (ξ∗)

=
P (rest|ξ∗)
P (rest|ξ) (15)
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where rest denotes all other variables. By this choice rξ→ξ∗ becomes the ratio of
likelihoods. From the IBP the prior for κt is P (κt|α) = Poisson( αβ

β+N−1 ).
For isFA we can integrate out x′t, the new elements of xt, but not G′, the

new columns of G, so our proposal is ξ = {G′, κt}. We find rξ→ξ∗ = |Λ|− 1
2

exp
(

1
2μT Λμ

)
where Λ = I + G∗T G∗

σ2
ε

and Λμ = 1
σ2

ε
G∗T εt.

For iICA marginalisation is not possible so ξ = {G′,x′t, κt}. From Equa-
tion (15) we find

rξ→ξ∗ = exp
{

− 1
2σ2

ε

x′Tt G∗T (G∗x′t − 2εt)
}

(16)

Mixture weights. We sample the columns gk of G. We denote the kth row
of (Z � X) by x′k

T . We have P (gk|G−k,X,Y,Z, σ2
ε , σ2

G) ∝ P (Y|G,X,Z, σ2
ε )

P (gk|σ2
G). The total likelihood function has exponent

− 1
2σ2

ε

tr(ET E) = − 1
2σ2

ε

((x′k
T x′k)(gT

k gk) − 2gT
k E|gk=0) + const (17)

where E = Y −G(Z�X). We thus find the conditional of gk is N (μ, Λ) where

μ = σ2
G

x′
k

T x′
kσ2

G+σ2
ε

E|gk=0x′k and Λ =
(

x′
k

T x′
k

σ2
ε

+ 1
σ2

G

)
ID×D.

Learning the noise level. We allow the model to learn the noise level σ2
ε .

Applying Bayes’ rule we find

P (σ2
ε |E, a, b) ∝ P (E|σ2

ε )P (σ2
ε |a, b) = IG

(
σ2

ε ; a +
ND

2
,

b

1 + b
2 tr (ET E)

)
(18)

Inferring the scale of the data. For sampling σ2
G the conditional prior on G

acts as the likelihood term

P (σ2
G|G, c, d) ∝ P (G|σ2

G)P (σ2
G|c, d) = IG

(
σ2

G; c +
DK

2
,

d

1 + d
2 tr (GT G)

)

(19)

IBP parameters. We infer the IBP strength parameter α. The conditional
prior on Z, given by Equation (8), acts as the likelihood term

P (α|Z, β) ∝ P (Z|α, β)P (α) = G
(

α; K+ + e,
f

1 + fHN(β)

)
(20)

We sample β by a MH step with acceptance probability min (1, rβ→β∗). By
Equation (15) setting J(β∗|β) = P (β∗) = G (1, 1), results in rβ→β∗ = P (Z|α,β∗)

P (Z|α,β) .
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4 Results

4.1 Synthetic Data

We ran all four variants and three FastICA variants (using the pow3, tanh and
gauss non-linearities) on 30 sets of randomly generated data with D = 7, K =
6, N = 200, the Z matrix shown in Figure 1(a), and Gaussian or Laplacian
source distributions. Figure 1 shows the average inferred Z matrix and algorithm
convergence for a typical 1000 iteration ICA1 run. Z is successfully recovered
within an arbitrary ordering. The gaps in the inferred Z are a result of inferring
zkt = 0 where xkt = 0.

(a) Top: True Z. Bottom: Inferred
Z

(b) Log likelihood, α and K+ for
duration of 1000 iteration run

Fig. 1. True and inferred Z and algorithm convergence for typical iICA1 run

Boxplots of the Amari error [8] for each algorithm are shown in Figure 2.
Figure 2(a) shows the results when the synthetic data has Gaussian source dis-
tributions. All four variants perform significantly better on the sparse synthetic
data than any of the FastICA variants, but then we do not expect FastICA
to recover Gaussian sources. Figure 2(b) shows the results when the synthetic
data has Laplacian source distributions. As expected the FastICA performance is
much improved because the sources are heavy tailed. However, isFA1, iICA1 and
iICA2 still perform better on average because they correctly model the sparse
nature of the data. The performance of isFA2 is severely effected by having the
incorrect source model, suggesting the iICA variants may be more robust to de-
viations from the assumed source distribution. The two parameter IBP variants
of both algorithms actually perform no better than the one parameter versions:
β = 1 happens to be almost optimal for the synthetic Z used.

4.2 Gene Expression Data

We now apply our model to the microarray data from an ovarian cancer study [4],
which represents the expression level of N = 172 genes (data points) across
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(a) Gaussian sources (b) Laplacian sources

Fig. 2. Boxplots of Amari errors for 30 synthetic data sets with D = 7, N = 6, N = 100
analysed using each algorithm variant and FastICA

D = 17 tissue samples (observed variables). The tissue samples are grouped into
five tissue types: one healthy and four diseased. ICA was applied to this dataset
in [4], where the term gene signature is used to describe the infered hidden
sources. Some of the processes which regulate gene expression, such as DNA
methylation, completely silence the gene, while others, such as transcription
regulation, affect the level at which the gene is expressed. Thus our sparse model
is highly valid for this system: Z represents which genes are silenced, and X
represents the expression level of active genes.

Figure 4.2 shows the mean G matrix infered by iICA1. Gene signature (hid-
den source) 1 is expressed across all the tissue samples, accounted for genes
shared by all the samples. Signature 7 is specific to the pd-spa tissue type. This
is consistent with that found in [4], with the same top 3 genes. Such tissue type
dependent signatures could be used for observer independent classification. Sig-
natures such as 5 which is differentially expressed across the pd-spa samples
could help subclassify tissue types.

Fig. 3. Hinton diagram of GT : the expression level of each gene signature within each
tissue sample
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5 Conclusions and Future Work

In this paper we have defined the Infinite Sparse FA and Infinite ICA models us-
ing a distribution over the infinite binary matrix Z corresponding to the Indian
Buffet Process. We have derived MCMC algorithms for each model to infer the
parameters given observed data. These have been demonstrated on synthetic
data, where the correct assumption about the hidden source distribution was
shown to give optimal performance, and gene expression data, where the re-
sults were consistent with those using ICA. A MATLAB implementation of the
algorithms will be made available at http://learning.eng.cam.ac.uk/zoubin/.

There are a number of directions in which this work can be extended. The
recently developed stick breaking constructions for the IBP will allow a slice sam-
pler to be derived for Z which should allow faster mixing than the MH step cur-
rently used in sampling new features. Faster partially deterministic algorithms
would be useful for online learning in applications such as audio processing. The
sparse nature of the model could have useful applications in data compression
for storage or data reduction for further analysis.
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Abstract. In this paper, a new algorithm for Sparse Component Anal-
ysis (SCA) or atomic decomposition on over-complete dictionaries is pre-
sented. The algorithm is essentially a method for obtaining sufficiently
sparse solutions of underdetermined systems of linear equations. The
solution obtained by the proposed algorithm is compared with the min-
imum �1-norm solution achieved by Linear Programming (LP). It is ex-
perimentally shown that the proposed algorithm is about two orders of
magnitude faster than the state-of-the-art �1-magic, while providing the
same (or better) accuracy.

Keywords: sparse component analysis, over-complete atomic
decomposition.

1 Introduction

Obtaining sparse solutions of under-determined systems of linear equations is of
significant importance in signal processing and statistics. Despite recent
theoretical developments [1,2,3], the computational cost of the methods has re-
mained as the main restriction, especially for large systems (large number of un-
knowns/equations). In this article, a new approach is proposed which provides a
considerable reduction in complexity. To introduce the problem in more details,
we will use the context of Sparse Component Analysis (SCA). The discussions,
however, may be easily followed in other contexts of application, for example, in
finding ‘sparse decomposition’ of a signal in an over-complete dictionary, which
is the goal of the so-called over-complete ‘atomic decomposition’ [4].

SCA can be viewed as a method to achieve separation of sparse sources.
The general Blind Source Separation (BSS) problem is to recover n unknown
(statistically independent) sources from m observed mixtures of them, where
little or no information is available about the sources (except their statistical
independence) and the mixing system. In linear instantaneous (noiseless) model,
it is assumed that x(t) = As(t) in which x(t) and s(t) are the m × 1 and n × 1
� This work has been partially funded by Sharif University of Technology, by Center
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vectors of sources and mixtures and A is the m × n mixing matrix. The goal of
BSS is then to find s(t) only from x(t). The general BSS problem is not easy
for the case n > m. However, if the sources are sparse (i.e., not a totally blind
situation), then the problem can be solved in two steps [3,2]: first estimating
the mixing matrix [3,2,5,6], and then estimating the sources assuming A to be
known [3,2,7,8]. In this paper we only consider the second step.

To obtain the sparsest solution of As = x, we may search for a solution of
it having minimal �0 norm, i.e., minimum number of nonzero components. It is
usually stated in the literature [4,9,10,3] that searching the minimum �0 norm
is an intractable problem as the dimension increases (because it requires a com-
binatorial search), and it is too sensitive to noise (because any small amount of
noise completely changes the �0 norm of a vector). Consequently, the researchers
look for other approaches to find sparse solution of As = x which are tractable.
One of the most successful approaches is Basis Pursuit (BP) [11,1,10,3] which
finds the minimum �1 norm (that is, the solution of As = x for which

∑
i |si| is

minimized). Such a solution can be easily found by Linear Programming (LP)
methods. The idea of Basis Pursuit is based on the property that for large sys-
tems of equations, the minimum �1 norm solution is also the minimum �0 norm
solution [1,11,12,13]. By utilizing fast LP algorithms, specifically interior-point
LP solvers or �1-magic [14] (which is about one order of magnitude faster),
large-scale problems with thousands of sources and mixtures become tractable.
However, although this approach is tractable, it is still very time-consuming.
Another approach is Matching Pursuit (MP) [15,16,3] which is very fast, but is
somewhat heuristic and does not provide good estimation of the sources.

In this article, we present a fast method for finding the sparse solution of an
under-determined system of linear equations, which is based on minimization of
�0 norm. The paper is organized as follows. The next section introduces a family
of Gaussian sparsity norms and discusses their optimization. The algorithm is
then stated in Section 3. Finally, Section 4 provides some experimental results
of our algorithm and its comparison with BP.

2 The Main Idea

The main idea of this article is to approximate the �0 norm by a smooth (contin-
uous) function, which lets us to use gradient based methods for its minimization
and solves also the sensitivity of �0 norm to noise. In this section we introduce
a family of smooth approximators of �0 norm, whose optimization results in a
fast algorithm for finding the sparse solution while preserving noise robustness.

The �0 norm of s = [s1 . . . sn]T is defined as the number of non-zero compo-
nents of s. In other words if we define

ν(s) =
{

1 s �= 0
0 s = 0 (1)

then

‖s‖0 =
n∑

i=1

ν(si). (2)
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It is clear that the discontinuities of �0 norm are caused by discontinuities of
the function ν. If we replace ν by a smooth estimation of it in (2), we obtain a
smooth estimation of �0 norm. This may also provide some robustness to noise.

Different functions may be utilized for this aim. We use zero-mean Gaussian
family of functions which seem to be very useful for this application, because of
their differentiability. By defining:

fσ(s) = exp(−s2/2σ2), (3)

we have:

lim
σ→ 0

fσ(s) =
{

1 s = 0
0 s �= 0 . (4)

Consequently, limσ→ 0 fσ(s) = 1 − ν(s), and therefore if we define:

Fσ(s) =
n∑

i=1

fσ(si), (5)

we have:

lim
σ→ 0

Fσ(s) =
n∑

i=1

(1 − ν(si)) = n − ‖s‖0. (6)

We take then n − Fσ(s) as an approximation to ‖s‖0:

‖s‖0 ≈ n − Fσ(s). (7)

The value of σ specifies a trade-off between accuracy and smoothness of the
approximation: the smaller σ, the better approximation, and the larger σ, the
smoother approximation.

From (6), minimization of �0 norm is equivalent to maximization of Fσ for suffi-
ciently smallσ.Thismaximization shouldbedoneon theaffine setS={s |As = x}.

For small values of σ, Fσ contains a lot of local maxima. Consequently, it
is very difficult to directly maximize this function for very small values of σ.
However, as value of σ grows, the function becomes smoother and smoother,
and for sufficiently large values of σ, as we will show, there is no local maxima
(see Theorem 1 of the next section).

Our idea for escaping local maxima is then to decrease the value of σ grad-
ually1: for each value of σ we use a steepest ascent algorithm for maximizing
Fσ, and the initial value of this steepest ascent algorithm is the maximizer of Fσ

obtained for the previous (larger) value of σ. Since the value of σ changes slowly,
the steepest ascent algorithm is initialized not far from the actual maximum.
Consequently, we hope that it would not be trapped in the local maxima.

Remark 1. Equation (6) proposes that Fσ(·) can be seen as a measure of
‘sparsity’ of a vector (especially for small values of σ): the sparser s, the larger
Fσ(s). In this viewpoint, maximizing Fσ(s) on a set is equivalent to finding the
‘sparsest’ element of that set.
1 This idea is similar to simulated annealing, but, here, the sequence of decreasing

values is short and easy to define so that the solution is achieved in a few steps,
usually less than 10.
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– Initialization:

1. Choose an arbitrary solution from the feasible set S, v0, e.g., the minimum �2 norm
solution of As = x obtained by pseudo-inverse (see the text).

2. Choose a suitable decreasing sequence for σ, [σ1 . . . σK ].
– for k = 1, . . . , K:

1. Let σ = σk.
2. Maximize (approximately) the function Fσ on the feasible set S using L iterations

of the steepest ascent algorithm (followed by projection onto the feasible set):
• Initialization: s = vk−1.
• for j = 1 . . . L (loop L times):

(a) Let: Δs = [s1 exp (−s2
1/2σ2

k), . . . , sn exp (−s2
n/2σ2

k)]T .
(b) Let s ← s − μΔs (where μ is a small positive constant).
(c) Project s back onto the feasible set S:

s ← s − AT (AAT )−1(As − x)

3. Set vk = s.
– Final answer is s = vl.

Fig. 1. The final algorithm (SL0 algorithm)

3 The Algorithm

Based on the main idea of the previous section, the final algorithm (smoothed
�0 or SL0) is given in Fig. 1. As indicated in the algorithm, the final value of
previous estimation is used for the initialization of the next steepest ascent. By
choosing a slowly decreasing sequence of σ, we may escape from getting trapped
in the local maxima, and obtain the sparsest solution.

Remark 2. The internal loop (steepest ascent for a fixed σ) is repeated a fixed
and small number of times (L). In other words, for increasing the speed, we do
not wait for the (internal loop of the) steepest ascent algorithm to converge. This
may be justified by gradual decrease in value of σ, and the fact that for each
value, we do not need the exact maximizer of Fσ. All we need, is to enter a region
near the (absolute) maximizer of Fσ for escaping from its local maximizers.

Remark 3. Steepest ascent consists of iterations of the form s ← s+μk∇Fσ(s).
Here, the step-size parameters μk should be decreasing, i.e., for smaller values
of σ, smaller values of μk should be applied. This is because for smaller values
of σ, the function Fσ is more ‘fluctuating’, and hence smaller step-sizes should
be used for its maximization. If we set2 μk = μσ2

k, we obtain s ← s − μΔs as
stated in the algorithm of Fig. 1 (note that Δs � −∇Fσ(s)/σ2).

Remark 4. The algorithm may work by initializing v0 (initial estimation of
the sparse solution) to an arbitrary solution of As = x. However, the best initial
2 In fact, we may think about changing the σ in (3) and (5) as looking at the same

curve (or surface) at different ‘scales’, where the scale is proportional to σ2. For
having the same step-sizes of the steepest ascent algorithm in these different scales,
μk should be proportional to σ2.
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value of v0 is the minimum �2 norm solution of As = x, which is given by the
pseudo-inverse of A. It is because this solution is the (unique) maximizer of
Fσ(s) on the feasible set S, where σ tends to infinity. This is formally stated in
the following theorem (refer to appendix for the proof).

Theorem 1. The solution of the problem:

Maximize Fσ(s) subject to As = x,

where σ → ∞, is the minimum �2 norm solution of As = x, that is, s =
AT (AAT )−1x.

Remark 5. Having initiated the algorithm with the minimum �2 norm solution
(which corresponds to σ = ∞), the next value for σ (i.e., σ1) may be chosen
about two to four times of the maximum absolute value of the obtained sources
(maxi |si|). To see the reason, note first that:

exp(−s2
i /2σ2) =

{
1 , if |si| 	 σ
0 , if |si| 
 σ

. (8)

Consequently, if we take, for example, σ > 4 maxi |si| for all 1 ≤ i ≤ n, then
exp(−s2

i /2σ2) > 0.96 ≈ 1, and comparison with (8) shows that this value of σ
acts virtually like infinity for all values of si, 1 ≤ i ≤ n.

For the next σk’s (k ≥ 2), we have used σk = ασk−1, where α is usually
between 0.5 and 1.

Remark 6. The final value of σ depends on the noise level. For the noiseless
case, it can be decreased arbitrarily to zero (its minimum values is determined
by the desired accuracy, and/or machine precision). For the noisy case, it should
be terminated about one to two times of energy of the noise. This is because,
while σ is in this range, (8) shows that the cost function treats small (noisy)
samples as zero (i.e., for which fσ(si) ≈ 1, 1 ≤ i ≤ n). However, below this
range, the algorithm tries to ‘learn’ these noisy values, and moves away from
the true answer. Restricting σ to be above energy of the noise, provides the
robustness of this approach to noise, which was one of the difficulties of using
the exact �0 norm.

In the simulations of this paper, this noise level was assumed to be known3.

4 Experimental Results

In this section, we justify performance of the presented approach and compare it
with BP. Sparse sources are artificially created using Mixture of Gaussian (MoG)
model4:

si ∼ p · N (0, σon) + (1 − p) · N (0, σoff), (9)
3 Note that its exact value is not necessary, and in practice a rough estimation is

sufficient.
4 The model we have used is also called the Bernoulli-Gaussian model.
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Table 1. Progress of SL0, Compared to �1-magic

itr. # σ MSE SNR (dB)

1 1 3.75 e −2 2.88
2 0.5 2.19 e −2 5.21
3 0.2 4.28 e −3 12.29
4 0.1 1.67 e −3 16.37
5 0.05 6.18 e −4 20.71
6 0.02 1.91 e −4 25.80
7 0.01 1.87 e −4 25.89

algorithm total time MSE SNR (dB)

SL0 0.227 seconds 2.34 e −4 25.67
�1-magic 20.8 seconds 4.64 e −4 21.95

where p denotes probability of activity of the sources. σon and σoff are the stan-
dard deviations of the sources in active and inactive mode, respectively. In order
to have sparse sources, the parameters are required to satisfy the conditions
σoff 	 σon and p 	 1. σoff is to model the noise in sources, and the larger values
of σoff produces stronger noise. In the simulation σon is fixed to 1. Each column
of the mixing matrix is randomly generated using the normal distribution which
is then normalized to unity.

The mixtures are generated using the noisy model x = As + n, where n is
an additive white Gaussian noise with variance σnIm (Im is the m × m identity
matrix). Note that both σoff and σn can be used for modeling the noise and they
are both set to 0.01 in the simulation5.

The values used for the experiment are n = 1000, m = 400, p = 0.1, σoff =
0.01, σon = 1, σn = 0.01 and the sequence of σ is fixed to [1, 0.5, 0.2, 0.1, 0.05,
0.02, 0.01]. μ is set equal to 2.5. For each value of σ the gradient-projection loop
(the internal loop) is performed three times (i.e., L = 3).

We use the CPU time as a measure of complexity. Although, the CPU time is
not an exact measure, it can give us a rough estimation of complexity, and lets
us roughly compare SL0 (Smoothed �0 norm) with BP6.

Table 1 shows the gradual improvement in the output SNR after each it-
eration, for a typical run of SL0. Moreover, for this run, total time and final
SNR have been shown for SL0 and for BP (using �1-magic). Figure 2 shows
the actual source and it’s estimations in different iterations for this run of SL0.
The experiment is then repeated 100 times (with the same parameters, but for
different randomly generated sources and mixing matrices) and the values of
SNR (in dB) obtained over these simulations are averaged. For SL0, this av-
eraged SNR was 25.67dB with standard derivation of 1.34dB. For �1 magic,

5 Note that, although in the theoretical model only the noiseless case was addressed,
because of continuity of the cost functions, the method can work as well in noisy
conditions.

6 Our simulations are performed in MATLAB7 under WinXP using an AMD Athlon
sempron 2400+, 1.67GHz processor with 512MB of memory.
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Fig. 2. Evolution of SL0 toward the solution: From top to bottom, first plot corresponds
to the actual source, second plot is its estimation at the first level (σ = 1), third plot
is its estimation at the second level (σ = 0.5), while the last plot is its estimation at
third level (σ = 0.2)

these values were 21.92dB and 1.36dB, respectively. The minimum value of SNR
was 20.12dB compared with minimum of 18.51dB for BP.

5 Conclusions

In this article, a fast method for finding sparse solutions of an under-determined
system of linear equations was proposed (to be applied in atomic decomposition
and SCA). SL0 was based on maximizing a ‘smooth’ measure of sparsity. SL0
shows to be about two orders of magnitude faster than the �1-magic, while pro-
viding the same (or better) accuracy. The authors conclude that sparse decompo-
sition problem is not computationally as hard as suggested by the LP approach.
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Appendix: Proof of Theorem 1

Let g(s) � As − x, and consider the method of Lagrange multipliers for maxi-
mizing Fσ(s) subject to the constraint g(s) = 0. Setting ∇Fσ(s) = λT ∇(g(s)),
where λ = [λ1, . . . , λm]T is the vector collecting the m Lagrange multipliers,
along with the constraints As = x, results in the nonlinear system of m + n
equations and m + n unknowns:

{
As = x

λ̂
T
A = [s1 exp (−s2

1/2σ2) . . . sn exp (−s2
n/2σ2)]

(10)

where λ̂ is an m × 1 unknown vector (proportional to λ). In general, it is not
easy to solve this system of nonlinear equations and for small values of σ, the
solution is not unique (because of existence of local maxima). However, when σ
increases to infinity, the system becomes linear and easy to solve:

{
As = x
AT λ̂ = s

⇒ AAT λ̂ = x ⇒ s = AT (AAT )−1x (11)

which is the minimum �2-norm or the pseudo-inverse solution of As = x. ��

www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
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Abstract. We propose a new method for estimating the mixing matrix,
A, in the linear model x(t) = As(t), t = 1, . . . , T , for the problem of
underdetermined Sparse Component Analysis (SCA). Contrary to most
previous algorithms, there can be more than one dominant source at each
instant (we call it a “multiple dominant” problem). The main idea is to
convert the multiple dominant problem to a series of single dominant
problems, which may be solved by well-known methods. Each of these
single dominant problems results in the determination of some columns
of A. This results in a huge decrease in computations, which lets us to
solve higher dimension problems that were not possible before.

1 Introduction

Sparse Component Analysis (SCA) [1,2,3,4] is a semi-Blind Source Separation
problem [5], in which it is a priori known that the source signals are ‘sparse’.
A sparse signal is a signal whose most samples are nearly zero, and just a few
percents take significant values. It has been already shown that such a prior
information permits source separation for the case the number of sources exceeds
the number of sensors [6,1,2,3,4].

The problem of SCA can be stated as follows. Consider the linear model:

x(t) =
n∑

i=1

si(t)ai = As(t) t = 1, 2, . . . , T (1)

where A = [a1 . . .an] ∈ R
m×n is the mixing matrix, s(t) and x(t) are the vectors

of all samples of n sources and m observed signals (mixtures) at instant t, T is
the number of ‘time’ samples. The goal of SCA is then to estimate A and s(t),
only from x(t), 1 ≤ t ≤ T and the sparsity assumption. In this paper, we address
only the problem of estimation of A (note that where there are more sources
than sensors, it is not equivalent to the estimation of the sources). We call each
� This work has been partially funded by Sharif University of Technology, by Center

for International Research and Collaboration (ISMO) and by Iran NSF (INSF).
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column of the mixing matrix, i.e. each ai, 1 ≤ i ≤ n, a mixing vector. Although
the word “time” will be used throughout this paper, the above model may be in
another domain, in which the sparsity assumption holds. To see this, let T be a
linear ‘sparsifying’ transform, and the mixing system is stated as x = As in the
time domain. Then, we have T {x} = A T {x} in the transformed domain, and
because of the sparsity of T {s}, it is in the form of (1).

Let k denote the average number of active sources at each instant. In fact, if
the probability of inactivity of a source is denoted by p (sparsity implies that
p ≈ 1), then1 k = n(1− p). Then, two different cases should be distinguished for
estimating the mixing matrix: single dominant component and multiple domi-
nant components. In the former, k is equal to one, and the scatter plot of x(t)
(t = 1, . . . , T ) geometrically shows the data concentration directions. This can be
seen from the fact that at each instant, x(t) = As(t) = s1(t)a1+· · ·+sn(t)an, t =
1, . . . , T ; and for most instants, only one of si’s is dominant and the others are
almost zero. Consequently, in most samples, x(t) is in the direction of one of
the mixing vectors. In the latter, k is greater than one and the mixing matrix
would not be estimated easily from the scatter plot. Up to now, many papers
have been addressed the former case [1,3,4], while only few researchers have con-
sidered the latter case [4,7,8]. In this paper, we focus on the case of multiple
dominant components.

In the multiple dominant components SCA, the observed data concentrate
around k-dimensional subspaces which are spanned by a set of k mixing vectors.
We call these subspaces concentration subspaces throughout this paper. In a
multiple dominant problem finding a k-dimensional concentration subspace is
not equivalent to find some of the mixing vectors. All of the existing methods
[7,9] need to find most of the concentration subspaces and then estimate the
mixing matrix from them (this is not the case for our algorithm).

The main idea of this paper is to show that the multiple dominant problem
can be converted to a series of single dominant problems, which may be solved by
simple algorithms of the single dominant problem to estimate the mixing matrix.
Moreover, by estimating each concentration subspace, some of the mixing vectors
are found (contrary to [7,9] in which all or many concentration subspaces were
needed to be estimated before starting the estimation of mixing vectors). This
results in a low computational cost in comparison to the methods of [7,9] and
therefore, problems with higher dimensions can be solved by this algorithm. Up
to our best knowledge there is no practical algorithm for solving this problem
when k ≥ 3 but our method can handle dimensions more than this.

Throughout the paper, we suppose that the sources are sparse enough so
k < m/2 (where m is the number of mixtures), the sources are independent and
the probability of activity are the same for all of them. Finally, we assume also
that each subset of m columns of A is linearly independent.

1 More precisely, in this paper, by the average number of active sources we mean an
integer. If n(1 − p) is slightly greater than an integer k = �n(1 − p)� (for example
is n(1 − p) = 1.05, then the k-means algorithm, which has been designed for k = 1,
still works). In other cases, k = �n(1 − p)�.
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2 The Main Idea

The main idea of converting a multiple dominant problem to a single dominant
one comes from the following theorem (the proof is left to the appendix).

Theorem 1. If k ≤ m
2 and the sources are statistically independent then the

average number of active sources in a k dimensional concentration subspace (de-
noted by k̃) is k̃ = k(1 − p).

The above theorem states that although the average number of active sources
k = n(1 − p) may be greater than 1, the average number of active sources
within a concentration subspace B (that is, k̃ = k(1 − p) = n(1 − p)2) is one
level sparser . In other words, a multiple dominant problem in the original space
may be transformed into a single dominant problem within the subspace B.
Consequently in the subset of data points which lie in B, we can use a single
dominant algorithm (like that of [2]) for estimating the mixing vectors which are
a subset of the mixing vectors of the main problem. If n(1 − p)2 does not less
than or approximately equal to one, then the single dominant assumption does
not hold and the above technique should be used one or several levels.

In summary, our approach for estimating the mixing matrix consists of the
following steps:

– Step 1: Find a new concentration subspace. A concentration subspace can
be found by maximizing a cost function (see Sec. 3). For finding a ‘new’ con-
centration subspace, the steepest ascent is initialized by a randomly different
starting point (note that there are a lot of concentration subspaces).

– Step 2: Determine all data points which lie in this concentration subspace,
and run a single dominant algorithm to find the mixing vectors in that
subspace, which are a subset of the mixing vectors of the main problem. The
points whose distances to the desired subspace are less than a specific value
are supposed to belong to this subspace.

– Step 3: If all of the mixing vectors have been found, the search has been
finished. Otherwise, go to step one, and continue. In this paper the number
of sources is supposed to be known in advance.

Remark: Assuming that the probability of inactivity (p) is identical for all
sources, pn is the probability of no source being active, and hence p can be
estimated as p̂ = (N

T )1/n, where T is the total number of data points, and N is
the number of ‘active’ data points (i.e., x’s whose distances from the origin is
greater than a threshold). However, in this paper, p is assumed already known.

3 Finding Concentration Subspaces

Each k-dimensional subspace can be represented by an m by k matrix, whose
columns form an orthonormal basis for the subspace. In this paper, we do not
distinguish between a subspace and its matrix representation. Let B ∈ Rm×k be
the orthonormal matrix representation of an arbitrary k-dimensional subspace.
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The following cost function has been presented in [9] to detect whether B is a
concentration subspace or not:

fσ(B) =
T∑

i=1

exp
(

−d2(xi,B)
2σ2

)
, (2)

where d(xi,B) is the distance of xi from the subspace represented by B [9].
For small values of d(xi,B) compared to σ, exp(−d2(xi,B)/2σ2) is about

1 and for large values of d(xi,B), it is nearly zero. Therefore, for sufficiently
small values of σ, the above function is approximately equal to the number of
data points close to B. Therefore, by maximizing the function f , we actually
maximize the number of data points close to B thus we find a concentration
subspace. Moreover, if the set of points are concentrated around several different
k-dimensional concentration subspaces, f has a local maximum where B is close
to the basis of each of them.

The idea of [9] for finding a concentration subspace is to maximize the function
fσ for a sufficiently small σ, using steepest ascent method. For very small σ, many
local maxima exist which do not correspond to any concentration subspaces.
These local maxima correspond to spaces which contains r < k mixing vectors
instead of k. On the other hand if σ is large, then the peaks are mixed together.
In contrast to [9] which uses an iterative method by considering a sequence of
decreasing σ to prevent getting trapped in local maxima, in this paper we use
only a medium value for σ. In each step, we find a subset of k mixing vectors
which are related to the estimated concentration subspace. As will be discussed
in Sec. 7, if an incorrect concentration subspace with r (r < k) mixing vectors
is estimated, the algorithm detects r mixing vector rather than k and therefore
it is robust to these errors.

4 Estimating Mixing Vectors and the Mixing Matrix

Consider a concentration subspace B and suppose that the points xi for i ∈
I ⊂ {1...T} belong to this subspace. The fact that k̃ < 1 ensure us that most
of these points concentrate along k, 1-dimensional subspaces. Then, we use the
same idea of [2] designed for finding the mixing vector in the case k = 1: Firstly,
data samples are normalized by dividing them by their norms (x̄i = xi/‖xi‖),
that is, the points are projected onto the unit sphere. Moreover, the sign of the
first component is forced to be positive. Then, we have a point distribution on
a unit hemisphere. Note that most of these points are concentrated around k
points, and hence the mixing vectors (which corresponded to the centroid of
these clusters) may be found by a clustering algorithm.

However, there are numerous outliers which do not belong to any clusters.
Outlier points make the clustering algorithms inaccurate and increase the prob-
ability of error in detecting cluster centers, therefore they have to be removed
as more as possible. We say that two points are neighbor if the distance be-
tween them is less than a specific value r which is dependent to the energy of
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the sources. For outlier detection the fact that outliers are alone in the space
is used. In other words, they do not have any neighbor, but this is not true for
cluster centers because the density around them is high. By this definition, a
point is considered as an outlier if it does not have any neighbor.

The method we used in this paper for the clustering is subtractive clustering
[10]. In this method each point is considered as a cluster center and its potential
for being a cluster center is computed. The point with highest potential is con-
sidered as a center and that cluster is removed. This process continues to find
all clusters.

5 The Final Algorithm

Putting all together, the final algorithm is summarized as follows.

1. Remove the data samples (x(t)) which are near the origin. In these samples,
all of the sources are probably inactive.

2. Estimate k to set the dimension of the concentration subspaces and also p
to check that if k̃ is smaller than 1.

3. Assume an appropriate value for the free parameter of the cost function (σ).
4. Maximize fσ(B) with the steepest ascent algorithm in several steps:

(a) Choose a random starting subspace (an orthonormal m by k matrix B1).
(b) Set Bj+1 = Bj + μ∂fσ/∂Bj .2

(c) Orthonormalize Bj+1.
(d) If ‖Bj+1 − Bj‖ < 10−3 go to (5) else j = j + 1 and go to (b).

5. Consider the points whose distances to B are less than a specific value (d)
and ignore the other points.

6. Normalize the points and force the sign of the first component to be positive.
7. Remove the points with no adjacent (outlier points) by preprocessing.
8. Detect the cluster centers with subtractive clustering algorithm (these vec-

tors are some of the mixing vectors).
9. Compare obtained vectors (in the previous step) with former mixing vectors.

If each of these vectors is new3, then add it up to the list of estimated vectors,
else throw it away.

10. If the number of estimated mixing vectors is n, then stop the algorithm, else
go back to (4).

6 Experimental Results

In this section, 2 simulations are presented to justify the algorithm. In all of
these simulations, sparse sources are generated independently and identically
distributed (i.i.d) by the Bernoulli-Gaussian model. In other words, the sources

2 In all simulations we consider μ = .01.
3 Two vectors are considered identical if the angle between them is less than a certain

amount (5 degree in our simulations).
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Fig. 1. Error of the overall algorithm for all simulations in the case n = 10, m = 6,
k = 2 and T = 10000 for 50 different simulations

are inactive with probability p and are active with probability 1 − p. In the
inactive case, their value is a zero mean Gaussian with standard deviation σoff ,
and in active case it is a zero mean Gaussian with standard deviation σon.
Consequently si ∼ (1 − p) N (0, σon) + p N (0, σoff).

In order to have sparse sources, the conditions σon 	 σoff and p ≈ 1 should
be applied (σoff is to model the noise). In all simulations, the values σon = 1 and
σoff = 0.005 have been used and each component of the mixing matrix is gener-
ated randomly in the [0, 1] interval after that each column of it, is normalized.

All simulations were performed in MATLAB 7 under WindowsXP, using an
Intel Pentium IV 2.4 GHz processor with 1 Gigabyte RAM.

Experiment 1: Performance
In this experiment, the performance of our algorithm is demonstrated. 50 sim-
ulations for 50 different mixing matrixes are performed for the case n = 10,
m = 6, k = 2 (p = 0.8) and T = 10000. The parameters are chosen as σ = 1/40,
d = .01 and r = .02.

In all cases, the obtained vectors are compared with the mixing vectors. For
comparison the criterion E = minP∈P ‖A − ÂP‖2 is used, where P is the set of
all permutation matrices (this is the same criterion used in [7]). This estimation
error is shown in Fig. 1 for all simulations.

The average number of iterations for successfully finding all mixing vectors
is around 30, but in 3 simulations this number exceeded 100 iterations and in 1
case more than 500 iterations was required. This may increase the run time of
the algorithm. By considering this inefficiency the processes took less than 90
sec in average for estimating a mixing matrix. Moreover the maximum error in
the mixing matrix estimation is .018, therefore, the error is negligible.

Experiment 2: Middle and large scale problems
To show that the method is capable of solving medium scale problems, two
simulations are performed. In the first simulation, the parameters were n = 25,
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m = 15, k = 5 and T = 100000, whereas in the second experiment, they were
n = 35, m = 20, k = 4 and T = 50000. The process took about 1 hour for the
first case and 3 hours for the second case. As far as we know there is no algorithm
to estimate the mixing vectors in these dimensions (k = 4 or 5). In these scales
the sources are not so sparse but our algorithm can handle this situation.

To measure the accuracy of the estimation, the angle between each estimated
vector and its corresponding actual mixing vector (i.e. inverse cosine of their dot
product) were calculated. These n angles were all less than 0.01 radian, showing
that all of the mixing matrix have been correctly estimated.

7 Conclusion and Discussion

In this paper, we introduced a method for estimating the mixing matrix in the
multiple dominant SCA problem which can handle larger k in comparison to
other methods ([7,9]).

At our best knowledge, all existing SCA methods are unable to estimate
mixing matrix in large and even medium scales, for the multiple dominant case.
However, our method solves the problem at least in the medium scale cases
and maybe it can handel larger scales in comparison to other existing methods
till now (our algorithm is capable of solving this problem when the averaged
number of active sources is up to 5). As observed in the experimental results,
all mixing vectors may be detected with good accuracy. However, some mixing
vectors might not be found in few iterations, either because of lack of sufficient
data, or because some of the actual mixing vectors are close to each other.

As was mentioned in the section 3 a medium value for σ must be considered
and for very small σ the chance of error in finding a concentration increases.
The subtractive clustering method does not need any prior information about
the number of cluster centers, therefore, if the estimated subspace contains r
(r < k) mixing vectors rather than k, the projected data on the positive normal
hemisphere concentrate around r clusters and the clustering method detects r
centers instead of k, thus our algorithm is somehow robust to these errors and
consequently to σ.

Unfortunately, our algorithm is not efficient to some extent, because some of
the mixing vectors are detected several times in order to find all vectors. This
may lead to a greater number of iterations and consequently a longer run time.
Finding an efficient method for estimating the mixing matrix is a future work.
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Appendix: Proof of Theorem 1

Consider a concentration subspace B. Then, by definition, it is formed by a linear
combination of k mixing vectors. Let al1 · · ·alk be these mixing vectors. Then
for every point x in this subspace, we have x =

∑k
i=1 sliali where sli 1 ≤ i ≤ k

are the sources.

Lemma 1. If k ≤ m
2 and the mixing matrix is full rank then, each point in a

concentration subspace (B), for the sparsest solution, is almost always the linear
combination of a set of k fixed mixing vectors. Precisely if x =

∑n
i=1 s̃iai then

si = 0 for i ∈ {1, 2, ..., n} − {l1, l2, ..., lk}.

To prove this lemma suppose that there is another set of mixing vectors
{at1 · · ·ath

} and real valued variables śt1 , · · · , śth
such that x =

∑h
i=1 śtiati .

Then x=
∑k

i=1 sliali =
∑h

i=1 śtiati shows that the set {al1 , · · · , alk , at1 , · · · , ath
}

is not linearly independent. A is assumed to be full rank thus each ḱ ≤ m differ-
ent mixing vectors are linearly independent. From this comment we can conclude
that k + h > m, moreover, k ≤ m/2 (see section 1) thus h > m/2 and we have
h > k. This is in contrast to our basic assumption that we want to find the
sparsest solution to BSS problem. This lemma is in fact similar to the theorem
of uniqueness of the sparsest solution [6].

Using the above lemma, the expected value of active sources in B is

k̃ =
k∑

i=0

iP{i sources from l1, · · · , lk active| remaining n − k sources inactive}
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where P{·} denotes the probability and k̃ is the expected value of the number
of active sources in a concentration subspace. Since the sources (and hence their
activity status) are assumed to be independent, the above equation is reduced
to:

k̃ =
k∑

i=0

iP{i sources of l1, · · · , lk active} =
k∑

i=0

i

(
n

k

)
(1 − p)ipk−i

This is the expected value of a binomial random variable and hence k̃ =
k(1 − p).
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Abstract. We have derived a new algorithm for dictionary learning for
sparse coding in the �1 exact sparse framework. The algorithm does not
rely on an approximation residual to operate, but rather uses the special
geometry of the �1 exact sparse solution to give a computationally simple
yet conceptually interesting algorithm. A self-normalizing version of the
algorithm is also derived, which uses negative feedback to ensure that
basis vectors converge to unit norm. The operation of the algorithm is
illustrated on a simple numerical example.

1 Introduction

Suppose we have a sequence of observations X = [x1, . . . ,xp], xk ∈ IRn. In the
sparse coding problem [1] we wish to find a dictionary matrix A and represen-
tation matrix S such that

X = AS (1)

and where the representations sk ∈ IRm in the matrix S = [s1, . . . , sp] are sparse,
i.e. where there are few non-zero entries in each sj . In the case where we look for
solutions X = AS with no error, we say that this is an exact sparse solution. In
the sparse coding problem we typically have m > n, so this is closely related to
the overcomplete independent component analysis (overcomplete ICA) problem,
which has the additional assumption that the components of the representation
vectors sj are statistically independent.

If the dictionary A is given, then for each sample x = xk we can separately
look the sparsest representation

min
s

‖s‖0 such that x = As. (2)

However, even this is a hard problem, so one approach is to solve instead the
‘relaxed’ �1-norm problem

min
s

‖s‖1 such that x = As. (3)

This approach, known in the signal processing literature as Basis Pursuit [2],
can be solved efficiently with linear programming methods (see also [3]).

Even if such efficient sparse representation methods exist, learning the dic-
tionary A is a non-trivial task. Several methods have been proposed in the
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literature, such as those by Olshausen and Field [4] and Lewicki and Sejnowski
[5], and these can be derived within a principled probabilistic framework [1]. A
recent alternative is the K-SVD algorithm [6], which is a generalization of the
K-means algorithm.

However, many of these algorithms are designed to solve the sparse approxi-
mation problem X = AS+R for some nonzero residual term R, rather than the
exact sparse problem (1). For example, the Olshausen and Field [4] approximate
maximum likelihood algorithm is

ΔA = ηE(rsT ) (4)

where r = x−As is the residual after approximation, and the K-SVD algorithm
[1] minimizes the norm ‖R‖F = ‖X − AS‖F . If we have a sparse representation
algorithm that is successfully able to solve (3) exactly on each data sample
xk, then we have a zero residual R = 0, and there is nothing to ‘drive’ the
dictionary learning algorithm. Some other dictionary learning algorithms have
other constraints: for example, the method of Georgiev et al [7] requires at most
m − 1 nonzero elements in each column of S.

While these algorithms have been successful for practical problems, in this
paper we specifically explore the special geometry of the �1 exact sparse dictio-
nary learning problem. We shall derive a new dictionary learning algorithm for
the �1 exact sparse problem, using the basis vertex c = (A

†
)T 1 associated with

a subdictionary (basis set) A identified in the �1 exact sparse representation
problem (3).

2 The Dual Problem and Basis Vertex

The linear program (3) has a corresponding dual linear program [2]

max
c

xT c such that ± aT
j c ≤ 1 j = 1, . . . , m (5)

which has an optimum c∗ associated with any optimum s∗ of (3). In a previous
paper we explored the polytope geometry of this type of dual problem, and
derived an algorithm, Polytope Faces Pursuit (PFP), which searches for the
optimal vertex which maximizes xT c, and uses that to find the optimal vector s
[8]. Polytope Faces Pursuit is a gradient projection method [9] which iteratively
builds a solution basis A consisting of a subset of the signed columns σjaj of A,
σj ∈ {−1, 0, +1}, chosen such that x = As̄ with s̄ > 0 containing the absolute
value of the nonzero coefficients of s at the solution. The algorithm is similar in
structure to orthogonal matching pursuit (OMP), but with a modified admission
criterion

a′ = argmax
ai

aT
i r

1 − aT
i c

(6)

to add a new basis vector a′ to the current basis set, together with an additional
rule to switch out basis vectors which are no longer feasible.
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The basis vertex c = (A
†
)T 1 is the solution to the dual problem (5). During

the operation of the algorithm c satisfies AT c ≤ 1, so it remains dual-feasible
throughout. For all active atoms aj in the current basis set, we have aT

j c = 1.
Therefore at the minimum �1 norm solution the following conditions hold:

A
T
c = 1 (7)

x = As̄ s̄ > 0. (8)

We will use these conditions in our derivation of the dictionary learning algorithm
that follows.

3 Dictionary Learning Algorithm

We would like to construct an algorithm to find the matrix A that minimizes
the total �1 norm

J =
p∑

k=1

‖sk‖1 (9)

where sk is chosen such that xk = Ask for all k = 1, . . . , p, i.e. such that X = AS,
and where the columns of A are constrained to have unit norm. In particular,
we would like to construct an iterative algorithm to adjust A to reduce the total
�1 norm (9): let us therefore investigate how J depends on A.

For the contribution due to the kth sample we have J =
∑

k Jk where Jk =

‖sk‖1 = 1T s̄k since s̄k ≥ 0. Dropping the superscripts k from xk, A
k

and s̄k we
therefore wish to find how Jk = 1T s̄ changes with A, so taking derivatives of
Jk we get

dJk/dt = 1T (ds̄/dt). (10)

Now taking the derivative of (8) for fixed x we get

0 = (dA/dt)s̄ + A(ds̄/dt) (11)

and pre-multiplying by cT gives us

cT (dA/dt)s̄ = −cT A(ds̄/dt) (12)

= −1T (ds̄/dt) (13)

= −dJk/dt (14)

where the last two equations follow from (7) and (10). Introducing trace(·) for
the trace of a matrix, we can rearrange this to get

dJk

dt
= − trace

(
cT dA

dt
s̄
)

= − trace
(

(cs̄T )T dA
dt

)
= −

〈
cs̄T ,

dA
dt

〉
(15)

from which we see that the gradient of Jk with respect to A is given by ∇AJk =
−cs̄T . Summing up over all k and applying to the original matrix A we get

∇AJ = −
∑

k

ck(sk)T = −CST (16)
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with C = [ck], a somewhat surprisingly simple result. Therefore the update

ΔA = η
∑

k

ck(sk)T (17)

will perform a steepest descent search for the minimum total �1 norm J , and
any path dA/dt for which 〈(dA/dt), ∇AJ〉 < 0 will cause J to decrease.

3.1 Unit Norm Atom Constraint

Now without any constraint, algorithm (17) will tend to reduce the �1 norm
by causing A to increase without bound, so we need to impose a constraint on
A. A common constraint is to require the columns aj of A to be unit vectors,
‖aj‖2

2 = 1, i.e. aT
j aj = 1. We therefore require our update to be restricted to

paths daj/dt for which aT
j (daj/dt) = 0.

To find the projection of (16) in this direction, consider the gradient
component

gj =
dJ

daj
= −

∑

k

cksk
j . (18)

The orthogonal projection of gj onto the required tangent space is given by

g̃j = Paj
gj =

(
I −

ajaT
j

‖aj‖2
2

)
gj = gj − 1

‖aj‖2
2

aj(aT
j gj). (19)

Now considering the rightmost factor aT
j gj , from (18) we get

aT
j gj = −

∑

k

aT
j cksk

j . (20)

Considering just the kth term aT
j cksk

j , if aj is one of the basis vectors in A
k

(with possible change of sign σk
j = sign(sk

j )) which forms part of the solution

xk = A
k
s̄k found by a minimum �1 norm solution, then we must have σk

j a
T
j ck =

1 where σk
j = sign(sk

j ), because A
kT

c = 1, so aT
j cksk

j = σk
j sk

j = |sk
j |. On the

other hand, if aj does not form part of A
k
, then sk

j = 0 so aT
j cksk

j = 0 = |sk
j |.

Thus regardless of the involvement of aj in A
k
, we have aT

j cksk
j = |sk

j |, so

aT
j gj = −

∑

k

|sk
j | (21)

and therefore

g̃j = −
∑

k

(
cksk

j − 1
‖aj‖2

2

aj |sk
j |

)
. (22)
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Therefore we have the following ‘tangent’ update rule:

aj(T + 1) = aj(T ) + η
∑

k

(
cksk

j − 1
‖aj(T )‖2

2

aj(T )|sk
j |

)
(23)

which will perform a tangent-constrained steepest descent update to find the
minimum total �1 norm J . We should note that the tangent update is not entirely
sufficient to constrain aj to remain of unit norm, so an occasional renormalization
step aj ← aj/‖aj‖2 will be required after a number of applications of (23).

4 Self-normalizing Algorithm

Based on the well-known negative feedback structure used in PCA algorithms
such as the Oja [10] PCA neuron, we can modify algorithm (23) to produce the
following self-normalizing algorithm that does not require the explicit renormal-
ization step:

aj(T + 1) = aj(T ) + η
∑

k

(
cksk

j − aj(T )|sk
j |

)
(24)

where we have simply removed the factor 1/‖aj(T )‖2
2 from the second term

in (23). This algorithm is computationally very simple, and suggests an online
version aj(k) = aj(k−1)+η

(
cksk

j − aj(k − 1)|sk
j |

)
with the dictionary updated

as each data point is presented.
For unit norm basis vectors ‖aj(T )‖2 = 1, the update produced by algorithm

(24) is identical to that produced by the tangent algorithm (23). Therefore, for
unit norm basis vectors, algorithm (24) produces a step in a direction which
reduces J . (Note that algorithm (24) will not necessarily reduce J when aj is
not unit norm.)

To show that the norm of the basis vectors aj in algorithm (24) converge to
unit length, we require that each aj must be involved in the representation of
at least one pattern xk, i.e. for some k we have sk

j 
= 0. (If this were not true,
that basis vector would have been ignored completely so would not be updated
by the algorithm.) Consider the ordinary differential equation (ode) version
of (24):

daj

dt
=

∑

k

(
cksk

j − aj |sk
j |

)
(25)

= −g̃j +

(
1

‖aj‖2
2

− 1

)
aj

∑

k

|sk
j | (26)

= −g̃j +
1

‖aj‖2
2

(
1 − ‖aj‖2

2

)
aj

∑

k

|sk
j | (27)

which, noting that aT
j g̃j = aT

j Pajgj = 0, gives us

aT
j

daj

dt
=

1
‖aj‖2

2

(
1 − ‖aj‖2

2

)
aT

j aj

∑

k

|sk
j | = (1 − ‖aj‖2

2)
∑

k

|sk
j |. (28)



Dictionary Learning for L1-Exact Sparse Coding 411

Constructing the Lyapunov function [11] Q = (1/4)(1 − ‖aj‖2
2)

2 ≥ 0, which is
zero if and only if aj has unit length, we get

dQ/dt = −(1 − ‖aj‖2
2)a

T
j (daj/dt) (29)

= −(1 − ‖aj‖2
2)

2
∑

k

|sk
j | (30)

≤ 0 (31)

where
∑

k |sk
j | > 0 since at least one of the sk

j is nonzero, so equality holds in
(31) if and only if ‖aj‖2

2 = 0. Therefore the ode (25) will cause ‖aj‖2
2 to converge

to 1 for all basis vectors aj .
While algorithm (24) does not strictly require renormalization, we found ex-

perimentally that an explicit unit norm renormalization step did produce slightly
more consistent behaviour in reduction of the total �1 norm J .

Finally we note that at convergence of algorithm (24), the basis vectors must
satisfy

aj =

∑
k cksk

j∑
k |sk

j |
(32)

so that aj must be a (signed) weighted sum of the basis vertices ck in which
it is involved. While equation (32) is suggestive of a fixed point algorithm, we
have observed that it yields unstable behaviour if used directly. Nevertheless we
believe that it would be interesting to explore this in future for the final stages
of an algorithm, as it nears convergence.

5 Augmenting Polytope Faces Pursuit

After an update to the dictionary A, it is not necessary to restart the search
for the minimum �1 norm solutions sk to xk = Ask from sk = 0. In many
cases the dictionary vector will have changed only slightly, so the signs σk

j and

selected subdictionary A
k

may be very similar to the previous solution, before
the dictionary update. At the T th dictionary learning step we can therefore
restart the search for sk(T ) from the basis set selected by the last solution
sk(T − 1).

However, if we start from the same subdictionary selection pattern after a
change to the dictionary, we can no longer guarantee that the solution will be
dual-feasible, i.e. that (5) is always satisfied, which is required for the Polytope
Faces Pursuit algorithm [8]. While we will still have aT

j c = 1 for all vectors aj

in the solution subdictionary, we may have increased some other aj , not in the
original solution set, so that now aT

j c > 1.
To overcome this problem, if aT

j ck > 1 such that dual feasibility fails for a
particular sample k and basis vector aj , we simply restart the sparse Polytope
Faces Pursuit algorithm from sk = 0 for this particular sample, to guarantee
that dual-feasibility is restored. We believe that it may be possible to construct



412 M.D. Plumbley

a more efficient method to restore dual-feasibility, based on selectively swapping
vectors to bring the solution into feasibility, but it appears to be non-trivial to
guarantee that loops will not result.

6 Numerical Illustration

To illustrate the operation of the algorithm, Figure 1 shows a small graphical
example. Here four source variables sj are generated with identical mixture-of-
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Fig. 1. Illustration of dictionary learning of a n = 2 dimensional mixture of m = 4
MoG-distributed sources, for p = 3000 samples. The plots show (a) the initial condi-
tion, and updates after (b) 5 dictionary updates and (c) 25 dictionary updates. The
learning curve (d) confirms that the �1 norm decreases as the algorithm progresses.
On (a)-(c), the longer arrows are scaled versions of the learned dictionary vectors aj ,
with the shorter arrows showing the directions of the generating dictionary vectors for
comparison.

gaussian (MoG) densities in an n = 2 dimensional space and added with angles
θ ∈ {0, π/6, π/3, 4π/6}. It is important to note that, even in the initial condition
Figure 1(a), the basis set spans the input space and optimization of (3) has an
exact solution xk = Ask for all data samples xk, at least to within numerical
precision of the algorithm. Therefore this situation would not be suitable for any
dictionary learning algorithm which relies on a residual r = x − As.
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7 Conclusions

We have derived a new algorithm for dictionary learning for sparse coding in the
�1 exact sparse framework. The algorithm does not rely on an approximation
residual to operate, but rather uses the special geometry of the �1 exact sparse
solution to give a computationally simple yet conceptually interesting algorithm.
A self-normalizing version of the algorithm is also derived, which uses negative
feedback to ensure that basis vectors converge to unit norm.

The operation of the algorithm was illustrated on a simple numerical example.
While we emphasize the derivation and geometry of the algorithm in the present
paper, we are currently working on applying this new algorithm to practical
sparse approximation problems, and will present these results in future work.

Acknowledgements

This work was supported by EPSRC grants GR/S75802/01, GR/S82213/01,
GR/S85900/01, EP/C005554/1 and EP/D000246/1.

References

1. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski,
T.J.: Dictionary learning algorithms for sparse representation. Neural Computa-
tion 15, 349–396 (2003)

2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing 20, 33–61 (1998)

3. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse
representations. Signal Processing 81, 2353–2362 (2001)

4. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive-field properties by
learning a sparse code for natural images. Nature 381, 607–609 (1996)

5. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural
Computation 12, 337–365 (2000)

6. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: Design of dictionaries for sparse
representation. In: Proceedings of SPARS’05, Rennes, France, pp. 9–12 (2005)

7. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind
source separation of underdetermined mixtures. IEEE Transactions on Neural Net-
works 16, 992–996 (2005)

8. Plumbley, M.D.: Recovery of sparse representations by polytope faces pursuit.
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Abstract. In this paper we describe a methodology for model-based
single channel separation of sounds. We present a sparse latent vari-
able model that can learn sounds based on their distribution of time/
frequency energy. This model can then be used to extract known types
of sounds from mixtures in two scenarios. One being the case where all
sound types in the mixture are known, and the other being being the
case where only the target or the interference models are known. The
model we propose has close ties to non-negative decompositions and la-
tent variable models commonly used for semantic analysis.

1 Introduction

Separation of sounds from single-channel mixtures can be a daunting task. There
is no exact solution nor a process that guarantees good separation behavior.
Most approaches in this scenario are model-based and perform separation by
splitting the spectrogram of the mixture in parts that correspond to a single
source. This approach has been taken in [1,2,3,4] among many others and has
been one of the easiest ways to obtain reasonable results. In this paper we employ
a similar approach using a new decomposition algorithm which is best suited for
spectrogram analysis. We show how this approach can be used both supervised
and semi-supervised settings for separation from monophonic mixtures, and draw
connections to various types of known analysis methods.

1.1 Probabilistic Latent Component Analysis

In this section we describe the statistical model we will use for acoustic modeling.
Probabilistic Latent Component Analysis (PLCA) is a straightforward extension
of Probabilistic Latent Semantic Indexing (PLSI) [5] which deals with an arbi-
trary number of dimensions and can easily extended to exhibit various features
such as sparsity or shift-invariance. The basic model is defined as:

P (x) =
∑

z

P (z)
∏N

j=1P (x(j)|z) (1)

� Work performed while at Mitsubishi Electric Research Laboratories. M. Shashanka
was partially supported by an AFOSR grant to Prof. Barbara Shinn-Cunningham.
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where P (x) is a distribution over the N -dimensional random variable x and
x(j) denotes j’th dimension. The random variable zis a latent variable, and the
P (x(j)|z) are one-dimensional distributions. Effectively this model represents
a mixture of marginal distribution products to approximate an N -dimensional
distribution. Our objective is to discover the most appropriate marginal distri-
butions. The estimation of the marginals P (x(j)|z) is performed using the EM
algorithm. In the expectation step we estimate the posterior probability of the
latent variable z:

P (z|x) =
P (z)

∏N
j=1P (x(j)|z)

∑
z′ P (z′)

∏N
j=1P (x(j)|z′)

(2)

and in a maximization step we re-estimate the marginals using the above weight-
ing to obtain a new and more accurate estimate:

P (z) =
∫

P (x)P (z|x)dx (3)

P ∗(x(j)|z) =
∫

· · ·
∫

P (x)P (z|x)dx(k), ∀k �= j (4)

P (x(j)|z) =
P ∗(x(j)|z)

P (z)
(5)

Repeating the above steps in an alternating manner multiple times produces
a converging solution for the marginals P (x(j)|z) along each dimension j, and
the latent variable priors P (z). In the case where P (x) is discrete we only have
to substitute the integrations with summations. Likewise the latent variable z
can be continuous valued in which case the summations over z become integrals.
In practical applications P (x) and z will both be discrete and we assume that
to be the case in the remainder of this paper.

1.2 Sparsity Constraints

In this section we will introduce a modification to the PLCA algorithm which
enables us to produce sparse (or maximally non-sparse) estimates of P (x(j)|z).
Since the estimated quantities of PLCA are probability distributions, we can
directly obtain sparsity by imposing an entropic prior instead of obtaining the
effect by more traditional means such as L1-norm minimization. This prior can
can impose a bias towards estimating a low (or high) entropy P (x(j)|z). We
can thus obtain a sparse estimate by requesting low entropy results, a flatter
estimate by requesting high entropy results, or any combination of the two cases
for different values of the latent variable z.

Let us assume that we wish to manipulate the entropy of the distribution
P (x(j)|z). The form of the entropic prior for this distribution is defined as
e−βH(P (x(j)|z) = eβ

∑
i P (x

(j)
i |z)logP (x

(j)
i |z), where P (x(j)

i |z) denotes the i’th ele-
ment of the distribution P (x(j)|z). Incorporating the entropic prior in the PLCA
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model and adding the constraint that
∑

i P (x(j)
i |z) = 1 results into optimizing

the following function:

P ∗(x(j)|z)

P (x(j)
i |z)

+ β + βlogP (x(j)
i |z) + λ = 0, (6)

where P ∗(x(j)|z) is defined in equation 4 and λ is the Langrange multiplier
enforcing the unity summation constraint. As shown in [6] this equation can be
solved using Lambert’s W function resulting in:

P (x(j)|z) =
P ∗(x(j)|z)/β

W(−P ∗(x(j)|z)e1+λ/β/β)
. (7)

Alternating between the last two equations for a couple of iterations we can
obtain a refined estimate of P (x(j)|z) which accommodates the entropy con-
straint. This process is described in more detail in [7].

2 Applications of PLCA for Source Separation

The two separation scenarios we will introduce in the next sections are both
making use of PLCA models of sounds. We will now briefly introduce how we
can model a class of sounds using PLCA. One major feature that we can use
to describe a sound is that of its frequency distribution. For example we know
that speech tends to have a harmonic distribution with most energy towards the
low end of the spectrum, whereas, say, a siren would have a more simple timbral
profile mostly present at higher frequencies. We can use the PLCA model to
obtain a dictionary of spectral profiles that best describe a class of sounds. To
do so we consider the 2-d formulation of PLCA when applied on time-frequency
distributions of sounds. The model will be:

P (f, t) =
∑

z

P (z)P (f |z)P (t|z) (8)

where P (f, t) is a magnitude spectrogram. The decomposition will result into
two sets of marginals, one for the frequency axis and one for the time axis.
The time axis marginals are not particularly informative, the frequency axis
marginals however will contain a dictionary of spectra which best describe the
sound represented by the input spectrogram. To illustrate this operation consider
the spectrograms in figure 1 and their corresponding frequency marginals. One
can easily see that the extracted marginals are latching on to the specific spectral
structure of each sound. These frequency marginals can be used as a model of a
class of sounds such as human voice, speech of a specific speaker, a specific type
of background noise, etc.

The the next sections we describe how this model can be used for a supervised
and semi-supervised source separation.
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Fig. 1. Example of PLCA models of two different sounds. The two left plots display a
spectrogram of speech and a set of speech-derived frequency marginals. Likewise the
two right plots display the same information for a harp sound. Note how the derived
marginals in both cases extract representative spectra for each sound.

2.1 Supervised Separation

In the case of supervised separation we assume that the mixture we are operating
on contains classes of sounds for which we have already trained PLCA models
(in the form of frequency marginals, as described above). If the kind of time-
frequency distribution that we use is (at least approximately) linearly additive
in nature, we can assume that the marginal distributions of our trained models
can be used to approximate the mixture’s distribution. For the experiments
presented in this paper we employ the magnitude short time Fourier transform.
Although the linearity assumption does not exactly apply for this transform, it
is sufficiently approximately correct in the context of sound mixtures.

In order to perform the separation let us consider a mixture composed out of
samples from the two sound classes analyzed in figure 1. Let us denote the al-
ready known frequency marginals from these two sounds as P1(f |z) and P2(f |z).
The spectrogram of the mixture, which we denote by P (f, t), is shown in figure 2.
One can easily see elements of both sounds present in it. Once we obtain the spec-
trogram of the mixture we need to find how to use the already known marginals
from prior analysis to approximate it. Doing so it a very simple operation which
involves partial use of the training procedure shown above. First we consolidate
the marginals of the known sounds into one set P (f |z) = {P1(f |z)

⋃
P2(f |z)}.

Since all the of the marginals in P (f |z) should explain the mixture spectrogram
P (f, t) we only need to estimate a set of time marginals P (t|z) which will fa-
cilitate the approximation. We therefore perform the training outlined in the
previous sections, only this time we only estimate P (t|z) and keep P (f |z) fixed
to the already known values. After we obtain a satisfactory estimate of P (t|z)
we appropriately split it to two sets which correspond to each Pi(f |t). We can
then reconstruct the elements of the input spectrogram that correspond to only
one sound class by using only the time and frequency marginals that correspond
to that sound class. The results in this particular case are shown in figure 2. As
is evident the contribution to the mixture from each of the two sources is cleanly
separated into two spectrograms. Once the spectrograms of each known sound
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have been recovered we can easily transform them back to the time domain by
using the corresponding phase values from the original mixture.
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Fig. 2. Example of supervised separation using PLCA. The leftmost plot displays the
inputs spectrogram. We can easily see features of the speech and harp sounds. The
two remaining plots show the mixture spectrogram as approximated by the speech
marginals (center plot), and the harp marginals (right plot).

As one might suspect this approach does not allow the separation of spectrally
similar sounds since there will be significant similarity between the marginals of
each sound class. The more dissimilar the sounds in the mixture are the better
the quality of the separation will be. In this particular example separation was
almost flawless since the two sounds had a very different spectral profile. For
experiments using 0dB speech mixtures the target source improvement ranged
from 3dB to 10dB depending on the similarity between the speakers. Using
examples such as various types of ambient noise and speech we often achieved
separation of more than 12dB.

2.2 Semi-supervised Separation

In the case of semi-supervised separation we assume that we only have a PLCA
model for one of the sounds in a mixture. In this case we cannot directly use the
aforementioned procedure to perform separation. In this section we introduce a
methodology which deals with this problem.

Assume that we have a mixture of multiple sounds and we only have a PLCA
model for one of them. We can perform PLCA on the mixture using the known
frequency marginals for one of the sounds and in the process estimate additional
marginals to explain the elements in the mixture we can’t already. Doing so with
the training procedure we have shown in the previous sections is very easy. We
train as we usually do when learning both the frequency and the time marginals,
but we make sure that a portion of the frequency marginals are kept fixed as we
update only the remaining ones using the same training procedure as before. The
fixed marginals are the ones we already know as a model for one of the sounds.
Conclusion of training will result into a set of new frequency marginals which are
best suited to explain the sources in the mixture other than the one we already
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know. Since there will most likely be some spectral similarity between the known
sound and the rest of the sources we also encourage sparsity on the time marginals
to ensure that there is minimal co-occurence of frequency marginals at any time.

Once the marginals of the additional sources have been identified we can re-
vert back to the supervised separation methodology to obtain the results we
seek. The additional complication in this scenario is that by having a model of
only one of the sources results into the ability to extract either that source by
itself or all the other sources as one. This means that we can use this method for
applications akin to denoising where we either know the target characteristics,
of the background noise characteristics. In our experiments we have used this
approach to separate speech from music, where the results often are very impres-
sive1. A separation example is shown in figure 3, where a soprano is separated
from a piano. We only had a model for the piano and learned the soprano model
using the aforementioned methodology. The suppression of the piano was audi-
bly flawless and the only artifact of this approach was a slight coloring of the
extracted soprano voice (attributed mostly to the usage of phase of the original
mixture).
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Extracted soprano

Fig. 3. Example of semi-supervised separation using PLCA. The left plot displays
the mixture of a piano and a soprano, the right plot displays the extracted soprano
voice. One can easily see that the harmonic series corresponding to the piano notes are
strongly suppressed.

3 Discussion

In this section we discuss the selection of parameters and their effect in separation
performance and point to some of the relationships of the PLCA model to other
known decompositions.

1 Demonstration sound samples of this approach can be found in
http://www.merl.com/people/paris/sep.html under the section “PLCA for
spectral factoring”.

http://www.merl.com/people/paris/sep.html
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3.1 Parameter Selection

In order to obtain reasonable results we have to make sure that the right param-
eters are used in the process. First we need to ensure that the time/frequency
decomposition we employ is adequate to perform separation. In our experience a
1/10sec analysis window is usually a good choice for separation. As this window
becomes smaller it results in inadequate frequency resolution, and as it grows
larger it results in time smearing. The hop size of the transform also needs to be
small enough to ensure a clean reconstruction during the transformation from
time/frequency to time (a fourth of the transform size is a good choice). Applying
a Hanning window for the frequency analysis is also advised since it minimizes
high frequency artifacts which are not part of the sound we model and can result
into a skewed representation.

The selection of the PLCA parameters is very important in order to achieve
good results. In most of our simulations, sounds were modeled using around 100
marginals (i.e. z = {1, 2, 3, ..., 100}). Using a small number of marginals results
into a poor representation which attains spectrally quantized results, whereas
a large number of marginals results into large sets of simple marginals which
can also describe elements of the interfering sounds. The tradeoff in this case is
between accuracy of model versus separability of models. The sparsity parameter
is something we only use in the case of the semi-supervised learning on the time
marginals. It ensures that the new marginals that we learn will not overlap as
much with the already known ones. Common usage values in our experiments
were β = {0, 0.01, 0.05, 0.1}, where larger values were used in harder to separate
problems where more spectral overlap between sources was present. The audible
effect of using sparsity is a degradation of reconstruction of the sound quality of
the source to be learned. Therefore using the sparsity parameter is best when we
have a model of the target source and we wish to remove the remaining sources.

3.2 Relation to Similar Decompositions

The PLCA model which we introduced is closely related to a variety of known
decompositions. The non-sparse 2-d manifestation is identical to the Probabilis-
tic Latent Semantic Indexing (PLSI) algorithm [5], which itself is a probabilistic
generalization of the Singular Value Decomposition. The functional difference
is that PLSI/PLCA operate on distributions instead of raw data which means
that they can effectively only analyze non-negative inputs. If we rewrite the 2-d
PLCA model in terms of matrix operations, this relationship is more evident:

P (f, t) =
∑

z

P (z)P (f |z)P (t|z) ≡ V = W · S · H (9)

where V is a matrix containing the distribution P (f, t), W is a matrix containing
in its columns P (f |z) for every z, S is a diagonal matrix containing in its diagonal
the values of P (z), and H is a matrix containing in its rows P (t|z) for every z.

Additionally if we absorb the values of S into the two matrices W and H so
that: V = W · S · H = W̄ · H̄, we can make a connection to the Non-negative
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Matrix Factorization (NMF) decomposition [8]. NMF can employ the Kullback-
Leibler divergence to measure how well the factorization W̄ ·H̄ approximates the
input V. The EM training which we perform also indirectly optimizes the same
cost function as it improves the model’s log-likelihood. In fact the two training
procedures for 2-d PLCA and NMF can be shown to be numerically identical.

Finally we can make a loose connection to non-negative ICA by noting that
by using the entropic prior to manipulate the joint entropy of H we can obtain
the equivalent of an ICA mixing matrix in W. Although this is only a conjecture
on our part, preliminary results from simulations are encouraging.

4 Conclusions

In this document we introduced a sparse latent variable model which can be
employed for the decomposition of time/frequency distributions to perform sep-
aration of sources from monophonic recordings. We demonstrated the use of this
model for both supervised and semi-supervised source separation, and discussed
its relationship with other known decompositions. Our results are very encourag-
ing and amenable to various modifications, such as the use of convolutive bases
and transformation invariance, which can help to successfully apply this work
to even more challenging source separation problems.
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Abstract. Image compression is achieved by reducing redundancy be-
tween neighboring pixels but preserving features such as edges and con-
tours of the original image. Deterministic and statistical models are
usually employed to reduce redundancy. Compression methods that use
statistics have heavily been influenced by neuroscience research. In this
work, we propose an image compression system based on the efficient cod-
ing concept derived from neural information processing models. The sys-
tem performance is compared with principal component analysis (PCA)
and the discrete cosine transform (DCT) at several compression ra-
tios (CR). Evaluation through both visual inspection and objective mea-
surements showed that the proposed system is more robust to distortions
such as ringing and block artifacts than PCA and DCT.

1 Introduction

The goal of data compression is to reduce space or bandwidth required to store or
transmit some information [1]. Specifically, in case of images, the data contains
a high degree of correlation or redundancy between neighboring samples. This
way, compression is achieved by reducing the redundancy of data preserving
quality and features such as edges and contours of the original image.

The redundancy reduction principle can be analyzed in both deterministic and
statistical fashions [1,2]. In the first, redundancy is understood as data samples
that can be inferred without use of statistical information of data. On the second
one, redundancy reduction is performed transforming the data into an efficient
representation according to statistical independence criterion [2].

There is a large number of deterministic methods used for image compression.
For instance, the well-known JPEG scheme employs the discrete cosine transform
(DCT) [4,3] to encode images. The DCT is a Fourier-related transform which
converts data into frequency components. Contrarily to Fourier’s, these compo-
nents are real coefficients defined as the inner product between the image to be
encoded and the DCT basis functions. Although the DCT is easy to implement
and fast to compute, it still undergo as many drawbacks as any Fourier-related
transform. Gibbs phenomenon [5] is an example of such deficiencies that in case
of images, are smoothed edges. Another DCT problem is blocking artifacts [6].
These artifacts are due to the block processing of images and can be understood
as luminance discontinuities between block boundaries.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 422–429, 2007.
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On the other hand, compression methods that use statistics have heavily been
influenced by neural information processing models [2]. Neuroscience studies sug-
gested that neuron populations process stimuli information according to the con-
cept of “efficient coding” [7]. Under this concept, neuron responses are mutually
statistically independent which means that there is no “redundant information”
processed throughout the population.

Statistical independence criteria may be explored by two approaches: principal
component analysis (PCA) and independent component analysis (ICA). PCA
utilizes second-order statistics while ICA uses high-order statistics to obtain
an efficient code. For instance, PCA is employed in several image compression
systems in order to reduce data dimension [8]. The shortcoming of PCA based
systems is that second-order statistics can only provide efficient representations
for Gaussian data and images are normally non-Gaussian [7]. To circumvent
this problem, new compression systems have used ICA to encode images such
as [9]. However, this method does not take into account the non-orthogonality
propriety of ICA basis functions in the code estimation.

Therefore the purpose of this work is to propose an image compression system
based on the “efficient coding” concept using ICA. In this model, data compres-
sion is carried out projecting images onto subspaces learned by ICA where the
efficient code is given by the respective projection coefficients. This model is also
applied to electrocardiogram data compression in [10].

2 Methods

Let us divide an image into a vector of blocks y = [y1, y2, . . . , yn]T with size of m
x m. Now, assume that each block yi can be reconstructed as a linear combination
of vectors from a stochastically learned subspace Φ = [φ1, φ2, . . . , φn]T, where
φi is also called basis function. This process might be written as

ŷi = w1φ1 + w2φ2 + . . . + wnφn, (1)

where ŷi is the reconstructed version of block yi and each component wi is the
projection coefficient on the ith base function.

To learn the subspace Φ and estimate the projection coefficients wi, we pro-
pose the image compression system, shown in Figure 1, which is based on the
concept of efficient coding. The following subsections provide a full explanation
of the structure of our model.

Efficient Coding. Let us assume that an image block is encoded by the projec-
tion coefficients w = [w1, w2, . . . , wn]T in Eq. (1). The goal of efficient coding is
to estimate a subspace Φ that reduces the mutual statistical dependence between
the coefficients wi.

An estimation of the subspace Φ may be accomplished by either PCA or
ICA. The first assumes that the components are uncorrelated while the second
assumes that components are mutually statistically independent. In this work,
we use the last approach.
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Fig. 1. Proposed image compression system. The system consist of two phases: learning
and projection. In the learning phase, we use independent component analysis to learn
a subspace. In the projection phase, we estimate the projections coefficients through a
minimum mean square error (MSE) estimation.

Learning a Subspace through ICA. Let x = [x1, x2, . . . , xn]T be a set of
observations taken from the same data class and written as in Eq. (2). Using
x as a training input, ICA learns basis functions φi for the data class so that
the set of variables which composes vector a = [a1, a2, . . . , an]T are mutually
statistically independent.

x = aTΦ. (2)

To achieve statistically independence, ICA algorithms work with higher-order
statistics which point out directions where data is maximally independent. Here,
we used the FastICA algorithm [11].

Projecting an Image onto Subspaces. The projection phase consists of
finding out the image representation for the subspace Φ. This representation is
given by the projection vector w where each coefficient wi shows how the i − th
base function is activated inside the image. In our model, the projection vector
is found out through minimum mean square error (MSE) estimation.

Hence, for a given image block yi, the projection vector is estimated such that
it minimizes the MSE between the reconstructed block ŷi and the original one.
For this estimation method, the solution vector is given by

w = E[ΦΦT]−1E[yiΦ]. (3)

The term E[ΦΦT]−1 in Eq. (3) holds information about the angles between
every two basis functions of Φ and is necessary to achieve the minimum error
once the ICA basis are non-orthogonal. Eq. (3) is also used to select a smaller
subspace Ψ from larger subspace Φ with minimum MSE. This process consists of
a block-level deflationary basis pursuit which allow us to change the compression
rate (CR) using as many coefficients as desired to represent the image. This basis
pursuit is summarized in the following procedure:

Step 1: Define an empty subspace Ψ;
Step 2: Repeat next step for k = 1, 2, ..., n, where n is the dimension of Φ;
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Step 3: Using Eq. (3), find the reconstructed image ŷik projecting yi onto the
subspace composed of [Ψ, φk], where φk is the kth base function of Φ;

Step 4: Select the base functions according to the following criteria:

φk = arg min MSE(ŷik − yik); (4)

Step 5: Move φk from Φ to Ψ so that n = n − 1;
Step 6: Return to step 2 until Ψ get the desired dimension;

It is important to notice that this basis pursuit is non-orthogonal in contrary
to the standard Matching Pursuit [12]. Hence, when Ψ has obtained a dimension
higher than one, the term E[ΦΦT]−1 is used to estimate the correct w.

3 Results

In the learning phase, we have used 200 male and 200 female face images from
AR Face Database [13]. This database contains 4000 faces from 126 persons for
many expressions and cloths. To form the training set for ICA, the 400 images
were divided into 8 x 8 blocks. For each block, two training samples of 64 pixels
were obtained. The first sample was obtained performing a line-wise reading of
the pixels inside the block and the second one, through column-wise reading.
Figure 2 shows an example of ICA subspace learned from face images. Also, for
the same training set, the PCA subspace along with the standard DCT’s.

(a) (b) (c)

Fig. 2. Example of subspaces: (a) ICA and (b) PCA subspaces learned from face im-
ages, (c) standard DCT subspace

In projection phase, the coefficients were quantized using Lloyds’s algorithm
[14]. And since we are concerned with losses introduced in the coding process,
we used no further lossless methods such as Huffman coding [15].

To evaluate the proposed system performance, we have compressed several im-
ages (not used in the learning phase) for ICA, PCA and DCT. Then, the respec-
tive reconstructed images were compared using visual inspection and objective
measurements. For subjective insight, Figure 3 shows several reconstructed im-
ages along with the respective values of CR and picture quality scale (PQS) [16].
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Fig. 3. Reconstructed images for ICA, PCA and DCT. The face images in the first
column were all reconstructed using three basis functions and its projections coefficients
were quantized using four bits so that the CR = 13:1. For the image in the second
column, five basis functions and six bits for quantization, CR = 10:1.
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It is important to notice that the images are compressed with ICA, PCA, and
DCT at same CR.

The PQS value varies from zero to five and matches the subjective scale MOS,
but can assume negative values for poor reconstructions. Further, we used a
weighted version of the standard percent root-mean square difference (WPRD)
which is defined as

WPRD =

√
E[CF(ŷi − yi)2]

E[y2
i ]

. (5)

The WPRD is found out by filtering the spatial frequency of the error image
(ŷi − yi) with the human contrast sensitivity function (CF) [17]. The weighting
aims to match the error influence according to human visual system sensibility
for certain frequencies.

Figure 4 shows the average WPRD obtained by increasing the basis functions
number used for reconstruction of five face images.
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Fig. 4. Average WPRD performance for five reconstructed images which were not used
in the learning phase. In the projection phase, the coefficients were quantized using five
bits.

4 Discussion

The proposed model has a reasonable physiological foundation: efficient coding.
Hence, this model should introduce less perceptible distortions for humans than
methods non-based on neural modeling such as DCT or even PCA.

Actually, there are many interesting points to highlight. Firstly, let us analyze
the subspaces presented in Figure 2. The statistical independence criteria used
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in ICA span edge detectors as basis functions for face images. These “edges”
corresponds to significant variations of the grey level for the training set and are
results of the redundancy reduction process [18]. PCA and DCT are both or-
thogonal transforms so that they similarly distribute data spectrum information
between their basis. This fact can be confirmed observing that the shape of their
basis functions are alike. Further, we can also see that reconstructed images for
PCA and DCT in Figure 3 are very similar.

Secondly, let us analyze an important point in the performance of compression
techniques: the presence of ringing and blocking artifacts in reconstructed im-
ages. Ringing artifacts are produced by Gibbs phenomenon [5]. This phenomenon
can be understood as large oscillations in image areas that have discontinuities
such as edges and contours. These oscillations produce a smooth effect on the
figure, what can be unacceptable for applications such as medical image com-
pression [19]. From the reconstructed images in the first and second columns
of Figure 3, we can see that edges and contours defining image details, such as
pupils, eyes, nose, lips and hair wires of face in the first column; and the table,
arms, legs and face contours in the second image were better preserved in the
proposed model than for PCA and DCT.

The problem of “ringing” might be even worse if blocking artifacts are consid-
ered. And in this model, images are processed in non-overlapped blocks which
are independently transformed and quantized. Therefore, luminance discontinu-
ities may be introduced between block boundaries, what is highly perceivable
by humans when few coefficients are used in the reconstruction. Thus, either
the compression method is intrinsically robust to this distortion, or additional
methods may be required to solve this problem, increasing the complexity of
the compression system. Once more, a neural based modeling should fit. In fact,
comparing the images in Figure 3, we can clearly see that our model is more
robust to blocking artifacts.

Indeed, since PQS and WPRD takes human sensitivity into account, we can
see from the negative values of PQS for the reconstructed images in Figure 3
and the WPRD performance in Figure 4 that our model introduces less errors
than PCA and DCT regarding the human perception.

5 Conclusions

We have proposed an image compression system based on the concept of ef-
ficient coding. Our system consists of two phases: learning and projection. In
the learning phase, we used independent component analysis (ICA) to learn a
subspace that maximizes the code efficiency. In the projection phase, we found
out the code projecting the image onto the subspace. The projection was carried
out through a mean square error estimation. The system was compared with
principal component Analysis (PCA) and the discrete cosine transform (DCT)
through both visual inspection and objective measurements. The results analysis
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showed that our model is more robust to distortions which are highly percepti-
ble by humans. Several reconstructed images from our model can be found at
http://pib.dee.ufma.br
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Abstract. Underdetermined source separation methods often rely on
the assumption that the time-frequency source coefficients are indepen-
dent and Laplacian distributed. In this article, we extend these methods
by assuming that these coefficients follow a generalized Gaussian prior
with shape parameter p. We study mathematical and experimental prop-
erties of the resulting complex nonconvex lp norm optimization problem
in a particular case and derive an efficient global optimization algorithm.
We show that the best separation performance for three-source stereo
convolutive speech mixtures is achieved for small p.

1 Introduction

Underdetermined source separation is the problem of recovering the single-
channel source signals sj(t), 1 ≤ j ≤ J , underlying a multichannel mixture
signal xi(t), 1 ≤ i ≤ I, with I < J . The mixing process can be modeled in the
time-frequency domain via the Short-Term Fourier Transform (STFT) as [1]

X(n, f) = A(f)S(n, f) (1)

where S(n, f) is the vector of source STFT coefficients in time-frequency bin
(n, f), X(n, f) is the vector of mixture STFT coefficients in the same bin, and
A(f) is a complex mixing matrix. This problem can be tackled by first estimating
the mixing matrices and then deriving the Maximum A Posteriori (MAP) source
coefficients under the constraint (1), based on some prior distribution.

Existing separation methods rely on the assumption that the source coeffi-
cients are independent and sparsely distributed, i.e. a large proportion of coef-
ficients are close to zero. Examples of sparse priors include mixtures of Dirac
impulses and Gaussians [2], mixtures of Gaussians [3], Student t distributions
[4] and the Laplacian distribution [5,6,1,7]. The latter is popular since it leads
to a convex optimization problem that can be solved efficiently. In this paper,
we extend this approach by assuming that the source coefficients follow a gen-
eralized Gaussian prior, of which the Laplacian is a special case. This extension
is not straightforward, since the resulting criterion can be nonconvex.

The structure of the rest of this paper is as follows. In Section 2, we argue that
generalized Gaussian priors are well suited to the modeling of speech signals. We
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study the properties of the resulting optimization problem in Section 3 in the
case where J = I + 1 and derive an efficient global optimization algorithm. We
evaluate its performance on instantaneous and convolutive speech mixtures in
Section 4 and conclude in Section 5.

2 Generalized Gaussian Priors

Generalized Gaussian priors were first introduced in the context of source sep-
aration via Independent Component Analysis (ICA) [8,9,10]. The phases of the
source STFT coefficients Sj(n, f) are assumed to be uniformly distributed, while
their magnitudes are modeled by

P (|Sj(n, f)|) = p
β1/p

Γ (1/p)
e−β |Sj(n,f)|p (2)

where the parameters p > 0 and β > 0 govern respectively the shape and the
variance of the prior. This prior includes the Laplacian (p = 1) and the Gaussian
(p = 2) as special cases and its sparsity increases with decreasing p.

In order to assess the benefit of using this prior, we computed the best shape
parameters p for 30 speech signals, considering all frequency bins either sepa-
rately or together. The signals were sampled at 8 kHz and had a duration of
12 s. The STFT was computed using half-overlapping sine windows of various
lengths L and each frequency bin was scaled to unit variance. The Maximum
Likelihood (ML) parameters were estimated using Matlab fminunc optimizer1.

The observed parameter range is depicted in Figure 1. On average, p varies be-
tween 0.4 and 0.9 depending on the window length L and stays almost constant
across frequency, except at very low frequencies where background noise domi-
nates. This shows that generalized Gaussian priors with p < 1 better fit speech
sources than Laplacian priors. Interestingly, the observed value of p reaches a
minimum for L = 64 ms, which was also previously determined to be the optimal
window length for source separation via binary masking [11,12].

3 Properties of the Complex lp Norm Criterion

Given these results, we now assume that the mixing matrices A(f) are known
and that the source STFT coefficients follow a generalized Gaussian prior with
fixed parameters p and β. The MAP source coefficients are given by

Ŝ(n, f) = arg min
S∈CJ

‖S‖p
p subject to A(f)S = X(n, f) (3)

where ‖S‖p is the lp norm of the vector S defined by ‖S‖p
p =

∑J
j=1 |Sj|p. When

p < 1, this criterion is nonconvex hence difficult to minimize.

1 This algorithm is based on a subspace trust regionmethod.Formore details, see http://
www.mathworks.com/access/helpdesk r13/help/toolbox/optim/fminunc.html
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Fig. 1. Variation of the shape parameter p measured on speech STFT coefficients as
a function of the window length L (left) and as a function of frequency f with L =
64ms (right). The black curve and the gray area represent respectively the geometric
mean and the geometric standard deviation of the measured values. This illustration
is motivated by the fact that the measured values are approximately log-Gaussian.

3.1 Unconstrained Expression

We focus in the rest of this article on the simple case where J = I + 1 and A(f)
has full row rank. Under this assumption, the constrained optimization prob-
lem (3) is equivalent to a one-dimensional unconstrained complex optimization
problem [1]. The MAP source coefficients are then expressed as

Ŝ(n, f) = O + ûV (4)

where O is any vector satisfying the constraint, e.g. O = A(f)†X(n, f) with †

denoting pseudo-inversion, V is any vector spanning the null space of A(f) and

û = arg min
u∈C

‖O + uV‖p
p. (5)

This optimization problem has to be solved for each STFT bin (n, f) individually.
Using the complex derivative notation [13], the first and second order derivatives
of the criterion L(u) = ‖O + uV‖p

p are given by

∂L
∂u

=
∂L
∂u

=
p

2

J∑

j=1

|Oj + uVj |p−2Vj(Oj + uVj) (6)

∂2L
∂u∂u

=
∂2L
∂u∂u

=
p2

4

J∑

j=1

|Oj + uVj |p−2|Vj |2 (7)

∂2L
∂u2 =

∂2L
∂u2

=
p(p − 2)

4

J∑

j=1

|Oj + uVj |p−4Vj
2
(Oj + uVj)2 (8)
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3.2 Singular and Non-singular Solutions

It is well known that for real variables the global minimum of L with p ≤ 1 results
in at least one source coefficient being zero and can be found by combinatorial
optimization [6,1]. However, this is not true anymore with complex variables, as
shown in [1,7] in the particular case p = 1. Nevertheless, the local minima of L
can still be characterized using the two lemmas below.

Lemma 1. Let J = {j : Vj �= 0}. When p < 1, the points zj = −Oj

Vj
, j ∈ J ,

are singular ( i.e. non-differentiable) local minima of L.

Proof. Let Zj = {k : zk = zj}. The point zj is characterized by the fact that
Sk(n, f) = 0 for all k ∈ Zj and Sk(n, f) �= 0 for all k /∈ Zj . By developing the
expression of L around this point when p < 1, we get

L(zj + u) = L(zj) +

(
∑

k∈Zj

|Vk|p
)

|u|p + O(u). (9)

Thus L is non-differentiable at zj and L(zj + u) > L(zj) for small u �= 0. ��

Lemma 2. The other local minima of L are non-singular and within the convex
hull of zj, j ∈ J .

Proof. If u �= zj for all j and u is a local minimum of L, then L is differentiable
at u according to (6) and ∂L

∂u = 0. After rearranging this equality, we get

u =

∑
j∈J |Oj + uVj |p−2|Vj |2zj∑
j∈J |Oj + uVj |p−2|Vj |2

. (10)

Thus u can be expressed as a weighted sum of zj , j ∈ J , with positive weights
summing to one. ��

In the following, we use the term “singular” to characterize by extension the
local minima of L where at least one source coefficient is zero, although L is
differentiable at these minima when p > 1.

3.3 Critical Value of p for the Existence of Non-singular Solutions

The above distinction between singular and non-singular local minima raises the
question whether non-singular minima can exist for all values of p and whether
the global minimum can be non-singular. We studied this question experimen-
tally with I = 2 and J = 3.

We draw 100 independent source coefficient vectors following the general-
ized Gaussian distribution with shape parameter p = 0.4 using the Metropolis-
Hastings algorithm [14]. We also draw 100 instantaneous (real) mixing matrices
of the form A1j = cos(θj) and A2j = sin(θj) with θj uniformly distributed in
[−π

2 , π
2 ] and 100 convolutive (complex) mixing matrices of the form A1j = 1 and
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A2j = e2iπθj with θj uniformly distributed in (−π, π]. The multiplication of each
source coefficient vector by each matrix resulted in a total of 10000 instantaneous
mixtures and 10000 convolutive mixtures.

For each mixture, we tested whether non-singular minima of L existed and
whether the global minimum was non-singular as follows. Given Lemma 2, we
sampled L on a discrete grid spanning the convex hull of zj , 1 ≤ j ≤ J , containing
points of the form u = k1

3K z1 + k2
3K z2 + 3K−k1−k2

3K z3, 1 ≤ kj ≤ K, with K = 50,
and we selected the global minimum ũ on this grid. If ũ was non-singular, then
the true global minimum was necessarily non-singular. Otherwise, we decided
that the global minimum was singular. In the latter case, we also sampled the
gradient and the Hessian of L on the same grid, selected as a potential local
minimum the point with the smallest gradient among all points with positive
definite Hessian and refined it using the fminunc optimizer. We then observed
whether the optimizer converged to a non-singular local minimum or not.

The results were very similar for instantaneous and convolutive mixtures. The
average percentage of mixture draws resulting in a non-singular local minimum
or a non-singular global minimum is depicted in Figure 2 as a function of p.
Both quantities decrease with decreasing p, with a large drop around p = 1. For
p � 0.75, there remains a few non-singular local minima, but no global minima.
This can be illustrated in a more general case using the example below.

0.8 1 1.2 1.4
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20

40

60

80

100

p

%

Fig. 2. Percentage of mixture draws resulting in a non-singular local minimum (dashed
curve) or a non-singular global minimum (plain curve) of the lp norm criterion with
three-source two-channel mixtures

Example 1. Let Oj = e2iπ j
J and Vj = 1, 1 ≤ j ≤ J . Then u = 0 is a non-singular

local minimum of L for all p > 0. Furthermore, the value of L at this minimum
is smaller than at all singular local minima for p > pcrit where pcrit is defined
implicitly by

∑J−1
j=1 |1 − Oj |pcrit = J and equals respectively 0.738, 0.612, 0.534,

0.481 for J = 3, 4, 5, 6, and decreases with increasing J .
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Proof. Using the fact that
∑J

j=1 Oj =
∑J

j=1 O2
j = 0, the coefficients of the

complex gradient, the diagonal coefficients of the complex Hessian and the off-
diagonal coefficients of the complex Hessian of L, defined in [13], are given re-
spectively at u = 0 by ∂L

∂u = ∂L
∂u = 0, ∂2L

∂u∂u = ∂2L
∂u∂u = Jp2

4 and ∂2L
∂u2 = ∂2L

∂u2 = 0.
Thus the complex gradient is zero and the complex Hessian is positive-definite,
which proves that u = 0 is a non-singular local minimum of L [13].

The values of the criterion at this non-singular minimum and at the singular
local minima zj = −Oj are given by L(0) = J and L(zj) =

∑J−1
j=1 |1 − Oj |p for

all j. The latter is a strictly increasing function of p. Indeed, it can be checked
that dL(zj)

dp = log J > 0 at p = 0 and d2L(zj)
dp2 > 0 for all p > 0. Thus L(0) > L(zj)

if and only if p > pcrit where pcrit is the value of p such that L(0) = L(zj). ��

This shows that the global minimum of L can be non-singular when p > pcrit.
We conjecture that pcrit is the lowest value of p for which this can happen.

Conjecture 1. The global minimum of L with p < pcrit is always singular.

We have not yet managed to prove this conjecture mathematically. However we
verified it experimentally with J = 3 (see Figure 2) and with 4 ≤ J ≤ 6 using
the same number of mixture draws and a similar discrete grid for optimization.

3.4 Efficient Optimization Algorithm

Lemmas 1 and 2 and Conjecture 1 suggest the following efficient algorithm for
the estimation of the MAP source coefficients.

– If p ≥ 1, run any gradient-based optimizer initialized randomly using (6)–(8).
– If p ≤ pcrit, sample the criterion at the singular points zj , 1 ≤ j ≤ J , and

select the minimum of the criterion among these points.
– If pcrit < p < 1, sample the criterion on a discrete grid spanning the convex

hull of the singular points zj , 1 ≤ j ≤ J , and containing these points. Select
the minimum of the criterion on this grid. If it is non-singular, refine it via
any gradient-based optimizer using (6)–(8).

Provided that Conjecture 1 is true, this algorithm is guaranteed to find the
global minimum of the criterion when p ≥ 1 or p ≤ pcrit, but also when pcrit <
p < 1 if the discrete grid is tight enough. Moreover, this algorithm is quite fast,
particularly for small p. Using Matlab on a 1.2 GHz CPU with the fminunc
optimizer and the discrete grid defined in Section 3.3, the computation time
equals on average 0.15 s, 0.0065 s and 0.00025 s for p = 1, p = 0.9 and p = 0.5
respectively with I = 2 and J = 3. By contrast, the optimization via Second
Order Cone Programming (SOCP) for p = 1 takes about 0.36 s, using the same
Matlab toolbox as in [1,7].

4 Source Separation Results

We evaluated the proposed algorithm for the separation of 10 instantaneous and
10 convolutive speech mixtures with I = 2 and J = 3. The mixture signals
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were obtained by mixing the source signals of Section 2 either with a matrix
of positive coefficients or with a set of simulated room impulse responses cor-
responding to a reverberation time of 250 ms, as described in [12]. Following
[11,12], the STFT window length L was set to 512 (64 ms) for instantaneous
mixtures and 2048 (256 ms) for convolutive mixtures. The frequency-domain
complex mixing matrices A(f) were computed by Fourier transform of the mix-
ing filters in the convolutive case. The performance was measured in decibels
(dB) for each estimated source by SDRj = 20 log10(‖sj‖/‖ŝj − sj‖) and subse-
quently averaged. For comparison, we also evaluated the performance when the
criterion was optimized over the singular points only, as suggested in [1].

The results are shown in Figure 3. In the instantaneous case, the best SDR is
achieved for p = 1 and the SDR for smaller values of p is 0.6 dB smaller. In the
convolutive case, the best SDR is achieved for p → 0 and it is 1.2 dB larger than
for p = 1. Note that the ML value of p determined in Section 2, namely p = 0.4,
does not result in the best SDR. This suggests that algorithms estimating the
value of p from the data might not improve performance. Note also that the
SDR remains much smaller than the theoretical upper bound computed in [12].
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Fig. 3. Average SDR as a function of p for the separation of instantaneous (left) and
convolutive (right) three-source two-channel speech mixtures (plain curve: optimization
over the full space, dashed curve: optimization over the singular points only)

5 Conclusion

In this article, we investigated the benefit of modeling the sources via gener-
alized Gaussian priors instead of Laplacian priors for underdetermined source
separation. This generalization is not straightforward, since the resulting lp norm
criterion is nonconvex for p < 1. In the simple case where J = I + 1, we charac-
terized mathematically the local minima of this criterion, conjectured that the
global maximum is always singular below a critical value of p and derived an ef-
ficient global optimization algorithm. We evaluated this algorithm on speech
mixtures and showed that small values of p resulted in the best separation
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performance in the convolutive case, but also in the fastest optimization. This
work raises further research issues, including the proof of the above conjecture
and the extension of the proposed algorithm when J > I + 1.
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Abstract. In this paper, a new algorithm for source recovery in under-
determined Sparse Component Analysis (SCA) or atomic decomposition
on over-complete dictionaries is presented in the noisy case. The algo-
rithm is essentially a method for obtaining sufficiently sparse solutions
of under-determined systems of linear equations with additive Gaussian
noise. The method is based on iterative Expectation-Maximization of
a Maximum A Posteriori estimation of sources (EM-MAP) and a new
steepest-descent method is introduced for the optimization in the M-
step. The solution obtained by the proposed algorithm is compared to
the minimum �1-norm solution achieved by Linear Programming (LP). It
is experimentally shown that the proposed algorithm is about one order
of magnitude faster than the interior-point LP method, while providing
better accuracy.

Keywords: sparse component analysis, sparse decomposition, blind
source separation, independent component analysis.

1 Introduction

Finding (sufficiently) sparse solutions of under-determined systems of linear
equations (possibly in the noisy case) has been studied extensively in recent
years [1,2,3,4,5,6,7,8,9,10]. The problem has a growing range of applications in
signal processing. One of these applications is the noisy under-determined sparse
source separation which is also called Sparse Component Analysis (SCA) [1, 2,
3, 4, 5, 6]. Another application is the so-called ’atomic decomposition’ problem
which aims at finding a sparse representation for a signal in an overcomplete dic-
tionary [7,8,9,10]. In this paper, we will mainly use the context of SCA stating
our approach. The discussions, however, may be easily followed in other contexts
of application such as atomic decomposition.

SCA can be viewed as a method to achieve separation of sparse sources. The
Blind Source Separation (BSS) problem is to recover m unknown sources from n
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observed mixtures of them, where little or no information is available about the
sources (except their statistical independence) and the mixing system. In this
paper we consider the noisy linear instantaneous model:

x(t) = As(t) + n(t). (1)

where x(t), s(t) and n(t) are n × 1, m × 1 and n × 1 vectors of sources, mixtures
and white Gaussian noises, respectively, and A is the n × m mixing matrix.
In the under-determined case (m > n), estimating the mixing matrix is not
sufficient to recover the sources, since the mixing matrix is not invertible. Then,
the estimation of sources requires some prior information on the sources and
passes from a blind problem to a semi-blind problem. One such prior information
is the sparsity of sources. It means that only a few samples of the sources are
nonzero (say they are active) and most of them are almost zero (say they are
inactive).

Then SCA can be solved in two steps: first estimating the mixing matrix, and
then estimating the sources. The first step may be accomplished by means of
clustering [1] or other methods [4]. The second step requires finding the sparse
solution of (1) assuming A to be known [9]. In this paper, we focus on the source
estimation assuming A is known.

In the atomic decomposition viewpoint [10], we have one signal whose samples
are collected in the m × 1 signal vector s and the objective is to express it
as a linear combination of a set of predetermined signals where their samples
are collected in vector {ϕi}m

i=1. After [11], the ϕi’s are called atoms and they
collectively form a dictionary over which the signal is to be decomposed. In this
paper, we also consider a noise term for the decomposition. So we can write
s =

∑m
i=1 αiϕi = Φα + n, where Φ is the n × m dictionary (matrix) where the

columns are the atoms and α is the m × 1 vector of coefficients. The vector n
can be interpreted as either the noisy term of the original signal that we intend
to decompose or the allowed error for the decomposition process.

To obtain the sparse solution of (1), an approach is to search solutions having
minimal �0 norm, i.e., minimum number of nonzero components. This method is
intractable when the dimension increases (due to combinatorial search), and it is
too sensitive to noise (due to discontinuity of �0 norm). One of the most successful
approaches is Basis Pursuit (BP) [10] which finds the minimum �1 norm of
(1) which can be easily implemented by Linear Programming (LP) methods
(especially fast interior-point LP solvers). Another approach is Matching Pursuit
(MP) [11] which is very fast, but is somewhat heuristic and does not provide
good estimation of sources.

In [5], we proposed a three step (sub-)optimum (in MAP sense) method for
SCA in the noisy under-determined case (briefly called MAP) which has the
drawback of great complexity and is not tractable for sparse decomposition ap-
plication (which requires large values of m and n). This problem exists also in [6].
In this article, we propose an iterative method to tackle the great complexity of
our MAP method. In the maximization step of our algorithm, we propose here
an optimization method based on steepest-descent. Our method results in a fast
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sparse decomposition (faster than interior point LP) while improving the quality
of source recovery because of its optimality in the MAP sense and dealing with
noise.

2 System Model

The noise vector in the model (1) is assumed zero-mean Gaussian with covariance
matrix σ2

nI. For modeling the sparse sources the following model is used: the
sources are inactive with probability p, and are active with probability 1 − p
(sparsity of sources implies that p should be near 1). In the inactive case the
sample of sources is zero and in the active case the sample has a Gaussian
distribution. We call this model the ‘spiky model’ which is a special case of the
Bernoulli-Gaussian model used in [5]. The probability density function (PDF)
of the sources is then:

p(si) = pδ(si) + (1 − p)N(0, σ2
r). (2)

In this model, any sample of the sources can be written as si = qiri where qi

is a binary variable (with binomial distribution) and ri is the amplitude of i’th
source with Gaussian distribution. So the source vector can be written as:

s = Qr Q = diag(q). (3)

We refer the vector q � [q1, . . . , qm]′ as the ‘source activity vector’, where ′

denotes vector/matrix transposition. Each element of this vector shows the ac-
tivity of the corresponding source. That is:

qi =
{

1 if si is active with probability p
0 if si is inactive with probability 1 − p

(4)

The probability of source activity vector p(q) is equal to:

p(q) = (1 − p)na(p)m−na . (5)

where na is the number of active sources or the number of 1’s in q.

3 Review of Our Previous MAP Algorithm

In [5] we proposed a three step MAP algorithm for the noisy sparse component
analysis. The parameter estimation step is done by a novel method based on
second and fourth order moments of one mixture and an EM algorithm. The
source activity estimation step is done with a MAP method that maximizes the
posterior probability. This step is the maximization of:

p(q)p(x|q) =
p(q)√

det(2πQq)
exp(

−1
2

x′Q−1
q x). (6)
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where Qq = AVqA′ + σ2
nI, in which, Qq � E{xx′ | q} and Vq � E{ss′ | q} =

σ2
rQ are the conditional covariances of observations and sources given q. After

finding the optimum source activity vector, the source amplitudes are estimated
as:

r̂ = σ2
rQA′(σ2

rAQA′ + σ2
nI)−1x. (7)

Maximization of (6) is done over discrete space of vector q with 2m discrete
elements. In [5] this maximization had been done through an exhaustive search
on all these 2m cases.

In this paper, this maximization is done by first converting it to a continuous
maximization and then to use a steepest descent algorithm (this is similar to
the idea used in [9]). To convert our discrete problem to a continuous one, we
use a Mixture of two Gaussians model centered around 0 and 1 with sufficient
small variances. By this method our discrete binomial variable qi is converted
to a continuous variable. To avoid falling into local maxima of (6) a gradually
decreasing variance can be used in the different iterations (similar to simulated
annealing methods). But (6) is still very complex to derive for providing an
efficient optimization method such as steepest-descent.

4 The Iterative EM-MAP Algorithm

The main idea of our algorithm is that the source estimation is equal to estima-
tion of vectors q and r, as observed from (3). Estimation of q and r can be done
iteratively. First, an estimated vector q̂ is assumed and then the MAP estimate
of vector r based on the known estimated vector q̂ and the observation vector
x is obtained (we refer to it as r̂). Secondly, the MAP estimate of vector q is
obtained based on the estimated vector r̂ and the observation vector x (we refer
to it as vector q̂). Therefore, the MAP estimation of sources is done in two other
MAP estimation steps.

In the first step a source activity vector q̂ is assumed and the estimation of
r will be computed. Because the vector r is Gaussian, its MAP estimation is
equal to the Linear Least Square (LLS) estimation [13] and can be computed as
follows:

r̂MAP = r̂LLS = E(r|x, q̂) = E(rx′|q̂)E(xx′|q̂)−1x. (8)

This step can be nominated as Expectation step or Estimation step (E-step).
Computation and simplification of (8) (like what done in [5]) leads to the fol-
lowing equation which is similar to (7).

r̂ = σ2
rQ̂A′(σ2

rAQ̂A′ + σ2
nI)−1x. (9)

In the second step we estimate q based on the known r̂ and the observed x.
The MAP estimation is:

q̂MAP = argmax
q

p(q|x, r̂) ≡ p(q|r̂)p(x|q, r̂) ≡ p(q)p(x|q, r̂). (10)
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In (10), p(q) can be computed as a continuous variable:

p(q) =
m∏

i=1

p(qi) =
m∏

i=1

[p exp(
−q2

i

2σ2
0

) + (1 − p) exp(
−(qi − 1)2

2σ2
0

)]. (11)

Also the term p(x|q, r̂) in (10) can be computed as:

p(x|q, r̂) = pn(x − AQr̂) = (2πσ2
n)

−m
2 exp(

−1
2σ2

n

(x − AQr̂)′(x − AQr̂)) . (12)

The second step can be called Maximization step (M-step). The maximization
can be done over the logarithm of (10). So this step can be simplified as:

M − step : q̂ = max
q

L(q). (13)

where

L(q) =
m∑

i=1

log(p(qi)) +
−1
2σ2

n

(x − AQr̂)′(x − AQr̂) . (14)

Maximization of L(q) in the M-step can be done with the steepest descent
method. The main steepest descent iteration is:

qk+1 = qk − μ
∂L(q)

∂q
. (15)

In the appendix, we show that the steepest descent algorithm for the M-step is:

qk+1 = qk +
μ

σ2
0

g(q) +
μ

σ2
n

Diag(A′AQr̂ − A′x).r̂. (16)

where g(q) is defined in the appendix. In the successive iterations, we gradually
decrease the variance σ0 in the form σ

(i)
0 = ασ

(i−1)
0 where α is selected between

0.6 and 1. Also, the step-size μ should be decreasing, i.e., for smaller σ’s, smaller
μ’s should be applied. This is because for smaller variances, our function under
maximization is more fluctuating. So the step size can be decreased in the similar
form as μ(i) = αμ(i−1). Our simulations show that for α = .8 only about 4 or 5
iterations are sufficient to maximize the expression L(q) in the M-step. Also the
EM-step converges at the third or fourth iteration. The first initialization of the
EM-MAP method is done with the minimum �2 norm solution.

As we see from (16) the second summand is responsible for increasing the
prior probability p(q) while the third summand is responsible for decreasing the
noise power ||x − As||. When σ0 is much larger than σn, the second term is
more effective than the third term and as a result exactness of x = As is more
important than sparsity of s. When σ0 is decreased to be comparable to σn, both
terms are effective to yield the equilibrium point between sparsity and noise.

In summary, the overall algorithm is an iterative two step (E-step and M-step
in (9) and (13) respectively) algorithm in which the M-step is done iteratively
with the steepest descent method in (16).
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Fig. 1. Comparison of the results of our algorithm in two cases and the (interior-point)
LP method. The parameters of simulation are m = 1000, p = .9, σr = 1, σn = .01,
α = .8, σ(0) = σ̂r and μ(0) = 10−6. Four iterations are used for EM-step and five
iterations for the M-step (steepest descent).

5 Simulation Results

In this section, we examine the performance of our algorithm in two cases (the case
of using actual parameters and the case of using a simple method for estimating
the parameters which is explained below) and then compare it to the interior-point
LP method. Our performance criterion is Signal to Noise Ration (SNR) in dB
defined by SNR = 10 log10{‖s‖2/‖ŝ − s‖2}. The simulations have been repeated
50 times (with the same parameters, but for different randomly generated sources
and mixing matrix) and the resulting SNR’s (in dB) have been averaged.

The values used for the experiment are m = 1000, n = 400, ..., 700, p = .9, σr =
1 and σn = .01. The elements of the mixing matrix are randomly chosen between
-1 and 1 and each column normalized to have unit length. In the M-step the value
of α is between 0.6 and 1. This parameter effects on the speed of convergence.
We use an average value of α = .8 in our simulations. The initial value of σ0 is
selected equal to estimated σr . The initial value of μ can be selected between 10−3

and 10−8. But for small values and large values in this range, the performance is
somewhat deteriorated. So we select the value of μ = 10−6. Four iterations are
used for the EM-step and five iterations are used for the M-step (steepest descent).

In one of our simulation we use a very simple estimation of the parameters. In
this case the parameter p underestimated as p̂ = .8. With this assumption and
by considering the ergodicity of sources (i.e. the mixtures are the ensembles of
a random variable xj =

∑m
i=1 ajisi + ej where aji = bji�

√
b2
1i + b2

2i + ... + b2
ni

and bji is a random variable with uniform distribution on [-1,1] and si and ej

are random variables), and by neglecting the noise power, we have E(x2
j ) =

mE(a2
ji)E(s2

i ). We know that
∑n

j=1 a2
ji = 1 (which come from

∑n
j=1 a2

ji = 1 and
the independence of aji’s), and E(s2

i ) = (1−p)σ2
r . With the assumption of p̂ = .8,

we will have σ̂r =
√

5nE(x2
j)

m . For the noise variance, we choose σ̂n = σ̂r/10.
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The results of our simulation are shown in Fig. 5. These results show 3-4 dB
improvement (with actual parameters) and 1-2 dB improvement (with simply
estimated parameters) of our algorithm over the LP method.

Although, the CPU time is not an exact measure of complexity, it can give
us a rough estimation of it, and we compare our algorithm with LP using this
measure. Our simulations were performed in MATLAB 7.0 environment using
an Intel 2.40 GHz processor with 512 MB of RAM and under Microsoft Windows
XP operating system. For one typical simulation, our algorithm takes about 34
seconds while the simulation time of the (interior-point) LP method requires
about 204 seconds. So our algorithm is roughly one order of magnitude faster.

6 Conclusions

In this paper, a relatively fast method for finding sparse solution of an under-
determined system of linear equations was proposed. The method was based on
the iterative MAP estimation of the sources. This algorithm is approximately
one order of magnitude faster than (interior-point) LP, while providing 1-2 dB
improvement (with simply estimated parameters). The better performance is
obtained due to the optimality of our algorithm which is based on optimum
MAP estimation of sources. The simplicity of our algorithm (and its high speed)
is obtained due to iterative estimation of source activities and amplitudes and
also utilizing an efficient steepest descent for the M-step.
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Appendix: Steepest Descent Algorithm

From (13), we have:

∂L(q)
∂q

=
∂

∂q

m∑

i=1

log(p(qi)) − 1
2σ2

n

∂

∂q
(x − AQr̂)′(x − AQr̂) . (17)

we define g(q) � −σ2
0

∂
∂q

∑m
i=1 log(p(qi)) and n(q) � (x − AQr̂)′(x − AQr̂).

With these definitions the scalar function g(qi) and the n(q) (with omitting the
constant terms) can be computed as:

g(qi) =
pqi exp(−q2

i

2σ2
0
) + (1 − p)(qi − 1) exp(−(qi−1)2

2σ2
0

)

p exp(−q2
i

2σ2
0
) + (1 − p) exp(−(qi−1)2

2σ2
0

)
. (18)

n(q) = −2x′AQr̂ + r̂′QA′AQr̂ . (19)

with the definitions C � A′A and n1(q) � −2x′AQr̂ and n2(q) � r̂′QCQr̂ we
can write:

∂n1(q)
∂q

= diag(−2x′A).r̂ . (20)

If we define W � Qr̂ (m × 1 vector) then n2(q) = W′CW and so we have:

∂n2(q)
∂qi

=
m∑

j=1

∂n2(q)
∂Wj

∂Wj

∂qi
. (21)

From the vector derivatives, we have ∂n2(q)
∂W = 2CW � d. Also from the defini-

tion of W we have ∂Wj

∂qi
= r̂iδij . So (21) is converted to ∂n2(q)

∂qi
=

∑m
j=1 dj r̂iδij =

r̂idi. So the vector form of (21) is equal to:

∂n2(q)
∂q

= diag(d).r̂ . (22)

From (20) and (22) and n(q) = n1(q) + n2(q) and definitions of vectors d and
C, we can write:

∂n(q)
∂q

= 2diag(A′AQr̂ − A′x).r̂ . (23)

Finally, (23) and (17) and (15) with the definitions of n(q) and g(q) yields the
steepest descent iteration in (16).
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Abstract. Functional Data Analysis (FDA) is used for datasets that are
more meaningfully represented in the functional form. Functional prin-
cipal component analysis, for instance, is used to extract a set of func-
tions of maximum variance that can represent the data. In this paper, a
method of Mutual Interdependence Analysis (MIA) is proposed that can
extract an equally correlated function with a set of inputs. Formally, the
MIA criterion defines the function whose mean variance of correlations
with all inputs is minimized. The meaningfulness of the MIA extraction
is proven on real data. In a simple text independent speaker verification
example, MIA is used to extract a signature function per each speaker,
and results in an equal error rate of 2.9 % in the set of 168 speakers.

1 Introduction

Principal Component Analysis (PCA), discussed in [1] for nonfunctional and [2]
for functional data, is an essential feature extraction method. Principal com-
ponent functions are such that they can approximate new data with minimum
mean square error even if only a subset of all components is used. The prin-
cipal component functions are given by the directions of maximum variance in
the projections of the data. The directions of minimum variance, or minor com-
ponents, have received much less attention in the literature. Minor components
correspond to directions that are either orthogonal to the inputs or minimize the
variance of their projections. Hence, they represent an invariant or “common”
direction of the inputs. Further information about PCA and MCA, including
their probabilistic models, can be found in [3], [4], [5] and [6].

[7] acknowledged that minor components are important in some signal pro-
cessing applications. Examples are spectral estimation, curve and hyper-surface
fitting, cognitive perception and computer vision. This work coined the name
Minor Component Analysis (MCA) to refer to neural network fitting methods
that compute minor components. The authors also suggested that MCA solves
the Total Least Square (TLS) problem [8].

Recently, a method called Extreme Component Analysis (XCA) was intro-
duced that combines minor and principal components in order to represent a

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 446–453, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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dataset “optimally”. As discussed in [9], the “optimal” representation, if by mi-
nor or principal components, is dependent on the dataset. By freely choosing
between minor, principal components and their combinations, datasets can be
represented with possibly a lower number of components.

As previously mentioned, MCA can be used to extract minor components
that represent invariants of the data. However, when it is desired to extract
the mutual interdependencies of a set of input functions, MCA suffers because
of the necessary preprocessing step of input data centering. In the usual case,
where the input functions are linearly independent, centering reduces the span
of the data. Therefore, these centered functions can no longer fully represent
the inputs. Furthermore, as discussed in [10] the TLS and therefore the MCA
solution is non trivial and can usually not be found in closed form.

In this paper, we propose Mutual Interdependence Analysis (MIA) to solve
a TLS-like optimization problem in the span of the original inputs in order to
extract a mutually interdependent function from the input function set. We prove
that in the case of linearly independent input functions, a closed form solution
can be found that minimizes the MIA criterion.

In section 2 we define the MIA problem, derive its solution and illustrate its
properties. In the experimental section 3, MIA is used for simple text indepen-
dent speaker recognition. We end the paper with conclusions and directions for
further work.

2 Mutual Interdependence Analysis (MIA)

Throughout the paper, we use xT to denote the transpose of column vector x.
Also, we denote X to be the matrix whose columns are xi with i = 1, . . . , D. We
use 1 to represent a vector of ones, 1 to represent a matrix of ones and I to be
the identity matrix. The dimension will be clear from the context.

Consider D real inputs, xi(tj) with i = 1, . . . , D and j = 1, . . . , N , where each
input xi = [xi(t1), . . . , xi(tN )]T is viewed as a single entity (i.e. has the intrinsic
structure of a function) rather than a series of individual observations. Functional
Data Analysis (FDA) normally treats data this way, therefore we refer to each xi

as an input. In our case, N is typically larger or much larger than D. TLS solves a
linear equation XT · s = b by finding a direction s that minimizes the squared,

orthogonal distances to the data points xi: min
s

∑D
i=1

|xT
i ·s−bi|2
sT ·s+1 . On the other

hand, the ordinary Least Square (LS) problem finds a direction s that minimizes
min

s

∑D
i=1

∣∣xT
i · s − bi

∣∣2. While LS assumes that only vector b to contain errors,
the TLS approach models uncertainties in both b and in the data X. Our goal
is different: Extract a new vector (function) s that “optimally” represents the D
input functions. An optimal solution is a function that is maximally correlated
with all inputs with the constraint that it is a linear combination of the inputs.
We call this problem Mutual Interdependence Analysis (MIA). Formally, the
optimality criterion J(X|s), given a functional data series s, is as follows:
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J(X|s) =
D∑

i=1

(
sT · xi − 1

D

D∑

k=1

sT · xk

)2

(1)

Our problem is to find the maximum likelihood vector ŝ of norm one, in the span
of the inputs, that minimizes J(X|s):

ŝ = argmin
s,‖s‖=1,s=

D∑
k=1

ck·xk

J(X|s) (2)

2.1 Solution to MIA

Let us find an equivalent formulation for the MIA problem in (2). Consider the
mean function x(m) = 1

D

∑D
i=1 xi and the centered functions x(c)

i = xi − x(m).

It can be easily shown that sT · xi − 1
D

∑D
k=1 sT · xk = sT · x(c)

i . Hence,
(2) becomes:

ŝ = argmin
s,‖s‖=1,s=

∑
D
k=1 ck·xk

∥∥∥sT · X(c)
∥∥∥

2

, (3)

where X(c) has as columns x(c)
i with i = 1, . . . , D. Then, x(m) = 1

D X · 1 and
X(c) = [x1 − x(m)|...|xD − x(m)] = X − x(m) · 1T . It follows that

X(c) = X · P with P = I − 1
D

1 . (4)

Obviously,
∑D

i=1 x(c)
i = 0 . Hence, the nullspace NULL(x(c)

1 ,x(c)
2 , . . . ,x(c)

D ) is
non trivial. All vectors s ∈ NULL(x(c)

1 ,x(c)
2 , . . . ,x(c)

D ) will minimize J(X|s). In
the next theorem, we show that the problem given by (3) has at least one
solution.

Theorem 1. Assume x1,x2, . . . ,xD are linearly independent. Then, there exists
s �= 0 in NULL(x(c)

1 ,x(c)
2 , . . . ,x(c)

D ) such that s is in the span of the inputs xi,
i = 1, . . . , D.

Proof. A solution s �= 0 and c = [c1, c2, . . . , cD]T ∈ RD of the system of
equations:

sT · X(c) = 0 (5)
s = X · c (6)

will also satisfy the theorem and solve the optimization criterion of problem (3).
Indeed, (5) is equivalent to the existence of s such that s ∈ NULL(x(c)

1 ,

x(c)
2 , . . . ,x(c)

D ) and (6) specifies that s is in the span of the inputs xi and s �= 0.
Let us substitute s from (6) and X(c) from (4) in (5):

⇒ cT · XT · X · P = 0 (7)

Given that G = (XT · X) is a Gram matrix formed by linearly independent
vectors x1,x2, . . . ,xD, G is invertible (see theorem 7.2.10 in [11]). Let
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cT = dT · (XT · X)−1. (8)

Therefore, (7) becomes: dT · P = 0 with

d = ζ 1 (9)

and ζ ∈ R. When substituting (9) into (8): c = ζ (XT · X)−1 · 1. Hence:

ŝ = ζ X · (XT · X)−1 · 1. (10)

Then, ŝ
‖ŝ‖ is a solution to (6) and (5) for all ζ ∈ R . Therefore, any MIA

problem with linearly independent inputs has a solution given by (10). An al-
ternative interpretation of the MIA solution ŝ

‖ŝ‖ is that of a direction in the
N -dimensional space which minimizes the variance of the projections of all points
xi, i = 1, . . . , D. ��

Should the inputs be translated by a constant λ ∈ R, i.e.

x
′

i ← xi − λ1 ∀i (11)

then the solution of J(X
′ |s) changes. Indeed, it can be easily proven that the

criterion (1) itself is invariant to a translation (11), however the constraint
of (2) will require that the solution ŝ is in the span of x

′

i.

2.2 Example with Synthetic Data

A synthetic example is given below to compare MIA, MCA, PCA and Indepen-
dent Component Analysis (ICA) (see [12]). Assume three inputs given by:

x1 = f1 + f2
x2 = f1 − 0.5 f2
x3 = 2 f1 + 2 f3 +10 1

where f1 = sin(2Πi
N ) i = 1, . . . , N , f2 is Gaussian noise N (0, 1) and f3 is Lapla-

cian noise. The inputs and results of the methods are illustrated in Fig. 1. The
MIA solution closely approximates f1, in contrast to the other methods.

3 Application: Text Independent Speaker Verification

In this section, we apply MIA to the problem of extracting signatures from speech
data for the purpose of text independent speaker recognition. This problem is
challenging when we need to verify the identity of a person but can not control
the way data is acquired (i.e. recording equipment, environment, etc.). For this
study, we have used the TIMIT database [13]. Data from 168 speakers was
partitioned 50-50 for training and testing. The data was preprocessed by silence
removal and normalization of each recording. Data for a given speaker was used
as input to MIA in order to generate a speaker signature as described below.
We compare the equal error rate (EER) results for speaker verification obtained
with MIA versus the PCA and ICA-based methods described in [14].
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Fig. 1. (a) Inputs xi are linear combinations of three basis functions. (b) Signals
extracted using ICA, MCA, PCA and MIA. The MIA result, with λ = 0, is meaningful.

3.1 Data Model

A speech signal can be modeled as an excitation that is convolved with a linear
dynamic filter which represents the vocal tract. The excitation signal can be
modeled for voiced speech as a periodic signal and for unvoiced speech as random
noise. It is common to analyze the voiced and unvoiced speech separately [15].
In this example, only the voiced speech is used for speaker recognition. Let
E(p), H(p) and V(p) be the spectral representations of the excitation, vocal tract
filter and the voiced signal parts of a person p respectively. Moreover, let M
represent speaker independent signal parts in the spectral domain (i.e. recording
equipment, environment, etc.). Therefore, the data can be modeled as:

V(p) = E(p) · H(p) · M. (12)

By cepstral deconvolution, the model can be represented as a linear combination
of its basis functions:

x(p)
i = logV(p) = logE(p) + logH(p) + logM. (13)

This model suggests that we could use MIA to extract a function that repre-
sents the speaker’s signature. In practice, we take speech segments of about one
second as MIA inputs x(p)

i in order to achieve spectral accuracy. An example
of inputs x(p)

i is shown in Fig. 2(a). Therefore, MIA will extract signatures that
capture typical speaker dependent correlations in the logarithmic spectral do-
main. Speaker independent signal parts M will be minimized if they are not
equally present in all MIA inputs.

3.2 MIA-Based Text Independent Speaker Verification

We partition the training and testing data for each person p into D = 8 segments
{x

(p)
i }i=1,...,D of one second. For each person, we extract a voice signature s(p)
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using MIA. The cosine distance between the testing data signatures and training
data signatures is used as a measure of similarity. A matrix that represents the
cosine distances between all signatures in the database is illustrated in Fig. 2(b).

Let NFA and NCA represent the number of false and correct acceptances re-
spectively. NU is the number of registered users. The speaker recognition results
are evaluated by a comparison of the false acceptance rate FA with the false
rejection rate FR, calculated as follows:

FA =
NFA

N2
U − NU

and FR =
NU − NCA

NU
. (14)

NFA and NCA result from the entire database by testing each learned speaker
signature against all test speaker signatures. This means that a number of N2

U

tests is performed, including NU correct combinations and N2
U − NU impostors.

By changing a threshold value, more people can be accepted which results in
a trade off between FA and FR. The FA versus FR plot of this example is
illustrated in Fig. 3(a). The equal error rate (EER), where FA equals FR, is
used to compare to previous results in [14].
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Fig. 2. MIA applied to text independent speaker recognition. (a) Representation of

input data {x(p)
i }i=1,...,8, given by speech segments of a single speaker p in the loga-

rithmic Fourier domain. (b) Matrix of similarity scores between different signatures.
Bright gray stands for high and dark gray for low similarity between signatures.

3.3 Results

We used a set of 168 speakers from the TIMIT database [13]. For each signature
extraction from the training and testing data, we used 8 seconds of voiced speech.
The data was partitioned into 8 windows with non overlapping, nearly rectangu-
lar windowing functions of one second lengths and Gaussian tails of 1

20 second.
The input functions had their mean subtracted. Thereafter, each extracted sig-
nature was down-sampled to 256 points. The mean signature was subtracted
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Fig. 3. Results of MIA-based text independent speaker verification. (a) False rejection
(FR) versus false acceptance (FA) rate. (b) Speaker signature extracted by MIA from

{x(p)
i }i=1,...,8. Also plotted are the first minor component (MCA) and the first principal

component (PCA) of the data.

from all signatures to focus on the evaluation of differences. The comparison of
the MIA-based signature with the 1st minor component and the 1st principal
component is illustrated in Fig. 3(b). Note visually that only MIA extracts signal
amplitudes in accordance with the well known result that low frequencies contain
most information about a speaker. In order to alter the proportion between FA
and FR, two different thresholds were used. First, a trace dependent threshold
treats every user the same. Secondly, the variance dependent threshold uses in-
formation about the similarity between test cases to learn a speaker dependent
weighting. The EER of this MIA-based text independent speaker recognition
system was 2.9 % for the variance dependent threshold and 5.4 % for a trace de-
pendent threshold. For a similar experiment, [14] reports EER’s between 4.3 %
and 6.1 % using ICA and PCA features. Here it has to be noted that this test
was done with 462 speakers. However, one person was represented by 16 or 32
features of 128 or 256 samples length. On the other hand, MIA only uses a single
signature of 256 samples length per speaker.

4 Conclusion

We proposed a novel feature extraction method, Mutual Interdependence Anal-
ysis (MIA), which finds an invariant function of the input function set, repre-
senting the direction of minimum variance of input projections. Intuitively, this
function is mutually interdependent with all inputs. The proof of the minimiza-
tion problem exploits the unconstrained span of the original input data to infer a
closed form solution. Furthermore, we showed the effect of input data translation
by a constant value λ. In this way, one can control the degree of correlatedness
with outlier functions in the input set. Indeed, one can choose a value of λ to
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discriminate between inputs and bias towards a result which correlates only with
a subset of them. Further work will analyze the robustness of MIA to noise. More-
over, the effect of changes in the span constraint, or the choice of a basis function
set, will be explored.
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Abstract. Existing perceptual models of audio quality, such as PEAQ,
were designed to measure audio codec performance and are not well
suited to evaluation of audio source separation algorithms. The rela-
tionship of many other signal quality measures to human perception is
not well established. We collected subjective human assessments of dis-
tortions encountered when separating audio sources from mixtures of
two to four harmonic sources. We then correlated these assessments to
18 machine-measurable parameters. Results show a strong correlation
(r=0.96) between a linear combination of a subset of four of these pa-
rameters and mean human assessments. This correlation is stronger than
that between human assessments and several measures currently in use.

Keywords: Source Separation, Perceptual Model, Music, Audio.

1 Introduction

Blind Source Separation (BSS) is the process of isolating individual source sig-
nals, from mixtures of source signals, when the characteristics of the individual
sources are not known before-hand. BSS is an active area of research [1,2,3,4,5]
and new techniques are continually developing.

The effectiveness of a BSS algorithm is typically measured by comparing the
quality of a signal extracted from a mixture (the signal estimate) to the original
source signal. Given this methodology, it becomes important to choose an error
measure that captures the salient differences between the original and the es-
timate. Our research [6] focuses on source separation of acoustic sound sources
from audio mixtures. Because our ultimate goal is the creation of audio for
a human listener, human perception determines what we consider ”good” re-
sults. Unfortunately, it is not practical to conduct a human listening study each
time one varies a parameter of a BSS algorithm. Thus, researchers typically use
machine-measurable signal quality measures.

Most BSS researchers for audio applications use existing measures of signal
quality such as Signal to Distortion Ratio (SDR) [6] or quality measures specifi-
cally for audio source separation, such as Signal to Interference Ratio (SIR) [10].
The relationship between human perception of signal quality and such commonly
used machine-measureable statistics remains unstudied studied over the range
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of distortions introduced by audio source separation algorithms. This makes
it difficult to estimate the perceptual effect of a change in the value of such
statistics.

One approach to measuring BSS effectiveness for audio applications has been
to use the PEAQ (Perceptual Evaluation of Audio Quality) [7] perceptual model
for audio codecs. PEAQ calculates a set of statistics about the audio that are fed
into a three layer feed-forward perceptron that maps the statistics onto a single
quality rating called an Objective Difference Grade (ODG). Vanam and Creusere
implemented a version of PEAQ that improves its correlation with subjective
human data for intermediate quality codecs [8]. Unfortunately, their improve-
ment depends on the kinds of distortions introduced by particular audio codecs,
making it unsuitable for BSS evaluation. Although PEAQ works well for evalu-
ating the small degradations of audio signals introduced by audio compression
codecs, the measure has shortcomings when evaluating signals with the larger
distortions resulting from source separation. For these signals, PEAQ does not
correlate well with subjective human quality assessments and often saturates at
the maximum possible rating.

Thus, the relationship between the currently used measures of BSS effective-
ness to human perception of audio quality is not well established. In this paper
we measure the correlation of 18 existing machine-measurable statistics to hu-
man perception of signal quality for sounds extracted from audio mixtures with
BSS. We then create a combined model from those statistics that correlate best
with human perception.

2 Study of Perceived Sound Similarity

We performed a study to collect human similarity assessments between reference
recordings and distorted versions of the references extracted from audio mixtures
using BSS algorithms. For this study, each participant was seated at a computer
terminal. A series of audio recordings clips, in matched pairs, was played to the
participant over headphones. Each pair consisted of a reference audio recording
followed by a distorted version of the recording, called the test. The participant
had only one chance to hear each pair. For each pair, the participant was asked
to rate the similarity of the reference sound to the test sound on a scale from 0
to 10 where the values correspond to the following ratings:

10 – Signals are indistinguishable
8 – Signals are just barely distinguishable
6 – Signals strongly resemble each other but are easily distinguishable
4 – Signals resemble each other
2 – Signals just barely resemble each other
0 – Signals are completely dissimilar

The task began with a short training session of ten pairs to familiarize the
participant with the task. Participants then listened to 130 audio pairs and rated
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the similarity of each pair. The task, complete with instructions, typically took
less than one hour per participant. We collected responses from 31 participants
drawn from the Northwestern University student, faculty and staff. Median par-
ticipant age was 22 and the age range was from 18 to 35. Just under half (15)
of the participants were male and 16 were female. Participants were screened
to ensure they had never been diagnosed with a hearing disorder or language
disorder.

2.1 Audio Corpus

The reference audio recordings used in the study are individual long-tones, rang-
ing from 2-4 seconds, played on the alto saxophone, linearly encoded as 16-bit,
44.1 kHz audio. Mixtures of these recordings were created to simulate the stereo
microphone pickup of spaced source sounds in an anechoic environment. We as-
sume omni-directional microphones, spaced according to the highest frequency
we expect to process. Instruments were placed in a semi-circle around the mi-
crophone pair at a distance of one meter. In the two-instrument mixtures, the
difference in azimuth angle from the sources to the microphones was 180 degrees.
The BSS algorithms we currently study depend on having significant differences
in azimuth between sources. A difference of 180 degrees between sources will
produces the best results. As the difference tends to 0 degrees, source separation
degrades. To generate a range of BSS output from good to bad, instruments
were placed at random angles around the microphones in the three and four
instrument mixtures.

For each mixture, each source signal was assigned a randomly selected pitch
from the 13 pitches on the equal tempered chromatic scale from C4 through C5.
We created nine two-instrument mixtures, six three-instrument mixtures, and
five four-instrument mixtures in this manner, which is a total of 56 individual
instrument comparisons, once extracted. This provides an approximately equal
number of single note samples for each type of mixture. Mixtures were separated
using the Active Source Estimation (ASE) [6] and DUET [4] source separation
algorithms, resulting in 112 extracted sounds.

The corpus also included a set of calibration sounds. For these calibration
sounds, the proportion of altered time-frequency frames varied from 0.2 to 1.0
(where 1 means all frames were altered). In altered frames, phase was randomly
varied in the full range and amplitude was randomly varied between 8 dB and
20 dB. For eight of the example pairs the test sound was a repeat of the refer-
ence sound. The 112 extracted examples, 10 manually distorted examples, and
8 repeat examples, give a total of 130 example pairs for the test corpus.

2.2 Human Study Results

In our listening data we included eight reference-test pairs where the reference
and test sounds were identical. We excluded data from three participants who
proved unreliable at labeling identical pairs as highly similar (a 9 or a 10). These
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three participants gave an average similarity score below 8 for the set of identical
pairs. This mean fell over two standard deviations below the mean similarity
score given to identical pairs by the group as a whole. The group, excluding
these three outliers gave a mean similarity rating of 9.6 to the identical pairs.

There was a strong correlation between the remaining 28 participants in the
subjective similarity ratings assigned to example pairs of audio. We compared
the individual response of each participant to the mean response reported by
the group, excluding that participant. The correlation coefficient between each
individual and the remainder of the group ranged from 0.8458 to 0.9737 with
a median correlation of r = 0.9155. The left panel of Figure 1 illustrates the
correlation between the mean group ratings and those of a randomly selected
individual. Given the strength of correlation across participants, we based our
perceptual model on the mean similarity ratinings for each of the 130 reference-
test pairs, averaged across the 28 remaining participants.

Fig. 1. (Left) Correlation between group mean ratings and those of a randomly selected
participant (r = 0.935). Each point is one reference-test pair. (Right) The standard
deviation of the range of participant responses, indexed by the mean value of these
responses. Each point is one reference-test pair.

The right panel of Figure 1 shows the standard deviation of participant sim-
ilarity ratings for example pairs, indexed by the mean response value. The line
shown is a quadratic polynomial fit to the data with r = 0.83. The standard
deviation is quite low for ratings toward the maximum (10) and minimum (0)
similarity. There is an increase in across-participant variability at middle values,
indicating more agreement on the extremes.

3 Modeling Human Responses

To build a model that effectively predicts human judgments of the similarity
between two sounds, one must map machine-quantifiable measures onto human
similarity assessments. In our study we consider the measures listed in Table 1.
These measures were selected due to their use in the blind source separation
community or as inputs to perceptual models used for audio codec evaluation.
We refer the reader to the original paper citations for detailed definitions of these
measures.
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Table 1. Linear correlation of machine-measurable statistics to mean human subject
ratings

Machine Measurable Statistic r value

ISR - Ratio of signal energy to error due to spatial distortion [10] 0.87563
SIR - Ratio of the signal energy to the error due to interference [10] 0.82131
SAR - Ratio of signal energy to the error due to artifacts [10] 0.75001
SDR - Signal to Distortion Ratio [6] 0.72313
ODG - Output of the PEAQ model [7] 0.67735
DIX - A measure of perceived audio quality[7] 0.67074
BWT - Bandwidth of Test signal [7] 0.48946
HSE - Harmonic structure of the error over time [7] 0.13531
NLS - Noise Loudness in Sones [11] -0.09409
AMD2 - Alternate calculation of average modulation difference [12] -0.12796
NMR - Noise to mask ratio [7] -0.34614
MPD - Maximum probability of detection after lowpass filter [12] -0.36465
THD - Total Harmonic Distortion [7] -0.48789
WMD - Windowed modulation difference [12] -0.58947
BWR - Bandwidth of Reference signal (Hz) [7] -0.67536
AMD - Average modulation difference [12] -0.75003
RDF - Relative number of Distorted Frames [12] -0.78455
ADB - Average Distorted Block [12] -0.81710

As the table shows, the ODG values reported by the PEAQ perceptual model
are only loosely correlated to human similarity assessments in our dataset. One
might argue that this is because the ODG values may be correlated to a more
complex function than a simple linear fit. This hypothesis is not supported when
ODG is plotted against mean human assessments. This is shown in Figure 2. The
figure also shows a ceiling effect for SDR and poor correlation between THD and
mean human assessment. The measures ISR, SIR and ADB all have stronger
negative or positive correlation to the mean human similarity assessments than
do ODG, SDR or THD.

3.1 Results and Data Analysis

We followed the lead of the PEAQ researchers by mapping objective signal mea-
sures to human assessments using a variety of feed-forward, multilayer percep-
trons. Every network architecture used all measures except ODG (the output of
the PEAQ perceptual model) from Table 1 as input, with one input node for
each measure. We varied the number of hidden layers from 0 to 2 and the number
of nodes in each hidden layer from 8 to 13. All networks used 11 output nodes
network, representing the ratings from 0 through 10 reported by human listeners.
In training our neural networks, we applied 6-fold cross validation by dividing
our full dataset (130 responses from 31 participants, making 4030 examples) into
6 bins.

Figure 3 show correlation results of the best performing network for each
number of hidden layers. For the neural network plots (all except the far right
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Fig. 2. Correlation of ODG (left), SDR (center) and THD (right) to human perceptions
of audio similarity. Each data point indicates one example pair. The vertical axis shows
value of the measure and the horizontal axis the mean human similarity assessment.

panel) the vertical coordinate of each point is determined by a weighted aver-
age of the output node activations to a given comparison pair. The horizontal
coordinate is the mean human response for that pair. Perfect performance for a
model would result in a straight line from (0,0) to (10,10), an r value of 1, and
root mean squared error (rmse) of 0. Here, the error for a single data point is the
difference between the model output and the mean human response. As can be
seen from the figure, the performance difference between networks architectures
is minor.

Fig. 3. Correlation of model responses to human responses. In every panel, each data
point indicates one example pair. The vertical axis shows the output of the given model.
The horizontal axis shows the mean similarity value over the 31 human participants.
Both the r value and the root-mean-squared error (rmse) are shown for each network.

Neural networks with no hidden layer can only successfully discriminate lin-
early seperable classes. Networks with hidden layers can discriminate between
classes that are not linearly separable. Since the performance difference between
our networks was negligible, we infer that a linear combination of the statistics
from Table 1 could be used to map machine measurable statistics of signal simi-
larity onto human estimates of signal similarity. Thus, we fitted human responses
to a multivariate linear regression model. As expected, its correlation to human
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similarity assessments is nearly identical to those of the neural networks. This
is shown in Figure 3.

To make a more parsimonious model of human similarity assessments, we
performed a stepwise multivariate linear regression on the machine-measurable
statistics used in our study. Here, the dependent variable was the mean human
response and the independent variables were all the measures from Table 1.
Stepwise multivariate linear regression generates a linear model using only those
inputs that independently account for the most variance in the dependent vari-
able. After performing this process, we achieved a linear fit to the data with R
= 0.96 using only four of the measures from Table 1. The resulting linear cor-
relation is shown in Table 2. The order in which parameters were added to the
model is shown by ”Entrance Order.” Any measure from Table 1 not shown in
the Table 2 did not significantly increase correlation between the linear model,
given the previous measures already added to the model.

Table 2. Results of stepwise multivariate linear regression using mean human similarity
responses as the dependent variable and the measures from Table 1 as the independent
variables

Entrance Order Statistic Coefficient (b) Cumulative Correlation (r)

n/a constant offset 14.968 n/a
1 ISR 0.194 0.876
2 SIR 0.064 0.938
3 SAR 0.103 0.952
4 MPD -12.787 0.960

The r-value corresponding to the multivariate linear regression model in
Figure 3 is 0.913 while the corresponding value in Table 2 is 0.960. This is
because results shown in Figure 3 were generated using a 6-fold round robin
validation technique where there was no overlap between the the training and
testing sets. The correlation in Table 2 was done over the full data set, rather
than a subset.

4 Conclusions

We have shown that a linear combination of four machine-measurable statistics
can successfully model human similarity assessments for pairs of sounds with a
correlation of r=0.96. Three of these statistics (ISR, SIR and SAR) are used in a
recent comparison of multichannel audio source separation [10]. Correlation of a
linear combination is not improved upon by the nonlinear modeling possible with
a multilayer perceptron. For the range of signals under consideration (woodwinds
distorted by audio source separation algorithms), the linear model performed
much better than the PEAQ (ODG) perceptual model. In future work, we plan
to expand the range of test signals over which we study human evaluations
of similarity, with a focus on speech, as well as music. If the results of future
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studies correlate with the current paper, this will provide further evidence that
the measures with high correlation in Table 2 are the most useful statistics upon
which to measure the effectiveness of source separation for audio applications.
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Abstract. Successful speech enhancement by convolutive blind source
separation (BSS) techniques requires careful design of all aspects of the
chosen separation method. The conventional strategy for system ini-
tialization in both time- and frequency-domain BSS involves a diago-
nal center-spike FIR filter matrix and no data preprocessing; however,
this strategy may not be the best for any chosen separation algorithm.
In this paper, we experimentally evaluate two different approaches for
potentially-improving the performance of time-domain and frequency-
domain natural gradient speech separation algorithms – prewhitening of
the signal mixtures, and delay-and-sum beamforming initialization for
the separation system – to determine which of the two classes of al-
gorithms benefit most from them. Our results indicate that frequency-
domain-based natural gradient BSS methods generally need geometric
information about the system to obtain any reasonable separation qual-
ity. For time-domain natural gradient separation algorithms, either
beamforming initialization or prewhitening improves separation perfor-
mance, particularly for larger-scale problems involving three or more
sources and sensors.

1 Introduction

Convolutive blind source separation (CBSS) refers to the separation of signals
that have been mixed through a dispersive environment using signal process-
ing procedures that do not have specific knowledge of the source properties or
the mixing conditions. Due to the dispersive nature of the channel, CBSS al-
gorithms must attempt to undo both spatial and temporal mixing effects. As
a result, CBSS algorithms tend to be more complicated than their spatial-only
BSS counterparts.

Frequency-domain approaches to CBSS transform the measured mixtures into
the discrete frequency-domain via the short-time Fourier transform (STFT) and
apply spatial-only (instantaneous) BSS algorithms in each frequency compo-
nent of the mixtures individually [1]. After separation in the frequency-domain,
these signals must be carefully reconstructed before being inverse-Fourier-
transformed to recover the time-domain signals. This reconstruction process re-
quires estimating the permutation and scaling ambiguities for all the frequency
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components of the separated sources. Prior information about the array geome-
try and directions-of-arrival (DOAs) of the sources at the sensor array is often
assumed. Several researchers have offered ways to use this information in the
reconstruction process [2]–[6]. Post-processing permutation resolution can be
computationally-demanding if more than two sources are being separated. In
many cases, a closed form solution is not possible [4].

In contrast, time-domain CBSS algorithms adapt the impulse response of a
multichannel linear filter using only as many output signals as the number of
sources that are being extracted [7]–[10]. Because they use time-domain con-
volutions instead of frequency-domain multiplications, these methods tend to
be more difficult to code. Note that their computational complexities can be
made to be similar to those of frequency-domain approaches through block pro-
cessing [8]. Since the algorithms employ a separation criterion whose number
of outputs equals the number of sources being estimated, time-domain CBSS
approaches do not appear to have severe source permutation problems over dif-
ferent extracted frequencies. These time-domain methods tend to converge more
slowly, however, if careful strategies for algorithm implementation are not con-
sidered. In [11] one simple way to improve convergence performance for the
time-domain method in [8] has been described.

In this paper, we compare the use of two well-known strategies for improv-
ing the performance of CBSS algorithms: (1) beamforming initialization [5,12],
and (2) multichannel prewhitening [8]. Both time-domain and frequency-domain
versions of the well-known natural gradient CBSS method are evaluated and
their performances compared to other competing approaches using data col-
lected from a controlled laboratory measurement setup. These numerical experi-
ments show that (a) beamforming initialization is required for frequency-domain
natural gradient CBSS methods if no other technique is used to resolve permu-
tation ambiguities, (b) prewhitening alone does not improve the performance of
frequency-domain natural gradient CBSS methods, and (c) the performance of
time-domain natural gradient algorithms improves with either signal prewhiten-
ing or beamforming coefficient initialization, and this improvement is significant
when dealing with mixtures of more than two sources.

2 Time- and Frequency-Domain Signal Models

For multichannel acoustic recordings, the n-dimensional signal mixtures at time
k, x(k) = [x1(k) · · · xn(k)]T can be modeled as

x(k) =
∞∑

l=−∞
Als(k − l), (1)

where {Al} denotes a sequence of n×m mixing matrices, A(z) =
∑∞

l=−∞Alz
−l

is the multichannel system transfer function, and s(k) = [s1(k) · · · sm(k)]T is
the m-dimensional signal vector at time k. All CBSS algorithms attempt to
find a time-varying separating or demixing system B(k, z) to process the signal
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mixtures x(k) = A{s(k)} such that y(k) = B{x(k)} contains the estimates
of each of the sources in s(k) without repetition. Mathematically, this can be
represented as

y(k) =
∞∑

l=−∞
Bl(k)x(k − l). (2)

In practice, a truncated causal approximation to (2) is often employed, where L
is a positive integer and

y(k) =
L∑

l=0

Bl(k)x(k − l). (3)

Frequency-domain CBSS algorithms use the STFT to transform the time-domain
data into the frequency-domain, whereby a separate complex-valued instanta-
neous demixing system is found for each of the frequency components of the
mixed signals. The input data in the lth frequency bin ωl is given by

x(ωl, k) = A(ωl)s(ωl, k), (4)

where k denotes the time dependence of the STFT, s(ωl, k) is the transformed
source signal vector, and A(ωl) denotes the mixing matrix for the lth frequency
bin. As such, the demixing process in each frequency bin is formulated as

y(ωl, k) = B(ωl, k)x(ωl, k), (5)

where y(ωl, k) and B(ωl, k) are the estimated source signal vector and the demix-
ing matrix, respectively, in the lth frequency bin at time k.

3 Beamforming vs. Prewhitening in Convolutive Blind
Source Separation

Both beamforming and prewhitening attempt to solve part of the goal achieved
by successful application of CBSS methods in certain contexts.

Beamforming and CBSS attempt to suppress interferences caused by spatially-
distinct sources to extract individual source signals when operating on data
collected from a uniform linear array. Beamforming methods work by providing
maximum gain in the direction of the desired user. CBSS based methods have
been observed to place spatio-temporal nulls in the directions of interfering users
in some environments [12].

Beamforming methods typically assume a working knowledge of the sensor ar-
ray manifold and the directions-of-arrival (DOAs). CBSS methods, on the other
hand, typically assume no known signal or measurement structure other than
a linear dispersive channel for the mixing process. Researchers have suggested
the merger of beamforming with CBSS to include prior information about the
array manifold and DOAs within CBSS algorithms [3]. These techniques are pri-
marily designed to remove permutation difficulties that lead to lower separation
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performance. In situations where DOA information is not available a priori, re-
searchers have suggested procedures for estimating DOAs as part of the CBSS
algorithm being developed [3,6]. In narrowband beamforming, the directional
vector associated with a frequency ω for a source impinging on the array from a
direction θ is given as

d(ω, θ) = [exp(jωτ0(θ)) · · · exp(jωτm−1(θ))]T , (6)

where τl(θ) = ld sin(θ)/c is the time delay associated with the lth sensor with
respect to the reference sensor, m is the number of sensors in the array, d is the
array element separation, and c is the speed of sound. Signals with significant
frequency content (e.g. audio signals) received at a sensor array will typically
have directional vectors associated with each of their frequency components.
Thus, clustering of the directional vectors may be needed to obtain a consistent
estimate of the source DOAs.

Perhaps the simplest way to employ DOA knowledge to improve CBSS con-
vergence performance is to initialize the separation system coefficients {Bl(0)}
or their frequency counterparts {B(ωl, 0)} to a series of fixed beamformers in
which the mainlobe of each of the beampatterns in each frequency bin for the
ith separation system points toward a talker. In this case, we would choose

B(ωl, 0) = [d(ωl, θ1) d(ωl, θ2) . . . d(ωl, θm)]H . (7)

For time-domain algorithms, we can compute the appropriate initial coefficients
by taking the inverse FFTs of the frequency-domain responses in (7) about their
points of symmetry. Initializing CBSS algorithms in this way does not modify the
algorithm’s operation other than choosing its initial state. The main alternative
to this coefficient initialization is center-spike initialization, in which

Bl(0) =
{

I, l = L
2

0, otherwise.
(8)

For frequency-domain algorithms, we can compute the appropriate initial co-
efficients by taking the FFT of the time-domain responses in (8) about their
points of symmetry. Center-spike initialization makes no assumption about the
source-sensor array geometry.

Prewhitening is a preprocessing strategy whereby the measured signals
{xi(k)}, 1 ≤ i ≤ n are linearly filtered such that the filtered signals {vi(k)}
approximately satisfy

E{vi(k)vj(k − l)} ≈ E{|vi(k)|2}δi−jδl, (9)

where δl is the Kronecker delta function. These prewhitened signals are used in
place of {xi(k)} in the separation system. Examples of prewhitening algorithms
include the linear phase adaptive procedure in [13] and the least-squares mul-
tichannel linear predictor described in [8]. When block processing is used, one
can use successive filtering operations to process {x(k)} to produce v(k), which
is likely the most computationally efficient method.
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Prewhitening solves part of the CBSS task, as decorrelation is a necessary
but not sufficient condition for source separation of mixtures of statistically-
independent signals. Hence, it is reasonable to use prewhitening as a prepro-
cessing step to remove any signal correlations contained in the data prior to
performing separation with any CBSS method. In this case, the input signals
{xi(k−l)} used in the separation system are replaced by the prewhitened signals
{vi(k − l)} obtained at the outputs of the prewhitening system.

One can view beamforming initialization and prewhitening as two simple
but competing approaches for improving the performances of CBSS methods
that do not require significant alteration of the separation algorithm. Note that
prewhitening effectively alters the DOAs seen by the separation system within
the prewhitened data, so using both prewhitening and beamforming initialization
does not make sense unless special constraints are placed on the prewhitening
task. It is unclear without performing experiments which procedure is to be
preferred, and whether both frequency-domain-based and time-domain-based
CBSS algorithms benefit from such procedures. The goal of this paper is to ex-
plore these issues through experimental evaluation on real-world speech signal
mixtures to see what classes of algorithms benefit most from them.

4 Numerical Experiments

We now present numerical evaluations to illustrate the separate effects that
beamforming initialization and data prewhitening have on the behaviors of one
class of CBSS algorithms. In order to minimize any performance effects due
to choice of separation criterion, we focus on the natural gradient algorithms
presented in [4] and [8]. The algorithms attempt to minimize the mutual infor-
mation of the extracted signals using frequency-domain and time-domain system
structures, respectively. For comparison, we show the performance of two other
algorithms on this data: one employing decorrelation with geometric beamform-
ing constraints [3], and one using contrast-based optimization with prewhitening
[9,10]. These latter algorithms incorporate either beamforming or prewhitening
within their structures and are not claimed to work without such pre-processing.

Data for these evaluations was generated in an acoustically-isolated laboratory
environment with three loudspeakers playing recordings of talkers (one female
and two male) as the sources. The sources were located 127 cm away from
the three omnidirectional microphones and were spaced at angles of −300, 00,
and 27.50, respectively, from the array normal. The inter-sensor spacing of the
microphone array was 4 cm. Acoustic foam was placed on the walls of the room
to obtain a reverberation time of 300 ms for the environment. All recordings were
made using 7 seconds of data per channel and a 48 kHz sampling rate and were
downsampled to an 8 kHz sampling rate for processing. Fig. 1 shows the impulse
responses of the loudspeaker/microphone paths for these mixing conditions.

The various algorithms were applied to this measured microphone data for
two- and three-source mixtures, whereby the 00 source was omitted for the two-
source mixture. After separation, least-squares methods were used to estimate
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Fig. 1. Acoustic chamber impulse response in a three source, three microphone setup.
Room conditions correspond to a reverberation time (RT) of 300 msec.

the contributions of the source recordings to each of the recorded mixtures as
well as the output signals from each algorithm. By calculating power ratios
from these least-squares estimates, we can compute the average improvement in
signal-to-interference-plus-noise ratio (SINR) for each algorithm in each case.

For the normalized natural gradient algorithm in the frequency domain [11],
the parameters chosen were L = 512 and μ = 0.35, and 200 passes of the
algorithm through the data have been used to adapt the filter. For the natural
gradient time-domain algorithm [8], we used L = 512 and a step size schedule
of μ = .0009 for 150 data passes followed by μ = 0.0001 for a single data pass
followed by μ = 0.00001 for a second single data pass. The data nonlinearity
used in each algorithm was f(y) = y/|y|, where y in this case corresponds to the
ith frequency bin output or the ith time-domain filter output, respectively.

Table 1 shows the SINR improvements obtained by the various algorithms
for the various processing strategies on the two-source mixture data. As can
be seen, the frequency-domain natural gradient method does not perform well
either with center-spike initialization or with data prewhitening. With beam-
forming initialization, the algorithm achieves good performance on this data
that closely matches the time-domain natural gradient algorithm. The latter al-
gorithm’s performance is quite good for center-spike initialization on this data,
but improvements of 1.0dB and 2.7dB are obtained with beamforming initializa-
tion and data prewhitening, respectively. Shown for comparison are the behaviors
of the decorrelation-based method in [3] as well as the contrast-based method
with prewhitening in [11]. As can be seen, the time-domain natural gradient
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Fig. 2. Combined impulse response of the time-domain truncated natural gradient with
delay-and-sum beamforming initialization

Table 1. Improvement in average SINR [dB]; RT=300 ms

TWO SOURCE CASE THREE SOURCE CASE
Algorithm Center w/Beam- w/Prewhi- Center w/Beam- w/Prewhi-

Spike forming tening Spike forming tening

SNGFD[11] 0.25 13.56 1.52 3.33 12.55 4.55

NGTD[8] 12.63 13.60 15.34 10.89 17.07 16.80

Parra-GBSSII[3] – 7.95 – – 5.42 –

STFICA-Symm[9,10] – – 11.23 – – 12.66

method outperforms both of these competing methods when using the same
spatial knowledge of the environment or data pre-processing.

Also shown in Table 1 are the SINR improvements obtained by the vari-
ous algorithms for the various processing strategies on the three-source mixture
data. Similar performance relationships as in the two-source data case are ob-
served in this case. The frequency-domain natural gradient algorithm obtains
adequate separation only with beamforming initialization, whereas the time-
domain natural gradient algorithm can separate the source mixtures with any
of the three strategies employed. The best performance is obtained with beam-
forming initialization, although separation using data prewhitening is nearly as
good. Fig. 2 shows the combined impulse responses at convergence for the natural
gradient time-domain algorithm with beamforming initialization when applied
to this data, indicating that separation has occurred. It should be noted that
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prewhitening-based processing strategies can still be used if knowledge of the
source-sensor array geometry is not available.

5 Conclusions

In convolutive blind source separation of speech signal mixtures, beamform-
ing initialization and prewhitening are two simple strategies for improving the
performance of any separation algorithm not already leveraging this structural
knowledge. This paper evaluates the behaviors of two versions of the well-known
natural gradient algorithm as implemented in the time- and frequency-domains,
respectively, when using each of these strategies. Experiments indicate that the
frequency-domain natural gradient algorithms rely on the spatial structure of
the source-microphone mixing conditions, and they cannot adequately sepa-
rate sources without using knowledge of the directions-of-arrival within the
algorithm. Prewhitening alone does not help the performance of frequency-
domain algorithms. Time-domain natural gradient algorithms can separate with-
out directions-of-arrival knowledge; however, their performances are improved
when either beamforming initialization or data prewhitening is employed.
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Abstract. For short-time Fourier Transform (STFT) domain ICA, deal-
ing with reverberant sounds is a significant issue. It often invites a
dilemma on STFT frame length: frames shorter than reverberation time
(short frames) generate incomplete instantaneous mixtures, while too
long frames may disturb the separation.

To improve the separation of such reverberant sounds, the authors
propose a new framework which accounts for STFT with short frames.
In this framework, time domain convolutive mixtures are transformed
to STFT domain convolutive mixtures. For separating the mixtures, an
approach of applying another STFT is presented so as to treat them as
instantaneous mixtures.

The authors experimentally confirmed that this framework outper-
forms the conventional STFT domain ICA.

1 Introduction

To separate mixtures of speeches or sounds, Independent Component Analysis
(ICA) in short-time Fourier transform (STFT) domain (or frequency domain)
has often been used [1]. Compared with time-domain ICA, STFT domain ICA
has the advantages of faster convergence and less computation since time domain
convolutive mixtures are reduced to instantaneous mixtures in each frequency
bin. Also it can generate ‘permutation-free’ unmixed results by using a measure
of independence that is computed from the whole spectrograms [5].

For STFT domain ICA, however, another issue still remains. It is on the
length of the STFT analysis frame [2]; STFT frames shorter than real reverber-
ation (short frames) make the conversion to instantaneous mixtures incomplete,
while long frames decrease the number of substantive samples since they worsen
time resolution in STFT domain. Both features can disturb the separation. As
their trade-offs, STFT domain ICA often reaches the peak of the separation
performance although the frame is much shorter than the reverberation time.

If a model accounts for STFT domain mixing process more accurately, it
can improve the performance of the short frames. Such an approach has been
proposed in [3]. Their separation algorithm, however, is simplified to the two-
input-two-output case, and the permutation correction is out of their framework.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 471–479, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper we present a new framework which includes the mixing process
with short frames and the separation without permutation inconsistencies.

2 STFT Domain Convolutive Mixture Models

In this section, we examine what occurs when convolutive mixtures are trans-
formed with short frames.

Let xki(t) be the contribution from si(t), source i at time t, to xk, observation
in sensor k. It is represented as convolution between source si(t) and the filter
coefficients aki(τ):

xki(t) =
p−1∑

τ=0

aki(τ)si(t − τ). (p : filter length) (1)

Then define Xki(ω, r) as the STFT of xki(t) in frequency bin ω and frame r:

Xki(ω, r) def=
L−1∑

t=0

w(t)xki(rN +t) exp
(

−2πj
ω − 1

L
t

)
, (j: imaginary unit) (2)

where L and N are frame length (number of taps) and shift width respectively.
Now, consider the case p > L. According to the discussion in Appendix,

Xki(ω, r) is approximately represented as convolution also in STFT domain:

Xki(ω, r) ≈
P−1∑

τ=0

Aki(ω, τ)Si(ω, r − τ), (3)

where Aki(ω, τ) and Si(ω, r−τ) are the STFTs of aki(τ) and si(t) respectively; P
denotes number of frames (frame taps) in STFT domain convolution. Therefore
Xk(ω, r), the STFT domain observations in sensor k, is approximately repre-
sented as convolutive mixtures also in STFT domain:

Xk(ω, r) =
m∑

i=1

Xki(ω, r) ≈
m∑

i=1

P−1∑

τ=0

Aki(ω, τ)Si(ω, r − τ). (4)

Expanding (4) over k and ω, we write them as a single formula:
⎡

⎢⎣
X1(r)

...
Xn(r)

⎤

⎥⎦

︸ ︷︷ ︸
X (r)

≈
P−1∑

τ=0

⎡

⎢⎢⎣

A
[τ ]
11 · · · A

[τ ]
1m

...
. . .

...
A

[τ ]
n1 · · · A[τ ]

nm

⎤

⎥⎥⎦

︸ ︷︷ ︸
A[τ]

⎡

⎢⎣
S1(r − τ)

...
Sm(r − τ)

⎤

⎥⎦ ,

︸ ︷︷ ︸
S (r−τ)

(5)

where Xk(r) = [Xk(1, r), . . . , Xk(M, r)]T and Sk(r) = [Sk(1, r), . . . , Sk(M, r)]T

are spectra of observations and sources respectively; n, m and M are number
of sensors, sources and frequency bins respectively; A

[τ ]
ki = diag{Aki(1, τ), . . . ,

Aki(M, τ)} is an M × M diagonal matrix.
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Equation (5) gives us another interpretation in STFT domain: each source
spectrum Si(r), a vector of M elements, occurs independently in frame r to
arrive at the sensors with at most P frames’ delay. It means that S(r) affects
P frames’ observations X (r),. . . ,X (r + P − 1), and equivalently that X (r) is a
convolution between the previous P frames’ sources S(r),. . . ,S(r − P + 1) and
mixing matrices A[0],. . . ,A[P−1].

The conventional STFT domain ICA corresponds to the particular case P = 1
in (5). It is satisfied only when the filter length p is relatively small.

3 Proposed Framework: Blind Vector Deconvolution

As well as the case of time domain [8], we can consider two approaches to estimate
sources from STFT domain convolved observation vectors:

1. Convert observations to instantaneous mixtures through another STFT.
(Modulation spectrogram domain ICA)

2. Unmix observations directly in STFT domain. (STFT domain deconvolution)

We call them ‘Blind Vector Deconvolution’ (BVD). In this paper, we address the
first approach, Modulation spectrogram domain ICA. This is an application of
our previous work [5] to the modulation spectrogram domain.

3.1 Transform to Modulation Spectrograms

Applying another STFT to spectrograms generates modulation spectrograms
(MS) [9]. Use of proper length of a frame (L′) and shift (N ′) transforms STFT
domain convolutive mixtures (4) to MS domain instantaneous mixtures:

X ′k(ω, ω2, r
′) ≈

m∑

k=1

A′ki(ω, ω2)S′i(ω, ω2, r
′) (6)

⇔ X ′k(ω′, r′) ≈
m∑

k=1

A′ki(ω
′, r′)S′i(ω

′, r′), (7)

where X ′k(), A′ki() and S′i() are MS domain data transformed from Xk(ω, r),
Aki(ω) and Si(ω, r) respectively; ω2 and r′ correspond to newly generated bin
and frame respectively. Using a serial index ω′ instead of (ω, ω2), we can write
(6) also as (7).

Fig. 1 shows the outline of the conversion to MS: (a) is a set of STFT domain
observations; each bin’s STFT (2nd STFT) converts them to the MS domain
cube structures (b).

Using the same notation as (5), we can write the MS domain mixing process
simply as:

X ′(r′) = A′S′(r′). (8)
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3.2 Independence Measure and Learning Rule for MS Domain ICA

Since the MS domain observations are instantaneous mixtures, techniques for
the instantaneous ICA apply. In particular, by using the independence mea-
sure computed from the whole MSs [5], unmixed results without permutation
inconsistencies are generated, as described below.

The unmixing process in channel k and bin ω′ is written as (9), where W ′
ki(ω

′)
denotes an unmixing coefficient. Expanding (9) over k and ω′, as in (5), the whole
unmixing process is written as (10).

Y ′ki(ω
′, r′) =

n∑

i=1

W ′
ki(ω

′)X ′i(ω
′, r′) (9)

⎡

⎢⎣
Y ′1(r

′)
...

Y ′n(r′)

⎤

⎥⎦

︸ ︷︷ ︸
Y ′

(r′)

=

⎡

⎢⎣
W ′

11 · · · W ′
1n

...
. . .

...
W ′

n1 · · · W ′
nn

⎤

⎥⎦

︸ ︷︷ ︸
W ′

⎡

⎢⎣
X ′1(r

′)
...

X ′n(r′)

⎤

⎥⎦

︸ ︷︷ ︸
X ′

(r′)

(10)

As the measure of independence, we use Kullback-Leibler divergence (KLD)
computed from the whole MSs Y ′. The KLD of Y ′ is equivalent to the difference
between summation of each channel’s entropy H(Y ′k) and the joint entropy
H(Y ′):

KLD(Y ′) =
n∑

k=1

H(Y ′k) − H(Y ′) (11)

=
n∑

k=1

Er′
[
− logP

(
Y ′k(r′)

)]
− log

∣∣detW ′∣∣ − H(X ′), (12)

where P
(
Y ′k(r′)

)
denotes a multivariate probability density function of Y ′k(r′),

and Er′ [] means expectation over r′ (Fig. 2).



Blind Vector Deconvolution: Convolutive Mixture Models in STFT Domain 475

Applying the natural gradient rule [4] to (12), we obtain a set of learning rules
to seek the unmixing matrix W ′ that makes Y ′1,. . . ,Y

′
n mutually independent

in the MS domain:

W ′(ω′) ← W ′(ω′) + ηΔW ′(ω′) (η : learning rate) (13)

ΔW ′(ω′) = Er

⎡

⎢⎢⎣I +

⎡

⎢⎣
ϕω′

(
Y ′1(r

′)
)

...
ϕω′

(
Y ′n(r′)

)

⎤

⎥⎦

⎡

⎢⎣
Y ′1(ω′, r′)

...
Y ′n(ω′, r′)

⎤

⎥⎦

H
⎤

⎥⎥⎦W ′(ω′), (14)

where ϕω′
(
Y ′k(r′)

)
=

∂ log P
(
Y ′k(r′)

)

∂Y ′k(ω′, r′)
, W ′(ω′)=

⎡

⎢⎣
W ′

11(ω′) · · · W ′
1n(ω′)

...
. . .

...
W ′

n1(ω
′) · · · W ′

nn(ω′)

⎤

⎥⎦ (15)

3.3 Multivariate Probability Density Functions

To compute H(Y ′k), entropy of each channel’s MS, we employ P (Y ′k(r′)) ∝
exp(−K||Y ′k(r′)||2), as proposed in [5]. We then obtain an activation function:

ϕω′
(
Y ′k(r′)

)
= −K

Y ′k(ω′, r′)
||Y ′k(r′)||2

.
(
||Y ′k(r′)||2 =

{∑

ω′

|Y ′k(ω′, r′)|2
}1/2)

(16)

3.4 Postprocesses

After the learning, the minimal distortion principle based rescaling [6] is ap-
plied, such as W ′ ← diag(W ′−1)W ′. Then through the overlap-add based in-
vert STFT [10], the MS domain unmixed results Y ′ are converted to STFT
domain data Y . To convert Y to the time domain signals, another invert STFT
is applied.

4 Experimental Results

To confirm the separation performance, we performed some experiments using a
set of data recorded separately and mixed on a computer. Recording was done
in our office room (0.25∼0.3s reverberation time) by playing each source from
different loudspeakers (Fig. 3). Four or eight seconds of recorded data were used
in the experiments. The sampling rate (Fs) was 16k[Hz].

As observations, we generated eight different mixtures as in Fig. 4, where S,
F and M denote street noise [7], female speech and male speech, respectively.

To unmix these mixtures, we used the following two methods with STFT
parameters shown in Table 1:

Benchmark (BM): STFT domain ICA described in [5].
Proposed: Modulation spectrogram domain ICA described in Section 3.
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Test No. Loudspeaker

1 2 3 4

1 S F M
2 S M F
3 F S M
4 M S M
5 F M
6 M F
7 F M
8 M M

Fig. 4. Sources in each test (S: street
noise, F/M: female/male speech)

Table 1. Experimental parameters (L, L′: Frame length; N, N ′: Shift width)

1st STFT 2nd STFT
L N L′ N ′

BM 256 to 8192 (hanning) L/4 — —
Proposed 512 or 1024 (hanning) L/4 4 to 64 (hamming) �L′/8�
Common: η=0.3, 400 iteration, K= square root of number of bins

In the second STFT, we used a hamming window to utilize the both ends of a
frame effectively. (In case of L′ = 4, we used N ′ = 1.)

To evaluate the separation performance in STFT domain, we used Signal-to-
Interference Ratio (SIR) in STFT domain instead of time domain. It is computed
as follows:

1. Approximate each bin’s unmixed result Yk(ω, r) as a linear sum of all sources
S1(ω, r), . . . , Sn(ω, r), namely Yk(ω, r) ≈

∑m
i=1 αki(ω)Si(ω, r).

2. Calculate SIR(Yk, Si), i.e. each output channel’s SIR, as
Eω[10 log10 Er{|αki(ω)Si(ω, r)|2}/Er{|

∑
l �=i αkl(ω)Sl(ω, r)|2}].

3. Define SIRY , i.e. SIR of the unmixed results, as Ei [maxk SIR(Yk, Si)].
4. Define SIRimp, i.e. improved SIR, as Ei [maxk [SIR(Yk, Si) − SIR(Xk, Si)]].

To compare various STFT parameters, we serialized them along with ‘time-
span’, length of observations in second used to estimate single frame’s Y (r). It
is calculated as:

Timespan = {L + (L′ − 1)N} /Fs (or L/Fs for the benchmark) (17)

The average SIRimp over eight tests are plotted in Fig. 5. In these plots,
dashed vertical lines, dash-dot lines and solid lines show the reverberation time
(assuming 0.27[s]), the benchmark and proposed methods respectively. Table 2
shows the best SIRs and corresponding parameters in each method.
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Fig. 5. Plots of SIRs (Left: 4 seconds, Right: 8 seconds)

Table 2. Best SIR in each method

Length SIRY SIRimp 1st STFT 2nd STFT Time span
[s] [dB] [dB] L N L’ N’ [s]

BM 4.0 20.36 22.33 1024 256 — — 0.064
Proposed 4.0 21.65 23.66 512 128 16 2 0.088

BM 8.0 23.31 25.35 2048 512 — — 0.128
Proposed 8.0 25.94 27.99 512 128 16 2 0.152

From the above experiments, we have confirmed the followings:

1. For the benchmark, the best SIR is made with L = 1024 or L = 2048, much
shorter than the reverberation time. Longer frames rather worsen SIR, as
mentioned in Section 1.

2. For the proposed methods, the best SIR is achieved in longer time span.

5 Discussion on Experimental Results

In the framework of Blind Vector Deconvolution, single frame’s unmixed results
Y (r) is estimated from observations over L′ consecutive frames around frame r,
while in the conventional STFT domain ICA, it is estimated from single frame’s
observations X (r). This property can remove cross-frame interference which are
due to using short frames. Moreover, the fact that adjacent frames in STFT
domain are overlapped to each other in time domain, prevents the decrease of
number of substantive samples in the second STFT. These are reasons why the
proposed methods outperform the benchmark.

In longer time-span, however, the proposed methods have also shown the
decline in SIR, which is more apparent in the 4 second case. We guess that it
is due to the following reasons: 1) In the second STFT, the dilemma of frame
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length still remains; 2) Longer frames in the second STFT add more cross-frame
artifacts to the target signal in STFT domain.

We expect that we can avoid the dilemma by carefully selecting parameters
in the first and second STFT, or by introducing STFT domain deconvolution.

6 Conclusion

We proposed a new framework based on STFT domain convolutive mixtures
and presented an approach that unmixes them in the modulation spectrogram
domain. We experimentally confirmed that the proposed methods outperform
the conventional STFT domain ICA due to avoiding the dilemma of the STFT
frame length although it still remains in long time-span.

In future works, we plan to evaluate our methods in various environments and
to examine STFT domain deconvolution.
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Appendix: STFT of Convolved Signals

First we examine STFT with single shift (N = 1) [10]. Let S̃i(ω, R) be the STFT
of si(t) in frame R (also in time R). It is defined in (18). From (1) and (18),

http://sound.media.mit.edu/ica-bench/sources/
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X̃ki(ω, R), the STFT of xki(t), is written as (19). It represents the convolution
between S̃i(ω, R − τ) and aki(τ).

S̃i(ω, R) def=
L−1∑

t=0

w(t)si(R + t) exp
(

−2πj
ω − 1

L
t

)
. (18)

X̃ki(ω, R) =
p−1∑

τ=0

aki(τ)S̃i(ω, R − τ) (19)

Then we apply (19) to STFT with general shift width N . Using integers P , N
and L such that (P − 1)N < p ≤ (P − 1)N + L, (19) is rewritten as an overlap-
add form (20). It can be approximated as in (21), since τ ′ close to 0 should
satisfy (22). Equation (21) shows the convolution between S̃i(ω, R − τN) and
Ãki(ω, τN). It means that as long as the approximation in (22) is sound, STFT
with shift N converts time domain convolution to STFT domain convolution.

(19) =
P−1∑

τ=0

N

L

L−1∑

τ ′=0

aki(τN + τ ′)S̃i(ω, R − τN − τ ′) (20)

≈
P−1∑

τ=0

{
N

L

L−1∑

τ ′=0

aki(τN + τ ′) exp
(

−2πj
ω − 1

L
τ ′

)}

︸ ︷︷ ︸
Ãki(ω,τN)

S̃i(ω, R − τN) (21)

S̃i(ω, R − τN − τ ′)≈exp
(

−2πj
ω − 1

L
τ ′

)
S̃i(ω, R − τN) (0 ≤ τ ′ < L) (22)

Finally, we rewrite (21) as (3) through following replacements:

Xki(ω, r) =X̃ki(ω, rN), Aki(ω, τ) = Ãki(ω, τN), Si(ω, r−τ) = S̃i(ω, R−τN)
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Abstract. The problem of Blind Source Separation (BSS) of convolved
acoustic signals is of great interest for many classes of applications such
as in-car speech recognition, hands-free telephony or hearing devices. Due
to the convolutive mixing process, the source separation is performed in
the frequency domain, using Independent Component Analysis (ICA).
However the quality of solution of the ICA-algorithms can be improved
by applying time-frequency masking. In this paper we present a batch-
algorithm for time-frequency masking using the time-frequency structure
of separated signals.

1 Introduction

Blind Source Separation (BSS) deals with the problem of recovering the source
signals from their mixtures when the mixing process is unknown. Recently, the
problem has been widely studied and many methods have been proposed [7].

In this paper we concentrate on the case of BSS for acoustic speech sig-
nals observed in a real environment, i.e. convolutive mixtures. Most existing
demixing methods are based on Independent Component Analysis (ICA) in the
frequency-domain, where the convolutions of the source signals with the room
impulse response are reduced to multiplications with the corresponding transfer
functions. So for each frequency bin, an individual instantaneous ICA problem
arises [2],[7].

The quality of the recovered source signals can be improved by applying time-
frequency masking on the ICA outputs. There exist a number of algorithms,
calculating the time-frequency mask from the estimated direction of arrival of the
separated signals [4],[5], algorithms calculating the power ratio between inputs
and outputs of a spatial filter [3] and algorithms based on the cosine distance
between a sample vector and the basis vector corresponding to the target [6].
The proposed algorithm estimates the time-frequency mask by comparing the
time-frequency structure of the separated signals.

On this basis, we propose a batch-algorithm for separation of two sources
by applying the JADE-Algorithm [1] for computation of unmixing filters and

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 480–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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time-frequency masking to improve the separation quality. The effectiveness of
this approach is shown by the separation results of the algorithm.

2 The Proposed Method

The block diagram of the algorithm is shown in Fig. 1.
First the time-domain signals x(t) are converted into frequency-domain time-

series signals X(Ω, τ) using the Short-Time Fourier Transform (STFT), on
which the JADE-Algorithm is applied, to compute the unmixing filter matrices
W(Ω). At the next step the permutation problem is treated, so the unmixing
filter matrices can be corrected by multiplication with the permutation matrix
P(Ω). At the post-processing stage of the algorithm, the time-frequency mask
M(Ω) is estimated, to minimize the crosstalk components, which could not be
eliminated by the ICA-algorithm, and the output vector y(t) is obtained by
transforming the unmixed signals Y(Ω, τ) back into the time-domain.

Fig. 1. Overview of the algorithm

2.1 ICA

Acoustic signal mixtures in reverberant environments can be described by

x(t) = A ∗ s(t), (1)

where s(t), x(t) and A denote the the vector of source signals, the vector of mixed
signals and a matrix containing the impulse responses between the sources and
the sensors and ∗ denotes the convolution operator. Transforming (1) into the
frequency domain reduces the convolutions to multiplications:

X(Ω, τ) ≈ A(Ω)S(Ω, τ), (2)

where Ω is the angular frequency, τ represents the frame index, A(Ω) is the
mixing system in the frequency domain, S(Ω, τ) = [S1(Ω, τ), . . . , SN (Ω, τ)] rep-
resents the source signal, and X(Ω, τ) = [X1(Ω, τ), . . . , XN (Ω, τ)] denotes the
observed signals. So for each frequency bin an instantaneous ICA-Problem has
to be solved. For this purpose we use the JADE-algorithm, which is based on
joint diagonalization of most significant cumulant matrices of higher order [1].
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2.2 Permutation Correction

The filter matrices calculated by ICA can be randomly permutated. To solve
the permutation problem, the phase differences in the estimated mixing filter
matrices are used [2],[5]. For this purpose we normalize the estimated mixing
matrix A(Ω) on the first row, so the normalized mixing matrix can be written
as:

Â(Ω) =

⎡

⎣
1 · · · 1

â21e
−jΩδ21 · · · â2ne−jΩδ2n

· · · · · · · · ·

⎤

⎦ (3)

To correct the permutations, we compare the phase differencies δi and sort
the columns of the mixing filter matrix, so δi < δk for all i < k. Figure 2 shows
the results of the permutation correction.

Remark 1. It should be noted, that this approach alone works only in case of
signals coming from different directions.
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Fig. 2. DOA estimation for two signals using ICA. The gray scale values show the
grade of attenuation.

2.3 Time-Frequency Masking

Despite of good performance of the ICA-algorithm some interference remains
in the estimated source signals. To minimize the remaining interference, we use
time-frequency masking, which is performed as

Ỹ(Ω, τ) = M(Ω, τ)Y(Ω, τ), (4)

where 0 ≤ M(Ω, τ) ≤ 1 is a mask specified for each time index τ in each
frequency bin. To calculate the mask, we estimate the interferences

Uk(Ω, τ, RΩ, Rτ ) =

∥∥∥Φ(Ω, τ, RΩ , Rτ )(Yk(Ω, τ) −
∑

m �=k Ym(Ω, τ))
∥∥∥

∥∥∥Φ(Ω, τ, RΩ , Rτ )
∑

m �=k Ym(Ω, τ)
∥∥∥

(5)
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and

Nk(Ω, τ, RΩ, Rτ ) =

∥∥∥Φ(Ω, τ, RΩ , Rτ )(Yk(Ω, τ) −
∑

m �=k Ym(Ω, τ))
∥∥∥

‖Φ(Ω, τ, RΩ , Rτ )Yk(Ω, τ)‖ . (6)

between the spectrogram Yk(Ω, τ) and
∑

m �=k Ym(Ω, τ)). ‖·‖ denotes the Eu-
clidean norm operator and

Φ(Ω, τ, RΩ , Rτ ) =

⎧
⎨

⎩

W(Ω − Ω0, τ − τ0, RΩ , Rτ ), |Ω − Ω0| ≤ RΩ ,
|τ − τ0| ≤ Rτ

0, otherwise
(7)

uses a two dimensional window function W(Ω − Ω0, τ − τ0, RΩ, Rτ ) of the size
RΩ × Rτ (e.g. a two dimensional Hanning window).

The estimate of the interference gives us different possibilities for mask
calculation:

– The interference can be used to estimate the time frequency bins of the signal
k, where the signal of interest is active:

Mk(Ω, τ) =
{

1, Uk(Ω, τ, RΩ, Rτ ) > λu

0, otherwise (8)

where λu is the threshold for the signal of interest and Uk(Ω, τ, RΩ , Rτ ) is
the interference from (5).

– The interference can be used to estimate the time frequency bins of the signal
k, where the jammer signal is active, or

Mk(Ω, τ) =
{

0, Nk(Ω, τ, RΩ, Rτ ) > λn

1, otherwise (9)

where λn is the threshold for the jammer signal.
– It is possible to combine both methods, using both estimated interferences

Sk(Ω, τ, RΩ , Rτ ) and Nk(Ω, τ, RΩ , Rτ ):

Mk(Ω, τ) =
{

1, Nk(Ω, τ, RΩ , Rτ ) < λn ∧ Uk(Ω, τ, RΩ , Rτ ) > λu

0, otherwise (10)

Figure 3 shows the results of the interference estimation and masking with
(10).

3 Experiments and Results

3.1 Conditions

For the evaluation of the results of the proposed algorithm, the TIDigits [8]
database with two different male speakers was used, which was played back and
recorded once with two speaker signals simultaneousely and once separately in
three different setups of loudspeakers. The recordings were made in a real room
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with a reverberation time TR = 300 ms (Fig. 4). The loudspeakers were placed
with the angles of incidence relative to broadside as shown in the Table 1. The
algorithm was tested at a resolution of NFFT = 512, the recordings sample
rate was 11kHz.

Table 1. Experimental configurations

config θ1 θ2 recordings
A 45◦ 45◦ speaker 1, speaker 2, both speakers

B 45◦ 25◦ speaker 1, speaker 2, both speakers

C 10◦ 25◦ speaker 1, speaker 2, both speakers

3.2 Performance Measures

For calculation of the effectiveness of the proposed algorithm the signal to in-
terference ratio (SIR) was used as a measure of the separation performance and
the signal to distortion ratio (SDR) as a measure of the signal quality:

SIRi = 10 log
∑

n y2
isi

(n)∑
j �=i

∑
n y2

isj
(n)

(11)

SDRi = 10 log
∑

n x2
ksi

(n)
∑

n(xksi (n) − αy2
isi

(n − D))2
(12)

where yi,sj is the i-th separated signal with only the sj source active, and xk,sj

is the observation obtained by microphone k when only sj is active. α and D
are parameters for phase and amplitude chosen to optimally compensate the
difference between yi,sj and xk,sj .

3.3 Experimental Results

In this section we compare the results of ICA with and without the proposed time
frequency masking algorithm and show the results of time frequency masking for
different parameter values and different masks as described in Sect. 2.3.

Table 2 shows the average SIR improvement resulting form different algo-
rithms applied to the configurations from Table 1.

Table 2. Result comparison. Average SIR improvement in dB.

Algorithm Config. A Config. B Config. C

ICA only 11.9 dB 23.1 dB 12.7 dB

ICA and TF-Mask form [3] 31.9 dB 35.4 dB 16.1 dB

ICA and TF-Mask form [6] 30.8 dB 34.6 dB 18.1 dB
DUET [5] 31.4 dB 23.6 dB 17.7 dB

ICA and proposed algorithm 35.3 dB 39.4 dB 18.1 dB
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Fig. 4. Experimental setup
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Fig. 6. Comparison of the results of time frequency masking for different window
lengths. ∗: the mask calculated with equation (8), ◦: the mask calculated with equation
(9), Δ: the mask calculated with equation (10) and : λu = λn.

Figure 5 shows the SIR and SDR for masking over window size. In both cases
the mask was calculated with (10) for configuration A in Table 1. Figure 6 shows
the SIR and SDR for the masking with different masks and different thresholds.

4 Conclusion

An approach for time frequency masking has been presented, that uses the esti-
mate of the signal interference for mask calculation. The interference is estimated
using the normalized correlation of the separated signals.



A Batch Algorithm for BSS of Acoustic Signals 487

The proposed algorithm has been tested on real room recordings with a re-
verberation time of 300 ms, where an SIR-improvement of up to 16dB has been
obtained, which was 19dB above ICA performance for the same dataset. The re-
sults show, that an significant improvement of separation performance is possible
by evaluating residual correlations between separated signals.
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Abstract. In this paper, we investigate the importance of the high fre-
quencies in the problem of convolutive blind source separation (BSS) of
speech signals. In particular, we focus on frequency domain blind source
separation (FD-BSS), and show that when separation is performed in
the low frequency bins only, the recovered signals are similar in qual-
ity to those extracted when all frequencies are taken into account. The
methods are compared through informal listening tests, as well as using
an objective measure.

1 Introduction

Convolutive blind source separation is often addressed in the frequency domain,
through the short-time fourier transform (STFT), and source separation is per-
formed separately at each frequency bin, thus reducing the problem to that of
several instantaneous BSS problems. Although the approximation of convolu-
tions by multiplications result in reduced computational complexity, frequency
domain BSS (FD-BSS) remains computationally expensive because source sep-
aration has to be carried out on a large number of bins (a typical STFT length
is 2048 point), each containing sufficient data samples for the independence as-
sumption to hold. In addition, transforming the problem to several independent
instantaneous problems, has the unwelcome side effect of introducing the prob-
lem of frequency permutations, whose solution is often quite computationally
expensive [1], as it involves the clustering the frequency components of the re-
covered sources, using methods such as beamforming approaches, e.g. [3,4]. These
methods exploit phase information contained in the de-mixing filters identified
by the source separation algorithm.

Generally, the characteristics of speech signals are such that little information
is contained in the frequencies above 4kHz [9], suggesting a possible approach
to BSS for speech mixtures that focuses on the lower frequencies. Motivated
by this, and in order to reduce the computational load of FD-BSS algorithms,
we consider here the role of high frequencies in source separation of speech
signals. We show that high frequencies are not as important as low frequencies,
� This work was funded by EPSRC grant GR/S85900/01.
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and that intelligibility is preserved even when the high frequency subbands are
left umixed, and simply added back onto the separated signal. Other possible
approaches would exploit existing methods that assume that high frequencies
are not available, such as bandwidth extension. The structure of this paper is as
follows: the basic convolutive BSS problem is described in section 2; an overview
of FD-ICA is given in section 3, while the role of high frequencies is discussed
in section 4. Simulation results are presented in section 5, and conclusions are
drawn in section 6.

2 Problem Formulation

The simplest convolutive BSS problem arises when 2 microphones record mix-
tures x(n) of 2 sampled real-valued signals, s(n), which in this paper are consid-
ered to be speech signals. The aim of blind source separation is then to recover
the sources, from only the 2 convolutive mixtures available. Formally, the signal
recorded at the q-th microphone, xq(n), is

xq(n) =
2∑

p=1

L∑

l=1

aqp(l)sp(n − l), q = 1, 2 (1)

where sp(n) is the p-th source signal, aqp(l) denotes the impulse response from
source p to sensor q, and L is the maximum length of all impulse responses [1].
The source signals are then reconstructed according to

yp(n) =
2∑

q=1

L∑

l=1

wqp(l)xq(n − l), p = 1, 2 (2)

where yp(n) is the p-th recovered source, and wqp(l), are the unmixing filters
which must be estimated.

3 Frequency Domain Blind Source Separation

The convolutive audio source separation is often addressed in the frequency
domain. It entails the evaluation of the N -point short-time fourier transform of
the observed signals, followed by the use of instantaneous BSS, independently
on each of the resulting N subbands. Thus, the mixing and separating models
in (1) and (2) become, respectively

X(f, t) = A(f)S(f, t) (3)
Y(f, t) = W(f)X(f, t) (4)

where S(f, t), and X(f, t) are the STFT representations of the source and mix-
ture vectors respectively, A(f) and W(f) are the mixing and separating matrices
at frequency bin f , Y(f, t) is the frequency domain representation of the recov-
ered sources, and t denotes the STFT block index.



490 M.G. Jafari and M.D. Plumbley

FD-BSS has the drawback of introducing the problem of frequency permuta-
tions, which is typically solved by clustering the frequency components of the
recovered sources, often using beamforming techniques, such as in [1,3,4,5], where
the direction of arrival (DOA) of the sources are evaluated from the beamformer
directivity patterns

Fp(f, θ) =
2∑

q=1

W ICA
qp (f)ej2πfd sin θp/c, p = 1, 2 (5)

where W ICA
qp is the ICA de-mixing filter from the q-th sensor to the p-th output,

d is the spacing between two sensors, θp is the angle of arrival of the p-th source
signal, and c ≈ 340m/s is the speed of sound in air. The frequency permutations
are then determined by ensuring that the directivity pattern for each beamformer
is approximately aligned along the frequency axis.

The BSS algorithm considered in this paper is given in [6]. It updates the
unmixing filters according to

ΔW(f) = D
[
diag(−αi) + E

{
φ(y(f, t))yH (f, t)

}]
W(f)

W(f) ← W(f)(W(f)HW(f))−0.5 (6)

where yH is the conjugate transpose of y, αi = E{yi(f, t)φ(yi(f, t))}, D =
diag(1/(αi − E{φ′(yi(f, t)})), and the activation function φ(y(f, t)) is given by

φ(y(f, t)) =
y(f, t)
|y(f, t)| , ∀|y(f, t)| �= 0 (7)

with its derivative approximated by φ′(y(f, t)) ≈ |y(f, t)|−1 − y(f, t)2|y(f, t)|−3

[6]. Moreover, the algorithm (6) requires that the mixtures x(f, t) be pre-
whitened; we refer to it as MD2003.

4 The Role of High Frequencies

In this paper, we aim to investigate the role of the high frequencies in convolutive
blind source separation of speech signals, whose characteristics are such that little
information is contained in the frequencies above a certain cut-off frequency [9],
which we define in this paper as fc. Here, we consider the following decomposition
of the observed signal

X(f, t) = XLFs(f, t) + X(f, t)HFs (8)

where XLFs(f, t) is the STFT representation of the mixtures with the sub-
bands corresponding to the high frequencies (f > fc) set to zero, and similarly
X(f, t)HFs has the low frequencies subbands (f ≤ fc) set to zero. Defining the
recovered signal as Y(f, t) = YLFs(f, t)+Y(f, t)HFs, the following four scenar-
ios are considered, in which source separation is performed using MD2003:

1. on all frequency bins (MD2003): Y(f, t) = YLFs(f, t) + Y(f, t)HFs

2. on the low frequency bins only; the high frequencies are set to zero (LF):
Y(f, t) = YLFs(f, t)
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3. on the low frequency bins; the high frequency components are extracted us-
ing a beamformer WBF (f) based on the DOAs estimated from the
low frequency components (LF-BF): Y(f, t) = YLFs(f, t) + WBF (f)
X(f, t)HFs

4. on the low frequency bins; the high frequency components are left mixed,
and they are added back to the separated low frequencies prior to applying
the inverse STFT (LF-BF): Y(f, t) = YLFs(f, t) + X(f, t)HFs

Figure 1 illustrates the four methods described above.

5 Simulation Results

In this section, we consider the separation of two speech signals, from two male
speakers, sampled at 16kHz. The sources were mixed using simulated room im-
pulse responses, determined by the image method [2] using MGovern’s RIR
Matlab function1, with a room reverberation time of 160 ms. The STFT frame
length used was set to 2048 in all cases. The performance of the FD-BSS method
in [6] (MD2003) was compared for the four methods described in section 4, and
permutations were aligned as in [3]. We set fc = 4.7kHz, so that the low fre-
quency bands are between 0 to 4.7kHz, while the high frequencies are above
4.7kHz. This value was obtained empirically by inspecting the frequency con-
tent of the mixtures, and with the aim of ensuring that as much information as
possible is preserved in the low frequencies.

Table 1. Signal-to-distortion (SDR), signal-to-interference (SIR), and signal-to-artifact
ratios (SAR), for the four methods separating the sources signals: At all frequencies
- MD2003; At low frequencies only - LF; At low frequencies; BF applied at high fre-
quencies - LF-BF; At low frequencies; high frequencies added still mixed - LF-HF, for
a cut off of 4.7kHz

Method SDR (dB) SIR (dB) SAR (dB) Listening Tests

MD2003 [6] 5.37 19.17 6.08 +++

LF 5.37 19.66 5.59 +

LF-BF 5.15 17.33 5.52 ++

LF-HF 5.04 13.16 6.14 ++++

The performance of each method was evaluated using the objective crite-
ria of Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR) and
Signal-to-Artefacts Ratio (SAR), as defined in [7]. SDR, SIR and SAR measure,
respectively, the level of the total distortion in the estimated source, with re-
spect to the target source, the distortion due to interfering sources, and other
1 Available from:http://2pi.us/code/rir.m



492 M.G. Jafari and M.D. Plumbley

(a) Separation of all frequency bins (MD2003): Y(f, t) = YLFs(f, t) +
Y(f, t)HFs

(b) Separation of low frequency bins only (LF): Y(f, t) = YLFs(f, t)

(c) Separation of low frequency bins, with beamforming in the high fre-
quencies (LF-BF): Y(f, t) = YLFs(f, t) + WBF (f)Y(f, t)HFs

(d) Separation of low frequency bins. High frequency are added back
without separation (LF-HF): Y(f, t) = YLFs(f, t) + X(f, t)HFs

Fig. 1. Illustration of the four methods compared
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remaining artefacts. The evaluation criteria allows for the recovered sources to
be modified by a permitted distortion, and we considered a time-invariant filter
of length 512 samples, when calculating the performance measures. This length
was chosen so that the filter would cover the reverberation time. We obtained
SDR, SIR and SAR figures for the four methods, and for all sources and micro-
phones. The results are shown in Table 1, where the single figure was produced
by averaging the criteria across all microphones and all sources.

The SDRs in Table 1 show that the total distortion for all methods is essen-
tially the same. Distortion increases for LF-HF, due to the high frequencies not
being separated, and therefore re-introducing some level of distortion. This is
supported by the corresponding SIR figure for the same method, which shows
that a higher level of interference from the other source is present. The values for
SAR indicate that most artefacts are introduced when separation is performed on
the low frequency (LF) components only, and when the high frequency compo-
nents are extracted using beamforming (LF-BF). This is hardly surprising, since
both methods can have quite severe effects on the data. The most interesting
result is observed from the SIR figures. They show that separating only the low
frequency components, and truncating the high frequency ones, has the effect of
removing more interference from the undesired source signal than when working
with all frequencies, while not introducing any additional distortion (SDR is un-
changed), although the level of artefacts present increases. This result is rather
counterintuitive, as it suggests that there is little to be gained from performing
separation in the high frequencies. This might be explained by the fact that
source separation methods perform worse on high frequency components, which
are generally lower in amplitude; using beamforming methods to deal with the
permutation problem also yields poor results due to phase ambiguity in the high
frequencies [8].

Informal listening tests were performed, to corroborate the outcome of the
objective criteria. They indicated that the ratios are a good guide to the audible
performance. The outputs of LF were found to sound the least natural among
all the recovered signals, due to the high frequencies not being present, while
the sources separated with LF-HF were found to sound somehow better than the
outputs of MD2003. However, the crucial point is that the outputs of all methods
sounded similar in quality, suggesting that they all have similar performance.
The last column in Table 1 shows a classification of the recovered sources, with
the number of + indicating how good the quality of the separated signal is. In
general, LF-HF gave the best results, and LF is the worst only because it it not
as natural as the others. Nonetheless, the output of LF is equally as intelligible
as the others.

We can conclude from these results that performing separation in all sub-
bands is not always the best approach. Especially for speech signals, it might
be more advantageous to apply BSS only in the low frequencies, hence re-
ducing, or even halving, the computational burden of some frequency domain
algorithms.
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6 Conclusions

In this paper, we discussed the role of the high frequencies in frequency domain
blind source separation of speech signals. We found that when the high frequen-
cies are ignored, the separated sources remain quite clear, albeit they do not
always sound very natural. Our findings were supported by objective criteria,
and informal listening tests, which have suggested that it might be a good strat-
egy to separate the mixtures in the low frequencies only, and then add on the
high frequency components, without performing any processing on them. This
approach may bring significant advantages in terms of reduced computational
complexity.
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Abstract. In this paper, we present a broadband two-microphone blind
spatial separation technique by efficiently combining adaptive beam-
forming (ABF) with multichannel blind deconvolution (MBD). First,
the inaccessible source signal streams are partially identified by simple
time-delay steering and then are spatially separated through an MBD
structure. The proposed spatio-temporal ABF-MBD algorithm exhibits
fast convergence properties and high computational efficiency. Numeri-
cal experiments illustrate the practical appeal of the proposed method
in separating convolutive mixtures of speech within nearly anechoic and
also highly reverberant enclosures.

1 Introduction

Multi-microphone speech enhancement methods have a very strong potential for
use in a variety of applications such as automatic speech recognition, hearing
aid devices and hands-free telephony. In such applications, speech from various
sources is often collected simultaneously over two spatially distributed micro-
phones or through a closely-spaced multi-sensor array. The key challenge here is
to develop algorithms that can maximize speech intelligibility in both anechoic
and modest-to-severe reverberant scenarios by recovering and perceptually en-
hancing the waveform of the desired (or target) source signal, while relying only
on an observed set of composite (or mixed) signals. One such prominent tech-
nique, is blind source separation (BSS). Practically, BSS can blindly recover a set
of unknown signals, the so-called sources from their observed mixtures, based on
very little to almost no prior knowledge about the source characteristics or the
mixing structure itself. Recent work on BSS has been encouraging even in long
reverberation cases. However, most BSS techniques suffer from (1) ambiguities
(e.g., scaling and permutation) in the independence criterion when the problem
is treated exclusively in the frequency-domain or (2) are inherently slow and
computationally inefficient when operating in the time-domain, especially if in
this latter case long filters are needed to reach an adequate level of separation.
� Work supported in part by Grant R01–DC07527 awarded from the NIDCD/NIH.
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To overcome these problems, various authors have proposed spatial filtering
techniques that combine BSS with adaptive beamforming (ABF). Beamforming
has long been used in many areas, such as radar, medical imaging and hearing
aids [5]. By definition, the purpose of beamforming is to pick up and amplify
sounds from one direction, while suppressing undesired interferences and re-
verberation arriving from all other directions. Exploiting the similarity between
ABF and BSS, Parra and Alvino [14], resorted to beamforming and incorporated
geometric constraints to solve permutations between adjacent frequency bands.
Their method, called geometric source separation (GSS), was shown to work well
in reverberant conditions, albeit at the expense of adding multiple sensors to es-
timate the directions of arrival (DOAs) of the sources. The potential of using
the directivity (or gain) pattern formed by two parallel beamformers to yield
maximally independent outputs, was also later explored in [1] (time-domain)
and [3] (frequency-domain). Unlike most frequency-domain methods, the latter
technique did not suffer from different permutations along the frequency bands.
More recently, similar techniques have also achieved a correct permutation align-
ment, based on information acquired from a beamformer about the direction of
the nulls (sidelobes) in different frequency bins (e.g., see [13], [16]).

In this paper, we use multichannel blind deconvolution (MBD) for convolutive
BSS. In stark contrast to frequency-domain BSS, our MBD approach operates
in the z-domain partially and thus remains immune to permutation disparities
[12]. Also, scaling indeterminacies that cause whitening are fully alleviated to
retain intelligible source contributions at the output [9], [10]. Nonetheless, MBD
approaches are computationally demanding when long filters are used. To ame-
liorate this and speed up convergence, we use ABF to place spatial nulls at the
location of the interfering sources before passing the signals through MBD.

2 Signal Model

To isolate the original or “true” sources in a multipath propagation scenario, one
needs to rely solely on information extracted from the convolutive mixtures of
the original signal streams x(t) = [x1(t), . . . , xm(t)]T∈ IRm given by

x(t) =
∞∑

�=0

H(�) s(t − �), t = 1, 2, . . . (1)

where H(�) is the unknown linear-time invariant (LTI) multiple-input multiple-
output (MIMO) mixing system that models the acoustic channel. MBD can
blindly achieve the recovery of the sources s(t), by processing measurements at
the sensors, such that the system outputs u(t) = [u1(t), . . . , un(t)]T ∈ IRn read

u(t) =
L−1∑

�=0

W(�)x(t − �), t = 1, 2, . . . (2)

where W(�) is the unmixing matrix linking the jth source estimate uj(t) with the
ith sensor observation xi(t), composed of sufficiently long finite impulse response
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Fig. 1. Setup of two-microphone Griffiths-Jim beamformers. The microphone signals
are added and subtracted to form the sum signal and the difference signal. (a) A null
pattern is formed towards source S2. (b) A null pattern is formed towards source S1.

(FIR) filters with each element given by vector [wji(0), wji(1), . . . , wji(L − 1)]
for all coefficients 0 ≤ � ≤ L − 1 with j = 1, 2, . . . , n and i = 1, 2, . . . , m.

3 Beamforming with Multichannel Blind Deconvolution

3.1 Stage 1. ABF

The basis of our multi-microphone algorithm is the Griffiths-Jim beamformer
[6]. Although, any multiple-input single-output (MISO) algorithm can be used
to adapt the filter coefficients, here we choose the least-mean-squares (LMS)
algorithm to continuously adjust the filter weights. Since our purpose is to seg-
regate two signals S1 and S2 with two microphones, we use two such MISO
beamformers (see Figure 1). The ABF shown in Figure 1(a) can identify S1 by
forming a null directivity pattern towards S2 using W12. Similarly, the ABF in
Figure 1(b) can focus on S2 by using spatial filter W21 to attenuate source S1.

The upper ABF structure forms a sum and difference signal by adding and
subtracting the microphone signals X1 and X2. The sum signal is passed through
the delay element z−Δ. Typically, if nothing is known a priori about the setup
of the sources and the microphone locations, Δ = L/2. The difference (or inter-
ference) signal is filtered through the (L + 1)-point adaptive filter W12 to form



498 K. Kokkinakis and P.C. Loizou

an interference cancellation signal, which is then subtracted from the delayed
sum signal in the primary channel to form the desired source estimate U1. The
weights of the filter taps are adapted using LMS to minimize the error, and
ultimately yield U1. The same process is repeated while recovering source U2.

3.2 Equivalence Between ABF and MBD

Focusing on the z-domain for convenience, in the 2 × 2 scenario depicted in
Figure 2, we can easily deduce that the mixtures at the sensor inputs are

X1(z) = H11(z)S1(z) + H12(z)S2(z)
(3)

X2(z) = H21(z)S1(z) + H22(z)S2(z)

By observing the ABF structures in Figure 1, the source estimates are equal to

U1(z) =
[
X1(z) + X2(z)

]
− W12(z)

[
X1(z) − X2(z)

]
(4)

U2(z) =
[
X1(z) + X2(z)

]
− W21(z)

[
X2(z) − X1(z)

]

If we assume that the transfer functions from the sources to the microphones
are similar (a valid assumption for closely-spaced arrays), then upon subtracting
one from the other, the two microphone signals will (ideally) cancel the contri-
bution from the undesired source out. Hence, the difference signal in the upper
ABF structure can be approximated as X1(z) − X2(z) ≈ U2(z) and accordingly
in the lower ABF structure as X2(z) − X1(z) ≈ U1(z). In addition, summing
the microphone inputs will result in obtaining filtered versions of X1(z) (upper
ABF) and X2(z) (lower ABF). Based on such simplifications, (4) reduces to

U1(z) ≈ X1(z) − W12(z)U2(z)
(5)

U2(z) ≈ X2(z) − W21(z)U1(z)

which resembles a feedback network of FIR filters in the MBD configuration. A
drawback of ABF is that due to signal subtraction in the auxiliary channel, the
output or target signals will almost always exhibit a typical high-pass character-
istic resulting in loss of frequencies below 1 kHz (see also [8]). In order to com-
pensate for this effect, the outputs from the beamformer can be low-pass filtered
before any further processing [15]. Another drawback is that the effectiveness
of ABF in realistic conditions is only limited to zero-to-moderate reverberation
settings. Several authors have suggested that the presence of reverberant energy
severely degrades the performance of beamforming [5]. As a general rule, the
more reverberation present in the environment, the more difficulty this algo-
rithm has in placing nulls at the locations of the undesired signals. Still, after
performing spatial filtering with ABF, the tasks of multichannel separation and
deconvolution are expected to become easier, leading to a significant increase in
separation performance and faster convergence to the optimal filter coefficients.
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Fig. 2. Cascaded mixing and unmixing system configuration in the two-source and
two-sensor scenario when integrating two ABF structures (see Figure 1) with MBD

3.3 Stage 2. MBD

Based on the isomorphic mapping between scalar and FIR polynomial matrices
(e.g., see [12]), several adaptation rules derived from the entropy maximization
principle [4], have been extended to MBD. Such an efficient update is the linear
prediction-based NGA (LP-NGA) algorithm (e.g., see [9], [10]), which stems from
the natural gradient algorithm (NGA) introduced by Amari et al. [2]. As shown
in Figure 2, the partly identified signal estimates U1(z) and U2(z) obtained from
the ABF stage are then fed as inputs to the LP-NGA algorithm, which reads

Wk+1(z) = Wk(z) + μ ΔWk(z) (6)

where W(·) is the unmixing FIR polynomial matrix, μ denotes the step-size and

ΔWk(z) =
[(

1̄ 0̄
0̄ 1̄

)
− FFT[ϕ(u)] uH

] [
W11(z) W12(z)
W21(z) W22(z)

]
(7)

Wji(·) are the unmixing FIR filters in the z-domain, (·)H is the Hermitian op-
erator, the matrix composed of a sequence of all ones (1̄) in the main diagonal
and all zeros (0̄) elsewhere is the identity (unit) FIR matrix, whereas the term
FFT [ϕ(u)] denotes the score function vector ϕ(u), operating in the time domain

ϕi(ui)=− d

dui
log pui(ui), i = 1, 2. (8)

with the ABF-MBD spatially separated source outputs written as

u
MBD

(z) = [U1(z), U2(z)]T = W(z) u
ABF

(z) (9)
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4 Experimental Results

The source signals were sentences of one male and one female speaker, approx-
imately 3 s in duration, recorded at a sampling rate of 8 kHz. In total, we pro-
cessed 20 speech stimuli taken from the IEEE database [7]. The sound level of
each individual source was also adjusted relative to the fixed level of the other,
yielding a signal-to-interference ratio (SIR) equal to 0 dB. Both speech signals
had the same onset, and where necessary were edited to have an equal duration.

4.1 Experiment 1. Short Reverberation

A set of head-related transfer functions (HRTFs) were used to simulate speech
mixtures under moderately reverberant scenarios. The length of the HRTFs was
256 samples, amounting to a small delay of 32ms and very short reverberation.

4.2 Experiment 2. Long Reverberation

The speech signals were convolved with a set of binaural room impulse responses
(BRIRs) (e.g., see [17]). In contrast to the relatively smooth and nearly free-field
HRTFs used in Experiment 1, these exhibit rapid variations both in phase and
magnitude and are, in general, difficult to invert with FIR filters [11]. The BRIRs
were measured in a 5× 9× 3.5m classroom using a KEMAR positioned at 1.5m
above the floor at ear level [17]. By convolving the speech signals with the pre-
measured impulse responses, one source is placed directly to the front and the
other at an angle of 30◦ to the right, while both are 1m away from the KEMAR.
In this case, the broadband reverberation time of the room is T60 = 300ms.

4.3 Results and Discussion

The convolutive speech mixtures were processed with four different spatial pro-
cessing schemes, ABF only (‘ABF’), MBD only with a single pass (on-line mode)
(‘MBD [1]’), MBD only with 10 passes (‘MBD [10]’) corresponding to 30 s of to-
tal training time (off-line mode), and the new processing scheme merging ABF
with MBD (‘ABF-MBD’). Note that in the latter case, the algorithm was al-
lowed only one pass through the data. The algorithms were executed with 128-
and 512-sample point adaptive FIR filters for Experiments 1 and 2, respectively,
and a fixed step-size maximized up to the stability margin. The overlap between
successive frames (or blocks) of data was set to 50%. To assess the separation
ability of the algorithms in different reverberation scenarios, we used the signal-
to-interference-ratio improvement (SIRI) and measured the overall amount of
crosstalk reduction in dB, before (SIRi) and after (SIRo) separation, as in [11].

The SIRI values averaged for both sources and across all sentences are plotted
in Figure 3 (Experiment 1) and Figure 4 (Experiment 2). According to Figure 3,
the MBD algorithm yields a substantial improvement in SIR, when allowed mul-
tiple passes through the mixed speech data. Separation performance for ABF-
MBD was slightly lower (around 25%) compared to MBD with 10 passes. The
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Fig. 3. Mean SIRI values (dB) for 10 IEEE sentences (T60 = 5 ms). Error bars indicate
standard deviations.
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Fig. 4. Mean SIRI values (dB) for 10 IEEE sentences (T60 = 300 ms). Error bars
indicate standard deviations.

performance of MBD with one pass, was significantly lower than ABF-MBD for
the same amount of training. Also, ABF alone only partially managed to recover
the source estimates and provided a marginal improvement. By observing the
results shown in Figure 4, we notice that the overall separation performance
decreases when reverberation energy increases for all spatial separation schemes
tested here. MBD performs fairly well, but only with an adequate amount of
training. In contrast, the benefit of ABF was found to be negligible. The sepa-
ration performance obtained with ABF-MBD is still lower by about 20% than the
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one obtained with MBD, albeit this new adaptive processing strategy requires
much less training and uses relatively short FIR filters to equalize long BRIRs.

5 Conclusions

The joint use of ABF and MBD has been shown to reduce computational de-
mands without severely compromising separation performance. The proposed
ABF-MBD algorithm can achieve a satisfactory SIR improvement and can be
implemented in on-line mode. ABF-MBD requires only a single pass through the
data and therefore is potentially amenable to real-time implementation. Experi-
mental results reveal an equally encouraging performance in both nearly anechoic
and highly reverberant settings. The potential of this technique when operating
in a subband processing scheme is currently under investigation (e.g., see [11]).
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Abstract. We propose a novel approach to blind signal deconvolution. It is 
based on the approximation of the source signal by Taylor series expansion and 
use of a filter bank-like transform to obtain multichannel representation of the 
observed signal. Currently, as an ad hoc choice a wavelet packets filter bank 
has been used for that purpose. This leads to multi-channel instantaneous linear 
mixture model (LMM) of the observed signal and its temporal derivatives 
converting single channel blind deconvolution (BD) problem into instantaneous 
blind source separation (BSS) problem with statistically dependent sources. The 
source signal is recovered provided it is a non-Gaussian, non-stationary and 
non- independent identically distributed (i.i.d.) process. The important property 
of the proposed approach is that order of the channel filter does not have to be 
known or estimated. We demonstrate viability of the proposed concept by blind 
deconvolution of the speech and music signals passed through a linear low-pass 
channel.  

Keywords: Blind deconvolution, Blind source separation, Independent 
component analysis, Instantaneous mixture model, Statistically dependent 
sources. 

1   Introduction 

The problem of single channel BD is to reconstruct the original signal from its filtered 
version also termed observed signal, where only observed signal is available. 
Neglecting the noise term the process is modeled as a convolution of the unknown 
causal channel impulse response h(t) with an original source signal s(t) as: 

   ( ) ( ) ( )0
Tx t h s tτ ττ= −∑ =         (1) 

where T denotes the order of the channel filter. Standard algorithms for blind 
deconvolution are capable of recovering source signal s(t) based on the observed 
signal x(t) only, provided that s(t) is a non-Gaussian i.i.d. process, [1]. We shall 
demonstrate here that proposed concept is capable of blind deconvolution of signals 
with colored statistics such as speech. The original signal s(t-τ) can be approximated 
by Taylor series expansion around s(t) giving: 
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( ) ( ) ! ( ) H.O.T.
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where ( ) ( )ns t  denotes n-th order temporal derivative of s(t) and H.O.T. denotes 

higher-order-terms. It is assumed that (0) ( ) ( )s t s t= . Inserting (2) into (1) yields: 
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of the approximations (2) and (3) depends on the number of terms in the Taylor series 
expansion of the source signal s(t). However, x(t) in (3) can be also obtained as an 
inverse Fourier transform of the expression ( ) ( )H j S jω ω  where ( )H jω  and 

( )S jω respectively represent Fourier transforms of the channel impulse response and 
source signal. Owing to the fact that h(t) is an aperiodic sequence ( )H jω  is obtained 
as 
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Evidently, number of terms in the expansions (4) and (5) depends on the property of 
the channel: size of the support T of the impulse response h(t), but also on the 
property of the signal: size of its support Ω in the frequency domain i.e. ( ) 0S jω ≅  

for ω >Ω . For example, for either T=0 or Ω =0 relation (3) and inverse Fourier 

transform of (5) yield the same result. Thus, channels with the maximal delay that is 
small relative to the coherence time of the signal, i.e. T<<(2π/ Ω), will demand small 
number of terms, N, in the approximation (3) and vice versa.  

Taylor series expansion has already been used in [2]-[7] to convert multichannel 
convolutive BSS problem into instantaneous BSS problem. Two cases can be 
distinguished. In [2]-[5] authors assumed sensor array that is smallest than the shortest 
wavelength of the sources. This allows to keep only the first order derivative in the 
Taylor series expansion in Eq.(2). This is due to the fact that delay is defined relative 
to the center of the array and is therefore always smaller than the coherence time of 
the sources. Under this assumption another array that calculates spatial gradients of 
the observed signal converts the convolutive BSS problem into instantaneous BSS 
problem with the first order temporal derivatives of the source signals acting as 
sources. Once they are recovered by instantaneous ICA, the true sources are obtained 
by their temporal integration. In [6] and [7] Taylor series expansion is also used to 
convert multichannel convolutive BSS problem into instantaneous BSS problem. In 
[6] it is assumed that delay T is smaller than the coherence time of the source signals 
which allows to use only first order temporal derivative in the Taylor series expansion 
Eq.(2). Assuming that signal and its first order derivative are statistically independent, 
that is actually proven for stationary signals only [8][9], the instantaneous BSS 
problem is solved by some of the standard ICA methods. However, assumption that 
delay is smaller than the coherence time of the source signals is too restrictive for 
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realistic reverberant environments. That was realized in [7]. In that case higher order 
temporal derivatives exist in the Taylor series expansion Eq.(2), and they are 
statistically dependent. An algorithm is derived in [7] for grouping dependent sources 
and extracting source signals from each group.  

The algorithm proposed here solves single channel BD problem by converting it 
into instantaneous BSS problem with statistically dependent sources. No special 
assumption is made on the amount of delay. Thus, higher order derivatives in the 
Taylor series expansion are allowed. The problem of their statistical dependence is 
solved by means of independence enhancement technique, which is based on 
innovations of the multichannel version of the observed signal. However, another 
transform such as high-pass filtering, [10], may be used for independence 
enhancement purpose as well.  

A BD capable of recovering temporally dependent signals is derived in [11]. It is 
based on the measure of temporal predictability and argumentation that an output of 
the low-pass channel is smoother and therefore more predictable than the input to the 
channel. Thus, the BD problem is formulated as temporal predictability minimization 
problem and numerically solved as general eigenvalue problem. Equivalent solution 
of the instantaneous BSS problem by looking for maximum of the temporal 
predictability is defined in [12]. In relation to the proposed Taylor series expansion 
BD method, the temporal predictability approach suffers from the fact that order of 
the deconvolution filter has to be defined based on some a priori knowledge. Because 
the order of the generalized eigenvalue problem equals the order of the deconvolution 
filter the temporal predictability based algorithm can become numerically very 
demanding. Temporal predictability itself is defined for deconvolved signal 
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where V reflects the extent to which y(t) is predicted by long term moving average 
( )y t  and U reflects the extent to which y(t) is predicted by short term moving average 
( )y t% , [12][11].  

2   Formulation of the Instantaneous Linear Mixture Model 

We now apply a filter bank-like transform on (3) in order to obtain a multichannel 
representation, x, of the observed signal x(t). It is the matter of further analysis to find 
out which type of the transform is optimal. Here, in order to illustrate the concept, as 
an ad hoc choice we have used a non-decimated wavelet packets filter bank with two 
decomposition levels that results in L=6 filters. In order to have clear notation let us 
introduce x1(t)=x(t). When filters are applied on observed signal x(t) we obtain: 

(1) (2)
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=∑ , where ( )lh t   repre-

sents convolution of the appropriate l-th filter with h(t), T = T + M + 2  and M is an 
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order of the filter. Observed signal and its filtered versions can be represented in a 
form of the following instantaneous LMM: 

11 12 13 1, 1 (1)1

21 22 23 2, 12 (2)
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As       (8) 

where ( 1)L K+ ×∈x , ( 1) ( 1)L N+ × +∈A , ( 1)N K+ ×∈s , K represents number of samples and N 

represents an unknown number of temporal derivatives of the source signal. We have 
used inspection of the singular values of the sample data covariance 
matrix ( ) Tˆ 1 K=xxR xx  to estimate overall number of sources, N+1. ICA algorithms can 

be applied to the LMM given by Eq. (8) in order to extract the source signal s(t), with 
the benefits that the order T of the channel impulse response h(t) is absorbed in the 
mixing matrix A and does not have to be known or estimated. The source signals 
have to be non-Gaussain and statistically independent but not i.i.d. This has important 
practical consequence because BD of signals with colored statistics is possible. This is 
demonstrated in the section 4 where simulation results are presented.   

3   Statistical Properties of the Source Signal: Implications to 
Deconvolution Results 

We reproduce here results and conditions from [8][14] necessary for the stochastic 
differentiability of the random source signal s(t). We emphasize that conclusions 
drawn from this analysis can in principle be generalized to blind image deconvolution 
problem due to the existence of the space filling curves (Peano-Hillbert curves) that 
enable 2D to 1D mapping and vice versa by preserving local or neighborhood 
statistics [13]. First we present two important results that relate (non-)stationarity and 
linear signal representation. If the signal s(t) is stationary it can be represented by the 
linear time invariant generative model: 

   
0

( ) ( ) ( )s t b t
ν

ν ε ν
∞

=

= −∑         (9) 

where ε(t) is an i.i.d. driving signal. If the signal s(t) is non-stationary the linear signal 
model becomes time variant: 
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∞
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First order derivative (1) ( )s t of the stationary signal s(t) is defined if the first order 

derivative of the autocorrelation function at the time lag zero is zero i.e. (1) (0) 0sρ = , 

[8]. (1) (0)sρ  is always zero for non-i.i.d. process due to symmetry of ( )sρ τ . According 

to [8] the stronger condition for the existence of (1) ( )s t  is (2) (0) 0sρ ≠ . If this is true then 

from [9] it is also true (2) ( ) 0,sρ τ τ≠ ∀ . Analogously, condition for existence of (2) ( )s t  

R R R
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assumes (3) (0) 0sρ ≠ . If the first order derivative of the stationary signal s(t) exists  

then [8]: 

   (1)( ) ( ) 0E s t s t⎡ ⎤ =⎣ ⎦        (11) 

where E represents mathematical expectation. We now interpret these results for the 
three types of the source signal s(t).  

Source signal is a stationary i.i.d. process. In this case a condition (1) (0) 0sρ =  is not 

fulfilled. The reason is that autocorrelation function of the i.i.d. process is delta function 
i.e. 2( )s s τρ τ σ δ= . Therefore, Taylor series expansion (2) for such a signal does not exist. 

Consequently, the LMM model (8) also does not exist. Thus, i.i.d. signals can not be 
blindly deconvolved by the proposed algorithm. However, this is not a drawback since a 
number of blind deconvolution methods solve this problem, [1][15].  

Source signal is a stationary non-i.i.d. process. As it has been said such signal has 
first order derivative. Under previously defined conditions second order derivative 
also exists. However, we have to emphasize that stationary signals, that are 
represented by linear time invariant generative signal model (9), can also not be 
blindly deconvoloved by the proposed algorithm. Assuming that b(t) represents 
impulse response of the linear time invariant signal generative model, it is impossible 
to distinguish the channel filter h(t) from the linear convolution of the channel filter 
and modeling filter h(t)*b(t). Thus, proposed algorithm will deconvolve the i.i.d. 
driving sequence ε(t), i.e. the algorithm will have the whitening effect on the 
stationary non-i.i.d. signal. 

Source signal is a non-stationary and non-i.i.d. process. Although, conditions 
required for stochastic differentiability are derived for stationary signals only we can 
use the linear generative model of the non-stationary signal (10) and derive 
derivatives of the non-stationary signal s(t) provided that time varying filter b(t,ν) is 
stationary with respect to the independent variable t. In such a case we define:  

( ) ( )

0

( ) ( , ) ( )m ms t b t t
ν

ν ε ν
∞

=

= −∑       (12) 

where ( )( )( ) ( , ) ,m m mb t d b t dtν ν= . Thus, Taylor series expansion (2) and the LMM (8) 

do exist. However, we can not make conclusion regarding statistical independence 
between s(t), (1) ( )s t , (2) ( )s t , etc, as it was the case with a stationary signal, (11). Thus, 
it is justified to use some of the methods derived to enhance statistical independence 
between the hidden variables in the LMM (8). One of them that is computationally 
efficient is based on innovations, [16]. It is known that innovations are more non-
Gaussian and more statistically independent than original processes. These conditions 
are of essential importance for the success of the ICA algorithms. Innovation process 
of the hidden components of s is  

  { }(1) (2)( ) ( ) ( ) , ( 1), ( 2),... , , ,...n n n n n ns t s t E s t t s t s t s s s s⎡ ⎤= − − − ∈⎣ ⎦%    (13) 

where the second term in Eq.(13) represents conditional expectation. If both sides of 
(13) are multiplied by the unknown basis matrix A we obtain 

    ( ) ( )t t=x As%%       (14) 
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Eq.(14) implies that innovations preserve the basis matrix A. The innovations based 
multichannel model (14) enables more accurate estimation of the mixing matrix A by 
means of ICA algorithms, than when ICA algorithms are applied directly on the 
LMM (8). The expectation is in practice replaced by the autoregressive (AR) model 
of the finite order yielding: 

 
0

( ) ( )
J

l j lj
x t g x t j

=
= −∑%       (15) 

where J represents order of the AR model and g0=1. The coefficients of the 
prediction-error filter gj are efficiently estimated by means of Levinson’s algorithm, 
[17]. We identify for the LMM model (8) L+1 filters and obtain the prediction-error 
filter in (15) as an average of all identified filters. Hidden variables are then recovered 
by applying the Moor-Penrose pseudoinverse A† on the originally observed process x. 
The temporal predictability measure Eq.(6) could be used as a criteria for the 
selection of the recovered source signal ˆ( )s t after solution of BSS problem (8).  

4   Simulation Results 

We have conducted the following experiments: BD of the female speech signal and 
BD of the choir singing passed through a lowpass channels. 2nd order Butterworth 
lowpass filter has been used to model the channel response. Figure 1 shows one 
hundred time points of the true female speech source signal, signal recovered by 
temporal predictability based algorithm, [12] and signal recovered by the proposed 
algorithm. For temporal predictability based algorithm we have shown the best result 
obtained after experimenting with several values for the order of the deconvolution 
filter. Normalized correlation coefficients between the source and mixed signal, 
source signal and signal recovered by the proposed algorithm, and source signal and 
 

 

Fig. 1. One hundred time samples of the source signal (solid), signal recovered by temporal 
predictability based algorithm (dashed), [12], and proposed algorithm based on the Taylor 
series expansion (dotted) 
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Fig. 2. From top to bottom: spectrograms of the source signal, observed signal, signal 
recovered by temporal predictability based algorithm, [12], and signal recovered by the 
proposed algorithm 

signal recovered by algorithm [12] are respectively: 0.71774, 0.88658 and 0.75476. 
Spectrograms of these signals are shown in Figure 2. Regarding the choir-singing 
signal the normalized correlation coefficients in the same order as before were 
0.5276, 0.86152 and 0.84015. 

5   Conclusion 

Novel single channel BD algorithm has been formulated. It is based on the 
approximation of the source signal by Taylor series expansion and use of a filter 
bank-like transform to yield a multichannel representation of the observed single-
sensor signal. This yields instantaneous LMM and converts the single channel BD 
problem into instantaneous BSS problem with statistically dependent sources with the 
important property that channel order does not have to be known. It has been shown 
that signal amenable for BD by proposed method must be non-stationary and non-
i.i.d. non-Gaussian process. As yet unresolved issues remain: optimality of the linear 
transforms used to yield a multivariate representation of the observed signal and 
efficiency of the linear transforms used to enhance statistical independence among 
hidden variables of the LMM. The later issue might affect performance of the 
proposed algorithm when degradations are strong as it can be expected for real 
acoustic channels.  
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Abstract. This paper presents a new algorithm for solving the permu-
tation ambiguity in convolutive blind source separation. When trans-
formed to the frequency domain, the source separation problem reduces
to independent instantaneous separation in each frequency bin, which
can be efficiently solved by existing algorithms. But this independency
leads to the problem of correct alignment of these single bins which is
still not entirely solved. The algorithm proposed in this paper models
the frequency-domain separated signals using the generalized Gaussian
distribution and utilizes the small deviation of the exponent between
neighboring bins for the detection of correct permutations.

1 Introduction

Blind Source Separation (BSS) is used to recover signals from observed mix-
tures without prior knowledge of the sources nor the mixing system. For the
case of linear instantaneous mixtures, a number of different efficient approaches
has been proposed [1,2]. When aiming at real-world mixtures of audio signals
like speech, the situation becomes much more difficult. In this case, the mixing
process is convolutive and can be modeled using FIR filters, where, for realistic
scenarios, the length of these filters can be up to several thousands taps. The
unmixing then has to be done using FIR filters of similar length. It is possi-
ble to calculate such filters directly in the time domain [3,4], but this approach
suffers from high computational cost and difficulties of convergence. The most
successful approach is to transform the signals to the frequency domain, where
the convolution becomes multiplication [5]. Then the separation can be done
independently in each frequency bin, which is a much simpler task. The major
drawback of this approach is that the separated bins usually have different scal-
ing and are arbitrarily permuted. Therefore they have to be correctly equalized
and aligned, because otherwise the entire process of separation will fail.

While it is possible to obtain a proper scaling for the frequency components [6],
there is still no algorithm that can tackle the permutation problem in all cases. One
idea for solving the permutation problem is based on the assumption that neigh-
boring bins have alike time structure [7]. Correlation coefficients for neighboring
� This work has been supported by the German Research Foundation under Grant
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bins then yield a criterion for correct permutation. Another approach uses the un-
mixing matrices as beamformer. After computation of the directions of arrival for
all bins, most of them can be aligned properly [8]. Unfortunately, if there are more
than two sensors in a nonuniform array, the computation becomes very difficult.

In this paper we present a new approach for solving the permutation problem
based solely on the statistics of the signals. The new algorithm models the single
frequency bins using the generalized Gaussian Distribution (GGD) and utilizes
the small changes of the shape parameter of the GGD between neighboring bins.

2 Model and Methods

2.1 BSS for Instantaneous Mixtures

In the instantaneous case the mixing process of N sources into N observa-
tions can be modeled by an N × N matrix A. Given the source vector s(n) =
[s1(n), . . . , sN (n)]T and assuming negligible measurement noise, the vector of
observation signals x(n) = [x1(n), . . . , xN (n)]T can be described as

x(n) = A · s(n). (1)

The separation can be written as a multiplication with a N × N matrix B:

y(n) = [y1(n), . . . , yN(n)]T = B · x(n) (2)

The aim of BSS is to find B from the observed process x(n) so that BA = DΠ
where Π is a permutation matrix and D an arbitrary diagonal matrix. These
matrices represent the two ambiguities of BSS: (a) the separated signals appear
in arbitrary order and (b) they are scaled versions of the sources.

We here consider the well known gradient-based update rule [1]

ΔB ∝ (I + E
{
g(y)yT

}
)B (3)

with g(y) = (gi(yi), . . . , gn(yn)) being a component-wise vector function of non-
linear score functions gi of the assumed source probability densities pi(si):

gi =
p′i(si)
pi(si)

(4)

In order to achieve good separation performance, the probability density function
of the sources has to be known or at least well approximated [9].

2.2 Statistical Source Models and Estimators

Speech signals usually follow a Laplacian distribution. Therefore, for instanta-
neous mixtures, the nonlinear function gi(·) reduces to

gi(y) =
sgn(y)

σ
. (5)

Unfortunately, this assumption does not hold for the time-frequency represen-
tation X(ωk, n). The probability density functions of the components in the
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bins ωk can vary in a large range from being sub- to super-Gaussian. A suffi-
cient approximation can be achieved by the generalized Gaussian distribution
(GGD) [10]:

py(y) =
β

2αΓ (1/β)
e−(|y|/α)β

(6)

with α, β > 0 and the Gamma function given by Γ (y) =
∫∞
0

xy−1e−xdx. The β-
parameter of the GGD describes the overall structure of the distribution. With
β = 2 the GGD reduces to standard Gaussian distribution, with β = 1 to a
Laplacian distribution and with β = 0.5 to a Gamma distribution. Generally, a
large value of β indicates a flat distribution, whereas a small value yields a spiky
distribution. α is the generalized measure of the standard deviation.

Usually, nonlinearities for super-Gaussian distributions utilize sigmoidal func-
tions like sgn() or tanh(). Using the GGD, this model can be more gener-
alized. The nonlinear function gi(·) becomes gi(x) = |x|β−1sgn(x), and using
sgn(x) = x/|x|, we obtain

gi(x) =
x

|x|2−β
. (7)

As shown in [9], based on this nonlinear function, even mixtures of sub- and
super-Gaussian signals can be separated. Although the authors used fixed values
for β they could achieve good results.

The above approach has been extended in [11], where an adaptive algorithm
has been proposed. Because, in the blind scenario, the sources are not available
and therefore an accurate estimation of β is not possible, the authors proposed
to calculate β based on the statistics of the separated signals. They used the
method of moments [12] to estimate β after each iteration of (3) and used this
new value for the next step. It was shown that the approach leads to improved
overall performance in terms of better separation and faster convergence.

2.3 Convolutive Mixtures

In real-world acoustic scenarios, the mixing channels can be modeled by FIR
filters of length L, where L can be 2000 or more, depending on the reverberation
time and sampling rate. The convolutive mixing model reads

x(n) = H(n) ∗ s(n) =
L−1∑

l=0

H(l)s(n − l) (8)

where H(n) is a sequence of N ×N matrices containing the impulse responses of
the mixing channels. For the separation we use FIR filters of length M ≥ L − 1
and obtain

y(n) = W (n) ∗ x(n) =
M−1∑

l=0

W (l)x(n − l) (9)

with W (n) containing the unmixing coefficients.
Estimating W (n) in the time domain is a very difficult task, because the

number of unknowns, MN2, can reach several tens of thousands. Although there
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exist approaches to this problem [3,4] the results are not satisfying because of
distortions introduced by the unmixing system.

Due to this problem another approach is widely used. After transforming the
signals to the frequency domain, for example using the blockwise Short-Time-
Fourier-Transform (STFT), the convolution becomes a multiplication [5]:

Y (ωk, n) = W (ωk)X(ωk, n) (10)

Instead of estimating all coefficients at once, in the frequency domain it is possi-
ble to separate every bin independently. However, since there is the scaling and
permutation ambiguity in every bin, we obtain

Y (ωk, n) = W (ωk)X(ωk, n) = D(ωk)Π(ωk)S(ωk, n) (11)

with Π(ωk) being a permutation matrix and D(ωk) a diagonal scaling matrix
for frequency ωk. Therefore, it is necessary to correct the amplitudes and solve
the permutation before transforming the signals back to the time domain.

The scaling ambiguity can be resolved to an acceptable degree using the
method proposed by Ikeda and Murata [6]. The central idea is to recover the
signals as they have been recorded by the sensors. Matusuoka and Nakashima
[13] showed that this is the optimal approach, as it minimizes E{|y(t) − x(t)|2}.
Their Minimal Distortion Principle uses the following unmixing matrix:

W ′(ωk) = diag(W−1(ωk)) · W (ωk) (12)

with diag(·) returning the argument with all off-diagonal elements set to zero.
The correction of the permutation ambiguity is even more important. Even if

every bin is perfectly separated, different permutations at different frequencies
make both signals appear in every output channel.

3 Resolving the Permutation Ambiguity

One of the first ideas used for the permutation problem is based on the statistics
of the separated signals [6,7]. The key assumption is that the envelopes of all bins
of one source are highly correlated. With V (ωk, n) = |Y (ωk, n)| the correlation
between two bins k, l is defined as

ρqp(ωk, ωl) =
∑N−1

n=0 V (ωk, n)V (ωl, n)√∑N−1
n=0 V 2(ωk, n)

√∑N−1
n=0 V 2(ωl, n)

(13)

with p, q being the indices of the separated signals. To decide if two bins are
permutated equally, the value of

r =
ρpp(ωk, ωl) + ρqq(ωk, ωl)
ρpq(ωk, ωl) + ρqp(ωk, ωl)

(14)

can be used. If r > 1, then the bins are sorted correctly. Otherwise, with r < 1,
a permutation has occurred. With more than two sources the value of r has to be
estimated for all pairs, which means that N ! calculations have to be performed.
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Fig. 1. Beta values of two signals over the frequency index. The detected clusters are
indicated with bars ��.

Although there are algorithms with less complexity, the practical use is restricted
to only few sources [7].

Trying to sort all bins with respect to r for all p and q usually does not work
for speech signals. The reason for this is that the key assumption of highly corre-
lated envelopes often does not hold for frequencies which are not close together.
Restricting the test to only neighboring frequencies is also not a solution, be-
cause at some frequencies, the envelopes of the individual signals do not differ
enough to allow for correct sorting. A compromise is the dyadic sorting [7], which
starts with pairwise correlation of two neighboring bins and then successively
builds groups of bins in a dyadic fashion. This algorithm utilizes the fact that,
in a sorted group, a few outliers do not preponderate, and the groups can be
aligned properly. But like other proposals that rely only on the correlation of the
separated signals, this algorithm suffers if there are too many poorly separated
bins close to each other. Because of this, some of the first small groups are often
not sorted properly, which then propagates while building the larger groups. The
results are block permutations and the separation of the whole signal fails.

4 The Proposed Method

In this paper we propose to use the smoothness of the exponent β of the GGD.
For this, we approximate the statistics of every bin by (6). Although the values
of β vary in a significant way, the values in neighboring bins do not differ much.
Furthermore, two different signals usually have distinct values in most bins, as
can be seen in Fig. 1 for a typical situation. However, it can also be seen in Fig. 1
that there are some bins with almost the same value of β, like the bins around
3920. In this range, no differentiation of the two signals is possible on the basis of
the value of β. But huge ranges like the bins 3800-3840, can be clustered with cer-
tainty. These clusters can be used to correctly de-permute wide frequency ranges.
Afterwards, the remaining bins can be de-permuted using alternative methods.

The proposed method consists of three parts: (1) estimation of the boundaries
of the clusters, (2) calculation of the permutation between the clusters, and (3)
aligning the remaining bins. The algorithm is at first derived for two signals and
then extended for multiple signals.
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4.1 Calculation of the Cluster Boundaries

The first step is to estimate the β values for all bins of both estimated sources.
One possibility is to estimate this parameter in every iteration of the BSS algo-
rithm mentioned in Section 2.1. Alternatively, any other known BSS algorithms
can be used, because β can be also estimated after separation.

The second step is to make a simple grouping. The bins are compared pairwise:
the ones with higher values of β are assigned to one and the ones with lower
values are assigned to the other source.

The third step is to determine the actual clusters. The idea for a simple
and fast method is the following: Take an existing cluster and find out if the
neighboring bin can be added to it. The decision is based on the assumption of
the values of β being distinct and smooth.

The actual implementation is as follows:

1. Start at bin l = 1.
2. Test by comparing the β-values if the next bin l + 1 can be added.
3. If yes, then add this bin to the cluster, increase l and go to Step 2.
4. If not, then the end of the cluster has been found. If the cluster is large

enough, mark it as being correctly permutated. Increase l, mark l as the
beginning of a new cluster and go to Step 2.

The result of this algorithm is shown in Fig. 1.
If there are more than two signals, the algorithm can be extended. For this,

the β values are sorted, and the two largest ones are assigned to βH(ωk) and
βL(ωk), respectively. After clustering and removing βH(ωk), the same procedure
can be applied to the remaining bins. An analogous procedure can be applied to
the bottommost values for increased performance.

4.2 Calculation of Cluster Correlations and Aligning the Remaining
Bins

The next step after the identification of the clusters is to determine the per-
mutation between them. As the gaps between clusters are usually much smaller
than the clusters themselves, the assumption of highly correlated envelopes can
be used. Here we follow the idea of dyadic sorting and calculate the value of r,
as defined in (14), for all combinations of all bins of two clusters. As the bins
within the clusters are de-permuted with high confidence, the correct permuta-
tion between clusters can be determined by the highest or lowest value of r, as
for the dyadic sorting in [7].

After calculating the correct permutation for the clusters, the remaining bins
also have to be aligned. Again, a comparison of the correlation coefficients r for
these bins with all coefficients for the bins in the neighboring clusters can be used.

5 Simulations

In a first simulation, the algorithm has been used on unmixed audio signals,
which have been arbitrarily permuted in the frequency domain. This should
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simulate the behavior of the algorithm in ideal conditions, as if the blind sepa-
ration stage in each frequency bin would be able to work perfectly. In this case,
the algorithm was able to correctly de-permute all bins.

When using real-world data, the separation in the single bins is not always
perfect. Therefore, the estimation of correct permutations is harder. In the ex-
periments we used a data set where the individual contributions from the sources
to the microphones were available [14], and the separation performance could be
estimated using the signal-to-interference ratio

SIRyi = 10log10
E[(gii(n) ∗ si(n))2]

E[(
N∑

j=1,j �=i

gij(n) ∗ sj(n))2]
(15)

with gij(n) = wi(n) ∗ hj(n). In Fig. 2, the separation performance for the single
bins is given.

As the individual sources are known, the best possible unmixing can be es-
timated. In Fig. 3, the difference between this best approach and the result of
the proposed algorithm is shown. As we can see, above 300 Hz the proposed
algorithm produces exactly the same output as the ideal de-permutation. Below
this frequency there occur permutations, but this is a frequency range where the
separation has failed in several bins. Further inspection of the data showed that
the estimation of clusters worked, but the cluster correlations were incorrect.
This is a typical behavior for correlation-based approaches, when the separation
is not perfect. The overall performance with swapped bins is an SIR of 13.16 dB.
When leaving the low frequencies out and recovering only the signal components
above 300 Hz, the overall performance increases to 20.03 dB.
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6 Summary

In this paper, we presented a new approach for resolving the permutation prob-
lem, which occurs in convolutive blind source separation. For this we modeled
every bin using the generalized Gaussian Distribution and used the exponent β
for estimating the correct permutation. The performance of the algorithm has
been studied on artificial and real word data.
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Abstract. Discovering a representation that allows auditory data to
be parsimoniously represented is useful for many machine learning and
signal processing tasks. Such a representation can be constructed by
Non-negative Matrix Factorisation (NMF), which is a method for find-
ing parts-based representations of non-negative data. Here, we present a
convolutive NMF algorithm that includes a sparseness constraint on the
activations and has multiplicative updates. In combination with a spec-
tral magnitude transform of speech, this method extracts speech phones
that exhibit sparse activation patterns, which we use in a supervised
separation scheme for monophonic mixtures.

1 Introduction

A preliminary step in many data analysis tasks is to find a suitable representation
of the data. Typically, methods exploit the latent structure in the data. For
example, ICA [1] reduces the redundancy of the data by projecting the data
onto its independent components, which can be discovered by maximising a
statistical measure such as independence or non-Gaussianity.

Non-Negative Matrix Factorisation (NMF) approximately decomposes a non-
negative matrix V into a product of two non-negative matrices W and H [2, 3].
NMF is a parts-based approach that does not make a statistical assumption
about the data. Instead, it assumes that for the domain at hand, negative num-
bers are physically meaningless. Data that contains negative components, for
example audio, must be transformed into a non-negative form before NMF can
be applied. Here, we use a magnitude spectrogram. Spectrograms have been
used in audio analysis for many years and in combination with NMF have been
applied to a variety of problems such as sound separation [4] and automatic
transcription of music [5].

In this paper, we combine a previous convolutive extension of NMF [4] with
a sparseness constraint on H, and present an algorithm that has multiplicative
updates. This paper is structured as follows: We overview convolutive NMF in
Section 2 and present sparse convolutive NMF in Section 3. In Section 4 we
apply sparse convolutive NMF to speech spectrograms, and extract phones that
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have sparse activation patterns. We use these phones in a supervised separa-
tion scheme for monophonic mixtures, and demonstrate the superior separation
performance achieved over those extracted by convolutive NMF in Section 5.

2 Convolutive NMF

NMF [3] is a linear non-negative approximate factorisation, and is formulated as
follows. Given a non-negative matrix V ∈ R≥0,M×T the goal is to approximate
V as a product of two non-negative matrices W ∈ R≥0,M×R (basis) and H ∈
R
≥0,R×T (activations), V ≈ WH, where R ≤ M , such that the reconstruction

error is minimised. For our purposes we require a convolutive basis, such a model
has previously been used to extend NMF [4], which we review in this section.

For conventional NMF each object is described by its spectrum and corre-
sponding activation in time, while for convolutive NMF each object has a se-
quence of successive spectra and corresponding activation pattern across time.
The conventional NMF model is extended to the convolutive case:

V ≈
To−1∑

t=0

Wt

t→
H vik ≈

To−1∑

t=0

R∑

j=1

wijt(
t→
hjk) (1)

where To is the length of each spectrum sequence and the j-th column of Wt

describes the spectrum of the j-th object t time steps after the object has begun.

The function
i→
(·) denotes a column shift operator that moves its argument i places

to the right; as each column is shifted off to the right the leftmost columns are

zero filled. Conversely, the
←i

(·) operator shifts columns off to the left, with zero
filling on the right. We use the beta divergence, which is a parameterisable
divergence, as the reconstruction objective,

DBD(V‖Λ, β) =
∑

ik

(
vik

vβ−1
ik − [Λ]ik

β−1

β(β − 1)
+ [Λ]ik

β−1 [Λ]ik − vik

β

)
, (2)

where β controls reconstruction penalty and Λ is the current estimate of V,

Λ =
∑To−1

t=0 Wt

t→
H . The choice of the β parameter depends on the statistical

distribution of the data, and requires prior knowledge, see [6, Chapter 3]. For
β = 2, Squared Euclidean Distance is obtained; for β → 1, the divergence
tends to the Kullback-Leibler Divergence; and for β → 0, it tends to Itakura-
Saito Divergence. It is evident that Eq. 1 can be viewed as a summation of
To conventional NMF operations. Consequently, as opposed to updating two
matrices (W and H) as in conventional NMF, To +1 matrices require an update
(W0, . . . , WTo−1 and H). The resultant convolutive NMF update equations are

wijt ← wij t

∑T
k=1(vik/[Λ]2−β

ik )
t→
hjk

∑T
k=1[Λ]β−1

ik

t→
hjk

, hjk ← hjk

∑M
i=1 wij t

←−t

(vik/[Λ]2−β
ik )

∑M
i=1 wijt[

←t

Λ ]β−1
ik

, (3)
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where H is updated to the average result of its updates for all t. When To = 1
this reduces to conventional NMF.

3 Sparse Convolutive NMF

Combining our reconstruction objective (Eq. 2) with a sparseness constraint on
H results in the following objective function:

G(V‖Λ,H, β) = DBD(V‖Λ, β) + λ
∑

jk

hjk, (4)

where the left term of the objective function corresponds to convolutive NMF,
and the right term is an additional constraint on H that enforces sparsity by
minimising the L1-norm of its elements. The parameter λ controls the trade off
between sparseness and accurate reconstruction.

3.1 Basis Normalisation

The objective of Eq. 4 creates a new problem: The right term is a strictly in-
creasing function of the absolute value of its argument, so it is possible that the
objective can be decreased by scaling wij t up and H down (wij t �→ αwij t and
H �→ (1/α)H, with α > 1). This situation does not alter the left term in the
objective function, but will cause the right term to decrease, resulting in the ele-
ments of wij t growing without bound and H tending toward zero. Consequently,
the solution arrived at by the optimisation algorithm is not influenced by the
sparseness constraint.

To avoid the scaling misbehaviour of Eq. 4 another constraint is needed; by
normalising the convolutive bases we can control the scale of the elements in
wij t and H. Here, normalisation is performed for each object matrix, Wj , by
rescaling it to the unit L2-norm, W̄j = Wj

‖Wj‖ , j = 1, . . . , R, where the matrix Wj

is constructed from the j-th column of wij t at each time step, t = 0, 1, . . . , To−1.

3.2 Multiplicative Updates

Multiplicative updates can be obtained by including the normalisation require-
ment in the objective. Previously, this has been achieved for conventional NMF
using the Squared Euclidean Distance reconstruction objective [7]. Here, we
present the multiplicative updates for a convolutive NMF algorithm utilising
beta divergence. Our new reconstruction objective is a modification of Eq. 2
where each object, Wj, is normalised, W̄j , resulting in the following generative

model: Δ =
∑To−1

t=0

∑R
j=1 w̄jt(

t→
hj). By substituting Λ for Δ in Eq. 4 we obtain

[6, Chapter 4] the following multiplicative update rules for H and W:

hjk ← hjk

∑M
i=1 w̄ijt

←−t

(vik/[Δ]2−β
ik )

∑M
i=1 w̄ijt[

←t

Δ]β−1
ik + λ

, (5)
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Fig. 1. A collection of 40 phone-like basis functions for a mixture of a male (DMT0) and
female speaker (SMA0) taken from the TIMIT speech database

wijt ← wijt

∑T
k=1

t→
hjk

[
(vik/[Δ]2−β

ik ) + w̄ijt(w̄ijt[Δ]β−1
ik )

]

∑T
k=1

t→
hjk

[
[Δ]β−1

ik + w̄ijt(w̄ijt(vik/[Δ]2−β
ik ))

] . (6)

4 Sparse Convolutive NMF Applied to Speech Spectra

We apply sparse convolutive NMF to speech, and present a learned basis for the
sparse representation of speech using the TIMIT database. Recently, such work
has been presented for convolutive NMF [8].

4.1 Discovering a Phone-Like Basis

To illustrate the differences between the phones extracted by convolutive NMF
and sparse convolutive NMF we perform the following experiment for both al-
gorithms: We take around 15 seconds of speech from a male (DMT0) and female
(SMA0) speaker to create a contiguous mixture. The data is normalised to unit
variance, down-sampled from 16 kHz to 8 kHz and a magnitude spectrogram of
the data is constructed. We use a FFT frame size of 512, a frame overlap of
384 and a Hamming window to reduce the presence of sidelobes. We extract 40
bases, R = 40, with a temporal extent of 0.176 seconds, To = 8, and run convo-
lutive NMF (with β = 1) for 200 iterations. The extracted bases are presented in
Figure 1. The experiment is repeated for sparse convolutive NMF with λ = 15,
and the corresponding bases are presented in Figure 2.

For convolutive NMF, it is evident that the extracted bases correspond to
speech phones. The verification of which, can be achieved by listening to an au-
dible reconstruction. Most of the phones represent harmonic series with differing
pitch inflections, while a smaller subset of phones contain wideband components
that correspond to consonant sounds. It is evident for the harmonic phones that
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Fig. 2. A collection of 40 phone-like basis functions for a a mixture of a male (DMT0) and
female speaker (SMA0) taken from the TIMIT speech database. The basis is extracted
using Spare Convolutive NMF with λ = 15.

some bases have harmonics that are spaced much closer together, which is in-
dicative of a lower pitched male voice, while others are farther apart, indicating
a higher pitched female voice. Therefore, it is evident that the extracted phones
correspond to either the male or female speaker, which indicates that the timbral
characteristics of the male and female speaker are sufficiently different, such that
phones that are representative of both cannot be extracted.

By placing a sparseness constraint on the activations of the basis functions,
we specify that the expressive power of each basis be extended such that it
is capable of representing phones parsimoniously, much like an over-complete
dictionary. The result is that the extracted phones exhibit a structure that is rich
in phonetic content, where harmonics at higher frequencies have a much greater
intensity than seen in the phones extracted by convolutive NMF. Analysis of the
male and female sparse phone set reveals another important difference between
the two speakers. In addition to difference in harmonic spacing, it is evident that
the structure of the male phones are of a more complex nature, where changes
over time are much more varied than for the female phone set.

5 Supervised Method for the Separation of Speakers

As illustrated in our previous experiments, the structure of the bases that are
extracted from the speech spectrogram are uniquely dependent on the speaker
(given the same algorithm parameters). In the context of speech separation, it
is not unreasonable to expect that the bases extracted for a specific speaker
adequately characterise the speaker, such that they can be used to discriminate
them from other speakers. For a monophonic mixture where a number of speakers
are summed together, it is possible to separate the speakers in the mixture by
constructing an individual magnitude spectrogram from each speaker, using the
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phones specific to that speaker. More formally, we use the following procedure for
the separation of a known male and female speaker from a monophonic mixture:

1. Obtain training data for the male, sm(t), and female, sf (t), speaker, create
a magnitude spectrogram for both, and extract corresponding phone sets,
Wm

t and Wf
t , using sparse convolutive NMF.

2. Construct a combined basis set Wmf
t = [Wm

t |Wf
t ], which results in a basis

that is twice as big as R.
3. Take a mixture that is composed of two unknown sentences voiced by our

selected speakers, and create a magnitude spectrogram of the mixture. Fit
the mixture to Wmf

t by performing sparse convolutive NMF with Wt fixed
to Wmf

t , and learn only the associated activations H.
4. Partition H such that the activations are split into male, Hm, and female,

Hf , parts that correspond to their associated bases, H = [Hm|Hf ]T.
5. Construct a magnitude spectrogram for both speakers, using their respective

bases and activations: Sm =
∑To−1

t=0 Wm
t Hm and Sf =

∑To−1
t=0 Wf

t H
f .

6. Use the phase information from the mixture to create an audible reconstruc-
tion for both speakers.

This procedure may also be used for convolutive NMF, and can be generalised
for more than two speakers, and speakers of the same gender.

5.1 Separation Experiments

Here, we compare the separation performance of convolutive NMF and sparse
convolutive NMF. For an extensive study of the relationship between parameter
selection and separation performance for convolutive NMF, see [8].

We select three male (ABC0, BJV0, DWM0) and three female (EXM0, KLH0, REH0)
speakers from the TIMIT database, and create a training set for each that in-
cludes all but one sentence voiced by that speaker. We artificially generate a
monophonic mixture by summing the remaining sentences for a selected male-
female pair, for a total of nine mixtures. Each sentence pair is normalised to
unit variance, down-sampled from 16 kHz to 8 kHz, and summed together. A
magnitude spectrogram of each mixture is constructed using an FFT frame size
of 512, a frame overlap of 256 and a Hamming window.

The separation performance for both algorithms is evaluated for each mixture
over a selection of values for R (R = {40 80 140 220}). For both algorithms the
temporal extent of each phone is set to 0.224 seconds (To = 6), the number of
iterations is 150, β is set to 1 and each experiment is repeated for 10 Monte
Carlo runs. For convolutive NMF, a total of 24 speaker phone sets are extracted
and used in 360 (9×4×10) separation experiments. For sparse convolutive NMF
separation performance is tested for λ = {0.01 0.1 0.3 1.0 2.0}; resulting in 120
(6 × 4× 5) speaker phone sets and 1800 (9 × 4× 5× 10) separation experiments.

For the purposes of ease of comparison with existing separation methods,
we evaluate the separation performance of both algorithms using the Source-
to-Distortion Ratio (SDR) measure provided by the BSS_EVAL toolbox [9]; SDR
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Fig. 3. A comparison of the SDR results obtained by convolutive and sparse convo-
lutive NMF: Box plots are used to illustrate the performance results, where each box
represents the median and the interquartile range of the results. It is evident that for
λ = 0.1, a better spread of results is obtained, indicating that sparse convolutive NMF
achieves superior overall performance.

indicates overall separation performance and is expressed in dB, with higher per-
formance values indicating better quality estimates. An extensive investigation
utilising all measures provided by the toolbox is presented in [6, Chapter 4].

5.2 Separation Performance

We statistically analyse the performance of convolutive NMF and sparse con-
volutive NMF by collating the results from all experiments and presenting the
results using box plots: Each box presents information about the median and the
statistical dispersion of the results. The top and bottom of each box represents
the upper and lower quartiles, while the length between them is the interquartile
range; the whiskers represent the extent of the rest of the data, and outliers are
represented by +. Box plots for SDR are presented in Figure 3.

The SDR results indicate that for λ = {0.1, 0.3}, the median performance
obtained (0.66 dB, 0.62 dB) exceeds convolutive NMF (0.44 dB), for our given
algorithm parameters. It is also evident that a better spread of results is produced
for sparse convolutive NMF; demonstrating that when λ is chosen appropriately,
sparse convolutive NMF achieves superior overall performance. However, audible
reconstructions reveal that convolutive NMF is more resilient to artifacts; this
may reflect the fact that each sparse phone set exhibits phones that are rich in
features, which may manifest as artifacts in the resultant source estimates. It is
also evident that the performance of the sparse convolutive algorithm degrades
significantly for large λ, so much so, that it renders the results useless, for our
data this is especially evident for λ > 1.
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6 Conclusion

In this paper, we presented a sparse convolutive NMF algorithm with multiplica-
tive updates, which effectively discovers a sparse parts-based convolutive repre-
sentation for non-negative data. This method extends the convolutive NMF ob-
jective by including a sparseness constraint on the activation patterns, enabling
the discovery of over-complete representations. Furthermore, we demonstrated
the superiority of sparse convolutive NMF over convolutive NMF, when applied
to a supervised monophonic speech separation task.

Acknowledgements

Supported by Higher Education Authority of Ireland (An tÚdarás Um Ard-
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Frequency-Domain Implementation of a

Time-Domain Blind Separation Algorithm for
Convolutive Mixtures of Sources

Masashi Ohata and Kiyotoshi Matsuoka

Department of Brain Science and Engineering, Kyushu Institute of Technology, 2-4
Hibikino, Wakamatsu-ku, Kitakyushu city, 808-0196, Japan

Abstract. This paper proposes a way to implement a time-domain blind
separation algorithm for convolutive mixtures of source signals. The ap-
proach provides another form of the algorithm by discrete Fourier trans-
form and has the possibility of designing a separating filter in the
frequency domain, without bothering about the permutation problem in-
herent in frequency-domain blind separation approach. This paper also
shows a technique to improve separation performance in the frequency do-
main. The validity of our approach was demonstrated by performing an
experiment on separation for convolutive mixtures of two speeches.

Keywords: source separation, convolutive models, time-frequency rep-
resentations, normalization.

1 Introduction

Blind source separation (BSS) for convolutive mixtures of sources is formulated
as follows. Let us consider a case where M sensors receive convolutive mixtures of
M statistically independent signals referred to as source signals. The relationship
between the source signals and their mixtures are expressed as

x(n)=
K−1∑

l=0

Als(n−l), (1)

where s(n) and x(n) are M -dimensional real-valued vectors, representing collec-
tions of the source signals and the observations at discrete time n, respectively.
Matrices Al represents the impulse response of the channel from the sources to
the sensors. Although the channel is not known beforehand, it is assumed to
satisfy, 1) the channel is invertible; A(z)=

∑K−1
l=0 Alz

−l is nonsingular for every
complex variable z on the unit circle |z| = 1, 2) each source signal is a stationary
non-Gaussian process with zero mean and contains every frequency component.

Approaches to the separation problem can be classified into two types. One is
referred as frequency-domain BSS (FD-BSS) and the other as time-domain BSS
(TD-BSS); various separation methods are collected in [1]. The former cuts out

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 528–535, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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a series of frames with appropriate length Ls from sequence {x(n)} and converts
the frames to the series of frequency data by discrete Fourier transform (DFT):

x[n, k]=
Ls−1∑

m=0

x(n+m)e−jωkm ≈A[k]s[n, k] (k=0, 1, . . . , N −1). (2)

Here, ωk denotes a discrete angular frequency: ωk = 2πk/N . N is a number by
which the interval [0, 2π) is divided, and is 2 to the power of positive integer large
enough (Ls ≤N). Symbol j is the unit imaginary number. {A[k]} is the DFT of
{Al} and is a collection of M×M nonsingular matrices. x[n, k] and s[n, k] are the
DFTs of the segmented sequences of x(n) and s(n), respectively. By applying
an ICA (independent component analysis) method to the converted sequence
individually, independent components can be obtained at each frequency:

y[n, k]=B[k]x[n, k] (k=0, 1, . . . , N −1). (3)

Here, B[k] are M ×M nonsingular matrices. We refer to {B[k]} as a separating
filter or shortly a separator hereafter. This approach evaluates the statistical
independence at each frequency. The ICA solutions are given in the form of
B̃[k] = P[k]D[k]A−1[k], where P[k] and D[k] represent a permutation matrix
and an invertible diagonal matrix, respectively. These two matrices cannot be
determined from the statistical independence. When converting back the fre-
quency components to the time domain expression by inverse discrete transform
(IDFT), the independent components at multiple frequencies have to be aligned
in such a way that the IDFTs of the frequency components correspond to the
source signals; it is necessary to set a constant matrix P to P[k] over every fre-
quency. To solve the alignment problem, various methods have been proposed;
for example, using a time structure of speech signal in [2] and a beamforming
technique of microphone array in [3],[4]. Advantages of this approach are that
the algorithm is simple and can be parallelized on a computer, and that the
separation performance can be improved in the frequency domain. On the other
hand, the TD-BSS approach does not require such an alignment step. However,
separation performance in the frequency domain is not taken into account.

To make the most of the advantages of these two approaches, this paper
shows a way to implement a TD-BSS algorithm in the frequency domain. More
specifically, our method evaluates the statistical independence among signals in
the time domain, but designs a separating filter in the frequency domain.

2 Time-Domain Blind Source Separation

2.1 Basic Algorithm

The output sequence of a separator, i.e., the IDFT of Eq.(3) is given as

y(n+m)=
1
N

N−1∑

k=0

y[n, k]ejωkm (m=0, 1, . . . , N −1), (4)
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where y(n) = [y1(n), . . . , yM (n)]T (superscript ‘T ’ denotes the transpose of a
vector or a matrix). Since x(n) is real-valued, its DFT satisfies x[n, k]=x∗[n, N−
k], where superscript ‘ * ’ denotes the conjugate of a complex value. Equation
(4) is real-valued if and only if the DFT sequence {B[k]} satisfies B[k]=B∗[N−
k] (k=0, 1, . . . , N −1).

Several contrast functions have been proposed to solve blind source separation
problem. In this paper, an information-theoretical approach is employed:

C (n, {B[k]})=−
N−1∑

m=0

M∑

p=1

log rp(yp(n+m))− 1
2

N−1∑

k=0

log detB[k]BH [k]. (5)

Here, superscript ‘H ’ denotes the conjugate transpose of a vector or a matrix,
and rp(y) is a model for the probability density function (pdf) of source p. This
is the DFT expression of the contrast function mentioned in [5]. Since DFT
and IDFT can be expressed using nonsingular matrices, the optimization of
the contrast function in the discrete time domain is equivalent to that in the
discrete frequency domain (when the length of an optimized filter is N). The
contrast function can evaluate the independence among the filter outputs to
input {x(n), . . . ,x(n+Ls−1)}.

To search for a desired separator, the function is minimized with respect
to matrices B[k]. It is necessary that sequence {B[k]} should satisfy B[k] =
B∗[N −k] during the minimization. Let B[n, k] be an updated filter of B[k]
at the n-th iteration and ΔB[n, k] be an update value for the filter: B[n +
1, k]=B[n, k]+ΔB[n, k]. The derivative of (− log rp(y)) is denoted by ϕp(y). Let
ϕ(y(n)) be the M -dimensional column vector whose elements are ϕp(yp(n)).
Define f [n, k]= [ϕ1[n, k], . . . , ϕM [n, k]]T =

∑N−1
m=0 ϕ(y(n+m))e−jωkm. Using the

natural gradient method proposed by Amari [6], the following rule is obtained:

ΔB[n, k]=α
{
NI−f [n, k]yH [n, k]

}
B[n, k],

ΔB[n, N −k]=ΔB∗[n, k] (k=0, 1, . . . , N/2). (6)

Here, α is a small positive constant and I is the M ×M identity matrix. This
rule is available to the case of independent, identically distributed (i.i.d.) source
signals. But, the rule is undesirable for color sources.

It is possible to obtain a set of unwhitened independent signals by employing
the nonholonomic constraint method proposed by Amari et al.[7]. Specifically,
by applying diag ΔB[n, k]B−1[n, k]=O to Eq.(6), the following rule is obtained:

ΔB[n, k]=−α off-diag f [n, k]yH [n, k] · B[n, k]. (7)

Here, diag Z (off-diag Z) represents the matrix whose diagonal (off-diagonal)
elements are identical to those of square matrix Z and other elements are zeros.

2.2 Proposed Algorithm

Algorithm (7) is affected by the magnitudes of yp[n, k] and ϕp[n, k], because
they are distributed in a wide range. The learning rate requires being carefully
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set to obtain sufficient separation results. This may induce good separation in
some frequency ranges, but poor separation in other ranges. To improve the
separation performance, we modify the algorithm as follows. Let γ2

p [n, k] and
σ2

p[n, k] be estimates of the variances of ϕp[n, k] and yp[n, k], respectively. The
estimates are updated in accordance with

γ2
p [n, k]=(1−β1)γ2

p [n−1, k]+β1|ϕp[n, k]|2, (8)

σ2
p[n, k]=(1−β2)σ2

p[n−1, k]+β2|yp[n, k]|2, (9)

where β1 and β2 are positive constants smaller than one. Define M ×M di-
agonal matrices Γ[n, k] = diag{1/

√
γ2
1 [n, k], . . . , 1/

√
γ2

M [n, k]} and Ξ[n, k] =
diag{1/

√
σ2

1 [n, k], . . . , 1/
√

σ2
M [n, k]}. By using these positive-definite matrices

and a method proposed in [8], the separation algorithm can be extended as

ΔB[n, k] = −α off-diag Γ[n, k]f [n, k]yH [n, k]Ξ[n, k] · B[n, k]. (10)

The elements of the time average of Γ[n, k]f [n, k]yH [n, k]Ξ[n, k] are the correla-
tion coefficients corresponding to those of f [n, k]yH [n, k].

Learning rules (7) and (10) cannot obtain a separator with unique D[k]. It
is possible to remove the ambiguity on D[k] by using the minimal distortion
principle (MDP), which is originally proposed by Matsuoka and Nakashima [9].
The MDP separator can be obtained as

B̂[n+1, k]=diag B−1[n+1, k] · B[n+1, k]e−jωkτ , (11)

where τ is a positive integer representing a delay (the similar equation is men-
tioned in [4]). The MDP solution can be also iteratively obtained without cal-
culating the inverse of a matrix; the procedure is omitted in this paper.

A given sequence is segmented into a series of frames with length Ls by
shifting a frame by interval R and then the shifted segments are transformed
to frequency-sequences by DFT. Let l be an integer variable representing the
frame position. Setting n = lR in Eq.(10), the following iterative procedure is
obtained:

P1: Initialization: l=0,B[0, k], γ2
p[0, k], σ2

p[0, k] (k=0, 1, . . . , N/2),
P2: Obtain x[lR, k]=

∑Ls−1
m=0 x(lR+m)e−jωkm,

P3: Calculate y[lR, k]=B[lR, k]x[lR, k](y[lR, N −k]=y∗[lR, k]),
P4: Obtain the IDFT {y(lR), . . . ,y(lR+N −1)} of {y[lR, k]}.
P5: Calculate {f [lR, k]}: the DFT of {ϕ(y(lR)), . . . , ϕ(y(lR+N −1))},
P6: Update γ2

p [lR, k] and σ2
p[lR, k] by Eqs.(8) and (9), respectively,

P7: Update separator in accordance with Eq.(10),
P8: Increment l: l← l+1,
P9: Go to P2.

The convolution using DFT is basically not linear convolution, but circular
convolution as mentioned in [10]. The output y(n + m)(m = 0, . . . , N − 1)
obtained by Eqs.(3) and (4) is a linear convolution between {x(n), . . . ,x(n +
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Ls − 1)} and impulse response {Bl} corresponding to the filter {B[k]} if the
length Lf of the impulse response and Ls satisfy Lf +Ls−1 ≤ N . That may
affect the search of a desired separator because the length of the IDFT of {B[k]}
does not necessarily satisfy the inequality; the length is N in general. During
the learning of a separator, it is necessary that the inequality holds. Thus, the
impulse response {Bl} should be truncated at fixed intervals during the learning.

3 Experiment

An experiment on speech separation was performed to demonstrate the validity
of our algorithm.

Two different speeches were produced with two loudspeakers and their mix-
tures were recorded with two omnidirectional microphones (M = 2) in a room.
The loudspeakers and the microphones were arranged as shown in Fig.1 (the
reverberation time was approximately 550 ms). They were set 1.2 m high from
the floor. While the position of Loudspeaker 2 was fixed, that of Loudspeaker 1
was changed as θ = 0, 15, 30, 45, 60, 75, 90 [deg].
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(a) Positions of the microphones and
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(b) Arrangement of the micro-
phones and the speakers

Fig. 1. Experimental setup

We used four kinds of speech, consisting of two men voices and two women
voices. We selected every combination of two different speeches from them.
The number of the combinations is 4C2 ×2 = 12, which includes permutations
of speeches. To easily evaluate separation performance of an obtained separa-
tor, we individually recorded two different speeches produced with the loud-
speakers by the microphones at each position of Loudspeaker 1. The speeches
were recorded at a sampling rate of 8 kHz for ten seconds. The recorded sig-
nals in which case a speech is produced with Loudspeaker q is represented as
xq(n) = [x1q(n) x2q(n)]T . We summed these recorded signals on a computer
and used the summations as convolutive mixtures of two different speeches:



Frequency-Domain Implementation 533

x(n) =x1(n) + x2(n). Let yq(n) = [y1q(n) y2q(n)]T be the outputs of separator
B′(z) to inputs xq(n)(q=1, 2) : y(n)=y1(n)+y2(n).

The separation performance of the obtained separators can be evaluated in
terms of the signal-to-interference ratio (SIR): SIR[B′(z)]= 1

2

∑2
p=1 SIRp[B′(z)]=

1
2

∑2
p=1 10 log10(maxq

〈
y2

pq(n)
〉
/ minq

〈
y2

pq(n)
〉
), where 〈·〉 represents the time av-

erage. If a desired separator were obtained, then the ratio would become infinity.
A separator with a larger SIR is closer to a desired separator. Let P xx

pq (f), P yy
r (f)

and P yx
r,pq(f) be the power and cross spectra of xpq(n) and yr(n)(p, q, r = 1, 2).

The coherence between xpq(n) and yr(n) is defined as

Cohyx
r,pq(f)=

|P yx
r,pq(f)|2

P yy
r (f)P xx

pq (f)
.

This takes a value in the range [0, 1]. To investigate the separation perfor-
mance in the frequency domain, we used the function defined as Cohyx

rq (f) =
1
2

∑2
p=1 Cohyx

r,pq(f). If this function took one in the whole frequency range, then
the output signal yr(n) would be identical to signal sq(n).

For both the algorithms, the initial value of separator was set to

B[0, k]=
[

1 −0.9e−jωk

−0.9e−jωk 1

]
e−jωkτ (k=0, 1, . . . , N −1).

This setting came from a consideration on the basis of a microphone arrey tech-
nique (the detail is omitted due to the limited space). For algorithm (10), the
initial values of γ2

p[n, k] and σ2
p[n, k] were set to 10.0. The values of the learning

rates and other parameters are given in the Table 1. The repetition number in
the table represents the frequency at which algorithm is applied to mixtures of
speeches. Algorithms (7) and (10) were applied to the speech data and SIRs
were calculated for the obtained separators and the MDP separators obtained
by Eq.(11). The SIRs were averaged over all the combinations of two different
speeches for each position of Loudspeaker 1.

Table 1. Parameters in experiments

Parameters Algorithm (7) Algorithm (10)

Sample numbers of obserbations Ls 4096

Filter length Lf 4000

Length of DFT N 8192

Shifting samples R 2750

Delay τ 2000

Repetition number 5

Nonliner function ϕp(y) tanh(75y)

Learning rate for separator α 1.5 × 10−5 8.5 × 10−3

Learning rate in Eq.(8) β1 – 0.15

Learning rate in Eq.(9) β2 – 0.005
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Fig. 2. Separation performance in SIR

Figure 2(a) illustrates the variations of the averaged SIRs for the separators
obtained by the algorithms with θ=30 [deg]; the separator is not minimal distor-
tion solutions. This suggests that algorithm (10) can obtain a better separating
filter faster than algorithm (7). Figure 2(b) depictes the averaged SIRs for the
MDP separator obtained at each location of Loudspeaker 1. This shows that
our setting of an initial separator is effective in other cases than θ = 0, 15 [deg].
Figure 3 depictes Cohyx

rq (f) for the MDP separators. This result states that,
Eq.(10) can design better separator in the frequency domain than Eq.(7).
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We programed the above algorithms in MATLAB code. It took approximatly
13.4 second to perform the program of Eq.(10) for a repetition (when the al-
gorithm was applied to ten second data once) on a computer with Pentium 4
CPU-3.0 GHz (Intel Co.).

4 Conclusion

This paper proposed a frequency domain implementation for a time-domain
blind separation algorithm. Our method provides the possibility of improving
the separation peformance in the frequency domain. This paper shows a modi-
fication of the performance by normalizing the terms evaluating the statistical
independence in the algorithm. The result of the experiment on speech separa-
tion shows that our algorithm can separate source signals from thier mixtures
without solving the permutation problem inhelent in FD-BSS.
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Abstract. Non-negative spectrogram factorization has been proposed
for single-channel source separation tasks. These methods operate on
the magnitude or power spectrogram of the input mixture and estimate
the magnitude or power spectrogram of source components. The usual
assumption is that the mixture spectrogram is well approximated by
the sum of source components. However, this relationship additionally
depends on the unknown phase of the sources. Using a probabilistic rep-
resentation of phase, we derive a cost function that incorporates this
uncertainty. We compare this cost function against four standard ap-
proaches for a variety of spectrogram sizes, numbers of components, and
component distributions. This phase-aware cost function reduces the es-
timation error but is more affected by detection errors.

Keywords: audio processing, source separation, sparse representations,
time-frequency representations, unsupervised learning.

1 Introduction

Non-negative spectrogram factorization (NSF) has been proposed for single-
channel source separation [1, 2, 3], music transcription [4, 5], and speech
recognition [6]. The input mixture is first transformed into a time-frequency
representation such as the short-time Fourier transform (STFT). Because of
phase-invariant aspects of human hearing the phase information in the STFT
is removed yielding the absolute value or absolute square of the STFT (i.e.,
magnitude or power spectrogram) [2]. The resulting spectrogram matrix is then
factored into the sum of rank-one component spectrograms using independent
component analysis (ICA) or non-negative matrix factorization (NMF). Each
component comprises a static spectral shape and time-varying amplitude enve-
lope. Ideally, each component contains information unique to a particular source
for separation or a particular event for transcription. We focus on this basic ap-
proach although various other algorithms incorporate sparseness, convolution,
or multiple channels [4, 7, 8].

NSF methods commonly assume that the mixture magnitude or power spec-
trogram is well approximated by the sum of source components. ICA forces this

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 536–543, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cc.gatech.edu/
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relationship while maximizing the independence of the spectral components [1],
whereas NMF minimizes a cost function between the mixture spectrogram and
the sum of spectral components [9]. However, because of the nonlinearity of
the absolute value function a mixture spectrogram is not the sum of the compo-
nent spectrograms. Instead, the mixture spectrogram depends on the component
spectrograms and their phases. We derive a cost function suitable for NSF by
treating the phase as a uniform random variable and maximizing the likelihood
of the mixture spectrogram. In previous work, we derived the explicit likelihood
function for the case of two components [10]. In this paper, we extend this result
to the case of more than two components and show that it is analogous to the
multiplicative noise model employed by Abdallah and Plumbley [4]. Even though
this cost function is specifically tailored to non-negative spectrograms, the Eu-
clidean distance or generalized Kullback-Leibler divergence is more commonly
used for NSF. We compare each cost function based on its ability to estimate
the component spectrograms for a variety of spectrogram sizes, numbers of com-
ponents, and component distributions.

2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) was first proposed for the decompo-
sition of images [11]. Image data is inherently non-negative and a single image
can be regarded as a linear combination of underlying image parts. NMF esti-
mates these components by minimizing the distance between a set of mixture
images contained in the columns of a matrix, A, and the sum of the component
matrices, B. The two common distance functions are the Euclidean distance:

‖A − B‖2 =
∑

ij

(Aij − Bij)2 (1)

and a generalized version of the Kullback-Leibler divergence:

D(A‖B) =
∑

ij

(
Aij log

Aij

Bij
− Aij + Bij

)
. (2)

When applied to non-negative spectrograms, A represents the mixture spec-
trogram and B represents the sum of component spectrograms. Instead of decom-
posing multiple images, spectrogram factorization decomposes multiple spectral
frames contained in the columns of A. Although magnitude or power spectro-
grams are non-negative they are not a linear combination of underlying com-
ponent spectrograms because of the nonlinearity of the absolute value function
used to generate them.

3 Non-negative Spectrograms

A popular way to transform an audio signal into a series of image-like represen-
tations is to extract its frequency spectrum at multiple time-points. We consider
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the case of one mixture signal and model it as the sum of R source component
signals:

x(t) =
R∑

r=1

sr(t). (3)

The short-time Fourier transform (STFT) is a linear transformation into the
frequency domain that preserves this relationship:

Fx(k, t) =
R∑

r=1

Fsr (k, t). (4)

The magnitude spectrogram is the absolute value of the complex-valued STFT:

Xkt = |Fx(k, t)| [Sr]kt = |Fsr(k, t)|. (5)

The original STFT contains additional phase information:

Fx(k, t) = Xkt(cosΘkt + i sinΘkt) =
∑

r

[Sr]kt(cos [Θr]kt + i sin [Θr]kt). (6)

When applied to non-negative spectrograms, ICA and NMF estimate rank-one
component spectrograms. The columns of a K×R matrix W specify the spectral
shapes and the rows of an R × T matrix H represent the amplitude envelopes
of all the component spectrograms:

[Sr]kt = WkrHrt. (7)

The various algorithms for NSF vary in the way that they estimate W and H .

4 Non-negative Spectrogram Factorization

The vast majority of NSF methods treat each column of a magnitude or power
spectrogram matrix as though it were an image and use ICA or NMF to esti-
mate the components. To our knowledge, there has been only one cost function
specifically designed for non-negative spectrograms, namely that of Abdallah
and Plumbley [4]. They derive a divergence function based on a multiplicative
noise model for estimating the variance (i.e., power) at each time-frequency
bin. In this paper, we define the mixture magnitude spectrogram in terms of
the component magnitude spectrograms and their phases. Using a probabilistic
representation of the phase, we derive an analogous divergence function.

Both ICA- and NMF-based techniques implicitly assume that the mixture
non-negative spectrogram, X , is well approximated by the sum of the spectral
components, Sr. However, by incorporating the phase of the components, Θr,
we make this relationship precise:

Xkt =
√∑

qr

[Sq]kt[Sr]kt cos ([Θq ]kt − [Θr]kt). (8)

The mixture magnitude spectrogram does not equal the sum of component mag-
nitude spectrograms unless at most one component is active at a time or all
active components have the same phase.
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5 Probabilistic Representation of Phase

Given the mixture spectrogram’s dependence on the phase in Equation 8, we
represent the phase as a uniform random variable. We also make the simplifying
assumption that the phase is independent at different time-frequency points.
To some degree, this is true. However, the unwrapped phase of a steady state
signal can be approximated from the previous two time-steps [12]. Although this
violates the independence assumption, we have found that the resulting approach
works well in practice.

We wish to maximize the likelihood of the mixture magnitude spectrogram
as a function of the source component magnitude spectrograms. For the case of
two components, Equation 8 is a function of one random variable (i.e., Θd =
Θ1 − Θ2) and it is relatively straightforward to derive p(X |S1, S2) directly [10].
However, for more components it becomes increasingly difficult to derive the
precise likelihood function. Instead, we estimate the likelihood using the central
limit theorem to capture the shape of the distribution for a large number of
components.

The probability density function for a complex random variable with magni-
tude Sr and uniform random phase has a mean of zero and a variance of S2

r .
According to the Lindeberg-Feller central limit theorem [13], the sum of many
such variables tends toward a complex Gaussian with zero mean and a variance
of

∑
r S2

r . This theorem is valid under the Lindeberg condition, which states
that the component variances, S2

r , are small relative to their sum [13]. Applied
to magnitude spectrograms we have the following:

p(Fx|S1, . . . , SR) =
∏

kt

1
πΛkt

exp
(

−X2
kt

Λkt

)
, (9)

where Λkt =
∑

r [S2
r ]kt. We find the likelihood of X by integrating with respect

to phase, resulting in a Rayleigh distribution:

p(X |S1, . . . , SR) =
∏

kt

2Xkt

Λkt
exp

(
−X2

kt

Λkt

)
. (10)

6 Maximum Likelihood

In order to estimate Sr, we propose minimizing the negative log likelihood of X :

− log p(X |S1, . . . , SR) = −
∑

kt

[
log

(
2Xkt

Λkt

)
− X2

kt

Λkt

]
. (11)

For comparison, we frame our maximum likelihood approach in terms of a diver-
gence function. The minimum of Equation 11 is 1− log (2/Xkt) at Λkt = X2

kt. By
subtracting this value we find a divergence function that is non-negative reaching
zero only when all Λkt = X2

kt:

Ds = D(1‖X2/Λ) =
∑

kt

X2
kt

Λkt
− 1 + log

(
Λkt

X2
kt

)
, (12)
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which is equivalent to Equation 8 in Abdallah and Plumbley [4]. We derive the
gradient for Ds with respect to W 2

kr and H2
rt:

∂Ds

∂(W 2
kr)

=
∑

t

H2
rt

(
Λkt − X2

kt

Λ2
kt

)
∂Ds

∂(H2
rt)

=
∑

k

W 2
kr

(
Λkt − X2

kt

Λ2
kt

)
, (13)

where Λkt =
∑

r W 2
krH

2
rt. Although Ds is not convex with respect to W 2

kr or
H2

rt, we find local minima using the following multiplicative update rules:

W 2
kr ← W 2

kr

∑
t H2

rtX
2
kt/Λ2

kt∑
t H2

rt/Λkt
H2

rt ← H2
rt

∑
k W 2

krX
2
kt/Λ2

kt∑
k W 2

kr/Λkt
. (14)

7 Results

We compare the phase-aware cost function, Ds, to four other cost functions
based on Euclidean or Kullback-Leibler divergence for magnitude or power spec-
trograms. Figure 1 plots the shape of the likelihood functions for each of the cost
functions with X = 1. Magnitude spectrogram methods (Em and Dm) reach a
maximum on the line S1 + S2 = X . Power spectrogram methods (Ep, Dp, and
Ds) reach a maximum on the circle S2

1 + S2
2 = X2. When X = 1, the sum of

S1 and S2 must be greater than one. Ds encourages this result by penalizing
solutions near the origin more than the other cost functions.

In our experiment, we evaluate the performance of the cost functions for a
variety of spectrogram sizes, numbers of components, and component distribu-
tions. Specifically, we construct square spectrograms and vary their size with
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Fig. 1. The shape of the likelihood functions derived from the 5 labeled cost functions
for the case of two components and X = 1
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K = T ∈ [32, 64, 128, 256, 512, 1024], R ∈ [1, . . . , 30], and W and H drawn from
the uniform, positive normal, or exponential distribution. After drawing W and
H from the specified distribution, we construct X using Equations 5–7 with uni-
formly distributed random phase, Θr. We then estimate W and H using each
cost function with multiplicative update rules derived in Section 6 or by Lee and
Seung [9]. Because scaling W by α and H by 1/α produces the same cost, we
normalize the rows of H to unit L2 norm after every update.

We evaluate each cost function according to the mean square error between the
original and estimated {Sr}. Because the factorization technique is permutation
invariant, we must determine the mapping between each estimated and original
Sr. For this purpose, we use a greedy algorithm that matches the two most
similar components (one original and one estimated) and then removes them
from consideration. The process repeats until the mapping is complete.

Figure 2 plots the average performance over ten trials for each configuration
of parameters. For space considerations, we only show R ∈ [1, . . . , 10] and W
and H drawn from the uniform distribution. Each of the 60 [R, K] pairs are
sorted along the x-axis in order of increasing minimum error among the five cost
functions. Clearly, the problem becomes more difficult as R increases or as K
decreases.
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The bottom of Figure 2 plots the mean square estimation error. For simpler
versions of the problem, Ds outperforms the rest. However, toward the right
of the plot the performance becomes markedly worse and Em and Dm perform
better. This inversion of performance is linked to the detection rate.

The top of Figure 2 plots the detection rate. When each estimated compo-
nent uniquely matches a real component, the detection rate is 100%. However,
when none of the estimated components match one of the real components, that
component is not detected. We compute the detection rate as the fraction of real
components that are the closest match (in the mean square sense) for at least
one estimated component. At [R, K] = [4, 32], the detection rate for Ds drops
below 100% for the first time and this corresponds to the first large increase in
estimation error. After that, the estimation rate for Ds accelerates until it is the
worst of the group. We speculate that if 100% detection could be maintained,
Ds would continue to outperform the others.

The underlying distribution of W and H also affects estimation and detection.
As presented, the cost functions implicity assume a uniform prior distribution
on W and H in the maximum likelihood framework. Therefore, as the com-
ponent distributions diverge from the uniform distribution (e.g., become more
sparse) the maximum likelihood approach becomes less realistic. The aggregated
mean square error for the uniform, positive normal (more sparse), and exponen-
tial (most sparse) distribution is 0.036, 0.19, and 0.44, respectively. However,
sparseness has the opposite effect on detection. All of the cost functions attain
100% detection for more problems as sparseness increases. Table 1 lists the num-
ber of problems that resulted in 100% detection and the number of times each
algorithm provides the best estimation error for each of the distributions and R
between 2 and 10.

Table 1. Summary of detection rate and lowest estimation error for R = [2, 10]

Distribution: Uniform Positive Normal Exponential
Cost func. 100% det. Best est. 100% det. Best est. 100% det. Best est.

Em 27 9 37 3 44 0
Dm 34 8 43 6 47 6
Ep 23 0 29 0 30 0
Dp 33 0 38 4 41 3
Ds 35 37 40 41 42 45

Total 152 54 187 54 204 54

8 Conclusion

We present a new derivation of a divergence function, Ds, specifically tuned
to non-negative spectrogram factorization. We compare its performance against
four standard approaches for a variety of spectrogram sizes, numbers of compo-
nents, and sparseness. We show that this divergence improves the estimation of
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the source components. However, it is more affected by detection error. Algo-
rithms aimed at improving detection rates (e.g., a prior distribution on W and
H) are likely to improve Ds.
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Abstract. Auditory scene analysis is extremely challenging. One ap-
proach, perhaps that adopted by the brain, is to shape useful represen-
tations of sounds on prior knowledge about their statistical structure.
For example, sounds with harmonic sections are common and so time-
frequency representations are efficient. Most current representations con-
centrate on the shorter components. Here, we propose representations
for structures on longer time-scales, like the phonemes and sentences of
speech. We decompose a sound into a product of processes, each with
its own characteristic time-scale. This demodulation cascade relates to
classical amplitude demodulation, but traditional algorithms fail to re-
alise the representation fully. A new approach, probabilistic amplitude
demodulation, is shown to out-perform the established methods, and to
easily extend to representation of a full demodulation cascade.

Keywords: audio processing, dynamic and temporal models, hierarchi-
cal models, sparse representations, unsupervised learning.

1 Introduction

Natural sounds are structured on many time-scales. A typical segment of speech,
for example, contains features that span four orders of magnitude: Sentences
(∼ 1 s); phonemes (∼ 10−1 s); glottal pulses (∼ 10−2 s); and formants (∼ 10−3 s
or less). This temporal diversity results directly from the diversity of physical
processes that support and control sound production. If the impact of these many
processes could be expressed in a single efficient representation, then difficult
problems like source separation and auditory scene analysis, that are routinely
solved by the brain, might become more accessible to machine audition. How-
ever, the diversity of structures and time-scales makes this hard, and most work
has concentrated on shorter-time features (e.g. time-frequency representations).
Here, we introduce representations that capture longer-range temporal structure
in natural sounds. For speech, which will be the running example throughout,
this means the sentence and phoneme structure. The basic idea is to repre-
sent a sound as a product of processes drawn from a hierarchy, or cascade, of
progressively longer time-scale modulators. For speech this might involve three
processes: representing sentences on top, phonemes in the middle, and pitch and
formants at the bottom (e.g. fig. 2A). To construct such a representation, one
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might start with a traditional amplitude demodulation algorithm, which decom-
poses a signal into a quickly-varying carrier and more slowly-varying envelope.
The cascade could then be built by applying the same algorithm to the (possibly
transformed) envelope, and then to the envelope that results from this, and so
on. This procedure is only stable, however, if both the carrier and the envelope
found by the demodulation algorithm are well-behaved. In section 2 we show
that traditional methods return a suitable carrier or envelope, but not both. A
new approach to amplitude demodulation is thus called for.

Fundamentally, amplitude demodulation is ill-posed: there are infinitely many
decompositions of a signal into a slow positive modulator and quickly varying car-
rier. Ill-posed problems cannot be solved without assumptions, and a deficiency
of traditional methods is to make these assumptions implicit. The approach de-
veloped here (section 3) is quite different: Demodulation is viewed as a task
of probabilistic inference, to which prior information is integral. Our Bayesian
approach thus serves to make the unavoidable assumptions, that determine the
solution, explicit [2]. This tack yields many benefits. One is that we can tap into
the extensive collection of methods developed for probabilistic inference. These
are used to construct a family of new algorithms that out-perform traditional
amplitude demodulation methods. A second is that the approach generalises
easily, for instance to hierarchies and to multidimensional time-series.

2 Traditional Amplitude Demodulation

We begin by briefly reviewing two traditional methods for amplitude demodula-
tion. The first is to obtain the envelope by low-pass filtering a non-linear trans-
formation of the stimulus (for example, square and low pass (SLP)). Roughly,
this works because the non-linearity moves energy associated with the modu-
lation from high to low frequencies (via a self convolution in the case of SLP),
where it can then be extracted by a low-pass filter. By tuning the filter cut-
off one can recover a good estimate for the modulator (see fig. 1A). This type
of algorithm derives from applications in radio engineering, where the carrier
is a pure sinusoid of known frequency. However, for more general carriers, the
demodulated carrier (obtained by point-wise division) is often badly behaved,
with large spikes and a non-stationary variance. While the method drives the
envelope to be smooth, it places no useful constraint on the carrier waveform.

The second method is based on a quantity called the analytic signal. The goal
is to express the original signal y(t) in terms of a time varying amplitude and
phase such that, y(t) = � [a(t) exp [iθ(t)]]. In general, however, this problem is ill
posed and the solution is shaped by assumption. One choice might be to constrain
the time-scale of a(t) (see section 3). More commonly, however, the imaginary
part is chosen to make the signal analytic, by setting it to the Hilbert transform of
y(t). This does mean that, in certain circumstances, the amplitude of the analytic
signal (AAS), a(t), is restricted to lower frequencies than the phase component
exp [iθ(t)] [1], and this property might well be desirable. In general, however, the
particular signals that result may not correspond to intuition. Indeed, by contrast
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to SLP, the modulators often seem poor (see fig. 1B), but the demodulated
carriers are good, at least in that they have a stationary variance.
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Fig. 1. The result of applying two traditional demodulation schemes to a spoken sen-
tence (black), shown at two different scales (top and bottom). Both the envelopes (red)
and carriers (blue) are shown. A) SLP: The cut-off of the filter was chosen to have a
time-scale of 0.1s corresponding to the phoneme structures. The extracted envelope is
good, but the carrier contains large spikes in regions where the envelope is zero, but the
signal is non-zero. B) AAS: This demodulates the pitch period and not the phoneme
structure. The carrier variance is stationary.

To summarise, SLP was derived from the perspective of feed-forward process-
ing and, broadly speaking, extracts good estimates for the envelopes, but poor
carriers. By contrast, the AAS, a demodulation method by accident rather than
design, extracts good carriers, but poor envelopes. SLP has a tunable parameter
(the cut-off of the low pass filter), which is useful to select one of several different
envelopes present in a signal. However, it might be advantageous to automate
the setting of such a slowness parameter. The AAS has no free parameters which
is favourable when we want a method to work quickly.

3 Probabilistic Amplitude Demodulation (PAD)

One conclusion from the previous section is that a good demodulation algorithm
should recover not only a smooth and slow envelope, but also a carrier with
stationary variance. The new approach we propose explicitly utilises these two
types of prior knowledge in order to find an optimal envelope and carrier.

A natural framework in which to leverage prior information to solve an ill-
posed problem is provided by Bayesian methods [2]. These are based on a prob-
abilistic model for the observed signal, which in our case includes a model for
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the two latent variables, the carrier (X(1)) and the modulator (X(2)), and for the
dependence of the observed data (Y) on these. Our prior beliefs about the vari-
ables (p(X(1)), p(X(2))) are expressed through probability distributions; so for
example, the distribution over envelopes may assign higher probability to slow
processes than to fast ones. Having specified this model for p(Y, X(1), X(2)|θ),
the calculus of probabilities leads naturally to algorithms to infer the latent
variables, and to learn parameters. Whilst the integrals required to form such
quantities may be analytically intractable, there are a variety of well known
approximation schemes that can be exploited.

3.1 The Generative Model

Perhaps the simplest generative model for amplitude modulation is as follows,

p
(
z(2)
0

)
= Norm (0, 1) , p

(
z(2)
t |z(2)

t−1

)
= Norm

(
λz(2)

t−1, σ
)

∀t > 0, (1)

x(2)
t = fa(2)

(
z(2)
t

)
, x(1)

t = Norm(0, 1) , yt = x(2)
t x(1)

t . (2)

This expresses the generation of the envelope in two steps. First a slowly varying,
but symmetric, process is produced (Z(2)); the Gaussian random-walk gives this
an effective length-scale determined by λ, leff = − log(λ), which is inherited by
X(2). This length-scale is learnt from data, and is typically long (i.e. λ is close
to one and leff = − log(1 − δ) ≈ 1

δ ). The positive envelope is obtained using
point-wise non-linearity, here given by

fa(2)

(
z(2)
t

)
= log

(
exp

(
z(2)
t + a(2)

)
+ 1

)
, (3)

which is logarithmic for large negative values of z(2)
t , and linear for large pos-

itive values. This transforms the Gaussian distribution over Z(2) into a sparse
distribution, which is a good match to the marginal distributions of natural en-
velopes. The parameter a(2) controls exactly where the transition from log to
linear occurs, and consequently alters the degree of sparsity.

Having generated the envelope, the carrier is simply Gaussian white noise. The
observations Y are generated by a point-wise product of the envelope and carrier.
A typical draw from this generative model can be seen in Fig. 2B. This model
is a fairly crude one for speech. For example, the speech carrier process will be
structured (containing formant and pitch information) and yet it is modelled as
Gaussian white noise. Whilst more complex models can certainly be developed,
surprisingly even this very simple model is excellent at demodulation.

3.2 Learning and Results

The joint probability of both latent and observed signals is:
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Fig. 2. An example of a modulation-cascade representation of speech (A) and typical
samples from generative models used to derive that representation (B and C). A) The
spoken-speech waveform (black) is represented as the product of a carrier (blue), a
phoneme modulator (red) and a sentence modulator (magenta). (Derived using the
method described in section 4.) B) The standard generative model with an envelope
(red), a carrier (blue), and the waveform (black). C) The extended model (M = 3) with
an additional slowly varying envelope (magenta). For sounds drawn from generative
model and processed using PAD see [5].
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, we can integrate out the carrier from this

expression which yields,
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Unfortunately, this expression cannot be analytically marginalised with respect
to the envelope X(2), and so an approximation is needed. One approach is to
assume the distribution over X(2) is highly peaked and to approximate the
integral by its value at the peak: the maximum a posteriori (MAP) value,
p (Y|λ, σ) ≈ p

(
Y, X(2)

MAP|λ, σ
)
. This is a coarse approximation, but it is well

established and resembles a zero-temperature form of expectation maximisa-
tion. An alternative, to which we will return, is to approximate the integral by
sampling.

Before discussing these approximations in more detail, we describe a final
improvement to the model. In the Bayesian methodology parameters have the
same status as latent variables and accordingly, may also be integrated out. In
the present case, this is possible for either of the parameters controlling Z(2); σ2

or λ. More general models might have multidimensional λ, and so we choose to
integrate over this, but for the simple model both methods work equally well.
There are several specific advantages to this approach in the present application.
Firstly, while the old model had one smoothness, the new model is more flexible,
being essentially a weighted sum of the old models with different smoothnesses
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(see eq. 7). Secondly, it is not possible to learn λ, σ2 and X(2) using the old
approach: a trivial solution (x(2)

t = 1, λ = 1, σ2 = 0) causes the likelihood to
diverge. However, this maximum has infinitesimal width and therefore essentially
no mass, so integration over λ removes this deficiency.

Practically the integration proceeds as follows: A conjugate Gaussian prior
is placed on the smoothnesses p(λ) = Norm(μpri

λ , σpri
λ ), and the integral that

results is Gaussian,
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Completing this integral yields the following objective function,
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are the posterior mean and variance over the smooth-

ness parameter, which are given by,
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The MAP estimate of the envelope can be found by gradient-based optimisation
of this cost function. We used a conjugate-gradient algorithm on the log of the
envelope (to ensure positivity). Depending on the application we can optimise
the remaining parameter and hyperparameters too, or set them by hand. Results
are shown for both approaches. In fig. 3A all parameters and hyper-parameters
have been optimised and the envelope picks off the sentence structure. In fig. 3B
the priors and the variances have been fixed in order that the algorithm picks off
a rather faster envelope (this occurs for a wide range of prior/parameters set-
tings and does not require fine tuning). In this case the phonemes are discovered.
Qualitatively the performance appears far superior to that of traditional algo-
rithms: a smooth envelope and a demodulated carrier of approximately constant
variance are recovered reliably.

4 Extensions to Probabilistic Amplitude Demodulation

Our original motivation was to develop new representations for the long-temporal
structures in sounds, particularly those based on a product of processes. A
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Fig. 3. Carriers (blue) and modulators (red and magenta) extracted by probabilistic
amplitude demodulation (PAD) from a spoken sentence (black). A) Vanilla PAD selects
a slow sentence envelope, but the carrier is still significantly modulated. B) Fixing the
priors and variances leads to a faster, phoneme envelope, and results in a carrier that
is more demodulated. C) The cascaded version of PAD, using sampling to generate
error-bars on the extracted processes, provides an elegant representation of the sound.

necessary stepping stone along this path was the development of new methods for
amplitude demodulation. We have already outlined a recursive procedure, which
can use these new algorithms, for deriving such a representation (see section 1).
The approach was to successively remove the fastest remaining process. However,
ideally we would like to estimate the processes concurrently. Fortunately this can
be done by extending the probabilistic method to a cascade of M processes:
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A suitable model for speech might have M=3 with a “sentence” modulator (X(3))
and a “phoneme” modulator (X(2)). A priori we would expect λm+1 > λm.

Learning and inference in this model can be completed in an analogous manner
to that described in the previous section. That is; integrate out the carrier X(1)



Probabilistic Amplitude Demodulation 551

and the dynamics λ1:M and optimise over the modulators X(2:M) simultaneously
(this was how fig. 2A was generated). However, an alternative method is to use
sampling to integrate out the modulators, approximately. The most amenable
method is Hamiltonian Monte Carlo as it requires the exact same evaluations as
required by a gradient-based optimiser, namely evaluations of the PAD objective
function and its derivatives. There are several potential advantages of the sam-
pling approach, which gives back samples from the posterior distribution over
the modulators p(X(2:M)|Y), rather than just the maximum value of this distri-
bution. Firstly, using information about the whole distribution might help learn
better parameters. Secondly, we can now put error-bars on our inferences for the
envelope. Thirdly we can check whether the mode of the posterior is typical of
the distribution, and therefore assess the merits of the previous approach.

This sampling procedure was used to learn the cascade model with M = 3.
The results are shown in fig. 3C. The algorithm extracts a sentence process and
a phoneme process, and provides an elegant representation of the speech sound.
Empirically, the mode and the mean of the distribution over envelopes is found
to be in a similar location, and the parameter values discovered by both methods
similar. This indicates that the MAP approximation might not be too severe.

5 Conclusion

The contributions of this paper are two fold. Firstly we provide a family of al-
gorithms for probabilistic amplitude demodulation that out perform traditional
methods. Secondly, and more generally, we propose an elegant new representa-
tion for the long time-scale temporal structure in sounds based on a cascade
of modulatory processes. The goal of future research will be to wed this model
for phonemes and sentences, to one that models pitch and formant information
(e.g. [4]), to solve hard machine-audition tasks like blind-source separation and
auditory scene analysis.
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Abstract. This article provides an overview of the first stereo audio
source separation evaluation campaign, organized by the authors. Fif-
teen underdetermined stereo source separation algorithms have been ap-
plied to various audio data, including instantaneous, convolutive and real
mixtures of speech or music sources. The data and the algorithms are
presented and the estimated source signals are compared to reference
signals using several objective performance criteria.

1 Introduction

Large-scale evaluations facilitate progress in a field by revealing the effects of dif-
ferent choices in algorithm design, promoting common test data and evaluation
criteria and attracting the interest of funding bodies. Several evaluations of audio
source separation algorithms have been conducted recently, focusing on single-
channel speech mixtures1 or multichannel over-determined speech mixtures2,3,4.
This article provides an overview of the complementary evaluation campaign for
stereo underdetermined audio mixtures organized by the authors. Detailed re-
sults of the campaign are available at http://sassec.gforge.inria.fr/.

We define the source separation task and describe test data and evaluation
criteria in Section 2. Then we present the algorithms submitted by the partic-
ipants in Section 3 and summarize their results in Section 4. We conclude in
Section 5.

1 http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm
2 http://bme.engr.ccny.cuny.edu/faculty/parra/bss/
3 http://homepages.inf.ed.ac.uk/mlincol1/SSC2/
4 http://mlsp2007.conwiz.dk/index.php?id=43
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2 Data and Evaluation Criteria

2.1 The Stereo Underdetermined Source Separation Task

Common audio signals, e.g. radio, television, music CDs and MP3s, are typically
available in stereo (two-channel) format and consist of a mixture of more than
two sound sources. Denoting by J > 2 the number of sources, each channel xi(t)
(1 ≤ i ≤ 2) of the mixture signal can be expressed as [1]

xi(t) =
J∑

j=1

simg
ij (t) (1)

where simg
ij (t) is the spatial image of source j (1 ≤ j ≤ J) on channel i, that is

the contribution of this source to the observed mixture in this channel.
Different types of mixtures can be distinguished. Instantaneous mixtures are

generated via (1) using a mixing desk or dedicated software by constraining the
spatial images of each source j to simg

ij (t) = aijsj(t), where sj(t) is a single-
channel source signal and aij are positive mixing gains. Synthetic convolutive
mixtures are obtained similarly via simg

ij (t) =
∑

τ aij(τ)sj(t − τ), where aij(τ)
are mixing filters. Live recordings are acquired by recording all the sources si-
multaneously in a room using a pair of microphones. These recordings may also
be obtained by recording the sources one at a time in the same room and adding
the resulting source images together within each channel [2].

We define the source separation task as that of estimating the spatial images
simg

ij (t) of all sources j on all channels i from the two channels xi(t) of a mixture.
This definition has two advantages: it is valid for all types of mixtures, even with
spatially extended sources that cannot be represented as single-channel signals,
and potential gain or filtering indeterminacies about the estimated single-channel
source signals sj(t) disappear when considering their spatial images instead [1].

2.2 Development and Test Data

The development and test data used for the evaluation campaign involved four
classes of signals: male speech, female speech, non-percussive music and music
including drums. Music mixtures involved three sources taken from synchronized
multitrack recordings, while speech mixtures involved four independent sources.
All the source signals were sampled at 16 kHz and had a duration of 10 s.

The development data consisted of one instantaneous mixture, two synthetic
convolutive mixtures and two live recordings per class. Instantaneous mixtures
were generated by scaling the source signals by positive gains. Live recordings
were acquired by playing the source signals through loudspeakers in a room at
NTT with RT60 = 250 ms reverberation time and recording them using two
pairs of omnidirectional microphones with spacings of 5 cm and 1 m. Figure 1
depicts the arrangement of loudspeakers and microphones. Synthetic convolutive
mixtures were obtained by filtering the sources with simulated room impulse
responses computed for the same arrangement using Roomsim5. Ground truth
5 http://media.paisley.ac.uk/˜campbell/Roomsim/
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data, i.e. the source signals, their spatial images and the mixing filters or gains,
were distributed with the mixture signals at http://sassec.gforge.inria.fr/.
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Fig. 1. Recording arrangement used for development data. Only three of the four
loudspeakers were used for music mixtures.

The same number of test data was obtained similarly to the development data,
using different source signals and positions for each mixture. The distances of the
sources from the center of the microphone pairs were drawn randomly between
80 cm and 1.2 m and their angles of arrival between −60◦ and +60◦ with a
minimal spacing of 15◦. The mixture signals were made available, but ground
truth data, including the exact source positions, was kept hidden6.

2.3 Objective Performance Criteria

The participants were asked to provide estimates ŝimg
ij (t) of the spatial images

of all sources j for some test mixtures. The quality of these estimates was then
evaluated by comparison with the true source images simg

ij (t) using four objec-
tive performance criteria, inspired from criteria previously designed for single-
channel source estimates [3]. By contrast with other existing measures [4,5], the
proposed criteria can be computed for all types of separation algorithms and do
not necessitate knowledge of the separating filters or masks.

The criteria derive from the decomposition of an estimated source image as

ŝimg
ij (t) = simg

ij (t) + espat
ij (t) + einterf

ij (t) + eartif
ij (t) (2)

where simg
ij (t) is the true source image and espat

ij (t), einterf
ij (t) and eartif

ij (t) are dis-
tinct error components representing spatial (or filtering) distortion, interference
and artifacts. This decomposition is motivated by the auditory distinction be-
tween sounds from the target source, sounds from other sources and “gurgling”
6 Only the first two authors of this article had potentially access to these data.
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noise, corresponding to the signals simg
ij (t) + espat

ij (t), einterf
ij (t) and eartif

ij (t) re-
spectively. The computational modeling of this auditory segregation process is
an open issue so far. For simplicity, we chose to express spatial distortion and
interference components as filtered versions of the true source images, computed
by least-squares projection of the estimated source image onto the corresponding
signal subspaces [3]

espat
ij (t) = PL

j (ŝimg
ij )(t) − simg

ij (t) (3)

einterf
ij (t) = PL

all(ŝ
img
ij )(t) − PL

j (ŝimg
ij )(t) (4)

eartif
ij (t) = ŝimg

ij (t) − PL
all(ŝ

img
ij )(t) (5)

where PL
j is the least-squares projector onto the subspace spanned by simg

kj (t−τ),
1 ≤ k ≤ I, 0 ≤ τ ≤ L−1, and PL

all is the least-squares projector onto the subspace
spanned by simg

kl (t − τ), 1 ≤ k ≤ I, 1 ≤ l ≤ J , 0 ≤ τ ≤ L − 1. The filter length
L was set to 512 (32 ms), which was the maximal tractable length.

The relative amounts of spatial distortion, interference and artifacts were then
measured using three energy ratio criteria expressed in decibels (dB): the source
Image to Spatial distortion Ratio (ISR), the Source to Interference Ratio (SIR)
and the Sources to Artifacts Ratio (SAR), defined by

ISRj = 10 log10

∑I
i=1

∑
t simg

ij (t)2
∑I

i=1

∑
t espat

ij (t)2
(6)

SIRj = 10 log10

∑I
i=1

∑
t(s

img
ij (t) + espat

ij (t))2
∑I

i=1

∑
t einterf

ij (t)2
(7)

SARj = 10 log10

∑I
i=1

∑
t(s

img
ij (t) + espat

ij (t) + einterf
ij (t))2

∑I
i=1

∑
t eartif

ij (t)2
. (8)

The total error was also measured by the Signal to Distortion Ratio (SDR)

SDRj = 10 log10

∑I
i=1

∑
t simg

ij (t)2
∑I

i=1

∑
t(e

spat
ij (t) + einterf

ij (t) + eartif
ij (t))2

(9)

We emphasize that this measure is arbitrary, in the sense that it weights the
three error components equally. In practice, each component should be given a
different weight depending on the application. For instance, spatial distortion is
of little importance for most applications, except for karaoke where it can result
in imperfect source cancellation, even in the absence of interference or artifacts.
Similarly, artifacts are crucial for hearing aid applications, for which “gurgling”
noise should be avoided at the cost of increased interference. These criteria were
implemented in Matlab and distributed at http://sassec.gforge.inria.fr/.

3 Algorithms

The campaign involved thirteen participants, who submitted the results of fif-
teen source separation algorithms. The underlying approaches are summarized in
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Table 1. Submitted source separation algorithms

N◦ Submitter
Name

Source localization Source signal estimation

Algorithms for instantaneous mixtures only

1 D. Barry
ADRess

Manual IID clustering from a
magnitude-weighted histogram
with auditory feedback [6]

Source magnitude estimation in
the STFT bins associated with
each IID cluster [6]

2 P. Bofill Peak picking on a smoothed IID
histogram [7] with STFT bins
selected as in [8]

Minimization of the l1 norm of
the real and imaginary parts of
the source STFTs [9]

3 A. Ehmann Manual peak picking on an IID
histogram

Binary STFT masking with dif-
ferent resolutions at high/low
frequencies

4 V. Gowreesunker Peak picking on a thresholded
IID histogram [10]

Binwise MDCT projection onto
the nearest IID subspace [10]

5 M. Kleffner Peak picking on a thresholded
IID histogram [11] with STFT
bins selected as in [12]

Online FFT-domain minimum-
variance beamforming [13]

6 N. Mitianoudis Soft IID clustering given the
number of sources [14]

Binwise MDCT projection onto
the nearest IID subspace [14]

7 H. Sawada Hard IID clustering given the
number of sources

Binary STFT masking

8 E. Vincent Manual peak picking on an IID
histogram weighted as in [12]

Minimization of the l0 norm of
the source STFTs [15]

9 M. Xiao
SABM+SSDP

Hard fixed-width IID clustering
on selected STFT bins [8]

Mixing inversion with 2 sources
per time frame estimated from
the mixture covariance [16]

10 M. Xiao
SABM+SNSDP

Hard fixed-width IID clustering
on selected STFT bins [8]

Extension of [16] with more ac-
tive sources in some time frames

Algorithms for instantaneous and/or convolutive mixtures

11 S. Araki Soft (IID,ITD) clustering given
the number of sources [17]

Maximum SNR beamforming
[18] and soft STFT masking [19]

12 Y. Izumi Soft clustering of the mixture
STFT bins based on (IID,IPD)
given the number of sources [20]

Soft STFT masking by cluster
probabilities [20]

13 T. Kim FFT-domain independent com-
ponent analysis [21] and soft
masking (two sources only)

14 R. Weiss & M.
Mandel

Soft (IID,IPD) clustering given
the number of sources [22]

Soft STFT masking by cluster
probabilities [22]

15 H. Sawada Frequency-wise (IID,IPD) clus-
tering given the number of sour-
ces as in [17] and sorting [23]

Binary STFT masking

Table 1. All algorithms except n◦13 could be broken into (possibly iterated) source
localization and source signal estimation steps. These two steps were conducted
in the time-frequency domain via a Short-Time Fourier Transform (STFT) or a
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Table 2. Results for instantaneous mixtures

Algorithm 1 2 3 4 57 6 7 8 9 10 14

SDR (dB) 4.0 4.2 6.8 3.5 -23.4 -16.0 7.2 10.3 5.8 2.7 -2.4
ISR (dB) 7.5 8.2 13.9 6.2 -21.8 -12.8 14.6 19.2 15.9 20.0 4.1
SIR (dB) 13.2 12.9 15.5 14.4 12.8 13.2 15.9 16.0 10.7 6.8 -3.0
SAR (dB) 5.3 10.8 7.8 5.5 5.9 5.3 8.1 12.2 5.8 8.7 4.2

Time (s) 1 300 5 10 600 200 9 5 2 2 1000

Table 3. Results for synthetic convolutive mixtures and live recordings with two dif-
ferent microphone spacings

Mixtures Synth 5 cm Synth 1 m Live 5 cm Live 1 m

Algorithm 117 14 15 14 15 117 127 138 14 15 138 14 15

SDR (dB) 2.5 0.9 0.2 0.7 0.6 2.6 -23.2 -20.3 1.2 1.8 -19.0 2.1 3.6
ISR (dB) 6.0 2.8 4.6 2.8 4.4 5.9 -19.2 -17.0 4.0 7.0 -15.5 4.9 8.4
SIR (dB) 5.8 -2.7 4.4 -0.4 4.2 4.6 1.3 2.9 -1.9 4.2 2.9 0.8 6.9
SAR (dB) 4.9 14.1 7.5 10.7 7.5 5.4 6.2 6.2 13.0 6.8 5.8 8.0 6.8

Time (min) 1 20 0.6 20 0.6 1 1 4 20 0.6 4 20 0.6

Modified Discrete Cosine Transform (MDCT), except for algorithms n◦9 and 10
where source estimation was directly performed in the time domain. The direc-
tions of the sources were modeled by the Interchannel Intensity Difference (IID)
or variants thereof in the instantaneous case. The Interchannel Time Difference
(ITD) or the Interchannel Phase Difference (IPD) were additionally used in the
convolutive case. Algorithms n◦2, 4, 5, 9 and 10 were fully blind, while others re-
quired manual input of the number of sources or the source directions.

4 Results

The performance of each algorithm was assessed by sorting the estimated source
image signals so as to maximize the average SIR and successively averaging the
measured SDR, ISR, SIR and SAR over the sources and over the mixtures. The
resulting figures are given in Tables 2 and 3 for instantaneous and convolutive
mixtures respectively, along with platform-specific computation times. The large
negative SDR and ISR figures for algorithms n◦5, 6, 12 and 13 are due to incor-
rect scaling of the submitted source images. Detailed results and sound files are
available at http://sassec.gforge.inria.fr/.

In the instantaneous case, most algorithms provided similar SIR and SAR
values clustered around 13 dB and 6 dB respectively, denoting high interfer-
ence rejection but clear artifacts. Algorithms n◦2 and 8 resulted in fewer arti-
facts, while algorithms n◦10 and 14 provided more interference. Note that blind

7 Average performance for speech mixtures only.
8 Average performance over the two estimated sources for speech mixtures only.
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algorithms n◦9 and 10 achieved similar source localization accuracy as non-blind
algorithms n◦3, 7 and 8, as shown by large ISR values.

In the convolutive case, most algorithms provided again similar SIR and SAR
values but around 4 dB and 6 dB respectively, indicating both strong interference
and artifacts. Algorithms n◦11 and 15 resulted in slightly less interference, while
algorithm n◦14 provided much more interference but less artifacts. Interestingly,
performance did not vary much between synthetic convolutive mixtures and live
recordings or with different microphone spacings.

5 Conclusion

In this article, we described the test data and objective performance criteria used
in the context of the first stereo audio source separation evaluation campaign and
summarized the approaches behind the fifteen submitted algorithms and their
results. We are currently planning to complement objective performance figures
by listening tests and present detailed results on the campaign website. We hope
that this campaign fosters interest for evaluation in the source separation com-
munity and that larger-scale regular campaigns will take place in the future. The
creation of a collaborative organization framework appears crucial to this aim,
since it would allow sharing between the participants of time-consuming tasks
such as the collection of test data under appropriate licenses and the recording
of live mixtures.
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Abstract. This paper addresses the tracking capability of blind source
separation algorithms for rapidly time-varying sensor or source posi-
tions. Based on a known algorithm for blind source separation, which
also allows for simultaneous localization of multiple active sources in
reverberant environments, the source separation performance will be in-
vestigated for abrupt microphone array rotations representing the worst
case. After illustrating the deficiencies in source-tracking with the given
efficient implementation of the BSS algorithm, a method to ensure ro-
bust source separation even with abrupt microphone array rotations is
proposed. Experimental results illustrate the efficiency of the proposed
concept.

1 Introduction

This paper is motivated by the so-called cocktail-party problem which arises when
convolutive mixtures of multiple simultaneously active speakers are recorded by
multiple microphones. In many applications (e.g. hands-free human-machine in-
terfaces, [1]), we need to focus on one single source and try to suppress inter-
fering sources. We address this problem here by blind source separation (BSS)
algorithms which can deal well with unknown microphone and source positions
[2]. Furthermore, BSS provides us with several separated source signals which
may be individually selected for further processing.

We briefly review the generic ICA-based BSS framework for convolutive mix-
tures called TRINICON [3,4], which is also capable of simultaneously localizing
multiple active sources [5,6]. The motivation for considering it here is that most
of the known state-of-the-art BSS algorithms may be seen as certain approxi-
mations of this concept. As a fairly recent and advanced approximate practical
algorithm, we investigate here [7]. This algorithm serves thus as a good repre-
sentative for many of the major ICA algorithms. It is based on a special choice
of Sylvester constraint, the correlation method, the natural gradient, and on an

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 560–568, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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approximated normalization. This allows for an efficient implementation, but
may be responsible for the observed deficiencies in certain situations. Although
the investigated algorithm is designed for Q active sources, we consider only
two active sources in this paper. In Section 2, we demonstrate by simulations
that both the separation performance of the considered BSS algorithm as well
as the performance of the BSS-based source localization may significantly de-
grade for rapidly time-varying sensor positions. Analysis of this scenario leads
us to proposing the so-called shadow-BSS system, which runs in parallel to the
main BSS algorithm. Simulation results confirm the efficiency of the proposed
extension.

h11(n)

h12(n)

h21(n)

h22(n)

w11(n)

w12(n)

w21(n)

w22(n)

s1(n)
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x1(n)

x2(n)

y1(n)

y2(n)

Fig. 1. 2-Channel Mixing and Demixing System

Figure 1 illustrates the BSS scheme for two sources with the source signals
si(n), the sensor signals xi(n), and the BSS output signals yi(n), respectively
(i = 1, 2). The unknown mixing system is modeled by M -tap room impulse
responses hij(n) and the demixing system determined by BSS is modeled by L-
tap FIR filters wij(n) (j = 1, 2). The microphone signals and BSS output signals
can then be written as:

xi(n) =
2∑

j=1

M−1∑

κ=0

hji(κ)sj(n − κ) (1)

yi(n) =
2∑

j=1

L−1∑

κ=0

wji(κ)xj(n − κ). (2)

The source separation problem is then solved by appropriately determined
demixing filters. Further details on the adaptation of the demixing filters are
given in, e.g., [7].

As shown in [6], TRINICON-based BSS inherently identifies the (unknown)
mixing system up to a scaling for Q = 2:

wji(n) = −αji · hji(n) and wjj(n) = αii · hii(n), i �= j. (3)

Based on this system identification, the TDOA (Time Difference of Arrival) can
be derived from the demixing filters simultaneously for both active sources from
the main peaks of wij(n) [6].
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2 BSS and Source Localization in Rapidly Time-Varying
Scenarios

We now investigate the separation and localization performance of the chosen BSS
algorithm for rapidly time-varying scenarios. The experimental setup is as follows:
We assume abrupt rotations of a microphone array consisting of two sensors, which
represents a worst case for time-variant scenarios. Dealing with rapidly rotating
microphone arrays is important in many applications of BSS, e.g. when the micro-
phone array is held and moved by a person. Figure 2 illustrates the DOAs (Direc-
tion of Arrival) for two typical scenarios: In the first scenario, the broadside of the
microphone array points between the two sources and the array is rotated by ±30◦.
In the second scenario, one source is located broadside and the other source is on
the side after each turn, where the rotations are ±80◦. Note that the array orienta-
tion is abruptly changed and that the DOA is measured relative to the broadside
direction of the array. We use clean speech signals as sources, which are convolved
by measured impulse responses of a low-echoic chamber (T60 ≈ 50ms) to repre-
sent the microphone array inputs. All simulations are performed with sampling
rate fs = 16kHz and demixing filter length L = 1024.
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Fig. 2. DOAs for two scenarios with abrupt microphone array rotations

Figures 3 and 4 depict both the BSS gain and the results of the source local-
ization obtained with the chosen BSS algorithm for both scenarios, where the
BSS gain in dB represents the suppression of the interfering source in each BSS
channel. The vertical dashed lines indicate the time instants, when the array ori-
entation is changed. The channel-averaged BSS gain for each array orientation is
displayed in the framed boxes. In scenario 1, the chosen BSS algorithm exhibits
the expected good source separation and localization performance: After each
array rotation, the demixing filters allow for good source separation and the es-
timated TDOAs follow the DOAs given by scenario 1. In scenario 2, we observe
that the investigated BSS algorithm is only able to track the first array rotation
(see the time period 10s-20s), but already with a degradation in separation and
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Fig. 3. BSS gain (top) and Estimated TDOAs (bottom) obtained with the chosen BSS
algorithm, Scenario 1
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Fig. 4. BSS gain (top) and Estimated TDOAs (bottom) obtained with the chosen BSS
algorithm, Scenario 2

localization performance. However, the chosen BSS algorithm fails to separate
and locate the two sources after the subsequent array turns: The BSS gain is
even negative and the estimated TDOAs seem to be ”frozen”. The results of the
TDOA estimation suggest that the chosen BSS algorithm is not able to adapt
the demixing filters after the second array rotation. Therefore, we investigate
the demixing filters. The first 32 coefficients of the demixing filters w12(n) and
w21(n) are depicted in Figure 5. The filter coefficients of w11(n) and w22(n)
are not depicted, because they mainly consist of distinct positive peaks at 16
samples, which leads to a delayed but mainly unfiltered contribution of the mi-
crophone signals to the two BSS outputs. The vertical dashed lines indicate again
array rotations. The horizontal dashed lines mark the filter coefficients which are
important for suppressing sources from -80◦, 0◦, and 80◦, respectively. By ap-
propriately placing negative peaks in the demixing filters w12(n) and w21(n),
spatial nulls are formed and source 1 and source 2 are suppressed in BSS output
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2 and in BSS output 1, respectively. We observe that after the second array
rotation, the spatial null in 0◦, which is caused by the negative peak at filter
coefficient 16 in w21(n), is fixed. This spatial null cancels the source located in
broadside direction and thus the source on the side is enhanced. However, the
BSS adaptation does not form a significant negative peak in w12(n) to cancel the
source at ±80◦. Instead, a minor positive peak at filter coefficient 16 is formed,
which basically corresponds to a filter-and-sum beamformer at 0◦ enhancing the
broadside source.
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Fig. 5. Demixing filters obtained with the chosen BSS algorithm in scenario 2

In order to further analyze and understand the encountered problem, we take
a close look at the update rule of the chosen BSS algorithm given in [4]. For each
online block m, matrix W(m), which contains the demixing filters wij(n) in a
so-called Sylvester structure, is updated as follows:

W(m) = W(m − 1) − μ�W(m). (4)

Incorporating the natural gradient, the update �W becomes

�W = 2
∞∑

i=0

β(i, m)W {Ryy − bdiag {Ryy}} · (bdiag {Ryy})−1
, (5)

where the weighting function β(i, m) allows offline and online implementations.
The operator bdiag {Ryy} returns the block-diagonal elements of Ryy, which is
the cross-correlation matrix of the BSS outputs. After abrupt array rotations, the
update �W is then based on badly adapted demixing filters and on BSS output
signals, which will not exhibit any source separation. Due to this improper data,
the chosen BSS algorithm is not able to adapt the demixing filters and thus fails
to track the sources after abrupt array rotations in scenario 2. This deficiency
might be caused by the approximations described in [7].

3 Shadow-BSS

In Section 2, we studied a scenario, where the chosen BSS algorithm was not
able to track abrupt array rotations. However, we could always observe that
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Fig. 6. Block diagram of the Shadow-BSS algorithm

the chosen BSS algorithm is capable to converge to well-separating demixing
filters after blind initialization. Therefore, we propose the usage of a so-called
shadow-BSS system, which is periodically blindly initialized and – in the case
of outperforming the signal separation of the main BSS system – the demixing
filters of the shadow-BSS are transferred for use in the main BSS system. The
shadow-BSS system is motivated by the successful usage of shadow systems in,
e.g., adaptive echo cancellation [8]. The effectiveness of the shadow-BSS scheme
is demonstrated by simulations.

3.1 Algorithm

Figure 6 shows the block diagram of the proposed shadow-BSS system, where
the dependency on time has been omitted for notational convenience. BSS and
BSS(Sdw) denote the main BSS system and the shadow-BSS system. Note that
the demixing filter length in the shadow-BSS system L(Sdw) can be chosen inde-
pendently from L. Both systems use the two microphone signals x1 and x2 and
perform source separation, which leads to the output signals y1,2 and y

(Sdw)
1,2 .

The shadow-BSS system is periodically blindly reinitialized at multiples of pe-
riod T (Sdw). We now investigate the method for replacing the demixing filters
of BSS by the demixing filters of BSS(Sdw), if BSS(Sdw) performs better source
separation.

Based on the two pairs of output signals, the blocks norm(xcorr(.)) compute
the norms of the cross-correlations as follows:

norm {Ryy(m)} =

√√√√
D∑

τ=−D

|Ryy(m, τ)|2 (6)

norm
{
R(Sdw)

yy (m)
}

=

√√√√
D∑

τ=−D

∣∣∣R(Sdw)
yy (m, τ)

∣∣∣
2

. (7)

The parameter τ denotes the time lags of the cross-correlation. The cross-
correlation norms may now be considered as a quantity measuring the separation
performance of BSS and BSS(Sdw). In the case of good source separation, the
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two output signals of a separation system are sufficiently uncorrelated and the
according norm in Equations (6), (7) is small. Hence the ratio of both cross-
correlation norms r(m),

r(m) =
norm

{
R

(Sdw)
yy (m)

}

norm {Ryy(m)} (8)

is used as a decision variable, which indicates the separation system (BSS or
BSS(Sdw)) with the better separation performance. To avoid unnecessary trans-
fers of the demixing filters from BSS(Sdw) to BSS, we can average r(m) with an
exponentially decaying forgetting factor λ(Sdw):

r(m) = λ(Sdw)r(m − 1) +
(
1 − λ(Sdw)

) norm
{
R

(Sdw)
yy (m)

}

norm {Ryy(m)} . (9)

Comparing r(m) to the threshold r
(Sdw)
Th allows for a decision:

r(m) < r
(Sdw)
Th ⇒ Transfer demixing filters from shadow-BSS to BSS

r(m) ≥ r
(Sdw)
Th ⇒ Keep demixing filters of BSS

The sensitivity of the overall system may be adjusted by the threshold r
(Sdw)
Th .

Note that the latter L − L(Sdw) filter coefficients of BSS are set to zero, if the
demixing filters are transferred from shadow-BSS to BSS.

3.2 Simulations

We now present both the separation performance and the results of the TDOA
estimation obtained with the proposed algorithm based on a shadow-BSS system
for scenario 2 described in Section 2. The demixing filter lengths are L = 1024
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and L(Sdw) = 30. Moreover, the configuration of the shadow-BSS system is
T (Sdw) = 2s, λ(Sdw) = 0.6, and r

(Sdw)
Th = 0.8.

Both the separation performance of BSS and the estimated TDOAs depicted
in Figure 7 illustrate that the proposed shadow-BSS system is capable to track
even the worst case of abrupt microphone array rotations. After a few seconds,
the estimated TDOAs represent the true DOAs illustrated by Figure 2. Again,
we investigated the demixing filters of BSS influenced by shadow-BSS, where we
especially focus on the two cross-filters w12(n) and w21(n). As we see from Fig-
ure 8, the spatial nulls formed by the demixing filters now follow the alternating
DOAs of the sources caused by the abrupt array rotations. Finally, it should be
mentioned that no audible artefacts could be observed when the demixing filters
are transferred from shadow-BSS to BSS.

4 Conclusions

In this paper, we first investigated the source separation and localization perfor-
mance of the chosen BSS algorithm in the case of abrupt array rotations. We found
that for certain relevant cases the chosen BSS algorithm was not able to main-
tain the usually high separation performance and thus fails to localize the sources
correctly. We then proposed an extension to BSS, which incorporates a periodi-
cally blindly initialized shadow-BSS system. If the separation performance of the
shadow-BSS system outperforms the main BSS system, the demixing filters were
transferred from the shadow-BSS system to the main BSS system. An appropri-
ate method for comparing the separation performance of both systems was intro-
duced. Finally, we would like to mention that the proposed shadow-BSS system
may also be applied in the case of rapidly moving sources.
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Abstract. The mechanisms responsible for the initiation, maintenance
and spontaneous termination of atrial fibrillation (AF) are not yet com-
pletely understood. Though much of the underlying physiology has been
well determined, it has been demonstrated in numerous clinical investi-
gations that the autonomic nervous system plays an important role in
AF genesis and maintenance. In this work the effects of a widely used
anaesthetic (propofol) in AF therapies has been studied. ECG recording
and 12 intracardiac bipolar leads were recorded from 17 patients diag-
nosed with AF at both baseline and during anaesthetic infusion, in order
to study its effects on AF behavior. By considering all intracardiac leads,
the dominant atrial cycle length found at baseline was higher than du-
ring propofol infusion, but this difference was not statistically significant.
However, the process of averaging results over all 12 leads may obscure
clinically significant changes. In order to try to emphasize any differences
which may exist, Principal Component Analysis (PCA) and Indepen-
dent Component Analysis (ICA) were applied. This statistical analysis
did show a significant difference between both groups. The shorter cycle
lengths found in this study at baseline are consistent with parasympa-
thetic and/or other physiological modulation during anaesthetic infusion
and suggest that propofol may have antiarrhythmic properties.

Keywords: Atrial fibrillation, anaesthetic, Independent and Principal
Component Analysis (ICA and PCA).

1 Introduction

Atrial fibrillation (AF) is the most commonly encountered arrhythmia in clinical
practice, with prevalence rising to near 10% in the elderly. AF is originated at the
atria (the upper heart chambers), and is considered to be due to the coexistence
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of multiple re-entrant atrial wavelets which are often initiated by arrhythmogenic
foci located within the pulmonary veins [1,2]. Among the factors contributing
to the genesis or maintenance of circulating wavelets, the Autonomic Nervous
System (ANS) may play a significant pro-arrhythmic role [3].

Since AF is associated with an elevated heart rate, a common treatment strat-
egy is heart rate control, although there is still clinical controversy over whether
rhythm control (i.e., conversion to normal sinus rhythm) is more desirable. Car-
dioversion is the process of restoring the AF rhythm to normal sinus rhythm
[4]. However, pharmaceutically-induced cardioversion is only marginally effec-
tive in treating this arrhythmia, and may have the potential for serious side ef-
fects, including life-threatening pro-arrhythmic effects. Therefore, in recent years
catheter-based ablation of atrial tissue by application of energy through intrac-
ardiac catheters has become a widely used therapeutic method in patients with
both persistent and paroxysmal AF [5].

The radiofrequency (RF) ablation procedure consists of generating electrical
barriers in various sites within the atria by altering the tissue properties in the
vicinity of the ablating catheter tip. The extent of the altered tissue depends on
the power and duration of the application, as well as on the characteristics of
the tissue itself.

During the RF catheter ablation procedure (and other cardiac electrophysio-
logical studies), patients are typically under the influence of anaesthetic agents.
One of the most useful agents is propofol (2,6-diisopropylphenol) which is a new,
rapidly acting intravenous anaesthetic. The rapid redistribution and metabolism
of propofol results in a short elimination half-life of approximately one hour, and
suggests that the drug could be suitable for use in short procedures. This is the
reason for the recent interest in whether (and how) propofol may affect the
electrophysiological properties of cardiac tissue, and hence alter the electrical
activity within the atria.

The purpose of this study was, therefore, to explore the short-term influence
of propofol on the electrical activity within the atria in patients with AF, who
were undergoing catheter ablation.

A working hypothesis is that the cumulative effect of the numerous wavelets
circulating within the atria affect the spatiotemporal organization of AF, and
hence determine the overall fibrillatory wavefront observed within the atria. The
time course of these circulating electrical wavelets is determined by the local
refractoriness of the tissue (i.e., its inability to generate action potentials at an
arbitrarily high rate). Propofol may act by altering atrial refractoriness, but its
exact effects are unknown. A good index of refractoriness is the overall atrial
cycle length (which is the inverse of the dominant frequency of the fibrillatory
waveform). This has previously been shown to be a local index of atrial refractori-
ness during fibrillation [6,7,4]. Accordingly, in this paper we attempt to measure
the dominant fibrillatory frequency (and hence atrial refractoriness) both before
and during the administration of propofol.

Since the localized intracardiac electrograms (IEGMs) recorded during the
procedure are a mixture of both local and global cardiac activity, it can be
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hard to distinguish overall trends. Therefore, we have used Principal Compo-
nent Analysis and and Independent Component Analysis to emphasize the most
significant trends in the measured set of IEGMs.

2 Data Acquisition

IEGMs were recorded in 17 patients (13 paroxysmal AF and 4 persistent AF) be-
fore and during anesthesia with propofol (bolus of 100-180 mg/kg intravenously
with incremental doses depending on the weight and time to hypnosis). These
patients were undergoing radio-frequency catheter ablation. Informed consent
was provided by all patients, and the study was approved by the Hospital Ethics
Review Board. A bipolar catheter was positioned in the high right atrium, and a
24-pole catheter (Orbiter, Bard Electrophysiology, 2-7-2 mm electrode spacing)
was positioned with electrodes at the level of the atrial septum and the left and
the right atriums. Since these are bi-polar electrograms, the results are in a set
of 12 signals, which we refer to as lead or dipole 1-2, 3-4, etc. While the exact
positioning of the catheter will vary from subject to subject, in general the leads
1-2, 3-4, and 5-6 are in the left atrium, leads 7-8, 9-10, 11-12 are in the septum,
and leads from 15-16, 17-18, . . . to 23-24 are in the right atrium.

Contact catheter data and surface three-lead ECGs (I, aVF, V1) (1 kHz sam-
pling rate, 16 bit A/D conversion, equipment supplied by Siemens-Elema AB,
Solna, Sweden), were recorded simultaneously on the Duo Laboratory system
(Bard) over 30 to 60 seconds before and during the anaesthetic effect.

Note that bipolar electrograms, collected from a pair of closely spaced elec-
trodes, measure the differential voltage between the two electrodes. This di-
fferential measurement is equivalent to a spatially high-pass filtered version of
the underlying activation traversing the two electrodes. Thus it is sensitive to
the direction of nearby depolarization and repolarization wavefronts.

3 Methods

3.1 Frequency Domain Analysis

A fast Fourier transform (FFT) was calculated on the wave over a 4-s Hamming
window of 4096 points just prior to energy delivery, overlapping 50% between
adjacent windowed sections. The maximum peak of the resulting magnitude
spectrum was identified and the positions of the harmonic peaks were determined
based on the position of the maximum peak [8].

3.2 Principal Component Analysis

PCA is a popular data processing and dimension reduction technique [9]. PCA
seeks the linear combinations of the original variables such that the derived
variables capture maximal variance. The objective is to find a (linear) transfor-
mation of the original variables, ordered by high proportion of the variation of
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the old variables, in a set of new uncorrelated variables, the principal compo-
nents (PCs). PCA can be done via the singular value decomposition (SVD) of
the data matrix. Biological expression data are currently rather noisy, and SVD
can detect and extract small signals from noisy data.

In detail, let the data X be a n × p matrix, where n and p are the number
of observations or samples and the number of variables, respectively. Without
loss of generality, assume the column means of X are all 0. Suppose we have the
SVD of X as

X = UDVT , (1)

where U are the PCs of unit length, and the columns of V are the corresponding
loadings of the PCs. The variance of the ith PC, is d2

i , with di being the ith

element in the diagonal of D. Usually the first q (q << p) PCs are chosen to
represent the data, thus a great dimensionality reduction can be achieved.

3.3 Independent Component Analysis

ICA is a technique recently developed for the analysis of multidimensional sig-
nals [10,11]. It has been employed in numerous biomedical applications, such
as electroencephalography (EEG), magnetoencephalography (MEG), functional
magnetic resonance imaging (fMRI) electrocardiography (ECG) and magneto-
cardiography (MCG), among others [11,12].

PCA is a common pre-processing technique for signal processing before using
ICA [10]. The first step is to center X, subtract its mean vector to make X a zero
mean variable. The second is using PCA to find a smaller set of variables with less
redundancy. The application of ICA to the study assumes that the sources are
non-Gaussian and mutually independent [13,14]. In the ICA model, the observed
data X has been generated from source data through a linear process X=AS,
where both the mixing matrix A and the source S are unknown. It is assumed
that X is the observed data vector with a dimension n, number of the atrial
signals recorded at different electrodes, S is the m-dimensional source vector,
therefore A requires to be an n × m matrix of full rank with n ≥ m. FastICA
has been the algorithm employed. It is a computationally highly efficient method
for performing the estimation of ICA which uses an approximation of negentropy
and a fixed-point iteration scheme to carry out the optimization of the contrast
function.

3.4 Statistical Analysis

The parameters are expressed as mean ± SD. Paired and unpaired t-tests were
used for comparison between the 2 groups of results. Comparison of serial mea-
sures was obtained by repeated measures ANOVA coupled with the Student-
Newman-Keuls test. Results were considered to be statistically significant at
p < 0.05. All statistical analyses were performed with the SPSS program.
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4 Result

4.1 Results from Complete Set of 12 Lead Electrograms

At first, by applying frequency domain analysis to the signals (imposing a range
between 4-9Hz for the atrial frequency), the average dominant frequency from
each recording was calculated, before propofol administration and during its
effect. The results showed a trend in which the frequency was reduced 6.14±0.93
versus 5.99 ± 0.79 Hz, but it was not statistically significant (p = 0.14).

(a) Fp from original
signal

(b) Fp extracted from
PCA

(c) Fp extracted from
ICA

Fig. 1. Average Main Frequency (Fp) from original leads (left), 5PCs (middle), and
5ICs (right) in non-anaesthetic (basal) and anaesthetic (propofol) states

In order to improve the differences between both groups, PCA and ICA were
applied. The chosen parameter to discriminate between both groups was the
main atrial fibrillatory frequency. In order to discard a noise/signal separation,
the dimensionality of the data was reduced using the first eigenvectors, because
most of the signal is contained in the first few PCs. There were statistically
significant differences between the frequencies pre and post-propofol when the
analysis was carried out on the reduced set of PCs. With 7 PCs the frequency
varied from (6.26 ± 0.72 Hz at baseline to 5.98 ± 0.64 Hz,(p = 0.009) at peak
propofol effect. These 7 PCs captured 95% of the signal energy. With 5 compo-
nents the change was from 6.35 ± 0.72 to 6.04 ± 0.57 Hz, p = 0.012), and these
5 PCs typically captured 85% of the energy (Fig. 1). Therefore PCA is a useful
tool in more clearly indicating statistically significant trends.

The results of applying ICA after PCA, to the index of the last eigenvalue
retained with PCA, were similar in significance, when using dominant fibrillatory
frequency as a classification parameter, obtaining at basal 6.26± 0.67 vs. 6.03±
0.80 Hz during propofol infusion (p = 0.012) for 7 components and 6.41 ± 0.63
vs. 6.06 ± 0.73 Hz for 5 components (p = 0.001).

4.2 Results from the Different Atrial Regions

At each different region inside the atrium, the average frequency of activation was
calculated. For simplicity, we will consider three different regions: right atrium
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(RA), left atrium (LA) and the area between them called the septum area (SA).
In each atrial region the main peak frequency was calculated.

The results from original signals showed a more distinctive difference between
both states in the RA, 6.32 ± 0.96 Hz at basal state vs. 6.08 ± 0.79 Hz during
propofol infusion, (p = 0.069), however, there was any substantial change of
dominant frequency in the LA.

After the application of PCA on the LA (dipoles 1-2, 3-4 and 5-6), statistically
significant differences between both groups were found in the main frequency
of the first two components (6.14 ± 0.54 basal state vs. 5.83 ± 0.79 Hz during
propofol infusion, p = 0.012), and after ICA processing the significance decreased
to p = 0.05 (6.08 ± 0.50 vs. 5.75 ± 0.80 Hz).

On the SA (dipoles 9-10, 11-12 and 13-14), the significant differences of the
main frequency from PCA components are a little higher than in the LA. Before
and during the anaesthetic infusion these values were 6.04±0.64 vs. 5.71±0.65 Hz
respectively (p = 0.038), and after ICA, the changes had a statistical significance
of p = 0.042 (6.05 ± 0.66 vs. 5.76 ± 0.51 Hz).

On the RA (dipoles 15-16, 17-18, 19-20 and 21-22), the most important differ-
ences in main frequency were obtained by extracting 2 components using PCA
p = 0.005 (6.49 ± 0.95 vs. 6.03 ± 0.76 Hz) and with ICA p = 0.014 (6.48 ± 0.91
vs. 6.08±0.78 Hz). If the SA and RA groups are joined (leads 9-10 to 21-22), the
significance of the differences in frequency using the first 4 components extracted
from PCA increases to p = 0.001 (6.44 ± 0.68 vs. 6.00 ± 0.60 Hz), and with ICA
p = 0.002 (6.44 ± 0.67 vs. 6.05 ± 0.64 Hz).

It is possible that this processing leads to an error, because of a different
covariance matrix for the groups before and during anaesthetic infusion, so the
transformation applied to both groups could be different. In order to counteract
this possibility, the signals before and after the anesthetic treatment were con-
catenated prior to PCA and ICA processing, so that a unique transformation
matrix was obtained, which is applicable to both groups. After computing the
fundamental frequency of the PCs and ICs for the corresponding segments, it
was concluded that the differences were also significant, as indicated in Table 1.

Table 1. Statistical Significance of the Change in Main Peak Frequency(Fp) for PCs
and ICs with a Transformation Matrix Based on Basal and Propofol States

PCA Fp ICA Fp
Significance Significance

12 leads PCA 7 comp 0.05 0.03
LA 3 leads (1,2-5,6) 2comp > 0.05 > 0.05
SA 2 leads (9,10-11,12) 2comp 0.05 0.04
RA 4 leads (15,16-21,22) 2comp 0.04 0.02
SRA 7 leads (9,10-21,22) 4comp 0.02 0.01

In addition, it has been possible to find differences between the patients that
have paroxysmal AF and those that have persistent AF. During persistent AF
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the differences between both states are low, and the highest changes are seen in
the left atrial region (Table 2).

Table 2. Statistical Significance of Main Peak Frequency(Fp) with different combina-
tions of PCA and ICA components in Paroxysmal and Persistent AF

Paroxysmal AF Fp Persistent AF Fp
Signification Signification

Original leads LA (1,2-5,6) 0.89 0.89
Original leads SA (9,10-11,12) 0.25 0.36
Original leads RA (15,16-21,22) 0.23 0.38
LA 3 leads (1,2-5,6) PCA 2comp 0.07 0.02
LA 3 leads (1,2-5,6) ICA 2comp 0.94 0.78
SA 2 leads (9,10-11,12) PCA 2comp 0.04 0.36
SA 2 leads (9,10-11,12) ICA 2comp 0.08 0.28
RA 4 leads (15,16-21,22) PCA 2comp 0.01 0.29
RA 4 leads (15,16-21,22) ICA 2comp 0.03 0.18

5 Discussion and Conclusion

Atrial refractoriness may be affected by the administration of anaesthetic agents.
The influence of propofol on the electrophysiological properties of the
myocardium is sparsely reported in the literature. Results from in vitro ex-
periments on isolated rabbit sinoatrial node preparation showed that propofol
had only small effects on atrial conduction at 10μg · ml−1, but that it reduced
conduction drastically at 33μg · ml−1 and caused complete block at 100μg ·
ml−1 [15].

The conclusion from this study is that propofol does affect the electrical prop-
erties of the heart in patients with AF. Its effects in patients with AF are such
that the atrial rate is consistently decreased as a result of the anaesthesia. The
observation of these differences was optimized after the application of PCA and
ICA algorithms, with rates of the first components in the range of the atrial ac-
tivity in AF, discarding noise and improving the statistical significance between
both groups.

These results correlate with those extracted from a study that analyzes the
variability of AF during circadian cycles, where the AF cycle length during
chronic AF exhibits diurnal variability, with longer cycle lengths occurring at
night [16].

Although the exact mechanisms of the alteration of the atrial rate remain
to be fully understood, the results in the present study have important im-
plications. The atrial cycle length is markedly modulated during anaesthesia
compared to the resting conscious state immediately before. This modulation
may affect the activation and the repolarization sequence in the heart. More
information about the effect of individual intra-operative factors would help
to evaluate these phenomena, but it is strongly suggested that the differences
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between electrophysiological properties before and during anaesthetic infusion
are due to true changes in the physiological conditions.
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Abstract. Recently Single Channel ICA has been proposed where it can
be shown that the algorithms learn temporal filters for separating the dif-
ferent components. Here we consider the natural extension to learning a
set of space-time separating filters. We argue that these are capable of
separation above and beyond that possible using only spatial or temporal
methods alone. We then consider the potential of these ideas when ap-
plied to Ictal Electroencephalographic (EEG) data and Brain Computer
Interaction (BCI).

1 Introduction

Independent Component Analysis (ICA) was originally proposed for the blind
separation of vector-valued observations into independent sources. However it
has also been used to learn ‘features’ or codebooks for single channel data that
provide a more efficient representation of a signal than a fixed (non-adapted)
representation [1,2]. Empirical evidence suggested that it was possible to also
use this for signal separation (e.g. [3,4,5]) and it was recently shown [6] that
under certain restricted conditions this is indeed the case.

Here we examine the natural extension of the model in [6] to consider a combi-
nation of space time vectors: Space-Time ICA (ST-ICA). Previously this model
has be studied empirically for the convolutional source separation problem [7,8].
Here we consider the circumstances under which signals are separable within
this model. As with single channel ICA, separation of more sources than sensors
is possible. It therefore provides an appealing alternative to the usual computa-
tionally demanding solutions to the more sources than sensors problem.

Before we embark we note that these ideas are distinct from the Spatiotem-
poral ICA proposed in [9] and it is not equivalent to using temporal information
to learn a spatial unmixing matrix, e.g. as in [10]. In particular ST-ICA takes
advantage of full spatial-temporal filtering.
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2 Mathematical Framework

Traditional ICA assumes that we observe a sequence of vectors x(t) ∈ RQ which
are a linear mixture of independent components: x(t) = As(t). Using nonGaus-
sianity, nonstationarity or temporal structure we can then generally estimate A
blindly up to the usual ambiguities and hence estimate the individual sources:
ŝ(t) = Â−1x(t).

An alternative way to view the problem, first proposed by Cardoso [11], is to
treat it as an additive model:

x(t) =
C∑

p

xp(t) (1)

which can be related back to the original ICA model with xp(t) = aT
p sp(t)

where A = [a1, . . . ,aQ]T . As this alternative approach only defines the indepen-
dent sources within the observation domain it generalises ICA and allows xp(t)
to be intrinsically multi-dimensional. Let Ep define an np-dimensional subspace
containing the ith component: xi(t) ∈ Ei. Then, if the sources are non-Gaussian
(or non-stationary etc.) and as long as all the subspaces, Ei, are linearly in-
dependent the sources can still be separated. Furthermore separation can be
performed using a standard ICA algorithm followed by a component grouping
step. See Cardoso [11] for details.

2.1 Single Channel and Space-Time ICA

In [6] we showed that when the input data is formed from a delay vector of sam-
ples, x(t) = [x(t), x(t−1), . . . , x(t−N +1)]T taken from a single channel, source
separation is still possible and the resulting single channel ICA can be seen as
a special instance of MICA. This means that it is possible to separate multiple
sources from a single channel. However this model carries a rather restrictive
separability requirement. For the MICA subspaces Ep to be independent, the
sources (assuming stationarity) must have disjoint spectral support. This as-
sumption is generally over-optimistic, although under certain circumstances it
may hold approximately. We can, however relax this requirement in ST-ICA as
we descibe now.

Suppose that we observe a vector valued sequence x(t) ∈ RQ that we believe is
composed of multiple independent stationary sources, as in the MICA model (1).
In the same manner as single channel ICA, we can augment the dimension of
the observation space by including delayed copies of observations. Let us define
the Q × N -dimensional space-time vector x̃(t) as:

x̃(t) = [x(t),x(t − 1), . . . ,x(t − N + 1)]T (2)

where N is the number of ‘taps’ in our delay vector. We can now treat this as
a Q × N dimensional MICA problem as opposed to a Q dimensional one. As
with MICA and single channel ICA source separation can be performed by using
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a standard ICA algorithm followed by component grouping, [11]. We call this
ST-ICA. Note that spatial ICA, spatial MICA and convolutional ICA are all
restrictions of the ST-ICA model. The link between ST-ICA and convolutional
ICA modelling is further explored in [7,8].

3 Separability of Sources

Like single channel ICA, ST-ICA can provide an advantage over spatial ICA
(and MICA) when the independent sources have a finite spectral support. Many
signals exhibit this property, at least approximately, as is evidenced by the pop-
ular use of Singluar Systems Analysis [12]. In this context we can define ST-ICA
separability requirements in terms of MICA-type requirements at each frequency.

If we assume that the subspaces, Ep, have already been correctly identi-
fied it only remains to determine conditions for which they are linearly inde-
pendent. This means that the space-time correlation matrix for each source,
Rxp = E{xpxT

p }, must be rank deficient and the sources characterisable as multi-
channel singular systems.

If we further assume that the sources are stationary then we know that the
correlation matrices, Rxp , are block Toeplitz which, in the large window limit
(N → ∞) are block diagonalizable via the Fourier transform giving the matrix
valued power spectra, Sxp(ω).

Transforming the MICA model into the Fourier domain gives:

X(ω) =
∑

p

Xp(ω) (3)

and due to the block diagonal structure of the correlation matrices we can now
consider each frequency, ω, separately. Let us assume that each Xp(ω) is re-
stricted to a subspace Ep(ω) ⊂ CQ. Without any further restriction on the
model we therefore have the following separability requirement:

Separability: A Q-dimensional random process, x(t) =
∑

p xp(t), com-
posed of independent stationary random processes, xp(t), is linearly sep-
arable if and only if the subspaces Ep(ω) such that Xp(ω) ⊂ Ep(ω) are
linearly independent.

This allows there to be more sources than sensors with the restriction that there
should be no more than Q sources present at any given frequency.

4 Applications to EM Brain Signals

The technique will be trialled on two different examples of EEG data. In the first
set, clinical data in the form of epileptic (ictal) EEG will be analysed with the
goal of extracting epileptic seizure components from cortical recording channels
placed either over the epileptic focus (focal) or further away (extra focal).
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In BCI brain signals are interpreted to provide a means of communication.
One of the more popular applications of BCI is called the P300 word speller
introduced by [13]. The P300 evoked potential is a late positive wave that occurs
over the parietal cortex at about 300 ms after the onset of a meaningful stimulus.
The P300 word speller presents a matrix of letters, numbers, and other symbols
(generally 6x6), whereby over short intervals one of the rows or columns of
the matrix is randomly flashed (the stimulus). The user selects a character by
focusing attention on individual characters in the matrix. The premise is that
the P300 recording in the EEG is prominent only in those responses elicited
by focusing attention on the desired character, these are, however, buried in the
ongoing brain activity, and artifacts (such as movement artifacts, eyeblinks, etc.).
Stimulus locked coherent averaging of the P300 responses is the usual method
of enhancing the SNR, however this requires trails to be repeated several times.
Not only is this costly in terms of time but it is also widely believed that due to
habituation this may affect the signal as well as the noise components.

4.1 Ictal EEG

The data were recorded during pre-surgical evaluation at the Epilepsy Center
of the University Hospital of Freiburg, Germany. Intracranial grid-, strip-, and
depth-electrodes were used. The EEG data were acquired using a Neurofile NT
digital video EEG system with 128 channels, 256 Hz sampling rate, and a 16 bit
analogue-to-digital converter. 23 EEG recordings with simple partial, complex
partial and generalized tonic-clonic seizures from patients with focal epilepsy
originated in the temporal region were recorded and made available for dissem-
ination [14].1 We depict the results when applied to a seizure recording of one
specific patient with temporal lobe epilepsy with 6 cortical recording channels.
Figure 1a depicts the data, channels 1,2 & 3 are focal to the seizure and channels
4,5 & 6 are extra-focal. The vertical lines in each figure represent the start and
stop of the seizure as indicated by an epileptologist. Channel 3 is the channel
with the strongest visible seizure involvement, the extra-focal electrodes show
no visible seizure recording.

Figure 1b depicts the outputs of ensemble ICA (Fast ICA) on all 6 recording
channels. It can be seen that the unmixing process is not sucessful in completely
isolating seizure activity, most probably because the recordings are already fairly
independent of each other this is apparent in the mixing matrix as shown in
Figure 1c where the focal (seizure) components map almost 1:1 onto their cor-
responding recording channels.

Next, the pair of electrodes 3 & 6 are analysed with ST-ICA. (The space-time
vector had dimension 190 = 2×95, and a data reduction was performed to reduce
the data-matrix to rank 30 through SVD). Figure 1d (upper) depicts the mixing
filters learned by the ST-ICA process; two per independent component (IC).
These can be manually clustered into similar groups of shifted filters. Figure 1d

1 We are grateful to the Epilepsy Center of the University Hospital of Freiburg, Ger-
many for their permission to use the invasive EEG recordings in this study.
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Fig. 1. (a) 6 channels of ictal EEG recorded from the cortex; (b) following ensemble
ICA and (c) mixing matrix. (d) The mixing filters and their cross-correlations following
ST-ICA on channels 3 and 6.

(lower) shows the cross-correlation between the two mixing filters for each IC for
100 lags - in each case greatest (absolute) value of cross-correlation is indicated
along with the lag at which it occurs. It can be seen that a number of filters
peak at a lag of around 10-12 samples (39.1-46.9 ms) with the filters of channel
3 leading those of channel 6, whilst others are maximal at around 0-5 samples
(0-19.5 ms) with channel 6 leading channel 3.

Figure 2a shows resulting waveforms following manual clustering of the filters
into 3 groups, S1-S4. S1 & S2 depict seizure components, and S3 & S4 show no
evidence of seizure activity. Figures 2b, 2c and 2d depict an examplar waveform
extracted for each of the main clusters Seizure 1, Seizure 2 and non-seizure. In
each case the relative amplitude scales have been fixed and the cross-correlation
between both depicted. It can be seen that for the seizure component, the signal
over the focal area is strongest and leads a weaker signal in the extra-focal
electrode which lags by about 50 ms. The non-seizure components are equally
present in both channels with no discernable lags.
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Fig. 2. (a) Reconstructed sources following ST-ICA; (b)-(d) depict seizure and noise
components projected to both recording channels 3 and 6 along with their cross-
correlations

4.2 BCI P300 Speller

For this demonstration we used data from data set IIb (P300 speller paradigm)
obtained from the BCI competition 2003 data bank. The data was collected from
one subject with 64 scalp electrodes (10/20 System) and sampled at 240 Hz. We
demonstrate the proposed methods on the data by randomly selecting only five
1.5 s-epochs with possible P300 patterns and concatenate them to form a 7.5s
trial. We apply ST-ICA to channels C3 and C4 (channels C3 & C4 cover the
P300 focus). Finally we test using a similar setup whilst replacing alternating
epochs with P300, non-P300, P300 etc. Figure 3 depicts the two channels C3
and C4 with the 5 epochs highlighted, within each epoch the first vertical line
represents the presentation of the visual stimulus and the second line - 300
ms afterwards - represents the location where the P300 response (if present)
should be maximal. The second part of Figure 3 depicts the two resulting P300
components after applying ST-ICA - 16 independent components were manually
identified as contributing towards P300 responses and they were projected back
to the measurement space. Although still relatively noisy, clear peaks can be
seen around the 300 ms mark following stimulus presentation. In order to test
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Fig. 3. 2 channels of EEG (C3 and C4) made up of concatenated P300 epochs (5
epochs). The extracted P300s are depicted following ST-ICA. Alternate P300/ non-
P300 epochs are analyzed in the same way.

the reliablity of the process in the absence of P300 responses the final section of
Figure 3 depicts the same analysis as before, however the dataset is chosen such
that a P300 response appears in an alternating pattern. i.e. P300 - non-P300 -
P300 - non-P300 - P300. It can be seen that whilst P300 responses are present
where expected, the two epochs where there was no visual stimulus present, show
no P300 response at all.

5 Discussion and Conclusion

ST-ICA provides a method of exploiting both spatial and temporal means of
discrimination between independent sources, thereby allowing more sources to
be extracted from fewer observation channels. We have shown that applied to
quite different types of brain signals the ST-ICA technique yields very insightful
results. This technique will be extremely useful in areas of brain signal analysis
where multiple brain sources underly few channel recordings - either by design
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or through necessity. For the ictal EEG we have shown how an extra-focal elec-
trode can still detect the presence of an epileptic seizure elsewhere in the brain,
indicating that few channel recordings could be successfully used for systems
such as seizure onset predictors. Similarly, in the BCI scenario we see that we
can successfully enhance the presence of P300 evoked potentials using as little
as 5 epochs - this is paramount for the design of BCI systems whose overall aims
are always to be fast and accurate.

References

1. Abdallah, S., Plumbley, M.D.: If edges are the independent components of natural
images, what are the independent components of natural sounds? In: Proc. Int
Conf. ICA 2001, pp. 534–539 (2001)

2. Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind sepa-
ration and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

3. Casey, M., Westner, A.: Separation of Mixed Audio Sources by Independent Sub-
space Analysis. In: Proc. Int. Comp. Music Conf. Berlin (2000)

4. James, C.J., Lowe, D.: Extracting information from multichannel versus single
channel EEG data in epilepsy analysis. In: Hyder, A.K., Shahbazian, E., Waltz, E.
(eds.) Multisensor Fusion, pp. 889–895. Kluwer Academic Publishers, Dordrecht
(2002)

5. James, C.J., Gibson, O., Davies, M.E.: On the analysis of single versus multiple
channels of electromagnetic brain signals. Artificial Intelligence in Medicine 37(2),
131–143 (2006)

6. Davies, M.E., James, C.J.: Source Separation using Single Channel ICA., Signal
Processing, special issue on Advances on Independent Component Analysis (in
press, 2007)

7. Abdallah, S., Plumbley, M.D.: Application of geometric dependency analysis to
the separation of convolved mixtures. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA
2004. LNCS, vol. 3195, pp. 540–547. Springer, Heidelberg (2004)

8. Davies, M.E., Jafari, M., Abdallah, S., Vincent, E., Plumbley, M.D.: Blind Source
Separation using Space-Time Independent Component Analysis. In: Makino, S.,
Lee, T-W., Sawada, H. (eds.) Blind Speech Separation, Springer, Heidelberg (to
appear, 2007)

9. Stone, J.V., Porrill, J., Buchel, C., Friston, K.: Spatial, Temporal, and Spatiotem-
poral Independent Component Analysis of fMRI Data. In: 18th Leeds Statistical
Research Workshop on Spatial-temporal modelling and its applications (July 1999)

10. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source
separation technique using second-order statistics. IEEE Trans. SP 45(2), 434–444
(1997)

11. Cardoso, J.-F.: Multidimensional independent component analysis. In: Proc.
ICASSP’98, Seattle, WA, pp. 1941–1944 (1998)

12. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure
SSA and Related Techniques. Chapman and Hall, Sydney (2001)

13. Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a mental
prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neu-
rophysiol 70, 510–523 (1988)

14. epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/
eeg-database



M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 585–592, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Extraction of Gastric Electrical Response Activity from 
Magnetogastrographic Recordings by DCA 

C.A. Estombelo-Montesco1, D.B. De Araujo1, A.C. Roque1, E.R. Moraes1,  
A.K. Barros2, R.T. Wakai3, and O. Baffa1 

1 Department of Physics and Mathematics, FFCLRP, University of Sao Paulo, Ribeirao Preto, 
SP, Brazil, 14040-901 

estombelo@pg.ffclrp.usp.br, draulio@usp.br,  
antonior@.ffclrp.usp.br, eder@ffclrp.usp.br, baffa@usp.br 

2 Department of Electrical Engineering, Federal University of Maranhao, Sao Luis,  
Maranhao, Brazil 
allan@ufma.br 

3 Department of Medical Physics, Medical School, University of Wisconsin, Madison-WI,  
USA 

rtwakai@wisc.edu 

Abstract. The detection of the basic electric rhythm (BER), composed of 3 cy-
cles/minute oscillation, can be performed using SQUID sensors. However the 
electric response activity (ERA), which is generated when the stomach is per-
forming a mechanical activity, was detected mainly by invasive electrical 
measurements and only recently one report was published dealing with its de-
tection by magnetic measurements. This study was performed with the aim to 
detect and extract the ERA and ECA noninvasively before and after a meal. Af-
ter acquire MGG recordings the signals were processed to extract both source 
components and remove cardiac interference and others interferences by an al-
gorithm based on Dependent Component Analysis (DCA) then autoregressive 
and wavelet analysis was performed. Therefore, first, we can compare their 
relative amplitudes in the time or frequency domain, and get evidences of ERA 
signal. Second, we can get the spatial contribution from each channel to the 
source signal extracted. Finally, results have shown that there is an increase in 
the signal power at higher frequencies around (0.6-1.3 Hz) from ERA source 
component usually associated with the basic electric rhythm (ECA source com-
ponent). We show that the method is effective in removing interference signals 
of MGG recordings, and is computationally efficient. 

1   Introduction 

The first non-invasive measurement of the stomach’s electrical activity was made by 
Alvarez in 1922. Since then this field has grown considerably due to the extensive ex-
ploration of information from electrogastrography (EGG) and more recently from 
magnetogastrography (MGG) [1]. While the literature shows many contributions 
leading to a better understanding of gastric electrical activity (GEA), the EGG is dif-
ficult to measure, mostly because it is superimposed with other electrical signals that 
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are difficult to discriminate [2]. The MGG records the magnetic field produced by the 
GEA, and has been measured using SQUIDs (Superconducting Quantum Interference 
Device). The magnetic signals are less affected by tissue conductivity than the electric 
signals and show a stronger dependence of source-to-sensor distance [3].  MGG, thus, 
can provide higher spatial resolution than EGG [3]. 

Some evidence suggests that most gastrointestinal diseases are related to gastric 
motility impairment (or mechanical activity) [4]. Previous invasive studies have 
shown that the electrical extracellular signal detected with serosal electrodes has two 
distinct components. One, often referred to as ‘electrical control activity’ (ECA) or 
‘slow wave’, is an omnipresent periodic activity not necessarily related to contractile 
motion. The second component, called electrical response activity (ERA) or ‘spike ac-
tivity’, is time-locked to the ECA, but only occurs in conjunction with phasic contrac-
tile activity[5;6]. A better characterization of this ERA is considered a subject of ma-
jor importance that had not been investigated satisfactorily in noninvasive human 
studies. Unfortunately, MGG signals are highly contaminated. 

Recently, major advances in signal processing have been achieved with blind 
source separation (BSS). In most cases, extraction of all the source signals is unneces-
sary; instead, a priori information can be applied to extract only the signal of interest. 
Here we propose a strategy based on the algorithm of Barros and Cichocki [7;8] to 
separate the ECA and ERA signal from the other interferences, even in cases of low 
signal-to-noise-ratio, which we call dependent component analysis (DCA).  For a 
quasi-periodic signal, DCA identifies the signal component based on the time delay 
determined from the temporal characteristics of the ECA in MGG measurement. 

2   Material and Methods 

The recordings were made with a 74-channel first-order gradiometer system (Magnes, 
Biomagnetic Technologies, Inc) housed within a magnetic shielded room. The system 
consists of two sensor units, A and B, each containing 37 channels uniformly distrib-
uted over circular areas of diameter 13.7 and 14.4 cm respectively. Seven asympto-
matic subjects volunteered for the study.  

The subjects lay with the stomach over the B sensor through a special bed with an 
opening such that the stomach could lie directly on the B sensor. The A sensor was 
positioned over the back of the subject. With this experimental arrangement it was 
possible to acquire signals from the stomach at the closest possible distance. Three 
epochs of duration10 minutes were acquired. The first was acquired before the inges-
tion of the test meal (pre-prandial). After that, a standard test meal comprised of a 
cheese sandwich with 250 kcal (110 kcal bread + 140 kcal cheese) was given to the 
subjects immediately before the second measurement (first post-prandial). Then, the 
last 10 minute acquisition was made (second post-prandial). The dc-coupled MGG 
signals were sampled at 73.1Hz and stored for subsequent analysis. 

2.1   Blind Source Separation Using Temporal Structure  

The proposed strategy to extract ECA and ERA components is based on Dependent 
Component analysis (DCA) method. DCA is a method based on multivariate analysis 
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that uses a priori the delay based on the temporal characteristics of the ECA and ERA 
signal to be extracted (see Figure 3). The method for artifact removal is fully de-
scribed in [8] and a short description  follows. Consider n  sources 

T
nsss ],...,,[ 21=S  that are mixed into vector x  through the following linear com-

bination: ASX = , where A is an nn ×  invertible matrix. Our goal here is to find 

the source of interest, is . In general, the number of independent components can be 

as large as the dimension of X. The method proposed by Barros and Cichocki[7] aims 
at extracting only the desired component with a given characteristic, instead of all 
sources, and has been successfully applied to other applications [8]. The method can 
be described briefly as follows. As we wish to extract only a single source, we can 
write the signal as k)(y(k) T xw= , where w  is a weight vector for that single 

source. Defining the error as )()()( pkykyka −−=ε  and minimizing the mean 

squared error ][)( 2
aεΕ=ξ w , we find: ]y[E pxw = , where )( pkyy p −= .  We 

will use sequential signal extraction along with a priori information about the autocor-
relation function. One practical problem is how to estimate the optimal time delay. A 
simple solution is to calculate the autocorrelation function of the sensor signals and 
find the feature, in our case a peak with appropriate time-lag, corresponding to the 
signal of interest. In order to accomplish this, we model the system using auto-
regression, as described next. 

2.2   The Adaptive Autoregressive Model for Spectrum Estimation 

To characterize the power spectrum of the signal we use the well known autoregres-
sive (AR) model [1;8]. This power spectrum will be used to estimate the optimal time 
delay (before DCA processing) for each desired component and at the end (after DCA 
processing) to compare energies of the estimated source signals in pre-prandial versus 
post-prandial measurements. 

                 

Fig. 1. ERA power spectrum of a pre-prandial 
single recording from raw data. ERA signal 
has weak energy compared to heart compo-
nent at higher frequency. 

Fig. 2. Power spectrum of a first post-
prandial single recording from raw data. 
Two peaks corresponding to the ERA and 
heart components. 

In Figure 1 and Figure 2 we show representative power spectra of segments of the 
raw signal from a pre-prandial and post-prandial recording respectively. These repre-
sentative power spectra show peaks near 0.8 Hz (ERA), indicating a different state 
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compared to pre-prandial measurement in Figure 1. For ECA signal the process is 
similar where we found that the power is at 0.05Hz (or 3cpm). This a priori informa-
tion used to estimate the time-delay for DCA filtering. 

2.3   Avoiding Scaling Factor Problem by Projection Approach 

The estimation of the signal extracted by DCA might be scaled at the output. Subse-
quently this estimation can lead to an erroneous comparison between pre-prandial and 
post-prandial energies if we don’t determine the proper scale factor. To overcome this 
problem we need an estimation method for the scale factor for each signal component 
extracted by DCA. Consider an output vector, wAswxy == . It has an indeterminacy 

that can be expressed as sy α= , where α  is a scaling factor that needs to be esti-

mated for the signal extracted from each epoch (see Figure 3). After extracting the de-
sired source component, y , one can project the source signal of interest back onto 

sensor array signals, calculating the scale factor as follows.  First let us define the fol-
lowing error: yx iib αε −= , where 

ix  is the desired signal and y  is the output of 

the DCA filter.  Next we estimate a scale factor 
iα  that minimizes the mean squared 

error ][)( 2
bi E εαξ = . Then we have 22 )(2)( yyxx iiiii αααξ +−= . The minimum 

will be reached yielding the following scale factor: ][][ 12 xyyi ΕΕ= −α . The scal-

ing factor provides two valuable pieces of information. First if we take the high abso-
lute value of α , then we have the scaling factor for the output of DCA (estimated 
source signal). Therefore we can compare their relative amplitudes in the time or fre-
quency domain, and get evidences of ERA signal. Second, we can get the contribution 
from each channel to the source signal extracted. It allows spatial localization over 37 
channels of the estimated source signal. 

 

Fig. 3. Schematics for scaling factor determination. a) First each source (stomach, heart, tissue, 
artifacts, etc) produces a magnetic signal, actually not seen directly. b) Then each source pro-
duced is mixed with other sources, in our case we consider a linear mixture and it is represented 
by the block mixture process. c)  When the signals are acquired actually we are measuring the 
signals from the mixture process obtaining one time series for each sensor. d) Then separa-
tion/extraction of the source of interest can be done and further evaluated through DCA proc-
ess. e) At the output there is a single time series of interest where a scale factor needs to be  
calculated to estimate the relative amplitude. These steps were applied  for every epoch: pre and 
post-prandial measurements. 
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3   Results: ECA and ERA Components by DCA 

The upper diagram of Figure 4 and Figure 5 shows the ECA(dotted line) and 
ERA(solid line) components extracted at each epoch by DCA. The upper diagram of 
Figure 4 shows the extracted components for the pre-prandial epoch and The upper 
diagram of Figure 5 the extracted components for the first post-prandial epochs. 

Figure 4 and Figure 5 show that ECA component are always present in the stom-
ach. Furthermore, it can be noted that ERA components have higher amplitude than 
the pre-prandial component, especially during plateau phase of the ECA near 50 sec-
onds, 70 seconds, 90 seconds and 110 seconds of Figure 5. 

The right side shows the ECA scale and left side shows the ERA scale. The ECA 
signal component consists of an upstroke followed by a plateau and then by a slow 
depolarization phase with approximate frequency 3 cpm.  Note the difference of am-
plitude between the ERA signals in pre-prandial epoch and the ERA signals of the 
post-prandial epochs. 

The upper diagram of Figure 4 shows the ERA and ECA components during a pre-
prandial epoch. The lower diagram of Figure 4 shows a white solid line, obtained by 
summing the ERA and ECA time series, superimposed on the time-frequency repre-
sentation (TFR) of the ERA component, obtained by the Morlet wavelet transforma-
tion [9;10]. The y-scale of the TFR is from 0.5 Hz to 1.3Hz. A few localized high  
energy regions can be observed for the ERA component, but they are not necessarily 
time-locked with the ECA component. 

 

Fig. 4. Time interval of pre-prandial epoch with the ECA and ERA components in the upper 
panel and the TFR of the ERA component in the lower panel. Superimposed on the TFR with a 
solid line is the sum of the ECA component plus the ERA component, which are shown in the 
upper panel. The scale of the left side is for the TFR of the ERA and the scale on the right side 
is for the summed time series. The x-scale is in seconds. 

In Figure 5, upper panel, shows the ERA and ECA components during the first 
post-prandial epoch. Here, in contrast, the amplitude of the ERA component is greater 
than during the pre-prandial epoch. The lower panel of Figure 5 shows high energy 
spots of the ERA component that are time-locked with the ECA component. This 
characteristic is very important to verify the existence of the ERA component. An-
other characteristic to note is the fundamental frequency of the ERA component; al-
though it concentrates at 0.8 Hz it can vary with time increasing up to 1.30 Hz, but it 
preserves the time-locking with the ECA component at the plateau. 
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During the second post-prandial epoch we can observed that the ERA amplitude 
remains high, as in the first post-prandial epoch. Differences are related to a more dif-
fuse energy distribution than in the previous epoch. However, it still preserves the 
time-locking with the ECA component, despite the energy decrease. 

 

Fig. 5. Time interval during the first post-prandial epoch with ECA and ERA components. In 
the upper panel the spikes of the ERA component can be observed, which are reflected in the 
TFR in the lower panel and are time-locked with the ECA component. The frequency of the 
ERA component in the TFR varies from 0.6 Hz to 1.0 Hz. The scales of this figure are similar 
to those of Figure 4. The x-scale is in seconds. 

The energy contribution from each channel can be used to construct isocontribu-
tion maps. These contributions show a spatial representation of the area where the 
source signal came from. The representation of the 37 channel layout from ERA 
(post-prandial epoch) is shown in Figure 6.  

In Figure 6 shows the post-prandial epoch and the localization of ERA after DCA 
extraction. An increase in the contribution energy in a number of channels on right 
side is observed, whereas the contribution of these channels was low in the pre-
prandial epoch. 

After extracting the desired source with DCA and estimating the scale factor, we 
can calculate the adaptive power spectrum to determine the energy for each epoch us-
ing the autoregressive (AR) method. The results show an amplitude increase of the 
signal around (0.6-1.0 Hz) (Figure 7) with a dominant frequency at 0.8Hz, usually 
correlated with the higher intensity of the ECA rhythm. 

The integrated power spectrum in the frequency band of (0.5-1.33) Hz was used to 
generate an index of ERA. Signal acquired from all volunteers shown an increment of 
ERA index, when the pre and post-prandial were compared.  These results can be 
seen in Table 1. 

4   Discussion 

In the present study, the amplitudes of the ECA and ERA signals were different,  
especially in comparison with the cardiac signal. Moreover, due to the overlap of  
the cardiac and ERA signals in the frequency domain, it is not possible to use a classi-
cal filter to remove the cardiac component. Finally, analysis of MGG signals is  
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complicated by biological interferences such as respiration, small and large intestine, 
and duodenum magnetic signals. 
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Fig. 6. Isocontribution map of the ERA 
component from the first post-prandial 
epoch 

Fig. 7. Autoregressive power spectrum of pre-
prandial and post-prandial epochs after signal ex-
traction from one subject. The inset shows the 
index of each epochs.  

 
Table 1. Index for each epoch (between 0.5Hz and 1.33Hz) x 1051 

 Pre-prandial Post-prandial (1) Post-prandial (2) 
Volunteer – 1 8.0 1100 930 
Volunteer – 2 0.72 12 18 
Volunteer – 3 9.0 91 120 
Volunteer – 4 27 29 44 
Volunteer – 5 16 300 83 
Volunteer – 6  4.2 2800 5100 
Volunteer – 7  8.6 99 180 

These difficulties were overcome by using DCA to extract only the desired com-
ponent with a specified periodicity, rather than extracting all sources. DCA can be ap-
plied even to a low signal-to-noise ratio recording.  One problem, however, is that the 
scale of the extracted component can be altered, leading to an inaccurate energy. To 
avoid the scaling factor problem, a projection approach can be applied. Generally 
scaling factors have not been a problem in many applications of BSS that involve a 
single measurement or experimental condition.  But this is not the case in our study, 
which includes three epochs, one pre-prandial and two post-prandial.  It is therefore 
necessary to compute the scaling factor to obtain coherent relative amplitudes for 
each epoch, which was accomplished here by the projection approach. 

A previous work [2] described and stated confidently the detection and analysis of 
a type of human ERA signal; however, based on qualitative analysis the authors pro-
posed future work to validate their results with simultaneous measurement involving 
serosal or mucosal electrode recordings.  In our study, the extracted signals satisfy the 
properties of the ERA signals reported in the literature in which invasive recordings 
were made in animals, apparently requiring no further experiments. 

It is important to notice that through the DCA process the ECA and ERA  
components can be extracted in time domain. The energy increase can be seen in all 
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volunteers, as shown in Figure 7 and Table 1.  This method and result have not been 
reported previously.  

Recordings using invasive methods [6] show that the ERA component is time-
locked with the ECA component. In this work, using MGG, a non-invasive method, 
along with DCA and time-frequency analysis, we found that the ERA component was 
time-locked with ECA component, which agrees with previous invasive methods. 

We conclude that MGG can detect the electric response activity in normal volun-
teers. Further improvements in signal processing and standardization of signal acqui-
sition are necessary to ascertain its possible use in clinical situations to identify and 
study gastric diseases. 
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Abstract. The continuous demand for high performance and low cost
electrocardiogram (ECG) processing systems have required the elabora-
tion of more and more efficient and reliable ECG compression techniques.
Such techniques face a tradeoff between compression ratio and retrieved
quality, where the decrease of the last can compromise the subsequent
use of the signal for clinical purposes. The objective of this work is to
evaluate the validity and performance of an independent component anal-
ysis (ICA) based scheme used to efficiently compress ECG signals while
introducing tests for a different type of record of the electrical activ-
ity of the heart, such as fetal magnetocardiogram (fMCG). As a result,
the reconstructed signals underwent negligible visual deterioration, while
achieving promising compression ratios.

Keywords: independent component analysis, efficient coding, electro-
cardiogram, fetal magnetocardiogram.

1 Introduction

As the need for constantly larger quantities of ECG data increases, more efficient
compression methods are required. Whether to optimize storage or to make on-
line transmission possible over the public phone network, many efforts have
been made in order to enhance ECG compression techniques. Consequently,
throughout this process many other methods have emerged [1]. Recent works on
ECG compression are related mainly to transform methods, as Karhunen-Loeve
(KL) transform [2] and wavelet transforms [3][4][5].

Similarly to other compression techniques, electrocardiogram (ECG) compres-
sion aims to reduce data volume while preserving the morphological features of
the signal after reconstruction. It implies that signal redundancy must be mini-
mized without loss of the information contained therein.

When discussing about the primary visual cortex, neuroscientists [6] argued
that a primary function of visual neurons is to re-code the input in a way that
� Corresponding author.
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reduces redundancy and maximizes the information transmitted to the output.
It requires a redundancy reduction process in which the activation of each visual
feature is supposed to be as statistically independent from the others as possible
[7]. As for natural scenes, an efficient ECG compression method must take into
account the high-order statistical dependencies in the data and safeguards its
information content, in order to seek a minimum-entropy code [8].

In this work, we discuss a compression method that, for a given ECG signal,
finds its basis functions (features) and then the coefficients of the projection of
this signal onto a vector subspace spanned by the basis functions. This technique
aims to obtain a less redundant and, therefore, more efficient code representation
of the ECG source. To achieve this, independent component analysis (ICA) is
used to find the vector subspace. Then the signal is projected on that subspace,
estimating the projection coefficients in such a manner that they minimize a
mean-square-error (MSE) cost function. The same reasoning has led to promising
results on image compression [9].

Additionally, initial tests for the compression of fetal magnetocardiograms
(fMCG) signals are introduced. Magnetocardiography is a noninvasive and risk-
free technique that allows recording the magnetic fields associated with the spon-
taneous electrophysiological activity of the fetal heart during the second half of
gestation [10]. ICA is particularly efficient to process the fMCG and to retrieve
fetal cardiac signals that are undistorted by the tissues interposed between the
fetal heart and the sensors. The retrieved fetal signals can complement diag-
nostic methods for pregnancies at risk, such as in the case of intra-uterine fetal
growth retardation, or in the presence of fetal arrhythmias [11][12][13].

The use of ICA to extract the fetal signal from fMCG, in conjunction with
the application of an ICA based compression algorithm, might permit the online
reconstruction of the fetal cardiac signal, which would reveal extremely useful in
those clinical cases for which the online monitoring of the fetal cardiac activity
is required, such as life threatening fetal arrhythmias.

2 Methods

2.1 Proposed Solution

Let e(t) be an ECG signal and assume that it can be divided in m windows
of fixed length n. Let us also assume that we can find through ICA a vectorial
subspace Φ = [φ1(t), . . . , φn(t)], where the columns φi(t) are defined as the basis
functions of e(t) (see Figure 1). Given that the projection of the ith window of
e(t) into Φ is expressed by [14]

êi(t) = w1φ1(t) + w2φ2(t) + . . . + wnφn(t) i = 1, . . . , m, (1)

where ˆei(t) is the estimated version of ei(t) and each component wi is the pro-
jection coefficient for the ith base function of the subspace Φ. We will drop time
index t, for convenience.
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Fig. 1. System block diagram. (a) The learning phase where the system learns the basis
functions φi through the ICA algorithm. (b) The test phase, where the coefficients of
the projection are calculated, through a simple mean-square error estimator.

Those coefficients can be calculated through mean-square estimation, where
the signal ei is the desired one and input to the estimator. The vector which
finds the minimum of the mean-square error, E[ε2], is given by

wi = E[ΦΦT ]−1E[eiΦ] (2)

Here we assume that the desired signal spans the same subspace as the training
one, otherwise the output would be null, and that the length of the training input
has to be small enough so that in a specific time window, the signal is stationary
[15]. The chosen ICA algorithm was FastICA [11][16].

2.2 Efficient Coding

Let the mutual information of the random variables e1, . . . , em be defined as

I(e1, . . . , em) =
m∑

i=1

H(ei) − H(e1, . . . , em), (3)

where H(e1, . . . , em) is the joint entropy of e1, . . . , em. The mutual information
gives a measure of the dependency among variables. Since information cannot
be lost, we recall that

I(e1, . . . , em) ≥ 0. (4)

Substituting (4) into (3) yields
m∑

i=1

H(ei) ≥ H(e1, . . . , em). (5)

Likewise, let the mutual information of the random variables w1, . . . ,wm be
defined as

I(w1, . . . ,wm) =
m∑

i=1

H(wi) − H(w1, . . . ,wm), (6)



596 D. Guilhon, A.K. Barros, and S. Comani

where H(w1, . . . ,wm) is the joint entropy of w1, . . . ,wm. If we assume that
w1, . . . ,wm are independents [8], we can state that [17]

I(w1, . . . ,wm) = 0. (7)

Then substituting (7) into (6) we get

m∑

i=1

H(wi) = H(w1, . . . ,wm). (8)

Given the linear transform
ei = Φwi, (9)

we have [18]

H(e1, . . . , em) = H(w1, . . . ,wm)1. (10)

Hence, from (5), (8) and (10) we obtain

m∑

i=1

H(ei) ≥ H(w1, . . . ,wm) (11a)

=⇒
m∑

i=1

H(ei) ≥
m∑

i=1

H(wi). (11b)

Since Lmin = H(ϑ), i.e., the average code length is minimum when it equals
the entropy of the set, we can conclude that

m∑

i=1

Lmin(ei) ≥
m∑

i=1

Lmin(wi), (12)

Eq.(12) establishes a relationship between the total code length required to
represent e, by means of either ei or wi. We observe that both representations
have the same length only when the total code length of ei is the minimum
possible, for the representation of wi is already efficient [7]. Otherwise, the total
code length of ei would be increased due to the presence of redundancies, that
were not present in wi, according to Eq. (7).

3 Results

Our approach was first tested for the MIT Normal Sinus Rhythm Database and
the MIT Supraventricular Arrhythmia Database, 15 records each. The first 30
minutes of each record were used in the learning phase, while the test phase used
two minutes [14].

1 The equantion is valid since the random variable wi is of discrete type and the
transformation ei = g(wi) has a unique inverse.
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Then, similar tests were performed for 15 fetal signals reconstructed from
fMCG data recorded for a pregnancy at 35 weeks. The fetal cardiac signals were
extracted according to [19]. The first 100 seconds of each record were used in
the learning phase, while the test phase used 10 seconds.

The coefficients found through Eq. (2) were quantized using as many levels
as needed to properly reconstruct the ECG and the fMCG signals. Figure 2
shows that the method does not introduce errors that result in significant visual
differences, indicating that the morphological characteristics of the fetal magne-
tocardiogram are preserved. The reconstruction errors, also shown in figure 2,
confirm those results. Figures 3 and 4 show the mean values of 50 repetitions
of the percent root-mean-square-difference (PRD) upon reconstruction of each
record, defined as

PRD =

√∑n
i=1 [sigorig(i) − sigrec(i)]

2

∑n
i=1 sig2

orig(i)
∗ 100% (13)

where sigorig(i) is the original signal, and sigrec is the reconstructed one.
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Fig. 2. Result of 1200 samples of a fMCG record. (a) Original signal. (b) Reconstructed
signal, with CR = 2.66:1 and PRD = 3.43%. (c) Reconstruction error.

4 Discussion

ICA can be used to find a vectorial subspace where the component projections of
the ECG signal are mutually independents. Therefore, the coefficients of the sig-
nal projected onto this subspace are independent as well. Coding that projection,
as a whole or by its parts, results in the same code length [17].
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Fig. 3. Percent root-mean-square-difference upon reconstruction of 15 records of the
MIT Normal Sinus Rhythm Database. Full lines with circle marker stand for ICA
results, whereas dashed-dot lines with square markers stand for PCA results. (a), (b)
and (c) show results for compression ratios fixed at 3, 2.4 and 2, respectively. Notice
the logarithm scale.
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Fig. 4. Percent root-mean-square-difference upon reconstruction of 15 records of the
MIT Supraventricular Arrhythmia Database. Full lines with circle marker stand for
ICA results, whereas dashed-dot lines with square markers stand for PCA results. (a),
(b) and (c) show results for compression ratios fixed at 2.5, 2 and 1.667, respectively.
Notice the logarithm scale.
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Figures 3 an 4 refer to the reconstruction errors obtained when using either
ICA or PCA to find a vectorial subspace associated with each one of the 15
ECG records of both databases. These results reflect the performance simula-
tion of our method when compared to that of [2], excluding the contributions
of classic compression algorithms. By using ICA, it is observed that the ECG
reconstruction errors, even after the quantization process, are smaller than those
calculated using PCA. Again, one can see that the method achieves data com-
pression without adding relevant distortion to the signal, what can be confirmed
by figure 2.

Moreover, from (12) we observe that the average code length required to
represent the original signal is larger than that required for represent its coeffi-
cients, unless the first is already efficiently coded. In that case, the left side of
the equation equals the right one, which means that our method do not alter the
representation code length, because it is minimum. Otherwise, due to the pres-
ence of redundancies, the code length of the original data representation would
be larger than that achieved using our method.

5 Conclusion

We evaluated the validity and performance of an ICA based scheme used to com-
press ECG and fMCG data. It was verified that such a tool efficiently compresses
those signals by means of non-redundant representations of them, ensuring both
the reduction of the total data volume and the preservation of the morphological
characteristics of the signals.

From the perspective of clinical applications, the shown effectiveness of the
described compression algorithm would be beneficial not only for adult ECG,
but also for prenatal online monitoring of the fetal cardiac activity.

A further step in the development of this tool might be its use as a preprocess-
ing step for a classic compression algorithm; furthermore, a selection criterion
might be included to allow also the reduction of the numbers of coefficients that
should be stored.
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Abstract. The routine electroencephalogram (rEEG) is a useful diag-
nostic test for neurologists. But this test is frequently misinterpreted by
neurologists due to a lack of systematic understanding of paroxysmal
electroencephalographic discharges (PEDs), one of the most important
features of EEG. A heuristic algorithm is described which uses conven-
tional blind signal source separation (BSSS) algorithms to detect PEDs
in a routine EEG recording. This algorithm treats BSSS as a ‘black box’
and applies it in a computationally-intensive multitaper algorithm in
order to detect PEDs without a pre-specification of signal morphology
or scalp distribution. The algorithm also attempts to overcome some of
the limitations of conventional BSSS as applied to the study of neuro-
physiology datasets, specifically the ‘over-completeness problem’ and the
‘non-stationarity problem’.

1 Introduction

The routine electroencephalogram (rEEG) recorded from the scalp is an impor-
tant diagnostic test used by neurologists for the medical management of patients
with undetermined spells, epileptic seizures, altered mental status, and coma
[1]. Unfortunately, the misinterpretation of rEEG is common, since most rEEG
studies are interpreted by neurologists who lack subspecialty fellowship training
in clinical neurophysiology. These misinterpretations sometimes cause medical
mismanagement and harm to patients [2]. Clinically-significant misinterpreta-
tions of rEEG studies usually involve the misinterpretation of paroxysmal EEG
discharges (PEDs) – short bursts of electrical activity usually lasting between
0.1 and 2.0 seconds which have higher signal amplitude than the surrounding
background EEG activity. The manifestation of PEDs in rEEG are varied and
complex. The morphological features which describe the boundaries of normality
for PEDs are subtle (particularly in children), not rigorously defined, and vary
between experts and clinical neurophysiology training programs [3]. The sub-
specialty training of clinical neurophysiologists in the interpretation of PEDs is
much like the training of a baseball umpire who gradually develops a ‘strike-zone’
through observation, attention to oral history, and supervision by instructors.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 601–608, 2007.
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In order to promote the rigorous scientific study of PEDs, it would be useful
to be able to collect all PED activity in a rEEG recording objectively using a
computerized detection algorithm. A database of the PEDs present in a rEEG
could then be characterized in signal morphology and scalp distribution and
submitted, along with clinical data, to clustering algorithms. This could provide
a more objective definition of what constitutes a normal or abnormal constella-
tion of PEDs in a given rEEG, for both clinical and research purposes. To the
authors knowledge, a computer algorithm which detects all PED signal activity
in rEEG in a non-specific way (with little regard to signal morphology or scalp
distribution) does not exist. Previous scientific study of PEDs in rEEG has fo-
cused on other algorithmic approaches. In many studies, the signal morphology
and scalp distribution of normal or abnormal types of PEDs are defined a priori
and algorithms for detecting PEDs are created based on these morphologic and
topographic characteristics [4,5]. This causes a significant selection bias in the
detection of PEDs since ‘you find only what you are looking for’. Other studies
use a neural network approach to categorize a sample of rEEG data as normal or
abnormal based on a training signal from human experts [6]. This does not re-
quire an a priori specification of the characteristics of the PEDs to be analyzed,
but it does not provide an objective method of collecting and studying individual
PEDs either. Algorithms which enable the objective detection and capture of all
PED activity in an rEEG record are needed to provide an improved first-stage
to advanced pattern-recognition algorithms which could be useful for rEEG re-
search and clinical interpretation. Some clinical neurophysiology researchers have
begun using BSSS as a first-stage in their pattern recognition algorithms [7].

Routine EEG recordings consist of a mixture of electrical signals generated by
a myriad of both intracranial and extracranial biological and artifactual sources.
Blind signal source separation (BSSS) algorithms are a method for separating sig-
nals of interest from a mixture of signals [8]. BSSS is an ideal foundation for algo-
rithms to detect PEDs in a non-specific way, since BSSS enables some separation
of the PED signal from other concurrent EEG signals. But there are limitations to
conventional BSSS algorithms when applied to neurophysiologic recordings. The
classic description of BSSS is the ‘cocktail party problem’ in which BSSS analysis
separates the voices of n number of speakers in a cocktail party using n number
of microphones placed throughout the room [9]. Conventional BSSS algorithms
assume that the number of guests at the cocktail party is limited to the number of
microphones and that the location of the guests do not change over time. But the
‘cocktail party problem’ facing clinical interpreters of EEG is very different from
this classic one. In the ‘cocktail parties’ of rEEG recordings, there are an unknown
number of guests at the party, the number of guests is likely larger than the number
of microphones, and the number of guests probably changes over time. This leads
to a significant ‘over-completeness problem’. Also, many of the guests are probably
walking about the room while they are talking (causing their location to be ‘non-
stationary’ throughout data acquisition), leading to a significant ‘non-stationarity
problem’ [10]. This paper describes a computationally-demanding heuristic algo-
rithm created to use conventional BSSS algorithms to:
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1. Detect PEDs in neurophysiologic datasets in a non-specific way (with mini-
mal regard to signal morphology or scalp distribution)

2. Circumvent the over-completeness problem of BSSS
3. Partially address the non-stationarity problem of BSSS.

2 Algorithm

2.1 Step 1. Multitaper Blind Signal Source Separation

Because rEEG recordings are often lengthy and obtained with a limited number
of recording electrodes (approximately 20), they are assumed to be overcomplete.
This overcompleteness could cause a BSSS analysis of an entire rEEG dataset to
fail to resolve an individual PED into one or more components of the output sig-
nal. Also, although the source locations for brain activity are anatomically fixed,
the sequential activations of interconnected neurons which occur during brain ac-
tivations frequently cause non-stationarity in measured rEEG signals [10]. BSSS
analysis of an entire rEEG dataset will represent an individual PED, and often
a group of similar PEDs, in a limited number of components. If the source gen-
erators for a PED are non-stationary and vary slightly from PED-to-PED, each
individual PED could be better represented by a unique set of scalp distribution
vectors (SDVs) associated with different ranges of time-points during the time-
of-occurence of the individual PED. A simple (but computationally-intensive)
algorithm is implemented to do this. In the multitaper BSSS algorithm (mB-
SSS), a large number of BSSS operations are performed throughtout the rEEG
dataset using a range of window lengths at incremental temporal locations in
a multitaper method. Because the author has implemented the mBSSS algo-
rithm with Infomax independent component analysis (ICA), the output of the
algorithm will be referred to as independent components (ICs) and SDVs [11].
By performing many BSSS operations in an evenly-spread pattern of window
lengths and temporal locations, mBSSS attempts to detect each PED in one or
more ICs, with one or more associated unique SDVs. Any BSSS algorithm may
be ‘plugged-in’ to the mBSSS algorithm, as long as the number of output ICs
(and SVDs) match the number of input sources and as long as it converges on a
solution very reliably.

A number of mBSSS parameters must be chosen empirically. These param-
eters describe how many BSSS operations are performed, where they are per-
formed in the dataset, and how much the windows for BSSS overlap. This is a
list of parameters used for the algorithm:

wmin shortest window length for BSSS,
given in datapoints

wmax longest window length for BSSS,
given in datapoints

wef window length expansion factor
γ BSSS window overlap parameter
τ parameter defining number of ’zones’

within each BSSS window
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These are the sets used for the algorithm:

X(n, t) time versus amplitude rEEG dataset of
n channels of length t

W BSSS ‘window’ lengths to be used for mBSSS
R number of BSSS operations (‘repetitions’)

performed for each window length
B start time positions in X

(‘begin points’) for all BSSS windows
S ICs produced by mBSSS
A SDVs produced by mBSSS

The set of window lengths W to be used for BSSS range exponentially from

Fig. 1. Parameter settings of τ = 2 and γ = 4. At a setting of τ = 2, the IC is divided
into five zones. The window for BSSS is moved forward by a length equal to a zone
length divided by γ.

wmin to wmax with an expansion factor of wef . The γ parameter, which can
be any non-zero integer, defines the extent to which consecutive windows for
BSSS overlap. The start-points for each of the consecutive windows for BSSS
are distributed equally throughout the dataset. Each window for BSSS is parti-
tioned into 2τ + 1 ’zones’ each of equal length. For a given window length, the
mBSSS algorithm performs consecutive BSSS operations progressively through
the dataset, translating the location of the window for BSSS a 1

γ(2τ+1) fraction
of the window length at each increment. The output sets for the algorithm are
S, which is a large set of ICs, and A, which is a large set of the respective SDVs.

2.2 Step 2. Paroxysmal Event Detection

Since the magnitude of the signals in both sets A and S are related indirectly
and unpredictably to the amplitude of the source signals X , the A and S sets are
normalized to create An and Sn, respectively, using a normalization parameter.
ICs in set Sn with a paroxysmal appearance are retained and all of the other ICs
in set Sn are discarded along with their respective SDVs in An. Each window for
BSSS is partitioned into 2τ + 1 ’zones’ each of equal length (i.e., a central zone
with tau zones on either side, as shown in Figure 2). An IC is considered parox-
ysmal (and therefore may represent a PED) if it has a higher root-mean-square
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(RMS) power in the central zone of the IC (‘zone B’) than in the surroundings
zones (’zone A’ and ’zone C’). This is illustrated in Figure 2. The RMS power

Fig. 2. At a setting of τ = 2, the IC is divided into five zones. Zones A, B, and C
are always assigned as the central three zones within the IC, regardless of the value of
tau (τ ).

of each IC in set Sn in zones A, B, and C is defined as PA, PB , and PC . The
‘paroxysmal event index’ (PEI) termed Υ for each IC in Sn is calculated:

Υ =

√
2P 2

B − P 2
A − P 2

C

W
(1)

The PEI (Υ ) threshold parameter υp is selected empirically. Only those in-
dependent components in Sn (along with their respective SDVs in An) which
have an Υ > υp are retained and placed in set Snp (and their respective SDVs
and placed in set Anp). All other ICs in Sn (and respective SDVs in An) are
discarded.

2.3 Step 3. IC Redundancy Reduction and Representation

The database of independent components (ICs) in set Snp often contains mul-
tiple ICs representing each single PED. ICs which represent the same PED can
be identified by simple cross-multiplication of the ICs which overlap temporally
by 50 percent of the length of at least one of the two ICs. The simplest approach
to removing this redundancy is to pick out and retain the IC (and its respec-
tive SDV) which has the highest Υ (or some other characteristic) within the
group of ICs with the same ’event number’. Another more complicated method
is to develop a hierarchical representation of each group of ICs with the same
’event number’ which contains a longer IC and possibly several shorter ‘subcom-
ponent’ ICs. This provides a description of how the SDV of the PED changes
over time, helping to address the ‘non-stationarity’ problem of applying BSSS
to neurophysiology datasets.

2.4 Step 4. Visualization of PEDs Detected Using mBSSS

Depending on the values of the parameters selected, when the mBSSS algorithm
is applied to a rEEG dataset, a large database of ICs and their respective SDVs
(which represent PEDs) can be created. In the author’s experience, is it possible
to capture hundreds of PEDs in a typical 30-minute routine EEG recording.
Visualization of this many ICs is a challenge. The individual IC signals and
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and SDVs can be visualized in groups based on their ‘event number’. Also,
single-value secondary characteristics of the zone B of each IC in set Snp can
be calculated. These secondary characteristics may include typical quantitative
measures such as peak spectral frequency and ‘spikiness’ morphology but may
also include more complex measures such as peak wavelet power using various
mother wavelets. Single-value secondary characteristics of the SDV such as loca-
tion of peak IC activity and degree of focality can also be calculated. Secondary
characteristics of each IC (and the respective SDV) captured by mBSSS can
be plotted in a graph with time on the x-axis, IC length on the y-axis, and a
single-value IC or SDV secondary characteristic on the z-axis (color).

3 Medical Application

One year of routine clinical EEGs performed at the MUSC Neurophysiology
Laboratory were reviewed by the author (over 1000 EEGs). These digital EEGs
were acquired at 256 Hz with 19 channels using the standard 10-20 electrode
placement. A database of 101 PEDs was collected by the author from these
clinical EEG recordings. This database of PEDs consists of 61 PEDs from the
EEGs of 50 patients without of history of epilepsy which were judged by the
author to be normal but difficult to interpret. This database also included 40
PEDs from the EEGs of 29 patients with known epilepsy judged by the author
to be abnormal PEDs which were subtle due to their relatively low amplitude.
Thirty-second EEG epochs containing these 101 PEDs were de-identified and
assimilated into a single digital EEG file termed the ‘source EEG dataset’. Each
30-second segment contained the PED-of-interest in approximately the temporal
midpoint of the segment. Another parallel database of 101 tag signals was created
using segments of EEG from just one EEG channel which the author thought
best represented each PED. (The length of these ‘tag signals’ varied based on the
length of each PED.) The mBSSS analysis was performed on the source EEG
dataset in the sequence described below using Matlab code composed by the
author and using various EEGLab Matlab scripts including Infomax ICA [12]:

1. mBSSS analysis was performed over four-second windows of EEG data cen-
tered temporally over all of the 101 PEDs. The parameters for mBSSS in-
cluded τ = 5, γ = 6, and 14 BSSS window lengths varying exponentially
from approximately 0.5 to 10 seconds (each window length 10% greater than
the next). This mBSSS analysis produced 991 PED ICs and their respective
SDVs.

2. The 991 PED ICs were compared with each other and it was determined
that they represented 379 unique PEDs in the source EEG dataset.

3. One of 991 PED ICs was selected out of each of the 379 groups of PED ICs
to represent each of the 379 detected PEDs (producing 379 ‘representative
PED ICs’), based on its PEI (Υ ) value and other secondary characteristics.

4. Each of the 379 representative PED ICs were compared to the 101 EEG tag
signals using the methods described in #2 above. The representative PED
ICs which matched one of the 101 PED tag signals were labelled as such.
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The mICA analysis detected 98 of the 101 target PEDs in the source EEG dataset.
All of the PEDs which were not detected by mBSSS were normal PEDs. Secondary
characteristics of the detected PEDs and the sensitivity and specificity for cate-
gorizing the target PEDs as normal and abnormal based on these characteristics
have recently been presented elsewhere as a poster presentation and can be viewed
at http://www.drivehq.com/web/halfordjj/HalfordAESposter2006.ppt [13].

4 Conclusion

Based on the results of the preliminary testing presented above, the mBSSS
algorithm is able to detect many PEDs in routine EEG datasets without a pre-
specification of signal morphology or scalp distribution. But the mBSSS algo-
rithm has many limitations. First, it has been developed heuristically and is not
based on the fundamental mathematical principles of BSSS. Secondly, the defi-
nition of PED is subjective and needs to be better defined both mathematically
and clinically. This would require the creation of standardized EEG datasets to
verify the accuracy of PED detection with mBSSS. Third, the mBSSS algorithm
is very computationally intensive and therefore not practical for routine clinical
or research use at the present time.

If the algorithm is to be useful for research or clinical practice, many im-
provements need to be made. First, the mBSSS algorithm needs to be restruc-
tured to minimize the number of empirically-set algorithm parameters. Secondly,
since the current implementation uses un-compiled Matlab scripts, the algorithm
needs to be C-coded and implemented with an efficient ICA algorithm which pos-
sibly not only detects supra-Gaussian sources but also sub-Gaussian sources as
well. Third, experiments with a range of parameter settings need to be performed
for parameter optimization. These experiments will require standardized clinical
rEEG datasets. In order to test if the mBSSS algorithm can detect PED activity
visible to the human eye, rEEG datasets need to be developed in which all vis-
ible PEDs have been marked by several expert rEEG interpreters. Information
retrieval statistics could be used to test the precision, recall, and accuracy of the
mBSSS algorithm in detecting PEDs. Also, in order to determine if the algo-
rithm can capture PED activity which is too subtle for the human eye to detect,
datasets with intracranial EEG or magnetoencephalogram (MEG) data acquired
concurrently with rEEG data need to be studied in a similar fashion. The high
computational requirement of the algorithm may become less of a problem over
time. The cost of computational power continues to decrease at a somewhat pre-
dictable rate. If the trend toward the development of multi-core microprocessors
continues, substantial computational power for parallel processing could be avail-
able in personal computers within a few decades. The code for algorithms which
use multiple BSSS computations can be easily multithreaded. These algorithms
could be implemented on small local clusters or used via a telemedicine approach
in which clinical EEG datasets are moved to and from remote centralized data
processing centers using the Web. BSSS algorithms which detect PEDs could
help provide an objective structure to the computer analysis of PED activity in

http://www.drivehq.com/web/halfordjj/HalfordAESposter2006.ppt
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routine clinical EEG. This could lead to an improved understanding of clinical
EEG and an improvement in neurology patient care.
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Abstract. A temporally-constrained blind-source-separation algorithm
was used to analyse auditory evoked potentials, evoked from impulse
trains with inter-stimulus rates of 95 and 198 Hz. A nonstationarity of
variance contrast function was used, and a simulation run showing its
ability to extract sources based on a simple convolved model of auditory
brainstem and middle latency responses. For a stimulus rate of 95 Hz,
where no neural adaptation occurs, this approach was partially successful
for experimental data. For the higher rate of 198 Hz particularly poor
results were observed for brainstem responses. It is hypothesised that this
may be due to the neural adaptation process and/or an inappropriate
choice of source model.

1 Introduction

Auditory evoked potentials are the summed response from many remotely lo-
cated neurons recorded via scalp electrodes. They can be recorded from all levels
of the auditory pathway, from the auditory nerve, the brainstem up to the cortex.
They are typically grouped in terms of time of occurrence after stimulus offset
and thus are known as; auditory brainstem responses (ABRs) recorded between
1 and 7 ms after stimulus offset; middle latency responses (MLRs) recorded in
the interval 15-50 ms after acoustic stimulus; and auditory late response (ALR)
recorded in the interval 75-200 ms after stimulus. To date no studies, to the
author’s knowledge, exist on successfully using independent component analysis
(ICA) for examining ABR responses. Though examples exist for using ICA on
MLR and ALR responses [4,9].

It is the goal of this paper to develop a tool for characterising the phenomenon
known as neural adaptation, where a reduced neural output is observed due to
prolonged or repeated stimulation, in each stage of the auditory pathway. This
is by no means a trivial task and the work presented here represents a first
step toward this goal. Adaptation has an important function in auditory per-
ception models [1], and is therefore of interest in audiological science. It is often
investigated as a function of stimulus rate of repeated impulse or chirp stim-
uli [6]. Here, ICA with reference [7,8] will be used to subtract two components
attributed to ABR and MLR based sources, using a correlation based distance
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metric [5]. A nonstationarity of variance [2] based approach for finding maxi-
mally independent components will be used. It is assumed that any approach
using temporal structure in the data is more appropriate for evoked potentials,
with well known temporal features. If it is possible to separate signals based on
a principled semi-blind source separation algorithm such as the one proposed
here, then it may prove a useful tool for non-invasively investigating the human
auditory pathways.

2 Constrained Blind Source Separation

The classic blind source separation problem assumes that we have a series of
mixtures obtained via an unknown mixing matrix on a set of underlying sources,
x = As. The goal is to find an unmixing matrix W such that the estimate of
the sources is given by ŝ = Wx. It is common to pre-process and reduce the
dimension of the linear mixtures via principle component analysis (PCA) z =
Ex. All discussion from this point of the mixtures assumes PCA and dimension
reduction has been performed.

Hyvärinen [2] showed that maximization of the nonstationarity of variance,
measured by the absolute value of the 4th cross-cumulant, of a linear combination
of the observed mixtures allows for the estimation of one source signal. The 4th-
order cross-cumulant corresponds to the autocorrelation of energy in a given
signal, and is given by

cum(y, y, yτ , yτ ) = E{y2y2
τ} − E{y2}E{y2

τ} − 2 (E{yyτ})2 (1)

where the time dependence on y(t) is omitted for brevity and yτ represents the
delayed signal y(t − τ), this convention will be used for the rest of this pa-
per. Lu and Rajapakse [7,8] developed a framework for constrained independent
component analysis (cICA), to incorporate additional requirements and prior
information in the form of constraints on the ICA contrast function. The goal is
to extract the component closest to some user specified reference signal r(t), via
some distance metric. The closeness constraint to be used here will be correlation
at zero lag:

g(w) = ζ − E
{
r(wT z)

}
≤ 0 (2)

where w is a single (one-unit) demixing weight vector, such that y(t) = wT z, and
ζ is the threshold that defines the lower bound of the optimum correlation [5].
The one-unit constrained optimization problem for a nonstationarity of variance
contrast function J(y) is given by:

maximise J(y) = |cum
(
wTz,wTz,wTzτ ,wTzτ

)
|

subject to g(w) ≤ 0, h(w) = E{(wTz)2} − 1 = 0
(3)

The equality constraint h(w) bounds the scale of the output y and the weight
vector w, and is needed as cumulants are not scale invariant. The specific algo-
rithm used in this paper is shown in appendix A.
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3 Experimental Methods and AEP Data

In this preliminary study, only a single test subject was used. The stimulus
was generated in MATLAB and A/D conversion made through an ADI-8 Pro
24-bit converter, the levels were set via a DT PA5 programmable attenuator,
and the stimuli presented to the left ear of the test subject via an ER-2 insert
earphone. EEG activity was recorded differentially between the vertex and 28
electrodes distributed over a 61-channel triangulated equidistant arrangement
headcap, with the ground electrode placed on the forehead. Silver/silver chloride
electrodes were used, and an inter-electrode impedance was maintained below
5kΩ. The EEG activity was recorded on a SynAmps 5803 amplifier, providing
74 dB of gain before a low-pass filter stage (cut-off of 2 kHz), with a sampling
rate of 10 kHz. After recording the EEG-data was epoched and filtered again
from 10 to 1500 Hz using a 200 tap FIR filter. The epochs were averaged using
an iterative weighted-averaging algorithm [11].
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Fig. 1. (a) Experiment stimuli waveforms and (b) event-related potentials for a single
exemplary channel located on the ipsilateral mastoid, showing combined ABR and
MLR responses to (top) single impulse; (middle) 95 Hz impulse train; and (bottom) 198
Hz impulse train. The two curves represent two repeat recordings with 4000 averages
and show good repeatability.

The basic stimuli used in this experiment was an 83 μs duration impulse. Three
sets of stimuli conditions, see Fig. 1(a), were presented at a constant inter-epoch
rate of ≈ 8.33 Hz (i.e. a duration of 120 ms). The first stimuli set was a single
impulse to act as a control where both ABR and MLR responses could be seen.
Stimuli set 2 presented a train of impulses with a within train rate of 95 Hz,
shown in [6] to produce an unadapted ABR response. The MLR response will
be convolved over the epoch, as the inter-epoch rate was chosen with no jitter
so circular convolution would occur. Stimuli set 3 presents the impulses at a
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rate of 198 Hz, ensuring the ABRs would be adapted over the impulse train. A
total of 4000 averages were made per stimulus type and repeated twice to ensure
repeatability of results. The stimuli were all presented at a level of 60 dB pe
SPL, to ensure good SNR and test subject comfort.

An illustrative event-related potential for a single channel located at the ip-
silateral mastoid for the three stimulus conditions is shown in Fig. 1(b). The
results for the single impulse stimuli (top) show typical features expected in the
ABR and MLR auditory evoked potentials, namely the ABR wave V is clearly
located around 6 ms after stimulus offset. Typical MLRs are observed with the
first negativity Na around 25 ms after stimulus offset and the first positivity Pa
around 35 ms. The two high stimulus rate ERPs are shown in the middle and
bottom panes of Fig. 1(b). It can be seen that the slow MLR response are highly
convolved within the event related potential.

4 Simulation

A simulation was carried out assuming three sources and square mixing. Source 1
used the ABR within the single impulse experiment evoked potential, re-filtered
with a pass-band 100-1500 Hz, and windowed temporally to minimise the influ-
ence of the MLR. This ‘clean’ ABR was then convolved with the 95 Hz impulse
train in the frequency domain to obtain circular convolution. The second source
was similarly obtained by filtering (10-100 Hz), windowing and convolving the
MLR response from the single impulse experiment evoked potential. A third bio-
logically inspired noise source was added to limit the algorithms performance. It
was defined to have a pink power spectra (i.e. 1/f), typical of raw EEG record-
ings, limited to the pass-band 10 – 1500 Hz of interest in this study. The noise
had a Gaussian distribution as one might expect after synchronous averaging and
filtering due to the central limit theorem. The sources are shown in Fig. 2(a). The
cICA algorithm was given the exact MLR source as reference, and a deflationary
orthogonalization procedure [3] was used to extract the remaining components
in the data. Fig. 2(b) shows the output from the cICA algorithm for a delay of
τ = 1. The first component, obtained with the reference and constraints, was
extracted with a correlation of ζrs = 1.00, i.e. perfectly. The ABR component,
obtained from the deflationary orthogonalization, appears to be adequately ex-
tracted. However, some corruption with the noise source is apparent. Similar
results were obtained for the 198 Hz inter-impulse rate simulation.

Blind-source-separation via nonstationarity of variance assumes the 4th cross-
cumulant for a source is non-zero, i.e. some structure is required in the energy of
the signal. Hyvärinen [2] gave examples with smoothly changing variances where
the envelopes were random and low-pass filtered, and thus have sharply decay-
ing cross-cumulants for increasing delay τ . In this experiment matters are compli-
cated by the introduction of a set of convolved or repeated energy profiles, thus
the cumulant for the source becomes periodic as a function of delay τ . We also
assume two (or more) sources with the same periodicity, i.e. phase locked to the
periodic stimuli. The maxima in the 4th cross-cumulant for such a mixing model
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Fig. 2. Simulation results for an 95Hz inter-impulse rate: (a) Original sources used;
(b) extracted maximally independent components

become functions of delay τ . As indicated by Hyvärinen [2] the choice of delay τ
becomes difficult, yet theoretically crucial. The success of the algorithm can be
judged through the use of the convergence index suggested in [2]. Defined as the
sums of the absolute value of the matrix WA − 3, this will be zero if the mixing
matrix A was estimated perfectly. The simulation was carried out 1000 times for
delays τ = 1 → 50 to obtain a mean convergence index as a function of delay. It
was hoped that this might suggest a meaningful delay to use when analysing the
experimental results. There was significant variance for each τ equal to the vari-
ance across τ so no useful optimal delay could be found from this simple analysis.
Due to this a delay of τ = 1 was chosen for the experimental results.

5 Constrained ICA Results

As indicated in section 2 the data was whitened prior to applying the cICA algo-
rithm. A dimension reduction was carried out from 28 mixtures to only 9 principle
components, accounting for 99% of the data variance. The two main benefits for
dimension reduction are in reducing noise and preventing overlearning.

The previous section discussed a simulation where it was assumed that the
ABR and MLR source signals could be modeled as the response to a single
impulse convolved with the stimulus impulse train. This further assumes that
the ABR and MLRs can themselves be represented by a single source. The
adaptation process known to exist for high stimulus rates was not included in
the simulation or source model. As a first approximation this simple model may
be useful in analysing the experimental data. The MLR and ABR based sources
from the simulation were used as two reference signals for the cICA algorithm. A
deflationary orthogonalization procedure was used, where the first independent
component was extracted using the MLR reference, then the second using the
ABR reference, and finally the remaining unconstrained components. Fig. 3(a)
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Fig. 3. Extracted independent component for (a) convolved MLR based reference
(correlation of ζry = 0.94); and (b)convolved ABR based reference (correlation of
ζry = 0.38)

shows the reference and extracted component for the convolved MLR reference
for the stimulus set 2, with an inter-impulse rate of 95 Hz. A correlation of
ζry = 0.94 was obtained between the reference and the extracted component.
The second reference and extracted component is shown in Fig. 3(b). Here a
correlation of only ζry = 0.38 was maximally obtained after a number of runs of
the algorithm. The results for the 198 Hz inter-impulse rate data were similar
for the MLR based source(ζry = 0.92), however the ABR source never obtained
a correlation greater than ζry = 0.11.

6 Discussion

The poor results obtained for the ABR extracted components potentially indi-
cates one or more problems: (1) The nonstationarity of variance contrast func-
tion is not appropriate here, due to the periodic 4th cross-cumulant. The results
from the simulation would tend not to agree with this. (2) The correlation con-
straint metric used might be inappropriate for the data. However, the constraint
only guides the algorithm toward an independent component, as defined by the
contrast function. (3) The underlying source model assumed here might be inap-
propriate. For the 198 Hz stimulus rates then neural adaptation effects might ex-
plain poor performance. However, each ABR response is known to have a contribu-
tion from multiple auditory brainstem structures [10]. The predominant recorded
surface electrode potentials for ABRs are believed to come from a propagating
action potential along the auditory pathway, rather than more cortically located
post-synaptic potentials. Thus ABRs are generated by a time-varying source prop-
agating through the neural structures from the brainstem up to the mid-brain.
This nonstationarity manifests as small changes in the morphology of the ABR
seen across the channels in the averaged event related potential, i.e. the peak of
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the wave V may occur at a latency of 6 ms, say in an ipsilaterally located elec-
trode, and a latency of 6.2 ms in a contralateral electrode site. This fact may limit
performance of the source separation algorithm used here. This nonstationarity
of variance based extraction method may be sensitive to the small nonstation-
arity associated with ABRs over time across the electrodes. The author also ap-
plied the ICA with reference algorithm from [7,8,5], with their negentropy contrast
function. This approach might be expected to yield better results due to its insen-
sitivity to the temporal structure of the data. Negentropy is a measure of nongaus-
sianity, and thus time shifting the source will yield identical results to the original.
However, almost identical results were obtained to the nonstationarity of variance
contrast function. Thus the nonstationarity of the ABR generating mechanisms
may not play a roll in its identifiability. Also both algorithms may ‘incorrectly’
separate the ABR source in the remaining unconstrained components, though this
did not appear to be the case through observation. More work needs to be done
to verify or challenge these observations.

The choice of delay or lag for the cumulant estimation is very important. The
convolved model used here is too simple and did not aid the extraction of the
real sources from the mixtures. Ironically the de facto choice of delay τ = 1
used here produced the best results. It is not clearly understood why this is and
therefore more work is needed.
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A Constrained ICA Algorithm

The constrained optimization problem can be solved using the method of La-
grangian multipliers, and transforming the inequality constraint g(w) ≤ 0 to
an equality constraint by introducing a slack variable. Following [7,8], the aug-
mented Lagrangian function L1(w, α, β) is given by:

L1(w, α, β) = J(y) − 1
2γ

[max2{α + γ
(
ζ − E

{
r(wT z)

})
]

− β
(
E{(wTz)2} − 1

)
− 1

2
γ

∥∥E{(wTz)2} − 1
∥∥2

(4)

where α and β are the Lagrange multipliers, γ is the scalar penalty parameter,
‖.‖ denotes the Euclidean norm, and 1

2γ ‖h(w)‖2 is a penalty term to help the
convergence of the algorithm [7]. The maximum of the augmented Lagrangian
is found via a Newton learning algorithm:

wk+1 = wk − η
(
L1

′′

w2
k

)−1

L1

′

wk
(5)

where k is the iteration index, η is a step size parameter that can change with the
iteration count until some satisfactory convergence occurs. L1

′

wk
and L1

′′

w2
k

are
respectively the Jacobian and Hessian for the augmented Lagrangian function
L1(w, α, β). It can be shown that the Jacobian, L1

′

wk
, is given by:

L1

′

wk
=χ

(
2E{z(wTz)(wTzτ )2} + 2E{zτ (wTzτ )(wTz)2}

− 4MwE{(wTz)(wTzτ )} − 4w
)

− α

2
E{rz} − βw

(6)

where χ = sgn
(
cum

(
wTz,wTz,wTzτ ,wTzτ

))
, and sgn(.) is the sign function,

M is symmetric and is the sum of the covariance matrices, Czzτ = E{zzτ} and
Czτz = E{zτz}. Similarly through a little therapeutic algebra it is possible to
approximate the Hessian by:

L1

′′

w2
k

≈ −
(
4χMwwTM + βI

)
(7)

where I is the identity matrix. The optimum Lagrangian multipliers can be found
by using an iterative gradient-ascent method[7,8]:

αk+1 = max
{

0, αk + γ
(
ζ − E

{
r(wT z)

})}
,

βk+1 = βk + γ
(
E{(wTz)2} − 1

)
.

(8)

Thus the learning algorithm to find the maximum of the augmented Lagrangian
can be formulated from Eqns. 5 – 8.
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Abstract. This paper introduces gradient based method for robust as-
sessment of the sparse pulse sources, such as motor unit innervation pulse
trains in the filed of electromyography. The method employs multichan-
nel recordings and is based on Convolution Kernel Compensation (CKC).
In the first step, the unknown mixing channels (convolution kernels) are
compensated, while in the second step the natural gradient algorithm is
used to blindly optimize the estimated source pulse trains. The method
was tested on the simulated mixtures with random mixing matrices, on
synthetic surface electromyograms and on real surface electromyograms,
recorded from the external anal sphincter muscle. The results prove the
method is highly robust to noise and enables complete reconstruction of
up to 10 concurrently active motor units.

1 Introduction

Biomedical signals are important, but very complex source of information. They
typically comprise contributions of many concurrently active sources, such as
neurons and muscle fibers. The sources are commonly considered statistically
independent (or at most weakly correlated), but their mixing process is virtually
unknown. Therefore, the acquired signals must be decomposed blindly.

When it comes to neurophysiology, electromyograms (EMG) are one of the
most active research areas. They measure electrical activity of skeletal muscles
and provide an insight into peripheral properties of skeletal muscles and con-
trol strategies of human motor cortex [1]. Their field of application ranges from
clinical assessments of neuromuscular disorders and objective evaluations of med-
ical treatments to basic investigations of different physiological phenomena (e.g.
cramps, muscle reinnervation, etc.). Comprising action potentials (AP) from
several tens of concurrently active motor units (MU), EMG signal is commonly
considered a random interference pattern which is very difficult to interpret [2].
This is especially true in the case of surface electromyography [1], which deals
with measuring the electrical activity of human muscles on the surface of the
skin. Bad electrode-to-skin contact and presence of noise hinder the decomposi-
tion of surface EMG and make the extraction of clinically relevant information
difficult.
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Recent development of high-density surface electrode arrays enabled acquisi-
tion of several tens or even hundreds of EMG channels. Different pattern recogni-
tion techniques, capable of dealing with such amount of data were also proposed.
Kleine et al. [3] studied the importance of two-dimensional spatial filters, Gaz-
zoni et al. [4] introduced the template matching segmentation and classification
technique, while Wood et al. [5] employed the finite element analysis. Blind
source separation decomposition techniques have also been proposed. Garcia et
al. [6] modelled the EMG signal as an instantaneous mixture of motor unit action
potential (MUAP) trains, while Holobar and Zazula [7] proposed Convolution
Kernel Compensation (CKC) to deal with the convolutive mixtures of motor
unit innervation pulse trains (IPT). The latter proved to be highly efficient as it
enables the complete reconstruction of up to 30 concurrently active MUs from a
good quality multichannel surface EMG.

In this paper the gradient-based extension of the CKC method [7] applied
to the low-quality noisy signals is addressed. This extension is of paramount
importance for clinical practice, where recoding environment cannot be strictly
controlled. This paper is organized in five sections. In Section 2, the assumed
data model is presented and the classic CKC approach is briefly summarized.
Section 3 introduces its gradient-based extension, while in Section 4 the results
of tests on simulated and real EMG signals are presented. Section 5 discusses
the results and concludes the paper.

2 Data Model and Convolution Kernel Compensation

Suppose M convolutive measurements are simultaneously observed and denote
their sampled vector by x(n) = [x1(n), ...., xM (n)]T , where xi(n) stands for the
n-th sample of the i-th measurement. In the case of linear time-invariant (LTI)
multiple-input multiple-output (MIMO) system, x(n) can be written as:

x (n) = Ht̄ (n) + ω (n) (1)

where ω(n) = [ω1(n), ...., ωM (n)]T is a zero-mean spatially and temporally white
additive noise vector, t̄ (n) = [t1 (n) , t1 (n − 1) , ..., t1 (n − L + 1) , ..., tN (n) , ...
tN (n − L + 1)]T is the extended version of vector of input signals from N sources
t (n) = [t1 (n) , ..., tN (n)]T , and the mixing matrix H comprises all the chan-
nel responses (convolution kernels) hij = [hij (0) , ..., hij (L − 1)] of length of L
samples:

H =

⎡

⎢⎢⎢⎣

h11(0) . . . h11(L − 1) h12(0) . . . h12(L − 1) . . .
h21(0) . . . h21(L − 1) h22(0) . . . h22(L − 1) . . .

... . . .
...

... . . .
... . . .

hM1(0) . . . hM1(L − 1) hM2(0) . . . hM2(L − 1) . . .

⎤

⎥⎥⎥⎦ (2)

In surface electromyography, the channel response hij corresponds to the j-th
MUAP, as detected by the i-th measurement, while each model input tj (n) is a



Gradient CKC Applied to Surface Electromyograms 619

sample of an IPT, modelled as a binary pulse sequence carrying the information
about the MUAP triggering times only:

tj(n) =
∞∑

k=−∞
δ [n − Tj(k)] (3)

where δ(.) denotes the Dirac impulse and Tj(k) stands for the time instant in
which the k-th MUAP of the j-th MU appears.

2.1 Convolution Kernel Compensation

CKC method compensates the unknown mixing matrix H in model (1) and
directly estimates the innervation pulse trains t̂j(n) [7]:

t̂j(n) = cT
tjxC

−1
xx x(n) (4)

where Cxx = E
(
x(n)xT (n)

)
is the correlation matrix of measurements, ctjx =

E
(
x(n)tTj (n)

)
is cross-correlation vector, and E(.) denotes mathematical expec-

tation. Estimator (4) is linear minimum mean square error (LMMSE) estimator
of the j-th IPT and requires the cross-correlation vector ctjx to be known in
advance. This is rarely the case and Holobar and Zazula [7] proposed probabilis-
tic iterative procedure for its blind estimation. In the first iteration step, the
unknown cross-correlation vector ctjx is approximated by vector of measure-
ments ĉtjx = x(n1) where, without loss of generality, we assumed the j-th MU
discharged at time instant n1. Then, the first estimation of the j-th IPT yields

t̂j(n) = ĉT
tjxC

−1
xxx(n) (5)

In the second step, the largest peak in t̂j(n) is selected as the most probable
candidate for the second discharge of the j-th source, n2 = max

arg
(tj(n)) |n2 �=n1 ,

and the vector ĉtjx is updated as:

ĉtjx =
ĉtjx + x(n2)

2
(6)

This procedure is then repeated, with a special attention paid to the sepa-
ration of superimposed pulse sources (note that more than one source may be
active at instant n1). Interested reader is referred to [7] for further description
of classic CKC approach.

3 Gradient Descent Optimization of Estimated Pulse
Trains

Let us use shorthand notation wj,k = C−1
xx ĉtjx to denote the estimation of the j-

th separation vector in the k-th iteration step and let F (t̂j) =
∑
m

f(t̂j(m)) denote
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sample cost function in the manifold of pulse trains, with arbitrary differentiable
scalar function f(t) applied to each sample of pulse train t̂j(n). General iteration
step for natural gradient descent algorithm is defined as [8]:

wj,k+1 = wj,k − η(k)GΔwj,k (7)

where η(k) is the learning rate and G is Riemannian metric tensor embedding
the manifold of pulse trains t (n) into the manifold of measurements x (n). For
smooth manifolds, the induced metric tensor G can be computed as:

G = H−1H−T (8)

where, in our case, H−1 stands for the Jacobian of the system t (n) = H−1x (n).
Taking the common convention on the amplitude ambiguity of trains t (n) into
account, we assume Ct̄t̄ = I. Hence, G can be written as G = H−1C−1

t̄t̄ H−T =
C−1

xx . Finally, by expressing the gradient Δwj,k in terms of cost function F (t̂j)
we derive to the following gradient update rule:

wj,k+1 = wj,k − η(k)
∑

m

∂f(t̂j(m))
∂t̂j(m)

C−1
xxx(m) (9)

There is yet another possible interpretation of update rule (9). By rewriting (9)
in terms of (5) we get the update rule for the cross-correlation vector ĉtjx:

ĉtjx = ĉtjx − η(k)
∑

m

∂f(t̂j(m))
∂t̂j(m)

x(m) (10)

which provides insight into the convergence properties of the algorithm (9).
Namely, by selecting the ∂f(t)

∂t to be concave even function, e.g. ∂f(t)
∂t = t2,

the peaks in t̂j(n) get reinforced (i.e. the corresponding measurement vectors
x(m) in (10) get multiplied by large weights), while the base-line noise (i.e. val-
ues close to zero) is suppressed. The steeper the function ∂f(t)

∂t , the larger the
weights multiplying the peaks in t̂j(n), and the faster the convergence of (10).
However, by setting the peak weights too high, we jeopardize the stability of
convergence as it may happen that the highest peak in t̂j(n) outweights all the
others. In such a case, ĉtjx converges to x(mp), where mp denotes the time in-
stant of the largest peak in t̂j(n). Typically, ∂f(t)

∂t = |t| or ∂f(t)
∂t = t2 prove to be

a good compromise between the speed and stability of convergence, yielding the
cost functions F (t̂j) = 1

2

∑
m

t̂j(m)
√

t̂2j(m) and F (t̂j) = 1
3

∑
m

t̂3j(m), respectively.

Gradient descent algorithm (9) still requires a good initial approximation
of tj(n) in order to converge to the genuine solution (i.e. the peaks in t̂j(n)
must represent the true train pulses). As demonstrated in the next section, the
CKC approximation (5) with ĉtjx = x(n1) proves to be a good initialization
point. Required initial time instants n1 can be selected from the activity index
IA(n) = xT (n)C−1

xx x(n), as suggested in [7].
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4 Simulation and Experimental Results

Gradient CKC method was applied to three different sets of test signals. The
first two experiments evaluated the influence of noise in the case of multichannel
synthetic measurements with well-conditioned random mixing matrix H and
in the case of badly-conditioned synthetic surface EMG measurements, while
in the third experiment, the method was applied to recordings of external anal
sphincter muscle. In all three experiments the scalar function f(t) = 1

3 t3 was used
in (9), while in each iteration step the adaptive learning rate η(k) was adjusted
according to bisection. The sensitivity of gradient CKC algorithm, false alarm
rate and the number of reconstructed pulse trains were observed and compared
to the results of classic CKC approach.

Experiment 1: Ten simulation runs were performed, with the number of sources
N set equal to 10. In each run, random input pulse trains tj(n) =

∑200
k=1

δ (n − k · 100 + Tj(k)) were generated with the mean inter-pulse interval (IPI)
set equal to 100 samples and the values Tj(k); k = 1, 2, . . . , 200 uniformly dis-
tributed on the interval [−10, 10]. The length of simulated pulse trains t was
20,000 samples. Random zero-mean mixing matrix H was generated, with L = 10
samples long convolution kernels. The number of observations M was set equal
to 25. Seven realizations of Gaussian zero-mean noise per each generated signal
(1) were simulated, with SNR ranging from 20 dB to -10 dB. In order to increase
the number of measurements, 9 delayed repetitions of each original measurement
were used as additional measurements [7]. As a result, the number of extended
pulse trains increased to 190, while the number of observations was fixed at 250.
Each mixture was decomposed two times - by classic and gradient CKC. The
results are summarized in Fig. 1. The CKC gradient method converged after 15
iterations, on average.
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Fig. 1. Number of reconstructed IPTs (left column), True Positive rate (TP) (central
column) and False Positive rate (FP) (right column) for gradient CKC (black line) and
classic CKC (gray line). The results are averaged over 10 simulation runs (error bars
indicate std. deviations). In each run, random mixing matrix H was generated, with
condition number set equal to 240 ± 10 (upper row) and 1200 ± 50 (bottom row).
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Experiment 2: Synthetic surface EMG signals were generated by cylindrical vol-
ume conductor model consisting of bone, muscle, subcutaneous, and skin tissues
[2]. Biceps Brachii muscle with 200 MUs and 200 mm2 cross-section was sim-
ulated. The distribution of the MU locations was random and the fibers of a
MU were randomly scattered in circular MU territory, with a density of 20
fibers/mm2. Exponentially distributed innervation numbers ranged from 25 to
2500. The surface-recorded MUAP comprised the sum of the action potentials
of the muscle fibers belonging to the MU. The MUs had muscle fiber conduction
velocities of 4 ± 0.3 m/s. The recording system was a grid of 13 × 5 electrodes
of circular shape (1-mm radius) with 5-mm interelectrode distance in both di-
rections. The EMG signals were additionally corrupted by additive zero-mean
Gaussian noise between 20 and 0 dB SNR. Ten seconds long contraction at 10%
excitation level (constant over time) was simulated what resulted in 105 ac-
tive MUs. MU IPTs were based on a motor unit population recruitment model
[3] with the recruitment and the peak discharge rate set to 8 and 35 pulses
per second. In likefashion to the Experiment 1,9 delayed repetitions of each
original measurement were added to the original set of measurements. The re-
sults of CKC decomposition, averaged over 25 Monte Carlo runs are depicted in
Fig. 2.
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Fig. 2. Number of reconstructed IPTs (left panel), True Positive rate (TP) (central
panel) and False Positive rate (FP) (right panel) for gradient CKC (black line) and
classic CKC (gray line) when decomposing synthetic surface EMG (Experiment 2).
The results are averaged over 25 simulation runs (error bars indicate std. deviations).

Experiment 3: The last experiment was conducted on real surface EMG signals,
recorded by a 48-channel cylindrical anal probe from the external anal sphincter
muscle. The electrodes (1 × 10 mm) were arranged in 3 circumferential arrays
of 16 electrodes each. Interelectrode and inter-array distance was 2.7 mm and
5 mm, respectively. The experiment was conducted in Gynecological Clinic at
University of Tübingen, Germany, and was approved by the local ethics com-
mittee. Six subjects participated to the experiment. The signals were acquired
during three 10 s long maximum voluntary contractions. The EMG signals were
amplified, band-pass filtered (3 dB bandwidth, 10 Hz-500 Hz), sampled at 2
kHz, and converted to digital form by a 12-bit A/D converter. The acquired
set of measurements was additionally extended by 9 delayed repetitions of each
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Fig. 3. IPTs reconstructed from real surface EMG by classic CKC (left panel) and
by gradient CKC (right panel). Each plotted dot corresponds to single MU discharge.
EMG signals were recorded from the external anal sphincter muscle.

Table 1. Number of MUs (mean ± std. dev.) reconstructed from real EMG signals

Subject A B C D E F

classic CKC 2.7 ± 0.6 3.7 ± 1.2 3.3 ± 0.6 3.3 ± 0.6 3.3 ± 0.6 2.3 ± 1.2
gradient CKC 6.3 ± 1.2 8.3 ± 1.2 4.7 ± 0.6 5.7 ± 1.2 8.0 ± 2.0 3.3 ± 0.6

measurements. The results of decomposition are summarized in Table 1 and
exemplified by Fig. 3.

5 Discussion and Conclusions

The gradient CKC method proved to be highly efficient. In low noise environ-
ments, it is equivalent to the classic CKC approach. In the presence of severe
noise, however, it provides superior accuracy. The results on synthetic measure-
ments with random mixing matrix H proved that almost complete reconstruction
of pulse trains at the SNR of -5 dB is possible. In the case of synthetic surface
EMG, the robustness to noise was reduced. This was mainly due to the badly
conditioned mixing process (in the case of surface EMG, typical condition num-
ber of the mixing matrix H is about 107). Nevertheless, up to 5 pulse trains were
reconstructed down to the SNR of 10 dB, with the pulse accuracy exceeding the
97%. When compared to the classic CKC approach at low SNR, the gradient
CKC yielded 30% increase in the number of reconstructed IPTs and 0.5% in-
crease in the accuracy of the reconstructed pulse trains. Similar results were
observed in the case of real surface EMG signals, acquired from the external
anal sphincter. The general quality of acquired signals was low, mainly due to
the bad electrode-mucosa contact and movement of the anal probe with respect
to the muscle fibers. The gradient CKC technique reconstructed 6.2 ± 2.3 MUs
per contraction (compared to 3.1 ± 0.8 MUs reconstructed by the classic CKC).
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MU discharge patterns reconstructed by gradient CKC also exhibited higher
regularity than those of the classic CKC method, as verified by careful visual
inspection.

It is concluded that gradient CKC is highly robust to noise. In low SNR
environment, it yields the performance superior to the classic CKC approach
and has the potential to be used in regular clinical practice, where the quality
of acquired signals cannot be strictly controlled.
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Abstract. Functional Magnetic Resonance Imaging (FMRI) allows
indirect observation of brain activity through changes in blood oxygena-
tion, which are driven by neural activity. ICA has become a popular ex-
ploratory analysis approach due its advantages over regression methods
in accounting for structured noise as well as signals of interest. How-
ever, standard ICA in FMRI ignores some of the spatial and temporal
structure contained in such data. Using prior knowledge that the Blood
Oxygenation Level Dependent (BOLD) response is spatially smooth and
manifests itself on certain spatial scales, we estimate the unmixing ma-
trix using only the coarse coefficients of a 3D Discrete Wavelet Transform
(DWT). We utilise prior biophysical knowledge that the BOLD response
manifests itself mainly at the spatial scales we use for unmixing. Tests
on realistic synthetic FMRI data show improved accuracy, greater ro-
bustness to misspecification of underlying dimensionality, and an ap-
proximate fourfold speed increase; in addition the algorithm becomes
parallelizable.

Keywords: Functional Magnetic Resonance Imaging, Independent
Component Analysis, Biophysical Prior, Sparse Dictionaries.

1 Introduction

ICA offers several advantages over regression in FMRI: it can account for the
large amounts of structured noise found in FMRI data such as MR acquisition
artefacts, physiological noise, and often stimulus correlated head motion occur.
Furthermore, ICA has been used to study resting state networks[3], investigate
the mechanisms of memory and decision-making, and brain activity before an
epileptic seizure[9]. In all cases the timings of task-related activity are difficult
to specify accurately which makes it difficult - if not impossible - to use simple
linear regression.
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Given an FMRI experiment with n voxels1 measured at p different timepoints,
after the pre-processing steps of motion correction, removal of low-frequency
drift, voxelwise de-meaning and voxelwise variance normalisation, the spatial
structure is discarded to allow the construction of a p × n matrix X. We follow
the methodology outlined in [2]: the generative model is that of linear mixing
with additive Gaussian noise N

X = AS + N (1)

where S includes not only BOLD components but also structured noise of phys-
ical and physiological origin. A is the linear mixing matrix. Typically, a Singu-
lar Value Decomposition is performed to obtain a factorisation into orthogonal
regression timecourses and their corresponding spatial maps. The data is par-
titioned into major and minor PCA subspaces, using the eigenspectrum of the
data covariance matrix to estimate the underlying dimensionality q (number of
components). Within the standard PICA framework[2] ICA unmixing based on
maximisation of non-Gaussianity is performed in the major subspace within the
spatial domain, with the minor subspace used as the noise component for subse-
quent hypothesis testing (see [2] for details). In the resulting decomposition, A
is a p × q linear mixing matrix and the ICs span the major subspace, with each
voxel having factor loadings of the ICs associated with it.

Such an approach partially ignores knowledge about the spatiotemporal char-
acteristics of FMRI data. In particular, standard linear decomposition techniques
ignore neighbourhood relationships in the spatial and temporal domains once
the data is represented as a 2D matrix X. We have physiological knowledge that
BOLD activation is spatially sparse due to the way the brain is organised and
smooth due to the fluid characteristics of blood and the diffusion of oxygen from
the bloodstream. We also know that functional brain anatomy is on a reasonably
coarse scale compared to FMRI voxel sizes. In the temporal domain we know
that the BOLD response is smooth at the timescales we observe, again because
oxygen is supplied by diffusion from the bloodstream.

In previous work[10] we have incorporated assumptions about the temporal
smoothness of the signals via a smoothness constraint in the temporal domain,
substituting Regularised Principal Component Analysis (RPCA)[16] for PCA2.
Such an approach is computationally efficient and has been shown to provide
an increase in accuracy for block paradigms. However, a disadvantage is that
the temporal variance is represented less effectively and that non-smooth com-
ponents are estimated less efficiently. The non-smooth components may cor-
respond to MR-physics related effects and can co-exist with smooth compo-
nents which relate to physiological processes. Other researchers have applied a
temporal smoothness constraint within the ICA algorithm[5,19] on only some
components of interest, although they have assumed that they are analysing
1 A voxel is a cube of tissue, typically of size 3mm3 in FMRI, compared to 1mm3 in

structural MRI.
2 RPCA constrains the factors to be represented by a B-spline basis set and applies a

roughness penalty in addition to the existing orthogonality constraint.
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experiments with a clearly defined experimental design to enable the identifica-
tion of components of interest. This introduces some of the disadvantages of a
regression analysis into the modified ICA algorithm.

A way of incorporating prior biophysical knowledge while not being depen-
dent on identifiable design timecourse(s) is to use a prior in the spatial domain.
In section 2 we describe an algorithm which uses Discrete Wavelet Transforms
(DWTs) to incorporate our prior biophysical knowledge that the effect we at-
tempt to observe is spatially smooth, sparse, and occurs at certain scales. We
evaluate our proposed algorithm with realistic synthetic data in section 3. Fi-
nally, in section 4 we summarise our findings and discuss the demonstrated and
potential advantages to constraining the ICA solution in the spatial domain
rather than the temporal domain.

2 Algorithm

It has previously been demonstrated that ICA on natural signals operates more
effectively when the signals are represented using a sparse dictionary[20]. We
use a 3 level 3D separable DWT using ‘Farras’ wavelets[1,18] as our (complete)
spatial dictionary Φ, since the multiresolution property proves useful. We zero-
pad the FMRI volumes so they have dimensions which are multiples of 23 to
enable a 3 level decomposition, and perform the DWT on each FMRI volume.
The filterbank analysis and synthesis algorithms mean that we never have to
explicitly calculate the n × n matrix Φ. If X, S and N have p × n coefficient
matrices in the dictionary Φ, denoted by Cmixures, Csources and Cnoise, we have

X = CmixturesΦ (2)

with similar equations for Csources and Cnoise. Having postmultiplied by Φ−1

we can restate Eqn. 1 as

Cmixtures = ACsources + Cnoise (3)

We can incorporate our spatial prior within the ICA unmixing by estimating
the unknown mixing matrix A from only the father wavelet coefficients. Con-
veniently, Gaussian noise will present itself mainly in the more detailed wavelet
levels, a property used for wavelet denoising. This representation differs from
[20]’s notion of sparseness because instead of the majority of the wavelet coeffi-
cients being close to zero, which can only be assumed for the mother wavelets,
we have summarised the important features of the data in the father coefficients.
The father coefficients themselves are not sparse, but do form a sparse repre-
sentation of the data since we are ignoring the mother coefficients. Denoting the
number of father coefficients as r, we find that we will be estimating A using
only 1

512 of the wavelet coefficients — since it is a dyadic transform, we raise
2 to the power of 3 for the scale level and then to the power of 3 again for
the number of dimensions. Denoting the truncated p × r coefficient matrices by
C′mixtures, C′sources and C′noise and the r × n truncated dictionary matrix by
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Φ′, we can restate Eqn. 1 with A constrained to lie in the subspace of the father
coefficients as

C′mixtures = AC′sources + C′noise. (4)

We previously used PCA[2,10] in the temporal domain to constrain the number
of ICs to be equal to the estimated dimensionality of the data. Noiseless ICA is
performed in the major PCA subspace, while the minor PCA subspace is treated
as a Gaussian noise term for later hypothesis testing. If we perform PCA in the
temporal domain on Eqn. 4 and retain only the major subspace we now have
q × r coefficient matrices denoted by C∗mixtures, etc. The q rows contain factor
loadings for regressed timecourses and r columns contain the spatial coefficients.
We now have the generative model:

C∗mixtures = AC∗sources. (5)

We make a number of assumptions in order for ICA to be applicable:

– The underlying sources of our FMRI data are statistically independent.
– The independent components have non-Gaussian distributions (the minor

PCA subspace we discarded is assumed to contain the Gaussian noise).
– We correctly identified the dimensionality q of the data, so our unknown

mixing matrix is square.

A is estimated by performing noiseless ICA in the spatial domain on Eqn. 5
using the natural gradient Infomax algorithm[15] implemented in [14]. Next, we
project Cmixtures onto the regressed PCA timecourses and use Â−1 to unmix
the result, and finally apply the inverse DWT to the source estimates. Our
BOLD ICs should now be estimated more accurately since unmixing has been
performed in the scale subspace where the BOLD signals represent themselves
most strongly.

3 Evaluation

Two FMRI datasets were obtained – from a subject at rest, and from the same
subject hearing a 30 second on, 30 second off boxcar auditory stimulus. The
second dataset was analysed within the general linear model framework as im-
plemented in FEAT[17] and the activation maps found were thresholded at a
fixed Z-statistic level. The intensity of the activation map remaining was lin-
early mapped to the range [0.1,1] and combined in the temporal domain with
a simulated boxcar stimulus convolved with a gamma based haemodynamic
response function. The resulting 4D activation was embedded in the resting
data to produce a synthetic FMRI dataset with known spatial activation maps
and timecourse. This was done at Contrast to Noise Ratios (CNRs) from 0%
CNR to 200% CNR in 10% increments by scaling the timecourse amplitude
accordingly.
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Fig. 1. Comparison of performance of PICA with spatial prior proposed in this paper
and PICA with temporal prior implemented by using RPCA instead of PCA against
standard PICA. For the spatial prior a ‘step’ is visible: nothing is resolved below 80%
CNR, much higher accuracy is achieved above 80%. The temporal prior outperforms
standard PICA in the CNR range 30%-130% and from 140% does slightly worse, the
smoothness constraint outweighing the benefits when the BOLD signal is very strong.
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Fig. 2. Accuracy across number of components retained and peak % CNR. Results
for a simple GLM are given in the bars at the top. A trade-off is apparent between
greater sensitivity at lower CNRs for lower dimensionality estimates in the range 20–
30 and greater accuracy at higher CNRs for higher estimates of dimensionality of 35
upwards. (a) Accuracy of PICA with spatial prior proposed in this paper. (b) Accuracy
of standard PICA.
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3.1 Test Metrics

Receiver operating characteristic (ROC) plots are frequently used to illustrate the
accuracy of FMRI analysis techniques. Here, we calculated the Gini coefficient[8]
as our measure of signal detection accuracy. The Gini coefficient provides a scalar
measure, but typically integrates over the entire False Positive Rate (FPR) range.
For the evaluation of the detection of signals from FMRI experiments however, a
range of 0% up to 10% FPR is more reasonable since no meaningful conclusions
can be drawn if a large percentage of the brain is known to be falsely classified as
active. We therefore calculate the Gini measure in the 0–10% False Positive Rate
(FPR) range and normalised it to lie in the range [0,1].

3.2 Test Results

Figures 1 and 2 illustrate the performance of the proposed methodology on the
simulated data. Figure 1 shows a line plot of the accuracy over CNRs obtained
by standard PICA, the new algorithm we have described, and the results of our
previous work using a temporal smoothness prior. We speculate that the jump
in accuracy using the spatial scale prior occurs because below a certain level of
CNR too little information is available to enable effective unmixing. A similar
effect can be observed on the plots in Fig. 2 when too few PCs are retained.

Figure 2 shows plots for accuracy (colour-coded) across CNR and number of
components retained. With 11 or more PCs retained our proposed methodology
gives values of above 0.6 accuracy at CNRs of 80% upwards, with only 2 excep-
tions. This indicates that our proposed methodology would be more robust to
errors in specifying the underlying dimensionality of the data. Figure 2(b) shows
that the standard methodology can vary considerably in its performance with
small changes in dimensionality estimation.

The algorithm proposed here is faster than the standard PICA technique – the
time taken to perform the DWTs is more than offset by a considerable reduction
in the time taken to perform the ICA step, since the computationally intensive
unmixing is performed on hundreds rather than tens of thousands of spatial
coefficients, leading to an overall speed increase of more than four times, and
the DWTs are easily parallelizable while the ICA unmixing is not.

4 Conclusion

We have described a method of incorporating a spatial biophysical prior into
ICA for FMRI and tested it on realistic synthetic data. Incorporating a prior in
the spatial domain offers the advantages over the temporal domain of increased
accuracy, an increase in speed and the fact that no experimental design needs
to be specified, unlike some methods of incorporating a temporal prior.

Note that the alternative approach of using all the wavelet coefficients or any
other wavelet detail level yielded no advantage over the standard PICA method,
as we would expect if the benefit comes from the scale prior rather than merely
the sparse representation in the wavelet domain increasing the efficiency of ICA.



Independent Component Analysis of FMRI Data Using Wavelet Dictionaries 631

Elsewhere[11] we have evaluated using the Dual-Tree Complex DWT to de-
noise FMRI statistical maps obtained using ICA. Initial results suggest an in-
crease in estimation accuracy to approximately 0.85 from a CNR level of 80%
upwards. We are encouraged by this because 80% CNR is typical of the FMRI
BOLD signals we observe, and at this level on our test data the standard PICA
methodology in current use only achieved an accuracy measure of approximately
0.20 in our tests.

An adaptive technique is probably required to incorporate some of the more
detailed coefficients in the estimation step and overcome the poor accuracy
achieved by our algorithm at 70% CNR and below in Fig. 1. One disadvan-
tage of our method is that while BOLD signals of interest are estimated more
accurately, there may be a decrease in the accuracy of estimating non-BOLD
structured noise which presents itself mainly at the scale levels we discard. A so-
lution to this may be to estimate different classes of components using different
subsets of wavelet coefficients.

Neurological conclusions are typically drawn from only about a hundred func-
tionally defined regions of the brain and areas on the cortical surface. Performing
inference using anatomically informed basis functions[12] to inform the unmixing
might lead to further improvements. A spatial prior could also be incorporated
into the analysis of multi-subject FMRI data. Particularly when using simul-
taneous group analysis techniques such as tensorial extensions to ICA[4], the
unmixing of coefficients from a DWT would decrease the computational and
memory requirements.
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Abstract. A multivariate non-parametric approach for the processing of fMRI 
group data is important to address variability of hemodynamic responses across 
subjects, sessions, and brain regions. Independent component analysis (ICA) 
has a limitation during the inference of group effects due to a permutation 
problem of independent components. In order to address this limitation, we 
present an independent vector analysis (IVA) for the processing of fMRI group 
data. Compared to the ICA, the IVA offers an extra dimension for the 
dependent parameters, which can be assigned for the automated grouping of 
dependent activation patterns across subjects. The IVA was applied to the fMRI 
data obtained from 12 subjects performing a left-hand motor task. In 
comparison with conventional univariate methods, IVA successfully 
characterized the group-representative activation time courses (as component 
vectors) without extra data processing schemes to circumvent the permutation 
problem, while effectively detecting the areas with hemodynamic responses 
deviating from canonical, model-driven ones. 

Keywords: Independent Vector Analysis, fMRI, Neuroimaging, Group Study, 
Multivariate Analysis. 

1   Introduction 

Functional MRI (fMRI) measures the blood-oxygenation-level-dependent (BOLD) 
signal changes associated with neural activity. Thus, temporal dynamics of the BOLD 
signal (time series; TS), called as hemodynamic response function (HRF), is the key 
element in analyzing fMRI data. Typically, univariate approaches such as the 
generalized linear model (GLM) or regression analysis, are performed to estimate the 
conformity of a measured voxel-wise BOLD TS to the fixed, canonical HRF [1]. 
However, the BOLD TS may not be fully appreciated from the univariate methods 
due to the variations across subjects, scans, and brain regions [2].  

ICA [3], as one of the multivariate approaches, has provided flexibility in data 
processing compared to the hypothesis-driven, univariate methods. Such flexibility 
applies especially when observed hemodynamic responses deviated from expected 
(hypothesized) HRF [4]. Task-related activation components, often similar in their 
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spatial/temporal patterns across subjects/sessions, may not be inherently generalized 
from individual to group level analysis since the ICA algorithm permutes the order of 
output components. Therefore, the task-related components across subjects/sessions 
were manually inspected and grouped in the previous study [5]. This method may 
require careful selection of the component-of-interest from the large number of 
subjects/sessions.  

In the present study, we propose a novel fMRI analysis method for group 
processing based on independent vector analysis (IVA) [6]. IVA was originally 
proposed to address the limitation of the conventional ICA approach during the blind 
source/signal separation (BSS) in the frequency domain (i.e. permutation of extracted 
independent components across frequency bins). IVA correctly indexed the 
independent components (ICs) that were identified during the BSS in the frequency 
domain by utilizing the mutual dependency among the extracted ICs across frequency 
bins. Intuitively, the IVA model offers an extra dimension for processing dependent 
components, compared to the ICA model. In the fMRI study, this extra dimension can 
be assigned for automated grouping of similar IC maps across subjects. 

Fundamentally, IVA is an extension of ICA, whereby the component of an input 
and an output stage forms a vector (instead of a scalar value as in the case of ICA). 
IVA assumes and, therefore, attempts to increase independency across output vector 
components, while maintaining dependency among scalar elements within each 
vector. The ‘dependency’ in the fMRI study is analogous to mutual activation patterns 
across the subjects, comparable to the group trend in similar spatial activation 
patterns. Using the IVA algorithm, the spatially-similar trend in activation maps 
across subjects (dependent, thus representing group-trend) can be derived as the 
output vector components. As a result, one can avoid the complications of manual 
selection of task-related IC maps/time-courses (TCs) across subjects, thus rendering 
the whole process user-independent. In order to show the utility of the proposed 
method, we implemented and applied the IVA algorithm to analyze fMRI data of a 
left-hand motor clenching task using a short-time trial-based paradigm design. The 
obtained result was compared with the result from the generalized linear model 
(GLM) in SPM2 (Wellcome Department of Imaging Neuroscience, University 
College London, London, UK; www.fil.ion.ucl.ac.uk/spm) .  

2   Methods  

2.1   IVA Model and Learning Algorithm 

Figure 1 shows a schematic diagram of concurrent synthesis (generative) and analysis 
models for group data processing using IVA. In the synthesis model, the weighting 
values at the vth voxels associated with IC maps (assuming mutual dependence across 
subjects) were grouped into a single vector array assuming the spatial similarity 
across the subjects. Through the mixing matrix A (TCs represented by each column), 
the arrays of these vectors are linearly combined to form sets of other vector arrays 
(equal to the number of temporal points of the BOLD TS), each containing the 
measured BOLD signal from a specific (vth) voxel location across all of the subjects. 
In the analysis model, the unknown weighting values (also associated with IC map) 
can be estimated via a corresponding unmixing matrix W . The matrix W  can be 
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obtained by applying a learning rule to increase independence among output vector 
arrays (thus, sorting out the activation patterns). This is accompanied by maintaining 
dependence of weighting values within each output vector array, thus deriving mutual 
activations across the subjects for group inference. 

 

Fig. 1. The schematic diagrams of synthesis and analysis models for fMRI group data pro-
cessing using independent vector analysis. [ ])()1( ,, M

jijiji aa L=a  and [ ])()1( ,, M
kjkjkj ww L=w . 

From the synthesis model in Fig. 1, the measured BOLD TS at the vth voxel of 
subject m can be represented as 

).()( )()()( vv mmm cAx =                                                 (1) 

Each subject has its own mixing matrix (i.e. TCs) with independent activations  
(i.e. weighting values associated with IC maps) for the measured BOLD TS and  
does not share a mixing matrix with other subjects. In addition, the dependence 
among weighting values across subjects, within each unknown vector component,  
is assumed by the multivariate probability density function (p.d.f.) 

( )))(,),(())(( )()1( vcvcpvp M
iii L=c . The boldface and lightface represent a vector/matrix 

and scalar value, respectively. The superscript and subscript denote the indices of the 
subjects and the IC map/fMRI volumes, respectively. M is the number of subjects 
( { }Mm ,,1L∈ ), N is the number of fMRI volume acquisitions corresponding to the 

unknown IC maps ( { }Nkji ,,1,, L∈ ), and V is the number of voxels within a brain 

region ( { }Vv ,,1L∈ ). The number of unknown IC maps was assumed to be the same 

as the number of volume acquisitions in Fig. 1. The assumed number of IC maps can 
be further reduced using a dimension reduction scheme such as principle component 
analysis (PCA) [3,5].  

Then, by applying an unmixing matrix in the analysis model (i.e. inverse of TCs), 
the weighting values at the vth voxel (across IC maps) of subject m can be estimated as 

).()(ˆ )()()( vv mmm xWc =                                               (2) 
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In order to derive learning algorithm, as presented in [6], the Kullback-Leibler (KL) 
divergence was adopted as a measure of independence of output vector components. 
Also, variance-dependent multivariate p.d.f. was utilized as a measure of dependence 
among elements within output vector component. By following the procedure in [6], 
the algorithm for calculating an update term, )(mWΔ  corresponding to the unmixing 
matrix of the subject m, can be derived as 

( )( )[ ] ,)(ˆ)(ˆ )(T)()()( mmmm vv WccIW ϕ−∝Δ                                    (3) 

where I  is an  identity matrix ( NN × ), ( ) ( ) ( )[ ]T(m))(
1

)( )(ˆ)(ˆ)(ˆ vcvcv N
mm ϕϕϕ L=c , and 

( ) .)(ˆ)(ˆ)(ˆ
1

2)()()( ∑ =
= M

l

l
k

m
k

m
k vcvcvcϕ  Applying Eq. (3), the unmixing matrix can be iteratively 

updated for the data from all voxels ( Vv ,,1L= ). The only difference compared to 
the Infomax-based ICA (for the processing of a single subject data [3]) is the 
application of a nonlinear function ( ))(ˆ )( vmcϕ  (c.f. score function in ICA), which is 

dependent across subjects in IVA.  

2.2   Application to Trial-Based fMRI Data 

This study was approved by the local Institutional Review Board. Twelve right-
handed subjects (aged 24.7±4.5, 5 females) performed one session of a left hand 
(LH) clenching (2 times/sec) task based on a short-time trial-based paradigm design 
(65-sec duration excluding 10-sec of dummy scans; task onset occurred at 15-sec 
followed by a 3-sec task-period). For the start/end of the task, a pre-recorded sound 
cue was played to the subject in the MRI system via an auditory headset (Avotec, 
Jensen Beach, FL). The fMRI data was obtained in a 3-Tesla clinical scanner (Signa 
VH, GE Medical Systems) using a single channel, standard birdcage, head coil.  

To obtain functional data, an EPI sequence was applied to image most of the brain 
volume (13 axial slices, flip angle=80°, TE/TR=40/1000msec, 64 frequency and 
phase encoding: 64×64 in-plane voxels, 5mm thickness with a 1mm gap, 240mm 
square field-of-view) for detection of the BOLD TS associated with neural activity. 
Prior to group processing, individual EPI data was standardized to the MNI (Montreal 
Neurological Institute) space by following preprocessing steps in SPM2 (i.e. in order: 
slice timing correction, realignment, normalization, and spatial smoothing using an 
8mm full-width-at-half-maximum 3-D Gaussian kernel). Before processing using 
IVA algorithm, a PCA-based dimension reduction scheme [3,5] was applied to reduce 
the number of IC maps/TCs to 50. The sum of corresponding 50 eigenvalues was 
more than 99% of a sum of total 65 eigenvalues for each subject.  

Using the IVA algorithm in Eq. (3) to a normalized set of dimension-reduced fMRI 
group data, a semi-batch learning scheme [3] was applied to update the unmixing 
matrix of each subject. A batch of a 10×10×10mm3 isotropic cluster (5×5×5=125 
voxels due to the 2×2×2mm3 isotropic voxel) was used, assuming dependencies of 
neural activations within this cluster across subjects. The learning rate (η ) was set to 

10-3 throughout iterations. The iteration was stopped when a ratio of weight change 
( )()( mm WWΔη ) was stabilized (3.6×10-5 ~ 7.5×10-4). After the algorithm converged, the 

resulting IC map (i.e. weighting values of TC) was transformed into a z-scored map 
by subtracting a mean value and dividing by the standard deviation [3].  
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Sign ambiguity of IC maps/TCs that typically arise from ICA-based methods [3, 4, 
5, 7] also applied to the case of IVA. In IVA, the voxel-wise correlation coefficients 
between (1) the IC z-map within the activated regions (|z|>threshold) and (2) the 
original fMRI volumes were utilized. If the averaged (across time points) value of the 
correlation coefficients was negative, the sign of the IC z-map (& corresponding TC) 
was inverted.  

In order to find task-related components, a spatial sorting scheme was employed, 
whereby a voxel-wise correlation value between the sign-corrected IC z-map and 
cross-correlation (CC) map (obtained from the temporal correlation coefficients using 
the task-related canonical HRF) was regarded as the degree of task relevance of each 
IC z-map for each subject. This similarity measure (i.e. the voxel-wise correlation 
value) was then averaged across all subjects for each output vector array of IVA and 
subsequently sorted in descending order. The resulting five most task-related IC  
z-maps across subjects were processed using one-sample t-test implemented in SPM2 
by considering a random effect (RFX) model [8]. These resulting task-related group 
activation maps of IVA were compared to the group activation map of GLM obtained 
from SPM2. After obtaining a group inference, the group activation maps were 
qualitatively compared in terms of location of activation. The areas with an activation 
volume greater than 5×5×5mm3 (p<10-3) were identified and labeled from the 
Brodmann’s Area (BA) and Automated Anatomical Labeling (AAL) templates 
(provided by MRIcro; www.mricro.com). 

3   Results 

Figure 2 shows the task-related group activation maps obtained from GLM and IVA. 
In the results of GLM (Fig.2A), which is a univariate approach, a single task-related 
group activation map was acquired. In the results of IVA, the 5 most task-related 
components were selected after the reordering of output components based on the 
spatial sorting strategy explained in Section 2.2. The group activations (p<10-2 ~ 
p<10-7) were coded with a color gradient. The labeled anatomical areas of the group 
activations were listed in Table 1. From the analysis by GLM, the directly task-related 
areas (e.g. right primary motor area: M1, supplementary motor area: SMA, primary 
sensory area: S1, and cingulate gyrus) and paradigm-related areas (auditory; superior 
temporal) showed more significant activations compared to basal ganglia 
(caudate/putamen/pellidum) and thalamus (see Fig. 2A). In the results of IVA, the 
task-related activations (e.g. the right M1, SMA, S1, cingulate gyrus, and sup./mid. 
temporal gyrus) were extracted as the 1st task-related group activation map 1ĉ . The 

group activations in the remaining components were dominant in the primary auditory 
area ( 2ĉ ), basal ganglia & thalamus (

3ĉ ), inf. frontal & insular cortex ( 4ĉ ), and mid. 

frontal & cingulate gyrus (
5ĉ ). 

From the comparison of group activation maps between GLM and IVA (Fig. 2), 
some of the activations revealed by IVA were underestimated by GLM. For example, 
the size of activated regions obtained in the auditory area by GLM (examples were 
shown with green circles in Fig. 2A) was reduced compared to the area detected by 
IVA (marked as green in Fig. 2B). Also, the activations in the basal ganglia/thalamus 
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identified from IVA (blue area in Fig. 2B) were not detected when processed with 
GLM (examples were shown with blue circles in Fig. 2A). 

 

Fig. 2. Group activation maps obtained by (A) GLM and (B) IVA methods. For IVA, five most 
task-related component maps (

51 ˆ~ˆ cc ) were color-coded.  

Table 1. The strongly activated cortical areas inside group activation map. If any activated 
cluster (p<10-3) was bigger than 5×5×5mm3, the center of this cluster was registered using BA 
and AAL indices (provided by MRIcro; www.mricro.com).  

Left-Hemisphere Right-Hemisphere

GLM

Inf. frontal / SMA / Insula / Mid. 
Cingulate / S1 / SupraMarginal / Sup. 
Temp.  *BA: 6, 23, 24, 32, 42, 47, 48 

M1 / Inf. Frontal / SMA / Insula / Mid. 
Cingulate / S1 / Parietal (Sup., Inf) / 
SupraMarginal / Sup. Temp. *BA: 2, 3, 
4, 6, 8, 23, 24, 32, 38, 40, 42, 44, 47, 48

1ĉ : M1 / Frontal (Sup., Mid.) / SMA / 

Mid. Cingulate / S1 / Parietal (Sup., Inf) 
/ SupraMarginal / Sup. Temp.  

1ĉ : SMA / Mid. Cingulate / S1 / 

SupraMarginal / Temp. (Sup., Mid.) 
*BA: 3, 6, 8, 22, 23, 24, 32, 41, 42, 48 

*BA: 2, 3, 4, 6, 23, 24, 32, 40, 48 
2ĉ : Insula / SupraMarginal / Heschl / 

Temporal (Sup., Mid.)  *BA: 22, 42, 48 2ĉ : Heschl / Sup. Temp.  *BA: 22, 48

3ĉ : Frontal (Sup., Inf.) / Insula / 

Hippocampus / Amygdala / Putamen / 
Pallidum / Thalamus / Heschl / 
Sup.Temp.

3ĉ : Insula / Hippocampus / Amygdala / 

Caudate / Putamen / Pallidum / 
Thalamus  
*BA: 11, 20, 27, 34, 37, 38, 48 

4ĉ : Inf. Frontal / Insula / 

SupraMarginal / Putamen / Heschl  
*BA: 45, 47, 48 

5ĉ : Insula / Cingulate (Ant., Mid.) / 

Sup. Temp.  *BA: 24, 32, 48

IVA

*BA: 11, 20, 25, 34, 38, 47, 48 

4ĉ : Inf. Frontal / Insula / Putamen 

*BA: 6, 48 

5ĉ : Mid. Frontal / Cingulate (Ant., Mid.) 

/ Sup. Temp.  *BA: 24, 32, 38, 45, 46  
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We conjectured that the differences in activation maps between GLM and IVA 
were caused by the individual differences in temporal patterns of hemodynamic 
responses from the areas. Therefore, individual differences in the obtained TCs were 
further compared across subjects (Note that the TC represents a dominant feature of 
the BOLD TS corresponding to the activated voxels in the IC map). Figure 3 shows 
the individual TCs corresponding to three highly task-related group activation maps 
( 1ĉ ~ 3ĉ  in Fig. 2B) by IVA. Here, we adopted the convention introduced by Duann et 

al., [8], whereby the normalized TC (0~1) was coded in gray scale (black: 0 & white: 
1) so that relative amplitudes can be readily discriminated within/across subjects. First 
of all, the TCs (Fig. 3A) corresponding to the 1st (highly) task-related group activation 
map 1ĉ  was in good agreement with the hypothesized HRF in GLM (yellow box: 

task-related period; correlation coefficient between the averaged TC across subjects 
and the hypothesized HRF: 0.88). On the other hand, the TCs (Fig. 3B&C) 
corresponding to 2ĉ & 3ĉ  showed some degree of variations in peak position within 

the task-related period. It is also notable that additional peaks during rest-periods were 
observed (examples are shown with arrows) with reduced correlation coefficients of 
0.56 & 0.63, compared to the 1ĉ . Because of these large variations between the actual 

hemodynamic responses (analogous to TCs) and the hypothesized HRF across 
subjects, the activations in the corresponding areas may not be detected by GLM.  

 

Fig. 3. Image plots of TCs across subjects corresponding to 3 highly task-related group acti-
vation maps ( 1ĉ ~

3ĉ ). Each TC was normalized between 0 (black) and 1 (white). A yellow box 

indicates the period of task-related response. Green arrows indicate examples of the peaks 
during the rest-period. The plots in the bottom are the hypothesized HRF (green line), along 
with the averaged TC (blue line), and standard deviations (red bars) across all subjects. A 
correlation coefficient between the averaged TC and the hypothesized HRF is shown in the top-
right corner of each averaged time plot. A task-period (3-sec) is marked with thick black bar. 

4   Conclusion 

In this study, we have proposed the use of IVA to infer the group-activation pattern 
from fMRI data. The IVA algorithm was applied for multiple subjects’ BOLD signals 
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and the spatially-similar trend in activation maps across subjects (dependent, thus 
representing group-trend) were derived as the output vector components. From the 
application of the proposed method to fMRI data, the resulting IC maps/TCs of 
individual subjects provided reliable task-related information for a further group level 
inference. In addition, IVA provided more robust activation patterns than GLM (based 
on the hypothesized univariate HRF), especially when the HRF deviated from the 
hypothesized HRF (e.g. from the basal ganglia/thalamus). These results show the 
feasibility of IVA to be used in fMRI group studies as potential alternative to 
conventional univariate approach. The proposed model may also be adopted to find out 
multivariate common activation patterns across multiple trials/sessions from a single 
subject data by substituting the index of a subject for the index of a trial/session.  

The IVA approach demands computational load since an individual unmixing 
matrix is iteratively trained using the results from other subjects (represented as 
nonlinear function, ( ))(ˆ )( vmcϕ ), and thus, all of the unmixing matrices should be 

parallely updated. This increased computational demand can be alleviated by the 
increasing hardware memory. In order to achieve the fully-automated group 
processing using IVA, elaborate sets of optimization in terms of learning parameters 
and sorting schemes (for the selection of task-related features) are needed.  
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Abstract. This paper deals with the problem of estimating atrial ac-
tivity during atrial fibrillation periods in the electrocardiogram (ECG).
Since the signal of interest differs in kurtosis sign from the dominant
sources in the ECG, we propose an independent component analysis
method for source extraction based on the different kurtosis sign and
extend it with a constraint of spectral concentration in the 3-12Hz fre-
quency band. Results show that we are able to estimate the atrial fib-
rillation with a single algorithm having low computational complexity
(O(7n-7)T).

1 Introduction

This paper describes a method to recover narrow band independent signals from
a linear mixture model where high impulsive (high kurtosis) signals are the
main source of interference. This set-up is a commonly encountered problem
in biomedical signal analysis, e.g. when considering spectral bands of activity
in electroencephalographic recordings or atrial fibrillation (AF) signals in the
electro cardiogram (ECG) where the main sources of interference are respectively
the ocular activity and the QRS(-T) complex.

The focus here is on the recovery of atrial activity during AF from an ECG
recording, whatever the conditions of noise or interference from other physio-
logical signals (e.g. QRS complex). Since we consider narrow band spectra in a
volume conductor, a linear approximation of the electromagnetic Maxwell equa-
tions is valid and hence we may suppose that a general linear mixing model holds.
This mixture model translates the measured potentials at the chest or body sur-
face into bio-electrical source signals (generally specified by their currents) and
vice versa. If we consider the mixing-demixing model, all relations exhibit the
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characteristics of a linear model and thus we can rewrite our system of mea-
surements y into an equivalent set of potentials x, where each xi is associated
with a column of A, ai. The latter represent the mappings of the sources on the
measurement surface (known as source topographies). Or, in matrix notation:

y (t) = Ax (t) + η (t) , (1)

which explains the relations between the measurements y ∈ IRm×1, the mixing
matrix A ∈ IRm×n, the sources x ∈ IRn×1 and the noise η ∈ IRm×1.

The measurements and the sources can be seen as realisations of random vari-
ables. Therefore we will drop the time index in the subsequent work to improve
readability. For the biomedical case we might assume that these sources are quasi
statistically independent. In the case of atrial fibrillation, we can restrict the AF
source characteristics even further by imposing the extra constraint that the AF
signal should have a narrow band spectrum, thus having platokurtic statistics.
This is in contrast to the QRS(-T) complex - the main masking source - which
is highly leptokurtic (see e.g. [1]). In the rest of this paper we will develop this
idea further, sketching a framework in which we can extract the independent
AF source based on the difference in kurtosis sign and under the constraint of
narrow band source spectra. The solution is given as the ensemble of subsequent
algebraic solutions to the pairwise separation problem, subjected to a condi-
tional update. This guarantees a robust algorithm, with only few parameters to
estimate and omitting the need for exhaustive search algorithms.

2 Methods

2.1 The Kurtic Difference as an Object Function to ICA

ICA. The solution to the ICA problem has been proposed by different authors,
using different contrast functions. Despite the diversity at the basis of the algo-
rithms, the solution space is almost always given by components whose higher
order cross cumulants vanish [2,3], which in its turn is equivalent to a reduction
of the mutual information between the components [4,5]. Solutions have been
proposed to solve the problem by deflation approaches [6] - estimating source by
source - or to interact on the whole subset at once. The deflation approach offers
the ability to solve for independence in a component-by-component way, sorted
according to the value they take in the cost function, see e.g. RobustICA [7],
FastICA [8]. However, when considering the a priori constraint of a narrow
spectrum, most algorithms lack the possibility to include this without going to
excessive computational complexity, see e.g. the number of tensor slices or cor-
relation matrices needed in JADE [4]-like, respectively SOBI [9]-like, algorithms
especially when applied to high data dimensionalities n.

Givens Rotations. The method proposed here is an extraction (or deflation)
approach with pairwise optimisation. The advantage is that there exists an alge-
braic expression able to update the source estimates, avoiding computationally
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unattractive search methods. Moreover, since the signals are prewhitened (i.e.
mutually decorrelated), it suffices to find an orthogonal matrix to find maxi-
mally independent source estimates. We can thus constrain our parameter space
to only one parameter per signal pair if we do not take into account permuta-
tion and scaling, which are irrelevant parameters when considering the indepen-
dence criterion. Our search space can thus be limited to the optimal rotation
angle for each pair to process [4,3]. This amounts to the following algorithm for
prewhitened signals ẑ ∈ IRn×1:

x̂ij = Q (θ�)xij , where Q (θ�) =
(

cos θ� sin θ�

− sin θ� cos θ�

)
, (2)

where θ� is the optimal rotation angle that is to be specified, and the matrix
Q (θ�) represents a plane rotation, also known as Givens rotation. xij and x̂ij are
the ith and jth component of x, respectively x̂. The result of the left multiplica-
tion of the data x̂ij by Q−1 = QT would thus results in the standarized sources
x̂, with additional constraints imposed by the objective function to which θ� is
a solution. If the objective function is chosen well, these sources are maximally
independent, an assumption that is believed to hold true for many, if not all, bio-
electrical source signals. When the objective function meets the requirements of
being maximal if and only if the components are independent, while being blind
to possible permutations and scaling, it becomes a contrast function for ICA [3].

Kurtic Difference as a Contrast. We have shown in [10] that the objective
function

Ψ (Q) =
n∑

i=1

εiκ
x̂
iiii (3)

fulfils all requirements to be a contrast function for ICA, where εi is the sign
of the fourth order auto cumulant of the ith source and κx̂

iiii the fourth order
cumulant of the ith output. Based on this fact, together with the assumption
that the atrial activity caused by AF is a (the sole) platokurtic source in the
ECG, the contrast would translate into:

ΨAF (Q) =

(
n∑

i=2

κx̂
iiii

)
− κx̂

1111, (4)

which can be solved using subsequent Givens rotations as defined above. The
next paragraph gives the algebraic solution for θ when a pair of signals is con-
sidered.

The Optimal θ-value: θ�. We can now obtain the optimal value for θ, θ�,
by calculating the stationary point of our contrast function ΨAF (4) by setting
its derivative to zero. It is sufficient to consider the pairs with opposite kurtosis
signs, the other cases being known. As a function of the observed whitened
signals x̂ = Qx we obtain for ΨAF :

ΨAF (θ) = λ2 − λ1 = α cos 2θ + 2β sin 2θ, (5)



644 R. Phlypo et al.

where α and β are given by
(
κx̂

1111 − κx̂
2222

)
and

(
κx̂

1112 + κx̂
1222

)
, respectively

and λ1, λ2 are the kurtosis values of x̂ij , which can be written as a multi lin-
ear function of the source kurtosis values [3] using Eq. (2). Equation 5 has its
stationary points at

2θ� = arctan
2β

α
, (6)

where θ� is the rotation angle to be found.
Equation 6 is also the equation obtained in [11] based on centroid estimators.

2.2 Inclusion of the Spectral Concentration Constraint

AF is typically characterised by a sinusoidal to triangular waveform (depending
on the relative power in the harmonics) with a frequency and amplitude mod-
ulation. This spectrally rather narrow banded signal has its main frequency in
the 3 to 12 Hz band. This enables us to create additional constraints regarding
the spectra, forcing us to redefine the update sequence of the pairwise processing
for source extraction as given in [10]. The method extends the natural sweeping
procedure for source extraction to a criterion based sweeping procedure. The
update criterion is given as

Criterion 1. Replace the source estimates x̂i and x̂j with their updates x̂�
i and

x̂�
j by using the relation x̂�

ij = QT x̂ij iff the spectral concentration in the 3-
12Hz band of one of the new estimates exceeds the spectral concentration of the
reference source estimate.

The spectral concentration in criterion 1 is taken as the ratio of spectral den-
sity in a ±10% band around the center frequency fc to the total energy in

the signal’s spectrum, i.e. SC =
1.1fc∫

.9fc

P (τ)e−2πτfdf/ Fs/2∫
0

P (τ)e−2πτfdf, if

fc ∈ [3Hz, 12Hz], otherwise SC = 0. With this information we can define the
sweep procedure as described in table 1, where the stopping criterion is defined
to be positive when a sweep occurs without update of the reference source
estimate.

Table 1. The pseudo-code for the sweep algorithm

Initialise reference source with x̂1

While false(stopping criterion)
StartSweep: For j from 2 to m

Compute θ� for the reference source estimate x̂1 and estimate x̂j

Compute spectral concentration for x̂�
1 and x̂�

j

If criterion 1: replace x̂1 (x̂j) with x̂� having highest (lowest) SC
EndSweep
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3 Results

3.1 Data

Patient Data. The data upon which the algorithm was run consists of 51
patient registrations with known AF. All ECG sets are standard 12 lead ECG
measurements consisting of the leads I-III, aVR, aVL, aLL and the potentials at
the electrodes V1-V6. The dataset is by definition overdetermined for the bio-
potentials since I-III, aVR, aVL and aLL can all be expressed in terms of the
left arm (LA), right arm (RA) and left leg (LL) electrode potentials. This means
that there is a redundancy of factor 2 in the leads. If we take the LL electrode
as the reference electrode for all measurements (which is generally the physical
measurement setup), then we are left with 8 independent variables. We can thus
reduce our set to 8 recording sites or derivations only without compromising the
information in the data. Taking V1-V6 and extracting the potentials at LA and
RA from the leads would eliminate this data redundancy.

One has to be careful though in highly noisy environments where the noise at
the electrodes is not stationary and the noise term would thus take a sufficiently
high amount of the total data subspace. In that case it might not suffice to
take only the 8 electrode potentials and the extra derivations might add extra
information to solve the ill-conditioned problem.

Simulated Data. To have an idea of the quality of separation we introduce
a simulated dataset. This dataset contains an AF signal constructed following
the method in [12], whereas the QRS-T simulation has been done using high
kurtosis components using the model:

QRS-Ti (t) =
∑

j

tan (aj (t) sin (jω (t) t)) . (7)

The model allows for amplitude modulation in aj , where max
t

∑
j

|aj (t) | ≤ 1, and

modulation in ω (t). By changing the number of harmonics and the parameters
in the modulations we can change the statistics of the total time series. Addi-
tionally we added two sources that are of no physiological meaning but have a
positive kurtosis value, so we do not violate the model assumptions. The ran-
domly drawn square mixing matrix is orthonormal, avoiding the need of the
prior whitening step as described in the introduction without restricting the
generality.

3.2 Estimating the Central Frequency

To evaluate our method, we focus on the value of the main frequency estimated
by our method. The main frequency is defined as the frequency at which the
power spectral density is the highest in the 3 - 12Hz band. For the 51 patient
registrations we compare the resulting frequencies with those found from a com-
bined FastICA and SOBI approach as it was applied in [13]. We compare the
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results as well for AEML, EML and the combEML methods [11] in the same
constrained updating framework. In table 2 the results of the central frequency
difference among the methods with their respective standard deviation are dis-
played. To exclude biasing toward short time artefactual instances in the data,
the data has been resampled at each iteration before calculation of the opti-
mal rotation angle θ� based on a bootstrap sampling, allowing for overlap. We
choose a bootstrap sample size of 2 · 103. To exclude the bootstrap based differ-
ences between the methods, we consider 100 Monte Carlo runs per method over
the whole dataset of which the mean of the results so obtained are used as the
frequencies to construct table 2.

Table 2. Differences in main frequency estimation. The upper right triangle displays
the results when 12 leads are considered, in the lower left triangle displays the results
for the reduced set of 8 electrode potentials are given.

fastICA+SOBI AEMLa AEMLc combEML

fastICA+SOBI 0 -0.026 (0.444) 0.083 (0.294) 0.425 (0.429)
AEMLa 0.467 (1.025) 0 0.142 (0.384) 0.032 (0.291)
AEMLc 0.291 (0.526) -0.085 (0.755) 0 -0.110 (0.338)
combEML 0.425 (0.761) 0.063 (0.767) 0.148 (0.390) 0

Visualisation of the Results. To evaluate the performance on simulated and
real datasets, we present the artificial mixture, respectively the observations of
the electrode potentials and the source extraction results in Figs. (1) & (2).
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Fig. 1. Extraction of an AF like signal from an artificially generated mixture. left: the
original sources; center: the mixture; right: the extracted source.

Fig. (3) gives the PSD for both source estimates in Figs. (1) & (2).
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Fig. 2. Extraction of an AF signal from the ECG. upper: 12 channel ECG signal; lower:
extracted AF signal.
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Fig. 3. PSD for the extracted sources from (a) the artificially generated mixture in
Fig. (1) and (b) the ECG signal in Fig. (2)

4 Discussion

From Table 2 it is clear that From the figures we can see that the restriction
of the spectral concentration does not prevent to extract signals with multiple
harmonics, a result that is supported by the fact that the main harmonic is
still the central frequency. Moreover, the sources are maximally independent,
being a solution to the contrast in [10] subjected to the constraint of spectral
concentration in the 3-12Hz band. Moreover, since our technique is based on
source extraction, there is no need to do a full decomposition with a posteriori
source selection, which is computationally attractive, since the overall complexity
is of order O (7n-7)T.

5 Conclusion

The results of the method based on constrained extended AEML are promising
toward the extraction of AF from the ECG. Although the presented values and
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figures are already showing the strengths of the method, it remains to explore
how to obtain a quantitative and objective measure for the evaluation of the
proposed source extraction technique against the widely accepted techniques of
unmasking the AF through suppression of the QRS-T complex.
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Abstract. Exploratory matrix factorization methods like PCA, ICA
and sparseNMF are applied to identify marker genes and classify gene
expression data sets into different categories for diagnostic purposes or
group genes into functional categories for further investigation of re-
lated regulatory pathways. Gene expression levels of either human breast
cancer (HBC) cell lines [6] or the famous leucemia data set [10] are
considered.

1 Introduction

The transcriptom comprises all cellular units and molecules needed to read out
the genetic information encoded in the DNA. Among others, the level of messen-
ger RNA (mRNA), specific to each gene, depends on environmental stimuli or
the internal state of the cell and represents the gene expression profile (GEP) of
the cell. High-throughput genome-wide measurements of gene transcript levels
have become available with the recent development of microarray technology [1].
Microarray data sets are characterized by many variables (the GEPs) on only
few observations (environmental conditions). Traditionally two strategies exist
to analyze such data sets: a) Supervised approaches can identify gene expression
patterns, called features, specific to each class but also classify new samples. b)
Unsupervised approaches like PCA [3], ICA or NMF [2] represent exploratory
matrix decomposition techniques for microarray analysis. Both approaches can
be joined to build classifiers which allow to classify GEPs into different classes.
We apply PCA, ICA and NMF to two well-characterized microarray data sets
to identify marker genes and classify the data sets according to the diagnostic
classes they represent.

2 The Data Sets

2.1 Breast Cancer Cell Lines - Bone Metastasis

The data set was taken from the supplemental data to [6]. The study investigated
the ability of human breast cancer (BC) cells (MDA-MB-231 cell line) to form
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bone metastasis. Data set 1 comprised 14 samples; experiments 1-8 showed weak
(7 and 8 mild) metastasis ability, while experiments 9-14 were highly active.
Data set 2 consists of 11 experiments, 5 among them of high and 6 showing weak
metastasis ability. Both data sets carry measured expression levels of 22283 genes
using the Affymetrix U133a chip. For each measurement, the flags A(absent) or
P(present) are provided. All genes showing more than 40% absent calls in one
of the two data sets were removed. The remaining data sets contained the same
10529 genes. The authors published a list of 16 potential marker genes, 14 of
which were still contained in the reduced data set.

2.2 Leukemia

Leukemia (LK) is a form of cancer in which white blood cells (leukocytes) show
abnormal behavior. Pathologically, leukemia is split into acute and chronic forms.
Acute leukemia types can be divided into Acute Myelogenous Leukemia (AML)
and Acute Lymphoblastic Leukemia (ALL). Furthermore lymphocytes can be
classified by their cell surface into B-cells and T-cells. ALL leukemia cells can
thus be divided into the subtypes ALL-B- and ALL-T-leukemia. The data set was
taken from the well-known supplemental data to [10] which comprises a training
set of 38 experiments and a test set of 34 samples. The training set contains 27
ALL samples from childhood ALL patients, and 11 adult AML samples. The test
set in addition contains peripheral blood samples and cases of childhood AML.
The original training and test data sets contain measurements of 7129 genes.
All data were hybridized on an affy-HU6800 Affymetrix-chip. The training set
contains negative expression levels. In a later study [5], a non-negative version of
the training data set was provided. It contains expression profiles of 5000 genes.
In this study, this latter data set was used.

3 Data Analysis

The gene expression profiles are commonly represented by an (N × M) data
matrix X = [x1 · · ·xM ] with each column xm representing the expression levels
of all genes in one of the M experiments conducted. Note that the data matrix
is non-square with N ≈ 103 · M typically. This renders a transposition of the
data matrix necessary when techniques like PCA and ICA are applied. Hence
ICA follows the data model XT = AS. Then each row represents the expression
profile of all genes within one experiment. The rows of S contain the nearly
independent component expression profiles, called expression modes, and the
columns of A the corresponding basis vectors containing the mixing coefficients.
In this study the JADE-algorithm [4] was used throughout, though with the
natural gradient and the fastICA algorithm equivalent results were obtained.
With NMF, a decomposition is sought according to X = WH which is not
unique, of course, and needs further specification. The columns of W are usually
called metagenes and the rows of H are called meta-experiments. The local NMF
(LNMF) algorithm [8] was applied in this study.
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3.1 ICA - Analysis

We propose a new method based on basic properties of the matrix decomposi-
tion model as well as on available diagnostic information to build a diagnostic
classifier. ICA essentially seeks a decomposition XT = AS of the data matrix.
Column am of A can be associated with expression mode sm, representing the
m-th row of S. The m-th row of the matrix A contains the weights with which
the k ≤ M expression levels of each of the N genes, forming the columns of S,
contribute to the m-th observed expression profile. Hence a concise analysis of
matrix A hopefully provides insight into the structure of the data set.

Each microarray data set investigated here represents at least two different
diagnostic classes. If the M expression profiles of XT are ordered according to
their class labels, this assignment is also valid for the rows of A. Suppose one of
the independent expression modes sm is characteristic of a putative cellular gene
regulation process, which is related to the difference between the classes. Then in
all experiments, this characteristic profile should only contribute substantially
to experiments of one class and less so to the experiments of the other class
(or vice versa). Since the m-th column of A contains the weights with which
sm contributes to all observations, this column should show large/small entries
according to their class labels. In contrast to the method used by [7], the clinical
diagnosis of the experiments is taken into account. The strategy concentrates
on the identification of a column of A, which shows a class specific signature.
Informative columns were identified using the correlation of each column vector
of A with a design vector d whose i-th entry is di = ±1, according to the class
label of experiment xi.

3.2 Local NMF - Analysis

With NMF, each column of X comprises the expression profile resulting from one
experiment. After applying the LNMF- algorithm [8], at least one column of W,
called a metagene is expected to be characteristic of a regulatory process, which
is related to the class specific signature of the experiments. Its contribution to
the observed expression profiles is contained in a corresponding row of matrix
H, called a meta-experiment. The correlation coefficients c(hj ,d) between every
meta-experiment hj and d are then computed. Empirically, c > 0.9 signifies a
satisfactory similarity between a meta-experiment and the design vector. The
number of extracted basis components k, i.e. the metagenes, controls the struc-
ture of W and H. For several decompositions X = WH using different numbers
k of metagenes, the rows of H are studied with respect to their correlation with
the design vector. A metagene is considered informative only if all entries of
the corresponding meta-experiment which belong to class 1 are smaller than all
other entries of that meta-experiment (or vice versa). After 5000 iterations, the
cost function of the LNMF algorithm did not show noticeable changes with any
of the data sets investigated. For k = 2, . . . , 49, ten separate simulations were
carried out and only the simulation showing the smallest reconstruction error
was stored. Further matrix decompositions with k = 50, . . . , 400 metagenes were
examined. In the latter case, three simulations were performed only for each k.
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4 Results

4.1 Breast Cancer Data Set

In order to test the idea of a diagnostic classifier, we first selected the set of ex-
pression profiles from bone metastasis mediating breast cancer cell lines provided
by [6].
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Fig. 1. Top Left: Entries of the 9-th column of mixing matrix A as obtained with
JADE, Top Right: Matrix H resulting from a decomposition into k = 4 metagenes
using LNMF. Row 3 and 4 show a clear separation between columns 1, . . . , 8 and
columns 9, . . . , 14 Bottom:Componentwise ratio of row x9 with an9s9. The genes of [6]
are marked.

ICA Analysis. The analysis of the 14 × 14 matrix A identified one column
with |c((a)9,d)| = 0.89 (see Fig. 1). Hence s9 should contain genes which provide
diagnostic markers for the metastasis forming ability of the cell lines considered.
In [6], a list of 16 putatively informative genes is provided. As shown in Tab.
1 the expression levels (taken from S) across all M experiments of many of
these genes exhibit a high correlation with the design vector d indicating a
rather high single discriminative power. Many of these genes show large negative
expression levels in expression mode 9. An even more revealing picture appears
if one divides componentwise the rows of the data matrix by the weighted row
of the informative expression mode. The resulting diagram marks genes which
contribute most to the observation. Many of the genes listed by [6] stick out as
informative here.

NMF Analysis. The same data set was also analyzed using the LNMF algo-
rithm. The decomposition is very robust and highly accurate. Considering the
correlation between any row of matrix H and the design vector d, a decompo-
sition into k = 4 metagenes yielded two rows of the 4 × 14 matrix H which
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Table 1. The correlation coefficient c of the gene vector sn with the design vector d
for the 16 genes suggested by [6]. number denotes the column index in the data set X,
gene name denotes the affymetrix-ids, —– genes missing in the reduced data set.

number affymetrix-id gene name c-value number affymetrix-id gene name c-value

3611 204749-at NAP1L3 -0.96 3694 204948-s-at FST -0.89
1586 201859-at PRG1 -0.95 10480 222162-s-at ADAMTS1 -0.86
5007 209101-at CTGF -0.94 6133 211919-s-at CXCR4 -0.81
4311 207345-at FST -0.93 4233 206926-s-at IL11 -0.57
1585 201858-s-at PRG1 -0.92 3469 204475-at MMP1 -0.47
4529 208378-x-at FGF5 -0.92 4232 206924-at IL11 -0.43
5532 209949-at NCF2 -0.92 —- 210310-s-at FGF5 —–
860 201041-s-at DUSP1 -0.89 —- 209201-x-at CXCR4 —–

show an excellent correlation to the design vector d, see Fig. 1, with coefficients
c(row 3,d) = −0.91 and c(row 4,d) = 0.91, respectively. Thus, a decomposi-
tion in a comparatively small set of metagenes perfectly displays the diagnostic
structure of the breast cancer data set. For the sake of comparison, a decom-
position into k = 20 metagenes revealed four informative meta-experiments and
their related metagenes. A comparison of the ten most expressed genes in each
of the four identified metagenes shows, that 5 genes were also identified in case
of k = 4, while 7 genes were also identified with ICA and 9 genes were identified
with a SVM [9] approach as well. These genes are spread over all four metagenes.

4.2 Leukemia Data Set

Two different types of diagnostic classes are present in this data set: a) The
leukemia-types ALL (experiments 1, . . . , 27) and AML (experiments 28, . . . , 38)
of the training set. A putative reference list of informative genes is available
here from [10], b) ALL-leukemia can further be split into subtypes ALL-B (exp.
1, . . . , 19) and ALL-T (exp. 20, . . . , 27).

ICA Analysis. During the whitening step of the JADE-algorithm, a reduction,
i.e. (k < M), in the number of extracted expression modes can be performed.
For k = 2, . . . , 38, the maximal correlation coefficient ‖c‖ between any column
vector of Ak and the design vectors di, i = 1, 2 for cases (1) and (2) was
computed. These correlation coefficients peak at c = 0.86 and k = 17 in case
1 (AML vs. ALL), and at c = 0.97 and k = 12 in case 2 (ALL-T vs. ALL-
B/AML). The first 17 principal components cover 93.5% of the total variance
of the data set, while the first 12 principal components still represent 89.8% of
the variance. In case 1 the 9-th column of matrix A shows a very pronounced
discrimination between AML and ALL cells, and in case 2 the 8-th column of
matrix A shows a very pronounced discrimination between the ALL-T cells and
all others. In [10], a list of 24 significantly up-regulated and 24 significantly
down-regulated genes is provided, considering the discrimination of the ALL-
AML classes. Most of the down-regulated genes appear in the clusters derived
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from expression mode 9neg, while the up-regulated genes are contained in 9pos
mostly. Six of them even belong to the 10 most strongly expressed genes in
expression modes 9neg and 9pos. Concerning a discrimination of the subtypes

Fig. 2. Left: Mixing coefficients ai8, i = 1, . . . , 38 resulting in a signature of column
a8 of matrix A with a high correlation to the design vector d2. Right: Corresponding
signature of column a9 for the discrimination of AML vs ALL.

ALL-B/ALL-T, a decomposition in k = 12 expression modes revealed a strong
correlation of column 8 of matrix A12 with the design vector d2, see Fig. 2. The
most expressed genes in mode 8pos and 8neg, respectively, thus form diagnostic
marker genes to differentiate between subtypes of the ALL-type Leukemia.

LNMF Analysis. In case AML vs ALL, class 1 was chosen to represent AML-
leukemia, while in case ALL-T vs ALL-B/AML, class 1 was considered to be
ALL-T, and class 2 consequently comprised all ALL-B and AML probes.

Case AML vs ALL: First, the structure of meta-experiments related to the case
AML vs. ALL was investigated. Correlations between the meta-experiments and
the design vector d were determined for all k ≤ 400. Strong correlations (c >
0.85) could be obtained for several decompositions. The strongest correlation
was found for k = 100. Fig. 3 shows the most informative meta-experiment and
its related metagene. From the latter the 10 most strongly expressed genes are
listed in Table 2. Six of them could be identified also with a SVM-classifier [9]
or by applying ICA, or belonged to the list published in [10].

Case ALL-T vs ALL-B/AML: In case ALL − B < ALL − T , at least one meta-
experiment was found with c > 0.9 for any k > 20. In the reverse situation
ALL − T < ALL − B highly correlated (|c| > 0.85) meta-experiments were
found for all k > 70. Fig. 3 shows the result of a factorization into k = 300
metagenes. Only one informative metagene could be identified. The two most
strongly expressed genes of this metagene also have been identified as potential
marker genes using ICA.

In contrast to the BC data set, only few informative meta-experiments could
be identified with the LK data set. However, the related metagenes obtained
for different decompositions were very consistent as measured by their respec-
tive correlation coefficient. Obviously, the LNMF decomposition detects rather
similar metagenes related to the diversity of ALL-T and -B-subtypes when the
number k of extracted metagenes is varied.
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Fig. 3. Top: case AML vs ALL, k = 100: Signature of the most informative meta-
experiment and the related metagene, Bottom: case ALL-T vs ALL-B, k = 300: Signa-
ture of the most informative meta-experiment and corresponding metagene

Table 2. List of the 10 most strongly expressed genes of metagene 100. (* mentioned
in the original paper [10], ** identified with an SVM-classifier [9], *** identified by
ICA).

gene nr. affy-id gene nr. affy-id

1 * 215 M96326-rna1-at 6 1274 D88422-at
2 ***,*4828 M27891-at 7 651 M27783-s-at
3 1157 J04990-at 8 **,*2646 X95735-at
4 **3543 M19507-at 9 *4870 M57710-at
5 **1555 M84526-at 10 4454 M20203-s-at

5 Conclusion

The application of matrix decomposition techniques like ICA and NMF to mi-
croarray data explores the possibility to extract features like statistically inde-
pendent expression modes or strictly positive and sparsely encoded metagenes.
Combined with a design function reflecting the experimental protocol, biomed-
ical knowledge is incorporated into the data analysis task which allows to con-
struct a classifier for diagnostic purposes based on a global analysis of the whole
data set rather than a statistical analysis based on single gene expression levels.
This global analysis is based on the columns (ICA) or rows (NMF) of a ma-
trix which contains the weights with which the underlying expression modes or
metagenes contribute to any given observation in response to an applied environ-
mental stimulus. It was shown on two benchmark data sets that if the signature
of these column or row vectors matches the experimental design vector, the re-
lated expression mode or metagene contains genes with a high discriminative
power. These genes represent biomarkers for diagnostic purposes. Knowledge of
such marker genes allows to construct a simple and cheap chip for diagnostic
purposes.
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Abstract. Visual perception of transformation invariance, such as trans-
lation, rotation and scaling, is one of the important functions of processing
visual information in the Brain. To simulate this perception property, we
propose a computational model for perception of transformation. First,
we briefly introduce the transformation-invariant basis functions learned
from natural scenes using Independent Component Analysis (ICA). Then
we use these basis functions to construct the perceptual model. By us-
ing the correlation coefficients of two neural responses as the measure of
transformation-invariance, the model is able to perform the task of per-
ception of transformation. Comparisons with Bilinear Sparse Coding pre-
sented by Grimes and Rao and Topo-ICA by Hayvarinen show that the
proposed perceptual model has some advantages such as simple to imple-
ment and more robust to transformation invariance. Computer simulation
results demonstrate that the model successfully simulates the mechanism
for visual perception of transformation invariance.

1 Introduction

We can recognize an object regardless of its distance, position or rotation. In the
mathematical term, object recognition is not influenced by its transformation,
such as translation, rotation or scaling. Many recent researches in the fields of
neuroscience, neurophysiology and psychology show that such a transformation-
invariant preprocessing could be a necessary step to achieve transformation in-
variant classification or detection in a hierarchical computational system. In this
paper, we will focus on the computational mechanism for transformation invari-
ance. We will propose a hierarchical model that simulates the mechanism in the
visual pathway. On the other hand, due to biological evolution from nature in the
long term, this mechanism has an important correlation with statistical proper-
ties of natural scenes. Following this way, Barlow[1,2] found that the role of early
sensory neurons in the visual pathway is to remove statistical redundancy in the
sensory inputs, suggesting that Redundancy Reduction is an important process-
ing principle in the neural system. Based on this principle, Gabor-like features
� To whom correspondence should be addressed.
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resembling the receptive fields of simple cells in the primary visual cortex(V1)
have been derived either by imposing sparse over-complete representations[6] or
statistical independence as in Independent Component Analysis(ICA)[8].

However, these studies have not taken transformation invariance into account,
and the question is how well this line of research predicts the full spatiotempo-
ral receptive fields of simple cells. For example, when an image rotates within
receptive fields of simple cells, how do the simple cells and complex cells re-
sponse? Some researchers have begun to bring this question into consideration.
Hyvarinen and Hoyer[9,10] modelled receptive fields of complex cells and Van
Hateren [12]obtained spatiotemporal receptive fields of complex cells. Grimes and
Rao[14] proposed a bilinear generative model to study the translation-invariance.
Berkes[7] investigated temporal slowness as a learning principle for receptive
fields using slow feature analysis. However, there are few models in the literatures
perceiving transformations of objects or images. To investigate the problem, we
apply ICA to learning from natural scenes the transformation-invariant features,
and then use these features to construct a model for transformation-invariant
perception. The goal of the model is to perceive transformation of patches from
natural images.

The rest of the paper is organized as follows. Section 2 introduces a method
for learning transformation-invariant basis functions and then propose a model
for perception of transformation invariance. In section 3, we will demonstrate
these basis functions and perceptual simulation results. The final section gives
the comparison with other related works and models.

2 The Invariance Perception Model

In this section, we first introduce the method for learning the transformation-
invariant basis functions. Then we propose a perceptual model for perception of
transformation invariance.

2.1 Method for Learning Invariant Basis Functions

To obtain transformation-invariant basis functions, the training data sets should
have the possession of transformational properties. The method for generat-
ing the training data will be introduced in section 3.1. Applying ICA on the
training data, sequences of patches with the parameter αi(i = 1, ..., M), yields
transformation-invariant basis functions with parameters same as patches. For
simple explanation of the method, shown in Fig.1, we use the rotation transfor-
mation and the resulting rotation basis functions.

We briefly introduce the learning algorithm of ICA for training sparse basis
functions. For the standard ICA model x = Wu, Cichocki et al.[5] used the
Kullback-Leibler divergence between the distribution p(x;W) of obtained by
the actual value W and the reference distribution q(x) to give the cost function
as

R(x,W) = −1
2

log |det(WWT )| −
n∑

i=1

Elog qi(xi). (1)
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Fig. 1. Method for learning transformation-invariant basis functions. The input data
is a set of natural images. Patches selected from the images are transformed and feed
to the ICA algorithm.

Applying the Natural Gradient rule to the cost function, the learning algo-
rithm of W(the corresponding basis functions A = W−1) can be described[3,4]
as

�W = −η(t)
∂R

∂W
WT W = η(t)[I − 〈ϕ[x(k)]xT (k)〉]W, (2)

where, ϕi(xi) = − q
′
i(xi)

qi(xi)
. q(xi) is a supergaussian probability distribution, for

instance, the Laplace pdf.

2.2 Model for Perception of Transformation Invariance

In this section, we will propose a model for transformation-invariant perception,
shown in Fig. 2. The invariance perception model consists of three layers. The
first layer is to receive the input patterns which are two patches with parameters
of αi and αj , respectively. Here, αi and αj belong to a same group of parameters.
For rotation, α is in the range of zero and three hundred sixty degree by an inter-
val of fifteen. For scaling, α in the range of from one to two times by ten percent.
And, for translation, α in the range of size of input images. For simplicity, we
only discuss in detail rotational samples and basis functions in the model. The
middle layer of the model is to sparsely represent input patterns with a group of
basis functions which is one of three groups respectively including translational,
rotational, and scaling bases, shown in Figs.{3,4,5}.

After the neurons respond to the stimuli uαi at time t1 and uαj at time
t2 , the final layer of the model calculates the correlation coefficients between
any two responses Xt1

αi
(i = 1, ..., M) and Xt2

αj
(j = 1, ..., M), and of which the

maximum is selected to determine the relative dispersion. The index (i, j) of
the maximum in coefficient matrix will tell us the relative dispersion such as
counter-clockwise rotation angle Δθ, translational distance Δd, and scaling ratio
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Fig. 2. Model for transformation-invariant perception. For example, the input patterns
are the rotational data. xt1

αi,k
(k = 1, 2, · · · , N) denotes the response of the k-th neuron

in the row αi responding to stimulus uαi at time t1 through the basis function αi,k. And
so does response xt2

αj,l
(l = 1, 2, · · · , N) at time t2. Xt1

αi
denotes the vector of responses

that the neurons in the row αi respond to stimulus uαi at time t1 through the subsets
αi of basis functions. Namely, Xt1

αi
= [xt1

αi,1 , xt1
αi,2 , · · · , xt1

αi,N
]T .

Δr. It is necessary to note that we only need the relative transformation, not
the absolute value of parameters of the stimuli. For rotation, if j ≥ i, Δθ =
(j − i) × 360/M ; otherwise, Δθ = (M + j − i) × 360/M . For translation, i and j
have their corresponding coordinates (xi, yi) and (xj , yj), respectively. We can
calculate the relative translation distance Δd =

√
(xi − xj)2 + (yi − yj)2 and

the moving direction according the relative position of coordinates (xi, yi) and
(xj , yj). For scaling, if j ≥ i, Δr = rj − ri; otherwise, Δr = ri − rj . Here, rj

and ri denote the scaling ratio of the j-th and i-th subsets of basis functions,
respectively.

3 Simulations and Results

We present experimental results to verify the performance of our proposed model
and the learning algorithm. First we present the basis functions of transformation
invariance including translation, rotation and scaling. Then, as an example, the
rotation-invariant perception is discussed.

3.1 Training Data

To learn basis functions from natural scenes, we sample a sequence of small
patches of size 10×10 from a set of big natural images by three methods of
transformations such as translating, rotating, and scaling. This three data sets
are used to learn transformation-invariant basis functions. For example, the sam-
pling method of rotational data set is described in detail as follows.

A sampling window is randomly located on a big natural scene and a patch
is selected. Then fix the same center, clockwise rotate the sampling window by
an interval of 15 degree, another patch is sampled. Again, rotate the window and
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sample next one, till twenty-four times. Similarly, the total twenty-four of patches
are sampled and then reshaped to one column vector as a sample, size of 2400-
by-1.

We select patches from a set of big natural images by the above sampling
methods and generate three data sets which are composed of 20000 samples
respectively. All data sets are then low-pass filtered by reducing the dimension
of the data vector by principle component analysis (PCA), retaining the 100
principal components with the largest variances, after which the data is whitened
by normalizing the variances of the principal components. These preprocessing
steps are essentially similar to those used in [6,9].

3.2 Transformation-Invariant Basis Functions

Respectively using the translational, scaling, and rotational training data to
learn transformation-invariant basis functions, the translation-, scaling-, and
rotation-invariant basis functions are yielded, shown in Figs.{3,4,5}. From these
figures, we note that the Gabor-like basis functions, which are localized, ori-
ented, and bandpass, resemble receptive fields of simple cells found in V1[13].
Meanwhile, there also are different characteristics, as follows, among three types
of basis functions.

Fig. 3. Subsets of translation-invariant
basis functions

Fig. 4. Subsets of scaling-invariant ba-
sis functions

Translation-invariant basis functions. In Fig. 3, bigger rectangles composed
of 5 × 5 basis functions with the same orientation are similar to the receptive
fields of complex cells which activate while the same orientational contents are
moving within their receptive fields.

Scaling-invariant basis functions. Fig. 4 shows that basis functions in one
row represent the receptive field of a complex cell which performs the perception
of scaling invariance. Those in one row are subsets with the same scaling. The
scaling interval is 10%.

Rotation-invariant basis functions. In Fig. 5(Left), a group of basis func-
tions in one row is similar to the receptive field of a complex cell which performs
perception of rotation invariance. The neighboring basis functions in a row have
an interval of fifteen degree of counter-clockwise rotation. Basis functions in a
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Fig. 5. Subsets of rotation-invariant basis functions. Right : basis functions (in the left)
are rearranged in counter-clockwise along the circumference with an interval of fifteen
degree. Every circle includes basis functions in one row (left).

column are a group of which elements are used to reconstruct the input pat-
terns while given corresponding activities of simple cells. For the convenience of
viewing the regularity, these basis functions are arranged in counter-clockwise
along the circumference with an interval of fifteen degree, shown in Fig. 5(Right).
Every circle resembles the receptive field of a complex cell.

3.3 Perception Experiments

For anyone of three transformations: translation, rotation, and scaling, the same
experimental method is used and the invariant results are easy to obtain. Here,
the invariance means that complex cells maintain their existing states, while
a patch is moving, rotating and scaling within their receptive fields. In other
words, we can recognize the same object however it moves, rotates, and scales
within our field of vision.

An example of rotation perception is introduced and its goal is to calculate
the relative rotation angle. According the perception model in section 2.2, two
input patterns with different rotational angles are needed.

Randomly select two image patches uαi and uαj (i.e. i=6, j=11) from a
sample data which is composed of twenty-four patches, shown in Fig. 6. For
example, the sixth and eleventh of stimuli represents, respectively, rotational
angles of ninety and one hundred and sixty-five in degree. The sixth patch is
first input to the perception model at time t1and the eleventh is second at
time t2.

Computing the responses of neurons at time t1 and t2 and the matrix of the
correlation coefficients Coeff(Xt1

αk
, Xt2

αl
)(k, l=1, 2, · · · , M), here M=24. Find the

max value from any row in the matrix and obtain its corresponding index of its
row and column, i.e. at the first row, the index of max value is (1,6). So, we
know the relative rotation angle is (6-1)×15=75 degree. It is necessary to note
that we only need the relative transformation, not the absolute value of angles
of the stimuli.

In more detail, at time t1 and t2, the responses Xt1
α6

and Xt2
α11

are plotted
in the last column of Fig.6. It is easy to know Xt1

α6
and Xt2

α11
are very similar

to each other. The difference between Xt1
α6

and Xt2
α11

, plotted in Fig. 6, shows
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Fig. 6. Rotation-invariant perception

the rotation invariance of neuronal responses while the input pattern is rotating
from time t1 to t2.

4 Discussions and Conclusions

We have proposed a method for learning transformation-invariant basis functions
and a model for perception of transformation invariance. Computer simulation
results show that our proposed model do work well in simulating the perceptual
function of transformation invariance in the brain. Our proposed model has some
different properties compared with others such as bilinear generative models [14]
and Topo-ICA[11].

First, bilinear generative models[14] proposed by Grimes and Rao only study
the translation invariance and however, ours is able to provide more transforma-
tion invariant basis functions such as translational, rotational and scaling basis
functions. Our model also performs perception of the three types of transfor-
mations. On the other hand, our algorithm is much simpler whereas that of
the bilinear model is more complex. Second, the Topo-ICA model[11] provided
by Hyvarinen et al. considered the second-order correlation of responses of sim-
ple cells, but the Topo-ICA model cannot produce overcomplete basis functions
because of constrains of orthogonality.

Our future work will focus on learning other transformational basis functions
such as three dimensional geometry transformations and on transformational
perception of more complex stimuli. We are also going to extend the model
to a framework for learning other transformation-invariant basis functions and
perception of other transformation such as view changes.
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Abstract. In contrast to the traditional hypothesis-driven methods, in-
dependent component analysis (ICA) is commonly used in functional
magnetic resonance imaging (fMRI) studies to identify, in a blind man-
ner, spatially independent elements of functional brain activity. ICA is
particularly useful in studies with multi-modal stimuli or natural envi-
ronments, where the brain responses are poorly predictable, and their
individual elements may not be directly relatable to the given stimuli.
This paper extends earlier work on analyzing the consistency of ICA es-
timates, by focusing on the spatial variability of the components, and
presents a novel method for reliably identifying subspaces of function-
ally related independent components. Furthermore, two approaches are
considered for refining the decomposition within the subspaces. Blind re-
finement is based on clustering all estimates in the subspace to reveal its
internal structure. Guided refinement, incorporating the temporal dy-
namics of the stimulation, finds particular projections that maximally
correlate with the stimuli.

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the most successful
methods for studying the living human brain. Traditionally, fMRI analysis relies
on artificially generated stimuli, coupled with hypothesis-driven statistical signal
processing (cf., [1]).

Independent component analysis (ICA) (see, e.g., [2]) of fMRI data, as first
proposed in [3], has recently gained considerable attention for its ability to
blindly decompose the measured brain activity into spatially independent func-
tional elements. The corresponding mixing vectors reveal the temporal dynamics
of each element. However, the individual elements are often not directly relat-
able to a given stimulus. This is particularly true in studies using multi-modal
stimuli, such as in natural environments, where the brain responses are poorly
predictable. Furthermore, it has been proposed that such functional elements
can participate in varying networks, to perform complex tasks [4].
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The optimization landscape of ICA is defined by structure of the data, noise,
as well as the objective function used. The landscape can form elongated or
branched valleys, containing many strong points, instead of singular local optima.
Previous studies [5,6] have analyzed the consistency of independent components,
and suggested that some components can have a characteristic variability. The
goal was to provide additional insight into the components, that is not possible
to attain with single run approaches. Complex valleys can also be considered
as separate subspaces, where statistical independence is not necessarily the best
objective for decomposition.

In this paper, we present a novel method to reliably identify subspaces formed
by independent components, and illustrate two approaches to further refine the
decomposition into functionally meaningful components. The subspace detection
is based on analyzing the spatial variability under a similar consistent ICA as in
the previous studies. The subspaces reveal connections between the individual
functional elements. One refinement method uses clustering to distinguish the
internal structure of the subspace. Another method is based on finding the coor-
dinate system inside the subspace that maximally correlates with the temporal
dynamics of the stimulation. The directions are found with canonical correlation
analysis (CCA) [7].

Related canonical correlation approaches have been recently suggested for
fMRI (see, e.g., [8,9,10]). However, the goals have been to utilize several stimu-
lation time-courses to simply rank the individual components found by ICA, or
to extend the purely hypothesis-driven methods into multivariate analyses.

2 Materials and Methods

The analysis uses data from a recent fMRI study carried out by Malinen et al.,
at the Advanced Magnetic Imaging Centre [11]. The study combined auditory,
visual, and tactile stimuli, in a continuous manner. The stimuli were presented
in 6–33 s blocks, with no resting periods in between. Fig. 1 illustrates the block
design of the sequence, which has a duration of 8 min 15 s.

2.1 Measured and Preprocessed fMRI Data

The recordings, thoroughly described in [11], were made with a Signa VH/i 3.0 T
MRI scanner (General Electric, Milwaukee, WI, USA). Functional images were
acquired using gradient echo-planar-imaging sequence (TR 3 s, TE 32 ms, matrix
64 × 64, 44 oblique axial slices, voxel size 3 × 3 × 3 mm3, FOV 20 cm, flip angle
90◦) producing 165 volumes including 4 dummy scans, which were excluded from
further analysis. Structural images were scanned with 3-D T1 spoiled gradient
imaging (TR 9 ms, TE 1.9 ms, matrix 256 × 256, slice thickness 1.4 mm, FOV
26 cm, flip angle 15◦, preparation time 300 ms, number of excitations 2).

Preprocessing of the data using SPM2 [12] included realignment, normaliza-
tion and smoothing with a 6 mm (full-width half maximum) Gaussian filter.
Skull stripping was also performed. For further details, see [11].
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2.2 Consistent Spatial ICA

Independent component analysis is one of the most popular methods for solving
the blind source separation (BSS) problem. It consists of finding solutions to
the mixture X = AS, where only the observed data X is known. ICA assumes
only statistical independence of the sources S, and full rank of the mixing A.
In the context of fMRI, independence is considered in the spatial domain, and
the mixing reveals the temporal activation patterns of the corresponding sources.
The reliable ICA approach, proposed in [5], is based on multiple runs of FastICA
[13] in a bootstrapping framework, i.e., with resampled data and randomized
initializations.

In this study, FastICA was run 100 times with tanh nonlinearity in symmetric
mode. On each run, the data was whitened to 80 dimensions and 40 independent
components were extracted. The estimated mixing vectors from all runs were
normalized to have zero mean and unit variance, and grouped using correlation.
The correlation matrix was thresholded by 0.85 and raised to a power of 4
(see [5] for further details). The parameter values were selected heuristically.
Starting with a few dimensions, the dimensionality was increased until the new
components were all overfits, appearing only once. Similarly, starting with a high
value, the correlation was lowered as long as the most consistent components,
appearing 100 times, did not split into many groups.

2.3 Subspace Canonical Correlation Analysis

The emergence of a subspace in ICA means that the coordinate system within
the subspace can not be identified, based solely on statistical independence. Even
if there is a strong relation between the subspace as a whole and the stimulation,
this relation may not be readily visible as a high correlation between any given
component and the stimuli.

Canonical correlation analysis seeks for covariations between two spaces. In
the current work, they are the independent subspace and the stimulation design.
Such relation is found through maximally correlated linear transformations of
both spaces. Let Y be a set of columns of the mixing matrix A, corresponding to
an independent subspace, and Z the set of stimulation time-courses. The goal of
CCA is to maximize corr(Wy

T Y,Wz
T Z) with respect to Wy and Wz, which

are the transformation projections. As a result, the coordinate system within the
subspace is fixed according to maximal correlation to the stimuli, rather than
independence.

3 Results

Fig. 2 shows a set of independent components (ICs), strongly related to auditory
stimulation. Each IC is consistent, appearing in all or most of the 100 runs.
The mixing variability is also minimal. However, the spatial variance reveals a
coincident location of variability, shared by all ICs. The variability links the ICs
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(a) Auditory stimulation (b) Visual stimulation (c) Tactile stimulation

Fig. 1. Stimulation block design with hemodynamically convolved time-courses. (a)
Auditory stimulation with tone pips, spoken history text and spoken instruction text
(represented by red, green and blue in the color version). (b) Visual stimulation with
scenes dominated by buildings, faces and hands (represented by red, green and blue in
the color version). (c) Tactile stimulation.

count: 100  skew: 5.91
IC 4

count: 99  skew: 3.20
IC 6

count: 87  skew: 3.48
IC 26

(a) Temporal and spatial mean

 IC 4

 IC 6

 IC 26

(b) Spatial variance

Fig. 2. A set of independent components identified as a subspace through the shared
variance, with strongly auditory stimulus-related time-courses. (a) The mean spatial
maps and time-courses of each component. (b) The spatial variance maps of the corre-
sponding components. A sagittal, coronal and axial slice of each volume is shown with
the histogram of the mean volume. Consistency counts and skewness of the histograms
are shown as text, and the reference blocks for the time-courses are from Fig. 1(a).

 CC 1

 CC 2

 CC 3

(a) Stimulus recombination

correlation: 0.8
CC 1

correlation: 0.5
CC 2

correlation: 0.2
CC 3

(b) Temporal and spatial recombination

Fig. 3. A set of linear combinations that maximize the correlation between the mean
time-courses of the subspace components shown in Fig. 2, and the stimulation time-
courses shown in Fig. 1(a). (a) The time-courses combined from the stimulation design.
(b) The spatial maps and time-courses of the corresponding, maximally correlated,
combinations of the independent components. Other details as in Fig. 2.
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count: 100  skew: 3.97
IC 9

count: 51  skew: 2.58
IC 21

count: 100  skew: 4.61
IC 22

(a) Temporal and spatial mean

 IC 9

 IC 21

 IC 22

(b) Spatial variance

Fig. 4. A set of independent components identified as a subspace through the shared
variance, with weakly stimulus-related time-courses. Other details as in Fig. 2, except
no reference blocks are shown.

into a three dimensional subspace, even though ICA has consistently identified
directions within the subspace.

The subspace in Fig. 2 was further analyzed with CCA using all auditory
references, shown in Fig. 1(a). Fig. 3 shows the canonical components (CCs)
identified within the subspace. Compared to the ICs, the CCs reveal the best
stimulation-matching decomposition within the subspace. A thorough physio-
logical interpretation of the results is out of the scope of this paper, but the

count: 80  skew: 2.74 IC 13

count: 77  skew: 2.69 IC 17

count: 38  skew: 2.10 IC 19

count: 38  skew: 2.29 IC 29

count: 4  skew: 1.21 IC 45

(a) Temporal and spatial mean

 IC 13

 IC 17

 IC 19

 IC 29

 IC 45

(b) Spatial variance

Fig. 5. A set of independent components identified as a subspace through the shared
variance, with transiently stimulus-related time-courses. Other details as in Fig. 2,
except no reference blocks are shown.
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count: 474 skew: 5.20 
IC 35 IC 35 

(a) Temporal and spatial mean

count: 111 skew: 6.06 IC 35 

sub 1 

count: 78 skew: 4.38 IC 35 

sub 2 

count: 98 skew: 4.82 IC 35 

sub 3 

count: 42 skew: 6.16 IC 35 

sub 4 

count: 19 skew: 5.19 IC 35 

sub 5 

count: 73 skew: 3.52 IC 35

sub 6 

count: 11 skew: 5.64 IC 35 

(b) Spatial variance

IC 35 

sub 1

 IC 35 

sub 2

 IC 35 

sub 3

 IC 35 

sub 4

 IC 35 

sub 5

 IC 35 

sub 6

 IC 35 

sub 7 sub 7

count: 25 skew: 2.73 IC 35 IC 35 

sub 8 sub 8 

(c) Reclustered temporal and spatial mean (d) Reclustered spatial variance

Fig. 6. One independent component, identified as a subspace through overall variabil-
ity, with strongly visual stimulus-related time-course. (a) The mean spatial map and
time-course of the component. (b) The spatial variance map of the component. (c) The
mean spatial maps and time-courses of components from reclustering within the sub-
space. (d) The spatial variance maps of the corresponding components. Other details
as in Fig. 2, except the reference blocks are from Fig. 1(b).

decomposition appears refined. The first, and highest correlating, CC depicts a
baseline of activity related to all types of auditory stimulation. The second CC
reveals a clear deviation from the baseline, occurring during the tone pip stimuli.
It includes two brain regions, associated with auditory processing, having oppo-
site signs in the spatial map. The last CC appears quite scattered, containing
most of the activity within the subspace that is not explained by the other two
CCs, as indicated by the low correlation.
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Another example of a subspace linked through spatial variance is shown in
Fig. 4, which appears weakly stimulus-related. The last IC in the subspace
presents a potential artifact, with a sharp peak at a single time instance.

Fig. 5 shows a more complex set of activity, also identified as a subspace by
the shared spatial variance. In this case, the ICs themselves are less consistent,
and have considerable mixing variability. As no single component appears in all
100 runs, ICA can not identify consistent directions within the subspace. Some
of the ICs are weakly stimulus-related, so a meaningful coordinate system inside
the subspace could be fixed with CCA. However, the given stimulus design is
not rich enough to decompose the 5 dimensional subspace.

The last example, shown in Fig. 6, is identified as a subspace already by the
consistent ICA method. The strong mixing variability, together with the count
of 474 estimates suggest that ICA can separate the subspace from the other
components, but roughly 5 arbitrary directions from the subspace appear on
each run. Additionally, the spatial variance coincides with the component itself,
rather than being shared with other ICs. To further analyze the consistency of the
strongly stimulus-related subspace, the 474 estimates within the subspace were
clustered again, now using a higher threshold of 0.95. Fig. 6 also shows the set of
8 most consistent directions within the subspace. The directions are not strictly
independent, since the clustering does not take into account from which run the
estimates are taken. The subspace directions appear functionally meaningful,
representing separate brain regions of the visual processing stream, including
the primary visual cortex and other areas along the occipital lobes. Again, with
a richer set of stimulus references, CCA could offer further refinement.

In addition to the illustrated subspaces, several other were identified, either
through the overall variability of the components or by their shared spatial
variance. The complete set of 46 consistent ICs also included several that were
not part of a subspace.

4 Conclusions

Analyzing the variability of independent components, under a consistent ICA
framework, can reveal characteristic information related to the underlying phe-
nomena that is otherwise not visible. As shown by the results, components can
be roughly divided into 3 classes based on spatial variance: individual and consis-
tent components, with distributed variance due to noise; consistent members of a
subspace, with focal variance coincident with the variance of the other members
(see Fig. 2); and unconsistent subspaces, with variances coincident with their
own mean (see Fig. 6). Such subspaces can provide information on networks of
related activity in a purely data-driven manner.

Directions within each subspace can be further refined either blindly by clus-
tering them into semi-independent constituents, or by using CCA with additional
data. More than just refining the subspace decomposition, CCA provides a di-
rect link to the set of related stimuli. However, the use of CCA is limited by
the richness of the stimulation design. A more supervised approach was recently
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presented, with the goal of relating networks of brain activity with given complex
stimulus features [4].
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Abstract. A multi-modal linear mixing model is suggested for simulta-
neously measured MEG and EEG data. On the basis of this model an
ICA decomposition is calculated for a combined MEG and EEG signal
vector using the TDSEP algorithm. A single modality demixing pro-
cedure is developed to classify ICA components to be multi-modality
sources detected by EEG and MEG simultaneously or to be single mode
sources. Under this premise, data from 10 subjects are analysed and four
exemplary types of sources are selected. We found that these sources
represent physically meaningful multi- and single-mode signals: Alpha
oscillations, heart activity, eye blinks, and slow signal drifts.

1 Introduction

Magnetoencephalography (MEG) and Electroencephalography (EEG) are non-
invasive methods to measure the electrical activity of groups of neurons in the
human brain with a ms temporal resolution. This electrical activity leads to
potential differences at the scalp (EEG) and a magnetic field outside of the head
(MEG). It is well known that the sensitivty profiles of EEG and MEG are quite
different with respect to the orientation and the location of neural currents. This
is utilized in studies such as [1] [2] [3] [4], where the aim was an improved source
localization by a combined MEG and EEG data analysis.

The value of applying ICA to single modality data, i.e., either MEG or EEG,
has been demonstrated frequently (see [5] for an overview). Here we want to
apply ICA specifically to combined EEG and MEG datasets and evaluate a
different mixing model compared to the subspcace channel ICA approach in [6].
Given the results of an ICA applied to multi-modal data sets it is important to
determine, whether a component represents a source recorded by both modali-
ties, MEG and EEG, or a source recorded exclusively by one of the modalities.
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To answer this question post-hoc for a mixing matrix A estimated from exper-
imental data is not easy due to the permutation problem of ICA and the lack
of a common scale for multi-modal data sets such as combined MEG and EEG
data. For this context we propose a way of checking the origin of the estimated
sources without modifying an ICA algorithm itself.

2 Multi-modal ICA

2.1 Mixing Model for Multi-modal Data Sets

The basic model of ICA is well known, where signals x(t) are described as the
product of an unknown mixing matrix A and an unknown source vector s(t).
ICA aims to estimate A from statistical properties of x(t). With an estimate of
A the source signals can be computed from

s(t) = A−1 · x(t) = W · x(t). (1)

Extending the basic model to the (multi-modal) case of two simultaneously
measured quantities, EEG and MEG with related content, the data vector ”x(t)”
now reads (superscript M or E always denotes MEG respectively EEG, it does
not denote power):

xM,E(t) =
[

xM (t)
xE(t)

]
. (2)

For the mixing process at least two cases have to be considered, firstly the
number of sources is known and less than the sum of the m MEG and n EEG
channels. In this case the mixing matrix A contains m + n rows and as many
columns as there are sources. This case is discussed generally in [6]. It is well
known that single brain sources can contribute to MEG and EEG signals at the
same time. Nevertheless the number of brain sources is generally not known and
considering the strong background and noise signals in MEG and EEG data the
more general case of a square matrix of dimension (m + n, m + n) is considered
here. In case that the MEG and EEG signals are without common sources the
combined mixing matrix has to have the following block form

A =
(

AM 0
0 AE

)
, (3)

where AM ∈ Rm×m for the magnetic and AE ∈ Rn×n for the electric sources.
Due to an arbitrary permutation of the columns of A estimated by ICA and

the lack of a common physical scale for MEG and EEG data the simple form (3)
cannot be compared to a matrix A resulting from experimental data. Naturally
the more general case of common sources in MEG and EEG data is of interest
here and the mixing matrix has the general form given by

A =
(

CM DM 0
CE 0 DE

)
, (4)
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where inner matrices CM and CE with columns cj represent sources recorded
by both modalities and therefore a gain in information in comparison to a sep-
arate analysis (3). Similarly, columns dk and dl of inner matrices DM and DE,
respectively, are then sources recorded exclusively by one of the modalities. Con-
sequently, j+k+l = m+n. The columns ai of A now represent in the upper part,
rows 1 . . .m, a so called MEG map, i.e. sensor weights for the MEG channels,
and in the lower part, rows m + 1 . . .m + n, an EEG map.

2.2 Single Modality Demixing

To characterize whether a multi-modal ICA component corresponds in fact to a
single modality signal we devised a procedure termed ”single modality demix-
ing”. The aim is to avoid a rescaling of the experimental data while removing
the inherent ICA scaling ambiguity between mixing matrix A and sources s(t).
Therefore a first step is to move all signal energy into the mixing matrix. This
is done by creating sources s ′(t) that have a root-mean-square (rms) value
of unity: si(t) = bi · si

′(t), where rms(si
′) = 1 (equivalent to a scaling of

the distribution of the observed variable to unit variance). Combining the bi

into a diagonal matrix B the sources s(t) are replaced by the s ′(t) in (1) and
x(t) = B · A · s ′(t) = A′ · s ′(t) . Multiplying the mixing matrix A by B, a new
mixing matrix results A′, which is meant in the text from now on. This rescaling
of the mixing matrix should not be confused with the whitening procedure used
as a first step in most ICA algorithms.

The single modality demixing is now defined as setting either xM or xE in
(2) to zero and then applying (1) and to obtain single modality demixed time
series sM,E=0(t) respectively sM=0,E(t):

sM,E=0 = W′ ·
[
xM

0

]
, sM=0,E = W′ ·

[
0

xE

]
. (5)

This single modality demixing is motivated by the block mixing form in (3).
In this case only the MEG sources are non-zero for sM,E=0 and vice versa for
sM=0,E . These single modality demixed time series can then be compared with
each other or with the time series from the full demixing, sM,E . The ICA com-
ponent vector ai is not affected by the single modality demixing. The single
modality mixing should not be confused with completely separate ICA calcula-
tions for MEG and EEG.

The rms values of sM,E=0(t) and s M=0,E(t) can be computed and compared
with each other and the rms = 1 of s ′(t), the original source. The rms of the
single modality demixed time series indicates the relative contribution of this
source to the MEG and EEG data. Another measure to be used is the correlation
between single modality demixed time series and the time series resulting from
the full demixing.

The single modality demixing approach can be exemplified assuming two
MEG channels and one EEG channel and then depicting the demixing matrix



676 H. Zavala-Fernandez et al.

W′. Assuming w33 = 0 in (6) it follows sM,E
3 = w31x

M
1 + w32x

M
2 irrespective of

xE
3 , i.e., s3 represents a pure MEG source.

⎛

⎝
sM,E
1 (t)

sM,E
2 (t)

sM,E
3 (t)

⎞

⎠ =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ ·

⎛

⎝
xM

1 (t)
xM

2 (t)
xE

3 (t)

⎞

⎠ (6)

3 Experimental Procedure

3.1 MEG and EEG Data Acquisition

Using a typical recording configuration, e.g. m > n, the MEG was measured
using m = 93 channel SQUID system (ET160 Eagle Systems) installed in a
shielded room. Within the MEG helmet the EEG was recorded from n = 28
sites at positions given by the international 10-20 system for electrode placement.
MEG and EEG channels were connected to a 128 channel data acquisition system
to ensure a simultaneous recording. Ten healthy subjects had to listen to 30 tones
of 2 Khz and 30 tones of 1 Khz presented in a random order and with a random
interstimulus interval in a session lasting 305 s. This task was part of a larger set
of measurements investigating the auditory N100 in relation to attention. The
results with respect to the N100 are not discussed here. The data were recorded
with a sampling rate of 2 kHz and then off-line down sampled to 250 Hz. The
data were off-line filtered with a zero-phase delay band pass from 0.5 to 40 Hz
preserving typical brain signals.

3.2 Data Processing Using TDSEP-ICA

The Second Order Blind Identification algorithm (SOBI[7], TDSEP[8]) is suit-
able for data with a rich temporal structure and consequently colored spectra.
The basis of the TDSEP algorithm is a set of time-lagged covariance matrices
Rx(τ) =

〈
x (t + τ) · xT (t)

〉
with τ �= 0. For independent sources these matri-

ces have to be diagonal. To estimate the sources a joint diagonalization of the
time-lagged covariance matrices is performed. To use a set of τ values is an em-
pirically established procedure to avoid an inferior source separation as there is
no theoretically proven choice of τ values.

The TDSEP ICA algorithm was applied to the combined MEG and EEG data
vector given in (2). As time delays τ the set τ = 1, 5, 10, 15, . . . , 500 was chosen
in the TDSEP calculation and consequently a set of 101 time-lagged covariance
matrices had to be simultaneously diagonalized. The calculation was performed
for each of the subjects separately.

Given that TDSEP probes the temporal structure of signals by correlating
EEG and MEG signals with each other, any phase difference due to the technical
recording equipment has to be avoided. This was tested and no delay was found
between any of the channels of both modalities.
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Fig. 1. Occipital alpha component of the multi-modal ICA applied to simultaneously
measured MEG and EEG data. The left column shows the MEG and EEG part of the
component vector, the top time trace of the middle column is a short section of the
component time series sM,E and the spectrum is shown to the right. The other two
time series and spectra are the single modality demixed signals (sM,E=0 respectively
sM=0,E, see text).

4 Results

The time series and power spectra of the single modality demixed signals, sM,E=0

respectively sM=0,E , are shown below the data of sM,E in Figs. 1-3. Note that
the multi-modal approach excludes the use of terminology like EOG or MOG.
In the multi-modal case different physical quantities are combined in the mixing
matrix and consequently the ICA time series is dimensionless. A physical unit
can be given for the scaling of the MEG and EEG maps as indicated in Figs. 1-3.
Figure 1 presents a component, in which both single modality demixed signals
have spectra with 10 Hz peaks, and the time series are similar to the fully
demixed signal. The 3 s section of the associated time series sM,E (top of middle
column) shows the corresponding amplitude modulation of about 10 Hz.

A quantitative comparison is given in Table 1, where the rms values of the
single modality demixed signals and the correlations ρ between the signals are
mean values for the group of subjects. The rms values are about 0.6 and 0.7
indicating an equal contribution of MEG and EEG for the component of Fig. 1.
The correlations between sM,E and the single modality demixed signals are fairly
high in agreement with the visual impression from Fig. 1. Interestingly the cor-
relation between sM,E=0 and sM=0,E is fairly small. Considering that one row of
(6) reads sM,E

1 = w11x
M
1 +w12x

M
2 +w13x

E
3 the rms values of sM,E=0 and sM=0,E

and the correlation between them cannot be close to one at the same time as
this contradicts the normalization sM,E = 1.0. The ICA component shown in
Fig. 1 has MEG and EEG part maps (left side of Fig. 1) with peaks at the back
of the head.

The most common spontaneous oscillatory signal detected in normal subjects
is an occipital alpha wave, which has a spectral range between 8 and 13 Hz and
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Table 1. Quantitative results for the time signals obtained by single modality demixing
(ALPHA = alpha waves, HEART = heart beat, EYE = eye movements, DRIFT = slow
signal drifts). The top two rows are mean rms values of the single modality demixed
sources for the four types of components and the group of subjects (standard deviations
indicated), the bottom three rows are correlations ρ between the time signals including
the time series obtained by a full demixing.

Type ALPHA HEART EYE DRIFT

〈
rms(sM,0)

〉
0.5983 ± 0.1697 0.9881 ± 0.0610 0.4029 ± 0.1188 1.0006 ± 0.0022

〈
rms(s0,E)

〉
0.7195 ± 0.1197 0.4716 ± 0.1908 0.8006 ± 0.1155 0.0806 ± 0.0150

〈
ρ(sM,0, s0,E)

〉
0.1867 ± 0.2736 −0.2403± 0.0750 0.3400 ± 0.3172 −0.0453± 0.0299

〈
ρ(sM,E , sM,0)

〉
0.7131 ± 0.1254 0.8665 ± 0.1228 0.6530 ± 0.1926 0.9966 ± 0.0012

〈
ρ(sM,E , s0,E)

〉
0.7999 ± 0.1464 0.2346 ± 0.1715 0.9232 ± 0.0529 0.0352 ± 0.0206

can be seen in relaxed awake subjects. The occipital lobes are believed to be the
source of alpha activity [9]. Comparing these properties with the features of the
data of Fig. 1, this ICA component can be attributed to alpha oscillations. The
fact that the MEG and EEG part maps are orthogonal to each other indicates
that the magnetic and electric field are due to the same current configuration.

Fig. 2. Heart beat component of the multi-modal ICA. The figure is structured as
Fig. 1. The map of the MEG part is typical for heart activity and the sM,E and
sM,E=0 time series show the heart beat. It is notably absent in sM=0,E .

Figure 2 shows a component with a time series that obviously reflects the
QRS activity of the heart. Heart activity is an inherent artifact known to be
present in MEG [10] [12]. In contrast to that, the QRS complex is not visible in
most raw EEG data and of little relevance for EEG studies [11]. In our multi-
modal ICA, the heart artifact is only found in the MEG part as can be seen in
Fig. 2, where sM,E and sM,E=0 show the heart beat, but sM=0,E does not. As
given in Table 1 the single modality demixing rms values are 0.99 and 0.47 for
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MEG and EEG, respectively, indicating a dominance of the MEG contribution.
A correlation value of 0.87 between sM,E and sM,E=0 and 0.23 between sM,E

and sM=0,E confirms this behaviour.
Figure 3 shows a component that is obviously generated by a source in the

frontal region of the head. The corresponding tabulated values for the standard
deviations of rms and correlations in Table 1 indicate that the multi-modal ICA
result is quite homogeneous for the group of subjects investigated and electric
field are due to the same current configuration. We attribute this component to
eye blinks considering the fact that the eyes and related muscles are themselves
magnetical and electrical sources MEG and EEG data can be contaminated
heavily by eye blink signals especially in frontal regions [12].

Fig. 3. Eye movement component of the multi-modal ICA. The figure is structured
as Fig. 1. The map of the MEG and EEG part have their peaks at the front and can
be attributed to the magnetical and electrical signature of eye blinks (muscle and eye
dipole).

In addition to these components, there is another component that exhibits
little correlation between MEG and EEG channels. The rms values are 1 and
0.04 for MEG and EEG, respectively, indicating a dominance of the MEG con-
tribution as for the heart beat component. We refer this component to magnetic
field drifts. Slow signal drifts are often present in MEG measurements due to the
reduced shielding capabilities of mu-metallic rooms at frequencies below 1 Hz.
Typical EEG artifact signals such as loose electrodes were easily identified in the
same manner as the MEG signal drifts.

5 Conclusion

By our analysis, a component associated with the auditory evoked M100/N100
was not identified. This is probably due to the random interstimulus interval by
which the auditory stimulus were presented. However,we found four characteristic
sources in almost all of the ten subjects studied using multi-modal ICA on common
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MEG and EEG data. These four types of signals were easily found by manual in-
spection in almost all subjects of the group. The common source for occipital alpha
oscillations was found without relying on any physical modeling of currents in the
brain. A similar result was obtained for signals due to eye blinks. One heart beat
component was found, which was detected mainly in the MEG as deduced from the
correlation and rms values associated with the single modality demixing.

This behaviour agrees with the properties of the electric potential and the
magnetic field of the heart muscle. We have demonstrated that multi-modal ICA
and single modality demixing are powerful tools to identify common sources in
MEG and EEG data.

The next step will be a comparison between multi-modal ICA results and sin-
gle modality ICA decompositions and the usage of a physical model to estimate
the source location from the combined ICA EEG and MEG maps. Future works
will assess the influnce of channels number. The choice of the TDSEP algorithm
was somewhat arbitrary and the usefulness of the single modality demixing con-
cept should be tested using other algorithms and other multi-modal data sets.
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Abstract. The use of Blind Signal Separation methods (ICA and other
approaches) for the analysis of astrophysical data remains quite unex-
plored. In this paper, we present a new approach for analyzing the in-
frared emission spectra of interstellar dust, obtained with NASA’s Spitzer
Space Telescope, using FastICA and Non-negative Matrix Factorization
(NMF). Using these two methods, we were able to unveil the source
spectra of three different types of carbonaceous nanoparticles present in
interstellar space. These spectra can then constitute a basis for the inter-
pretation of the mid-infrared emission spectra of interstellar dust in the
Milky Way and nearby galaxies. We also show how to use these extracted
spectra to derive the spatial distribution of these nanoparticles.

1 Introduction

The Spitzer Space Telescope (Spitzer) comprises one of today’s best instruments
to probe the mid-infrared (mid-IR) emission of interstellar dust in the Milky Way
and nearby galaxies. This emission is mainly carried by very small (nanometric)
interstellar dust particles. One of the goals of infrared astronomy is to identify
the physical/chemical nature of these species, as they play a fundamental role
in the evolution of galaxies. Unfortunately, the observed spectra are mixtures
of the emission from various dust populations. The strategy presented in this
paper is to apply Blind Signal Separation (BSS) methods i.e. FastICA and NMF
to a set of Spitzer mid-IR (5-30 μm) spectra obtained with the InfraRed Spec-
trograph (IRS), in order to extract the genuine spectrum of each population of
nanoparticles. We first present these observations in Sect. 2, then we apply the
� This work is based on observations made with the Spitzer Space Telescope, which is

operated by the Jet Propulsion Laboratory, California Institute of Technology under
a contract with NASA.
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682 O. Berné, Y. Deville, and C. Joblin

two BSS methods to these observations and finally give an example of how the
extracted spectra can be used to trace the evolution of dust, in the Milky Way
and external galaxies.

2 Observations

We have observed with Spitzer nearby photo-dissociation regions (PDRs), which
consist of a star illuminating the border of dense clouds of gas and dust. The
physical conditions (UV field intensity and hardness, cloud density) strongly
vary from a PDR to another as well as inside each PDR depending on the
considered position. These variations are extremely useful to probe the nature
of dust particles which are altered by the local physical conditions [1]. Therefore,
we have observed 11 PDRs as part of the SPECPDR program using the IRS in
”spectral mapping” mode. This mode enabled us to construct one dataset for
each PDR. This dataset is a spectral cube, with two spatial dimensions and one
spectral dimension (see Fig. 1). Each spectral cube is thus a 3-dimensional matrix
C(px, py, λ), which defines the variations of the recorded data with respect to
the wavelength λ, for each considered position with coordinates (px, py) in the
cube. The dimensions of these cubes are generally about 30 × 30 positions and
250 points in wavelength ranging between 5 and 30 μm.

Fig. 1. Left : Infrared (8 μm) view of the NGC 7023 North PDR. The star is illuminating
the cloud situated in the upper part of the image. Right : Mid-IR spectrum for a given
position in the spectral cube of NGC 7023.

3 Blind Separation of Interstellar Dust Spectra

BSS is commonly used to restore a set of unknown ”source” signals from a set
of observed signals which are mixtures of these source signals, with unknown
mixture parameters [2]. BSS is most often achieved using ICA methods such as
FastICA [3]. An alternative class of methods for achieving BSS is NMF, which
was introduced in [4] and then extended by a few authors. In the astrophysical
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community, ICA has been successfully used for spectra discrimination in infrared
spectro-imagery of Mars ices [5], elimination of artifacts in astronomical images
[6] or extraction of cosmic microwave background signal in Planck simulated
data [7]. To our knowledge, NMF has not yet been applied to astrophysical
problems. However, it has been used to separate spectra in other application
fields, e.g. for magnetic resonance chemical shift imaging of the human brain [8]
or for analyzing wheat grain spectra [9].

The simplest version of the BSS problem concerns so-called ”linear instanta-
neous” mixtures. It is modeled as follows:

X = AS (1)

where X is an m×n matrix containing n samples of m observed signals, A is an
m × r mixing matrix and S is an r × n matrix containing n samples of r source
signals. The observed signal samples are considered to be linear combinations of
the source signal samples (with the same sample index). It is assumed that r ≤ m
in most investigations, including this paper. The objective of BSS algorithms is
then to recover the source matrix S and/or the mixing matrix A from X , up to
BSS indeterminacies.

The correspondence between the generic BSS data model (1) and the 3-
dimensional spectral cube C(px, py, λ) to be analyzed in the present paper may
be defined as follows. In this paper, the sample index is associated to the wave-
length λ, and each observed signal consists of the overall spectrum recorded for
a cube pixel (px, py). Each one of these signals defines a row of the matrix X
in Eq. (1). Moreover, each observed spectrum is a linear combination of ”source
spectra” (see Sect. 3.1), which are respectively associated to each of the (un-
known) types of nanoparticles that contribute to the recorded spectral cube.
Therefore, the recorded spectra may here be expressed according to (1), with
unknown combination coefficients in A, unknown source spectra in S and an
unknown number r of source spectra.

3.1 Suitability of BSS Methods for the Analysis of Spitzer-IRS
Cubes

In order to apply the NMF or FastICA to the IRS data cubes, it is necessary to
make sure that the ”linear instantaneous” mixture condition is fulfilled. Here we
consider that each observed spectrum is a linear combination of ”source spectra”,
which are due to the emission of different populations of dust nanoparticles. The
main effect that can disturb the linearity of the model is radiative transfer as
shown by [10], because of the non-linearity of the equations. In our case however,
this effect is completely negligible because the emission spectra we observe come
from the surface of clouds and are therefore not altered by radiative transfer.

3.2 Considered BSS Methods

In this section, we detail which particular BSS methods we have applied to the
observed data.
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NMF. We used NMF as presented in [11]. The matrix of observed spectra X
is approximated using

WH, (2)

where W and H are non-negative matrices, with the same dimensions as in (1).
This approximation is optimized by adapting the matrices W and H using the
algorithm of [11] in order to minimize the divergence between X and WH . We
implemented the algorithm with Matlab. Convergence is reached after about
1000 iterations (which takes less than one minute with a 3.2 GHz processor).
The value of r (number of ”source” spectra) is not imposed by the NMF method.
Our strategy for setting it so as to extract the sources was the following:

• Apply the algorithm to a given dataset, with the minimum number of as-
sumed sources, i.e. r̂ = 2, providing 2 sources.

→ If the found solutions are physically coherent and linearly independent, we
consider that at least r̂ = 2 sources can be extracted.

→ Else, we consider that the algorithm is not suited for analysis (this never
occurred in our tests).

• Try the algorithm on the same dataset but with r̂ = 3 sources.
→ If the found solutions are physically coherent and linearly independent, we

consider that at least r̂ = 3 sources can be extracted.
→ Else, we consider that only two sources can be extracted, extraction was

over with r̂ = 2 and thus r = 2.
• Same as previous step but with r̂ = 4 sources.
→ If the found solutions are physically coherent and linearly independent, we

consider that at least r̂ = 4 sources can be extracted.
→ Else we consider that only three sources can be extracted, extraction was

over with r̂ = 3 and thus r = 3.
. . .
Physically incoherent spectra exhibit sparse peaks (spikes) which cannot be

PDR gas lines. We found r = 3 for NGC 7023-NW and r = 2 for the other
PDRs, implying that we could respectively extract 3 and 2 spectra from these
data cubes.

FastICA. We used FastICA in the deflation version [3] in which each source
is extracted one after the other and subtracted from the observations until all
sources are extracted. The advantage of this FastICA method is that it is not
necessary to fix, before running the algorithm, the number r of sources that we
want to extract, as it is for NMF. The extraction of the sources takes less than
one minute using FastICA coded with Matlab, and with a 3.2 GHz processor.

3.3 Results

Using the BSS methods presented in this paper, we were able to extract up to
three source spectra from the Spitzer observations. The number r of sources
found in a given PDR is always the same with NMF and FastICA. The three ex-
tracted spectra in NGC 7023 North are presented in Fig. 2. Two of them exhibit
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the series of aromatic bands which have previously been attributed to Polycyclic
Aromatic Hydrocarbons (PAHs, [12] and [13]). These two spectra show different
band intensity ratios. One is the spectrum of neutral PAHs (PAH0) while the
other is due to ionized PAHs (PAH+). The last spectrum exhibits a continuum
and aromatic bands, which can be attributed to very small carbonaceous grains
(VSGs), possibly PAH clusters [14].

Fig. 2. The three BSS-extracted spectra from our study on PDRs

3.4 FastICA vs. NMF for Our Application

As mentioned in Sect. 3.3, we were able to extract the source spectra from
our data using both FastICA and NMF. However, the extracted spectra are not
exactly the same for both methods. We conducted several tests in order to be able
to evaluate which one of the two methods is more appropriate for our application.
We created a set of 2/3 artificial carbonaceous nanoparticle spectra, to which
we added a variable level of white, spatially homogeneous noise. We mixed these
spectra with a random matrix to create a set of 100 artificial observed spectra. We
then applied the two BSS methods considered in this paper. With a noise level at
zero, both methods recover the original signals with high efficiency (correlation
coefficients between original and extracted signals above 0.995). When adding
noise, this efficiency decreases but remains acceptable down to a noise level
corresponding to a SNR of 3dB (which is much lower that the average SNR
of the Spitzer spectra). We note however that the efficiency of FastICA drops
slightly faster than the one of NMF under the effect of an increasing noise, and
drops dramatically below a SNR of 3dB, while NMF can still partly recover
the original signals. Finally, with both methods we observe that the power of
the residuals (i.e. observed signal minus signal reconstructed from the estimated
sources and mixing coefficients) has the same level as Spitzer noise.

We have shown in Sect. 3.3 that there are two main populations: one with a
continuum (VSGs) and one with bands only (PAHs). Using FastICA, we some-
times find a residual continuum in the BSS-extracted PAH spectrum, which we
interpret as an incomplete separation. It is possible that the criterion of NMF is
more appropriate in our case because less restrictive. Indeed, NMF only requires
non-negativity of the sources and mixing coefficients, which is in essence the case
for emission spectra, while FastICA is based on the statistical independence and
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non-gaussianity of the sources, which is more difficult to prove. As a conclusion,
we would like to stress the fact that both methods are very efficient for the first
task presented in this paper. We however note that NMF seems slightly better
for this particular application.

4 Deriving the Spatial Distribution of Carbonaceous
Nanoparticles

The next step of our analysis consists in using our extracted source spectra
(Fig. 2) in order to determine the spatial distribution of the three populations in
galactic clouds or in external galaxies. The Spitzer observations on-line archive
contains hundreds of mid-IR spectral cubes of such regions which can be inter-
preted in this way. Our strategy consists in calculating the correlation parameter
cp = E[Obs(px, py, λ)yp(λ)] between an observed spectrum Obs(px, py, λ) at a
position (px, py) in a spectral cube and one of our extracted source spectra yp(λ),
where E[.] stands for expectation. With the considered (i.e. linear instantaneous)
mixture model, each observed spectrum reads

Obs(px, py, λ) =
∑

n

w(px, py)nSn(λ) (3)

where Sn(λ) is the nth source spectrum and w(px, py)n are the mixing coefficients
associated to that source. Moreover, BSS methods extract the sources up to
arbirary scale factors, i.e. they provide yp(λ) = ηpSp(λ), where ηp is an unknown
scale factor and Sp(λ) is the pth source. By centering the observations and thus
the extracted spectra, and assuming that the sources are not correlated, the
above-defined correlation parameter becomes

cp = ηpw(px, py)pE[Sp(λ)2]. (4)

This coefficient cp is calculated for all the positions (px, py), therefore yielding
a 2D correlation map. Eq (4) shows that this map is proportional to w(px, py)p

and thus defines the spatial distribution of the considered extracted source
yp(λ) = ηpSp(λ). We applied this approach to the spectral cube of NGC 7023
North (Fig. 1) and obtained the correlation maps presented in Fig. 3. We find
that the three nanoparticle populations emit in very different regions. It appears
from the maps of Fig 3 that there is an evolution from a population of VSGs to
PAH0 and then PAH+ while approaching the star. This reveals the processing
of the nanoparticles by the UV stellar radiation. The same strategy was tested
using the cubes of external galaxies from the SINGS program which provides a
database of mid-IR spectral cubes for tens of nearby galaxies. Fig. 4 presents a
map of the ratio of the two correlation parameters, resp. of PAH0 and PAH+,
obtained for the Evil Eye galaxy. This method provides a unique way to spa-
tially trace the ionization fraction of PAHs which, combined with other tracers,
is fundamental to understand the evolution of galaxies.
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Fig. 3. Correlation maps of the three populations of nanoparticles in NGC 7023 North:
VSGs in red, PAH0 in green and PAH+ in blue. The contours in black show the emission
at 8 μm from Fig. 1. The slight correlation of VSGs with observations seen near the
star is an artifact.

Fig. 4. Left : Infrared (8 μm) view of the NGC 4826 (Evil Eye) Galaxy. The rectangle
indicates the region observed in spectral mapping with IRS. Right : Map of the ratio of
PAH0 over PAH+ in NGC 4826 achieved using the BSS-extracted spectra (Fig.2).

5 Conclusion

Using two BSS methods, we were able to identify the genuine mid-IR spectra
of three propulations of carbonaceous nanoparticles in the interstellar medium.
We have shown that both FastICA and NMF are efficient for this task, although
NMF is found to be sligthly more appropriate. The extracted spectra enable us
to study the evolution of carbonaceous nanoparticles in the interstellar medium
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with unprecedented precision, including in external galaxies. These results stress
the fact that BSS methods have much to reveal in the field of observational
astrophysics. We are currently analyzing more spectral cubes observations from
the Spitzer database using the strategy presented in this paper.
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12. Léger, A., Puget, J.L.: Identification of the ’unidentified’ IR emission features of
interstellar dust? Astronomy and Astrophysics 137, L5–L8 (1984)

13. Allamandola, L.J., Tielens, A.G.G.M., Barker, J.R.: Polycyclic aromatic hydrocar-
bons and the unidentified infrared emission bands - Auto exhaust along the Milky
Way. The Astrophysical Journal, Letters 290, L25–L28 (1985)

14. Rapacioli, M., Calvo, F., Joblin, C., Parneix, P., Toublanc, D., Spiegelman, F.:
Formation and destruction of polycyclic aromatic hydrocarbon clusters in the in-
terstellar medium. Astronomy and Astrophysics 460, 519–531 (2006)



Specific Circumstances on the Ability of

Linguistic Feature Extraction Based on Context
Preprocessing by ICA

Markus Borschbach and Martin Pyka

Dept. of Mathematics and Computer Science, Institute for Computer Science,
University of Münster, Einsteinstr. 62, D-48149, Germany

{markus.borschbach,pyka}@uni-muenster.de

Abstract. Blind Signal Separation (BSS) based on Independent Com-
ponent Analysis (ICA) is an emerging approach which application is not
limited to the signal processing research, where its application principle is
rather straight forward. For an increasing amount of information process-
ing fields, ICA has meaningful application which are still undiscovered.
The aim of this paper is to investigate the ability of linguistic feature
extraction based on word context preprocessing by ICA. The work refers
to a first brief analysis in which ICA was applied to an English corpus.
We continue this analysis depending on the number of components and
the amount of syntactical information that we take into account. Fur-
thermore we discuss to which extent the results deliver general linguistic
features, or linguistic features giving us information about the text.

1 Introduction

In various information processing fields, Independent Component Analysis (ICA)
[1] has emerged as a key notion of the underlying principle, often leading to an al-
ternative preprocessing step or filter of the observed data streams. The different
cases of assumed underlying models, - from a scalar and linear case, to a convo-
lutive, a nonlinear or the case of single channel ICA, have enabled a broad spec-
trum of suitable different application areas. In many signal processing fields, the
task of Blind Signal Separation based on ICA can be directly applied to a given
number of observations and the assumed underlying sources can be extracted.
In all but a few information processing areas, the meaning of the independent
components is rather undiscovered so far. All assumed underlying ICA mod-
els are comparable in the sense of identification of similarities expressed by the
condition of independence. At first, this paper contributes by summarizing ap-
proaches for linguistic text analysis based on ICA and expressing the role of the
independent components. More specific, ICA is used as a preprocessing step to
identify similarities in the context of all words of different types of text. The pa-
per is organized as follows. Section 2 briefly reviews the objective function of ICA
in an existing approach for linguistic feature extraction. The operations step of
ICA-preprocessing and their strengths and weaknesses are outlined in section 3.
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The simulation results based on this approach with two kinds of preprocessed
texts are presented in section 4 and discussed in section 5.

2 Related Work

2.1 Word-Based Linguistic Feature Extraction

The approach which is examined in this paper was introduced primarily in [2]
and applied on a corpus of 4,921,934 tokens (words in the running text) includ-
ing 117,283 types (different unique words). At the preprocessing all uppercase
letters were replaced by the corresponding lowercase letters and punctuation was
removed. For the creation of the context matrix, one hundred common words
were manually selected. The context of these words was analyzed using the 2000
most common words of the text in the following way: If one of the hundred
words appears in the text followed by a word of the 2000 most common words,
the corresponding value cij , where i is the index of the manually selected word
and j the index of the context word, is increased by 1. Therefore the context
matrix displays the number of occurrences of each context word in the immedi-
ate context of the manually selected words. If BSS is assumed as the classical
ICA signal processing application task, the dimension of the mixture vectors is
100 and the samples size is 2000. In the last preprocessing step the logarithm
was taken in order to reduce the effect of the very common words in the text.

The FastICA-Algorithm [4] was used to reduce and extract the 10 strongest
independent components based on the greatest eigenvalues (using Principle Com-
ponent Analysis). Now each of the 2000 selected context words is not represented
by its number of occurrences in the context of different index words but by a ten
dimensional vector. Depending on the amplitude of the values in each dimension
the syntactical function of the words can be categorized. In the given experiment
all plural nouns had a significant greater value in component five than in other
components for instance. Adjectives, verbs and even verb forms of “to be” and
“to have” were represented by other categories.

The results show that the ICA approach was able to extract emergent lin-
guistic features although the analysis reveals that the assignments of the ICs to
the linguistic features are still quite loose. Therefore we consider it necessary to
investigate, how the results can be improved by changing the context distance,
the size of the corpora and the number of independent components.

2.2 Morpheme-Based Linguistic Feature Extraction

The same approach was applied on a Finnish corpus taking into account mor-
phemes as the smallest unit [3]. During preprocessing a Finnish newspaper text
with 30 million words and 1.3 million unique words was segmented into mor-
phemes by applying the segmentation tool Hutmegs [10]. For a selection of 3759
data morphemes a context matrix was generated representing the distribution
of the 506 most common morphemes in the immediate context of the data mor-
phemes. The first 50 independent components were obtained via the FastICA



Specific Circumstances on the Ability of Linguistic Feature Extraction 691

algorithm. The results showed that morphemes with a common grammatical
feature had a similar 50-dimensional vector with high values (+ or -) in the com-
ponents which indicate their grammatical functions. For instance morphemes of
country names had three components with high values. A further analysis showed
that this group of morphemes can be extended to words which refer to languages
(ranska/ranskaksa: France/frensh), to inhabitants (ranska/ranskalainen: France/
frensh-man) or to words with the same kind of endings. Ambiguous words had
a higher number of active components representing the different meanings.

3 Simulation Onset

In this paper, we tried to reproduce and to improve the results of the mentioned
approach in order to figure out possible application fields. Therefore we increased
the number of independent components up to 30 and - in a second step - we ran
the same test with the full stop as sentence separator which should increase the
amount of linguistic information that was used to create the context matrix.

3.1 Settings and Selections

In the first run we tried to reproduce the same or at least similar results with a
corpus of articles of the newspaper Times from 1992, including 4,261,330 words
and 97,936 unique tokens. Therefore we used the 2000 most common word of the
text as contextwords and 100 manually selected so-called indexwords in order to
create a context matrix in which each element of the matrix contains the number
of occurrences of a contextword after an indexword. Figure 1 illustrates this
approach. After that the number of dimensions was reduced to 10 by principle
component analysis.

The analysis of all components reveals, that there are five clear distinguish-
able syntactical categories and four categories that have overlapping syntacti-
cal features. For one component a meaningful linguistic binding could not be
identified.

While the first five components correspond very well to syntactical categories,
the last four categories shown in the table (and the category that did not match
to any recognizable linguistic feature binding) seem to have overlapping syn-
tactical features which can be explained by the limited number of independent
components that we chose. Nevertheless, even for those components plausible
syntactic categories could be assigned. For example, component six contains
verbs like ’should’, ’says’ or ’took’. Their common feature are the group of words,
mainly pronouns, which are prefixed. All verbs in this category are used in ex-
pressions like ’he should...’, ’he says...’ or ’it took...’. In category eight a similar
phenomenon appeared. It includes words like ’november’, ’edingburgh’ or ’1986’.
They have in common that they are mainly used with ’on’, ’in’ and ’of’. Al-
though time- and location-related words dominate the results, we found words
like ’corporation’ or ’principle’ as well. Therefore, the dependency of the kind
of syntactical categories depend on the principles for establishing the context
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Fig. 1. All unique words are extracted out of a corpus. After a manual selection of the
index- and contextwords a contextmatrix is computed. Through ICA with PCA it is
reduced to a given number of independent components.

1 Verbs in Past Tense

2 Verbs in Infinitive

3 Numbers

4 Nouns in plural

5 Proper names

6 Verbs in various forms

7 Prepositions, conjunctions, articles

8 Nouns, that follow ’in’ and ’on’, mainly
names of cities and months

9 Words which appear frequently with ’the’
and ’an’

Fig. 2. Clear distinctive categories
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matrix and the number of independent components. The chances and weak-
nesses of this behavior are discussed in the following section.

4 Results

4.1 Settings

Based on the same context matrix the number of components was increased in
order to see how good further linguistic categories can be extracted and to which
extend the overlapping components can be minimized. First 20 categories were
calculated by principle component analysis and their results investigated. Then
an analysis with 30 categories was compared with the results of the one before.
In general it could be stated: The more independent components one computes,
the more specialized are the categories that can be found in the data. They
do not necessarily correspond to typical linguistic categories. Their dependency
on the collocations in the text leads to various groups in which one can only
vaguely discern any linguistic or even semantical categories. First the results of
this experiment are examined in more detail and then the possible application
fields will be discussed.

4.2 Implications

The results are summarized in table 1. The categories 1, 2, 3, 4, 5 and 16 can
be contemplated as the most clear syntactical categories that could be extracted
with ICA. They relate to a clear syntactical environment in which they occur
and they are discernible for humans as a part of speech as well. Although it seems
self-evident that singular nouns are a strong syntactical group as well, they do
not occur as a whole group. In the categories of the 20 and 30 components we
find them divided into several sub groups, like category 10 in which there are
all nouns that follow after “on”, “in” or “last”, like “on sunday”, “in december”
or “last week”. Category number 11 contains nouns that follow prevalently after
words like “former”, “national”, “party” and some others. Typical collocations
are “former chairman”, “national institute” and “party leader”.

These words seem to share a semantical feature, which is vaguely related
to the domain ’corporate structures, business, economy’. This kind of category
and the words in it, reflect topics of the articles in the Times newspaper. So the
categories that we receive are on one hand the result of an emergent unsupervised
learning process of the English language. We get distinctive features that have
clear syntactical properties. On the other hand they give us a notion of the topics
that are discussed in the articles. We have to admit that they do not qualify for
completeness, but at least it seems that a particular selection of context- and
indexwords can lead to various components in which we can find key words of
a text. This has to be analyzed in more detail with various indexwords and
different kinds of texts.

Due to the fact that we build the context matrix as described in [5], the emer-
gent feature categories do not always match completely to classical categories.
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Table 1. Linguistic categories in 10, 20 and 30 components

No. 10 components 20 components 30 components
1 Verbs in Past Tense Verbs in Past Tense Verbs in Past Tense
2 Verbs in Infinitive Verbs in Infinitive Verbs in Infinitive
3 Numbers Numbers Numbers
4 Nouns in plural Nouns in plural Nouns in plural
5 Proper names Proper names Proper names
6 Verbs in various forms Verbs in various forms Verbs in various forms
7 Prep., conj., articles Prep., conj., articles Prep., conj., articles
8 Nouns, that follow after “in”

and “on”, mainly names of
cities and months

Nouns, that follow after “in”
and “on”, mainly names of
cities and months

Nouns, that follow after “in”
and “to”, mainly years and
months (some cities)

9 Words which appear fre-
quently with “the” and “an”

Verbs like “going”, “based”
or “able” that follow after
“was” or “is”

Verbs like “going”, “based”
or “able” that follow after
“was” or “is”

10 Nouns, that follow after
“on” and “last”: “january”,
“february”, “monday’

Nouns, that follow after
“on” and “last”: “january”,
“february”, “monday”

11 Words that follow after “for-
mer” or “national”: “chief”,
“director”, “institute’

Words that follow after “for-
mer” or “national”: “chief”,
“director”, “institute”

12 Words that follow after num-
bers or forenames: “per”,
“million”, “clarke”

Words that follow after
numbers: “weeks”, “years”,
“goals”

13 Numbers that begin with
zero: 01, 02, 05 (part of the
structure of the Times cor-
pus)

Numbers that begin with
zero: 01, 02, 05 (part of the
structure of the Times cor-
pus)

14 Words that follow after
mainly possessive pro-
nouns: “father”, “mother”,
“greatest”

Words that follow after
mainly possessive pro-
nouns: “father”, “mother”,
“greatest”

15 Verbs that mainly occur with
personal pronouns: “could”,
“might”, “hope”

Words that can occur with
possessive pronouns or
“the”: “biggest”, “largest”,
“eyes”

16 Adjectives Adjectives
17 Words that follow after

“last”, “first”, “next”:
“week”, “game”, “century”

18 Words that follow after
auxiliaries or conjunctions,
mainly adverbs: “hardly”,
“usually”, “not”

19 Words that follow af-
ter “national”, “interna-
tional, “british”: “market”,
“group”, “football”

20 Words that follow after
“new”: “zealand”, “york”,
“ideas”

21 Verbs that follow after “he”,
“she”, “it”, mainly verbs
in third person singular:
“seems”, “plans”, “did”

22 A second category of proper
names, mainly forenames:
“richard”, “george”, “profes-
sor”

23 Words that follow after
“for”: “himself”, “lunch”,
“example”



Specific Circumstances on the Ability of Linguistic Feature Extraction 695

An interesting example can be found in category 14, which consists of words that
follow after possessive pronouns like “my”, “his”, “her” etc.. It includes words
like “mother”, “father”, “brother”, “colleagues” and body parts like “eyes” and
“hands”. In general these are nouns in this category. As there must be a big
amount of collocations like “my greatest...” or “my entire...”, the words “great-
est” and “entire” and several others are in category 14 as well. Here we expect to
reduce the effect of overlapping syntactical categories by using a different con-
text matrix which takes the previous and the following word of an index word
into account.

4.3 Using Punctuation

In the previous chapter the punctuation marks were not taken into account. In-
stead we followed the guideline described in [5]. Hence the punctuation marks
might be an important syntactic information for the analysis and were there-
fore left for the second test in the text. So only question marks and brackets
were removed, everything else was treated like a word. The extraction of the 30
strongest components showed that basically the same results as in the analy-
sis of the text without punctuation marks can be extracted. But instead of 23
categories we were able to find syntactical similarities in 26 of 30 components.
18 of the 23 categories were in both tests identical1. The punctuation marks
as separator in the text prevented the connection between two successive words
that are not located in the same sentence. Nevertheless the analysis of the words
without punctuation marks was still quite effective.

5 Conclusion

The increase of the number of components led to a more detailed syntactical
segmentation of the 2000 selected words. This segmentation gives us information
about the context in which the words are generally used. Although some of this
categories relate even to lexical categories, there are always a few outstanding
words that occur through exceptions in the grammatical use of the language.
The more components we extract with ICA, the more specific are the syntactical
categories.

In corpora with an emphasis on certain topics we were able to extract col-
locations that are not typical for the English language in general but for this
specific topic. For example, we extracted a category with words that are used in
collocations like “former director” or “national institute” (category 11), and a
category with words that follow after “international”, ’british’ and several oth-
ers. They are used in collocations like “international group” or “british market”.
This segmentation does not only reflect the syntactical features of the English
language, but also the mainly used terms and phrasings of a specific text. Due to
1 Due to the fact that FastICA starts with a random initialization, the results can

differ from run to run. But in all tests that were made with 30 components we got
at least 14 categories that occur in each test.
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their disproportionately high occurrences, they were grouped in a few categories.
Further experiments with different context distances and different types of text
will show if this could be a way of extracting topic related information from a
text as well.

The segmentation-ability of this approach could be interesting in the following
way as well. Each context word that is used in this experiment is encoded in a
10- up to 30-dimensional vector which represents its functionality in the text. It
is an abstracted description of the word. These codes could be used for finding
certain patterns in English sentences in an unsupervised and emergent manner
as well. For instance, it should be possible to extract grammatical rules from the
text through the encoded words because their vectors identify them as words
with particular syntactical features. There are many possibilities to increase the
amount of syntactical information that might be important for ICA to extract
linguistic features. One is the handling of punctuation marks as single words
which allowed us to extract a few clear distinguishable linguistic features more.
Further experiments with different context matrices, greater corpora, more con-
text words and more independent components should show to which extend we
could extract linguistic features that are maybe usable in other applications.
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Abstract. In modelling nonstationary sources, one possible strategy is
to define a latent process of strictly positive variables to model varia-
tions in second order statistics of the underlying process. This can be
achieved, for example, by passing a Gaussian process through a positive
nonlinearity or defining a discrete state Markov chain where each state
encodes a certain regime. However, models with such constructs turn out
to be either not very flexible or non-conjugate, making inference some-
what harder. In this paper, we introduce a conjugate (inverse-) gamma
Markov Random field model that allows random fluctuations on vari-
ances which are useful as priors for nonstationary time-frequency energy
distributions. The main idea is to introduce auxiliary variables such that
full conditional distributions and sufficient statistics are readily available
as closed form expressions. This allows straightforward implementation
of a Gibbs sampler or a variational algorithm. We illustrate our approach
on denoising and single channel source separation.

1 Introduction

In the Bayesian framework, various signal estimation problems can be cast into
posterior inference problems. For example, source separation [6,5,9,11,3,2], can
be stated as

p(s|x) =
1

Zx

∫
dΘodΘsp(x|s, Θo)p(s|Θs)p(Θo)p(Θs) (1)

where s ≡ s1:K,1:N and x ≡ x1:K,1:M . Here, the task is to infer N source signals
sk,n given M observed signals xk,m where n = 1 . . .N , m = 1 . . .M at each index
k where k = 1 . . .K. Here, k typically denotes time or a time-frequency atom in a
linear transform domain. In Eq.(1), the (possibly degenerate, deterministic) con-
ditional distribution p(x|s, Θo) specifies the observation model where Θo denotes
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the collection of mixing parameters such as the mixing matrix, observation noise
variance, etc. The prior term p(s|Θs), the source model, describes the statistical
properties of the sources via their own prior parameters Θs. The normalisa-
tion term Zx = p(x) is the marginal probability (evidence) of the data under
the model and plays a key role for model order selection (such as determining
the number of sources) [8]. The hierarchical model is completed by postulating
hyper-priors over the nuisance parameters Θs and Θo. Estimates of the sources
can be obtained from posterior features such as marginal maximum-a-posteriori
(MMAP) or minimum-mean-square-error (MMSE) estimate1

s∗ = argmax
s

p(s|x) 〈s〉p(s|x) =
∫

sp(s|x)ds

Unfortunately, exact calculation of these quantities is intractable for almost
all relevant observation and source models, even under conditionally Gaussian
and independence assumptions. Hence, approximate numerical integration tech-
niques have to be employed.

In applications, the key object is often the source model p(s|Θs). Indeed, many
popular signal estimation algorithms can be obtained by choosing a particular
source prior and applying Bayes rule. If the sources have some known structure,
one can design more realistic prior models to improve the estimates. In this
paper, we explore generic source models that explicitly model nonstationarity.

Perhaps the prototypical example of a nonstationary process is one where the
conditional variance is slowly changing in time. In finance literature, such mod-
els are known as stochastic volatility models and are important to characterise
non-stationary behaviour observed in financial markets [12]. In spatial statistics,
similar constructions are needed in 2-D where one is interested in changing in-
tensity over a region [15]. In audio processing, the energy content of a signal is
typically time-varying hence it is natural to model audio with a process with a
time varying power spectral density on a time frequency plane [10,14,4].

In the sequel, we introduce an alternative model that is useful for modelling a
random walk on variances. The main idea is to introduce auxiliary variables such
that full conditional distributions and sufficient statistics are readily available as
closed form expressions. This allows straightforward implementation of a Gibbs
sampler or a variational algorithm. Consequently we extend the model to 2-D
random fields, which is useful for modelling nonstationary time-frequency energy
distributions or intensity functions that need to be strictly positive. We illustrate
our approach on various denoising and source separation scenarios.

2 Model

The inverse Gamma distribution with shape parameter a and scale parameter
z is defined as

IG(v; a, z) ≡ exp((a + 1) log v−1 − z−1v−1 + a log z−1 − log Γ (a))
1 Here, and elsewhere the notation 〈f(x)〉p(x) will denote the expectation of the func-

tion f(x) under the distribution p(x), i.e. 〈f(x)〉p ≡
∫

dxf(x)p(x).
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Here, Γ is the gamma (generalised factorial) function. The sufficient statistics of
the inverse-Gamma distribution are given by

〈
v−1

〉
IG = az and

〈
log v−1

〉
IG =

Ψ(a)− log z−1 where Ψ is the digamma function defined as Ψ(a) ≡ d log Γ (a)/da.
The inverse gamma distribution is the conjugate prior for the variance v of a
Gaussian distribution N (s; μ, v)≡exp

(
−(s−μ)2v−1/2 + log v−1/2− log(2π)/2

)
.

When the prior p(v) is inverse Gamma, the posterior distribution p(v|s) can be
represented as an inverse Gamma distribution since the logarithm of a Gaussian
is a polynomial in v−1 and log v−1. Similarly, the Gamma distribution with shape
parameter a and scale parameter z is defined as

G(λ; a, z) ≡ exp((a − 1) log λ − z−1λ + a log z−1 − log Γ (a))

The sufficient statistics of the Gamma distribution are given by 〈λ〉G = az and
〈log λ〉G = Ψ(a) − log z−1. Gamma distribution is the conjugate prior for the
precision parameter (inverse variance) of a Gaussian distribution as well as for
the intensity parameter λ of a Poisson distribution

c ∼ PO(c; λ) ≡ e−λλc/c! = exp (c log λ − λ − log Γ (c + 1))

We will exploit this property to estimate intensity functions of non-homogeneous
Poisson processes.

2.1 Markov Chain Models

It is possible to define a Markov chain on inverse Gamma random variables
in a straightforward way by vk|vk−1 ∼ IG(vk; a, vk−1/a). The full conditional
distribution p(vk|vk−1, vk+1) is conjugate, i.e. it is also inverse Gamma. However,
by this construction it is not possible to attain positive correlation between vk

and vk−1. Positive correlations can be obtained by conditioning on the reciprocal
of vk−1 and defining p(vk|vk−1) = IG(vk; a, (vk−1a)−1); however in this case the
full conditional distribution p(vk|vk−1, vk+1) becomes non-conjugate since it has
vk, 1/vk and log vk terms. The basic idea is to introduce latent auxiliary variables
zk between vk and vk−1 such that when zk are integrated out we restore positive
correlation between vk and vk−1 while retaining conjugacy. We define an Inverse
Gamma-Markov chain (IGMC) for k = 1 . . .K as follows

z1 ∼ IG(z1; az, bz/az) vk|zk ∼ IG(vk; a, zk/a) zk+1|vk ∼ IG(zk+1; az, vk/az)

Here, zk are auxiliary variables that ensure the full conditionals

p(vk|zk, zk+1) ∝ exp
(
(a + az + 1) log v−1

k − (az−1
k + azz

−1
k+1)v

−1
k

)
(2)

and p(zk|vk, vk−1) are inverse Gamma. By integrating out over the auxiliary
variable zk we obtain the effective transition kernel of the Markov chain, where
it can be easily shown that

p(vk|vk−1) =
∫

dzkp(vk|zk)p(zk|vk−1)=
∫

dzkIG(vk; a, zk/a)IG(zk; az, vk−1/az)

=
Γ (a + az)
Γ (az)Γ (a)

(azv
−1
k−1)

az (av−1
k )a

(azv
−1
k−1 + av−1

k )(az+a)
v−1

k (3)
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This distribution, which in our knowledge does not have a designated name, is
a scale mixture of inverse Gamma distributions where the scaling function is
also inverse Gamma. The transition kernel p(vk|vk−1) has positive correlation
for various shape parameters az and a. The absolute value of az and a control
the strength of the correlation and the ratio az/a controls the skewness. For
az/a < 1 ( az/a > 1), the probability mass is shifted towards the interval
vk < vk−1 ( vk > vk−1) hence, typical trajectories from a IGMC will exhibit
a systematic negative (positive) drift. Using an exactly analogous construction,
we define a Gamma-Markov chain (GMC) as z1 ∼ G(z1; az, (bzaz)−1), λk|zk ∼
G(λk; aλ, (zkaλ)−1), zk+1|λk ∼ G(zk+1; az, (λkaz)−1). The effective transition
kernel has a very similar expression as in Eq.3.

Example 1, Nonstationary Gaussian Process: We define a non-station-
ary Gaussian process {yk}k=1,2,... by drawing the variances {vk}k=1,2,... from an
IGMC and drawing yk|vk ∼ N (yk; 0, vk) In Figure 1(a)-top, we show a realisa-
tion of v1:K from the IGMC, labelled as “true” and generate y1:K conditionally
Figure 1(a)-bottom. Given a realisation y1:K , we can estimated the posterior
variance 〈vk|y1:K〉. In this case, inference is carried out with variational Bayes
as will be detailed in section 3.

Example 2, Nonhomogeneous Poisson Process: We partition an interval I

on the real line into small disjoint regions Rk of area L such that I = ∪K
k=1Rk. We

assume that the unknown intensity function of the process is piecewise constant
and has the value λk on region Rk. The intensity function {λk}k=1,2,... is drawn
according to a GMC. The number points in Rk, given the intensity function,
is denoted by the Poisson random variable ck|λk ∼ PO(ck; λkL) To generate a
realisation from the Poisson process, we can uniformly draw ck points in each
region Rk. In Figure 1(b), we show a realisation from the model. Given the
number of events in each region Rk, we can estimate the value of the intensity
function on Rk by calculating 〈λk|c1:K〉.

2.2 (Inverse) Gamma Markov Random Fields – (I)GMRF

We have defined the IGMC and GMC in the previous section using conditional
distributions. An alternative but equivalent factorisation, that encodes the same
distribution but corresponds to

p(z,v) ∝ ψ(b−1
z , azz

−1
1 )

∏

k

φ(v−1
k ; a + az)φ(z−1

k ; a + az)ψ(az−1
k , v−1

k )ψ(azv
−1
k , z−1

k+1)

where we specify singleton potentials φ and pairwise potentials ψ as

φ(ξ; α) = exp((α + 1) log ξ) ψ(ξ, η) = exp(−ξη)

Generalising this to a general undirected graph with vertex set V and undirected
edge set E , we define an IGMRF on ξ = {ξi}i∈V by a set of connection weights
a = {ai,j}(i,j)∈E for i, j ∈ V and i 	= j

p(ξ;a) =
1

Za

∏

i∈V
φ(ξ−1

i ;
∑

j

ai,j)
∏

(i,j)∈E
ψ(ξ−1

i , (ai,j/2)ξ−1
j ) ≡ 1

Za
p∗a(ξ) (4)
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Fig. 1. Synthetic examples generated from the model. The thick line shows the result of
the variational inference(a) Non-stationary Gaussian Process. (a-Top) a typical draw of
v1:K from the IGMC bz = 1, a = az = 100. (a-Bottom) Draw from the Gaussian process
y1:K given v1:K . (b) Non-homogeneous Poisson Process. (b-Top) a typical draw from
the GMC with bz = 10, a = az = 100 and frame length μ(Rk) = L = 0.001. (b-Bottom)
Number of events in each Rk.

where φ and ψ are defined above. A GMRF is defined similarly by the potentials
φ(ξi;

∑
j ai,j) and ψ(ξi, (ai,j/2)ξj) but with φ(ξ; α) = exp((α − 1) log ξ).

3 Inference

Exact inference in random fields is in general intractable and various numeri-
cal methods have been developed, based on sampling (Monte Carlo-stochastic)
or analytic approximation (Variational-deterministic). Here, we focus on a par-
ticularly simple variational algorithm (mean field - variational Bayes [1,13]) –
but application of Monte Carlo methods, such as the Gibbs sampler [7] is algo-
rithmically very similar[2]. Variational methods have been applied extensively,
notably in machine learning for inference in large models. While lacking the-
oretical guarantees of Monte Carlo approaches, variational methods have been
viable alternatives in several practical situations where only a fixed amount of
CPU budget is available.

The main idea in variational Bayes is to approximate a target distribution P ≡
p∗(ξ)/Z (such as the IGMRF defined in Eq.(4)) with a simple distribution Q. The
variational distribution Q is chosen such that its expectations can be obtained
easily, preferably in closed form. One such distribution is a factorised one Q(ξ) =∏

i∈V Qi(ξi). An intuitive interpretation of mean field method is minimising
the KL divergence with respect to (the parameters of) Q where KL(Q||P) =
〈log Q〉Q − 〈log p∗/Za〉Q. Using non-negativity of KL, one can obtain a lower
bound on log-normalisation constant

log Za ≥ 〈log p∗〉Q − 〈log Q〉Q (5)

The maximisation of this lower bound is equivalent to finding the “nearest” Q
to P in terms of KL divergence. Whilst the solution is in general not available in



702 A.T. Cemgil and O. Dikmen

(a) (b) (c) (d)

Fig. 2. Various IGMRF topologies as priors for time frequency energy distributions.
White nodes (placed always on a rectangular grid) correspond to vν,τ where the ver-
tical and horizontal axis corresponds to the frequency band index ν and time index
τ respectively. Gray nodes correspond to the auxiliary variables z. (a)-(d) vertical,
horizontal, band, grid.

closed form, it can be easily shown, e.g. see [13], that each factor Qi of the optimal
approximating distribution should satisfy the following fixed point equation

Qi ∝ exp
(
〈log p∗〉Q−i

)
(6)

where Q−i ≡ Q/Qi, that is the joint distribution of all factors excluding Qi.
Hence, the mean field approach leads to a set of (deterministic) fixed point
equations that need to be iterated until convergence. For a MRF, this fixed
point expression is efficient to evaluate since it depends only on the neighbouring
variables j ∈ N (i). Finally, for conjugate models the factors are available in
closed form; for example IGMRF leads to the factors Q(t)

i (ξi) = IG(ξi; α
(t)
i , β

(t)
i )

with

α
(t)
i = θα,i +

∑

j∈N (i)

ai,j β−1
i

(t)
= θβ,i +

∑

j∈N (i)

ai,j

〈
ξ−1
j

〉
Q(t−1)

j

Here, θα,i and θβ,i denote the data contributions when a IGMRF is used as a
prior where some of the ξ are observed via a conjugate observation model. For
example, in the conditionally Gaussian observation model of section 2 we have
θα,i = 1/2 and θβ,i = y2

i /2. Similarly, the Poisson model with a GMRF prior
has θα,i = ci and θβ,i = L.

3.1 Simulation Experiments

In Figure 1, we show the results of variational inference for two synthetic exam-
ples. In the following, we will illustrate the IGMRF model used as a prior for
time-frequency energy distributions of nonstationary sources.

Linear time-frequency representations decompose a signal y(t) as a linear
decomposition of form y(t) =

∑
(ν,τ) s(ν,τ)fν,τ (t) where s(ν,τ) is the expansion

coefficient corresponding to the basis function fν,τ (t). Somewhat succinctly we
can write y = F s, where the collection of basis functions is denoted by a matrix
F where each column corresponds to a particular fν,τ . The well known Gabor
representation or modified cosine transform (MDCT) have this form and can be
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computed using fast transforms where τ corresponds to time and ν corresponds
to frequency.In the sequel, we will impose a conditionally Gaussian prior on
transform coefficients N (s(ν,τ); 0, v(ν,τ)) where the covariance structure will be
drawn from a IGMRF.

Denoising: In the first experiment, we illustrate the denoising performance of
4 MRF topologies on a set of 5 audio clips (speech, piano, guitar, perc1,
perc2) in 3 different noise conditions low, medium, high. We transform each
clip via MDCT to strue

(ν,τ) and add independent white Gaussian noise with vari-
ance r ∼ IG(r; ar , br) to obtain x(ν,τ). Note that since MDCT is an orthonormal
linear transform, we could have added noise in time domain and the noise charac-
teristics would have remained unaltered. As inference engine, we use variational
Bayes. The task of the inference algorithm is to infer the latent source coefficients
s(ν,τ) by integrating out the noise variance r and the IGMRF variables ξ. The
optimisation of MRF parameters a is carried out by the Newton method where
we maximise the lower bound in Eq.5. We assume homogeneous MRF structure
where the coupling values are the same throughout the network 2. The signal to
noise ratio of reconstructions and inference results are given in Figure 3-(a). The
SNR results do not show big variations across topologies, with the grid model
consistently providing good reconstruction, especially in high and medium noise
conditions. We note that SNR may not be the best metric to measure perceptual
quality and the reader is invited to listen to the audio examples provided online
at http://www.cmpe.boun.edu.tr/∼dikmen/ICA07/. In informal subjective lis-
tening tests, we perceive a somewhat better reconstruction quality with the grid
topology.

Source Separation: In the second experiment, we illustrate the viability of the
approach on a single channel separation task with j = 1 . . . J sources. At each
time-frequency location k ≡ (ν, τ), the generative model is vj ∼ IGMRFj , sk,j ∼
N (sk; 0; vk,j), xk =

∑J
j=1 sk,j In this scenario, the reconstruction equations have

a particularly simple form. Given the variance estimate Vk,j = 〈1/vk,j〉−1 at k,
we define a positive quantity, which we shall name as responsibility also know as
filter factors, κk,j = Vk,j/(

∑
j′ Vk,j′ ), where by construction 0 < κj for all j and∑

j κj ≤ 1. It turns out that the sufficient statistics can be compactly written as

〈sk,j〉 = κk,jxk

〈
s2

k,j

〉
= Vk,j(1 − κk,j) + κ2

k,jx
2
k

We illustrate this approach to separate a piano sound into its constituent com-
ponents. We assume that J = 2 components are generated independently by two
IGMRF models with vertical and horizontal topology. In figure 3-(b), we observe
that the model is able to separate transients and harmonic components.

2 In (a) (vertical), each white node is connected to two gray nodes with anorth

or asouth and in (b) (horizontal) with awest or aeast. The grid topology (d) has
couplings in four directions and in (c) (band), we use a single a.

http://www.cmpe.boun.edu.tr/~dikmen/ICA07/
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Fig. 3. (a) Signal-to-Noise ratio results for reconstructions obtained from the audio
clips in low, medium,high noise conditions. (b) Single channel Source Separation ex-
ample, left to right, log-MDCT coefficients of the original signal and reconstruction
with horizontal and vertical IGMRF models.

3.2 Discussion

We have introduced a conjugate gamma Markov random field model for mod-
elling nonstationary sources. The conjugacy makes it possible to design fast
inference algorithms in a straightforward way. The simple MRF topologies con-
sidered here are quite generic, yet provide good results without any hand tuned
parameters. One can envision more structured models with a larger set of param-
eters to capture physical reality, certainly for acoustical signals. We are currently
investigating further applications such as restoration, transcription or tracking
time varying intensity functions.
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Abstract. Blind source separation (BSS) and Quantum Information
Processing (QIP) are two recent and rapidly evolving fields. No con-
nection has ever been made between them to our knowledge. However,
future practical QIP systems will probably involve ”observed mixtures”,
in the BSS sense, of quantum states (qubits), e.g. associated to coupled
spins. We here investigate how individual qubits may be retrieved from
Heisenberg-coupled versions of them, and we show the relationship be-
tween this problem and classical BSS. We thus introduce new nonlinear
mixture models for qubits, motivated by actual quantum physical de-
vices. We analyze the invertibility and ambiguities of these models. We
propose practical data processing methods for performing inversions.

1 Introduction

Various areas in the information processing field developed very rapidly during
the last decades. This includes the generic Blind Source Separation (BSS) prob-
lem [1], which consists in estimating a set of unknown source signals from a set
of observed (i.e. measured) signals which are ”mixtures” of these source signals.
BSS methods thus apply to a wide range of signal denoising and component ex-
traction problems. This especially concerns communications, e.g. when a set of
radio-frequency antennas provide linear combinations, i.e. ”mixtures”, of several
emitted signals and one aims at retrieving each emitted signal only from their
available mixtures (see e.g. [2] for an implementation of this approach).

Another growing area is Quantum Information Processing (QIP), which is
closely related to Quantum Physics (QP) [3]. QIP uses abstract representations
of systems whose behavior is requested to obey the laws of QP. This already
made it possible to develop new and powerful information processing meth-
ods, to be contrasted with ”classical”, i.e. non-quantum, methods such as the
above-mentioned BSS approaches. Their effective implementation then requires
to develop corresponding practical quantum systems, which is only an emerging
topic today.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 706–713, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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To our knowledge, no connection has ever been made between the BSS and
QIP/QP areas. One may expect, however, that ”coupling” between individual
”signals” (i.e. states) will also have to be considered in the QIP/QP area. Such
couplings indeed occur even in the basic situation when two spins interact ac-
cording to the isotropic Heisenberg model. In this paper, we consider this config-
uration, we investigate how each spin may be retrieved from the coupled version
of both of them, and we show the relationship between this problem and classical
BSS. The relevance of this approach also stems from the fact that, to a large
extent, classical BSS belongs to the more general Statistical Signal Processing
(SSP) field. Since QIP and QP are essentially based on a probabilistic view of
physical phenomena, trying to bridge the gap between SSP/BSS and QIP/QP
is a priori a reasonable attempt.

2 Quantum and SSP Points of View for One Qubit

The fundamental concept used in abstract QIP is the quantum bit, or qubit [3].
A qubit has a state |ψ >, which may be expressed in the basis defined by two
vectors, that we denote |+ > and |− > hereafter. This state thus reads

|ψ >= α|+ > +β|− > (1)

where α and β are two complex-valued coefficients, which are requested to be
such that the state |ψ > is normalized, i.e.

|α|2 + |β|2 = 1 . (2)

From a QP point of view, this abstract mathematical model especially concerns
the spin of an electron, which is a quantum (i.e. non-classical) quantity. The
component of this spin along a given arbitrary axis Oz defines a two-dimensional
linear operator sz . The two eigenvalues of this operator are equal to + 1

2 and − 1
2

in normalized units, and the corresponding eigenvectors are therefore denoted
|+ > and |− >. The value obtained when measuring this spin component can
only be + 1

2 or − 1
2 . Moreover, assume this spin is in the state |ψ > defined by (1)

when performing such a measurement. Then, the probability that the measured
value is equal to + 1

2 (resp. − 1
2 ) is equal to |α|2 (resp. |β|2), i.e. to the squared

modulus of the coefficient in (1) of the associated eigenvector |+ > (resp. |− >).
The above discussion concerns the state of the considered spin at a given time.

In addition, this state evolves with time. During the time interval when this spin
(or the two coupled spins in the next section) is considered, it is supposed to
be isolated or placed in a magnetic field, so that this system has a Hamiltonian.
The spin state thus evolves according to Schrödinger’s equation. Briefly, if this
state |ψ(t0) > is defined by (1) at time t = t0, its value at any time t is then

|ψ(t) >= αe−iωp(t−t0)|+ > +βe−iωm(t−t0)|− > (3)

where i = (−1)
1
2 and the real (angular) frequencies ωp and ωm depend on the

considered physical setup.
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While we summarized above well-known concepts from QIP and QP points of
view, we now propose a way to link them with a SSP perspective. We essentially
aim at handling the situation when a first user (called ”W” hereafter) ”writes”
the considered spin, i.e. initializes its state at a given time tw with the value

|ψ(tw) >= α|+ > +β|− > (4)

and a second user (called ”R”) does not know this state and aims at ”read-
ing” it, i.e. at estimating it, at another time tr. From a SSP point of view, the
above description suggests that this may be achieved by introducing a ”repeated
write/read” (RWR) procedure, which consists in performing K times the same
”write/read” step. Each occurence k of this step, with k = 1 . . .K, consists in
first letting user W write the spin at a time tw(k) with the state of interest, i.e.

|ψ(tw(k)) >= α|+ > +β|− > . (5)

Due to (3), this spin state becomes at time tr(k)

|ψ(tr(k)) >= αe−iωpT (k)|+ > +βe−iωmT (k)|− > (6)

with T (k) = tr(k) − tw(k). User R reads this state at time tr(k). As explained
above, this measurement of the spin component along axis Oz can only yield one
of the values + 1

2 and − 1
2 , resp. with probabilities p1 and p2 equal to the squared

moduli of the coefficients associated to the states |+ > and |− > in (6), i.e.
∣∣∣αe−iωpT (k)

∣∣∣
2

= p1 (7)
∣∣∣βe−iωmT (k)

∣∣∣
2

= p2. (8)

These equations do not depend on their phase factors, i.e. they reduce to

|α|2 = p1 (9)

|β|2 = p2. (10)

Estimates of p1 and p2 may be straightforwardly obtained as the relative fre-
quencies of occurence of the values + 1

2 and − 1
2 resp. in the measurements. Eq.

(9)-(10) then directly provide the squared moduli (up to estimation errors) of
the parameters α and β that user R aims at determining. This leaves a phase
ambiguity, which may then be reduced or completely avoided as follows. First
consider a configuration where we constrain user W to only write the spin with
real-valued α and β. Eq. (9)-(10) then make it possible to estimate these param-
eters up to only a sign ambiguity. Now consider another configuration, where
only real and positive (including zero) values of α and β are used. The approach
that we proposed above then yields these parameters without any ambiguity.

We thus defined a procedure which allows user R to read a spin ”blindly”, i.e.
without any knowledge about it except, possibly, about the domain where α and
β are requested to be situated. Let us stress that this procedure may be actually
implemented in practice, i.e. the component of a spin along a given axis may be
measured, although this requires a complex physical setup. Building upon this
solution for a single spin, we now aim at extending it to two coupled spins.
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3 Estimating Two Qubits with Heisenberg Spin Coupling

3.1 Considered Qubits: Quantum Point of View

Future QIP systems will simultaneously handle several qubits, which will e.g.
be physically implemented as sets of spins. One may expect that undesired cou-
pling (i.e. ”mixture”, using BSS terminology1) between these spins will appear
in quantum physical setups, as in current classical signal processing systems,
such as the one outlined in Section 1 for communication applications. Indeed, a
well-known type of mixture between two spins consists of isotropic Heisenberg
coupling, which may be defined as follows [4]. Assume two spins, called spin 1
and spin 2 hereafter, are resp. initialized with states

(α1|+ > +β1|− >) and (α2|+ > +β2|− >) (11)

at a given time t0 and coupled according to Heisenberg model from then on.
Hereafter, we consider the state |ψ(t) > of the overall system composed of these
two identifiable spins. At time t0, this state is equal to the tensor product of the
states (11) of both spins. It may be expressed as

|ψ(t0) >= α1α2| + + > +α1β2| + − > +β1α2| − + > +β1β2| − − > (12)

in the four-dimensional basis B+ = {| + + >, | + − >, | − + >, | − − >} which
corresponds to the operators s1z and s2z resp. associated to the components of
the two spins along a given axis Oz. This state may also be expressed in the
four-dimensional basis composed of the eigenvectors of Heisenberg coupling’s
Hamiltonian. We here denote this basis B1 = {|1, 1 >, |1, −1 >, |1, 0 >, |0, 0 >}.
Using the known expression of B+ with respect to B1, (12) yields

|ψ(t0) >= α1α2|1, 1 >+β1β2|1, −1 >+
α1β2+ β1α2√

2
|1, 0 >+

α1β2− β1α2√
2

|0, 0 >.

(13)
The temporal evolution of this state then corresponds to phase rotations for each
eigenvector, as in (3). The state at any time t then reads in basis B1

|ψ(t) > = α1α2e
−iω1,1(t−t0)|1, 1 > +β1β2e

−iω1,−1(t−t0)|1, −1 > (14)

+
α1β2 + β1α2√

2
e−iω1,0(t−t0)|1, 0 > +

α1β2 − β1α2√
2

e−iω0,0(t−t0)|0, 0 >

where ωi,j is the real frequency associated to the phase rotation for each eigen-
vector |i, j >. Using the expression of B1 with respect to B+ then yields the
expression of the system state at any time t in basis B+

|ψ(t) > = α1α2e
−iω1,1(t−t0)| + + > +β1β2e

−iω1,−1(t−t0)| − − > (15)

+
1
2

[
(α1β2 + β1α2)e−iω1,0(t−t0) + (α1β2 − β1α2)e−iω0,0(t−t0)

]
| + − >

+
1
2

[
(α1β2 + β1α2)e−iω1,0(t−t0) − (α1β2 − β1α2)e−iω0,0(t−t0)

]
| − + >.

1 This should not be confused with ”statistical mixtures” used in QP. From a QP point
of view, this paper only concerns pure states, as opposed to statistical mixtures.
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Note that this state |ψ(t) > is more easily expressed in basis B1 than in B+.
We have to consider the latter expression however, because only this basis cor-
responds to variables which may be measured in practice, i.e. s1z and s2z .

We here started from a concrete (i.e. physical) setup, thus considering a QP
point of view. This led us to the state expression (15). From here on, we may
therefore move to an abstract QIP point of view, only considering the couple
of qubits defined by this state expression (15) and aiming at estimating each of
these qubits from their coupled version (15).

3.2 Considered Qubits: SSP Point of View

The first step that we propose towards the estimation of the considered qubits
is again based on a SSP approach. It extends to two qubits the RWR procedure
that we introduced for one qubit in Section 2. The resulting method operates
as follows. In each occurence k of the write/read step, user W first writes both
qubits at time tw(k), resp. with the states defined in (11), and user R then
reads at time tr(k) the state of the system composed of the two coupled qubits,
which is defined by (15) except that (t− t0) is replaced by T (k) = tr(k)− tw(k).
Reading this state means that user R measures the couple of values associated
to s1z and s2z. This couple is then equal to one of the four possible values
(+ 1

2 , + 1
2 ), (− 1

2 , − 1
2 ), (+ 1

2 , − 1
2 ) and (− 1

2 , + 1
2 ), resp. with probabilities p1, p2, p3

and p4 equal to the squared moduli of the coefficients associated to the states
composing B+ which appear in the considered modified version of (15), i.e.

∣∣∣α1α2e
−iω1,1T (k)

∣∣∣
2

= p1 (16)
∣∣∣β1β2e

−iω1,−1T (k)
∣∣∣
2

= p2 (17)

1
4

∣∣∣(α1β2 + β1α2)e−iω1,0T (k) + (α1β2 − β1α2)e−iω0,0T (k)
∣∣∣
2

= p3 (18)

1
4

∣∣∣(α1β2 + β1α2)e−iω1,0T (k) − (α1β2 − β1α2)e−iω0,0T (k)
∣∣∣
2

= p4. (19)

Again, (16)-(17) do not depend on their phase factors, i.e. they reduce to

|α1α2|2 = p1 (20)

|β1β2|2 = p2. (21)

In order to use our SSP approach, (18)-(19) should involve the same parameter
values in all occurences k of the write/read step. The write-read time interval
T (k) should therefore be the same for all occurences. It is denoted T hereafter.

Estimates of p1 to p4 may be straightforwardly obtained as the relative fre-
quencies of occurence of the four values (+ 1

2 , + 1
2 ) to (− 1

2 , + 1
2 ) resp. in the mea-

surements. However, unlike in Section 2, these estimated probabilities do not
directly yield the parameters αi and βi that user R aims at determining, i.e.
the two considered qubits are still ”mixed” in these measured data. This there-
fore defines a new nonlinear BSS-like problem (a survey of nonlinear BSS is e.g.
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available in [5]), where the observed data consist of the measured probabilities
p1 to p4, the ”source signals” to be extracted from them are the parameters αi

and βi and the unknown coefficients of the considered set of nonlinear mixing
equations are the frequencies ωi,j . This quantum mixture model (16)-(19), or
its slightly simplified form involving (20)-(21), may be referred to as ”natural
complex-valued isotropic Heisenberg spin coupling model” or more briefly ”DD1
model” (for Deville & Deville quantum model no. 1 from BSS point of view).
Note that the equations in this model are partly redundant:

p1 + p2 + p3 + p4 = 1 (22)

because the initial states (11) are normalized, so that the state |ψ(tw(k)) > de-
fined by (12) is normalized, and this state then evolves according to Schrödinger’s
equation, which keeps norm unchanged. We now show how to separate these
sources, depending on how these qubits are initialized.

3.3 Retrieving Qubits with Real-Valued Initialization

We first consider the case when the parameters αi and βi which define the initial
states of both qubits are constrained to be real-valued. (20)-(21) then reduce to

α2
1α

2
2 = p1 (23)

β2
1β2

2 = p2. (24)

These equations are sufficient for extracting the two qubits2, as shown below.
This ”real-valued isotropic Heisenberg spin coupling model” (or sub-model) is
called ”DD2” below. It may be inverted as follows. Each initial qubit state meets
the normalization condition (2), so that

β2
i = 1 − α2

i . (25)

Inserting it in (24) yields
α2

2 = 1 − p2

1 − α2
1

. (26)

Inserting (26) in (23) and multiplying by (1 − α2
2) yields a second-order polyno-

mial equation for α2
1, whose roots read

α2
1 =

1
2

[
(1 + p1 − p2) ±

√
(1 + p1 − p2)2 − 4p1

]
. (27)

The corresponding values of α2
2, may be derived from (26), but this is not needed:

it may be shown that if α2
1 is set to one of the roots of (27), then the corresponding

value of α2
2 defined by (26) is equal to the other root of (27). As for α2

1 and α2
2,

the considered problem then has a single solution, up to a permutation.
2 At least up to some ambiguities. The possibility to reduce these ambiguities by using

(18)-(19) will be presented in a future paper, due to space limitations. The use of
(18) is also discussed in Section 3.4, in a slightly different context.
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Besides, each value of α2
i yields a single value β2

i , due to (25). This leads to the
following results for the overall qubit values: (i) if both qubits are constrained
to be initialized with positive values, then the above equations yield both qubit
parameters (α1, β1) and (α2, β2) only up to a permutation ambiguity, which
is natural due to the symmetry of (23)-(24) with respect to both qubits, (ii)
if the signs of the real parameters of the initial states of both qubits are not
constrained, then a sign ambiguity appears in addition, because each above value
of α2

i or β2
i yields two opposite solutions for αi or βi. One may note the similarity

of these results with (i) those for a single qubit obtained in Section 2, (ii) the
ambiguities in classical linear instantaneous BSS, i.e. permutation and scale,
with scale ambiguity reducing to sign ambiguity for normalized signals.

3.4 Retrieving Qubits with Complex-Valued Initialization

We now come back to the general DD1 model, i.e. we consider arbitrary complex-
valued qubit initializations. We here express each qubit parameter in polar form

α1 = r1e
iθ1 β1 = q1e

iφ1 α2 = r2e
iθ2 β2 = q2e

iφ2 . (28)

Eq. (16) and (17) are then easily shown to be equivalent to

r2
1r

2
2 = p1 (29)

q2
1q

2
2 = p2. (30)

Longer calculations using phase factorizations show that (18) is equivalent to

(r1q2 cosΔE)2 + (q1r2 sin ΔE)2 − 2r1r2q1q2 cosΔE sin ΔE sinΔI = p3 (31)

where ΔI = (φ2 − φ1) − (θ2 − θ1) and ΔE =
(ω1,0 − ω0,0)T

2
. (32)

A similar expression may be derived from (19) but, due to (22), this expression
is redundant with (29)-(31). The latter equations then form our ”polar complex-
valued isotropic Heisenberg spin coupling model” (or sub-model), called ”DD3”.

Eq. (29)-(30) only concern the moduli of the qubits. They have already been
solved above, since they turn out to be identical to (23)-(24), here with posi-
tive parameters so that they yield a single solution, up to a permutation. The
phase part of the qubits is then addressed by (31), which yields the following
conclusions. Only the combination ΔI of the qubit phases, defined in (32), may
be retrieved from (31). To avoid ambiguities, one may therefore fix three of the
phase parameters θ1, φ1, θ2, and φ2 (e.g. to 0) and only use the fourth parameter
to store information. Eq. (31) only yields sinΔI , i.e. it provides ΔI up to the
ambiguities of the sine function. To derive sinΔI from (31), all quantities r1, r2,
q1, q2, cosΔE and sinΔE must be non-zero. To derive sin ΔI from (31), all other
quantities should be known a priori or estimated. p1 to p3 are estimated from
measurements and r1, r2, q1, q2, are derived from them as explained above. In a
given standard configuration, ΔE is fixed but not known a priori, because this
requires very detailed knowledge of the system’s physical properties. We here
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aim at estimating it blindly with SSP methods, i.e. from a sequence of different
coupled-qubit values, where these values are unknown but some of their statis-
tical properties are assumed to be known. This need for SSP methods should be
contrasted with the previous aspects of this paper, where the ”mixing” equations
could be solved from a single couple of qubits. For example, a simple SSP ap-
proach consists in using a realization of a sequence (indexed by n) of identically
distributed, mutually statistically independent, random variables r1(n), r2(n),
q1(n), q2(n) and ΔI(n) and considering the expectation of (31). This yields

E{r2
1(n)}E{q2

2(n)} cos2 ΔE + E{q2
1(n)}E{r2

2(n)} sin2 ΔE (33)
−2E{r1(n)}E{r2(n)}E{q1(n)}E{q2(n)} cosΔE sin ΔEE{sin ΔI(n)}=E{p3(n)}.

The moduli ri(n) and qi(n) for each couple of qubits in the sequence may be
estimated as explained above, and then used to estimate the statistics of these
moduli used in (33). E{p3(n)} is also estimated from this sequence. By con-
straining the sequence of processed data (i.e. qubit values) to be such that their
statistical parameter E{sin ΔI(n)} has a known value, (33) makes it possible to
estimate ΔE . Note that the solution is quite simple when E{sinΔI(n)} = 0.

4 Conclusion

In this theoretical paper, we bridged the gap between the QIP/QP and SSP/BSS
domains. We thus introduced what may become the ”Blind Quantum Source Sep-
aration” (BQSS) field. From a BSS point of view, we proposed several nonlinear
mixture models, motivated by actual quantum physical systems. We analyzed the
invertibility and ambiguities of these models and we proposed practical methods
for restoring qubits from their coupled versions. The next stages of this work, not
detailed here due to space limitations, will consist in extending these BSS meth-
ods, testing them with simulations of quantum systems and introducing more
general quantum mixture models which result in higher needs for SSP methods.
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Abstract. This paper deals with the simulation of a ship-containers’
gantry crane cabin behavior, during an operation of load releasing and
the BSS via ICA de-noising and movements separation. The goal consists
of obtaining a reliable model of the cabin, with the aim of reducing the
non-desired cabin vibrations. We present the Simulink -based simulation
results and the result of the signal separation algorithms when the load
is released by the crane in the containers’ ship. We conclude that the
mass center position of the cabin affects dramatically to the vibrations
of the crane. A set of graphs are presented involving displacements and
rotations of the cabin to illustrate the effect of the mass center position’s
bias and the results of the ICA action.

1 Introduction

The study of the vibrations in a gantry crane used in a containers terminal is
an issue related to the security of the crane operator and to the durability of
the design. The vibrations take place mostly in the operator cabin. The main
problem is that a short amplitude vibration in the trolley may produce high
amplitude values in the cabin, which may affect the operator’s safety. Numerous
achievements have been made in the field of the control for overhead crane
systems, which have proven to be an improvement in the position accuracy,
safety and stabilization control [1,2,3,4,5].

With the goal of adapting the developed control schemes to portainers (con-
tainer gantry cranes), the modeling of the system has to be developed. In this
paper we present an innovative Simulink model of a real-life gantry crane cabin,
like one shown in Fig. 1, and its emulated performance when a container is
released into the ship.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 714–721, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Container Gantry Cranes at Algeciras harbor

The crucial role of FastICA consist of extracting any parasitic vibration which
may remain in the system, affecting the human operator’s comfort, along with
the de-noising of the signals in order to perform a further analysis of the vibration
modes of the cabin in an ulterior cabin’s model. Similar results of ICA have been
observed in [6] and in [7], which indicates the suitability of the method for signal
extraction. The inedit of this paper is the application in gantry cranes.

The results show a new set of signals that may be used in a future vibration
control scheme and the power of ICA in extracting parasitic vibrations and
de-noising (SNR=20 dB). The paper is structured as follows. In Section 2 we
present the Simulink model of the portainer’s cabin; Section 3 summarizes ICA
foundations and FastICA. Section 4 comprises the set of the simulation results
and the ICA analysis which in fact are ”the guts” of the paper; finally conclusions
are drawn in Section 5.

2 The Simulink Model

2.1 Model Equations

Fig. 2 shows an scheme of the complete crane structure where we can see the
cabin, whose dimensions are detailed in Fig. 3.
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Fig. 2. Gantry crane model scheme

Fig. 3. Gantry crane cabin dimensions. Units in meters. Note where the mass center
is and where it should be. Points 5-8 play a special role in the equations that model
the dynamics.

The six degrees of freedom of the cabin are solved using the well-known New-
ton equations, applied to the mass center of the cabin, three of them for forces
and other three for torques, from Eq. (1) to Eq. (6); where all the variables and
points are referred to Fig. 3.

∑

i∈{5,6,7,8}
Fi,x = Mẍmc

Fi,x = Ci,x(xi,r − xi,b)′ ± Ci,xy(yi,r − yi,b)′

+ Ki,x(xi,r − xi,b) ± Ki,xy(yi,r − yi,b)

(1)

∑

i∈{5,6,7,8}
Fi,y = Mÿmc

Fi,y = Ci,y(yi,r − yi,b)′ ± Ci,xy(xi,r − xi,b)′

+ Ki,y(yi,r − yi,b) ± Ki,xy(xi,r − xi,b)

(2)

∑

i∈{5,6,7,8}
Fi,z = Mz̈mc

Fi,z = Ci,z(zi,r − zi,b)′ + Ki,z(zi,r − zi,b)
(3)
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∑

i∈{5,6,7,8}
Mi,x = Ixẅx,mc − (Iy − Iz)wy,mcwz,mc

∑

i∈{5,6,7,8}
Mi,x =

∑
(Fi,zdi,y + Fi,ydi,ydi,z)

(4)

∑

i∈{5,6,7,8}
Mi,y = Iyẅy,mc − (Iz − Ix)wz,mcwx,mc

∑

i∈{5,6,7,8}
Mi,y =

∑
(Fi,zdi,x + Fi,xdi,z)

(5)

∑

i∈{5,6,7,8}
Mi,z = Izẅz,mc − (Ix − Iy)wx,mcwy,mc

∑

i∈{5,6,7,8}
Mi,z =

∑
(Fi,xdi,y + Fi,ydi,x)

(6)

Some remarks are to be made in this set of equations. The ”±” refers to
index i=5,8, respectively, the ”-” sign refers to i=6,7. Subindex ”mc” refers to
the mass center, ”r” refers to the trolley and ”b” to the cabin. ”w” are angles,
”F” forces, ”M” torques, ”I” inertias, ”K” are for springs, ”C” are for dampers;
”d” symbolizes distances.

2.2 Simulink Scheme

The Simulink model solves and plots the displacements, velocities and acceler-
ations of each one of the six degrees of freedom of the cabin. To do that the
trolley movements and the system’s physical constants (mass, inertias, spring
and damper values and mass center position) have to be considered. Fig. 4
presents a detail of the model, concretely the forces and torques solver block.

The model is mainly divided into four blocks. The forces and torques solver
block (Fig. 4) receives all the constants and positions of the system and solves
every force and torque. The second block is the equations’ solver. It receives
forces, torques, mass, inertias and angles to solve every acceleration of the mass
center of the cabin. The third block converts accelerations into velocities and
positions of the mass center, which are the outputs of the system. Finally the
fourth block calculates positions and velocities of the four cabin-trolley connec-
tion points, using cabin and trolley positions and velocities; finally it connects
them to the first block, so the new forces and torques may be calculated.

3 The ICA Model and Algorithms

3.1 Outline of ICA

BSS by ICA is receiving attention because of its applications in many fields
such as speech recognition, medicine and telecommunications [8]. Statistical
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Fig. 4. Coarser representation of the Simulink model. Forces and torques solver block.
This is valid only to get an approximate idea of the complex model.

methods in BSS are based in the probability distributions and the cumulants
of the mixtures. The recovered signals (the source estimators) have to satisfy
a condition which is modeled by a contrast function. The underlying assump-
tions are the mutual independence among sources and the non-singularity of the
mixing matrix [6],[9].

Let s(t) = [s1(t), s2(t), . . . , sm(t)]T be the transposed vector of sources (sta-
tistically independent). The mixture of the sources is modelled via

x(t) = A · s(t) (7)

where x(t) = [x1(t), x2(t), . . . , xm(t)]T is the available vector of observations and
A = [aij ] ∈ �m×n is the unknown mixing matrix, modelling the environment in
which signals are mixed, transmitted and measured [10]. We assume that A is a
non-singular n×n square matrix. The goal of ICA is to find a non-singular n×m
separating matrix B such that extracts sources via

ŝ(t) = y(t) = B · x(t) = B · A · s(t) (8)

where y(t) = [y1(t), y2(t), . . . , ym(t)]T is an estimator of the sources. The separat-
ing matrix has a scaling freedom on each row because the relative amplitudes of
sources in s(t) and columns of A are unknown [9]. The transfer matrix G ≡ BA
relates the vector of independent (original) signals to its estimators.

3.2 FastICA

One of the independent components is estimated by y = bT x. The goal of
FastICA is to take the vector b that maximizes the non-Gaussianity (indepen-
dence)of y, by finding the maxima of its negentropy [9]. The algorithm scheme is
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an approximative Newton iteration, resulting from the application of the Kuhn-
Tucker conditions. This leads to the Eq. (9)

E{xg(bT x) − βb = 0} (9)

where g is a non-quadratic function and β is an iteration parameter.
Provided with the mathematical foundations the experimental results are

outlined.

4 Results

We present the set of results in the form of graphics due to the interest and
inedit results. We have introduced, in the simulated model, a real-life bias in the
position of the mass center (A = 1 m, B = 1.35 m, C = 1 m), in order to asses the
real cabin behavior. A delay of 1 sec is introduced to enhance the visualization
of the graphs. The initial conditions are null for all the variables involved in the
differential equations. A step-type input (5 cm amplitude) is chosen to assess the
outputs of the system. This input emulates the behavior of the sudden bump in
the trolley when the load is released in the container ship.

The left column in the matrix of signals in Fig. 5 shows all the signals involved,
and the right column shows the ICA outputs. First of all we analyze the measured
signals (left column). Regarding the X displacement of the mass center of the
cabin, it can be seen than the system is not able to dump it adequately. This
movement is produced by the horizontal bias; it has the peculiarity that the
vertical bias of the mass center also affects this horizontal movement in a critical
way. But we have to point out that the unique presence of a vertical bias is not
enough to start this movement.

Another coupling effect is the one produced by the vertical input, this time
in the Y axis. The high frequency component of the signal is rapidly attenuated
while the low frequency component is not attenuated at all and remains as
a parasitic vibration in the system. This fact has also been shown in the X
direction.

The displacement of the system in the Z-axis is the only one that behaves like
a typical response to a step-like input. We must point out than the amplitude of
the movement nearly doubles the input; so, an immediate conclusion is that the
system’s behavior is far from its original aim of isolate the cabin from the trolley
vibrations. in other words, this movement has the peculiarity of not being fully
dumped.

Finally, the rotations of the cabin are not attenuated. These rotations affect
to the X, Y, Z movements, and will not be extinguished due to the geometric
disposition of the dumps.

This scheme fits a BSS scenario. The ICA results show the separation of the
remaining oscillation (IC�6). The noise is extracted in IC�5 (a SNR=20 dB is
simulated). The z-angle movement is extracted in IC�4. IC�3 is the pure y-angle
movement. IC�2(1) is the y(x)-displacement without the parasitic vibration.
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Fig. 5. Measured-simulated signals (left column) and ICA outputs (Independent Com-
ponents, ICs, right column)

5 Conclusions

We conclude that the system is not able to dump the cabin vibrations, as every
real cabin mass center has a bias. Even with very high values of dump constants,
the time needed to attenuate the vibrations is high. Our direct real-life experience
in those cabins shows that they continually work in a transitory vibration state,
often leading the system to resonances.

A real cabin prototype is being built to adequate our model to the reality, and
solutions to the vibration matter will be tested in it. The critical influence of
the mass center position showed in this paper lead us to think that cabin-trolley
connection points must be placed around the real mass center position instead
than on the top of the cabin, where the vertical distance to the mass center
makes the system to behave like a pendulum.

ICA extracts the parasitic vibration and the uniform noise process added in
the simulation, leading us to get the real mechanical vibration modes of the
cabin’s operator.
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Abstract. In recent works, we presented a blind image separation meth-
od based on a maximum likelihood approach, where we supposed the
sources to be stationary, spatially autocorrelated and following Markov
models. To make this method more adapted to real-world images, we
here propose to extend it to non-stationary image separation. Two ap-
proaches, respectively based on blocking and kernel smoothing, are then
used for the estimation of source score functions required for implement-
ing the maximum likelihood approach, in order to allow them to vary
within images. The performance of the proposed algorithm, tested on
both artificial and real images, is compared to the stationary Markovian
approach, and then to some classical blind source separation methods.

1 Introduction

In a previous work [1], we proposed a blind source separation method based
on a maximum likelihood approach, where Markov processes are used to model
temporal autocorrelations of stationary sources. This method exploits both non-
Gaussianity and temporal autocorrelation of mutually independent sources and
provides an asymptotically efficient estimator.

We then extended this approach in [2] to bi-dimensional sources, where second-
order Markov Random Fields (MRFs) were used to describe the spatial autocor-
relation within each source image. The likelihood function was maximized using
a modified equivariant Newton-Raphson algorithm, and a parametric polynomial
estimator was introduced in order to reduce the computational cost of conditional
score function estimation, required for implementing the method.

In [2], we supposed the source images to be stationary, so that their statistics
did not vary over the image pixels. This hypothesis is, however, not realistic
for the majority of real-world images, so that the algorithm sometimes fails to
separate highly mixed images.

In this paper, we propose to modify the method presented in [2] so that the
Probability Density Functions (PDFs) of the pixels may vary within each source
image. As a result, the images may be non-stationary and the proposed method
can then simultaneously exploit non-Gaussianity, non-stationarity and spatial
autocorrelation in a quasi-optimal manner.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 722–729, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The non-stationarity of the sources has already been exploited in the literature
[3,4,5,6,7,8] for blind source separation. Nevertheless, most of these methods do
not exploit the non-Gaussianity and/or the autocorrelation of the sources and
are usually based on variance non-stationarity while our method can also exploit
higher-order non-stationarities.

2 Markovian Separation Method

In this paper, we consider the blind image separation problem in its simplest
form, where the observations are linear instantaneous mixtures of source im-
ages. In a noiseless and determined context, this problem can be formulated as
follows. Having N = N1 × N2 pixels of K linear transforms of K source images,
we consider the mixture model x(n1, n2) = As(n1, n2), where x(n1, n2) and
s(n1, n2) are, respectively, the K-dimensional observation and source vectors,
and A is an unkown K × K invertible mixing matrix.

The Maximum Likelihood (ML) approach can be used to estimate the sepa-
rating matrix B = A−1 up to a diagonal matrix and a permutation matrix. It
consists in maximizing, with respect to the matrix B, the joint PDF of all the
pixels of all the images in the observation vector x

fx(x1(1, 1), · · · , xK(1, 1), · · · , x1(N1, N2), · · · , xK(N1, N2)) . (1)

Assuming source images are independent and described by second-order MRFs
according to the sweeping scheme defined in [2], this joint PDF can be approxi-
mated by

( 1
|det(B−1)|

)N K∏

i=1

N1∏

n1=2

N2−1∏

n2=2

fsi(n1,n2)(si(n1, n2)|si(n1, n2 − 1),

si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1)). (2)

Defining then the conditional score function ψk,l
si(n1,n2) of a source si, with respect

to the pixel si(n1 − k, n2 − l), by

ψk,l
si(n1,n2)

(n1, n2) =
−∂

∂si(n1 − k, n2 − l)
log fsi(n1,n2)(si(n1, n2)|si(n1, n2 − 1),

si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1)) (3)

the maximization of the logarithm of (2) leads finally to a system of K(K − 1)
estimating equations defined as

EN [
∑

(k,l)∈Υ

ψk,l
si(n1,n2)(n1, n2).sj(n1 − k, n2 − l)] = 0 i �= j = 1, · · · , K (4)

where Υ = {(0, 0), (0, 1), (1, −1), (1, 0), (1, 1)} corresponds to the considered
sweeping scheme over the image [2] and EN [.] is a spatial average operator
defined by EN [.] = 1

N

∑N1
n1=2

∑N2−1
n2=2 [.].
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In practice, the sources si, actually unknown, are replaced using an iterative
algorithm by the estimated sources ŝi(n1, n2) = ei

T B̂x(n1, n2), where ei is the
ith column of the identity matrix. The separating matrix B may be estimated
via the resolution of the system of equations (4), using for example the modified
equivariant version of the Newton-Raphson algorithm presented in [2].

The score functions and their derivatives, required for the computation of the
system coefficients, may be estimated using a parametric polynomial estimator.

In [2], we supposed that source images were stationary, so that the score func-
tions ψk,l

si(n1,n2)
(.) did not vary with n1 and n2, i.e. reduced to ψk,l

si
(.). However,

this condition being unrealistic for most real-world images, we propose, in this
paper, to extend this approach to non-stationary sources, allowing the statis-
tics to be dependent on the pixel position. Two methods, based respectively on
blocking and kernel smoothing, are introduced in the following section in order
to adapt the score function estimation to non-stationary images.

3 Non-stationary Estimation of the Score Functions

For simplicity, we denote the conditional score functions ψk,l
si(n1,n2)

(n1, n2) �
ψk,l

si(n1,n2)
(si(n1, n2)|si(n1, n2−1), si(n1−1, n2+1), si(n1−1, n2), si(n1−1, n2−1))

by ψk,l
si(n)(ξ0|ξ1, . . . , ξ4). This function can be rewritten as follows

ψk,l
si(n)(ξ0|ξ1, . . . , ξ4) = ψk,l

si(n)(ξ0, . . . , ξ4) − ψk,l
si(n)(ξ1 . . . , ξ4) . (5)

We propose to estimate each of the non-stationary joint score functions in
(5) using a parametric third-order polynomial estimator. The polynomial func-
tion order is chosen so that the resulting approximation induces low compu-
tational cost without decreasing the estimation performance. Thus, assuming
gk,l

si(n)(ξ0, . . . , ξ4,W) is a polynomial estimator of the joint score function

ψk,l
si(n)(ξ0, . . . , ξ4), we can define this estimator by

gk,l
si(n)(ξ0, . . . , ξ4,W) =

∑

j

wk,l
j (si(n))hj(ξ0, . . . , ξ4) = hT Wk,l(si(n))

where hj(ξ0, . . . , ξ4) and wk,l
j (si(n)) are respectively the monomial functions and

the coefficients. The polynomial coefficients wk,l
j (si(n)) should be selected so that

gk,l
si(n)(ξ0, . . . , ξ4,W) is the least mean-square estimator of the joint score func-

tion ψk,l
si(n)(ξ0, . . . , ξ4). Consequently, wk,l

j (si(n)) are solutions of the following
optimization problem

Wk,l(si(n)) = argminE{[ψk,l
si(n)(ξ0, . . . , ξ4) − gk,l

si(n)(ξ0, . . . , ξ4,W)]2} . (6)

Using the theorem mentioned in Section 4 of [2], we obtain

Wk,l(si(n))=argmin

{
E

[
hT Wk,l(si(n))[Wk,l(si(n))]T h

]
−2E

[
∂hT

∂ξk,l
.Wk,l(si(n))

]}
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where ξk,l ∈ {ξ0, . . . , ξ4} and represents si(n1 − k, n2 − l) according to (3) and
(5). The minimum of the above function is finally given by

W(si(n))k,l =
(
E

[
hT h

])−1

E
[ ∂h
∂ξk,l

]
. (7)

A parametric estimator for the second joint score function ψl,k
si(n)(ξ1 . . . , ξ4) may

be obtained following the same calculus, or simply deduced from the first esti-
mator by regression.

In the initial version of this estimation procedure [2], we supposed the sources
were stationary. As a consequence, the mathematical expectations in Eq. (7)
were replaced by a spatial average over all the pixels in the image. To extend
this estimation to non-stationary sources, two methods, proposed initially in
[8] for non-stationary temporally uncorrelated one-dimensional sources, are here
adapted to model the statistics of non-stationary spatially autocorrelated images.

Blocking method: Each observed image is split into M1 × M2 sub-images
Ij , supposing that the score function variations, in each block Ij , are small.
Each of these sub-images may be then supposed to be stationary, so that the
mathematical expectations, required in Eq. (7), can be locally approximated by a
spatial average over each sub-image. The coefficients of the parametric estimator
of the score functions being unchanged within Ij , we can write

ψl,k
si(n1,n2)

= ψl,k
si

(j), ∀ (n1, n2) ∈ Ij .

Kernel smoothing method: In a kernel smoothing approach, score functions
are approximated at each pixel of the image by a local spatial average all around
this pixel.

Using a general notation, we denote E = E(φ(ξ0(n1, n2), . . . , ξ4(n1, n2)))
the mathematical expectations required for the estimation of the score func-
tion parameters at pixel si(n1, n2), where (ξ0(n1, n2), . . . , ξ4(n1, n2)) represents
(si(n1, n2), si(n1, n2 − 1), si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1)) and
φ(.) each of the functions involved in Eq. (7). Contrary to the blocking method,
these expectations are estimated in each pixel using the formula

Ê =

∑N1−1
μ1=2

∑N2−1
μ2=2 κ(μ1−n1

ν , μ2−n2
ν )φ(ξ0(μ1, μ2), . . . , ξ4(μ1, μ2))

∑N1−1
μ1=2

∑N2−1
μ2=2 κ(μ1−n1

ν , μ2−n2
ν )

(8)

where κ(.) is a kernel function and ν a window width parameter.
The kernel smoothing method should be advantageous in cases when the score

functions vary rapidly within the image. In fact, in such cases, the size of nearly
stationary blocks is so small that there are not enough pixels for a reliable
estimation of score functions using the blocking method. However, the kernel
smoothing method is computationally too expensive, since a new estimation is
required at each pixel. To reduce the algorithm complexity, we can approximate
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the estimator (8) by a sparser one, according to the formula

Ê =

∑L1
l1=l11

∑L2
l2=l22

κ(
l1Q1

L1
−n1

ν ,
l2Q2

L2
−n2

ν )φ(ξ0( l1Q1
L1

, l2Q2
L2

), . . . , ξ4( l1Q1
L1

, l2Q2
L2

))
∑L1

l1=l11

∑L2
l2=l22

κ(
l1Q1

L1
−n1

ν ,
l2Q2

L2
−n2

ν )

where Q1 = N1 − 1, Q2 = N2 − 1, L1 and L2 are chosen so that Q1
L1

and Q2
L2

are integers, and l11 and l22 are the first integers greater than 2L1
Q1

and 2L2
Q2

,
respectively. The choice of sparsness parameters L1 and L2 should be adapted
to the smoothness of the signal.

4 Experimental Results

4.1 Artificial Images

In our first simulations, we want to compare the proposed non-stationary Marko-
vian blocking method to the stationary Markovian image separation approach,
presented in [2].

In the first experiment, we apply our blocking method to two artificial mix-
tures of two non-stationary source images, following exactly second-order MRF
models. Two independent white and uniformly distributed noise images with
size 200 × 200, e1(n1, n2) and e2(n1, n2), are therefore generated and filtered by
two Infinite Impulse Response (IIR) filters, according to the following scheme

ςi(n1, n2) = ei(n1, n2) + ρi
0,1si(n1, n2 − 1) + ρi

1,−1si(n1 − 1, n2 + 1)

+ρi
1,0si(n1 − 1, n2) + ρi

1,1si(n1 − 1, n2 − 1) . (9)

The coefficients ρi of the first and second filters are fixed to {−0.5, 0.3, 0.5, −0.29}
and {−0.5, 0.4, 0.5, 0.3}, respectively, and satisfy the filter stability conditions.
The resulting images are then split into L1 ×L2 sub-images, and each sub-image
is multiplied by a different coefficient αi

p, p = 1, . . . , L1 × L2. The resulting
autocorrelated, non-stationary sources are finally mixed using the mixing matrix

A =
(

1 0.99
0.99 1

)
. The Markovian non-stationary blocking method is then used

to separate the sources. After normalizing the separated sources ŝi(n1, n2) so
that they have the same variances and signs as the source signals si(n1, n2), the
output Signal to Interference Ratio (in dB) is computed using the formula

SIR =
1
K

K∑

i=1

10 log10

E[s2
i (n1, n2)]

E[(ŝi(n1, n2) − si(n1, n2))2]

where K = 2 in the above experiment. Choosing L1 = L2 = 4, we computed
the mean of SIR over 100 Monte Carlo simulations for different values of the
algorithm parameters M1 and M2. The results are shown in Fig. 1 as a function
of the number of sub-images (M1 × M2), with M1 = M2 = M .
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The one-block image case, i.e. M1 = M2 = 1, corresponding to the stationary
Markovian method, led only to an average SIR of 22 dB. The separation perfor-
mance increases rapidly when we use a greater number of blocks, and it reaches
its maximum, with an average SIR of 99 dB, when the model takes the same
number of blocks as in the source image, i.e. M1 = L1 and M2 = L2. Moreover,
it can be noticed that over-blocking the image does not have a great effect on
the separation result, provided that the number of pixels in each sub-image is
sufficient for the score function estimation.

In comparison to the stationary Markovian algorithm, the blocking approach
significantly reduces both memory and time consumption. In the above exper-
iment, the stationary Markovian algorithm needs 192 Mbytes of memory to
estimate score functions while the blocking algorithm with M1 = M2 = 4 needs
less than 12 Mbytes. The time consumption reduction induced by the block-
ing method is significant with large-size images. For example, using mixtures of
400 × 400-sized non-stationary images, the running times of the blocking algo-
rithm with M1 = M2 = 4 and the stationary Markovian algorithm on a 1.53
GHz AMD-Athlon PC are 48 seconds and 1647 seconds, respectively, for each
iteration.
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Fig. 1. Mean of SIR vs. the number of
sub-images using IIR filtered sources
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Fig. 2. Mean of SIR vs. the number of sub-
images using FIR filtered sources

In the second experiment, we want to test the robustness of our blocking
method with respect to the Markov model assumption. As in the first simulation,
two noise images with size 200 × 200 are generated but filtered this time by
two symmetrical bidimensional Finite Impulse Response (FIR) filters. Thus, the
filtered images can no longer be modeled exactly by second-order MRFs. The
resulting images are then split into L2 = 16 square blocks, so that L1 = L2 = 4,
and each sub-image is multiplied by a different coefficient αi

p. Finally, the same
mixing matrix A as in the first experiment is used and the average SIR over
100 Monte Carlo simulations is computed, and shown in Fig. 2 as a function
of the number of blocked sub-images M1 × M2 = M2. Results show clearly the
high performance of our algorithm, even when the Markov model is not satisfied.
The average SIR achieved by the stationary Markovian algorithm is only 27 dB,
whereas the blocking algorithm led to 140 dB for M2 = 16 sub-images.
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In the third simulation, our goal is to highlight the advantage of the kernel
smoothing method compared to the blocking one for images whose statistics are
rapidly varying. The kernel smoothing algorithm being very time consuming, we
can only use it for small-sized images. Two images with size 32 × 32, shown in
Fig. 3, are artificially mixed using the same matrix A as in the first experiment.
The kernel smoothing method, using a Gaussian kernel, is then applied to the
mixture and the results are compared to those achieved by the blocking method.
The kernel smoothing method, with a kernel standard deviation σ = 10, leads to
57-dB SIR, whereas the blocking method completely fails to separate the sources
in this case because they are too non-stationary.
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Fig. 3. Two small-sized images with highly non-stationary variations
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Fig. 4. Two photographic real-world images

4.2 Real-World Images

In the last experiment, we want to evaluate the performance of our blocking
algorithm using real-world images. Two photographic images, provided by [9],

are artificially mixed using the matrix A =
(

1 0.99
0.99 1

)
. The two images, shown

in Fig. 4, are 320 × 420-sized and clearly non-stationary. The blocking method,
using different values for the number of blocks, is first applied and the SIR is
compared to the SIR achieved by the stationary Markovian method. Provided we
select an adequate number of sub-images, which corresponds to M1 = M2 = 10
in this case, the blocking method led to nearly 60 dB SIR, whereas the separation
completely failed with the stationary Markovian algorithm.

In the second step, we compared our blocking method to the 15 classical
algorithms available in the ICALAB Toolbox [10,11]. Our method outperforms
all 15 algorithms, which led to 37 dB SIR at best, with the SOBI-RO method.
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5 Conclusion

In this paper, we extended to non-stationary source images our Markovian
maximum likelihood approach for blind image separation. The proposed algo-
rithms exploit simultaneously non-Gaussianity, spatial autocorrelation and non-
stationarity of the sources in a quasi-optimal manner. To handle non-stationarity,
we adapt to our problem two approaches, respectively based on blocking and ker-
nel smoothing. Experimental results, using both artificial and real images, show
clearly the better performance of our blocking method compared to the station-
ary Markovian algorithm and the classical algorithms available in the ICALAB
Toolbox. Moreover, tests proved the high performance of our kernel smoothing
method, even with highly non-stationary images. However, this method can only
be applied to small-sized images, since it is very time consuming. Therefore, we
are currently working on reducing its computational cost.
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P.O. Box 18, 182 08 Praha 8, Czech Republic

zbynek.koldovsky@tul.cz
2 Faculty of Mechatronic and Interdisciplinary Studies

Technical University of Liberec, Hálkova 6, 461 17 Liberec, Czech Republic

Abstract. In this paper, a variant of the well known algorithm Fas-
tICA is proposed to be used for blind source separation in off-line (block
processing) setup and a noisy environment. The algorithm combines a
symmetric FastICA with test of saddle points to achieve fast global con-
vergence and a one-unit refinement to obtain high noise rejection ability.
A novel test of saddle points is designed for separation of complex-valued
signals. The bias of the proposed algorithm due to additive noise can be
shown to be asymptotically proportional to σ3 for small σ, where σ2 is
the variance of the additive noise. Since the bias of the other methods
(namely the bias of all methods using the orthogonality constraint, and
even of recently proposed algorithm EFICA) is asymptotically propor-
tional to σ2, the proposed method has usually a lower bias, and con-
sequently it exhibits a lower symbol-error rate, when applied to blind
separation of finite alphabet signals, typical for communication systems.

1 Introduction

The noisy model of Independent Component Analysis (ICA) considered in this
paper, is

X = AS + σN, (1)

where S denotes a vector of d independent random variables representing the
original signals, A is an unknown regular d×d mixing matrix, and X represents
the observed mixed signals. The noise N denotes a vector of independent vari-
ables having the covariance matrix Σ. Without loss of generality, we will further
assume that Σ equals to the identity matrix I. Consequently, σ2 is the variance
of the added noise to the mixed signals. All signals considered here are i.i.d.
sequences, i.e., they are assumed to be white in the analysis.

It is characteristic for most ICA methods that they were derived for the noise-
less case, so to solve the task of estimating the mixing matrix A or its inversion
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W = A−1. Then, abilities to separate noised data are studied experimentally,
and the non-vanishing estimation error as N → +∞, N being length of data,
is taken for a bias caused by the noise. To compensate such bias, several tech-
niques were proposed [6]. Unfortunately, these methods have a drawback that
the covariance structure of the noise needs to be known a priori [4].

In accord with [7], we suggest to measure the separation quality not through
accuracy of estimation of the mixing mechanism but through the achieved in-
terference + noise to signal ratio (INSR) or its inverse SINR. In separating the
finite alphabet signals, the ultimate criterion should be the symbol error rate
(SER). Computation of the INSR or the SER assumes that the permutation,
scale, and sign or phase ambiguities were resolved by minimizing the INSR.

In the case Σ = I, the INSR of a k-th estimated signal can be computed as

INSRk =

∑d
i�=k(BA)2ki + σ2

∑d
i=1 B2

ki

(BA)2kk

, (2)

where B is the separating transformation [7]. The solutions that minimize (2)
are known to be given by the MMSE separating matrix, denoted by WMMSE,
that takes the form

WMMSE = AH(AAH + σ2I)−1 (3)

where H denotes the conjugate (Hermitian) transpose. Signals given by WMMSEX
will be further called the MMSE solution. Note that these signals may not be nec-
essarily normalized to have unit variance, unlike outcome of common blind separa-
tion methods, that produce normalized components. For exact comparisons, we
introduce a matrix WNMMSE such that WNMMSEX are the normalized MMSE
signals.

The paper is organized as follows. In section 2, we briefly describe several
variants of algorithm FastICA and the proposed method, including a novel test
of saddle points for separating complex-valued signals. Section 3 presents an-
alytic expressions for an asymptotic bias of solutions obtained by real domain
FastICA variants [5,8] from the MMSE solution. Specifically, we study the biases
of estimates of de-mixing matrix W from WNMMSE, and the one-unit FastICA
and the proposed algorithm is shown to be less biased than the other methods.
Simulations in Section 4 demonstrate drawbacks of the unbiased algorithm [6]
(further referred to as unbiased FastICA) following from required knowledge of
Σ and/or σ. Conversely, the proposed algorithm with one-unit FastICA-like per-
formance is shown to be the best blind MMSE estimator when separating noisy
finite-alphabet signals.

2 FastICA and Its Variants

Common FastICA algorithms work with the decorrelated data Z = C−1/2X,
where C = E[XXH ] is the data covariance matrix. Only the unbiased FastICA
[6] that aims at unbiased estimation of A−1 assuming that the noise has a known
covariance matrix Σ, uses the preprocessing Z = (C − Σ)−1/2X.
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One-unit FastICA in real domain [5] estimates one de-mixing vector w1U
k

iteratively via the recursion

w+
k ← E[Zg(w1U

k

T
Z)]} − w1U

k E{g′(w1U
k

T
Z))}, w1U

k ← w+
k /‖w+

k ‖ (4)

until convergence is achieved. Here g(·) is a smooth nonlinear function that
approximates/surrogates the score function corresponding to the distribution of
the original signals [11]. The theoretical expectation values in (4) are, in practice,
replaced by their sample-based counterparts.

Similar recursion was proposed for one-unit FastICA in the complex domain
[1]. The symmetric (real or complex) variant performs the one-unit iterations in
parallel for all d separating vectors, but the normalization in (4) is replaced by
a symmetric orthogonalization.

The algorithm EFICA [8] combines the symmetric approach with the test of
saddle points, an adaptive choice of nonlinearity gk(·) for each signal separately,
and it does the refinement step that relaxes the orthogonal constraint introduced
by the symmetric approach and is designed towards asymptotic efficiency.

The unbiased FastICA [6] uses the recursion

w+
k ← E[Zg(wunb

k

T
Z)] − (I + Σ̃)wunb

k E[g′(wunb
k

T
Z)],

where Σ̃ = (C − Σ)−1/2Σ(C − Σ)−1/2. Both approaches (one-unit and sym-
metric) can be considered; in simulations, we use the one-unit variant, and the
resulting de-mixing matrix will be denoted by WUNB. In order to compare per-
formance of the unbiased FastICA by means of (2) with the other techniques
fairly, it is necessary to consider a MMSE estimate derived from WUNB, namely

WMMSE-UNB = Σ−1(WUNB)−T × [(WUNB)−1Σ−1(WUNB)−T + σ2I]−1 (5)

2.1 Proposed Algorithm

The proposed algorithm is a combination of symmetric FastICA, test of saddle
points, and one-unit FastICA as a refinement. Usually, one unit FastICA is used in
a deflation way, when the estimated components are subtracted from the mixture
one by one. This is computationally effective method, but accuracy of the later
separated components might be compromised. Therefore, we propose to initialize
the algorithm using symmetric FastICA, that is known for having very good global
convergence and allows equal separation precision for all components.

The test of saddle points was first proposed in [11] to improve probability
of the symmetric FastICA to converge to the true global maximum of the cost
function [E{G(wT Z)} − G0]2 where G(·). is a primitive function of g(·) and
G0 = E{G(ξ)}, where ξ is a standard Gaussian random variable.

In short, the test of saddle points consists in checking all pairs of the estimated
components (uk,u�), whether or not other pair of signals (u′k,u′�) gives a higher
value of the cost function

c(uk,u�) = [E{G(uk)} − G0]2 + [E{G(u�)} − G0]2, (6)

where u′k = (uk + u�)/
√

2 and u′� = (uk − u�)/
√

2.
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The motivation is that a random initialization of the algorithm may begin
at a point of zero gradient of the cost function (a saddle point / an unstable
point of the iteration) and terminate there, despite being not the desired stable
solution. See [11] for details.

In the complex domain, the situation is a bit more tricky, because if (uk,u�) is
the pair of valid independent components in the mixture, not only their weighted
sum and a difference represent a false (unstable) point of the iteration. All pairs
(u′k,u′�) of the form u′k = (uk + eiαu�)/

√
2 and u′� = (uk − eiαu�)/

√
2 are

stationary but unstable for any phase factor eiα, α ∈ R.
Therefore we propose to do a phase shift of each separated component so

that the real part and the imaginary part of the signal are as much independent
each of other as possible before the test of the saddle points. This phase shift
can be easily performed using a two-dimensional symmetric FastICA in the real
domain applied to the real and imaginary part of the component. After this
preprocessing, it is sufficient to perform the test of saddle points exactly as in
the real-valued case, i.e. to check all pairs (u′k,u′�) with u′k = (uk + u�)/

√
2 and

u′� = (uk − u�)/
√

2, whether they give a higher value of the cost function (6)
or not.

Validity of the above described complex domain test of the saddle points
can be easily confirmed in simulations by starting the algorithm from the pairs
u′k = (uk + eiαu�)/

√
2 and u′� = (uk − eiαu�)/

√
2 with an arbitrary α ∈ R

where uk and u� are the true independent sources. We have successfully tested
this approach on separation of complex-valued finite alphabet sources known in
communications (QAM, V27).

The resultant algorithm (symmetric FastICA + test of saddle points + one
unit refinements) will be referred to as 1FICA.

3 Bias of the FastICA Variants

In this section, asymptotic expressions for bias of algorithms described in previ-
ous section working in the real domain will be presented. (The complex-domain
FastICA exhibits a similar behavior in simulations.) For details of analysis, the
reader is referred to [9] due to lack of space.

In brief, the theoretical analysis is done for “small” σ and infinite number of
samples. Similarly to [11], for theoretical considerations, it is assumed that the
analyzed method starts from the MMSE solution and stops after one iteration.
This assumption is reasonable due to the following facts: (1) deviation of the
global maximizer Ŵ of the FastICA cost function from WMMSE is of the order
O(σ2), and (2) convergence of the algorithm is at least quadratic [10]. Therefore,
after performing the one iteration, the deviation of the estimate from the global
maximizer Ŵ is of the order O(σ4) and, hence, is negligible.

The bias of the algorithm will be studied in terms of the deviation of
Ŵ(WMMSE)−1 from a diagonal matrix. More precisely, the bias is equal to the
difference between E[Ŵ](WMMSE)−1 and D = WNMMSE[WMMSE]−1, where D
is the diagonal matrix that normalizes the MMSE signals SMMSE = WMMSEX.
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It holds that
D = I +

1
2
σ2diag[V11, . . . ,Vdd] + O(σ3). (7)

From here we use the notation W = A−1 and V = WWT . Finally, for a matrix
Ŵ that separates the data SMMSE, the bias is E[Ŵ] − D.

3.1 Bias of the One-Unit FastICA and 1FICA

It can be shown that the de-mixing vector w1U
k resulting from the one-unit

FastICA (applied to the data SMMSE), for N → +∞, is proportional to

w1U
k = τkek +

1
2
σ2Vkk(τk + δk)ek + O(σ3) (8)

where τk = E[skg(sk)−g′(sk)], and δk is a scalar that depends on the distribution
of sk and on the nonlinear function g and its derivatives to the third order.
Since (8) is a scalar multiple of ek (the k-th column of the identity matrix), it
follows that the asymptotic bias of the one-unit approach is O(σ3). Prospectively,
the separating matrix W1F given by the proposed 1FICA has the same bias.
Simulations confirm this expectation [9].

3.2 Bias of the Inversion Solution

It is interesting to compare the previous result with the solution that is given
by exact inversion of the mixing matrix, i.e. WX = S + σWN; the signals will
be called the inversion solution. From

W(WMMSE)−1 = W(AAT + σ2I)WT = I + σ2V

it follows that the “bias” of the inversion solution is proportional to σ2 and
in general it is greater than that of 1FICA. In other words, the algorithm
1FICA produces components that are asymptotically closer to the
MMSE solution than to the inversion solution.

3.3 Bias of Algorithms Using the Orthogonal Constraint

Large number of ICA algorithms (e.g. JADE [2], symmetric FastICA, etc.) use
an orthogonal constraint, i.e., they enforce the separated components to have
sample correlations equal to zero. Since the second-order statistics cannot be
estimated perfectly, this constraint compromises the separation quality [3,11].
Here we show that the bias of all ICA algorithms that use the constraint has the
asymptotic order O(σ2).

The orthogonality constraint can be written as

E[ŴX(ŴX)T ] = Ŵ(AAT + σ2I)ŴT = I . (9)

It follows that the bias of all constrained algorithms is lower bounded by

min ‖Ŵ(WMMSE)−1 − D‖F = O(σ2)
Ŵ(AAT + σ2I)ŴT = I

(10)
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where the minimization proceeds for Ŵ. The matrix D in (10) is the same as in
(7). For the minimizer Ŵ of (10) it holds that Ŵ(WMMSE)−1 = I+σ2Γ+O(σ3),
where Γ is a nonzero matrix obeying Γ + ΓT = V; see [9] for details. This
result can be interpreted in the way that the algorithms using the orthogonality
constraint may prefer some of the separated components to give them a zero
bias, but the total average bias for all components has the order O(σ2).

3.4 Bias of the Symmetric FastICA and EFICA

The biases of the algorithms can be expressed as

E[Ŵ](WMMSE)−1 − D =
1
2
σ2V � (1d×d − I + H) + O(σ3), (11)

where Hk� = |τ�|−|τk|
|τk|+|τ�| for the symmetric FastICA, and Hk� = ck�|τ�|−|τk|

|τk|+ck�|τ�| for

EFICA, where ck� = |τ�|γk

|τk|(γ�+τ2
� )

for k 	= � and ckk = 1. Here, γk = E[g2
k(sk)] −

E2[skgk(sk)], and gk is the nonlinear function chosen for the k-th signal.
It can be seen that the bias of both of the algorithms has the order O(σ2).

4 Simulations

In this section, we present results of two experiments to demonstrate and com-
pare the performance of the proposed algorithm 1FICA with competing methods:
The symmetric FastICA (marked by SYMM), the unbiased FastICA (unbiased
FICA), EFICA, and JADE [2]. Results given by “oracle” MMSE solution and
the inversion solution are included as well. Examples with complex signals are
not included due to lack of space.

In the first example, we separate 10 randomly mixed [7] BPSK signals with
added Gaussian noise, first, for various length of data N (Fig. 1(a)) and, second,
for varying input signal-to-noise ratio (SNR) defined as 1/σ2 (Fig. 1(b)). The
experiment encompasses several extremal conditions: In the first scenario, where
SNR=5dB (σ .= 0.56), N goes from 100, which is quite low for the dimension
d = 10. The second situation examines N = 200 and SNR going down to 0dB.

Note that the bias may be less important than the estimation variance when
the data length N is low. Therefore, in simulations, we have included two slightly
changed versions of 1FICA and EFICA algorithm, denoted by “1FICA-biga” and
“EFICA-biga”, respectively. The modifications consist in that the used nonlinear
function g is equal to the score function of marginal pdfs of the signals to-be
estimated (i.e., noisy BPSK that have bimodal Gaussian distribution, therefore,
“biga” in the acronym). Adopted from the noiseless case [11], better performance
of the modified algorithms may be expected.

Figure 1 shows superior performance of the proposed algorithm 1FICA and of
its modified version. The same performance is achieved by the modified EFICA
for N ≤ 200, but it is lower due to the bias when N is higher. The unbiased
FastICA achieves the same accuracy for N ≥ 500 but is unstable when N is low.
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The average performance of an algorithm is often spoiled due to poorer sta-
bility, which occurs in high dimensions and low N cases, mainly. In this issue, we
highlight positive effect of the test of saddle points that is included in the pro-
posed 1FICA or in EFICA. For instance, the results achieved by the symmetric
FastICA would be significantly improved if the test was included in it.

The second example demonstrates conditions when the covariance of the noise
is not exactly known or varying. To this end, the noise level was changed ran-
domly from trial to trial. Five BPSK signals of the length N = 50000 were
mixed with a random matrix and disturbed by Gaussian noise with covariance
σ2I, where σ was randomly taken from interval [0, 1], and then blindly separated.
The mean value of the noise covariance matrix, i.e. I/3, was used as the input
parameter of the unbiased FastICA. Note that INSR and BER of this method
were computed for solutions given by WMMSE-UNB defined in (5).

The following table shows the average INSR and bit error rate (BER) that
were achieved in 1000 trials. The performance of the proposed 1FICA is al-
most the same like that of “oracle” MMSE separator, because, here, N is very
high, and the estimation error is caused by the bias only. The unbiased FastICA
significantly suffers from inaccurate information about the noise intensity.

algorithm average INSR [dB] BER [%]

1FICA -5,98 3,19
Symmetric FastICA -5,68 3,55
unbiased FastICA 6,79 5,25
EFICA -5,79 3,41
MMSE solution -5,98 3,19
inversion solution -4,76 4,71
JADE -5,68 3,55
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Fig. 1. Average BER of 10 separated BPSK signals when (a) SNR is fixed to 5dB
and (b) a fixed number of data samples is N = 200. Averages are taken from 1000
independent trials for each settings.
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5 Conclusions

This paper presents novel results from analysis of bias of several FastICA vari-
ants, whereby the one-unit FastICA was shown to be minimally biased from the
MMSE solution, i.e., it achieves the best interference-plus-noise rejection rate
for N → +∞.

By virtue of the theoretical results, a new variant of FastICA algorithm, called
1FICA, was derived to have the same global convergence as symmetric FastICA
with the test of saddle points, and a noise rejection like the one-unit FastICA.
Computer simulations show superior performance of the method when separating
binary (BPSK) signals. Unlike the unbiased FastICA, it does not require prior
knowledge of covariance of the noise to achieve the best MMSE separation.The
Matlab codes for 1FICA in real and in complex domains can be downloaded from
the first author’s homepage, http://itakura.kes.tul.cz/zbynek/downloads.htm.
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8. Koldovský, Z., Tichavský, P., Oja, E.: Efficient Variant of Algorithm FastICA for
Independent Component Analysis Attaining the Cramér-Rao Lower Bound. IEEE
Tr. Neural Networks 17, 1265–1277 (2006)
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Abstract. Independent Component Analysis (ICA) is a statistical method for ex-
pressing an observed set of random vectors as a linear combination of statistically
independent components. This paper tackles the task of comparing two ICA al-
gorithms, in terms of their efficiency for compact representation of market securi-
ties. A recently developed sequential blind signal extraction algorithm, Smooth-
ICA, is contrasted to a classical implementation of ICA, FastICA. SmoothICA
uses an additional 2nd order constraint aiming at identifying temporally smooth
components in the data set. This paper demonstrates the superiority of this novel
smooth component extraction algorithm in terms of global and local approxi-
mation capability, applied to a portfolio of 60 NASDAQ securities, by utilizing
common ordering algorithms for financial signals.

Keywords: Independent Component Analysis, SmoothICA, FastICA, market
securities, Finance.

1 Introduction

The goal of Independent Component Analysis is to find a linear representation of non-
Gaussian variables. Finding such a representation provides an insight to the underlying
structure of many signal processing problems. The ICA problem is equivalent to estab-
lishing the following generating model for the data:

x = As (1)

where x and s are n-dimensional random vectors, and components s are assumed mutu-
ally independent. A is a constant n × n full rank matrix, denoting the unknown mixing
matrix. Relevant to our investigation is the formulation that x consists of a set of obser-
vation vectors generated in the financial markets, which are driven by the hidden under-
lying sources s. The driving mechanisms s are mixed and contaminated among others
by elements, such as news and expectations related to results of companies and sectors,
domestic and foreign politics that affect exchange and interest rates, consumer confi-
dence, unexpected events and even the weather that affects the commodities’ prices.
The transformation:

s = Wx (2)

can be defined, with W the demixing matrix and A = W−1. This method allows at
most one Gaussian component, concentrating all the signal innovations which cannot

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 738–745, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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be accounted for by the original problem assumptions. In the case of signals originating
from the financial markets, this assumption can be considered valid for a great majority
of the cases, as purely gaussian financial signals are rarely generated.

The assumption of statistical independence of the source signals, can be assumed to
be valid in the scope of global economy and the hugely diverse micro- and macroeco-
nomic factors that affect financial processes. Unexplained noise, as well as the markets’
response to large trades can be also of significance to researchers and traders. How-
ever it is logical that the underlying driving sources’ independence assumption in the
financial markets can be debated, as every source might exert a small influence on all
others. A review of various contrast functions can be found in [1], as the sources s can
be separated using various interpretations of statistical independence.

In a recent paper, the authors in [2] proposed a sequential blind signal extraction al-
gorithm incorporating a smoothness constraint based on the original FastICA algorithm
[3]. Along with the negentropy cost function, the added temporal constraint seeks to
find smooth orthogonal projections in the mixtures vector x. In [4], this algorithm is
referred to as SmoothICA and contrasted to the performance of FastICA, in the search
for temporal structure in the underlying sources that give rise to stock evolutions. A
portfolio of 20 NASDAQ securities was analyzed and possible advantages of this novel
approach were highlighted over FastICA, as it produced components with smoother
temporal structure. A small degree of correlation was present among the components
extracted, introduced by the balancing of the 4th and 2nd order temporal constraint.

In Principal Component Analysis (PCA) the component ranking can be achieved
according to the eigenvalues of the source vectors. In ICA the same task is not straight-
forward, as the corresponding projection vector consists of normalized rows to unity
[3]. PCA is optimal for dimensionality reduction to a set of uncorrelated components,
in terms of variance. However, the idea here is the existence of independent underly-
ing sources, thus examining only algorithms that seek independence. Common ordering
algorithms for financial signals are used and their error performance are contrasted in
approximating a given portfolio using reduced set of components.

This text is organized in the following way. The next section contains an overview
of ICA ordering techniques for financial time series. Section 3 contains an overview of
the SmoothICA algorithm. Section 4 presents the ordering algorithms that are utilized
in the experimental Section 5. An ordering method for selecting a reduced number of
components for reconstruction of a whole portfolio of securities is considered (global
approximation), as well as two methods for ordering the components’ contributions to
each security signal and reconstructing accordingly. Section 6 concludes this study.

2 Overview of Independent Component Ordering in Finance

Several investigations of ICA with application to finance have been performed. The
most influential was done in [5], examining the portfolio returns of 28 Japanese stocks.
PCA and ICA performances were compared for such signals. From the operation of
ICA, the components produced have var(si) = 1. It is therefore assumed that any in-
formation about the contribution of each individual component, to a mixture’s variation
is engulfed in the mixing matrix A. The authors used the maximum norm L∞ to sort
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the rows of the A, and thus to determine which ICs have the maximum contribution to
a selected signal’s amplitude. Such a measure is applied in this research.

Cheung and Xu [6] presented a criterion for ordering source signals, according to
their contribution to the trend reservation of each observed signal. This algorithm uses
the MSE criterion and is named Testing-and-Acceptance (TnA), and when applied to
foreign exchange rates it produces superior results over the L∞ norm method. This is
the second method which will be used in this paper. The same authors have presented a
criterion to select the appropriate dimension for the source signal subset to approximate
a portfolio of foreign exchange rates in [8]. An algorithm using the Relative Hamming
Distance (RHD) instead, was proposed in [7].

A consequence of the increased interest in this type of component extraction and its
demonstrated superiority in terms of source separation over PCA, are applications uti-
lizing its capabilities in econometrics and finance; from prediction approaches [9] and
Factor Model estimation [10] to the computation of the risk of a portfolio of securities
[11] and the application of ICA in the context of state space models for interbank for-
eign exchange rates to obtain a better separation of the observation noise and the ”true”
price [12]. It is worth focusing on [11] where the contribution of an individual indepen-
dent component to the variance of the whole portfolio of securities is calculated. The
ICs are ordered according to that contribution, and this operates as a preprocessing step
for dimensionality reduction before switching back to the prices’ space. This is the third
method examined in the current paper, testing global approximation performance.

3 The SmoothICA Algorithm

After an initial prewhitening step, SmoothICA solves the following inequality con-
strained optimization problem:

max
w

J1(w) (3)

subject to J2(w) ≤ 0 (4)

J3(w) = 0 (5)

where w the projection operator of the white data z, J1(·) is the approximated negen-
tropy as proposed by Hyvarinen [3], J2(w) = E{(wT Δz)2} − ρE{(wT z)2} is the
second-order smoothness criterion, J3(·) is the unit-norm constraint, ρ ∈ [0, 1] defines
the degree of smoothness [4] and Δz is the whitened data differences matrix. Modi-
fying the inequality constraint to the equality constraint max(J2(w), 0) = 0, one can
find the desired optima using alternating unconstrained maximization of the Lagrangian
function J1(w)+λmax(J2(w), 0)+κJ3(w), where λ, κ are the Lagrange multipliers.
The following Newton-step provides an update:

w+ ← w −
[

∂2J

∂w2

]−1
∂J

∂w
(6)

where, in this case, the gradient vector and the Hessian matrix are estimated using the
following updates :

∂J

∂w
= μE{zG′(wT z)} + λ(E{(wT Δz)Δz − ρ(wT z)z})(sgn(J2) + 1)
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∂2J

∂w2
= μE{G′′(wT z)}I + λ(CΔz − ρI)(sgn(J2) + 1)

where u = wT z, G(u) = logcosh(u), μ = sgn(E{G(u)} − E{G(v)}) and v a
zero-mean, unit-norm Gaussian variable. After calculating the estimate for w, we cal-
culate estimates for λ via alternating optimization. The unit-norm constraint w+ ←
w+/‖w+‖ is then imposed as a projection of the w estimate on the unit hypersphere, to
ensure that rotation and not scale deformation is performed. The orthogonal deflation
procedure is used to extract subsequent smooth components [1].

4 Ordering Methods for Independent Component Analysis

In Finance dimensionality reduction is applied for various purposes. It is performed to
remove unwanted information and hence get a clearer picture of an underlying process,
allowing better modeling and understanding of its statistical nature. It it also applied to
represent a large set of assets by an appropriate subset that best defines it and reduce
memory requirements and computational burden. Unlike PCA, ICA is not constructed
to have an inherent ordering of the ICs. The methods below follow two notions; approx-
imation of a particular security using a few ICs (selected according to their contribution
to that particular security) and approximation of a whole portfolio of securities by se-
lecting an appropriate subset of independent components.

4.1 Global Approximation

In ICA the components produced are scaled to unit variance. This means that the addi-
tional information about individual contributions of the ICs to the observed signals lies
in the mixing matrix A [11]. The variance of the security i is σ2

i and the amount of total
variance Vj explained by each component sj can be derived from:

σ2
i =

n∑

i=1

a2
ij and Vj =

∑n
j=1 a2

ij∑n
i,j=1 a2

ij

(7)

Thus by ordering the ICs according to their individual contributions to the whole
portfolio, we can approximate efficiently by selecting a reduced number of components.

4.2 Local Approximation

The L∞ norm: The weighted ICs, given by (9), with the largest amplitudes are defined
to be the dominant ICs. This of course presents an ordering criterion, as these ICs
have the largest effect on the securities. The reconstruction of the ith security from
the estimates of the source signals is:

x̂i =
n∑

k=1

aiksk (8)
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where sk is the kth estimated IC and aik is the weight in the ith row, kth column of A.
The weighted ICs are therefore obtained from:

ŝik = aiksk k = 1..n (9)

The L∞ norm was used in [5] to order the weighted ICs for each particular stock, as
this reveals the magnitude contribution of each source signal to a particular stock.

The Testing-and-Acceptance algorithm: The TnA algorithm in [6] aims at creating a
list Li, whose elements are the component subscripts decided according to decreasing
contribution to a specified security signal. Initially, the IC which introduces the mini-
mum MSE error of reconstruction of the selected security if omitted, is selected from
the m components. The reconstructed security, while the ith component is omitted,
is {ŷj}m

j=1,j �=i. The subscript of this IC is put last in the list L. The next step of the
iteration starts with a subset of the ICs that do not include the previously selected com-
ponent. It finds the next component that, while omitted, causes minimum MSE error of
approximation, and puts it second to last in L, and so on. It is a suboptimal heuristic
method compared with the exhaustive search, however the TnA algorithm involves just
m(m+1)

2 − 1 compared to (m + 1)! steps.
The algorithm operates as follows:

1. Let the set of independent component subscripts Z = {j | 1 ≤ j ≤ m}, d = 0,
and the order list Li = ().

2. For each j ∈ Z and N being the signal’s length, let:

υij(t) =
∑

m �=j,m∈Z

ŝim(t) , 1 ≤ t ≤ N (10)

The β which will be stored as the dth element of Li and removed from the set Z ,
is selected according to:

β = argmin
j∈Z

MSE(xi, υij) (11)

dnew =dold + 1

Then let: Lnew
i =Lold

i + β

Znew =Zold − {β}

3. If Z �= {}, goto Step 2; otherwise stop. In order to make the list ordered according
to descending contribution, flip it.

5 Experiments

5.1 Description of the Data

The experiments are performed with daily closing prices of a portfolio of 60 US tech-
nology stocks1, for the period ranging from 01/01/2002 to 05/04/2005. The data is

1 The portfolio consists of the first 60 stocks (alphabetically) of the NASDAQ US Exchange.
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centered and whitened so that uncorrelated, unit variance signals are obtained. The
SmoothICA algorithm is performed on the centered and whitened data as outlined in [2]
and [4]. Extraction of smoother components than FastICA is achieved, although more
computational time is required. Flexibility is added with ρ starting at 0.05 and increas-
ing progressively in the case of non converging components. Coefficient ρ is initialized
at this level, as this corresponds to a long-period sinusoidal signal with low levels of
noise. Using a large portfolio (a high number of mixtures) the issue of low correlation
among the components [4] is avoided. The correlation matrix among the sources is now
a proper identity matrix. The FastICA algorithm is also applied, due to its convergence
efficiency, which gives the reference results for approximation fitness comparison for
the all the ranges of subset orders possible.

5.2 Global Approximation Comparison

After obtaining successful convergence for both algorithms, the percentages of vari-
ance contribution of each of their components are calculated, using the expression for
Vj in (7). The result is presented on Figure 1. While in the FastICA case there is an
almost equal parsing of the variance contributions among the ICs, a significant amount
of variance is concentrated in approximately the first 20 ICs that SmoothICA extracts.
Indicatively, 35 FastICA ICs contain 70% of the portfolio’s variance, while by using the
additional smoothness temporal constraint only 16 components are required and 90% of
the variance in just 21 contrasted to 49 components. This signifies the great advantage
in terms of dimensionality reduction and global approximation using a smaller subset of
signals. SmoothICA, as observed, produces components that have an inherent ordering
of the source signals and can provide a more efficient representation of a portfolio of
securities. It can be used among other tasks, as an alternative to dimensionality reduc-
tion for simpler modeling or extraction of seasonal and structural variations (currently
done during the pre-whitening step by PCA).
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Fig. 1. Global approximation performance. Percentage variance contributions of each source
signal.
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5.3 Local Approximation Comparison

The local approximation performances of both algorithms are compared using both
ordering methods presented above. Two error criteria produce different mean approxi-
mation errors across all securities on the portfolio. The error criteria calculated are the
Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE). The
former is a commonly used fitness measure penalizing large deviations from observed
security prices in a greater extent, while the latter being an easily understood intuitive
measure. On the x-axis lie the numbers of ICs used for approximation of each security
signal; from only 1 to all the ICs (60). The lists containing the ordered contributions
are calculated for both algorithms, using both L∞ norm measure and TnA heuristic
algorithm. The results on Figure 2 demonstrate a clearly superior local approximation
performance of SmoothICA. Equally consistent results are obtained for the Root Mean
Squared Error (RMSE) and the Mean Percentage Error (MPE) not presented here for
economy of space. The differences in the performances of L∞ and TnA seem marginal,
however the former is significantly less computationally demanding, thus preferred.
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(c) Mean MSE using TnA algorithm.
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Fig. 2. Local approximation performance. SmoothICA is shown to be superior in terms of more
efficient representation of each source signal.



Compact Representations of Market Securities 745

6 Conclusions
Through the addition of the 2nd order temporal constraint, which seeks to identify tem-
porally smooth underlying sources, the SmoothICA algorithm is more efficient than the
FastICA in approximating a portfolio of securities from an appropriate subset of the
estimated sources (section 5.2). This novel algorithm estimates smoother underlying
sources that have an inherent ordering, as a high percentage of the portfolio’s variance
is contained in the first few components, compared to FastICA which has a significantly
higher variance spreading among its ICs. To contain 70% of the portfolio’s variance in
just 16 components, while the classical FastICA requires 35, and 90% of the variance
in just 21 contrasted to 49 components, is a significant improvement in terms of global
approximation. In the local approximation part of this paper (section 5.3), each security
in the portfolio is reconstructed by appropriate subsets of the source signals of dimen-
sions 1 to 60. For each dimension selected the mean MSE and MAPE approximation
error across the portfolio is plotted against the subset dimension. For both component
ordering methods examined, the errors calculated show consistent superiority of the
SmoothICA algorithm for efficient compact representation of a portfolio of securities.
Furthermore, the gradients in the plots of Figure 2 support the global case conclusions.
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Abstract. In this paper, we propose a Bayesian estimation approach to extend
independent subspace analysis (ISA) for an overcomplete representation without
imposing the orthogonal constraint. Our method is based on a synthesis of ISA [1]
and overcomplete independent component analysis [2] developed by Hyvärinen
et al. By introducing the variables of dot products (between basis vectors and
whitened observed data vectors), we investigate the energy correlations of dot
products in each subspace. Based on the prior probability of quasi-orthogonal ba-
sis vectors, the MAP (maximum a posteriori) estimation method is used for learn-
ing overcomplete independent feature subspaces. A gradient ascent algorithm is
derived to maximize the posterior probability of the mixing matrix. Simulation
results on natural images demonstrate that the proposed model can yield over-
complete independent feature subspaces and the emergence of phase- and limited
shift-invariant features—the principal properties of visual complex cells.

1 Introduction

Recent linear implementations of efficient coding hypothesis [3,4], such as indepen-
dent component analysis (ICA) [5] and sparse coding [6], have provided functional
explanations for the early visual system, especially neurons in the primary visual cor-
tex (V1). Nevertheless, there are many complex nonlinear statistical structures in the
natural signals, which are not able to be extracted by a linear model. For instance,
Schwartz et al. have observed that, for natural images, there are significant statistical
dependencies among the variances of filter outputs [7]. Several algorithms have been
proposed to extend the linear ICA model to capture such residual nonlinear depen-
dencies [1,8,7,9]. Hyvärinen et al. developed the independent subspace analysis (ISA)
method, which generalizes the assumption of component independence to subspace
independence [1]. However, this method is limited to the complete case. The orthogo-
nality requirement of the mixing matrix restricts the generalization to the overcomplete
representation. In the overcomplete representation, the dimension of the feature vector
is larger than the dimension of the input. Overcomplete representations present several
potential advantages. High-dimensional representations are more flexible in capturing
inherent structures in signals. Overcomplete representations generally provide more ef-
ficient representations than the complete case [10]. Furthermore, studies of human vi-
sual cortex have shown interesting implications of overcomplete representations in the
visual system [11].

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 746–753, 2007.
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In this paper, we combine ISA [1] and overcomplete independent component analy-
sis [2] to extend ISA for overcomplete representations. We apply a Bayesian inference
to estimating overcomplete independent feature subspaces of natural images. In order
to derive the prior probability of the mixing matrix, the quasi-orthogonality of the dot
product between two basis vectors is investigated. Moreover, we assume that the prob-
ability density of the dot products (between basis vectors and whitened observed data
vectors) in one subspace depends only on the norms of the projections of the data onto
the subspace. Then, a learning rule based on gradient ascent algorithm is derived to
maximize the posterior probability. Simulation results on natural image data are pro-
vided to demonstrate the performance of overcomplete representations for independent
subspace analysis. Furthermore, our model can lead to the emergence of phase- and
limited shift-invariant features—principal properties of visual complex cells as well.

This paper is organized as follows: In section 2, we propose a Bayesian approach to
estimate the overcomplete independent feature subspaces. The learning rule is given as
well. In section 3, some experimental results on natural images are presented. Finally,
some discussions on representation performance of the proposed method are given in
section 4.

2 Model

2.1 Bayesian Inference

In this section, we apply Bayesian MAP (maximum a posteriori) approach to estimating
overcomplete independent feature subspaces. The basic ICA model can be expressed as:

x = As =
N∑

i=1

aisi, (1)

where x = (x1, x2, ..., xM )T is a vector of observed data, s = (s1, s2, ..., sN )T is a
vector of components, and A is the mixing matrix. ai is ith the column of A, and it
is often called basis function or basis vector. In our model, the observed data vector
x is whitened to vector data z, just as the preprocessing step in most ICA methods.
Furthermore, instead of considering the independent components, as in most ICA, we
consider the dot product between the ith basis vector and the whitened data vector. For
simplicity, it is assumed that the norms of the basis vectors are set to be unity and that
the variances of the sources can differ from unity. Then, the dot product is

yi = aT
i z = aT

i As = si +
∑

j �=i

aT
i ajsj , (2)

where si is the ith independent component. Given the overcomplete representations of
our model (there is a large number of components in a high-dimensional space), the
second term approximately follows Gaussian distribution. Moreover there is no com-
ponent whose variance is considerably larger than others. Therefore the marginal distri-
butions of dot products should be maximally sparse (super-Gaussian). And maximizing
the non-Gaussianities of these dot products is sufficient to provide an approximation
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of basis vectors. Thus, we we can replace the component si by the dot product yi

to estimate independent feature subspaces. Considering the dot product vector y =
(y1, ..., yN )T = AT z, the probability for z given A can be approximated by

p(z(t)|A) = p(y) ≈ C

N∏

i=1

pyi(yi) = C

N∏

i=1

pyi(a
T
i z(t)), (3)

where C is a constant. Obviously, the accuracy of the prior probability pyi is impor-
tant, especially for overcomplete representations [10]. Several choices of prior on the
basis coefficients P (s) have been applied in classical linear models respectively. Bell
and Sejnowski utilize the prior P (si) ∝ sech(si), which is corresponding to the hyper-
bolic tangent nonlinearity [5]. Olshausen and Field use a generalized Cauchy prior [6].
Whereas van Hateren and van der Schaaf simply explore non-Gaussianity [12]. Nev-
ertheless, all these choices of prior is derived under a single-layer network of linear
model. Surely, it is desirable to capture nonlinear dependencies by a second or third
stage in a hierarchical fashion.

In our model, we apply the prior probability pyi proposed in the ISA algorithm, in
which the basis function coefficients in each subspace have the energy correlations [1].
A diagram of feature subspaces is given in Figure 1.

Fig. 1. Illustration of feature subspaces. The dot products between basis vectors and whitened
observed data vectors are taken. Then, they are squared respectively and summed inside the same
feature subspace. Square roots are taken for normalization.

The dot product (neuronal response) yi is assumed to be divided into n-tuples, so
that yi inside a given n-tuple may be dependent on each other, but different n-tuples are
mutually independent. The subspaces model introduces a certain dependency structure
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for different components. Let Ωj , j = 1, ..., J denote the set of independent feature
subspaces, where J is the number of subspaces. The probability distributions for n-
tuples of yi are spherically symmetric. In other words, the probability density pyj (.) of
n-tuple can be expressed as a function of the sum of the squares of yi, i ∈ Ωj only.
And, for simplicity, we assume pyj (.) are identical for all subspaces. Therefore, the
probability density inside the jth n-tuple of yi can be calculated:

pyj(yj) = exp
(
G

( ∑

i∈Ωj

y2
i

))
, (4)

where the function G(y) should be convex for non-negative y. For example, one could
use the form of G(.) as: G(y) = −α1

√
y + β1, where α1 is the scaling constant

and β1 is the normalization constant. These constants are unimportant for the learning
process.

Overcomplete representations mean that there is a large number of basis vectors. In
other words, the basis vectors are randomly distributed in a high-dimensional space. In
order to approximate the prior probability of basis vectors, we employ a result presented
by Hecht-Nielsen [13]: the number of almost orthogonal directions is much larger than
that of orthorgonal directions. This property is called quasi-orthogonality [2]. There-
fore, in a high-dimensional space even vectors having random directions might be suf-
ficiently close to orthogonality. Thus, the prior probability of the mixing matrix A can
be obtained in terms of the quasi-orthogonality as follows:

p(A) = cm

∏

i<j

(
1 − (aT

i aj)2
)m−3

2 , (5)

where cm is a constant. The detailed derivation of Equation (5) can be obtained
in [2].

Bayes’ Theorem allows one to describe the probability of the model in terms of the
likelihood of the data and the prior probability of the model. Thus, given observation z,
the posterior probability p(A|z) can be derived as follows:

p(A|z) =
p(z|A)p(A)

p(z)
, (6)

where p(z) is constant with respect to A.
It is easier to estimate the mixing matrix that maximize the logarithm of posterior

probability p(A|z). Thus, taking the logarithm of Equation (6) and combining Equation
(5) with Equation (3) and (4), we obtain the approximation of log-probability of the
posterior:

log p(A|z(t), t = 1, .., T ) ∝
T∑

t=1

J∑

j=1

G
( ∑

i∈Ωj

y2
i

)
+ αT

∑

i<j

log(1 − (aT
i aj)2) + C.(7)

where α is a constant related to cm.
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2.2 Learning Rule

Gradient ascent maximization of posterior probability over basis vector ak yields the
following learning rule:

Δak ∝ η

( T∑

t=1

z(t)
(
aT

k z(t)
)
g
( ∑

i∈Ωj(k)

(aT
i z(t))2

)
+ αT

∑

i<j

−2aT
i aj

1 − (aT
i aj)2

bk

)
, (8)

where η is the learning rate, and Ωj(k) is the subspace to which ak belongs. bk is the
kth column vector of matrix B = [0, ..., aj , ..., ai, ...0], aj is the ith column vector, and
ai is the jth column vector. The function g is the derivative of G. After each iteration
in equation (8), the norm of the basis vector ak needs to be set to unity. This is different
from ordinary ISA, where the mixing matrix is orthonormalized.

3 Simulations

We tested the algorithm for overcomplete independent subspace analysis on natural im-
age data. The training set of images consists of 50,000 patches of size 16 × 16 that
were randomly extracted from thirteen 256 × 512 pixel gray images. We use the natu-
ral images in [1], which is available on http://www.cis.hut.fi/projects/ica/data/images/.
The mean gray-scale value of data (i.e., the DC component) was removed. The dimen-
sion of data was reduced by principle component analysis, projecting onto the leading
160 eigenvectors of the data covariance matrix. Then, the data vectors were whitened
as in most ICA methods. The log posterior probability was maximized by an ordinary
gradient method to estimate A, using the averaged version of the learning rule in equa-
tion (8). Note that there was no constraint of orthogonality of basis vectors during each

(a) (b)

Fig. 2. Learned bases from natural images. (a) complete case (40 subspaces and 4 basis vectors
in each subspace) (b) 2× overcomplete case (40 subspaces and 8 basis vectors in each subspace).
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iteration. Only the norms of basis vectors were set to unity. The random initial value
was set for mixing matrix.

The effects of varying the level of overcompleteness and the dimension of subspaces
were investigated in depth. The basis was set to be complete and 2× overcomplete.
The dimension of components is 160 and 320, respectively. Figure 2 shows the esti-
mated basis vectors, which is the complete case of four-dimensional subspaces and 2×
overcomplete case of eight-dimensional subspaces.

To analyze the tiling properties of the estimated basis vectors, we fitted each basis
vector with a Gabor function by minimizing the squared error between the estimated ba-
sis vectors and the model Gabor. Figure 3 shows the distribution of parameters obtained
by fitting Gabor functions to complete and 2× overcomplete basis vectors. We can see
that, with the increasing of the level of overcompleteness, the scattering points in the
plot of location, spatial frequency and orientation become denser and more uniform.
And the distribution of phase is much closer to uniform.
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Fig. 3. The distributions of parameters derived by fitting Gabor functions with completeness and
2× overcompleteness. (a) Center location of Gabor fitted within a patch. (b) Joint distribution
of orientation and spatial frequency (plotted in the upper-half plane) (c) Histogram of phase of
Gabor fitted (mapped to range 0 ◦˜ 90 ◦).

Furthermore, we compare the responses of all the feature subspace and the corre-
sponding linear filters for different stimulus cases. First, an optimal stimulus for the
feature subspace was computed in the set of Gabor filters. The tested stimuli for the
subspace was calculated in the set of Gabor functions. In each time, only one stim-
uli parameter was changed to see how the response changes. The tested parameters
were location (shift), orientation, and phase. Figure 4 shows the median responses of
the whole population of 40 subspace and 320 linear filters corresponding to 2× over-
complete case. The top row shows the absolute responses of the linear filters, and the



752 L. Ma and L. Zhang

L
in

ea
r

fil
te

rs

−50 0 50
0

0.2

0.4

0.6

0.8

1

Phase Shift (Degrees)
N

or
m

al
iz

ed
 R

es
po

ns
e

−5 0 5
0

0.2

0.4

0.6

0.8

1

Location Shift (Pixels)
−50 0 50

0

0.2

0.4

0.6

0.8

1

Orientation Shift (Degrees)

Su
bs

pa
ce

s

−50 0 50
0

0.2

0.4

0.6

0.8

1

Phase Shift (Degrees)

N
or

m
al

iz
ed

 R
es

po
ns

e

−5 0 5
0

0.2

0.4

0.6

0.8

1

Location Shift (Pixels)
−50 0 50

0

0.2

0.4

0.6

0.8

1

Orientation Shift (Degrees)

Fig. 4. Statistical curves for whole population and linear filers while shifting different Gabor
parameters: orientation, frequency, and phase with 2× overcompleteness. The solid line gives the
median response in the population of all filters or subspaces. The dashed lines give the 90% and
10% percentiles of the responses.

bottom row shows the results of the feature subspaces. We can see that the responses of
subspaces are considerably invariant to phase, and somewhat invariant to position. The
sharpness of tuning to orientation and spatial frequency remains roughly unchanged.
Thus it can be observed that invariance with respect to phases is a strong property of
the feature subspaces. It is closely related to the response properties of complex cells in
V1, which are based on location, frequency, and orientation and independent of phase.
In contrast, the responses of the linear filters show no invariance with respect to any of
these parameters.

4 Discussions and Conclusions

We have demonstrated in this paper how the Bayesian approach can be employed for
learning overcomplete representations by utilizing the quasi-orthogonal property of
basis vectors in a high-dimensional space, whereas ordinary ISA can only provide com-
plete representations of basis functions. In addition, we examine the dot products (be-
tween basis vectors and whitened observed data vectors) instead of the basis function
coefficients. Furthermore, our model need not impose the constraint of orthogonality
on basis vectors. Only the norms of basis vectors were set to unity during the learning
process. In contrast, basis vectors have to be orthogonal in ordinary ISA. Compared
with the methods for estimating overcomplete bases by using maximum likelihood es-
timation, our method is as computationally effective as basic ICA estimation.

Another issue addressed in this paper is the relevance of the learned codes to neu-
robiological plausibilities. Both complete and overcomplete basis functions adapted to
natural images suggest functional similarities to neurons of V1 receptive fields. Simula-
tion results on natural image data demonstrate that our model can lead to the emergence
of phase- and shift-invariant features—principal properties of visual complex cells as
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well. This method shows promising prospects in extended applications of our method
to higher levels of cortical representations.

An important concern in our model is the accuracy of the coefficient prior proba-
bility. Our overcomplete ISA algorithm can capture the underlying statistical structure
of images, i.e., the energy correlations of coefficients in each subspace. However, a
Laplacian prior probability as in overcomplete ICA algorithms can not capture well
higher-order statistics, such as dependencies among the variances of filter outputs. This
method finds compact descriptions of overcomplete representation and has the potential
in a wide varieties of applications, such as image processing and pattern recognition.
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Abstract. In this paper, we develop an ICA-based obstacle detection
and 3D-environment understanding for a mobile robot navigation. From
a camera mounted on a mobile robot, the robot observes a sequence of
images. This sequence of images allows the robot to compute optical flow,
which is the apparent motion of each point on the image. We apply ICA
to the optical flow field computed from images captured by the camera
mounted on the robot. ICA-based separation of optical flow derives a
obstacle region and a ground plane region in a space. For these applica-
tions, we also introduce an ordering criterion of independent components
using its variances.

1 Introduction

Independent Component Analysis(ICA) [6] extracts statistically independent
features from signals and still images. In this paper, we apply independent com-
ponent analysis to a dynamic image sequence for autonomous robot navigation,
that is, ICA is applied to optical flow [1] computed from a image sequence. The
optical flow [1] is the apparent motion of successive images and is independent
of the features in images, unlike edges or corner points in images. Furthermore,
optical flow is considered to be fundamental information for navigation and ob-
stacle avoidance in the context of biological data processing [11]. Therefore, the
use of optical flow is valid for the robot navigation using the vision system.

In neuroscience, it is known that the medial superior temporal (MST) area
performs visual motion processing. For motion cognition at the MST area in
the brain[7,12], it is shown that independent components of optical flow are
used. Furthermore, since the optical flow field on an image can be represented
as a linear combination of independent components of optical flow, we can use
ICA for the detection of the dominant plane by separating obstacles and the
dominant part in an image. Our application of ICA separates the planes from
image sequences.

Statistical analysis of optical flow are addressed in [3,5] for the robust motion
understanding for optical flow. Our ICA algorithm separates optical flow on the
dominant plane and the obstacle areas in optical flow observed through an un-
calibrated camera mounted on a mobile robot. First, an optical flow is computed

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 754–761, 2007.
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from a pair of successive images observed through a camera mounted on a mobile
robot. Optical flow is used for the estimation of homography on the dominant
plane. Homography can be approximately calculated by affine transform. Then,
we estimate optical flow on the dominant plane using the obtained homography.
The details of the algorithm are described in reference [9]. Next, optical flow
computed from images and the estimated optical flow on the dominant plane
are used as input signals in ICA. Since two signals are input in ICA, two signals
are output.

For the concurrent detection of a local and global motion, we use independent
components of optical flow fields on pyramidal layers. It is known that animals,
insects, and human beings use the independent components of optical flow fields
for visual behavior [7,11]. In human object recognition, the hierarchical model
is proposed [4]. Furthermore, for the computation of optical flow, the pyramid
transform of an image sequence is used for the analysis of a global motion and
local motion [2,8]. The pyramid transform generates multiple-resolution images
as layered images. These layered images are used for computation of optical flow
in its original images from the image in the lowest layer. This idea based on the
assertion that a global motion is described as the collection of a local motion. We
introduce the application of hierarchical image expression for motion analysis,
that is, we develop an algorithm for the detection layered optical flows from a
multi resolution image sequence.

2 ICA of Optical Flow Field

In this section, we introduce an algorithm for applying ICA to optical flow fields.
The optical flow is apparent motion of each points computed from successive

two images [1]. Setting I(x, y, t) to be time-varying image, the optical flow is
computed by solving the equation

Ixẋ + Iy ẏ + It = 0, (1)

where (ẋ, ẏ)� is the optical flow vector. To solve this singular equation, we adopt
the Lucas and Kanade method with the pyramid transform [1,2,9,10].

Similar to ICA separating mixture signals into independent components, the
MST area in the brain separates the motion fields from visual perception into
independent components [7,12]. As previously introduced, we accept the assump-
tion that optical flow fields observed by the moving camera are linear combina-
tions of optical flow fields of the dominant plane and the obstacles. That is,
setting u̇dominant and u̇obstacle to be optical flow fields of the dominant plane and
the obstacles, respectively, the observed optical flow field u̇ is approximately
expressed by a linear combination of u̇dominant and u̇obstacle as

u̇ = a1u̇dominant + a2u̇obstacle, (2)

where a1 and a2 are the mixture coefficients, as shown in Fig. 1. This assump-
tion is numerically and geometrically acceptable if motion displacement is small
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Camera motion

dominant plane obstacles

= +a1 a2

Fig. 1. Linear combination of optical flow field in the scene. Example of camera
displacement and these optical flow fields. a1 and a2 are mixture coefficients.
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compared with the size of obstacles, as shown in a numerical experiment. There-
fore, ICA is suitable for the separation of optical flow into the independent flow
components. For each image in a sequence, we consider that optical flow vectors
in the dominant plane correspond to independent components.

For ICA of optical flow fields, we align the matrix of two-dimensional vectors
to a one-dimensional array as

u̇ → ((u̇, v̇)1 · · · (u̇, v̇)k · · · (u̇, v̇)n)� → (u̇1 · · · u̇n v̇1 · · · v̇n)� = vecu̇. (3)

Since the relation ẇ = αu̇ + βv̇ leads to the relation vecẇ = αvecu̇ + βvecv̇.
These steps are invertible. Therefore, it is possible to extract regions corre-
sponding to u̇ and v̇ if the observation ẇ is decomposed into two independent
components u̇ and v̇. We use this vector, derived from a vector-valued image,
as input to ICA.

3 ICA-Based Obstacle Detection

In this section, we present algorithms for obstacle detection using ICA and op-
tical flow. The first algorithm is ground-plane detection for the mobile robot
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navigation, The details of the algorithm is described in [10]. The second algo-
rithm detects multiple planes by extension of the first one. The third algorithm
is estimate multi-resolution obstacle using multi-layer optical flow fields.

3.1 Dominant-Plane Detection by ICA

For the detection of the dominant plane, ICA requires at least two input signals
for separation into two independent components. Then, we use optical flow field
u̇ = {(u̇, v̇)�ij}

h,w
i=1,j=1 and planar flow field û = {(û, v̂)�ij}

h,w
i=1,j=1 as the input

vectors of ICA, where w and h are the width and the height of an image. Since
planar flow is the motion of the dominant plane relative to the robot motion,
the use of planar flow is suitable for separation into the dominant plane and
obstacles.

Setting vα and vβ to be the output vectors, vα and vβ have ambiguities in those
order and length of each component. We are required to determine whether com-
ponents have optical flow of the dominant plane or of obstacle areas. We solve this
problem using the difference between the variances of the norms of vα and vβ .

Setting lα,β = {lij}h,w
i=1,j=1 to be the norm of vα,β = {(u̇, v̇)ij}h,w

i=1,j=1, that is,
lij = |(u̇, v̇)ij | and the variance σ2 is computed as

σ2 =
1

hw

h,w∑

i=1,j=1

(lij − l̄)2, where l̄ =
1

hw

h,w∑

i=1,j=1

lij . (4)

The motions of the dominant plane and obstacles in the images are different,
and the dominant-plane motion is smooth on the images compared with obstacle
motion, as shown in Fig. 2. Consequently, the output signal of obstacle motion
has larger variance than the output signal of dominant-plane motion. Therefore,
if σ2

α > σ2
β , we use the norm lα of output flow field vα for dominant-plane

detection; else we use the norm lβ of output flow field vβ.
Since the planar flow field is subtracted from the optical flow field including

obstacle motion, l is constant on the dominant plane. However, the length of
l is ambiguous. Then, we use the median value of l for the detection of the
dominant plane. Since the dominant plane occupies the largest domain in the
image, we compute the distance between l and the median of l, as shown in
Fig. 2(b). The area which has the median value of the component is detected as
the dominant plane. Setting m to be the median value of the elements in l, the
distance d = {dij}h,w

i=1,j=1 is

dij = |lij − m|. (5)

We detect the area in which dij ≈ 0 as the dominant plane.
The procedure for dominant-plane detection by ICA is summarized as follows.

1. Input optical flow field u̇ and planar flow field û to ICA, and output the
optical flow fields vα and vβ .

2. Compute the norms lα and β from vα and vβ , respectively.
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Camera
Camera motion

Ground plane with obstacles
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Separation by ICA

Dominant-plane detection
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Fig. 3. Procedure for dominant-plane detection
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Fig. 4. Input optical flow fields to ICA for translational motion in an environment
with one obstacle. Left to right: captured image, optical flow field u̇, planar flow field
û, detected dominant plane, and sorted norm l of output vα. Variances of vα and vβ

are σ2
α = 1.60 and σ2

β = 0.51, respectively. The median value m = 0.09. The area where
norm l is large corresponds to an obstacle, and the area where lij ≈ m corresponds to
the dominant plane.

3. Compute the variances σ2
α and σ2

beta from lα and lβ , respectively.
4. If σ2

α > σ2
β , then l = lα, else l = lβ .

5. Compute the distance d between l and the median of l.
6. Detect the area in which dij ≈ 0 as the dominant plane.

Figure 3 shows the procedure of dominant-plane detection from the image se-
quence using ICA. Figures 4 and 5 are experimental results on detecting the
dominant plane.

3.2 Iterative Multiple Plane Segmentation

Using the dominant-plane-detection algorithm iteratively, we develop an algo-
rithm for multiple-plane segmentation in an image. After removing the region
corresponding to the dominant plane from an image, we can extract the sec-
ond dominant planar region from the image. Then, it is possible to extract the
the third dominant plane by removing the second dominant planar area. This
process is expressed as

Dk =
{

A(R \ Dk−1), k ≥ 2,
A(R), k = 1,

(6)

where A, R, Dk stand for the dominant-plane-extraction algorithm, the region of
interest observed by a camera, and the k-th dominant planar area, respectively.
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(a)m = 0.60 (b)m = 0.68 (c)m = 0.45 (d)m = 0.60

Fig. 5. Results obtained using optical flows with error. (a) Translational motion in
an environment with one obstacle. (b) Rotational motion in an environment with one
obstacle. (c) Translational motion in an environment with two obstacles. (d) Rotational
motion in an environment with two obstacles. Graphs in bottom row are sorted norm
l of output vα.

Fig. 6. Top row: captured image, dominant plane d at first, second, and third steps.
Bottom row: optical flow, planar flow fields at first, second, and third steps

The algorithm is stopped after iterated to a pre-determined iteration time or the
size of k-th dominant plane is smaller th pre-determined size.

Setting R to be the root of the tree, this process derives a binary tree such
that

R〈D1, R \ D1〈D2, R2 \ D2〈· · · , 〉〉 (7)

Assuming that D1 is the ground plane on which the robot moves, Dk for k ≥ 2 is
the planar areas on the obstacles. Therefore, this tree expresses the hierarchical
structure of planar areas on the obstacles. We call this tree the binary tree of
planes. Using this tree constructed by the dominant-plane detection algorithm,
we obtain geometrical properties of planes in a scene. For example, even if an
object exists in a scene and it lies on Dk k ≥ 2, the robot can navigate ignoring
this object, using the tree of planes. Figures 6 and 7 are experimental results on
detecting multiple planes.
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Fig. 7. Image and results estimated from Marbled-Block. The white area is the first
dominant plane. The light-gray and dark-gray areas are second and third dominant
plane.

3.3 Obstacle Detection Using ICA on Pyramid Layers

Our algorithm is processed at layers l = 0, · · · , L in the pyramid transform.
Using the optical flow field ul(x, y, t) at layer l, we detect obstacles in a image
sequence.

Figure 8 shows that, setting Ol to be the obstacle region on the l-th layer, the
hierarchical expression of obstacles satisfies the relations

O0 ⊂ O1 ⊂ · · · ⊂ OL and DL ⊂ DL−1 ⊂ · · · ⊂ D0 (8)

for the dominant plane DK = R0
k. These relations imply that a pair Cl =

(Dl, Ol) shows global and local configuration in the work space for a larger and a

Fig. 8. Pyramidal representation of the Marbled-Block images in a simulated envi-
ronment. Computed layer optical flow fields from the Marbled-Block images. Detected
obstacle at each layer.
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smaller l, respectively. This hierarchical relation is automatically detected from a
pyramid-based hierarchical expression of images for optical flow computation.
The system uses selectively Cl for navigation and spatial perception.

4 Conclusion

Our algorithm is an application of ICA for vector-valued images. This is an
extension of ICA-based image analysis to vector-valued images. We proposed an
ordering technique for independent components of vector-valued images. The or-
dering allows us to separate obstacles and ground planes from a sequence of im-
ages captured by a camera mounted on an autonomous robot. For each image in a
sequence, it is shown that the dominant plane corresponds to an independent com-
ponent. This relationship provides a statistical definition of the dominant plane.
Combination of our ICA based image analysis and multi-resolution image repre-
sentation provides a method which allows to detect hierarchical configuration of
obstacles. This hierarchical processing is achieved concurrently for the simultane-
ous detection of local and global obstacle-configuration in the work space.
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Abstract. For the extraction of sources with unsupervised learning
techniques invariance under certain transformations, such as shifts, ro-
tations or scaling, is often a desirable property. A straight-forward ap-
proach for accomplishing this goal is to include these transformations and
its parameters into the mixing model. For the case of one-dimensional sig-
nals in presence of shifts this problem has been termed anechoic demix-
ing, and several algorithms for the analysis of time series have been
proposed. Here, we generalize this approach for sources depending on
multi-dimensional arguments and apply it for learning of translation-
invariant features from higher-dimensional data, such as images. A new
algorithm for the solution of such high-dimensional anechoic demix-
ing problems based on the Wigner-Ville distribution is presented. It
solves the multi-dimensional problem by projection onto multiple one-
dimensional problems. The feasibility of this algorithm is demonstrated
by learning independent features from sets of real images.

1 Introduction

Many common approaches in blind source separation (BSS) are based on linear
instantaneous mixture models, where the output signals result from the linear
superposition of source signals, time-point by time-point. In spite of its great
success in feature extraction (see [3] for review) this simple model usually fails
when features appear under transformations, such as scaling, rotation or shifts.
Invariance against such transformations can be achieved by embedding them
into the mixture model, requiring the estimation of additional parameters. This
approach has been applied to acoustic data for modeling the transmission delays
of different microphones, applying a generative model of the form:

xi(t) =
d∑

j=1

αij · sj(t − τij) i = 1, . . . , m (1)

The time functions xi(t) signify the original signals, sj(t) the source signals,
and αij the mixing weights. The constants τij are the temporal shifts (delays)
that need to be estimated. Since this model allows for delays, but not for re-
verberations of the sounds, it has been termed anechoic mixing model. Most
existing algorithms have treated this problem for the under-determined case,

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 762–769, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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where sources outnumber the sensors (i.e. m ≤ d ) [6,14,15,16,17]. Much fewer
algorithms exist for the over-determined case m ≥ d (cf. [8]).

The invariance of the estimated model under translation (time shifts) of
the source signals is obvious from equation (1). This property remains valid
if the time arguments are replaced by vectors, resulting in multivariate func-
tions xi(t) = xi(t1, . . . , tn). In this case the scalar delays have to be replaced
by displacement vectors τij = −→τij =

(
τij1 , · · · , τijn

)
∈ Rn. Such a multivari-

ate model is suitable for feature learning that accounts for shift-invariance in
higher-dimensional spaces.

In this paper, we present an algorithm for the solution of such generalized
anechoic mixing problems for multivariate signals. The algorithm is derived by
applying methods from stochastic time-frequency analysis to the generalized
mixture model. These techniques allow the projection of the multi-dimensional
mixture equation onto multiple one-dimensional problems. For their solution we
introduce a modification of non-negative matrix factorization(NMF) [4,9] that
extends this method for convolutive models. The efficiency of the developed
algorithm is demonstrated by shift-invariant learning of features from sets of
gray-level images.

2 Derivation of the Algorithm

Notation: Throughout the paper the following notations will be used:

– ek ∈ Rn denotes the kth canonical unit vector
– E denotes the expectation value
– F = F1 denotes the (multidimensional) Fourier transform, F−1 its inverse
– Tτ , Mf denote the time and frequency shift operators, e.g.

(TτMfx)(t) := e−2π�f(t−τ)x(t − τ)
– Rξ denotes the multidimensional Radon transform; with h being a square-

integrable multivariate function and ‖ξ‖ = 1 it is defined [5] by:

Rξh(u) :=

∫
h(t)δ(ξ · t − u)dt

– Fa denotes the (multidimensional) fractional Fourier transform. Fa is the
ath power of the classical Fourier operator [13]. Thus Fa is the operator
with the same eigenfunctions as the Fourier transform (Hermite-Guassians
ψn) but with the eigenvalues (e−�nπ/2)a instead of e−�nπ/2 .

– The notations F and Fa will also be used for the discrete versions of the
fractional Fourier operators.

The algorithm for the solution of the multivariate anechoic mixture problem is
based on the Wigner-Ville Spectrum (WVS), a time-frequency integral trans-
form with particularly suitable properties for the solution of anechoic mixture
problems [8]. In the following, we introduce first this transform, apply it to
the mixture model, and derive the algorithm for a solution by projection onto
one-dimensional problems. An efficient algorithm for the solution of the one-
dimensional problems is presented in section 2.3.
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2.1 Wigner Ville Spectrum

Stochastic time-frequency distributions provide powerful mathematical tools for
the analysis of non-stationary random processes. The most prominent quadratic
distribution is the Wigner-Ville spectrum (WVS) defined as [11]:

Wx(t, ω) =

∫

τ

E
{

x
(
t +

τ

2

)
x∗

(
t − τ

2

)}
e−2π�ωτ dτ (2)

where x(t) is a random process and x∗(t) = x̄(t) the conjugated process. The
WVS can loosely be interpreted as a time-frequency distribution of the mean
energy of x(t). This definition implies many useful properties. The following
derivations rely in particular on two properties. The first is the time-frequency
shift covariance given by:

W(Tτ Mf x)(t, ω) = Wx(t − τ, ω − f)

The second property is a relationship between the Radon transform of the WVS
and the fractal Fourier transform of the original signal. In the case of a one-
dimensional signal h this relationship can be expressed as (cf. [13]):

|Fah(t)|2 = Raπ/2

(
Wx(t, ω)

)

Both properties can be easily generalized for the multidimensional case [2,12].

2.2 Application of the WVS to the Multivariate Mixture Model

Introducing the vectorial notation τij = −→τij =
(
τij1 , . . . , τijn

)
∈ R

n and with
t =

(
t1, . . . , tn

)
∈ Rn the multivariate anechoic mixing model can be written

compactly:

xi(t) =
d∑

j=1

αij · sj(t − τij) i = 1, · · · , m (3)

With the the assumption that the multivariate source signals are independent
and have zero means, i.e. E{si} = 0 and E{sisj} = 0 ∀i �= j, the mixture model
(3) can be mapped into the time-frequency domain by application of the WVS:

Wxi(t, ω) =

∫
E

{ d∑

j,k=1

αijαiksj(t +
τ

2
− τij)s

∗
k(t − τ

2
− τik)

}
e−2π�ωτ dτ

=
d∑

j=1

|α|2ijWsj (t − τij , ω) i = 1, . . . , m (4)

A direct evaluation of this equation is possible only in the univariate case. Even
for two-dimensional time arguments the computational costs (in time and mem-
ory) grow prohibitively. However, equation (4) is redundant and can be solved
by computing a set of projections onto lower dimensional spaces that specify the
same information as the original problem (3). Projections by integrating over un-
bounded domains with respect to the vectorial time parameter t are particularly
useful as they eliminate the dependence of the unknown shifts τij .
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If a sufficient number of integral projections is computed the inversion theorem
for the Radon transform guarantees that the solution of problem (4), and thus of
equation (3), can be uniquely recovered. Let ξ ∈ Rn be an arbitrary unit vector,
then the radon transform of equation (4) can be computed explicitly:

R π
2 ξ(Wxi(t, ω))(u) = E{|Fξxi(u)|2} =

d∑

j=1

|α|2ijR π
2 ξ(W(Tτij

sj)(t, ω))(u) (5)

=
d∑

j=1

|α|2ijE{|Fξsj(u − (τijl cos ξl)l)|
2} (6)

In contrast to the power spectrum of the ordinary Fourier transform, the frac-
tional power spectrum is not shift invariant. Instead, all displacement vectors
τij are scaled with the factors cos(ξ) = (cos(ξ1), . . . , cos(ξn)) [13]. The special
choice ξl = π

2 ∀l thus eliminates all delays from (6), since in this case the frac-
tional Fourier transform reduces to the ordinary Fourier transform.

Moreover, the special form of (6) makes it possible to specify conditions for
which the projections are reversible. For every dimension at least two fractional
power spectra with distinct exponents suffice for inversion [10]. This implies that
the special choice ξ ∈ {ϕk = (π

2 , . . . , π
2 ) − εkek ∀k} (with the free parameters

εk �= 0) defines an invertible family of anechoic mixing problems. Each of these
problems depends solely on a single component of the delay vectors τij . For
example this implies:

E{|F(1,...,1,εk,1,...)xi(u)|2} =
d∑

j=1

|α|2ijE{|F(1,...,1,εk,1,...)sj(u − τijk cos εkek)|2} (7)

By transformation of all multidimensional variables into column vectors the
equations (7) can be vectorized. Each of them specifying a one-dimensional ane-
choic mixture with positivity constraints for all variables.

2.3 Solution of the One-Dimensional Problems

The one-dimensional problems derived from (4) can be written more compactly
with the non-negative time series yi(t), i = 1, . . . , m and sources σj(t), j =
1, . . . , d, t ∈ R. The solution of these problems can be obtained by solving the
optimization problem:

min
aij ,σj ,τij

‖yi(t) −
d∑

j=1

aijσj(t − τij)‖ subject to σj ≥ 0 , aij ≥ 0 ∀i, j

This is a special case of a positive deconvolution problem:

min
νij ,σj

‖yi(t) −
n∑

j=1

(νij ∗ σj)(t)‖ subject to νij ≥ 0 , σj ≥ 0 ∀i, j (8)

For the implementation time is discretized. In this case it is more convenient to
adopt a matrix-vector notation. If Y,A,Σ signify the vectorized time-discrete
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variables yi(l), νij(l), σj(l), and A, X the block circulant matrices that represent
the sums of convolutions with νij and σj , equation (8) can be rewritten:

min
A,Σ

‖Y − AΣ‖ = min
X ,A

‖Y − XA‖ subject to A, X ,Σ, A ≥ 0 ∀i, j

This shows that the (discretized) deconvolution (8) is a special case of a non-
negative matrix factorization problem. Depending on the exact error-function or
norm used for the minimization, it is possible to adopt different multiplicative
update rules [4]. Since the adjoint of a convolution operator is again a convolu-
tion, fast implementations of many update rules can be obtained exploiting Fast
Fourier Transform (FFT). A standard rule based on the Euclidian distance [9]
can be written:

νij ← νij

(
F−1 (

FσjFyi

))
(
F−1

(∑
k FσjFνikFσk

)) ∀i, j, σj ← σj
F−1(

∑
k Fνkj · Fyk)

F−1(
∑

p,l Fνpj · Fνpl · Fσl)
∀j

More suitable for the anechoic case are update rules that allow a control of the
sparseness of the estimated sources or filters [4]:

νij ←
[
νij

(
F−1

(
FσjF

[
yi/F−1(

∑
k FνikFσk)

]β
)) μ

β

]1+λ1

(9)

σj ←
[
σj

(
F−1

∑

k

FνjkF
[
yk/F−1

( ∑
l FνklFσl

)]β) μ
β

]1+λ2

(10)

These learning rules are quite flexible, and a variety of regularizers can be in-
cluded if additional information about the sources is available. The specific choice
μ = 1.9, β = 2, λ1 = 0.02, λ2 = 0 results in sparse features [4].

Summarizing the individual steps defines the complete algorithm for the so-
lution of the one-dimensional positive anechoic mixture problem:

Input: Data yi for i = 1, . . . , m
Initialize: Choose random values νij , σj ≥ 0

for iter1 = 1 : maxiter1,
Update σj using (10).
for iter2 = 1 : maxiter2, % Sparse update for the filters

Update νij using (9).
Normalize νij = νij

‖νij‖ .
end
νij = max(νij) el with l ∈ {l|νij(l) = max(νij)}

% Sparse filter replaced with delta function
end

2.4 Algorithm for Multivariate Anechoic Mixtures

The algorithm for solving the multivariate anechoic mixing problem can be
summarized:

1. Input Data xi ∈ Rn, i = 1, . . . , m
Parameters εk �= 0, k = 1, . . . , n
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2. Compute (fractional) Fourier transforms Fxi and F (εkek)(Fxi) =: Fϕkxi

3. Solve the 1D-anechoic mixture problems:

|Fϕk xi(ω)|2 =

d∑

j=1

|α|2ij |Fϕksj(ω − τijkek cos εk)|2

These subproblems can be treated with the deconvolutive NMF algorithm
presented in section 2.3. This step provides estimates for the linear weights
αij , the delays τij , and the fractional power spectra |Fϕksj |.

4. Compute Radon inversion, applying one of the following methods:
– Gerchberg-Saxton phase retrieval:

Given n+1 different fractional Fourier intensity spectra |Fϕksj |, the sig-
nals sj can be reconstructed by a modification of the original Gerchberg-
Saxton phase recovery algorithm [10].

– Deconvolution:
For known weights and delays (3) specifies a normal deconvolution prob-
lem with known mixing filters. Applying standard deconvolution algo-
rithms (e.g. Wiener filter) the sources sj can be retrieved by least squares
estimation.

In the last step of the algorithm several other methods can be applied for the
integration of the solutions of the one-dimensional problems. For small param-
eters εk one can also compute the angular derivative of the fractional Fourier
transforms. The unknown phases could then be recovered by integration [1].

3 Applications in Image Processing

The described algorithm has a broad application spectrum. In principle, it per-
mits invariant learning of mixture models in an arbitrary number of dimensions.
The algorithm described in section 2.4 is adjustable to under-, over- and even-
determined mixtures, and can be easily modified by inclusion of sparseness or
positivity constraints. Specifically, the last two steps of the algorithm can be
implemented using a broad range of established methods for non-negative ma-
trix factorization and inverse Radon transformation. Given the limited available
space, we present here only two examples from image processing, where the
method is applied for the extraction of image components that reappear at dif-
ferent positions in different images.

One set of images was generated by pasting two objects from an image data
basis at different randomly chosen positions of images with a size of 150 × 150
pixels. The generated images are shown in figure 1. Goal of the application of the
algorithm is the extraction of the original objects from the image set. For the last
step of the algorithm two implementations were compared (Gerchberg-Saxton al-
gorithm and the deconvolution method). Figure 2 shows the results of the feature
extraction. Both implementations retrieve the original objects. However, the de-
convolution approach is clearly superior to the phase retrieval. This partially due
to the very slow convergence of the Gerchberg-Saxton algorithm, especially for
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small fractional powers and for inaccurate estimates of the power spectra. In addi-
tion, the deconvolution method exploits for a second time the specific structure of
the mixture model. A quantitative comparison shows that images predicted from
the extracted components predict 95% of the variance of the original images for
the deconvolution method, but only 72% for the phase retrieval method.

Mixture 1

Mixture 2

Mixture 3

Mixture 4
Extracted Features
(Gerchberg-Saxton)

Extracted Features
(using deconvolution)

Fig. 1. Example images defining an
(over-determined) anechoic mixture in
two dimensions

Fig. 2. Extracted features from the image
set in figure 1 using two different algorithms
for Radon inversion

The second data set consisted of four gray-scale images taken with a digital
camera and resampled with a resolution of 200 × 200 pixels (cf. figure 3). The
photographs show two objects (scissors and a cup) that were placed at different
positions on a wooden surface. Before application of the algorithms the images
were whitened [7] to level the correlation statistics of natural images, removing
strong correlations between features on small spatial scales. In this case only
the deconvolution method was implemented. The reconstruction explains 85%
of the of the pre-whitened training images and recovers the original objects with
reasonable accuracy.

Fig. 3. Left: Real Images. Right: Extracted Features from pre-whitened images.

4 Conclusion

We presented a generalization of the anechoic mixture problem for the multi-
variate case, which allows learning of independent components with invariance
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against translation in multi-dimensional spaces. An efficient algorithm was pre-
sented that makes the high-dimensional problem tractable by projection onto
one-dimensional problems, resulting in a computational complexity that grows
linearly in the number of dimensions. We demonstrated the efficiency of this al-
gorithm by learning independent features that reappear at different positions of
real images. Invariant unsupervised learning of independent features has a vast
amount of other applications, e.g. in computer vision and computer graphics, 3D
data analysis, and neural data analysis. Future work will extend the work to new
applications and optimize the computational steps. In addition, the robustness
of the algorithm against different levels of reverberations will be tested.
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Abstract. This paper proposes several algorithms to recover the trans-
mitted signals in systems with multiple antennas that make use of orthog-
onal space time block code (O-STBC) to attain full transmit diversity.
We interpret the scheme proposed by Alamouti in [1] and half-rate sys-
tems presented in [2] as classic blind source separation (BSS) problems
where the received signals (observations) are instantaneous mixtures of
the transmitted signals (sources). In order to recover the sources, we first
propose to perform an eigenvalue decomposition of matrices containing
fourth-order cross-cumulants of the observations. Subsequently, we show
that the performance of this approach can be improved by doing a simul-
taneous diagonalization of the cumulant matrices. This second approach
can be interpreted as a particular case of Joint Approximate Diagonaliza-
tion of Eigen-matrices (JADE) algorithm for systems where the mixing
matrix is orthogonal.

1 Introduction

Wireless communication systems that employ multiple antennas at both trans-
mission and reception are commonly referred to as Multiple Input Multiple
Output (MIMO) systems. One of the major advantages of MIMO systems is
their ability to provide spatial diversity gains to decrease the Symbol-Error-Rate
(SER) in multipath fading channels [3]. Diversity gain results from combining
signals that experience independent signal fades.

Achieving the promised performance gains, even in practical operating con-
ditions, requires for specific Space-Time Coding (STC) techniques that spread
the transmitted symbols over the space and time dimensions. The popularity of
STC is due to the techniques known as Orthogonal Space-Time Block Codes
(O-STBC), where different versions of the original data are transmitted by
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several transmitting antennas across several time-slots. In general, O-STBC does
not provided coding gain but, however, the decoding method is very simple and
it can be performed using linear processing.

In addressing the issue of decoding complexity, Alamouti has proposed in [1]
a remarkable O-STBC scheme for transmission with two antennas, that is cur-
rently part of both the W-CDMA and CDMA-2000 standards [4]. This code
achieves a transmission rate equal to one by transmitting a pair of symbols
in a time-slot and the same pair with a different phase in the next time-slot.
This scheme supports Maximum-Likelihood (ML) detection only based on lin-
ear processing at the receiver. Tarokh et al. [2,5] has developed a theory to
design O-STBC which also supports ML detection with linear processing at
the receiver. For any number of transmitting antennas, these codes achieve
the maximum possible transmission rate when the symbols correspond to any
arbitrary real constellation and 1/2 for complex constellations. For the spe-
cific case of three or four transmitting antennas, it is possible to achieve 3/4
of the maximum transmission using any complex constellation. The simula-
tion results presented in [5] show that significant gains can be achieved by
increasing the number of transmitting antennas with very little decoding
complexity.

This paper shows in Section 2 that the system proposed by Alamouti and the
half-rate coding schemes presented by Tarokh et al. can be interpreted as classic
problems of BSS where a set of unknown signals (sources) must be recovered from
instantaneous mixtures of them without resorting to pilot symbols. Using this
model, we propose in Section 3 to estimate the channel matrix by performing an
eigenvalue decomposition of fourth-order cross-cumulant matrices. Subsequently,
we present an approach based on performing a simultaneous diagonalization of
the cumulant matrices. Simulations results are presented in Section 4 to compare
the performance of the proposed approaches. Finally, Section 5 is devoted to the
conclusions.

2 O-STBC Schemes

We consider a Multiple Input Single Output (MISO) system, a particular case of
MIMO systems, with P transmitting antennas and only one receiving antenna.
Let si, i = 1, ..., N be N zero-mean complex-valued statistically independent
signals (sources). An O-STBC is defined by a K × P transmission matrix G(P )

formed by orthogonal columns containing linear combination of these N sources,
and their conjugates. Each row represents a time slot and each column represents
one transmitting antenna. Since K time-slots are used to transmit N signals,
the code rate is defined as R = N/K.

In this paper, we will consider the O-STBC code proposed by Alamouti in
[1] and the half-rate code presented in [2] for four transmitting antennas. This
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codes are, respectively, characterised by the matrices

G(2) =
[

s1 s2

−s∗2 s∗1

]
G(4) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4
−s∗2 s∗1 −s∗4 s∗3
−s∗3 s∗4 s∗1 −s∗2
−s∗4 −s∗3 s∗2 s∗1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Denoting by xk the received signal at the k-th time slot, we can written xk =∑K
i=1 hiG

(P )
k,i + nk, k = 1, ..., K where P = 2, 4 is the number of transmitting

antennas, hi represents the channel path from the i-th transmitting antenna to the
receiving antenna and nk is modelled as additive white Gaussian noise (AWGN).
The term G(P )

k,i denotes the element into the k-th row, i-th column of G(P ).
Bydefining the observationvectorx = [x1, ..., xK/2, x

∗
K/2+1...., x

∗
K ]T , the source

vector s = [s1, ..., sN ]T and the noise vectorn = [n1, ..., nK/2, n
∗
K/2+1...., n

∗
K ]T , the

relationship between the observations and the sources can be written as

x = H(P ) s + n (2)

where H(P ) is the channel matrix depending of the number of transmitting
antennas,

H(2) =
[

h1 h2

h∗2 −h∗1

]
H(4) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 h3 h4

h2 −h1 h4 −h3

h3 −h4 −h1 h2

h4 h3 −h2 −h1

h∗1 h∗2 h∗3 h∗4
h∗2 −h∗1 h∗4 −h∗3
h∗3 −h∗4 −h∗1 h∗2
h∗4 h∗3 −h∗2 −h∗1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

For simplicity in the notation we will remove the superindex (P ) from H(P ).
Note that the matrices H in (3) are orthogonal, i.e.,

HH H = ||h||2 IP (4)

where ||h||2 =
∑P

k=1 |hk|2 for the Alamouti’s coding scheme and ||h||2 =
2

∑P
k=1 |hk|2 for the half-rate system, IP is the P × P identity matrix and H

is the Hermitian operator. For the Alamouti’s coding system it is also verified
H HH = ||h||2 IP .

Since the observations can be interpreted as instantaneous mixtures of the
sources (equation (2)), the channel matrix can be found by using many existing
BSS algorithms (see, for instance, [6] and references therein). Most of these
algorithms only take into account the independence of the sources and they
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do not consider other properties of the channels. Recently, algorithms based
on second-order statistics have been developed for blind channel estimations
in O-STBC transmissions [7,8]. In practice, when these methods are used for
the Alamouti’s coding scheme, the communication system must be modified by
including a precoder before the O-STBC encoder. In this paper we investigate
the performance of approaches based on fourth-order cross-cumulants which do
not required to include additional modules in the encoder.

3 Proposed Approaches

In this section we present several methods to estimate the channel matrix by
diagonalizing matrices containing fourth-order cross-cumulants of the observa-
tions. We will consider that the sources have the same power and the same
kurtosis. The fourth-order cross-cumulant matrices is defined by

C[k, l] = c4(x,xH , xk, x∗l ), k, l = 1, ..., K (5)
⇒ C[k, l](i, j) = c4(xi, x

∗
j , xk, x∗l ) (6)

where c4(x1, x2, x3, x4) = E[x1x2x3x4] − E[x1x2]E[x3x4] − E[x1x3]E[x2x4] −
E[x1x4]E[x2x3]. This matrices can be decomposed in

C[k, l] = βH Δ[k, l] HH (7)

where β is a complex valued number and Δ[k, l] is a P × K diagonal matrix
with the form

Δ[k, l] = diag(Hk,1H∗l,1, Hk,2H∗l,2, . . . , Hk,NH∗l,N ) (8)

where Hm,n denotes the element in the m-th row, n-th column of matrix H.

3.1 Eigenvalue Decomposition

A way to estimate the channel matrix consists in computing the eigenvectors, U,
of the fourth-order cross-cumulants matrices. For the Alamouti’s coding scheme,
U is a squared matrix of dimension 2 × 2. In the case of the half-rate code, U
contains the P eigenvectors of dimension K × 1 corresponding to the largest
eigenvalues.

The sources are recovered using ŝ = UHs. From equation (8) we deduce
that the condition to guarantee that the mixing system be identifiable using an
eigenvalue decomposition is that the matrix Δ[k, l] has different real values into
its diagonal. In particular, Beres and Adve have proposed in [9] to identify the
channel matrix for the Alamouti’s coding scheme by using of matrices C[1, 1] or
C[2, 2]. Note, however, that this approach fails when |h1| = |h2| because Δ[k, k]
for both k = 1 and k = 2 have equal entries into its diagonal and, therefore,
C[k, k] = ρ4|h1|2I2.

Now, we focus our attention in the matrix C[1, 2] for the Alamouti’s coding
system. For this case the cross-cumulant matrix can be written as equation (7)
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where β = ρ4h1h2, ρ4 = c4(s1, s
∗
1, s1, s

∗
1) = c4(s2, s

∗
2, s2, s

∗
2) is the kurtosis and

Δ[1, 2] = diag(1, −1). Therefore, we deduce that the mixing system is always
identifiable independently of channel path values.

Note that for the half-rate code, the matrix C[k, l], k �= l can be also written
as equation (7) but, however, the elements into the diagonal matrix Δ[k, l] are
complex valued and they cannot be identified using an eigenvalue decomposition.

3.2 Joint Diagonalization

The mixing matrix can be also computed by performing a simultaneous diago-
nalization of some fourth-order cross-cumulant matrices. Towards this aim, we
have used the extension of the Jacobi technique described in [10]1. This idea
can be also interpreted as an particularisation of the Joint Approximate Diag-
onalization of Eigen-matrices (JADE) algorithm [11] obtained by including the
orthogonality of the mixing matrix.

For the Alamouti’s coding scheme we have only diagonalized the matrices
C4[1, 1] and C4[1, 2]. For the half-rate code, we have 64 matrices with 8×8 fourth-
order cross-cumulants. It is apparent the high computational load associated to
compute these matrices and to perform their diagonalization. However, exists a
similarity between the matrices: C[k, l] = C∗[l, k], C[k, k] = C[k − 4, k − 4] with
k = 5, ..., 8 and C[k, l] = C∗[k − 4, l − 4] for k, l = 5, ..., 8. As a consequence,
the number of matrices can be considerably reduced. In the simulations we have
considered the following cases:

– Approach I: joint − diag(C[1, 1],C[1, 2], ....,C[1, 8])
– Approach II: joint−diag(C[1, 1],C[1, 2],....,C[1, 8],C[2, 3],C[2, 4],....,C[2, 8])
– Approach III: joint − diag(C[1, 1],C[1, 2], ....,C[1, 8],C[2, 3],C[2, 4], ....,

C[2, 8],C[3, 4],C[3, 5], ....,C[3, 8])
– Approach IV: joint − diag(C[1, 1],C[1, 2], ....,C[1, 8],C[2, 3],C[2, 4], ....,

C[2, 8],C[3, 4],C[3, 5], ....,C[3, 8],C[4, 5], ....,C[4, 8]).

4 Simulation Results

This section presents the results of several computer simulations carried out to
verify the estimation algorithms explained in previous sections. The experiments
have been performed by transmitting QPSK over Rayleigh-distributed randomly
generated block fading channels. We assume no Intersymbol Interference (ISI),
perfect synchronisation and sampling to symbol period. The statistics in (5) have
been calculated for each block by sample averaging over the block symbols. The
performance has been measured in terms of the Symbol Error Rate (SER). For
comparison purposes we also present the SER obtained with Perfect Channel
State Information (Perfect CSI). The simulations have been performed using
MATLAB code running on an Athlon XP 3200+.

1 The matlab code is available in www.tsi.enst.fr/˜ cardoso/jointdiag.html
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Fig. 1. SER versus SNR obtained for the Alamouti’s coding scheme using packets of
500 symbols

In the first set of simulations, the QPSK signal has been coded using the
Alamouti’ scheme over two transmitting antennas. Figure 1 shows the perfor-
mance of the proposed approaches in terms of SER versus the SNR. The SER
has been obtained by averaging the results for 100, 000 blocks of L = 500 sym-
bols. In the figure we can see that the joint diagonalization method achieves the
optimum performance while the other approaches present a flooring effect for
high SNR. For a SNR of 20 dB, Figure 2 shows the SER versus the packet size
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Fig. 2. SER versus the packet size for the Alamouti’s coding scheme obtained for a
SNR of 20 dB
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Fig. 3. Time requires to process 105 packets for the Alamouti’s coding scheme

0 5 10 15 20 25
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

Perfect CSI
Beres−Adve: C[1,1]
Approach I
Approach II
Approach III
Approach IV

Fig. 4. SER versus SNR obtained for the half-rate code using packets of 500 symbols

and Figure 3 shows the time needed to process 105 packets. We can see that
the joint diagonalization method requires few symbols (about 200 symbols) to
achieve the optimum SER but the time required to process one packet is higher
than the needed with the other approaches. For comparison, Figure 3 also shows
the time used by JADE to process one block. It is apparent the difference with
respect to the joint-diagonalization method proposed in this paper.

In the second set of simulations, the QPSK signal have been coded using
half-rate code with four transmitting antennas. Figure 4 plots the SER versus
SNR obtained using the method proposed by Beres and Adve and the results
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obtained with the joint diagonalization method presented in Subsection 3.2. It
can be seen that it is possible to achieve the Perfect CSI using the Approach III
and the Approach IV. Comparing with the result obtained with the Alamouti’s
code (Figure 1), we conclude that a significant gain can be achieved by increasing
the number of transmitting antennas.

5 Conclusions

This paper proposes several algorithms to recover the transmitted signals with-
out using pilot symbols in systems that makes use of O-STBC without using
of training sequences. The basic idea is to estimate the channel parameters by
calculating the eigenvectors of a square matrix formed by fourth-order cross-
cumulants obtained from the signals received in different time-slots. Simulation
results show that the best performance is obtained by performing a simultaneous
diagonalization of the fourth-order cross-cumulants matrices.
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Abstract. This paper proposes to explore the potential of Blind Source
Separation (BSS) techniques for the estimation of modal parameters,
namely the resonant frequencies, vibration modes and damping ratios.
The concept of virtual sources, which was introduced in recent publica-
tions, allows to consider BSS as a simple way of doing output-only modal
analysis. This work illustrates the proposed methodology using free and
random responses of an experimental truss structure.

Keywords: Blind Source Separation, Second-Order Blind Identification,
Structural Dynamics, Experimental Application.

1 Introduction

Blind Source Separation (BSS) techniques were initially developed for signal
processing in the early 80’s, but during the last decade the number of the ap-
plication fields never stops increasing. This success certainly comes from two of
their intrinsic characteristics. Firstly, the ambition of BSS (which is to recover
unobserved source signals from their observed mixtures) is shared with many
other research domains. Secondly, the small number of necessary assumptions
allows to consider the application of the methodology to various kinds of data
sets (resulting from fields as diverse as finance, image or speech processing, as-
trophysics, and even medicine).

However, if BSS techniques proved useful in numerous application domains,
they were quite underused for many years in structural dynamics. Some applica-
tions were naturally carried out such as damage detection, condition monitoring
and discrimination between pure tones and sharp-pointed resonances, but the
modal parameter estimation remained quite marginal in these studies.

Recently, using the concept of virtual sources, a one-to-one relationship be-
tween the vibration modes and the BSS modes (i.e.. the mixing matrix) was
demonstrated [1], allowing the use of BSS for modal analysis. Since then, two
algorithms were tested, and one of them (namely the Second-Order Blind Iden-
tification) seemed to perform quite well [2].
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This paper proposes to explore this possibility from an experimental case
submitted to an impulse and a random excitation. The results are compared
with those of a well-established modal analysis method, the so-called Stochastic
Subspace Identification [3].

2 System Identification in Structural Dynamics: Modal
Analysis

2.1 What Is Modal Analysis?

The precise knowledge of the dynamics characteristics is essential for the design
and validation of many engineering products. The usual modeling of a dynamical
system is defined by modal parameters, namely the natural frequencies fi, vibra-
tion modes ni and damping ratios ξi. A modal parameter prediction is usually
performed using numerical techniques such as the finite element method. But
because of possible uncertainties on the material behavior, boundary conditions
and joint modeling, experimental validations are often necessary. These ones are
performed using Experimental or Operational Modal Analysis (EMA or OMA).

Modal analysis quickly proved to be very popular, and numerous approaches
were developed to estimate modal parameter from the structural dynamic re-
sponse. In 1973, Ibrahim proposed a robust time domain method [4]. The
stochastic subspace identification method (and its variant versions) [3] and more
recently the polyreference least-squared complex frequency domain method [5]
are also efficient modal analysis methods. For further information about modal
analysis, the interested reader may consult [6].

2.2 Why Another Method?

The lack of a priori knowledge about the number of existing natural frequencies
in the range of interest usually prevents the classical modal analysis methods
from a direct identification of modal parameters. A model order (linked to the
number of identified frequencies) has to be chosen and progressively increased. A
diagram, the so-called stabilization diagram, collecting all these frequencies for
increasing order is then plotted. This step allows to separate the physical natural
frequencies from the numerical ones, introduced by the algorithm. Unfortunately,
the separation between numerical and stabilized frequencies may require a great
deal of expertise and can be cumbersome.

Even if many modal analysis methods already exist, a method combining an
automatic selection process (with a confidence criteria for each mode) and a
physical interpretation of this choice should be interesting. The application of
BSS techniques to perform modal analysis partially meets these objectives.

During, the last years, other statistical signal processing techniques have been
considered for the analysis of structural dynamic responses. The proper orthog-
onal decomposition (POD) is one of these, and its modes, the so-called proper
orthogonal modes (POMs), have been linked to the structural normal modes [7].
Some additional information can be found in [8,9].
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3 From Signal Processing to Modal Analysis

3.1 Second-Order Blind Identification (SOBI)

The basic idea of BSS is to recover the unobservable inputs of a system, called
the sources si, only from the measured outputs xi even though very little, if
anything, is known about the mixing system. The simplest BSS model assumes
the existence of n sources signals s1(t), ..., sn(t) and the observation of as many
mixtures x1(t), ..., xn(t). Note that we focus on systems with linear and static
mixtures. Using matrix notations the noisy model can be expressed as

x(t) = A · s(t) + σ(t) (1)

where A is referred to as the mixing matrix, and σ is the noise vector corrupting
the data.

Most BSS approaches are based on a model in which the sources are inde-
pendent and identically distributed variables. Independent component analysis
(ICA, [10]) does not escape the rule; the sample order has no importance in
the method. The objective of SOBI is to take advantage, whenever possible, of
the temporal structure of the sources for facilitating their separation. The SOBI
algorithm consists in constructing several time-lagged covariance matrices R(τ)
from the measured data and to find a matrix U which jointly diagonalizes all
the covariance matrices. This matrix corresponds to the mixing matrix A of (1).

R(τ) = E[x(t + τ) · x∗(t)] (2)

For further detail about the SOBI method, the reader can refer to [11].

3.2 Concept of Virtual Source

The dynamic response of mechanical systems which are considered in this study
is described by the equation

M · ẍ(t) + C · ẋ(t) + K · x(t) = f(t) (3)

where M, C and K are the mass, damping and stiffness matrices, respectively.
The vector f represents the real excitation sources applied to the structure. The
system response x(t) may be expressed as a mixture of these real sources
f(t). Unfortunately, this mixture is a convolutive product between the impulse
response function, denoted h(t), and the sources f(t), and the separation of
convolutive mixtures of sources is not yet completely solved.

An interesting alternative is to use the modal expansion. Indeed, the m normal
modes n(i) form a complete basis for the expansion of any m-dimensional vector
(if m is the number of degrees of freedom). Then the response can be expressed
using modal superposition

x(t) =
m∑

i=1

n(i) · ηi(t) = N · η(t) (4)
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where the weight coefficients ηi are in fact the modal coordinates and represent
the amplitude modulation of the corresponding normal modes n(i). The similar-
ity between equations (1) and (4) shows that the modal coordinates may act as
virtual sources (which are statistically independent as proved in [1,2]) regard-
less of the number and type of physical excitation forces. In addition, the time
response can be interpreted as a static mixture of these virtual sources, which
renders the application of the BSS techniques possible.

The SOBI algorithm (which requires sources with different spectral contents)
is particulary appropriate for the separation of these sources. In the free response
case of the system (3), the theoretical expression of the normal coordinates is
an exponentially damped harmonic function

ηi(t) = Y · exp(−ξi · ωi · t) · cos(
√

1 − ξ2
i · ωi · t + αi) (5)

where ωi and ξi are the natural frequency and damping ratio of the ith mode,
respectively. The amplitude Y and the phase α are constants depending on the
initial conditions. The modal coordinates are then monochromatic, with different
spectral contents.

3.3 Procedure Details

In summary, a simple modal analysis procedure is proposed, using the modal
coordinates as virtual sources. The procedure is as follows:

1. Perform experimental measurements of the structure response to obtain time
series at different sensing position.

2. Apply SOBI directly to the measured time series to estimate the mixing
matrix A and the sources s(t).

3. The mode shapes are simply contained in the mixing matrix A.
4. In the case of random excitation, the identified (random) sources are trans-

formed into free decaying responses using NExT (Natural Excitation Tech-
nique) algorithm [12].

5. The identification of the other modal parameters (frequencies and damping
ratios) is carried out by fitting the time series of the sources s(t) with the
theoretical expression (5).

6. The fitting error between the identified and fitted sources is then computed
which allows to reject the non-reliable virtual sources easily.

4 Experimental Demonstration

In this paper the proposed modal analysis technique is applied to the response of
the truss structure depicted in Figure 1. The free and random response cases are
considered. At each corner, on each storey, two accelerometers measure the hori-
zontal responses. The quality of the identification results is evaluated comparing
with the covariance-driven stochastic subspace identification (SSI) method [3].
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Fig. 1. Experimental fixture mounted on a 26kN electrodynamic shaker

4.1 Free Response

The free response was obtained using a hammer which provided a short impulse
to the system. The sampling frequency was set to 5120 Hz, and the first 6000
samples of the measured time series were taken into account. The SOBI iden-
tification requires the definition of delays (for the construction of correlation
matrices (2)). 20 delays were chosen uniformly distributed between 0.0025 and
0.1 seconds, which covers the whole frequency range of interest.

(a) (b)

Fig. 2. Fitting error of the 16 SOBI identified sources for the free response (a) and
MAC comparison between SOBI and SSI modes (b)

Because there are 16 measurement locations, a total of 16 virtual sources
can be considered. The fitting error of each source is shown, in Figure 2(a). 11
sources have a fitting error below 7% and can be safely retained. The sum of their
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participation in the system response is above 97.7%. The identification results
are listed in Table 1. Concerning the frequency and damping ratio identifica-
tion, the SOBI results are totally similar to those of the SSI method. Note that
the damping ratios of SSI are presented as intervals because the value changes
according to the chosen model order. The comparison between the two meth-
ods for the mode shapes is performed using the Modal Assurance Criterion in
the Figure 2(b). The closer the value to 1, the higher the correspondence. We
can see a complete correlation between the modes identified using SSI and
SOBI.

Table 1. Identified natural frequencies and damping ratios for the free response

SOBI Freq. SSI Freq. SOBI Damping Ratio SSI Damping Ratio
[Hz] [Hz] [%] [%]

75.94 75.82 0.20 [0.05 - 0.12]
111.37 110.99 0.37 [0.40 - 0.60]
130.75 130.76 0.21 [0.20 - 0.28]
181.06 180.69 0.18 [0.20 - 0.28]
256.30 256.48 0.18 [0.10 - 0.15]
334.24 334.32 0.05 [0.02 - 0.05]
345.75 345.76 0.04 [0.04 - 0.05]
365.79 365.81 0.05 [0.05 - 0.06]
374.34 374.45 0.15 [0.10 - 0.30]
380.55 380.45 0.16 [0.20 - 0.40]
396.91 396.81 0.08 [0.07 - 0.10]

4.2 Forced Response

For the random response, the structure was mounted on a 26kN electrodynamic
shaker (see Figure 1). The sampling frequency was set to 5120 Hz, and 160000
samples were considered for the measured time series. The same parameters as
previously were chosen for the SSI and SOBI methods. The fitting error of each
identified source was computed and is presented in Figure 3(a). This time, 14
sources have a fitting error below 8%.

Table 2 lists all the reliable identified results and Figure 3(b) compares the
corresponding mode shapes. Once more the correspondence between both meth-
ods is remarkable, except for the mode at 75 Hz. If the results obtained using
SSI in the free response case are taken as a reference we can note that none
of the methods seems able to accurately estimate this mode. The MAC values
SOBI random/SSI free and SSI random/SSI free are both lower than 0.65.

Finally, we note that the SSI method was able to identify 4 more modes in
the frequency range considered (around 162, 189, 204 and 294 Hz). Nonetheless,
because the participation in the system response of the 14 sources identified using
SOBI amounts to 93%, these four modes have necessarily a very low participation
in the system response.



784 F. Poncelet et al.

(a) (b)

Fig. 3. Fitting error of the 16 SOBI identified sources for the random response (a) and
MAC comparison between SOBI and SSI modes (b)

Table 2. Identified natural frequencies and damping ratios for the random response

SOBI Freq. SSI Freq. SOBI Damping Ratio SSI Damping Ratio
[Hz] [Hz] [%] [%]

74.75 74.68 2.15 [1.70 - 2.00]
110.06 110.28 2.03 [1.50 - 2.00]
133.59 133.77 0.85 [0.60 - 0.80]
180.87 180.98 0.23 [0.20 - 0.30]
245.29 245.38 0.16 [0.01 - 0.05]
257.47 257.47 0.11 [0.09 - 0.11]
333.21 333.34 0.12 [0.05 - 0.10]
345.64 345.51 0.09 [0.10 - 0.12]
365.60 365.76 0.12 [0.07 - 0.15]
368.19 369.53 0.33 [0.15 - 0.30]
374.34 374.69 0.16 [0.20 - 0.40]
380.06 378.34 0.71 [0.50 - 0.70]
390.81 390.95 0.33 [0.45 - 0.50]
396.83 397.20 0.17 [0.15 - 0.25]

5 Conclusions

Based on the virtual source concept, a new application is developed for the BSS
methods, and particulary for the SOBI algorithm, in the field of structural dy-
namics. An output-only modal analysis technique is proposed. The experimental
application shows that the method holds promise for identification of mechanical
system for free as well as for forced response.



System Identification in Structural Dynamics Using BSS Techniques 785

– A truly simple identification scheme is proposed for the modal parameters,
due to the straightforward application of SOBI to the measured data.

– A seemingly robust criterion has been developed for the selection of reliable
sources. The use of stabilization charts, which always require a great deal of
expertise, is therefore avoided. In addition, the selection of a model order, a
common issue for conventional modal analysis techniques such as SSI, is not
necessary.

– Compared to SSI, the computation load is very reduced, which makes the
method a potential candidate for online modal analysis.

A possible limitation of the method is that sensors should always be chosen in
number greater or equal to the number of active modes. This will be addressed
in subsequent studies.
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Abstract. This paper presents a novel algorithm to build hierarchies from inde-
pendent component analyzer mixtures and its application to image similarity 
measure. The hierarchy algorithm composes an agglomerative (bottom-up) 
clustering from the estimated parameters (basis vectors and bias terms) of the 
ICA mixture. Merging at different levels of the hierarchy is made using the 
Kullback-Leibler distance between clusters. The procedure is applied to merge 
similar patches on a natural image, to group different images of an object, and 
to create hierarchical levels of clustering from images of different objects. Re-
sults show suitable image hierarchies obtained by clustering from basis func-
tions to higher-level structures. 

1   Introduction 

Independent component analyzers (ICA) mixture models were introduced in [1] con-
sidering a source model switching between Laplacian and bimodal densities. Recently 
this model has been relaxed using generalised exponential sources [2], self-similar  
areas as a mixture of Gaussians sub-features [3], and sources with non-Gaussian 
structures recovered by a learning algorithm using Beta divergence [4]. Real applica-
tions of those works span: separation of eye-movement artefacts from EEG re-
cordings, separating ‘back-ground’ brain tissue, fluids and tumours in fMRI images, 
and the separation of voices and background music in conversations. 

It is well known that local edge detectors can be extracted from natural scenes by 
standard ICA algorithms as Infomax  [5], or fastICA [6] or new approaches as Linear 
Multilayer ICA [7]. In addition there is neurophysiological evidence that suggest  
relation of primary visual cortex activities with the detection of edges, and some theo-
retical dynamic models of abstraction process from visual cortex to higher-level ab-
straction has been proposed [8]. 

The contribution of this paper is to provide a new algorithm to process the parame-
ters of ICA mixtures in order to obtain hierarchical structures from the basis function 
level (edges) to higher levels of clustering. Particularly the algorithm is applied to im-
age analysis obtaining promising results in discerning object similarity and suitable 
levels of hierarchies by processing image patches. This kind of feedforward process 
would suggest some relation with abstraction. The algorithm is agglomerative and 
uses the symmetric Kullback-Leibler distance [9] to select the grouping of the clusters 
at each level. 
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2   Hierarchy of ICA Mixtures 

2.1   Estimation of the ICA Mixture Parameters 

In the ICA mixture model, the observation vectors x  are modelled as the result of ap-
plying a linear transformation 

kA  ( 1
k k

−=W A  is the filter matrix) to a vector ks  

(sources), whose elements are independent random variables, plus a bias vector 
kb , 

for all the classes , ( 1  number of ICAs)kC k K= K . The probability of every available 

observation vector can be separated into the contributions due to every class. 
An iterative learning algorithm based on maximum-likelihood estimation (MLE) is 

used to adapt the parameters of the ICA mixtures, i.e., the basis functions and the bias 
terms of each class, using gradient ascent [1]. To estimate the probability density 
function of the sources different priors could be used as Laplacian [1] or non-
parametric densities [10]. 

2.2   Agglomerative Clustering 

From the estimated ICA mixture parameters, a procedure that follows a bottom-up 
agglomerative scheme for merging the mixtures was developed.   

The conditional probability density of x  for cluster , 1,2,..., 1h
kC k K h= − + in 

level 1,2,...,h K=  is ( / )h
kp Cx . At the first level, 1h = , it is modelled by K ICA mix-

tures, i.e., 1( / )kp Cx is: 

( )1 1( / ) detk k kp C p−=x A s , ( )kkk bxAs −= −1  (1) 

At each consecutive level, two clusters are merged according to some minimum 
distance measure until we reach at level h K= only one cluster.  

As distance measure we use the symmetric Kullback-Leibler distance between the 
ICA mixtures. It is defined for the clusters ,u v  by: 

KL

( / ) ( / )
( , ) ( / ) log ( / ) log

( / ) ( / )

h h
h h h hu v
u v u vh h

v u

p C p C
D C C p C d p C d

p C p C
= +∫ ∫

x x
x x x x

x x
 (2) 

For level 1h = , from (2), we can obtain (we write 1( ) ( / )
u up p C=x x x and omit the 

superscript 1h =  for brevity):  

KL KL

( ) ( )
( , ) ( ( ) // ( )) ( ) log ( ) log

( ) ( )
u v

u v u v

v u

u v

p p
D C C D p p p d p d

p p
= = +∫ ∫x x

x x x x
x x

x x
x x x x x x

x x
 (3) 

where, imposing the independence hypothesis and supposing that both clusters have 
the same number of sources M for simplicity (assuming that sources follow the same 
model and the data they draw are on the same space): 
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( )

( )

11

1 1

( )
( ) ,

det

( )
( ) ,

det

u ii

u i i i

v jj

v j j j

M

s u
i

u u u
u

M

s v
j

v v v
v

p s
p s

p s
p s

−=

= −

∏
= = −

∏
= = −

x

x

x A x b
A

x A x b
A

 (4) 

The pdf of the sources is approximated by a non-parametric kernel-based density 
for both clusters: 

22 ( )( ) 11
22

1 1

( ) , ( )

v vj ju ui i

u i v ji j

s s ns s n
N N

hh

s u s v
n n

p s ae p s ae

−⎛ ⎞−⎛ ⎞ ⎜ ⎟−− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= =

= =∑ ∑  (5) 

where again for simplicity we have assumed the same kernel function for all the clus-
ters, with the parameters ,a h and number of samples N  adapted to each cluster. Note 
that this corresponds to a Gaussian mixture model where the number of Gaussians is 
maximum (one for every observation) and the weights are equal. Reducing to stan-
dard mixture of Gaussians does not help in order to compute the Kullback-Leibler dis-
tance because there is not analytical solution to it. Therefore, we prefer to maintain 
the non parametric approximation of the pdf in order to model more complex distribu-
tions than a mixture of a small finite number of Gaussians. 

The symmetric Kullback-Leibler distance between the clusters ,u v  can be ex-
pressed such as: 

KL ( ( ) // ( )) ( ) ( ) ( ) log ( ) ( ) log ( )
u v u v v uu vD p p H H p p d p p d= − − − −∫ ∫x x x x x xx x x x x x x x x x  (6) 

where ( )H x is the entropy, defined as [ ]( ) log ( )H E p= − xx x . To obtain the distance, 

we have to calculate the entropy for both clusters and the cross-entropy 

terms log ( ) , log ( )
v u u v

E p E p⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x x x xx x . 

The entropy for the cluster u can be calculated through the entropy of the sources 
of that cluster considering the linear transformation of the random variables and their 
independence (4): 

1

( ) ( ) log det
i

M

u u u
i

H H s
=

= +∑x A  (7) 

The entropy of the sources can not be analytically calculated. Instead, we can ob-

tain a sample estimate ˆ ( )
iuH s  using the training data. Denote the i-th source obtained 

for the cluster u  by { }(1), (2), , ( )
i i iu u u is s s QK . The entropy can be approximated as 

follows:  

2

1

( ) ( )1

2

1

1ˆ ˆ( ) log ( ) log ( ( )),

( ( ))

i

i u i u ii i

u ui i

u ii

Q

u s u s u
ni

s n s l
N

h
s u

l

H s E p s p s n
Q

p s n ae

=

−⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠

=

⎡ ⎤= − = −⎣ ⎦

=

∑

∑
 (8) 
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The entropy of ( )vH x  is obtained analogously: 

2

1 1

( ) ( )1

2

1 1

ˆ( ) ( ) log det ( ) log det

1ˆ ( ) log ( ( )), ( ( ))

i i

v vi i
i

i v i v ii i

M M

v v v v v
i i

s n s l
Q N

h

v s v s v
n li

H H s H s

H s p s n p s n ae
Q

= =

−⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠

= =

= + +

= − =

∑ ∑

∑ ∑

x A A

 (9) 

with ˆ ( )
ivH s defined analogously to (8). Following the same procedure for j-th source 

we can estimate ˆ ( )
jvH s . 

Once the entropy is computed, we have to obtain the cross-entropy terms. After 
some operations and considering the relationships ,u u u v v v= + = +x A s b x A s b  and 

thus ( )1
v v u u u v

−= + −s A A s b b , the independence of the sources, and that the samples 

for clusters ,u v  follow the corresponding distribution { }(1), (2), , ( )
i i iu u u is s s QK , 

1,...,i M= , { }(1), (2), , ( )
j j jv v v js s s QK , 1,...,j M= ; we can estimate, 

( ) 2
1

1

1

( )1

2

1 1 1

1

1ˆ ( , ) ... log

u v v v u uii

M

i

v vM

s n

Q Q N h

v u M
s s n

i
i

H s ae
Q

−⎛ ⎞⎡ ⎤+ − −⎜ ⎟⎣ ⎦− ⎜ ⎟
⎜ ⎟
⎝ ⎠

= = =

=

= ⋅∑ ∑ ∑
∏

A A s b b

s  (10) 

and ˆ ( , )
ju vH ss defined analogously to (10), with ( )1

u u v v v u
−= + −s A A s b b . 

Using the terms obtained above, we can estimate the symmetric Kullback-Leibler 
distance between the clusters ,u v : 

KL
1 1 1 1

ˆ ˆ ˆ ˆ( ( ) // ( )) ( ) ( ) ( , ) ( , )
u v i j i j

M M M M

u v v u u v
i j i j

D p p H s H s H s H s
= = = =

= − − − −∑ ∑ ∑ ∑x xx x s s  (11) 

As we can observe, the similarity between clusters depends not only on the similar-
ity between the bias term, but the similarity between the distributions and the mixing 
matrices. 

Once the distances are obtained for all the clusters, the two clusters with minimum 
distance are merged in level 2h = . This is repeated in every step of the hierarchy un-
til we reach one cluster in the level h K= . To merge cluster in level h we can calcu-
late the distances from the distances of level 1h − . Suppose that from level 1h − to 

h the clusters 1 1,h h
u vC C− − are merged in cluster h

wC . Then, the density for the merged 

cluster at level h is: 
1 1 1 1

1 1 1 1
1 1

1 1

( ) ( / ) ( ) ( / )
( / )

( ) ( )

h h h h
h h u h u h v h v

h w h h
h u h v

p C p C p C p C
p C

p C p C

− − − −
− − − −

− −
− −

+=
+

x x
x  (12) 

where 1 1
1 1( ), ( )h h

h u h vp C p C− −
− − are the priors or proportions of the clusters ,u v at level 

1h − . The rest of terms are the same in the mixture model at level h that at level 
1h − . The only difference from one level to the next one in the hierarchy is that there 
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is one cluster less and the prior for the new cluster is the sum of the priors of its com-
ponents and the density the weighted average of the densities that are merged to form 
it. Therefore, the estimation of the distance at level h can be done easily starting from 
the distances at level 1h − and so on until level 1h = . Consequently, we can calculate 

the distances at level h  from a cluster h
zC to a merged cluster h

wC  obtained by the ag-

glomeration of clusters 1 1,h h
u vC C− − at level 1h − as the distance to its components 

weighted by the mixing proportions: 
1 1 1

1 1 1 1
1 1

1 1

1 1 1
1 1 1 1

1 1
1 1

( ) ( ( / ) // ( / ))
( ( / ) // ( / ))

( ) ( )

( ) ( ( / ) // ( / ))
.

( ) ( )

h h h
h h h u h h u h z

h h w h z h h
h u h v

h h h
h v h h v h z

h h
h u h v

p C D p C p C
D p C p C

p C p C

p C D p C p C

p C p C

− − −
− − − −

− −
− −

− − −
− − − −

− −
− −

⋅=
+

⋅+
+

x x
x x

x x
 (13) 

3   Application on Image Data 

ICA can be used to analyze image patches as a linear superposition of basis functions. 
Those vectors have been related with the detection of borders in natural images [5]. 
Therefore basis functions have a physical relation with objects and they can be used 
to measure the similarity between objects based on ICA decomposition. In image 
patches decomposition, the set of independent components is larger than what can be 
estimated at one time, and what we get at one time is an arbitrarily chosen subset [11]. 
Nevertheless ICA has been applied successfully in several image applications [1]. 

3.1   Object Similarity 

For the hierarchical classification of images of objects, the COIL-100 database was 
used [12]. The database consists of different views of objects over a dark background. 
The method applied to preprocess the images was this. The images were converted to 
greyscale, and grouped in different views in order to obtain several images to train up 
to three classes per object. From each image, patches of 8 by 8 pixels were randomly 
taken to estimate the basis function previous a whitening process, with a reduction to 
40 components. A total of 1000 patches per object were extracted [5].  

The basis functions of each class were then calculated with the ICA mixtures algo-
rithm, considering supervision, and using the Laplacian prior to estimate the source 
pdfs. Fig. 1 shows the 40 basis functions of six classes corresponding to different 
views of two objects. The basis functions of Fig. 1a correspond to a box with a label 
inscribed whereas Fig. 1b corresponds to an apple. We can observe the similarity be-
tween the functions of each object and differences, for instance, the lower frequency 
in the pattern corresponding to a natural object versus the frequency in the pattern of a 
more artificial object. 

The same data were used to measure the distance between classes estimating the 
symmetric Kullback-Leibler distance from the mixture matrices calculated previously, 
as we explain in Section 2. Distances reveal that basis functions allow finding  
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the similarity (short distances) between classes corresponding to the same object (in-
tra-object), whereas distances are much longer between classes of different objects 
(inter-object), see Table 1. 

 
 
 
(a) 
 
 
 
 
 
(b) 

 

 

 

 
Fig. 1. Two groups of basis functions corresponding to two different objects. Basis functions at 
top are from a little box and basis functions at bottom are from an apple. 

Table 1. Mean distances inter-object and intra-object of Fig. 1 

Object box (a) apple (b) 
box (a) 12.89 114.90 

apple (b) 114.90 13.81  

Additionally, experiments in order to create a hierarchical classification of objects 
were performed. Thus, patches were sampled from a large number of objects, some of 
them very similar among themselves. A hierarchical representation was then created 
applying the agglomerative clustering algorithm. Fig. 2 shows an example of classifi-
cation of eight objects, with three main kinds of objects. The tree outlined by the den-
drogram positively shows grouping of objects based on similarity content, and suit-
able similarities between ‘families’ of objects, e.g., cars were more alike with cans 
than with apples. 

3.2   Natural Images 

The proposed algorithm was applied to natural images in order to obtain a bottom-up 
structure merging several zones of an image. Fig. 3 shows an image with 9 zones, 
some of then clearly different and others more or less similar each other. Dendrogram 
of Fig. 3 shows how the zones are merged from the patches. It shows two broad kinds 
of basis functions that correspond to the part of the image that mainly contains por-
tions of sky, and those zones that correspond to patches where there is a predominant 
portion of stairs (high frequency). 

The dendrogram also shows the distances at which the clusters are merged, it can 
be used as a similarity measure of the zones of the image. The bottom zones are 
merged at low distances due to the high similarity in borders. 
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Fig. 2. Hierarchical representation of object agglomerative clustering. Three kinds of object 
‘families’ are obtained. 

    

Fig. 3. (Left) Image divided in nine zones. (Right) Hierarchical representation of the zones of 
the image based on basis functions similarity. It shows two broad groups of zones. 

4   Conclusions 

The new algorithm for hierarchical ICA mixtures uses the mixture matrices to calcu-
late distances between the distributions of the independent sources based on a sym-
metric Kullback-Leibler distance. The estimation of the source pdfs is made using a 
non-parametric kernel-based approach allowing adaptation to several kinds of densi-
ties. Clusters are merged using a bottom-up strategy defining hierarchical levels  
creating higher-level structures. 

Results of the hierarchical algorithm application demonstrated its suitability to 
process image data. Image content similarity between objects based on ICA basis 
functions allows learning an organization of objects in higher-levels of abstraction 
where the more separated hierarchical levels more different the objects. Experiments 
with natural images showed application to image segmentation based on similarity of 
the different zones. The application of the procedure could be extended to unsuper-
vised or semi-supervised classification of images in order to discover meaningful  
hierarchical levels.  
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Many potential applications of the procedure could be approached as defect classi-
fication in non-destructive testing. Hierarchical levels would represent concepts as 
material condition, kind of defect, defect orientation, or defect dimension [13]. 
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Abstract. Deriving a thematically meaningful partition of an unlabeled
text corpus is a challenging task. In comparison to classic term-based
document indexing, the use of document representations based on latent
thematic generative models can lead to improved clustering. However, de-
termining a priori the optimal indexing technique is not straightforward,
as it depends on the clustering problem faced and the partitioning strat-
egy adopted. So as to overcome this indeterminacy, we propose deriving
a consensus labeling upon the results of clustering processes executed on
several document representations. Experiments conducted on subsets of
two standard text corpora evaluate distinct clustering strategies based
on latent thematic spaces and highlight the usefulness of consensus clus-
tering to overcome the optimal document indexing indeterminacy.

1 Introduction

The increasingly growing number of unlabeled digital text documents available
calls for the development of automatic tools, such as document clustering sys-
tems, capable of organizing unlabeled document collections thematically.

However, when facing any text clustering problem, practitioners must blindly
make several decisions that largely condition the quality of the clustering results,
such as selecting i) the document indexing technique used for representing the
documents (including its dimensionality), ii) the clustering strategy employed
for partitioning the data, or iii) the number of clusters to be found.

As regards the former aspect, it is a commonplace that the application of
feature transformations can improve clustering results significantly [6]. Thus, the
influence of distinct indexing techniques on the performance of text clustering
systems has been analyzed elsewhere [14, 17].

In this context, latent thematic generative models, such as Independent Com-
ponent Analysis [8], Latent Semantic Analysis [1] or Non-negative Matrix Fac-
torization [10] constitute an interesting option for finding document projections
on low dimensional spaces where clustering can be conducted more efficiently
and effectively than in the original, high-dimensional term vector space. For this
reason, this work presents an extensive comparison between document clustering
strategies based on the aforementioned latent thematic generative models.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 794–801, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Text Clustering on Latent Thematic Spaces 795

X

Latent

topic

extraction

K

T

D

X
lts

K

D

Clustering

C

Fig. 1. Extracting K latent thematic sources for clustering D documents into C clusters

Unfortunately, the conclusions drawn from this study make it difficult to gen-
eralize, as no indexing technique guarantees a universally superior performance
across distinct clustering problems, giving rise to what we call the data represen-
tation dependence effect [13]. In order to overcome this indeterminacy, we present
a strategy based on consensus clustering which allows to set text clustering prac-
titioners free from the obligation of selecting a single document representation
blindly, while still obtaining reasonably good clustering results.

This paper is organized as follows: section 2 describes two clustering strategies
based on latent thematic models, and section 3 presents several experiments
regarding these strategies. Section 4 describes the consensus clustering proposal
for overcoming the data representation dependence effect and presents related
experiments. Finally, the conclusions of our work are discussed in section 5.

2 Clustering Strategies Based on Latent Thematic
Models

The rationale behind latent thematic generative models establishes an analogy
between the blind source separation (BSS) problem and the generation of text
collections: the mixing of several latent random topics —or thematic sources—
gives rise to a set of D documents (equivalent to the observations in the BSS
scenario) [8, 18]. Therefore, as the goal of text clustering systems is to group
documents into C thematically homogeneous clusters, recovering those latent
thematic sources may lead to improved clustering.

Figure 1 illustrates the application of latent topic extraction methods for doc-
ument clustering. Let X denote the T ×D term-by-document matrix representing
the document corpus in the original high-dimensional vector space model (where
T stands for the vocabulary size) [11]. The extraction of K << T latent thematic
sources yields a K-dimensional representation of the D documents in the latent
thematic space, Xlts. Subsequently, the documents are grouped into C clusters
by applying a clustering process on Xlts, which yields the D-dimensional label-
ing vector λ, whose i-th component λi contains a numeric label identifying the
cluster the i-th document is assigned to, i.e. λi ∈ {1, 2, . . . , C}, ∀i = {1, 2, . . .D}.

As regards the use of the latent thematic space document representation Xlts

for clustering, two main approaches can be followed: firstly, in what we call la-
tent source driven clustering (LSDC), the latent topics are not used as document
representations, but rather as cluster membership indicators (i.e. documents are
assigned to a specific cluster depending on their maximally active latent source in
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Xlts) [7, 9, 12, 18]. And secondly, following what we call latent thematic feature
clustering (LTFC), Xlts is deemed as a projection of the documents onto a new
feature space, where a clustering algorithm is applied [13, 14, 17]. Despite shar-
ing a common conceptual background, both approaches differ significantly from a
practical viewpoint. In the LSDC approach, the number of latent topics retrieved
must be tuned to match the desired number of clusters, i.e. K = C. Moreover, the
clustering stage simply boils down to a cluster assignment based on finding the
maxima in Xlts [7, 9]. In contrast, in LTFC, the number of clusters to be found is
a parameter affecting the clustering stage rather than the latent topic extraction
process, i.e. K is not necessarily equal to C. Furthermore, the grouping of the doc-
uments is conducted in this case by applying a standard partitioning algorithm on
the latent thematic feature space where Xlts lies, which usually increases the com-
putational cost of the clustering stage in comparison with the LSDC approach.

3 Experiments on LSDC and LTFC

The following experiments compare three well-known unsupervised latent the-
matic generative models applied to the document clustering task –following both
the LSDC and LTFC approaches–, namely: Latent Semantic Analysis (LSA), In-
dependent Component Analysis (ICA) and Non-negative Matrix Factorization
(NMF)1.

Two single-class balanced clustering problems have been created upon subsets
of the standard miniNewsgroups [4] and OHSUMED [3] document collections.
Table 1 summarizes the main aspects of both corpora: the predefined number of
categories C –which is assumed to be known throughout all the experiments–,
the number of documents D, their vocabulary size T and the average number of
terms per document, Td.

Experimental results are evaluated by comparing the labeling vector λ de-
livered by the clustering processes with the original labeling of the documents
(enclosed in vector κ) in terms of the Normalized Mutual Information (φ(NMI)),
a similarity measure ranging in value from 0 to 1 [16]:

φ(NMI)(κ, λ) =

∑C
h=1

∑C
l=1 nh,l log

(
D·nh,l

n
(κ)
h n

(λ)
l

)

√(∑C
h=1 n

(κ)
h log n

(κ)
h

D

) (∑C
l=1 n

(λ)
l log n

(λ)
l

D

) (1)

where n
(κ)
h is the number of objects in cluster h according to κ, n

(λ)
l is the

number of objects in cluster l according to λ, nh,l denotes the number of objects
in cluster h according to κ as well as in group l according to λ [16].
1 The ICA document representation is created by applying a version of the FastICA

algorithm that maximizes skewness [7], using LSA (implemented by singular value
decomposition) for pre-whitening and dimension reduction. The NMF-based doc-
ument representation is created by applying a mean square reconstruction error
minimization algorithm from NMFPACK [5].
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Table 1. Document corpora subsets description

Corpus C D T Td

miniNewsgroups 6 600 3735 99

OHSUMED 11 1100 4705 120

Table 2. Latent source driven clustering results using LSA, ICA and NMF

Corpus LSA ICA NMF
miniNewsgroups .342 ± .018 .472 ± .001 .474 ± .038

OHSUMED .188 ± .004 .229 ± .001 .213 ± .013

3.1 Latent Source Driven Clustering

This experiment evaluates the performance of LSA, ICA and NMF in the con-
text of latent source driven clustering (i.e. as many latent thematic sources as
desired clusters -C- are extracted and their value is used as a cluster member-
ship indicator). The mean values and standard deviations of the φ(NMI) scores
obtained across 10 independent runs of this experiment are presented in table 2.

For the miniNewsgroups corpus, the best result in average is achieved by
NMF-based LSDC (in boldface in table 2). In contrast, ICA is the latent source
extraction method that yields the best results in the OHSUMED experiment.
Note that, for both document collections, LSA is clearly outperformed by ICA
and NMF, which suggests that the latent topics recovered by these two tech-
niques are better aligned with the real thematic contents of the documents.

So as to illustrate this fact, figure 2 compares the six latent thematic sources
extracted by means of LSA and NMF with the categories in the miniNewsgroups
corpus (100 documents per topic). Notice that the NMF1, NMF5 and NMF6 la-
tent sources clearly identify the comp.graphics, sci.crypt and misc.forsale
topics –in sharp contrast with the less defined pattern of the LSA latent sources–,
which somehow justifies the superiority of NMF in this experiment.

3.2 Latent Thematic Feature Clustering

This experiment compares the results of applying four state-of-the-art clustering
algorithms –group average agglomerative clustering (AC), graph-based cluster-
ing (GC), direct clustering (DC) and repeated bisecting clustering (BC)2– on
i) the original T -dimensional term vector space and ii) on LSA, ICA and NMF
latent thematic feature spaces of dimensionalities ranging from K = 2 to K = 50.

Figure 3 presents the results of this experiment, averaged across 10 indepen-
dent runs. An interesting observation is that LTFC delivers better results than
LSDC. For the miniNewsgroups corpus (figure 3a), the best clustering results are
obtained using the original term-based representation except with agglomerative

2 Implementations provided by the CluTo clustering package, available online at
http://glaros.dtc.umn.edu/gkhome/views/cluto
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Fig. 2. Latent thematic sources extracted by LSA and NMF on the miniNewsgroups
corpus
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Fig. 3. Latent thematic feature clustering results for both corpora (miniNewsgroups on
the left, OHSUMED on the right) applying four clustering strategies on latent feature
spaces of varying dimensionality

clustering. In this case, the highest φ(NMI) is achieved when AC is conducted on
a 7-dimensional NMF feature space. Note that fairly diverse results are obtained
across the latent thematic feature space dimensionality range. Moreover, notice
that nearly identical clustering results are yielded by all the clustering strategies
when operating on the LSA and ICA feature spaces, which is in clear contrast
with the situation found in LSDC (see table 2). In contrast, for the OHSUMED
corpus (figure 3b), none of the clustering algorithms achieves the best results
when operating on the term-based representation, and there exists an indeter-
minacy regarding both the optimal type of feature and the dimensionality of
the latent thematic feature space. Most of all, it is to note that these optimal-
ity properties depend on the particular partitioning strategy employed and the
clustering problem faced. These results suggest that it is not possible to claim
for the universal superiority of any latent thematic model. So as to overcome
this indeterminacy, we propose applying a consensus clustering strategy.

(a) ( )b
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Fig. 4. Construction of a cluster ensemble Λ upon R document representations of
dimensionalities K = {Km, . . . , KM}, and subsequent creation of a consensus clustering
λc by means of a consensus function F

4 Consensus Clustering

Being the unsupervised counterpart of classifier committees, consensus clustering
is the task of creating a consensus labeling λc by applying a consensus function
F on a cluster ensemble Λ that collects the labelings output by several partition-
ing processes. Typical applications of cluster ensembles include clustering reuse
besides distributed and robust clustering [16]—the aim being, in this latter case,
that λc approximates or even improves the best clustering in the ensemble.

Following this principle, we propose overcoming the data representation de-
pendence effect by building a cluster ensemble upon a set of R document indexing
techniques, and subsequently constructing a consensus labeling λc (see figure 4).

Several consensus functions have been proposed in the literature [2, 15, 16],
and their general rationale is the application of cluster identification plus voting
strategies across the labelings in the ensemble. For the sake of space, the reader
is referred to [16] for a general introduction to consensus clustering.

4.1 Experiments on Consensus Clustering

This experiment analyzes the ability of consensus clustering for overcoming the
uncertainty regarding optimal document indexing. To that effect, the 148 label-
ings delivered by each clustering algorithm in the LTFC experiment (section 3.2)
have been collected into four cluster ensembles Λ (one per clustering strategy).
Then, we have applied three state-of-the-art consensus functions on these en-
sembles: Cluster-Similarity Partitioning Algorithm (CSPA), Hyper-Graph Par-
titioning Algorithm (HGPA) and Meta-Clustering Algorithm (MCLA) [16].

It is important to note that the robustness to the data representation depen-
dence effect is proportional to the closeness between the φ(NMI) of the consensus
labeling and the maximum φ(NMI) of the labelings in the cluster ensemble. For
this reason, figure 5 presents –through a φ(NMI) histogram (averaged across 10
experiment runs)– a visual comparison between the labelings in the ensemble
and the labelings derived by each consensus function. Complementarily, table
3 presents the relative φ(NMI) differences between the consensus labelings and
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Fig. 5. φ(NMI) histogram of the cluster ensembles and consensus clustering for both
corpora (miniNewsgroups on the left, OHSUMED on the right) applying four clustering
strategies and three consensus functions

Table 3. Relative φ(NMI) differences (mean value ± standard deviation) between the
consensus labelings and the average and best individual labelings in the ensemble

Corpus miniNewsgroups OHSUMED
F CSPA HGPA MCLA CSPA HGPA MCLA

Δφ(NMI)

w.r.t. ALE
+31.4% −16 ± 15% +31.6 ± 0.1% +13.2% −18.6 ± 6.2% +17.2 ± 0.1%

Δφ(NMI)

w.r.t. BLE
−6% −40 ± 10% −5.7 ± 0.1% −11.6% −36.5 ± 4.8% −8.4 ± 0.1%

the average and best labelings in the ensemble (referred to as ALE and BLE,
respectively). It can be observed that, in comparison to HGPA, the CSPA and
MCLA consensus functions i) achieve notable robustness to the data representa-
tion dependence effect (i.e. the consensus labelings derived by CSPA and MCLA
are closer to the BLE, being even better in some cases –see miniNewsgroups-
GC or OHSUMED-BC in figure 5), and ii) show a more stable behaviour (i.e.
smaller standard deviations) across the 10 experiment runs –in fact, CSPA yields
repetitive results when operating on the same data.

5 Conclusions

One of the main difficulties encountered by text clustering practitioners is the
uncertainty regarding the selection of a document indexing technique. In this
context, document representations based on latent thematic generative models
such as LSA, ICA or NMF can be advantageous with respect to the original
term-based representation. However, the optimality of a single indexing tech-
nique is not a universal property, which gives rise to the so-called data repre-
sentation dependence effect. Consensus clustering constitutes a reliable strategy
to overcome this problem, and it can easily be extended to deal with additional
indeterminacies, e.g. the one regarding the optimal clustering algorithm [13].

 (a) ( )b
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Abstract. Top-down and bottom-up processing are two distinct yet highly 
interactive modes of neuronal activity underlying normal and abnormal human 
cognition. Here we characterize the dynamic processes that contribute to these 
two modes of cognitive operation. We used a blind source separation algorithm 
called second-order blind identification (SOBI [1]) to extract from high-density 
scalp EEG (128 channels) two components that index neuronal activity in two 
distinct local networks: one in the occipital lobe and one in the frontal lobe. We 
then applied Granger causality analysis to the SOBI-recovered neuronal signals 
from these two local networks to characterize feed-forward and feedback 
influences between them. With three repeated observations made at least one 
week apart, we show that feed-forward influence is dominated by alpha while 
feedback influence is dominated by theta band activity and that this direction-
selective dominance pattern is jointly modulated by situational familiarity and 
demand for visual processing. 

Keywords: electroencephalogram, second-order blind identification (SOBI), 
coherence, Granger causality, top-down, bottom-up, feed-forward, feedback. 

1   Introduction 

Second-order blind identification (SOBI) [1] is an emerging signal processing 
technique that can be used to facilitate source analysis from high-density EEG.  
Similar to other ICA algorithms that have been applied to EEG data [2], [3], SOBI 
can be used to isolate and remove ocular artifact [4].  In our laboratory, we have 
conducted extensive investigations to demonstrate the utility of SOBI in aiding source 
analysis from high-density EEG. Specifically, we have shown that: (1) SOBI can 
correctly recover known noise sources (noisy sensors and artificially injected noise at 
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known electrodes) and known neuronal sources (SI activation by median nerve 
stimulation) [5]; (2) SOBI can increase signal to noise ratios leading to improved 
performance in single-trial ERP classification [6]; (3) SOBI can recover neuronal 
sources whose activations are correlated [7]; (4) SOBI can recover neuronal sources 
using EEG collected when the brain is in its default mode (i.e., the “resting” state) [8]; 
(5) SOBI can recover neuronal sources during free viewing of continuous streams of 
visual information [9]; and (6) SOBI can recover weak neuronal signals that 
temporally overlap with much stronger signals (e.g. signals associated with ipsilateral 
activation of primary somatosensory cortex) [10]. 

In this paper, we set out to achieve three goals. First, we seek to provide further 
validation for SOBI recovered neuronal sources by investigating whether the same 
neuronal sources can be recovered from repeated EEG measures that are obtained 
days and weeks apart. Second, we combine SOBI with Granger causality analysis to 
show distinct patterns of theta(θ)/alpha(α) contributions in the feed-forward and 
feedback influences between the frontal and occipital cortices. Third, we investigate 
how such asymmetrical influence between the frontal and occipital cortices is 
modulated by sensory processing and by situational familiarity. 

2   Methods 

Eight right-handed subjects volunteered to participate in the present study. All 
subjects were free of any history of neurological or psychological disorders. The 
experimental procedures were conducted in accordance with the Human Research 
Review Committee at the University of New Mexico. Each subject was tested in three 
sessions at Week 0, Week 1, and Week 4 or later. Up to 7 min of continuous 128-
channel EEG data were collected at 1000 Hz during: (1) eyes-closed “resting”; (2) 
eyes-open “resting”; (3) video-viewing (a silently played nature video); (4) listening 
to only the audio track of the video; and (5) forming mental images of scenes from the 
video. This paper limits the discussion to conditions 1-3. 

SOBI was applied to the continuous EEG data x(t), across all conditions to extract 
the continuous time course of activation from two types of neuronal components--- an 
anterior (A) and a posterior (P) component. For details on SOBI application, see [5]. 
Briefly, SOBI recovers the underlying sources, s(t), by minimizing the sum squared 
cross-correlations between si(t) and sj(t + τ), across all pairs of sources and across 
multiple time delays, τs. A subset of SOBI-recovered components can be verified as 
neuronal sources via source localization using a forward model (e.g. BESA 5.0) [3].  
Here we focused our analysis on two such neuronal components that correspond to 
focal regions within the frontal and occipital lobes. 

Feed-forward (FF) and feedback (FB) influences were quantified by Granger 
causality between the two components, reflecting long-distance directional influences 
between the frontal and occipital cortices. Granger causality analysis was carried out 
on the continuous time courses, si(t), from the selected A and P components according 
to methods detailed in [11], [12].  As Granger causality can be decomposed into its 
frequency content, we computed Granger causality spectrum and measured power 
within the θ (4-7 Hz) and α (8-14 Hz) bands using a moving window of 30-sec with  
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5-sec increments. Power in the θ and α bands from the A and P components were also 
computed as indicators of synchronization within the local networks.  

3   Results 

Reliable Extraction and Identification of Neuronal Components from Repeated 
Measures made Weeks Apart.  In all 8 subjects, across all 3 sessions, we were able to 
recover SOBI components that corresponded to two distinct neuronal sources, one 
localized to a rather focal region within the frontal cortex, in or near anterior cingulate 
cortex (ACC) and the other to focal regions within the occipital lobe (occipital gyrus). 
Repeated-measure ANOVA revealed no statistically significant differences in the 
location of the corresponding ECD models across the 3 recording sessions. As no 
session-to-session difference was found, the averaged locations across the 3 sessions 
are shown in Fig. 1. ECDs for each of the 8 subjects are superimposed in the figure 
revealing a tight clustering of ECDs across subjects. This result demonstrates that 
SOBI can reliably recover components that correspond to anatomically well defined 
brain regions even when the recording sessions were made weeks apart. 

It is important to emphasize that the recovery of these two neuronal sources was 
achieved without imposing constraints of fixation or use of event-related stimulation 
paradigms. Instead, subjects were allowed to freely move or blink their eyes as 
needed during the recording conditions. No segment of the EEG data was excluded 
prior to SOBI application. These unique features of SOBI processing have non-trivial  
 

 

Fig. 1. Equivalent current dipole (ECD) locations for the SOBI recovered A and P components 

implications for the study of mental disorders and the study of early development or 
aging where subjects are often unable to conform to typical experimental constraints.   
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Theoretically, this result implies that SOBI’s ability to recover anatomically well-
defined neuronal sources does not depend upon the use of an event-related stimulation 
paradigm. Thus, fast electrical brain activity in the default mode [13] can be 
investigated in terms of neuronal signals originating from specific, focal cortical areas.  
In comparison to default mode activity revealed by fMRI, the default mode activity 
revealed with SOBI and EEG will offer millisecond temporal resolution, allowing for 
the characterization of default mode brain dynamics within a new temporal domain. 

 

Fig. 2. Median power spectra of two SOBI-neuronal components as a function of repeated 
exposures to the same experimental situation. Session 1: week 0; Session 2: week 1; Session 3: 
week 4+.  

Local Network Synchrony Shows Distinct Patterns of Change across 3 Repeated 
Exposures to the same Experimental Situation. For each of the 3 recording sessions, 
power spectra from the component time courses were computed for ~5-min segments 
during which the subjects had their eyes-closed (red), eyes-open (blue), or viewed a 
nature video (green), respectively (Fig. 2). 

The anterior component had peak power within the θ band while the posterior 
component had peak power within the α band, indicated by a significant main effect 
of Region in the θ-to-α ratio (F[1,7] = 52.12, p < 0.001, partial η2 = 0.88). This is 
consistent with the well established fact that the posterior and anterior parts of the 
brain are major sources of α and θ generators, respectively.   
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Power spectra in these two components were differentially modulated by sessions 
and experimental conditions [interaction effect: Region x Session (contrast 
coefficients: 1, -1, 0) x Condition (1, 0, -1), F(1,7) = 3.52, p = 0.05, 1-tailed, partial 
η2=0.33)]. For the P component, the power spectra revealed a systematic effect of 
session and experimental condition. Across the 3 repeated exposures to the same 
experimental conditions, peak α power decreased as the testing situation became 
increasingly familiar.     

Across the 3 experimental conditions, the highest peak α power was associated 
with the eyes closed condition and the peak α power was successively reduced when 
the demand for visual processing increased from the eyes-closed to the eyes-open and 
video-viewing conditions. This latter observation is consistent with the known 
observation that visual processing suppresses α band activity.  In contrast, for the 
anterior component, the power spectra showed a relative insensitivity to repeated 
exposures to the same experimental conditions and little modulation by the eyes-
closed, eyes-open, and video-viewing conditions.  
 

Differential Modulation of θ/α Contribution to Feed-Forward and Feedback 
Influences by Situational Familiarity and Visual Processing. FF(posterior-to-anterior)  
and FB (anterior-to-posterior) influences were measured by Granger causality in the θ 
and α band activity separately. FF and FB Granger causality measures were plotted as 
a function of time (Fig. 3). For the FF influence, when the eyes were closed, α band 
 

 
Fig. 3. Theta dominance over alpha in the anterior-to-posterior feedback (lower) influence and 
its reversal in the posterior-to-anterior feed-forward influence (upper) from a single-subject 

activity clearly dominated as indicated by the α waveforms (black) having greater 
area underneath the curve than the θ waveforms (grey). This α dominance was clearly 
reduced when the eyes were open and was further reduced to nearly non-existent 
when the subjects viewed a video. For the FB influence, the pattern of α dominance 
over θ was reversed showing uniform θ dominance over α across all 3 experimental 
conditions. 
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Using the area underneath the curve as a dependent measure, we summarize results 
from all 8 subjects across all 3 recording sessions in Fig. 4. To determine whether θ 
and α band activity contribute differentially to the FF and FB influences and how such 
differential contributions are modulated by situational familiarity and sensory 
processing, we performed an ANOVA on the θ/α ratio.   

The θ/α ratio differed significantly between the FF and FB influences with a 
greater ratio for FB influence than for the FF influence (main effect of Direction, 
F[1,7] = 34.64, p < 0.001, partial η2 = 0.83), i.e. a θ dominance in FB influence. This 
can be seen by the higher measures for the θ band activity than the α band activity for 
the FB influences in most of the 9 conditions and clear reversal or reduction of this θ 
dominance in the FF influence (Fig. 4).     

 

Fig. 4. Cumulative Granger Causality (area underneath the curve in Fig. 3) in the θ and α band 
as a function of situational familiarity (repeated sessions) and a function of visual processing 
(eyes-closed, eyes-open, video-viewing). 

This reversal of θ dominance from FF and FB influences was significantly 
modulated by the familiarity of the situation [Direction x Session (contrast 
coefficients: 1, -1, 0), F(1,7) = 11.97, p=0.005, 1-tailed, partial η2=0.63]. The reversal 
is more prominent when the situation was novel (Week 0) than when it became more 
familiar (Week 1 and 4+).  This is best seen in the case of eyes-closed condition. The 
magnitude of reversal is clearly reduced from Week 0 in comparison to Week 4+. 
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For the eyes-open condition, the θ dominance was reversed in Week 0 and 1 and 
reduced in Week 4+. For the video-viewing condition, the reversal of θ dominance does 
not appear to be influenced by the increasing situational familiarity. These patterns 
indicate that the FF/FB contrast is dependent upon the amount of visual information 
processing involved. When the subjects were engaged in visual perception during video-
viewing, θ dominance in the FB influence and θ-α balance in the feed-forward influence 
are maintained across recording sessions. This visual processing-dependent effect is 
supported by a significant 3-way interaction [Direction x Session (1, -1, 0) x Condition 
(1, 0, -1), F(1,7) = 7.13, p = 0.02, 1-tailed partial η2=0.63]. 

Within Week0 when the recording situation was novel (which is comparable to 
most studies that do not deal with the issue of task familiarity), θ dominance in the FB 
influence was maintained despite varying demand for visual processing. In contrast, 
the α dominance in the FF influence in the case of eyes-closed condition was reduced 
by increasing demand for sensory processing. In fact, visual processing was 
accompanied not only by a reduction in α but an increase in θ band activity in the FF 
influence. We speculate that this increase in θ band activity serves to “match” the θ-
dominance in the FB influence to mediate the dynamic two-way communication 
between the posterior and anterior parts of the brain. 

4   Discussion 

We analyzed EEG data collected from 8 subjects in three sessions that were weeks 
apart, each including a period of resting with eyes-closed, resting with eyes-open, and 
visual perception while free viewing a nature video. We extracted neuronal signals 
from focal brain regions within the frontal and occipital lobes and showed that such 
extraction can be achieved under free viewing conditions and from recordings made 
weeks apart. As many intervening events must have taken place during the inter-
session intervals, the reliable extraction of the neuronal sources raises the possibility 
that such a wide range of variations may be overcome by the use of SOBI in 
longitudinal experimental designs necessary for developmental and aging studies. 

Applying Granger causality analysis to the time courses of the frontal and occipital 
SOBI components, we presented evidence indicating distinct patterns of θ/α band 
activity in the FF and FB influences between the two components, with a θ 
dominance characterizing the FB influence and an α dominance in the FF 
influence.  By comparing the feed-forward and feedback influences under varying 
degrees of situational familiarity (sessions) and under conditions of varying degrees 
of visual processing (eyes-closed, eyes-open, and video viewing), we presented 
evidence that the balance in θ-α band activity between the FF and FB influences is 
modulated by two factors.  First, situational familiarity can reduce the degrees of θ 
and α dominance in the FB and FF influences, respectively (as in the case of eyes-
closed).  Second, the amount of sensory processing increases the θ band contribution 
and decreases α band contribution to FF influence but has little effect on FB 
influence. Finally, situational familiarity and sensory processing jointly determine the 
θ-α balance. Increasing familiarity and increasing visual processing both increases θ 
band contribution to FF influence.  In contrast, for FB influences, increasing 
familiarity decreases θ band contribution when there is little demand for visual 
processing (eyes-closed) and has no effect on θ band contribution when there is high 
demand for visual processing (visual). 
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Together, these findings demonstrate a novel non-invasive approach to the 
assessment of top-down and bottom-up influences in the human brain.  These findings 
may particularly benefit those clinicians and researchers who are interested in how 
bottom-up and top-down influences interact in both diseased and normal 
brains.  Future work will extend this analysis to networks involving more functionally 
distinct brain regions. 
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Abstract. Noisy independent component analysis (ICA) is viewed as a
method of factor rotation in exploratory factor analysis (EFA). Starting
from an initial EFA solution, rather than rotating the loadings towards
simplicity, the factors are rotated orthogonally towards independence. An
application to Thurstone’s box problem in psychometrics is presented us-
ing a new data matrix containing measurement error. Results show that
the proposed rotational approach to noisy ICA recovers the components
used to generate the mixtures quite accurately and also produces simple
loadings.

Keywords: Independent component analysis, Exploratory factor anal-
ysis, Factor rotation, Factor scores, Gradient projection algorithm.

1 Introduction

The key difference between EFA and noisy ICA is that in the latter model the
common factors are assumed to be both independent and non-normal. Since
only second-order statistics are analyzed, the loadings in the EFA model can
only be estimated up to an orthogonal rotation. Hence, EFA is not able to
separate linear mixtures into their independent components. In contrast, the non-
normality of the common factors allows ICA to perform blind source separation.
The rotational redundancy of the EFA model is removed, using supplementary
information not contained in the sample covariance or correlation matrix.

Several authors use EFA merely for quasi-sphering the data before doing an
ICA analysis [8,14]. ICA can be considered as a method for factor rotation seek-
ing a rotation matrix that maximizes the independence between the common
factors [6,7]. This connection was first explored in [13], where a varimax-based
criterion was proposed to implement noise-free ICA. The current paper imple-
ments noisy ICA from an EFA perspective by exploiting this link with factor
rotation. Starting from an initial EFA solution, the predicted factor scores are
rotated orthogonally towards independence. This is done using an appropriate
rotation criterion and an orthogonal rotation algorithm. Recently, the rotational
approach to ICA proposed here was introduced for the noise-free case using
methods from principal components analysis (PCA) [10]. In the sequel, this ro-
tational approach is applied for studying the less developed noisy version of
ICA.
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2 Independent Non-normal Factor Analysis Model

Consider the following linear latent variable model in which all variables are
assumed to be measured at least on an interval scale:

x = μ + Λf + u , (1)

where x ∈ Rp×1 is a random vector of manifest variables with mean vector μ,
f ∈ Rk×1 is a random vector of k � p latent variables called common factors,
Λ ∈ Rp×k is a matrix of fixed coefficients referred to as factor loadings, and
u ∈ Rp×1 is a random vector of latent variables called unique factors. In EFA,
the choice of k is subject to some limitations, which will not be discussed here
[5]. The loading matrix Λ is required to have full column rank. Assume that
E(f) = 0. Furthermore, let u ∼ Np(0,Ψ), where Ψ is assumed a positive definite
diagonal matrix. Finally, suppose that E(ff′) = Ik and E(fu′) = 0k×p. Thus, all
the factors are uncorrelated with one another and the variances of the common
factors equal unity. Using these assumptions, the model (1) represents an EFA
model with orthogonal (uncorrelated) common factors [5].

The idea of model (1) is that the common factors account for the covari-
ance structure among the set of manifest variables, while each unique factor
corresponds to that portion of a particular manifest variable which cannot be
accounted for by the common factors. As such, a unique factor contains the
specificity of that variable as well as errors in measurement or noise.

In EFA, it is often covenient to assume that not only u but also f and hence
x are multinormally distributed. This assumption is usually made for purposes
of statistical inference [15]. The elements of f being normally distributed and
uncorrelated are thus statistically independent random variables. Unlike EFA,
ICA assumes that the k common factors are both mutually independent and
non-normal or at least all but one non-normal [3]. With this key difference, the
model (1) is similar to a noisy ICA model [7].

Given amultivariate sample ofn independent observations onx = (x1, . . . , xp)′,
the k-factor model (1) can be written as

X = M + FΛ′ + U, (2)

where X = (x1, . . . ,xp) ∈ Rn×p is the observed data matrix in which xj =
(x1j , . . . , xnj)′ (j = 1, . . . , p), M = 1nμ′ ∈ Rn×p is the matrix of location
parameters, and F = (f1, . . . , fk) ∈ R

n×k and U = (u1, . . . ,up) ∈ R
n×p denote

the unknown matrices of factor scores of the k common factors and unobserved
values for the p unique factors on n observations, respectively.

The aim of noisy ICA based on model (2) is to recover F from X alone without
knowing Λ, Ψ, and the distributions of the common factors [4]. This problem
can be transformed into a specific EFA task.

The matrix M can easily be estimated by M̂ which consists of n constant
rows x̄′, where x̄ = (x̄.1, . . . , x̄.p)′ denotes the (p × 1) sample mean vector with
x̄.j = 1

n

∑n
i=1 xij (j = 1, . . . , p) being the sample means for each variable.
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Assume without changing notation that X has been mean-corrected and that
the column vectors of X are standardized to unit variance. The model in (1) and
the assumptions imply the following model correlation structure, R:

R = ΛΛ′ + Ψ . (3)

The estimation of the parameters in EFA is a problem of finding the pair {Λ̂, Ψ̂}
which gives the best fit for certain k to the sample correlation matrix C =
X′X/(n − 1) with respect to some goodness-of-fit measure.

To find estimates of Λ and Ψ, several factor extraction methods can be em-
ployed [5]. A natural and popular choice is the (unweighted) least squares (LS)
approach. It can be formulated as the following optimization problem [11]:

min
Λ,Ψ

||(C − ΛΛ′ − Ψ)||2 s.t. Λ′Λ a diagonal matrix, (4)

where ||A|| =
√

trace(A′A) denotes the Frobenius norm of A. In EFA, the con-
straint in (4) eliminates the indeterminacy in (3). This indeterminacy-elimination
feature is not always helpful in EFA, because such solutions are usually difficult
to interpret [15]. Instead, the parameter estimation is usually followed by some
kind of ’simple structure’ rotation [5], which in turn gives solutions violating (4).
Recall that in ICA ’simple structure’ rotation is not necessary. The constraint
in (4) is invoked to facilitate the algorithms for numerical solution of the LS
problem. The standard numerical solutions of the optimization problem in (4)
are iterative, usually based on a Newton-Raphson procedure [11].

3 Factor Scores and Rotation Towards Independence

After estimates Λ̂ and Ψ̂ of the parameters Λ and Ψ have been found, (initial)
factor scores can be predicted in a second step:

F̂ = XΨ̂
−1

Λ̂
(
Λ̂
′
Ψ̂
−1

CΨ̂
−1

Λ̂
)− 1

2
. (5)

This set of factor scores was proposed by [1]. Equation (5) produces predicted
factor scores which are orthogonal. The factor scores are also valid, which means
that the predictions do have high correlations with the factors being measured.
However, the factor scores are neither univocal, that is, they do not have the
property of not correlating with any of the factors except those they were de-
signed to measure nor are they unbiased estimators [5].

So far, finding {Λ̂, Ψ̂} and F̂ is a standard EFA problem. To solve the corre-
sponding ICA problem one needs to go one step further. The initial factor scores
are rotated towards independence, that is,

F̃ = F̂T, (6)

for some orthogonal matrix T. To find the matrix T that leads to (approxi-
mately) independent factor scores, an appropriate rotation criterion is set up.
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Recall that if the common factors are independent their squares are also in-
dependent. Thus, the (model) covariance matrix of the squared components is
diagonal. Let V be an arbitrary orthogonal matrix and let

G = F̂V. (7)

The sample covariance matrix between the elementwise squares of G is

S =
1

n − 1
(G � G)

′
(Ik − n−11k1′k)(G � G), (8)

where � denotes the element-wise (Hadamard) matrix product.
Consider the following rotation criterion to be minimized [10]:

F(V) = trace
(
S′(S � N)

)
, (9)

where N is a square matrix with zeros on the diagonal and ones elsewhere. The
aim is to minimize the sum of the squared off-diagonal elements of S over all
orthogonal rotations V of F̂.

The gradient projection algorithm proposed by [9] is used to find T that
minimizes F . Let M be the manifold of all orthogonal matrices. Given a current
value of V, this algorithm computes the gradient of F at V and moves α units
in the negative gradient direction from V. The result is projected on M. The
algorithm proceeds iteratively, it is strictly descending and converges from any
starting point to a stationary point. At a stationary point of F restricted to
M, the Frobenius norm of the gradient after projection onto the plane tangent
to M at the current value of V is zero. The algorithm stops when the norm is
less than some prescribed precision, say 10−5. Summarizing, the proposed EFA
approach to noisy ICA is as follows:

1. Set up the number of common factors, k, prescribed or estimated.
2. Estimate the parameters Λ and Ψ by a factor extraction method.
3. Calculate (initial) predicted factor scores, F̂, using (5).
4. Find an orthogonal matrix T that minimizes F in (9).
5. Calculate the approximately independent factors as F̃ = F̂T.
6. Obtain the ICA mixing matrix by Λ̃ = Λ̂T.

4 Application

Developing analytical methods for factor rotation has a long history in factor
analysis [2]. It is motivated by both solving the indeterminacy problem and
facilitating the factors’ interpretation. Thurstone’s 26-variable box problem [16]
was notorious for being difficult to solve by any analytic rotation method. In
this data set, the boxes constitute the observational units.

Table 1 shows the three dimensions f1 (length), f2 (width) and f3 (height)
for each box. As in [10], seven additional boxes, whose dimensions are given in
Tab. 2, are added to the 20 boxes to form an independent set of boxes which in
turn is well-suited for an ICA analysis.
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Table 1. Dimensions f1, f2, and f3 of Thurstone’s original 20 box-set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f1 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
f2 2 2 3 3 3 2 2 3 3 3 4 4 4 2 2 3 3 4 4 4
f3 1 2 1 2 3 1 2 1 2 3 1 2 3 1 2 2 3 1 2 3

Table 2. Dimensions f1, f2, and f3 of the 7 additional boxes

21 22 23 24 25 26 27

f1 3 3 3 3 4 5 5
f2 4 4 4 2 2 3 2
f3 1 2 3 3 3 1 3

Twenty-six functions of these dimensions represent the variables of the study:
f1, f2, f3, f1f2, f1f3, f2f3, f2

1f2, f1f
2
2 , f2

1 f3, f1f
2
3 , f2

2 f3, f2f
2
3 , f1/f2, f2/f1,

f1/f3, f3/f1, f2/f3, f3/f2, 2f1 +2f2, 2f1 +2f3, 2f2 +2f3,
√

f2
1 + f2

2 ,
√

f2
1 + f2

3 ,√
f2
2 + f2

3 , f1f2f3, and
√

f2
1 + f2

2 + f2
3 .

The analytic rotations’ aim is to find loadings with simple structure which
identify the dimensions of the boxes. As the three dimensions are independent,
the problem seems quite appropriate to be attacked by ICA instead. Then, one
can expect to find loadings with such simple structure as a side effect.

The resulting 27 × 26 data matrix contains no measurement error. A less
artificial data set is proposed in [12] in which the remedy is to double the number
of boxes and add a 54×26 error matrix made up of random normal deviates to the
enlarged data matrix. The boxes are doubled to make the results less-dependent
on the pseudo-random numbers added. This procedure injects measurement error
to the data, giving the problem a greater degree of realism. A cute side-effect is
obtained. Since the new data matrix yields a non-singular correlation matrix, it
can be used with factor extraction methods such as maximum likelihood factor
analysis, canonical factor analysis, image factoring, et cetera.

The matrix of measurement errors is mean-centered and also sphered to ensure
that the columns of the error matrix are uncorrelated. After that the columns
are scaled to have variance 1/19 of the variance of the corresponding columns
of the original data matrix. This yields a reliability of (approximately) 95% for
each variable represented in the new data matrix. The 54 × 26 data matrix, X,
is finally mean-centered and standardized to unit variance.

The first few eigenvalues of C sorted in decreasing order are 11.8906, 6.7467,
5.4132, 0.4015. As expected, three eigenvalues are considerably greater than one,
which is the Kaiser’s solution for the number of common factors.

The prodecure described in the last section was applied to get F̃ = F̂T. The
columns f̃1, f̃2, and f̃3 of F̃ are the rotated factor scores and estimates of the
standardized form of the three dimensions f1, f2, and f3 used to generate the
mixtures.



Noisy Independent Component Analysis 815

Table 3. Covariances (diagonal and above) and correlations (below diagonal) between
the element-wise squares of f̃1, f̃2, and f̃3

0.5847561 0.0000001 -0.0000139
0.0000001 0.6107587 0.0000016

-0.0000238 0.0000027 0.5868985

According to Tab. 3, f̃1, f̃2, and f̃3 are quite independent. The off-diagonal
elements of the correlation matrix for the element-wise squares of f̃1, f̃2, and f̃3
are all very small (below 3 × 10−5).

The gradient projection algorithm converged after 18 iterations to a stationary
point and the value of F at the minimum is 1.97 × 10−10.

Figure 1 displays that the EFA approach to ICA has quite accurately recovered
the dimensions for each of the 54 boxes despite the noise introduced to the model.
Quite common for an ICA analysis, permutation ambiguities were revealed. The
first factor f1 corresponds to the third column f̃3 of F̃ and vice versa.

Note that some of the manifest variables are non-linear functions of the di-
mensions of the boxes. However, as [10] point out, the non-linear functions are
nearly linear over the values f1, f2, and f3 used to generate the mixtures.
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2

0 10 20 30 40 50 60
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i

Fig. 1. Standardized box dimensions ’◦’ and their estimates ’*’ for each dimension f1

(upper panel), f2 (middle panel), and f3 (lower panel) and each box i (i = 1, . . . , 54)
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Table 4. ICA (orthogonal) and Geomin (oblique) rotated loadings for the box data

Function ICA (Λ̃) Geomin

f1 .97 .09 .09 .97 -.06 .02
f2 -.13 .96 .10 .02 .98 .02
f3 -.07 -.10 .96 -.02 -.01 .97
f1f2 .45 .86 .12 .58 .78 -.03
f1f3 .33 -.06 .89 .37 -.05 .86
f2f3 -.19 .45 .82 -.07 .54 .77
f2
1 f2 .69 .64 .11 .79 .52 -.04

f1f
2
2 .24 .91 .16 .39 .86 .01

f2
1 f3 .57 -.01 .77 .61 -.04 .70

f1f
2
3 .21 -.01 .92 .27 .02 .89

f2
2 f3 -.15 .65 .68 .00 .72 .60

f2f
2
3 -.14 .27 .90 -.04 .36 .87

f1/f2 .66 -.68 -.05 .54 -.78 -.02
f2/f1 -.63 .71 .01 -.51 .81 -.03
f1/f3 .43 .14 -.83 .40 .00 -.88
f3/f1 -.49 -.15 .77 -.46 .00 .83
f2/f3 -.06 .63 -.69 -.01 .57 -.76
f3/f2 .06 -.56 .74 .02 -.50 .80
2f1 + 2f2 .56 .77 .17 .69 .68 .01
2f1 + 2f3 .68 .03 .70 .72 -.03 .62
2f2 + 2f3 -.16 .60 .74 -.02 .67 .67√

f2
1 + f2

2 .70 .67 .10 .80 .55 -.05√
f2
1 + f2

3 .84 .09 .47 .87 -.01 .37√
f2
2 + f2

3 -.16 .71 .63 .00 .77 .55
f1f2f3 .22 .43 .83 .34 .45 .74√

f2
1 + f2

2 + f2
3 .57 .58 .51 .69 .51 .37

If one rotates the factor scores, the loadings are rotated as well. Table 4 shows
the rotated loadings Λ̃. If one ignores all loadings with magnitude .19 or less,
the remaining loadings perfectly identify the subsets of the variables f1, f2, and
f3 that were used to generate the mixtures. The simple structure is nearly as
good as the one obtained by the more sophisticated method of Geomin [2].

5 Discussion

In this paper, noisy ICA was implemented from an EFA perspective. The ap-
proach was applied to the notorious Thurstone’s box problem. By rotating the
factors towards independence, a simple structure of the loadings was achieved.
The criterion for rotating the factor scores towards independence requires mini-
mization of squared fourth-order statistics. Optimization was easily carried out
using the gradient projection algorithm. Other methods can also be applied to
rotate F̂ towards independence, as for example the varimax-based criterion [13]
or the FastICA algorithm [7]. The proposed approach has to be compared to
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these and/or other ICA methods. One might ask whether the factor analysis’
approach is able to recover the common factors and produces simple loadings if
the sources are dependent rather than independent and if real correlated data is
considered. Tackling these issues will be the subject of future work.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful comments and suggestions.
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Abstract. Multiple factors related to scene structure, illumination, and imaging
contribute to image formation. Independent Components Analysis (ICA) maxi-
mizes the statistical independence of the representational components of a train-
ing image ensemble, but it cannot distinguish between these different factors, or
modes. To address this problem, we introduce a nonlinear, multifactor model that
generalizes ICA. Our Multilinear ICA model of image ensembles learns the sta-
tistically independent components of each of the multiple factors. We present an
associated dimensionality reduction algorithm for multifactor subspace analysis.
As an application, we consider the multilinear analysis of ensembles of facial
images that combine several modes, including different facial geometries (peo-
ple), expressions, head poses, and lighting conditions. For the purposes of face
recognition, we introduce a multilinear projection algorithm that simultaneously
projects an unknown test image into the multiple constituent mode spaces in order
to infer its mode labels. We show that multilinear ICA computes a set of factor
subspaces that yield improved recognition rates.

1 Introduction

Historically, linear models that capture the statistical properties of image or other sig-
nal data have been broadly applied in pattern recognition. For example, the linear,
appearance-based face recognition method known as “Eigenfaces” is founded on the
principal components analysis (PCA) of facial image ensembles [1]. PCA encodes
pairwise relationships between pixels—the second-order, correlational structure of the
training image ensemble—but it ignores higher-order pixel statistics. By contrast, inde-
pendent components analysis (ICA) [2,3] learns a set of statistically independent com-
ponents by also considering these higher-order dependencies in the training data.

However, ICA cannot distinguish between higher-order statistics associated with
different factors, or modes, inherent to image formation—factors pertaining to scene
structure, illumination, and imaging. In particular, ICA has been employed in face
recognition [4] and, like PCA, it works best when person identity is the only factor
that is permitted to vary. If additional factors, such as illumination, viewpoint, and ex-
pression can modify facial images, recognition rates deteriorate dramatically.

We propose a multilinear framework that addresses the aforementioned problems.
Specifically, we introduce a nonlinear, multifactor model of image ensembles that gen-
eralizes conventional ICA.1 Unlike its conventional, linear counterpart, our Multilinear

1 A preliminary description of this work appeared as an extended abstract in the Learning 2004
Workshop, Snowbird, UT, April, 2004.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 818–826, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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ICA model exploits multilinear (tensor) algebra in order to learn the interactions of
multiple factors inherent to image formation and separately encode the higher-order
statistics of each of these factors. By contrast, the multilinear generalization of Eigen-
faces, dubbed TensorFaces [5], encodes only their second-order statistics. Our multilin-
ear ICA should not be confused with existing tensorial algorithms for computing the
conventional, linear ICA models [6,7].

We demonstrate the application of multilinear ICA to the problem of face recognition
under varying viewpoint and illumination, obtaining significantly improved recognition
rates. In this context, our second contribution is a novel, multilinear projection algo-
rithm. It projects an unknown test image into the multiple factor representation spaces
to infer the person, viewpoint, illumination, and other mode labels associated with the
test image.

After reviewing the mathematical foundations of our tensor approach in Section 2,
we motivate our work by discussing PCA and multilinear PCA in Section 3. Next, we
generalize ICA (Section 4), developing our multilinear ICA algorithm in Section 5. Sec-
tion 6 introduces the multilinear projection algorithm for recognition. Section 7 presents
our experiments and results and Section 8 concludes the paper.

2 Multilinear (Tensor) Algebraic Fundamentals

Definition 1 (Tensor). A tensor, or n-way array, is a generalization of a vector (first-
order tensor) and a matrix (second-order tensor).2 Tensors are multilinear mappings
over a set of vector spaces. The order of tensor A ∈ IRI1×...×IN is N . An element of A
is denoted as Ai1...in...iN or ai1...in...iN , where 1 ≤ in ≤ In.

Definition 2 (Mode-n Vectors). The mode-n vectors (or fibers) of an N th−order ten-
sor A ∈ IRI1×...×IN are the In-dimensional vectors obtained from A by varying in-
dex in while keeping the other indices fixed. They are the column vectors of matrix
A(n) ∈ IRIn×(In+1...IN I1...In−1) that results from flattening the tensor A (Fig. 1).

Definition 3 (Mode-n Orthonormal Matrices). Mode matrix Un contains the or-
thonormal vectors spanning the column space of matrix A(n) resulting from the mode-n
flattening of A.

Definition 4 (Mode-n Rank). The mode-n rank Rn of A ∈ IRI1×...×IN is defined as
the dimension of the vector space generated by the mode-n vectors: Rn = rankn(A) =
rank(A(n)).

Definition 5 (Mode-n Product, ×n). The mode-n product of a tensor A ∈
IRI1×...In×...IN and a matrix M ∈ IRJn×In , denoted by A×n M, is a tensor of dimen-
sionality IRI1×...In−1×Jn×In+1×...IN whose entries are computed by (A ×n

M)i1...in−1jnin+1...iN =
∑

in
ai1...in−1inin+1...iN mjnxin . It can be expressed in terms

of flattened matrices as B(n) = MA(n).

2 We denote scalars by italic lowercase letters (a, b, . . .), vectors by bold lowercase letters
(a,b, . . .), matrices by bold uppercase letters (A,B, . . .), and higher-order tensors by cal-
ligraphic uppercase letters (A, B, . . .).
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Fig. 1. Flattening a (3rd-order) tensor. The tensor can be flattened in 3 ways to obtain matrices
comprising its mode-1, mode-2, and mode-3 vectors.

A matrix representation of the mode-n product of a tensor A ∈ IRI1×...×In×...×IN

and a set of N matrices, Fn ∈ IRJn×In can be obtained as follows:

B = A ×1 F1 . . . ×n Fn . . . ×N FN , or in terms of flattened tensors,

B(n) = FnA(n)(Fn−1 ⊗ . . .F1 ⊗ FN ⊗ . . .Fn+1)T ,

where ⊗ denotes the matrix Kronecker product. The Frobenius norm of a tensor A is
given by ‖A‖ =

√
〈A, A〉.

3 PCA and Multilinear PCA

The principal components analysis of an ensemble of I2 images is computed by per-
forming an SVD on a I1 × I2 data matrix D whose columns are the “vectorized”
I1-pixel “centered” images. The matrix D ∈ IRI1×I2 is a two-mode mathematical ob-
ject that has two associated vector spaces, a row space and a column space. In a PCA
analysis of D, the SVD orthogonalizes these two spaces and decomposes the matrix as
D = UΣVT . Using mode-n products, the SVD can be rewritten as D = Σ×1U×2V.
The eigenvectors U are called the principal component directions of D (Fig. 3(a)).

The analysis of an ensemble of images resulting from the confluence of multiple
factors, or modes, related to scene structure, illumination, and viewpoint is a problem
in multilinear algebra [5]. Within this mathematical framework, the image ensemble
is represented as a higher-order tensor. This image data tensor D, Fig. 2(b), must be
decomposed in order to separate and parsimoniously represent the constituent factors.
This can be achieved by employing the N -mode SVD, a multilinear extension of the
aforementioned conventional matrix SVD [8,9].

D is an N -dimensional matrix comprising N spaces. The N -mode SVD orthogonal-
izes these N spaces and decomposes the tensor as the mode-n product of N orthogonal
spaces:

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN . (1)

Tensor Z , known as the core tensor, is analogous to the diagonal singular value matrix
in conventional matrix SVD (although it does not have a simple, diagonal structure).
The core tensor governs the interaction between the mode matrices U1, . . . ,UN . Mode
matrix Un contains the orthonormal basis vectors spanning the column space of matrix
D(n) resulting from the mode-n flattening of D. The tensor basis associated with this
multilinear PCA is displayed in Fig. 3(b).
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Fig. 2. A facial image dataset of 2,700 training images out of 16,875 images. 3D scans of 75 sub-
jects, recorded using a CyberwareTM 3030PS laser scanner as part of the University of Freiburg
3D morphable faces database [10]. A portion of the 4th-order data tensor D for the image ensem-
ble formed from the dash-boxed images, Fig. 2(a), of each person. Only 4 of the 75 people are
shown.

The N -mode SVD algorithm for decomposing D according to equation (1) is as follows:

1. For n = 1, . . . , N , compute matrix Un in (1) by computing the SVD of the flattened matrix
D(n) and setting Un to be the left matrix of the SVD.

2. Solve for the core tensor: Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N .

4 ICA

The independent components analysis of multivariate data can be applied in two
ways [4]: 1) to DT , each of whose rows is a different image, which finds a spatially
independent basis set that reflects the local properties of imaged objects; 2) to D, which
finds a set of coefficients that are statistically independent while the basis reflects the
global properties of imaged objects.

ICA Approach 1: ICA starts essentially from the PCA solution and computes a trans-
formation of the principal components such that they become independent components

DT = VΣUT =
(
VΣW−1

s1

) (
Ws1U

T
)

= KT CT , (2)

where every column of D is a different image, Ws1 is an invertible transformation ma-
trix that is computed by the ICA algorithm, C = UWT

s1
are the independent compo-

nents (Fig. 3(a)), and K = W−T
s1

ΣVT are the coefficients. Various objective functions,
such as those based on mutual information, negentropy, higher-order cumulants, etc.,
are presented in the literature for computing the independent components along with
different optimization methods for extremizing the objective functions [3].
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Fig. 3. Eigenfaces and TensorFaces bases for an ensemble of 2,700 facial images spanning 75
people, each imaged under 6 viewing and 6 illumination conditions (see Section 7). (a) PCA
eigenvectors (eigenfaces), which are the principal axes of variation across all images. (b) A partial
visualization of the 75 × 6 × 6 × 8560 TensorFaces representation of D, obtained as T =
Z ×4 Upixels which captures viewpoint varaition, illumination variation and people variation. (c)
Independent components Cpixels. (d) A partial visualization of the 75 × 6 × 6 × 8560 multilinear
ICA representation of D, obtained as B = S ×4 Cpixels.

ICA Approach 2: Alternatively, ICA can be applied to D, and it transforms the principal
components directions such that the coefficients are statistically independent, as follows:

D = UΣVT =
(
UW−1

s2

) (
Ws2ΣVT

)
= CK, (3)

where C = UW−1
s2

is the basis matrix and K = Ws2ΣVT are the statistically inde-
pendent coefficients.

Note that C, K and W are computed differently in the two approaches. Approach 1
yields statistically independent bases, whereas Approach 2 yields a “factorial code”.

5 Multilinear ICA

Like PCA, ICA is a linear analysis method, hence it is not well suited to the represen-
tation of multi-factor image ensembles. To address this shortcoming, we next propose
a novel multilinear generalization of ICA. Multilinear ICA is obtained by decomposing
the data tensor D as the mode-n product of N mode matrices Cn and a core tensor S,
as follows:

D = S ×1 C1 ×2 C2 . . . ×n Cn . . . ×N CN . (4)

The N -mode ICA algorithm is as follows:

1. For n = 1, . . . , N , compute the mode matrix Cn in (4) in one of two ways, by
(5)–(6) or by (12)–(13).

2. Solve for the core tensor: S = D ×1 C−1
1 ×2 C−1

2 . . . ×n C−1
n . . . ×N C−1

N .

As in ICA, there are two approaches for multilinear ICA.
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Multilinear ICA Approach 1: Transposing the flattened data tensor D in mode n and
computing the ICA as in (2), we obtain:

DT
(n) = VnΣnUT

n =
(
VnΣnW−1

n

) (
WnUT

n

)
= KT

nCT
n , (5)

where the mode matrices are given by

Cn = UnWT
n . (6)

The columns associated with each of the mode matrices Cn are statistically indepen-
dent; i.e., a factorial code representation is computed for each mode of variation. We
can derive the relationship between N -mode ICA and N -mode SVD (1) in the context
of this approach as follows:

D = Z ×1 U1 . . . ×N UN (7)

= Z ×1 U1WT
1 W−T

1 . . . ×N UNWT
NW−T

N (8)

= Z ×1 C1W−T
1 . . . ×N CNW−T

N (9)

= (Z ×1 W−T
1 . . . ×N W−T

N ) ×1 C1 . . . ×N CN (10)

= S ×1 C1 . . . ×N CN , (11)

where the core tensor S = Z ×1 W−T
1 . . . ×N W−T

N .

Multilinear ICA Approach 2: Alternatively, flattening the data tensor D in mode n
and computing the ICA as in (3), we obtain:

D(n) = UnΣnVT
n =

(
UnW−1

n

) (
WnΣnVT

n

)
= CnKn, (12)

where the mode matrices are given by

Cn = UnW−1
n . (13)

This second approach results in a set of basis vectors that are statistically independent
across the different modes.

Note that the Wn in (13) differs from the Wn in (6); the latter is analogous to Ws1

in (2) while the former is analogous to Ws2 in (3). We can derive the relationship
between N -mode ICA and N -mode SVD (1) in the context of the second approach as
follows:

D = Z ×1 U1 . . . ×N UN (14)

= Z ×1 U1W−1
1 W1 . . . ×N UNW−1

N WN (15)

= Z ×1 C1W1 . . . ×N CNWN (16)

= (Z ×1 W1 . . . ×N WN ) ×1 C1 . . . ×N CN (17)

= S ×1 C1 . . . ×N CN , (18)

where the core tensor S = Z ×1 W1 . . . ×N WN .
Optimal dimensionality reduction in multilinear ICA, which yields the approxima-

tion D̂ = Ŝ ×1 Ĉ1 . . . ×N ĈN , is achieved by optimizing iteratively, mode per mode
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using alternating least squares, by holding fixed all mode components except one and
solving for the remaining mode, with an additional step that computes the transforma-
tion matrix W. The error function minimized is:

e = ‖D − D̂‖ = ‖D − (Ŝ ×1 Ĉ1 . . . ×N ĈN )‖. (19)

The N -mode ICA dimensionality reduction algorithm is as follows:

1. Initialize: Apply Step 1 of the N -mode ICA algorithm to D; truncate each mode matrix
Un, for n = 1, 2, . . . , N , to Rn columns, and compute the mode matrix Cn, thus obtaining
the initial (k = 0) mode matrices C0

1, C
0
2, . . . ,C

0
N .

2. Iterate, for k = 1, 2, . . ., until convergence:
Alternating Least Squares: Compute matrix Cn, 1 ≤ n ≤ N :

Set C̃k
n = D×1Ck

1
+

. . .×n−1Ck
n−1

+×n+1Ck−1
n+1

+
. . .×N Ck−1

N

+
; mode-n flatten C̃k

n

to obtain the matrix C̃k
n; compute Ck

n according to (5) or (12) by setting D(n) = C̃k
n.

3. Set the converged mode matrices to Ĉ1, Ĉ2, . . . , ĈN . Compute the core tensor Ŝ = C̃N ×N

Ĉ+
N . The approximation of D is D̂ = Ŝ ×1 Ĉ1 ×2 Ĉ2 . . . ×N ĈN .

6 Multilinear Projection

We will now develop a multilinear method for simultaneously inferring the identity,
illumination, viewpoint, etc., coefficient vectors of an unlabeled, test image. Multilinear
ICA represents the unlabeled, test image by a set of unknown coefficient vectors, dT =
B×1cT

p ×2cT
v ×3cT

l , where the coefficient vector cp encodes the person, the coefficient
vector cv encodes the viewpoint, and the coefficient vector cl encodes the illumination.

The multilinear projection algorithm is as follows:

1. Compute the projection transformation P . In matrix form, P(mode) = BT+
(pixels).

2. Compute the response tensor R = P ×pixels dT :
R︷ ︸︸ ︷

P ×pixels dT ≈

C︷ ︸︸ ︷
I ×pixels (cT

l ⊗ cT
v ⊗ cT

p )

= cp ◦ cv ◦ cl,

3. Since R = C and has rank-(1, . . . , 1), the coefficients are extracted by factorizing the re-
sponse tensor using the N -mode SVD algorithm.

Intuitively, the unknowns cp, cv , and cl need to be estimated from d and B. This in-
volves computing a pseudo-inverse tensor. Projecting d onto the pixel mode of B yields
the image projection tensor R = P ×4 dT ≈ C, where the “projection transformation”
P is obtained by re-tensorizing matrix P(pixels) = B+T

(pixels) (the matrix B(pixels) is the pixel-
mode flattening of tensor B). The tensor R has the structure (cp ◦ cv ◦ cl), the outer
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product of the coefficient vectors associated with each factor inherent to the data dT ;
hence, it is of rank-(1, . . . , 1). The rank of R and the fact that the coefficient vectors are
unit vectors enables us to compute the three coefficient vectors via a tensor decomposi-
tion using the N -mode SVD algorithm. In principle, R = C, but sometimes in practice
R ≈ C. Thus, the optimal dimensionally-reduced rank-(1, . . . , 1) decomposition must
be computed by optimizing the objective function: ‖dT − B̂ ×1 ĉT

1 ×2 . . . ×N ĉT
N‖.

7 Experiments

In our face recognition experiments, each subject is imaged from 15 different view-
points (θ = −35◦ to +35◦ in 5◦ steps on the horizontal plane φ = 0◦) under 15
different illuminations (θ = −35◦ to +35◦ in 5◦ steps on an inclined plane φ = 45◦).
Fig. 2(a) shows the full set of 225 images for one of the subjects with viewpoints arrayed
horizontally and illuminations arrayed vertically. The image set was rendered from 3D
scans of 75 subjects. Of the 16,875 images, we employed 2,700 as training images. The
training data tensor, a 4th-order tensor, D is shown in Fig. 2.

Multilinear ICA yields better recognition rates (98.14%) than PCA (eigenfaces)
(83.9%), conventional ICA (89.5%) and even multilinear PCA (93.4%) in scenarios
involving the recognition of people imaged in previously unseen viewpoints and il-
luminations. Fig. 3(d) illustrates the multilinear ICA basis derived from the training
ensemble, while Fig. 3(c) illustrates the conventional ICA basis.

8 Conclusion

We presented a multilinear generalization of ICA. We applied our new multilinear ICA
algorithm along with a novel, multilinear projection method to face recognition involv-
ing multiple people imaged under different viewpoints and illuminations. Multilinear
ICA disentangles the multiple factors inherent to image formation and explicitly rep-
resents the higher-order statistics associated with each factor, thus yielding improved
recognition rates relative to related prior methods.
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Abstract. We consider Independent Component Analysis (ICA) for the
case of binary sources, where addition has the meaning of the boolean
“Exclusive Or” (XOR) operation. Thus, each mixture-signal is given by
the XOR of one or more of the source-signals. While such mixtures can be
considered linear transformations over the finite Galois Field of order 2,
they are certainly nonlinear over the field of real-valued numbers, so clas-
sical ICA principles may be inapplicable in this framework. Nevertheless,
we show that if none of the independent random sources is uniform (i.e.,
neither one has probability 0.5 for 1/0), then any invertible mixing is
identifiable (up to permutation ambiguity). We then propose a practical
deflation algorithm for source separation based on entropy minimization,
and present empirical performance results by simulation.

1 Introduction and Problem Formulation

The classical Independent Components Analysis (ICA) framework usually as-
sumes linear combinations of independent sources over the field of real-valued
numbers R, with some exceptions (e.g., [1]) that assume the field of complex-
valued numbers C. It might be interesting, at least from a theoretical point of
view, to explore the applicability of ICA principles to other algebraic fields.

Let us consider the field (often denoted Galois Field of order 2, GF(2)) of
binary numbers {0, 1}, where, for x, y ∈ {0, 1}, addition is defined as the “Ex-
clusive Or” (XOR) operation, denoted z = x ⊕ y, where z equals 1 if and only
if x �= y (and equals zero otherwise). Multiplication in this field (either by 0 or
by 1) is defined and denoted in the “usual” way, z = xy. These values and op-
erations trivially satisfy all the requirements that constitute a field [2], namely:
associativity, commutativity, distributivity, existence of an additive and of a mul-
tiplicative identity element (0 and 1, resp.) and of additive and multiplicative
inverses (−0 = 0, −1 = 1; and 1−1 = 1, resp.).

Naturally, all random variables (RVs) in this field are binary, and any prob-
ability distribution is uniquely defined by a single parameter p, denoting the
probability with which the RV takes the value 1. We shall refer to p as the
“1-probability” of the RV.

Assume now that there are K statistically independent random sources de-
noted s[n] = [s1[n] s2[n] · · · sK [n]]T , with respective fixed, unknown 1-
probabilities p = [p1 p2 · · · pK ]T . For simplicity we shall further assume that
the samples of each source are independent, identically distribute (iid) in time.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 827–835, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Naturally, just like in “classical” ICA it is also possible to extend this basic model
to temporally-correlated or non-stationary sources (e.g., [3] or [4], respectively,
for classical ICA), but for now we choose to concentrate on this basic, iid model.

Let these sources be mixed (over GF(2)) by an unknown, square (K × K)
mixing matrix A (whose elements also belong to GF(2)),

x[n] = A ◦ s[n], (1)

where “◦” denotes matrix/vector multiplication over the field, such that the k-th
element of x[n] is given by

xk[n] = ak1s1[n] ⊕ ak2s2[n] ⊕ · · · ⊕ akKsK [n] k = 1, 2, ..., K. (2)

We further assume that A is invertible over the field, namely that it has a unique
inverse in GF(2), denoted B

�
= A−1, satisfying B ◦ A = A ◦ B = I, where I

denotes the K × K identity matrix. Like in “classical” linear algebra (over R),
A is non-singular (invertible) if and only if (iff) its determinant1 is non-zero
(namely 1). Equivalently, A is singular iff there exists (in GF(2)) a nonzero
vector u, such that A ◦ u = 0 (an all-zeros vector).

We are interested in the possibility to recover the source signals s[n] from
the observations (mixtures) x[n] under this “blind” scenario, where the only
available knowledge is that the sources are statistically independent. Admittedly,
this problem is not directly related to any specific application, but it is possible
to think, e.g., of a hypothetical situation in a digital communication system,
where cross-talk between channels might have the effect of a XOR combination
(e.g., in a binary symmetric channel (BSC, [5]), the output can be considered as
a XOR operation between the signal and noise processes).

Note that although the mixing is linear over our GF(2) field, it is certainly not
linear over the “standard” ICA fields R or C. Therefore, clearly not all classical
results from the ICA theory and practice are applicable to this problem.

2 Identifiability

Let us first address the issue of identifiability (possibly up to some tolerable
ambiguities) of A (or, equivalently, of its inverse B) from the set of observa-
tions x[n], n = 1, 2, ...N , under asymptotic conditions, namely when N → ∞.
Due to the assumption of iid samples for each source (implying ergodicity), the
joint statistics of the observations can be fully and consistently estimated from
the available data. Therefore, the assumption of asymptotic conditions implies
full and exact knowledge of the joint probability distribution of the observation
vector x (we dropped the time-index n here, due to the stationarity). Before
we proceed, let us consider the characterization of statistical properties of an
arbitrary random vector in GF(2).
1 The determinant over GF(2) can be calculated just like over R, but with the ordinary

addition / subtraction replaced by the XOR operation.
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2.1 Statistical Characterization of Random Vectors

For any K ×1 random vector y with elements in GF(2), the probability function
can be fully described in a K-way tensor (K-dimensional array) P(y), with two
elements in each direction, indexed as 0 or 1 for convenience, such that

P(y)
i1,i2,...,iK

�
= Prob{y1 = i1, y2 = i2, ..., yK = iK} , i1, i2, . . . , iK ∈ {0, 1}. (3)

For convenience, we may concatenate the K indices into a K × 1 “index-vector”
i
�
= [i1 i2 · · · iK ]T and use the notation P(y)(i) ≡ P(y)

i1,i2,...,iK
, leading to

P(y)(i) = Prob{y = i}. Evidently, P(y) has 2K elements, the sum of which is
always 1. Given N iid realizations y[n] of y, a consistent estimate of P(y)(i) can
be easily obtained, for all 2K possible values of i, from

P̂
(y)

(i) =
1
N

N∑

n=1

I{y[n] = i} (4)

where I{·} denotes the Indicator function (being 1 if the condition in its argu-
ment is satisfied and 0 otherwise).

An alternative, but generally incomplete characterization of the statistics of
y can be described by its first and second joint moments, namely by

η(y) �= E[y] and Λ(y) �= E[yyT ], (5)

respectively. Note that due to the 0/1 values in y, the elements of η(y) and of
Λ(y) also carry explicit probabilistic interpretations:

η
(y)
k = Prob{yk = 1}, and Λ

(y)
k,� = Prob{yk = 1, x� = 1}. (6)

Consistent estimates can be similarly obtained from N iid realizations,

η̂(y) =
1
N

N∑

n=1

y[n] and Λ̂
(y)

=
1
N

N∑

n=1

y[n]yT [n]. (7)

We say that y has independent components if and only if the joint probability
of any combination of the K elements equals the product of their marginal
probabilities. This condition can be expressed as (recall that ik ∈ {0, 1})

P(y)(i) =
K∏

k=1

(η(y)
k )ik(1 − η

(y)
k )(1−ik) �= (η(y))i(1 − η(y))(1−i), (8)

where the notation ab is shorthand for ab1
1 · ab2

2 · · · abK

K . If y has independent
components then they are all uncorrelated, namely the covariance matrix

C(y) �= Λ(y) − η(y)(η(y))T (9)

is diagonal. Note, however, that although a diagonal covariance matrix implies
pairwise independence of the components of y, it does not, in general, imply full
independence of these components.

We now return to the identifiability problem.
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2.2 Identifiability Through Decorrelation

A natural approach for exploring the identifiability is to look for possible linear
transformations B̂ such that the vector y = B̂ ◦x has independent components.
Due to the invertibility of A, it is clear that there exists at least one such
matrix, B̂ = B = A−1. Moreover, it is clear that any B̂ = ΠB, where Π is any
permutation matrix, also produces independent components in y - in accordance
with the well-known inherent permutation ambiguity in ICA (fortunately, in
our binary framework the classical scaling ambiguity is irrelevant and does not
exist). The key question for establishing identifiability is to determine whether
(and under what conditions) no other such transformations exist; namely, under
what conditions independent components in y imply that the overall mixing-
unmixing matrix D

�
= B̂ ◦ A is a permutation matrix2.

The following Theorem establishes our main identifiability result.

Theorem 1. Let s = [s1 s2 · · · sK ] denote K statistically independent sources
in GF(2), the k-th source having 1-probability pk. Let y = D ◦ s denote a linear
transformation of s over GF(2), where D is a K × K matrix (with elements in
GF(2)). Let η(y) and C(y) denote the mean and covariance (resp.) of y. If:

1. All sources are non-degenerate, namely 0 < pk < 1, k = 1, 2, . . . , K;
2. None of the sources is uniform, namely pk �= 0.5, k = 1, 2, . . . , K;
3. All elements of η(y) are nonzero, η

(y)
k > 0, k = 1, 2, . . . , K;

4. C(y) is diagonal,

Then D is a permutation matrix.

Proof. Let us first establish the following lemma.

Lemma 1. Let u and v be two RVs in GF(2) with 1-probabilities p and q (resp.),

and let w
�
= u ⊕ v. If u and v are independent, non-degenerate (0 < p, q < 1)

and non-uniform (p, q �= 0.5), then w is also non-degenerate and non-uniform.

To show this nearly trivial (and intuitively appealing) property, note that w has
1-probability r = p(1 − q) + q(1 − p). It can then be easily shown that the only
valid values of (p, q) with which r = 0 are (0, 0) or (1, 1); with which r = 1 are
(1, 0) or (0, 1); and that r = 0.5 iff either p, q or both equal 0.5.

Under conditions 1 and 2 of Theorem 1, Lemma 1 establishes that no XOR
sum of any (two, or more, by induction) of the sources can produce a degenerate
or a uniform RV (however, if any of the sources are uniform, then any XOR sum
involving one or more of these sources is also uniform).

Let us assume now that D is a general matrix, and consider any pair yk and
y� (k �= �) in y. yk and y� are linear combinations of respective subgroups of the
sources, indexed by the 1-s in Dk,: and D�,:, the k-th and �-th rows (resp.) of
D. These two subgroups define, in turn, three other subgroups (some of which
may be empty):

2 We include I in the set of permutation matrices.
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1. Sub-group 1: Sources common to Dk,: and D�,:. Denote the (XOR) sum of
these sources as u;

2. Sub-group 2: Sources included in Dk,: but excluded from D�,:. Denote the
(XOR) sum of these sources as v1;

3. Sub-group 3: Sources included in D�,: but excluded from Dk,:. Denote the
(XOR) sum of these sources as v2.

For example, if (for K = 6) Dk,: =
[
0 1 1 1 1 1

]
and D�,: =

[
1 1 0 0 1 1

]
, then

u = s2 ⊕ s5 ⊕ s6, v1 = s3 ⊕ s4 and v2 = s1.
Note that by construction, the RVs u, v1 and v2 are statistically independent,

and are also non-uniform. Obviously, yk = u + v1 and y� = u + v2. Let us
denote the 1-probabilities of u, v1 and v2 as p, q1 and q2, respectively. Then the
1-probabilities of yk, y� are given (resp.) by

η
(y)
k = p + q1 − 2pq1 and η

(y)
� = p + q2 − 2pq2. (10)

We’re further interested in R
(y)
k,� , the probability that both yk and y� are 1. This

happens if u = 1 and v1 = v2 = 0, or if u = 0 and v1 = v2 = 1, so

R
(y)
k,� = p(1 − q1)(1 − q2) + (1 − p)q1q2 = p(1 − q1 − q2) + q1q2. (11)

Now, condition 4 of Theorem 1 implies that C
(y)
k,� = R

(y)
k,� − η

(y)
k η

(y)
� = 0, so

p(1 − q1 − q2) + q1q2 − (p + q1 − 2pq1)(p + q2 − 2pq2) = 0, (12)

which with slight manipulations on the left-hand side can be written as

p(1 − p)(1 − 2q1)(1 − 2q2) = 0. (13)

Since we’ve established that q1 �= 0.5 and q2 �= 0.5, (13) can only be satisfied
if p = 0 or if p = 1. Since no non-trivial linear combination of the sources can
be degenerate, p = 1 is also ruled out. The only option left is p = 0, which can
happen if and only if sub-group 1 is empty, namely, iff the two rows Dk,: and
D�,: do not share common sources, or, in other words, iff there is no column m
in D such that both Dk,m and D�,m are 1.

Applying this to all possible pairs of k �= � (for which C
(y)
k,� = 0), and recalling

that due to condition 3 of the theorem, D cannot have any all-zeros row, we
immediately arrive at the conclusion that each row and each column of D must
contain exactly one 1, meaning that D is a permutation matrix. 	


We therefore conclude that if a transformation matrix B̂ is found such that

y = B̂ ◦ x = B̂ ◦ (A ◦ s) = (B̂ ◦ A) ◦ s = D ◦ s (14)

has uncorrelated, non-degenerate components, then if none of the sources is
degenerate or uniform, D must be a permutation matrix. This means that the
sources are fully separated, and are given by the elements of y (up to immaterial
permutation ambiguity).
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Note that as mentioned earlier, the decorrelation condition only implies pair-
wise independence (in GF(2)), which for a general random vector does not nec-
essarily imply full independence. However, our theorem evidently asserts, that
when y is a linear combination of independent, non-degenerate and non-uniform
sources, pairwise independence indeed implies full independence.

3 Separation Algorithm

The theoretical identifiability theorem gives rise to at least one theoretically
feasible separation strategy. Luckily, unlike classical ICA, in GF(2) there exists a
finite number (2(K2)) of possible separation matrices B̂. Many of these matrices
are singular, and thus cannot be considered as candidates for the inverse of
A (naturally, the conditions of Theorem 1 cannot be satisfied with a singular
B̂). So a possible “theoretical” algorithm would be to run an exhaustive search
among all M < 2(K2) nonsingular K ×K matrices, looking for those which make
the transformed observations y[n] = B̂ ◦ x[n] as “empirically uncorrelated” as
possible. However, this approach is practically inapplicable for values of K above,
say, 5, due to the huge number (2(K2)) of potential matrices B̂ to check.

Instead, we now propose an entirely different approach, based on properties
of the entropies of the mixtures. Let u be a binary RV with 1-probability p. Its
entropy is H(u) = −p log2 p − (1 − p) log2(1 − p), and it is easy to show [5] that
H(u) takes its maximum value (of 1) when u is uniform (p = 0.5). Now, let u
and v be two statistically independent binary RVs and let w = u ⊕ v. It can
be easily shown3 that H(w) is greater or equal to both H(u) and H(v), where
equality holds iff at least one of the RVs u and v is uniform.

Consequently, if A is invertible and none of the sources is uniform, then the
source with the minimal entropy can be recovered by searching for the (non-
trivial) linear combination (over GF(2)) of components of x which has the mini-
mal entropy. If there are several sources with the same (minimal) entropy, there
would be just as many entropy-minimizing linear combinations, each recovering
its respective source. The number of potential (non-trivial) linear combinations
of components in x would be 2K − 1, usually far less than the O(2(K2)) trials
required in the previous algorithm.

Let b̂ denote a non-zero K × 1 vector (with elements in GF(2)), contain-
ing prospective linear combination coefficients. To estimate the marginal prob-
ability (hence the entropy) of the linear combination y = b̂

T ◦ x one may use

time-averaging over the series y[n] = b̂
T ◦ x[n], but this approach unnecessarily

requires computation of the N -long series y[n] for each tested b̂. Instead, fol-

lowing initial estimation of the observations’ probabilities tensor (P̂
(x)

can be
constructed using (4)), the 1-probability p of y[n] can be obtained from

p̂ =
∑

i

(bT ◦ i) · P̂
(x)

(i), (15)

3 E.g., a proof involving conditional entropy: H(w) = H(u⊕ v) ≥ H(u⊕ v|v) = H(u).
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where the summation extends over all 2K possible values of i. Having obtained
p̂ for each of the 2K − 1 possible values of b̂, we select the b̂ which produced p̂
with the minimal entropy4.

While this approach only enables to extract the component(s) with the small-
est entropy, we may proceed by taking a “deflation approach” (e.g., [6]). To this
end, we would like to first eliminate the extracted source from the mixtures, by
subtracting (or adding, it doesn’t matter in GF(2)) that source from the mixture
components in which it participates. Thus, given an extracted source, we have
to decide, for each component in x, say xk, whether or not the extracted source
y is part of the linear combination that created xk.

To decide, all we have to do is to examine whether the entropy of xk is smaller
or larger than the entropy of xk ⊕ y. Again, this can be done by direct empirical
estimation of the 1-probabilities from both series (xk[n] and xk[n] + y[n]), or,

preferably, from the estimated probabilities tensor P̂
(x)

: Denoting by ek the k-th
column of I, we have

p̂k{0} =
∑

i

(eT
k ◦ i)P̂

(x)
(i) and p̂k{1} =

∑

i

((eT
k ⊕ bT ) ◦ i)P̂

(x)
(i) (16)

where b denotes the coefficients vector that was selected for the extraction of the
first source. Here p̂k{0} and p̂k{1} denote the estimated 1-probabilities of the
series xk[n] and xk[n] + y[n], respectively. We then chose the one farther from
0.5: if this is p̂k{1}, we create a new observation x′k[n] = xk[n] ⊕ y[n], otherwise
we simply set x′k[n] = xk[n]. Repeating the procedure for each k, we obtain a
new set of observations x′[n] = [x′1[n] x′2[n], . . . x′K [n]]T , which is related to the
original set by

x′[n] = (I ⊕ (j · bT )) ◦ x, (17)

where j is a K × 1 vector containing 1-s in the indices corresponding to values
of k for which p̂k{1} was farther from 0.5 than p̂k{0}.

We may now repeat the process by applying the same procedure to the new

set of observations x′. As a first step, we have to construct an updated P̂
(x′)

from P̂
(x)

. To do this, we first set P̂
(x′)

= 0 (an all-zeros tensor), and then,
running over all 2K possible values of i, we update

P̂
(x′)

((I ⊕ (j · bT )) ◦ i) = P̂
(x′)

((I ⊕ (j · bT )) ◦ i) + P̂
(x)

(i). (18)

We then substitute x = x′, P̂
(x)

= P̂
(x′)

, and return to the initial step, repeating
the process K − 2 times (after the (K − 1)-th pass, the last (maximum entropy)
source would appear unmixed in one or more of the components of x′).

It has to be noted that after each (k-th) pass x is an over-determined set: It
still has K components, but they are now mixtures of K − k sources. Conse-
quently, there exist non-trivial linear combination coefficients b̂ that produce null
4 There’s no real need to compute the entropy: since H(p̂) is a monotonically decreas-

ing function of the distance of p̂ from 0.5, it is sufficient to monitor |p̂ − 0.5|.
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Fig. 1. Empirical success rate (1000 trials) of MEXICO for K = 2, 4, 8 vs. N . In
each trial source probabilities were independently drawn in (0, 0.4) ∨ (0.6, 1), and a
nonsingular mixing matrix was drawn as the product of upper- and lower-triangular
matrices with random independent uniform binary elements above/below the diagonals.

components y[n] = b̂
T ◦ x′[n] = 0 (or even one or more of the K observations x

themselves might be null). In principle, we may apply some order reduction, but
this is not necessary: we can easily detect null combinations (characterized by
p̂ = 0) and exclude the respective b̂-s from the search for minimum entropy. At
the end of each pass, the respective source can be extracted as y[n] = bT ◦ x[n].
Sources would be extracted in order of non-decreasing entropy.

The algorithm is given the acronym MEXICO: Minimizing Entropies of Xored
Independent COmponents. Its separation performance naturally depends on the

accuracy of P̂
(x)

(when the true P(x) is used, perfect separation is obtained, as
long as none of the sources is degenerate or uniform), which in turn depends on
the length N and on the true probabilities p. A rigorous performance analysis
is quite involved, and falls beyond the scope of this paper. Instead, we present
some simulation results: performance is shown in Fig.1 in terms of the empirical
probability of success, namely the percentage of trials attaining perfect source re-
construction. We present success-rates in separating the first (minimum-entropy)
source (left); half of all sources (middle); and all of the sources (right). See the
figure’s caption for details of the simulation setup.

To conclude: We derived a necessary and sufficient condition for identifiability
of invertible linear mixtures over GF(2). A separation algorithm was proposed,
capable of (asymptotically) perfect separation whenever the condition is satis-
fied (and failing otherwise). Extensions to higher order Galois Fields are also
possible.
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Abstract. Since Independent Component Analysis was developed, it has been a 
hotspot in the field of signal processing, and has received increasing attention in 
feature extraction, data compression, and so on. In this paper, a novel ICA-
based image/video processing method, called ICA transform (ICAT), is 
proposed. Instead of the traditional blocking, ICAT derives more than one sub-
images/sub-videos from one original image/video by down-sampling, and 
features are obtained from these sub-images/sub-videos by using ICA. That 
helps ICAT extracts features with the global characteristics of the original. And 
the comparison between ICAT and Digital Wavelet Transform (DWT) is 
performed in image/video processing, which exhibits that the results obtained 
by using ICAT has something similar to those of DWT, even something 
superior. And the comparison also demonstrates that ICAT is promising in 
image/video processing. 

Keywords: Independent Component Analysis, Image/Video Processing, Digital 
Wavelet Transform. 

1   Introduction 

Independent Component Analysis (ICA) is a useful signal processing and data 
analysis method developed in the research of blind signals separation. Using ICA, 
even without any information of the source signals and the coefficients of 
transmission channels, people can recover or extract the source signals only from the 
observations according the stochastic property of the input signals. It has been one of 
the most important methods of blind source separation and received increasing 
attentions in pattern recognition, data compression, image analyzing and so on, 
because the ICA process derives features that best present the data via a set of 
components that are as statistically independent as possible and characterizes the data 
in a natural way [1-9]. 

In ICA model, more than one observation signals are needed to achieve the 
analysis, so when ICA is used to image/video processing, how to generate 
observations from one image must be firstly considered. At present, blocking is the 
prevalent manner and the features obtained in such way have been applied in many 
areas[4-9]. Hateren divided the image into blocks with size of 8×8 or 16×16, 
respectively, and all the blocks are taken as the observations of ICA model, and then 
features can be extracted by using ICA, which are proved to be some directional 
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edges and can be used as the bases to reconstruct the image. Furthermore, Hateren 
proved that these features are similar to what human visual cortex captures, and such 
experiments on video also result some similar conclusions. Though such kinds of 
features are applied widely in current researches [4-7], their meaning is still 
ambiguous, because blocking destroys the global properties of an image. 

Down-sampling is a common signal processing method, through which sub-
signals, approximate to the original, can be obtained. Down-sampling can help us to 
derive some similar sub-signals from only one original signal. And the sub-signals 
and the original have the same global properties. 

In this paper, we propose a new image/video processing method, called ICA 
Transform (ICAT), based on down-sampling instead of blocking. In ICAT, the 
original image/video is down-sampled into sub-images/sub-videos, which are looked 
on as the observations in ICA model. Thus features can be derived from the sub-
images/sub-videos by using ICA. A comparison between ICAT and Digital Wavelet 
Transform (DWT) helps us to understand the properties of such kind of features. The 
comparison shows that ICAT can obtain features similar to those extracted by DWT, 
furthermore has superiorities in some aspects. 

2   Comparison Between ICAT and DWT in Image Processing 

2.1   2 Dimensional Digital Wavelet Transform (2D DWT) 

Digital Wavelet Transform (DWT) is a time-frequency analysis method. Because of 
its characteristic of multi-resolution, DWT has been used widely in signal processing, 
since it came into being. Fig. 1 shows the original image, peppers, and the four sub-
bands obtained through 1-level 2D-DWT, which are the approximate one and the 
details containing vertical, horizontal, and diagonal information respectively [10, 11]. 

    

HH 

LL HL

LH 

 
(a)                                                                 (b) 

Fig. 1. (a) is the original image, peppers, and (b) is 1-level DWT of the image, peppers. The 
left-top, LL sub-band, is the approximate component, and the others, LH, HL, HH sub-bands, 
are details in the vertical, horizontal, and diagonal directions respectively. 



838 Q. Zhang et al. 

2.2   Independent Component Analysis Transform (ICAT) 

As we all know that according to ICA model, there are more than one observation 
signals, so how to derive them from only one image is what have to be resolved 
firstly. In this paper, we down-sample the original image into sub-images. Assuming 
the size of the original image is mn × , after down-sampling with factor 2 as shown in 
Fig. 2, the four sub-images are: 
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where I  is the original image, 22,1 ni L= , 22,1 mj L= . And then we take the 

sub-images as the observations to perform ICA. That is what is called ICA Transform 
(ICAT) in this paper. The four Feature Images (FI) obtained by using ICAT, four sub-
bands like, are shown in Fig. 3. 

 ==>  

Fig. 2. The diagram of image down-sampling, which results four sub-images 

FI2
FI1

FI4FI3

 

Fig. 3. The four FIs obtained by ICAT. FI4 is the approximate component of the original image, 
while the FI1, FI2, FI3 are the details of the original image. That is very similar to what in DWT 
as shown in Fig. 1(b). 
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2.3   Comparison Between ICAT and 2D DWT 

In the comparison, we use the 512×512 standard image, peppers, as the original 
image, and choose Daubechies-4 as the mother wavelet. And down-sampling with 
factor 2 is adopted in ICAT. 

Here in order to analyze the property of the FIs extracted by ICAT, the following 
procedure is performed. The approximate component is used to take the place of the 
details each at once, and the inverse transform is executed after each replacement. The 
results of inverse DWT(IDWT) and inverse ICAT(IICAT) are shown in Fig. 4 and 
Fig. 5 respectively. From Fig. 4, we can see that each result of such kind of procedure 
has the obvious textures in a certain direction, e.g. Fig. 4(a), which has heavy vertical 
textures, shows the vertical detail has been replaced by the approximate component. 

 

 
(a)                                 (b)                                 (c)                                   (d) 

Fig. 4. (a), (b), and (c) are the results of IDWT after the replacement of LH, HL, and HH 
respectively. And (d) is the enlarged of the rectangle part in (c). 

 
(a)                              (b)                                    (c)                                 (d) 

Fig. 5. (a), (b), and (c) are the results of IICAT after the replacement of FI1, FI2, and FI3 in Fig. 
3 respectively. And (d) is the enlarged of the rectangle part in (c). 

Given the analysis of Fig. 4, Fig. 5 shows that FI1, FI2, and FI3 in Fig. 3 are also 
some directional details of the original image. Furthermore, DCT is performed on the 
approximate component obtained by DWT and ICAT, respectively, to analyze their 
frequency characteristics. Among the AC coefficients of the DWT approximate 
component, the first 5627 lowest frequency AC coefficients occupy the 95% in 
energy, while in the case of ICAT approximate component, the number is only 3451, 
which is only about 61% of that in DWT. That suggests that ICAT must superior to 
DWT in image compression. 
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2.4   Discussion 

Given the above comparison between ICAT and DWT, we can see that the features 
derived by ICAT are very similar to those derived by DWT. Furthermore, ICAT has 
at least two superiorities to DWT in image processing. First, when an image is 
analyzed by different mother wavelet, the size of sub-bands may be different. But it is 
not the case in ICAT, so ICAT may be more compatible for analysis. Second, the 
comparison on the occupation ratio of low frequency shows that ICAT is superior to 
DWT in image compression. Besides, one of the reasons that DCT is used in 
compression is that DWT can reduce the redundancy by removing the correlation 
[11], while ICA is to obtain independent components. 

So from the comparison above, we can conclude that ICAT will be a promising 
method to image and video processing. It must be widely used in the field of video 
feature analysis, motion object extraction, compression, and so on. 

3   Temporal DWT and ICAT on Video Processing 

In this comparison, temporal DWT and ICAT are used to analyze the same video in 
time. And in this video, a hand plays notes on a piano and there is only 5 keys played 
by each finger respectively. The key pressed by thumb is defined as the No.1 key, and 
the one pressed by forefinger is the No.2 key, and so on. The keys are pressed in the 
order of 1-2-3-4-2-3-1-5. The total frames are 50. 

3.1   Temporal DWT on Video 

Temporal DWT is often used in video analysis in order to extract the motion features 
from the video, since motion is considered as the temporal details of a video, and the 
background is the approximate one [12]. Db4 is used here, and two video feature 
sequences are obtained. The one with motion information is shown in Fig. 6. 

3.2   ICAT on Video 

We perform ICAT to video by down-sampling in temporally with the factor 2, and 
two video feature sequences are obtained. The feature sequence with motion 
information is shown in Fig. 7 corresponding as a counterpart of Fig. 6. 

3.3   Discussion 

According to Fig. 6 and Fig. 7, Temporal DWT and ICAT with temporal down-
sampling can extract the motion of the original video. But given the two features 
sequences shown above, ICAT with temporal down-sampling has two superiorities to 
temporal DWT. One is that the frame number of ICAT is invariant and it is the half of 
original video. But the frame number of temporal DWT will be different with various 
wavelets. The other one is that the motion features obtained by ICAT have the same 
time order as that of original video. But this time order is lost in the temporal DWT. 
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Fig. 6. The DWT features sequence with motion information is shown in the format of frames. 
The frames are ordered timely from left the top left to the lower right. And the total feature 
frames are 28, more than half of the total frame number in original video. In this sequence, 
there are some feature frames which show only the pressed keys in the original video, e.g. 
frame in row 2 column 2, in row 2 column 3, and so on. That means temporal DWT can filter 
the motion objects out. 

 

Fig. 7. The ICAT feature sequence with motion information is shown in the format of frames. 
The frames are ordered timely from left the top left to the lower right. From this sequence, we 
can find the features only with the motion objects and some only with something like 
background. That means that ICAT can extract the motion objects, the pressed keys, and the 
background as well. By the way, the number of frames in feature sequence is exactly the half of 
that of original video. 

4   Conclusion 

In this paper, a novel image/video processing method, ICA Transform, is proposed. 
Given the comparison with DWT in image/video processing, we can see that using 
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ICAT we can obtain some features like what is extracted by DWT in both image 
processing and video processing. What is more, ICAT has something superior to 
DWT to some extent. ICAT will be promising in image/video processing. And how to 
overcome the indeterminacy of ICA with the help of image/video properties is the 
next research interest. 
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Abstract. This keynote talk describes a state-of-the-art method for the
blind source separation (BSS) of convolutive mixtures of audio signals.
Independent component analysis (ICA) is used as a major statistical tool
for separating the mixtures. We provide examples to show how ICA cri-
teria change as the number of audio sources increases. We then discuss
a frequency-domain approach where simple instantaneous ICA is em-
ployed in each frequency bin. A directivity pattern analysis of the ICA
solutions provides us with a physical interpretation of the ICA-based sep-
aration. It tells us the relationship between ICA-based BSS and adap-
tive beamforming. In order to obtain properly separated signals with
the frequency-domain approach, the permutation and scaling ambiguity
of the ICA solutions should be aligned appropriately. We describe two
complementary methods for aligning the permutations, i.e., collecting
separated frequency components originating from the same source. The
first method exploits the signal envelope dependence of the same source
across frequencies. The second method relies on the spatial diversity of
the sources, and is closely related to source localization techniques. Fi-
nally, we describe methods for sparse source separation, which can be
applied even to an underdetermined case.
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Cemgil, A. Taylan 697
Cervigón, Raquel 569
Chan, Laiwan 301
Chao, Jih-Cheng 152
Cichocki, Andrzej 169
Claussen, Heiko 446
Cobo, Germán 794
Comani, Silvia 593
Comon, Pierre 9, 293, 641
Constantinides, Anthony G. 738
Cruces, Sergio 17

D’Asseler, Yves 641
Damper, Robert 446

Dapena, Adriana 770
Davies, Mike 341, 577
De Araujo, D.B. 585
De Lathauwer, Lieven 33
De Luigi, Christophe 25
De Vos, Maarten 33
Deville, Alain 706
Deville, Yannick 161, 681, 706, 722
Dikmen, Onur 697
Ding, Mingzhou 802
Douglas, Scott C. 152, 462
Duarte, Leonardo Tomazeli 41
Durán, Iván 17

Essa, Irfan 536
Estombelo-Montesco, C.A. 585

Fadaili, El Mostafa 193
Fadili, J. 349
Févotte, Cédric 177
Fox, Brendan 454

Gaito, Sabrina 185
Georgiev, Pando 357
Ghahramani, Zoubin 381
Ghennioui, Hicham 193, 201
Giese, Martin A. 762
Golinval, J.C. 778
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