
Design and Implementation of a Tour Planning
System for Telematics Users

Junghoon Lee1, Euiyoung Kang2, and Gyung-Leen Park1,�

1 Dept. of Computer Science and Statistics, Cheju National University,
2 Dept. of Computer Education, Cheju National University,
66 Jeju-daehakno, Jeju-City, Jeju-Do, 690-756 Rep. of Korea

jhlee@cheju.ac.kr, euiyoung1@hanmail.net, glpark@cheju.ac.kr

Abstract. Aiming at providing an efficient tour schedule to tourists
driving with a telematics device, this paper designs and implements an
intelligent tour planning system based on the personalized tour recom-
mender that may generate lots of destinations. To overcome the problem
of long response time due to the computation of O(2n · n!)
complexity solver, we used initial set reduction, distributed computing
via MPI-based Linux cluster, and finally Lin-Kernighan heuristic. An
user interface was also implemented on a portable device using the util-
ity of embedded operating system. Performance measurement results ex-
hibit that the tour schedule can not only be offered to the user within
5 seconds when the number of TPOIs is less than 22, but also find a
schedule whose satisfaction degree is very close to the optimal value.

1 Introduction

1In September 2004, Jeju Telematics City enterprise has been launched in Korea,
aiming at not just testing telematics devices and services but also accelerating
their instantaneous deployment[1]. With this enterprise, many of rent-a-cars in
Jeju province have been equipped with in-vehicle telematics, opening a way to
provide such services as tour guide, navigation, safety service, entertainment,
and so on. From the viewpoint of an embedded system, the telematics is a
computing device within a car, necessarily having a radio interface and a GPS
(Global Positioning System) receiver. While the GPS receiver makes it possible
to offer various location-based services to the driver, service contents can be
delivered to end-users via the radio interface, CDMA (Code Division Multiple
Access) in Korea. As Jeju is one of the most famous tourist places in East Asia,
the telematics system indispensably puts importance on the efficient method
of managing and providing tour information, while one of the most promising
services is the personalized tour planning system[2].

The Jeju province has many kinds of unique tourist attractions, or TPOIs
(Tourist Point of Interests) from now on, including beaches, volcanoes, cliffs,
� Corresponding author.
1 This research was supported by the MIC, Rep. of Korea, under the ITRC support

program supervised by the IITA (IITA-2006-C1090-0603-0040).

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4707, Part III, pp. 179–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

180 J. Lee, E. Kang, and G.-L. Park

mountains, subsidiary islands and so on, while hosting many kinds of tour ac-
tivities including ocean sport, golf, hiking, and the like within a relatively small
area. As so many diverse tour plans are possible, the tourist needs the assis-
tance from an intelligent tour planning system. Tourists expect that the system
presents the useful information with a minimum user input. Particularly, in
terms of telematics we are targeting at, it is necessary to minimize the user-
system interaction, since the device has limited user interface capability and
users possibly access it while they are driving. The personalization feature can
meet this requirement, as it can minimize the user interaction with the telem-
atics. As a result, per-person preference input mechanism is more appropriate
than the per-TPOI scheme most other recommender systems employ[3].

In the telematics service scenario, an end-user submits necessary data through
the telematics device, whether the service is executed within the telematics de-
vice or by a backend server which can process even more sophisticated decision
logic, handling large volume of data. In case of a recommender system, a user
inputs his preference data to the telematics before he starts his trip, then the de-
vice transfers these data to the remote server. The server generates and returns
a tour plan to the telematics, which stores and displays the route according to
the current location of the vehicle. Not to mention, the user may dynamically
change his schedule due to the traffic condition change, prolonged stay time at
some tour points. To cope with this situation, it is desirable to keep the user data
in the server. It will reduce the amount of data exchange via CDMA network,
also enabling background preparation in the high-performance server.

Generally, the tour recommender system consists of two steps: First, the sys-
tem selects the candidate TPOIs sorted by their ranks or scores determined by
the system-specific criteria and algorithms. The second step builds the subset
from candidate TPOIs to generate a corresponding tour schedule, considering
calculated ranks, given time constraint, user location, and current traffic con-
dition. Computing an optimal route for multiple TPOIs is a superclass of TSP
(Traveling Salesman Problem) which is known to be NP-hard, the number of
candidate TPOIs being the most critical factor to the execution time[4]. How-
ever, Jeju province has many lookout points that can make a tourist satisfied
without spending much time, so the number of candidates for a tour schedule
can get increased. Additionally, when just the personal preference is given, mul-
tiple TPOIs may be tied at the same rank. It is necessary to add all tie-ranked
TPOIs to the candidate list.

Meanwhile, it is not uncommon to improve the computation speed by means
of a parallel or distributed computing environment such as MPI-based Linux
cluster. This architecture has many additional advantages such as reliability,
scalability, and so on. Particularly, it fits for the location-based service that
repeatedly processes a large amount of data. In addition, efficient heuristics for
TSP have been already developed and easily applicable. Based on such assertion,
this paper is to design and implement an efficient tour planning system capable
of maximizing the degree of user satisfaction. The proposed system consists
of a master and slaves of the cluster, each one having TSP solver installed,

Design and Implementation of a Tour Planning System for Telematics Users 181

cooperatively yields a schedule that can be reachable within the given total tour
length, for the TPOIs.

This paper is organized as follows: After issuing the problem in Section 1, Sec-
tion 2 reviews related works. The data classification model is specified for the
TPOI and user information in Section 3. Section 4 describes the TPOI recom-
mendation method and tour planning system in detail. Section 5 demonstrates
the performance measurement results of our system. Finally, in Section 6, the
study is summarized with a brief description of future works.

2 Related Works

The recommender system is defined as follows[2]: Recommender systems are
an attempt to mathematically model and technically reproduce the process of
recommendations in the real world. First of all, this system filters off the unneces-
sary or less important information[5]. While there are various filtering methods,
they can be classified into collaborative, content-based, and knowledge-based fil-
tering schemes[6]. In the knowledge-based model, used most commonly, knowl-
edge is expressed in the form of a detailed user model, a selection & suggestion
model, and a rich description of the items to be suggested. Besides, there are also
some interesting techniques such as data-mining, entropy, artificial intelligence,
and agent schemes[7,8], while it is even possible to combine some of them to
increase the accuracy of recommendation.

Maruyama et. al have proposed P-Tour system which generates a tour sched-
ule according to the user input on (1) starting/returning locations and depar-
ture/arrival time of the tour, (2) candidate destinations of the tour, and (3)
a relative importance degree of each destination[4]. They implemented a route
search engine to obtain a semi-optimal solution using genetic algorithms. After-
ward, this scheme was evolved to allow users to optimize their tour schedules
under multiple conflicting criteria. However, in this approach, users do not only
have to specify per-TPOI preference, but also the current traffic information is
not considered, making it difficult to be used on the telematics system.

A TPOI recommender system has been proposed to provide personalized
tourist information[9]. To provide a personalized recommendation, this system
first classifies the related data into user information and TPOI information, then
defines detailed attributes specific to each information category. Based on this
data model, similarity between users and their preference are analyzed to de-
cide a final recommendation. Though our paper is based on this system model,
their system generates just the top-N recommendation result without taking into
account the tour route or time constraint. In addition, the service lacks the capa-
bility of recommending via portable device such as a telematics or dynamically
changing the schedule in the mid of tour.

The tour plan essentially starts from and ends at the customer’s hotel as long
as the customer does not change his hotel, so it can be considered to be a TSP
Problem[1]. TSP is one of the widely studied NP-hard combinational optimiza-
tion problems and can be described as follows: To begin with, let G = (V, E)

182 J. Lee, E. Kang, and G.-L. Park

be a graph where V is a set of nodes and E is a set of links, and C = (cij) be the
distance or cost matrix associated with E. TSP is to find the cheapest way of
visiting all of the nodes and return to the starting point. Among plenty of heuris-
tics to solve TSP, the most famous one is Lin-Kernighan’s[10,11]. It is known
for its efficiency in finding near-optimal results, while the core of this scheme
consists of link exchange in a tour. A research web site provides diverse TSP so-
lutions including Lin-Kernighan’s in a source level, enabling users to download
and integrate it to their own system[10].

3 Information Model

3.1 Data Classification

The first step of building a recommender system is to systematically organize
the large amount of data. Our model consists of two major information com-
ponents, namely, TPOI information and user information. The analyzed TPOI
information can be classified as shown in Fig. 1. In the figure, the largest category
groups are objective and subjective attributes, respectively. While the objective
attribute represents general tourist information for TPOI such as location and
name, subjective attributes express information subject to the character of re-
spective individuals such as visitor’s opinion on the particular TPOI. Even with
the same tourist information, each user can choose different TPOIs. Among
these, the average stay time is directly exploited by the tour planner.

Theme : old town, folk village, museum, amusement park, ...
Activity : fishing, horse race, sightseeing, swimming, golf, ...
Peak season : spring, summer, autumn, winter

Admission fee
Address

Kindness and service satisfaction
Natural view and atmosphere satisfaction
Tourist resources satisfaction
Cleanness and safety satisfaction

Objective
Attributes

Subjective
Attributes

Attributes

Time : average stay time

TPOI nameTPOI

Geographical terrain : mountain, sea, island, ...

Fig. 1. TPOI information

On the other hand, the user attribute, which users need to submit to the system,
contains personality, attitude, demographic, and social factors. It is further clas-
sified into preference attributes and general attributes, respectively, as shown in
Fig. 2. The preference attribute describes a personal requirement on this tour.
For example, one prefers sightseeing on seaside, one wants to have a night tour,
and one want to experience motor sports. In addition, the general attribute
describes a user’s general taste to his tour. For example, demographic factors
include age, gender, and income. For the sake of minimizing the input of the

Design and Implementation of a Tour Planning System for Telematics Users 183

user, general attributes are further classified into static and dynamic attributes
according to whether the user has to specify data each time he starts another
tour. Static attributes only need to be given at the initial registration phase
because they don’t change during the tour period. However, dynamic attributes
need the user’s input every time he wants a recommendation. After preference
attributes are provisioned initially by the user, they are adjusted automatically
with the tourist history of the user and the log-in information. A user can modify
preferences at any time he wants.

Attributes
User Preference

Attributes Time preference
Activity preference

General
Attributes

Demographic information : age, gender, job, ...
Hobby : golf, fishing, ...
Tourist area
Tour history
Tour motivation
Current location
Others : fellow travelers, season, weather

Attributes

Attributes

Static

Dynamic

Geographical terrain preference

Fig. 2. User information

3.2 Computing Algorithm of the Similarity

The similarity computation scheme can be better described by an example based
on the attribute classification proposed in the previous subsection. To begin
with, let’s assume that there are two TPOIs, namely, A and B, while individual
preference attributes are given as shown in Table 1, where TPOI information is
specified in terms of terrain, theme, and activity attributes. The user preference
table entry contains priority field which ranks the degree of preference. The
higher the priority value, or score, the more a user prefers.

Table 1. Given preference parameters

Theme
Priority

Priority
Activity

Position
Priority

User preference

Folk village
3

4
Fishing

Mountain

4
Sightseeing

Natural view
4

2

3

Sea City

1

Park

1

Golf

2

Island

2

Casino

Museum

3

1

Theme

Activity

Mountain

Natural View

Golf

Island

Folk Village

Sightseeing

Terrain

TPOI Information

TPOI A TPOI B

With such settings, the user preference is to be compared according to the
vector similarity defined in in Eq. (1), where the similarity calculation measures
the cosine value between two vectors[5]. However, it has a problem when it com-
putes the similarity between the distributed pattern of two vectors. To resolve
this problem, the similarity criteria is modified to take into account both the
length ratio of vectors and their size, as shown in Eq. (2).

184 J. Lee, E. Kang, and G.-L. Park

V S(−→Pu,
−→
Ot) = cosθ =

−→
Pu · −→Ot

|−→Pu| × |−→Ot|
(1)

V S(−→Pu,
−→
Ot) ×

−→
Pu
−→
Ot

=
−→
Pu · −→

Ot

|−→Ot| × |−→Ot|
(2)

where −→
Pu denotes the preference of user u, −→

Ot the objective attribute of TPOI
t, and cosθ the pattern similarity of u to t. Based on this similarity analy-
sis method, the recommender system first compares the similarity between the
TPOI objective attribute and user preference. If some user preference field is
not given or not clear, analysis on similar users are performed to fill the unde-
fined fields. In this step, unrelated information will be filtered out. For the more
detailed description, refer to [9].

4 Recommender System

4.1 System Architecture

The overall architecture is shown in Fig. 3. To begin with, each telematics in-
stalled Microsoft Windows Mobile operating system and is connected to our
system via CDMA interface using RAS (Remote Access Service) utility. Users
can input their preference in the form of numbered value through the inter-
face implemented in the telematics, the recommended result being shown also
in this device. Additionally, the telematics device provides a basic map view-
ing functions such as zoom in-out, pan, and distance calculation based on the
road network. The road network has only nodes and links, which are intersection
and two end points of the road segment, respectively. In addition, along with
a corresponding user interface, the device can perform A* path finding algorithm.

Fig. 3. System architecture

The recommender system has been built on top of general desktop Windows op-
erating system and relational database which stores information on each personal
preference and TPOI characteristics. It implements the filtering logic, as previ-
ously explained. Dynamic traffic information is available in Jeju area via the web

Design and Implementation of a Tour Planning System for Telematics Users 185

interface to the Jeju ITS (Intelligent Transport System) or Jeju Taxi Telematics
system[1]. After the recommender system selects the candidate TPOIs, they will
be handed over to the tour planning server, or route planner. The main function
of tour planning server is to generate a subset of TPOIs and their tour schedule
which maximizes the satisfaction degree, considering the user-specified tour du-
ration and traffic condition. We define the satisfaction degree of a set as the sum
of the score of all TPOIs in the set. The planning server mainly plays a role of
TSP solver, and as this procedure needs a great deal of computation, we build
a Linux cluster consist of a master and 2 slaves. But more computing nodes can
be added to our system just with a minor revision of the software.

4.2 Tour Plan Generator

To begin with, we define that a TPOI set has a feasible schedule when there
exists a TPOI sequence {S1, S2,..., Sn} that meets the Ineq. (3).

∑
T (Si) +

∑
D(Si · Si+1) + D(Si+1 · S0) ≤ Tc (3)

where T (Si) denotes the stay time at Si, D(Si · Sj) the driving time from Si to
Sj , and Tc the user-specified tour length. At the filtering step, candidate TPOIs
are selected and sorted by their scores. If there exists a feasible tour schedule for
the initial set, all TPOIs are selected for the final recommendation. Otherwise,
the system should extract the appropriate subset that has a feasible schedule.
A TPOI may be discarded if a tour schedule including it exceeds the given
tour length, or if a tour schedule excluding it has a higher satisfaction degree.
Furthermore, even if Si has the higher score than Sj , Si may be excluded when
any set including Si doesn’t have a feasible schedule, while Sj has.

When the number of candidate TPOIs are too many, it may prolong the re-
sponse time in generating a feasible schedule. Hence, it is necessary to remove
the TPOIs that have little possibility to be selected for a final recommendation
from the first. To this end, we select the initial subset of the TPOIs. From the
sorted list, we choose TPOIs one by one until the sum of stay time is less than
1.5·Tc. In addition, if exists, the TPOIs whose scores are same or almost same
with the last TPOI will be selected to the initial TPOI set. Our experience shows
that this selection rarely misses the optimal route. If the number of candidate
TPOIs is n after such initialization, we should inspect whether there exists a
feasible schedule for 2n subsets. Among the feasible ones, the set of the highest
satisfaction degree is finally chosen for the final recommendation. However, the
time complexity of TSP is O(n!), where n is the number of visiting nodes, so the
total complexity of tour planning system is estimated to be O(2n · n!). As nat-
ural, there are some constraints that can remove the unnecessary computation.
Namely, the system doesn’t have to calculate TSP for a set, either when the sum
of stay time of all element already exceeds the given tour length or when the
satisfaction degree is less than the current maximum.

As the TSP overwhelms the computing time of tour planning system, we need an
efficient heuristic for this problem. Lin-Kernighan algorithm is known to be one of

186 J. Lee, E. Kang, and G.-L. Park

the most efficient algorithms, while running a Lin-Kernighan algorithm needs the
cost matrix having the driving time between every node pair. If we have n nodes,
the cost matrix needs n × (n − 1) times of A* calculations, while each execution
time is dependent on the number of nodes and links in the road network. The road
network of Jeju province consists of about 17,000 nodes and 30,000 links, so it takes
a non-negligible time to compute this matrix but Linux cluster provides a cost-
effective way to enhance the performance of such computation.

In the Linux cluster of tour planner system, the master node is equipped with
1.0 GHz Pentium IV CPU and 512 MB memory, while the slave node 700 MHz
Pentium 3 CPU and 384 MB memory, and they are connected with 100 MBps
Ethernet interface. In addition, the NETGEAR 8-port Fast Ethernet switch con-
nects all of cluster nodes to build a private network. Finally, all nodes installed
Redhat Linux version 9.0 and LAM-MPI version 7.1.2. The master initiates
the cooperative computation by sending an MPI (Message Passing Interface)
message[12]. Each node exchanges the necessary information such as candidate
set, user-specified tour length, and partial result through the shared file system.
If we make bi, when set, indicate that Si is included in the trial set, the task
partition will be done as follows: The master takes the set if bn−2bn−1, namely,
bits for the last two TPOIs, is 10, 11. The set of 01 and 00 will be processed at
each slave. After each node calculates, the master collects the partial maximum
to choose the final maximum.

Fig. 4 shows the execution result displayed in the PDA. Fig. 4(a) shows the
main menu of our system interface including map viewing functions and GUI.
After a tour planning system calculates a feasible schedule, it will return the tour
schedule {S0, S1, ..., Sn−1}. The the system interface program will calculate A*
algorithm along the received route to display the final route as in Fig. 4(b).

(a) Main menu (b) Plan generation

Fig. 4. Tour plan generation

Design and Implementation of a Tour Planning System for Telematics Users 187

5 Performance Measurement

Based on this system, we measured the performance of out planning system in
terms of execution time, the probability of finding the optimal schedule, and the
optimality of the tour schedule according to the number of candidate TPOIs as
well as satisfaction degree. For the experiment, we have generated 14 set groups,
each of which has 50 sets having same number of candidate TPOIs. The number
of candidate TPOIs of respective groups ranges from 12 to 28. Each TPOI has its
own rank distributing randomly from 1 to 10 as well as stay time exponentially
distributing centered on two average, 1.0 and 0.2 for the lookout-type TPOI.

Fig. 5 plots the execution time of the proposed tour planning scheme according
to the number of candidate TPOIs. This curve indicates that the tour schedule can
be offered to the user within 5 seconds when the number of TPOIs is less than 22.
The execution time of full search, which investigates every feasible schedule, grows
beyond 1 minute, when the number of TPOIs is larger than 11. In addition, Fig. 6
shows the probability of finding optimal schedule. The probability means the ratio
of the candidate sets the system finds the optimal schedule to all of the generated
sets. As shown in this figure, when the number of TPOIs is less than or equal to
17, the probability of finding the optimal schedule is above 90 %.

 0

 5

 10

 15

 20

 25

 30

 35

 12 16 20 24 28

E
xe

cu
tio

n
tim

e

number of TPOIs

"TourPlanner"

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 12 13 14 15 16 17 18

S
uc

ce
ss

 r
at

io

number of TPOIs

"Result"

Fig. 5. Execution time measurement Fig. 6. Finding optimal solution

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 12 13 14 15 16 17 18

O
pt

im
al

ity

number of TPOIs

"Satisfaction"

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80 90 100 110

O
pt

im
al

ity

Optimal value

"Result"

Fig. 7. Optimality vs. # of TPOIs Fig. 8. Optimality vs. optimal value

188 J. Lee, E. Kang, and G.-L. Park

Fig. 7 and Fig. 8 evaluate the quality of schedule generated by our system by
measuringhow close its satisfactiondegree is to the optimal degree according to the
number of TPOIs and optimal value. These experiments indicate that both factors
have not so significant impact to the optimality when the number of TPOIs are less
than 18. However, the optimality always exceeds 0.8 for those parameters.

6 Conclusion

This paper has designed and implemented an intelligent tour planning system
capable of 1) selecting TPOIs based on a personalized information rather than
per-TPOI preference, 2) generating a tour plan that maximizes the satisfaction
degree for a tourist. To reduce the response time resulting from the calculation
of O(2n ·n!) complexity, we used initial set reduction, distributed computing via
MPI-based Linux cluster, and finally Lin-Kernighan heuristic. An user interface
was also implemented on a portable device using the utility of embedded op-
erating system. Performance measurement results show that the tour schedule
can not only be offered to the user within 5 seconds when the number of TPOIs
is less than 22, but also find a schedule whose satisfaction degree is close to
the optimal value. We believe that this system can provide a useful information
to tourists for Jeju province as a good example of telematics application. As a
future work, we will keep finding a prospective application for the telematics
network for the dissemination of telematics device.

References

1. Lee, J., Park, G., Kim, H., Yang, Y., Kim, P., Kim, S.: A telematics service system
based on the Linux cluster. In: Shi, Y (ed.) ICCS 2007. LNCS, vol. 4490, pp.
660–667. Springer, Heidelberg (2007)

2. Ponnada, M., Sharda, N.: A high level model for developing intelligent visual travel
recommender systems, ENTER (2007)

3. Ricci, F., Werthner, H.: Case base querying for travel planning recommendation.
Information Technology & Tourism 4, 215–226 (2002)

4. Maruyama, A., Shibata, N., Murata, Y., Yasumoto, K., Ito, M.: P-tour: A personal
navigation system for tourism. In: Proc. of 11-th World Congress on ITS 2, pp.
18–21 (2004)

5. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the 14th Annual conference on Un-
certainty in Artificial Intelligence, pp. 43–52 (1998)

6. Schubert, P., Koch, M.: The power of personalization: Customer collaboration and
virtual communities. In: Proceedings of the Conference on AMCIS, pp. 1955-1965
(2002)

7. Nasraoui, O., Petenes, C.: An intelligent web recommendation engine based on
fuzzy approximate reasoning. In Proceeding of the IEEE International Conference
on Fuzzy System 2, 1116–1121 (2003)

8. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Com-
bining content-based and collaborative filters in an online newspaper. In: Proceed-
ings of the ACM SIGIR Workshop on Recommender Systems (1999)

.

Design and Implementation of a Tour Planning System for Telematics Users 189

9. Kang, E., Kim, H., Cho, J.: Personalization method for tourist point of interest
(POI) recommendation. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006.
LNCS (LNAI), vol. 4251, pp. 392–400. Springer, Heidelberg (2006)

10. http://www.tsp.gatech.edu/concorde.html
11. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Efficient point-to-point

shortest path algorithms. MSR-TR-2005-132. Microsoft (2005)
12. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann Publishers, San

Francisco (1996)

http://www.tsp.gatech.edu/concorde.html

	Design and Implementation of a Tour Planning System for Telematics Users
	Introduction
	Related Works
	Information Model
	Data Classification
	Computing Algorithm of the Similarity

	Recommender System
	System Architecture
	Tour Plan Generator

	Performance Measurement
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

