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Abstract. For WSN(Wireless Sensor Network) to provide reliable ser-
vice, authentication is one of the most important requirements. The au-
thentication usually means the entity authentication, but owing to the
data centric nature of sensor network, much more importance must be
put on the authentication(or attestation) for code of sensor nodes. The
naive approach to the attestation is for the verifier to compare the previ-
ously known memory contents of the target node with the actual memory
contents in the target node, but it has a significant drawback. In this pa-
per, we show what the drawback is and propose a countermeasure. The
basic idea of our countermeasure is not to give the malicious code any
memory space to reside by cleaning the target node’s memory space
where the malicious code can reside. This scheme can verify the whole
memory space of the target node and provides extremely low probability
of malicious code’s concealment without depending on accurate timing
information unlike SWATT[1]. We provide this verification method and
show the performance estimation in various environments.

1 Introduction

In WSN(Wireless Sensor Network), security is one of the most important issues.
Let us assume that WSN is used for military surveillance. If some of nodes are
captured by the enemy force and compromised to work abnormally, these nodes
cannot detect intrusion of the enemy or can report false information to deceive
our forces. To prevent this abnormal behavior of sensor nodes, a method to attest
suspicious nodes in WSN is required.

Unfortunately, physical comproming attack cannot be avoided by any means.
Only hardware tamper-proof module in the node forces the node not to be
modified, and it prevents the node from becoming a malicious node which may
attack other nodes. Therefore, researches mainly have been focused on how to
detect the compromised nodes remotely. Most of these studies, however, work
only after the compromised node makes some misbehavior. Thus, until the nodes
make some misbehavior, there are no way to find out those malicious nodes.
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Because of this nature, WSN is prone to get the damage caused by the malicious
nodes.

Thus, we need methods to detect compromised nodes proactively before they
make any misbehavior. SWATT(SoftWare-based Attestation for embedded
device) [1] is designed for this remote software based attestation. SWATT is
very simple to be adopted, but it works in time critical manner and thus, it is
very sensitive to unpredictable network delay and also dependent from hardware
platforms. The method newly suggested by Mark Shaneck is based on SWATT
technique, but revised the time-related weakness of SWATT[2].

In this paper, we suggest a totally different proactive code verification algo-
rithm to detect compromised nodes. Our scheme can verify the whole memory
space of the target node and provides extremely low probability of malicious
code’s concealment without depending on accurate timing information unlike
SWATT[1]. We provide this verification method and show security analysis and
performance estimation in various environments.

2 Assumption, Threat model and Requirements

2.1 Assumption

Before we describe our verification protocol, we touch on some assumptions.
We assume that the verifier has copies of the memory contents of a target node.

Each entity is assumed to share a pair-wise key to construct secure communica-
tion channel between them. The establishment of pair-wise key can be achieved
by random key predistribution schems, etc. The remotely executable verifica-
tion code by verifier is embedded in memory of a target node. The attacker can
obtain whole competence for memory access but it is not supposed that the
attacker can modify hardware architecture of captured node because it means
the attacker can use external resources. We assume that the programmable flash
memory of the target node must not have any empty space unless it is for some
special purpose. Also, the node is assumed not to support virtual memory and
not be able to execute any codes in the external data storage directly.

2.2 Threat Model

The naive approach to attestation is that a verifier compares the known memory
contents of a target node with the actual memory contents in that node. The
verifier demands testimony to the target node first. And then, the target node
executes the verification code in its memory. The verification code accesses and
sends the memory contents to the verifier. Finally, the verifier decides whether
the target node is infected or not by matching received memory contents to its
copy.

However, the attacker can avoid this naive attestation easily using the follow-
ing attack. He puts some attack code in the sensor node that has valid infomation
about original memory contents. And, he modifies the verification code to jump
up to the attack code instead of to firmware code. The malicious verification
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code sends valid memory contents which the attack code has. Consequently, the
verifier does not correctly attestate the target node compromised by an attacker.

2.3 Notation

In this paper, we use the following notations if there are not any other comments.

V ‖D the concatenation of codes V , D.
{Di}mi=1 the concatenation from D1 to Dm

KA,B the shared key between A and B.
EKA,B (m) the encryption of message m with key KA,B.
DKA,B (c) the decryption of ciphertext c with key KA,B.

3 Our Proposal

In this section, we propose a new protocol about software-based verification
method between a BS and a node. The main idea is not to give the malicious
code any memory space to reside by cleaning the target node’s memory space
where the malicious code can reside whenever a verification request is given.

WSN is usually composed of huge number of sensors and a few base stations.
While BS has enough resources to process heavy tasks simultaneously, a sensor
node has very limited resources such as small memory size, low battery capacity
and small radio range. In this section, we discuss the method in which a base
station as a verifier attests sensor nodes whether it works correctly or not.

There are various types of memory in a sensor node. For example, MICA mote
made by UC Berkeley has a 4kB static RAM, a 128kB flash program memory
and a 4Mbit external flash memory[3]. Most of architectures of sensor nodes are
like MICA mote’s. We will denote SRAM and Flash of micro controller as Mem1.
Memi where i ≥ 2 denotes flash program memories or external data storage;
normally, only one flash programmable memory is built in micro controller of a

Sensor Node

Empty

D2

Di

CV

Empty

Mem1

EmptyMemi

Mem2

Fig. 1. Memory contents in a sensor node. Mem1 is a RAM of micro controller and
Memi(i > 1) is programmable flash memory.
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Fig. 2. Filling empty memory space with random number in the operation phase(using
SHA-1). It fills the space with the value computed by XOR operation of two random
numbers.
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sensor node and external data storage is EEPROM. We do not assume any attack
using external data storage because the access time of external data storage is
too slow to use for the attack and thus it is easily detectable. After sensor
nodes are deployed, verification code V and firmware code C are in the Mem1

as long as it runs. Memi has each data part Di, so all the data in a node is
D = {Di}Λi=1. Λ denotes all memories in a sensor node. Figure 1 illustrates these
memory contents.

Request phase. Our verification mechanism is composed of four phases; the
request phase(of the verifier), the operation phase(by the target), the response
phase(of the target) and the check phase(by the verifier). Firstly, in the request
phase for verifying memory contents of a target node, BS sends the request mes-
sage (Req), BS’s ID (IDBS) and a nonce (n) along with IDBS and n encrypted
by shared secure key between the BS and the node (KBS,node).

BS→ node : Req, IDBS, EKBS,node
(n, IDBS)

When the node receives this message from the BS, it can check whether these
are legitimate or not by comparing IDBS with EKBS,node

(n, IDBS). This step can
prevent an attacker from impersonating the BS, and thus, the attacker cannot
attempt DoS(Denial of Service) attack to unspecific nodes if he does not know
the shared key KBS,node.

Operation phase. It is the first step of the operation phase that the correspon-
dent node generates random numbers as a seed using n. The empty space should
be filled with the bit string made by specific algorithm with random numbers.
The size of empty space of Memi, Si

E is the same as the remaining memory
space excluding the verification code, the firmware code and the data. It can be
calculated by

Si
E = Si − (Si

V + Si
C + Si

D) (1)

The algorithm fills the empty memory space with the bit string computed by
XOR operation of two random numbers. Firstly, the random numbers fill the
Si

E . And then, if the random number sequence meets end of the empty memory,
it should proceed in the opposite direction and fill the XOR-operated value
between existing random number and newly generated random number. Input
of hash function for generating random number in this algorithm is previous
512-bits memory contents. Figure 2 shows an example that works following this
algorithm. Rj denotes the j-th output of hash function.

However during four rounds of this algorithm the random number can not be
generated from previous 512-bit memory contents, so the random number in the
first round is made from the seed n. Second to fourth rounds are generated from
memory contents and padding 0 value. The reason why the algorithm is used is
described in section 4.3. The algorithm Fill Memory(n) is shown as following.
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Algorithm. Fill Memory(n)
1 for i=1 to Λ

/* Filling the empty memory with random number */
2 for j=1 to 4
3 n← h512(n ‖ padding 0)
4 Memi[j − 1]← n
5 for “j=5 to Si

E

6 Memi[j − 1]← h512(previous 512-bit)
/* XOR operation in the opposite direction */

7 for j=1 to Si
E

8 Memi[Si
E − j]←Memi[Si

E − j]⊕ h512(previous 512-bit)
9 return

Response phase. In the response phase, the correspondent node responds to BS
with the hash value, h(MIXED MEM‖D) over Mem1 to Memi. MIXED MEM is
the sequence of memory contents that V ‖C‖FMn is read in conformity with the
rules.

node→ BS : EKBS,node
(h(MIXED MEM‖D), D)

The mixing is for preventing that an attacker use a backup from other sensor
nodes to hide his code. Figure 3 shows an example.

Since BS does not know sensor node’s data D that are temporally stored,
usually a node must send D to BS for backup before verification procedure
starts. And then, the random number sequence fills all memory space excluding
V and C that the BS already knows. After the verification finishes, the node has
to receive the D from the BS to restore its original states. This is burdensome

...... ... ... ...

FMn

.........

20

V C

Fig. 3. MIXED MEM(using SHA-1)
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because of two reasons. One is the limited battery capacity of a node. The node
consumes energy twice in transceiver mode: sending and receiving. Consequently,
a node consumes excessive energy for obtaining D that has been known already
before the verification. The other reason is that it increases verification time
unnecessarily.

Checking phase. In the proposed protocol, actually a node does not need to
receive D. During the verification, a node just sends D with the hash value
to the BS. The BS hashes received D with V and C that are already known.
And the BS compares the calculated hash value with the received one. If the
calculated value equals to the received one, the BS concludes that the node is
not compromised. Moreover, when the node does not need to store D because
D is only temporary, it just sends EKBS,node

(h(MIXED MEM)) to the BS. If the
BS knows that the node is compromised or modified illegally, it should notify
that of the other nodes.

V EmptyC D

V C D

(a) When a node is normal

V C D

V C D

A

(b) When a node is compromised

Fig. 4. Change of memory contents of a node before and after running algorithm
Fill Memory()

Figure 4 shows the rough idea of our protocol. That is, if the target is not
compromised, it can respond with a correct answer by hashing its whole memory
image. If not, even though compromised node reserved an attack code for mas-
querading, it is overwritten according to Fill Memory(n). Finally, it is impossible
for the node to send correct answer expected by the BS.

4 Security Consideration

4.1 Time Independent Verification

SWATT for WSN works by measuring processing time to detect malicious code.
So, if the microprocessor in a node is more powerful, more loops for amplification
of small time difference are required. This means that SWATT consumes more
energy. Moreover, SWATT for the WSN does not allow unpredictable delay
because the delay means existence of malicious code. If allows, an attacker can
make a BS recognize code delay as network delay. Therefore, SWATT for the
WSN should be adopted very carefully.
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On the other hand, our code verification scheme does not need to consider
exact processing time. But, if a sensor node has more memory space, it requires
more time to fill the empty memory space. However, we can set the threshold
time to the value which is long enough to cover processing time and network
delay, and this feature of timing independent verification promises more flexible
usage because the network delay rarely affects the whole verification time.

4.2 Prevention from Replay Attack

The malicious node which is compromised by an attacker can mount the replay
attack against our protocol. The node is able to overhear some messages used in
our scheme to send these old messages to the BS which is in verification process
with other node. However, our verification scheme is basically a kind of the
challenge-and-response protocol, and thus, the replay attack cannot be mounted
owing to the nonce, even though the attacker knows the session key between the
BS and the other node.

Under the challenge-and-response protocol, if an attacker knows the secret
between two entities, he can easily success in the attack by sending the response
message which is computed with the secret . Here in our protocol, the secret is
the code itself, and so it seems easy to break the protocol because the code is
usually known to the attacker. However, it is impossible for the malicious node to
make the correct response for a nonce because it does not have enough memory
space to generate the message while it keeps up the code both for malicious
behavior and for original.

4.3 Prevention of Making Required Random Block on Demand

Another attacking method is that a malicious code generates required blocks of
random sequence at the time when the hash function needs the blocks. Let n be
the number of block of empty memory, the n-th block can be generated from the
seed by �|S1

E |/Sho� × 2 − n times hashing because the n-th block is calculated
by Rn ⊕R�|S1

E |/Sho�×2−n. where Sho is the output size of hash function, and | |
denotes the size of specific memory. (Sho is 160 if the hash function is SHA-1,
and is 128 if MD5.) Remember that the empty memory space is filled twice with
random number while the Fill Memory(n) does. Similarly, (n− 1)-th block can
be generated.

If we assume that the total memory length is very long as compared with the
code for attack, the attack code should perform at least 20(SHA-1) or 16(MD5)
times of the hash calculation for hiding itself. However the ratio of the attack
code in the total memory is higher than our assumption, so that we expect it
takes more time.

Actually, there is almost optimal method to compute hash chain using appro-
priative cache[4]. If using cache, we should consider of the length of memory in
each hardware implemented in each sensor node. In this paper, we show exam-
ples for proving our protocol’s excellence under the assumption that the attack
code uses 400 bytes memory(SHA-1) or 320 bytes memory(MD5) (the attack
code itself, two 512-bit caches, one 512-bit seed and so on).
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5 Analysis of Verification and Attack Model

5.1 Performance Estimation for a Valid Node

Based on our model, we can estimate the total execution time T by

T = Th +
Λ∑

i=1

(Tr + T i
a)× Si

E (2)

where Th is the time for making response, Tr is the time for generating random
number and T i

a is the time for accessing Memi.
In most implementations of sensor nodes, only Mem1, Mem2 and Mem3 are

used for the sensor, where Mem1 is SRAM, Mem2 is programable flash memory,
and Mem3 is the external EEPROM.

Table 1. Hardware flatforms in some applications

Sensor Microprocessor Word Size Clock Freq. SRAM Size Flash Size MIPS

Dot[5] ATmega163 8-bit 16MHz 1kB 16kB 8
MICA
MICA2Dot
MICA2[6]

ATmega128 8-bit 16MHz 4kB 128kB 16

Telos[7] MSP430F1611 16-bit 8MHz 10kB 48kB 8

If we can say that the flash memory already is filled by an administrator
as our assumption, it is enough to fill only SRAM because the writing time
in EEPROM is too slow[8]. In some implementations, the size of the external
EEPROM is about a few mega bits, and in order to fill that, it will take several
thousand seconds. (For example, if the size of EEPROM is 4Mbit and the writing
time for 1bit is 1ms, it takes over 1 hour 8 minutes 16 seconds.) In the other
hand, the writing time in SRAM is fast enough to ignore.

As we mentioned before, we could estimate the execution time of our scheme
by just counting hash operation, and we can rewrite the equation 2 as

T ′ = Th + Tr × S1
E (3)

Let Uf be the number of hash rounds for filling the empty memory space, and
δ be the time to execute one round. Then Tr×S1

E can be rewritten by Uf×δ. Then

Uf = �|SRAM|/Sho� × 2 (4)

Let Ur be the number of hash rounds in the response phase, then

Ur = �(|SRAM|+ |Flash|)/Shi�+ 1 (5)
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Table 2. Round Time and Required Hash Rounds(* means it’s an estimated value)

Microprocessor Round Time (δ) Rounds (Uf ) Rounds (Ur)

ATmega163 (SHA-1) * 7272μs 104 272(+1)
(MD5) * 2946μs 128 272(+1)

ATmega128 (SHA-1) 3636μs 410 2112(+1)
(MD5) 1473μs 512 2112(+1)

MSP430F1611 (SHA-1) * 7272μs 1024 928(+1)
(MD5) * 2946μs 1280 928(+1)

Table 3. Required Time for Hash Operation

Microprocessor Time (Uf × δ) Time (Ur × δ) Total Time (T ′)

ATmega163 (SHA-1) 0.756s 1.985s 2.741s
(MD5) 0.376s 0.804s 1.180s

ATmega128 (SHA-1) 1.490s 7.683s 9.173s
(MD5) 0.754s 3.112s 3.866s

MSP430F1611 (SHA-1) 7.466s 6.756s 14.202s
(MD5) 3.770s 2.737s 6.507s

where Shi is the input size of one round of hash function. (Shi is 512. +1 is
needed because of initial padding operation of hash function.) Then Th can be
rewritten by Ur × δ. Finally,

T ′ = Ur × δ + Uf × δ = (Ur + Uf)× δ (6)

The round times δ in ATmega128, 3636μs for SHA-1 and 1473 μs for MD5
are shown in Alexander Dean’s paper with his experiment[9]. The round times
δ in ATmega163 and MSP430F1611 are estimated from ATmega128’s one. We
calculated the value by comparing the difference of the each MIPS.

Table 3 shows the approximated execution time of our scheme. The estima-
tions are very different in each microprocessor, from 1 second to 14 seconds.
The threshold time for waiting response from a node, thus, must be determined
considering network delay and these estimated execution time.

5.2 Performance Estimation for an Attacked Node

Now we estimate the optimal attack model that we mentioned in section 4.3.
Recall that the attacker have to generates required blocks of random sequence
at the time when the hash function needs the blocks. The total execution time
Ta by the attacker can be calculated by

Ta = T ′ + Ua × δ (7)

Ua is the number of hash rounds that the attack code needs to hide itself by
generating available response. The size of the attack model we assumed is 20-
blocks as we mentioned in section 4.3. Table 4 shows the approximated execution
time of the attack model.
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Table 4. Required Time for the Attack

Microprocessor Rounds (Ua) Time (Ua × δ) Total Time for Attack(Ta)

ATmega163 (SHA-1) 3600 26.179s 28.920s
(MD5) 2880 8.484s 9.664s

ATmega128 (SHA-1) 3600 13.089s 22.262s
(MD5) 2880 4.242s 8.128s

MSP430F1611 (SHA-1) 3600 26.179s 40.381s
(MD5) 2880 8.484s 14.991s
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Fig. 5. The comparison between total verification time of valid nodes and malicious
nodes. The time of malicious nodes at least doubles that of valid nodes.

Figure 5 shows a gulf between the total execution time and the total attack
time. As the figure shows, the total attack time at least doubles the total execu-
tion time of valid node. It is enough for the verifier to distinguish the malicious
node from valid node.

6 Future Works and Conclusion

In this paper, we suggested a new code verification mechanism. Our scheme
works in a very simple way compared with previously suggested methods, but
it is good enough to detect malicious codes in sensor nodes without requiring
exact timing information.

We can extend our code verification technique to node-to-node mode. Without
intervening of base station, each node can cooperatively verify each other’s code
to banish compromised nodes. Also, proper modification of the protocol can
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define a group code verification protocol that can verify codes of group of nodes
in efficient manner.
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