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Abstract. In this paper we present a solution for providing a fast tran-
sition in heterogeneous mobile networks which involve network access
control based on the Extensible Authentication Protocol. The goal is to
reduce the time spent on providing access and smooth transition, be-
tween different technologies which require to perform authentication to
allow network access. We propose and describe an architecture and secure
protocol, which reduce the number of round trips during authentication
phase, and verify its secure properties with a formal tool.

Keywords: Fast handover, security, network access control, authentica-
tion.

1 Introduction

Nowadays, authentication and authorization to control access to the infrastruc-
ture is one of the key elements in which mobile operators are interested in. The
goal is to guarantee that only authenticated nodes are allowed to communi-
cate with external hosts in both directions. Traditionally, this problem has been
solved in fixed IP networks through the deployment of Authentication, Autho-
rization and Accounting (AAA) infrastructures [1]. However, the authentication
and network control access are time-consuming processes which can last several
hundreds of milliseconds with the corresponding high delays and packet losses
in on-going communications. This is in contrast with service providers’ desire of
provisioning a fast seamless mobility. Thus, there is an increasing demand for
studying a solution which achieves the goal of reducing the impact of authenti-
cation and network access control in mobile users.

In particular, authentication in wireless networks is typically based on the Ex-
tensible Authentication Protocol (EAP) [2] which provides a flexible way to per-
form authentication through the so-called EAP authentication methods. These
EAP methods usually generate cryptographic material after a successful authen-
tication. However, the EAP method execution is also a time-consuming process,
as involves several round trips between two entities, the EAP peer and the EAP
server. This latency specially appears in roaming scenarios where the EAP peer
may be far from the EAP server and where each round trip may last hundred
of milliseconds. Besides, each time the user accesses a new point of attachment,
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an EAP authentication is performed even if the user owns unexpired crypto-
graphic material from the previous EAP authentication. In this way, research
and standardization community have tried to reduce that time through different
approaches. For example, context transfer based mechanisms [3], [4] where the
cryptographic state in the current point of attachment (where the peer ended
up the authentication process) is transferred to a new point of attachment. In
that way, when the peer moves to the new authenticator, it is not required to
perform a full EAP authentication. However, context transfer has raised some
security issues in the community [5] which has lead to alternative solutions. In
particular, some research work has proposed to modify the EAP stack [6] to
the cost of updating the existing EAP implementations. Other solutions have
designed new EAP methods such as [7] which avoids any modification in the
existing EAP deployments but which adds additional round trips when provid-
ing a fast network access during handover. Finally, Kim et al. [8] have designed
their own secure protocol between the mobile and the authenticator avoiding to
run EAP. The proposal implicitly implies, however, a modification at link-layer
level, in particular IEEE 802.11i [9] where the protocol is applied.

Our proposed solution is also based on a secure protocol but works on top
of IP being independent of the underlying technology. Moreover, it is able to
leverage the cryptographic material generated during an initial EAP authenti-
cation to bootstrap new security associations with new authenticators without
performing EAP. Therefore, our secure protocol provides a quick authentication
and network access control. In the authors’ opinion, the main contributions of
this paper are: the definition of a secure protocol which reduces the number of
round trips used for authenticating the user during roaming and is technology
independent; the definition of a proper key hierarchy that enables further opti-
mization during handover and a demonstration how our protocol achieves secure
properties, through the use of a model checker as a proper formal tool.

The remainder of the paper is organized as follows: in section 2 we analyze
EAP since it is the basis where our solution stems. Section 3 describes the
protocol and the defined key hierarchy to support a fast secure handover. In
section 4 we analyze the security aspects of our protocol and show by using
a formal tool how it meets certain security properties. Section 5 compares our
alternative with other proposals in the literature. Finally, section 6 concludes
the paper and provides some future directions.

2 EAP Key Management Framework

The Extensible Authentication Protocol (EAP) has been designed to permit dif-
ferent kind of authentication mechanisms through the so-called EAP methods.
The EAP methods are run between an EAP peer (the mobile node) and an EAP
server (typically co-located with the AAA server) through an EAP authentica-
tor which simply forwards EAP packets back and forth between the EAP peer
and the EAP server in order to complete the authentication process. On the one
hand, an EAP lower-layer is used to transport the EAP packets between the
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EAP peer and EAP authenticator. On the other hand, an AAA protocol, such a
RADIUS [10] or Diameter [11], is used for the same purpose between the EAP
authenticator and the EAP server.

The EAP methods not only provide authentication, but also are able to gener-
ate keying material to establish a security association between the EAP peer and
the EAP authenticator through a security association protocol. The key material,
exported from the EAP methods and described in the EAP Key Management
Framework [12], is mainly composed by the Master Session Key (MSK) and the
Extended Master Session Key (EMSK). As depicted in Fig. 1(a), both keys are
exported to the EAP lower-layer in the EAP peer side and to the AAA protocol
in the EAP server side. The MSK is sent out to the EAP authenticator from
the AAA server (where the EAP server is co-located) and used for establishing
a security association between the EAP peer and the EAP authenticator.

Unlike MSK, the EMSK must not be provided to any other entity outside
the EAP server or peer, so this key will not be sent to the EAP authenticator.
The EAP server may well hold and use the EMSK for further key derivation.
Recent work [13] has shed some light about how to use EMSK in order to derive
further keys for different purposes. For backward compatibility, the EMSK has
been intended to work as the root key in a key hierarchy applicable to a fast
handover solution. Therefore, we will also use EMSK as a root key for our own
key hierarchy.

3 Secure Protocol for Fast Network Access

The EAP Key Management Framework mandates that the keys generated dur-
ing an EAP authentication are exported to the EAP lower-layer in the EAP peer.
The implication is the EAP lower-layer is in charge of handling the generated
keys in order to establish security associations between the peer and the au-
thenticator. Therefore, when the EAP lower-layer for a specific technology (e.g.
802.11i) receives keys from the EAP methods after a successful EAP authentica-
tion, it can use them only within that particular technology. This is reasonable
since that specific EAP lower-layer knows the details of that particular tech-
nology. Thus, the keys provided to that EAP lower-layer can be only used for
that technology and no other. Unfortunately, this makes no possible, to leverage
the keys generated during an initial EAP authentication for other technologies
since the specific EAP lower-layer does not know how to provide cryptographic
material to other EAP lower-layers.

However, let us consider the model presented in the Fig. 1(b) where the EAP
lower-layer is independent of the underlying technology. In this case, a single
EAP lower-layer receives the MSK and EMSK after a successful EAP authenti-
cation. The EAP lower-layer can use those keys for generating a security asso-
ciation at the EAP lower-layer itself but additionally can distribute additional
keys derived from EMSK and/or MSK to bootstrap security at other different
technologies. These technologies are named ports and shall require a symmetric
key to perform a security association protocol (SAP) (at port level) in order
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(a) EAP Key Mng. Fwk. Model (b) Single EAP lower-layer

Fig. 1. EAP Key Management models

to protect data traffic between EAP peer and authenticator. As an examples of
ports, we may find, at network-layer, IKEv2 [14] which is used for establishing an
IPsec tunnel to protect data traffic between peer and authenticator. Similar ex-
amples can be found at link-layer, such as IEEE 802.11i [9] , which implements
a Pre-Shared Key (PSK) mode that allows to establish a security association
through a 4-way handshake protocol by using a symmetric key (PSK). In this
way, the single EAP lower-layer concentrates the key management between the
EAP peer and EAP authenticator and allows to bootstrap security to different
(heterogeneous) technologies (ports).

Additionally, we have the important aim of reducing the number of round
trips dedicated to provide authentication and access control each time the EAP
peer switches the EAP authenticator during a handover. In order to achieve this
objective, we propose that the EAP lower-layer itself leverages keys generated
during initial EAP authentication (MSK and EMSK) to mutual authenticate
and generate session keys between the peer and the authenticator, in only one
trip and without the need of running EAP again.

Indeed, when the EAP peer moves to a new EAP authenticator both entities
must engage a mutual authentication process and derive, as a result, keys to
protect EAP lower-layer messages and data between them. Therefore, we require
to run an authentication and key establishment protocol that initially involves
two parties: the EAP peer and the EAP authenticator. Typically, the new EAP
authenticator shall not own any key associated to that particular EAP peer.
However, as pointed in section 2, the EAP server involved during the initial
EAP authentication shall hold the EMSK (or a key derived from it). As a result,
the EAP authenticator may contact the AAA server (where the EAP server
is co-located) in order to fetch (pull method) some cryptographic material to
authenticate the user and derive new session keys. This cryptographic material
is generated from the EMSK and the key hierarchy we have designed is detailed
in section 3.3.

Thus, this case involves 3 parties: EAP peer, EAP authenticator and the EAP
server (distributing keys). This implies that well-known 3-party key distribution
protocols [15] may be well considered in this case. However, the features we want
to provide in our architecture does not completely fit with typical 3-party key
distribution protocols for several reasons. For example, the server does not need
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to distribute any key to the EAP peer, since it can derive the session keys from
those ones generated during initial EAP authentication (MSK,EMSK). In this
manner, the server only needs to distribute keys to the EAP authenticator. Ad-
ditionally, we desire an optimization consisting on the AAA server pre-installing
(push method) a few keys in different authenticators even before the EAP peer
is associated to it [16]. In such a case, the EAP authenticator already owns the
required keys to authenticate and establish session keys with the EAP peer. An
important design principle is that EAP peer shall not need to know whether the
required keys were pre-installed at the authenticator or, on the contrary, they
still reside at the AAA server.

For these reasons, we propose that the single EAP lower-layer uses and im-
plements a modified version of a well proved and secure two-party protocol, the
REKEY protocol [17], by using the keys generated during the initial EAP au-
thentication, but considering that there may be a server (the AAA server) in the
backend, which is in charge of distributing certain keys. In this way, if the EAP
authenticator already owns a share secret with EAP peer, the REKEY protocol
is immediately run. However if the EAP authenticator does not have any keys
for the EAP peer, it will request and fetch them from the AAA server in order
to complete the authentication process.

3.1 The REKEY Protocol

The REKEY protocol belongs to the family of provable secure protocol [18]
which have been verified to be secure under a complexity-theoretic proof. It is
very similar to AKEP2 presented by Bellare at el in [18] and who introduced
the first mathematical proof that the protocol was secure. It accomplishes the
minimum number of messages (3) for authentication and key establishment when
random numbers (nonces) are used for freshness. As depicted in Fig. 2(a), two
parties Pi and Pj engage a mutual authentication process based on a shared
secret kij . From that key, they both derive two keys k1 = fk1(1) and k2 = fk2(2)
through a secure Message Authentication Code (MAC) function f . Whereas k1

is used for party authentication, the second one (k2) works as root key for session
key sk derivation. The distinction made between the key for authentication (k1)
and the key for key derivation (k2) is due to that, when using the session key
also for authentication, it does not accomplish the security proof in [18].

In REKEY protocol, Pi starts sending an initial message (1) with its identity
(Pi), a value s which identifies that particular session and a random number
ri. Pj answers (2) with its identity (Pj), the same session identifier s, its own
random value rj and an authentication tag tj which is result of fk1(rj , s, ri).
Upon receiving this message, Pi verifies the authentication tag tj with its key
k1 and sends a new message (3) that includes s and an authentication tag ti
generated as fk1(ri, s, rj). Party Pj can verify ti with k1 completing the mutual
authentication process (if the tag is successfully verified). After a successful
mutual authentication, Pj and Pi can generate session keys by using k2 as root
key for key derivation. In particular, the session key sk is generated applying f
to both random values ri,rj : sk = fk2(rj , ri).
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3.2 The REKEY Protocol with a Server

We propose an extension of the REKEY protocol which considers the possible
participation of a server in the backend, in charge of distributing keys. In our
particular case, the AAA server where the initial EAP authentication was per-
formed, acts as this entity. As we will see later, this AAA server may delegate
this function to other AAA servers for further optimization. A simplified ver-
sion showing the most important parameters of the modified REKEY protocol
is outlined in Fig. 2(b). For sake of clarification, {X}k represents the encryption
of message X with key k providing integrity and confidentiality.

(a) REKEY protocol (b) REKEY with an AAA server

Fig. 2. The modified REKEY protocol

The party Pj shall represent the EAP peer and the party Pi refers to the EAP
authenticator, which is in contact with an AAA server. After some initial event,
(e.g. link-layer signal or some message sent from the EAP peer), Pi starts the
REKEY protocol, shown in section 3.1, sending the message 1. The EAP peer
(Pj) answers with message 2 but now including a token {Tpj, Pj , Pj}Kjs where
Kjs is a shared secret between Pj and the server S and Tpj is a timestamp sent
by Pj for freshness. It is worth nothing though, it may be replaced for a sequence
number seq managed between the EAP peer and the EAP server for the same
freshness purpose.

At this point, the authenticator Pi may not have the key k1 required for
verifying the authentication tag tj . In such a case, the authenticator forwards
(3) the token {Tpj , Pj , Pj}Kjs to the server as well as the random values ri,
rj . The token and these random numbers are protected with a key Kis shared
between authenticator i and the server, which defines the security association
established between both entities. Then, the token can be verified by the server,
which shares the key Kjs with the Pj . It can also verify that it is fresh thanks
to the timestamp or sequence number contained in this token. In this way, the
server can verify that EAP peer is really requesting the key distribution process.
This is important since it avoids a denial-of-service attack where an attacker,
which has taken control of an authenticator, continuously requests keys for other
authenticators and peers even when they are not required. So, only upon a proper
token verification, the server sends back (4) the key k1 for authentication and
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k2 for further key derivation. Alternatively, the server can distribute the kij

instead of both k1, k2. The difference is that the authenticator will be in charge
of deriving both keys from kij .

It is possible to obtain further optimization during handover, by delegating
to another AAA server located near to the access device, the key distribution
process [19]. In this way, the delay between the authenticator and server is
further reduced and overall access latency is decreased. In this optimization,
the key kij is, in fact, derived by another intermediate server Sv from a root key
SMKv

j provided by the home AAA server (AAAh). We have also considered
this optimization by designing a key hierarchy which includes the possibility of
a trusted intermediate entity (usually the AAA in the visited domain) carries
out authentication tasks and key distribution in a particular domain.

3.3 Key Hierarchy and Key Derivation

The key hierarchy stems from the EMSK generated during initial EAP authen-
tication. We have followed the recommendations in [13] in order to derive the
whole key hierarchy. In general, the reference [13] explains a general key deriva-
tion framework based on a Key Derivation Function (KDF) which derives further
keys from the EMSK (root key). These keys are named User Specific Root Keys
(USRKs) and derived using the following general way:

USRK = KDF (rootkey, keylabel, optionaldata, length) (1)

where root key is the EMSK. This derivation also includes a key label, optional
data, and output length. The KDF is expected to give the same output for the
same input. By default this KDF is taken from the Pseudo Random Function+
(PRF+) key expansion defined in [14], being HMAC SHA 256 [20] the default
PRF. We have used this general framework to build our key hierarchy by replac-
ing the root key for different keys in the hierarchy.

The Table 1 shows the different parameters which have been considered in
formula 1 in order to derive the key hierarchy. We have indexed each key with
index j,i and v to refer that key is associated to the j-th EAP peer and i-th EAP
authenticator and generated by the v-th server, respectively.

Table 1. Parameters for the Key Hierarchy Derivation

Key Deriv. Root Key Key Label Opt. Data Length

RMKv
j EMSKv

j “root master key@domain” − 64

SMKv
j RMKv

j “server master key@domain” v 64

kv
ij SMKv

j “authenticator master key@domain” Pi|Pj 64

kij
1 kv

ij “authentication key@domain” 1 32

kij
2 kv

ij “key derivation key@domain” 2 32

IKij kij
2 “integrity key@domain” ri|rj 32

EKij kij
2 “encryption key@domain” ri|rj 32

BKij kij
2 bk-label ri|rj length
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The Root Master Key RMKv
j is an USRK derived from the EMSKv

j and
associated to the j-th EAP peer and generated by both the EAP peer and the
EAP server. In this way, both entities do not need to hold the EMSK anymore
as [13] recommends.

The Server Master Key SMKv
j is derived by the home AAA server from

the RMKv
j for a specific AAA server v where the home AAA server (AAAh) may

delegate key distribution and management tasks. It is assumed that the SMKv
j

is transported to the AAA server v through a proper security association which
avoids the key to be revealed. It is worth noting that the AAAh also derives its
own SMK for its own use (SMKhome

j ). This gives certain symmetry and hygiene
to the key hierarchy. Finally, as reflected in Table 1, the AAA server’s identifier
(v) is required for SMK derivation. This value may be an IP address or the AAA
server’s Fully Qualified Domain Name (FQDN) and is used to bind the AAA’s
identity to the SMKv

j .
The Authenticator Master Key kv

ij is derived by AAA server v from the
SMKv

j for the i-th EAP authenticator and j-th EAP peer and may be trans-
ported to the authenticator. It is used as root key by both the peer and the
authenticator in order to derive further keys that allow a mutual authentica-
tion (kij

1 ) between each other and generate a key (kij
2 ) for further session key

derivation.
The Authentication Key kij

1 is exclusively used for authenticating the peer
and the authenticator and it is derived from the authenticator master key kv

ij .
It may be transported to the authenticator together with kij

2 instead of kv
ij .

The Key Derivation Key kij
2 is used as root key in order to derive session

keys that permit to establish an authenticated channel between the peer and the
authenticator. This key is used to derive a set of three keys: the Integrity Key
(IKij) and the Encryption Key (EKij) used to provide integrity and encryption
at EAP lower-layer level, respectively; and the Bootstrapping Key BKij used as
a shared secret in a security association protocol run (such as IKEv2 or 4-way
handshake in IEEE 802.11i) intended to protect data traffic between the peer
and authenticator.

3.4 Process Outline

The complete process is based on two main phases. Firstly, in a bootstrapping
phase, the EAP peer engages a full EAP authentication with the authenticator
by using the single EAP lower-layer. After a successful EAP authentication,
EAP peer and EAP server derive a key hierarchy explained in the previous
section 3.3. Additionally, in this phase the EAP peer may be provided with a
value that allows to loosely synchronize the clocks of both the EAP peer and the
EAP server (when timestamps are used for freshness). Alternatively, if sequence
number is used for freshness, a random sequence number (seq) can be provided
to the EAP peer from the EAP server in this phase. Finally, the bootstrapping
phase is also needed to know what specific AAA server v will be in charge of key
distribution and management during user roaming.
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After the bootstrapping phase, which happens only once during the initial
EAP authentication, the peer may start a handover phase and move to a new
EAP authenticator. In order to get access and avoid another EAP authentication,
both entities (EAP peer and EAP authenticator) engage a mutual authentica-
tion process based on our modified REKEY protocol and derive, as a result, keys
to protect EAP lower-layer messages and data between them. This mutual au-
thentication process is based on the key kij

1 derived from key hierarchy stemmed
from EMSK. After a successful mutual authentication, the session keys IKij ,
EKij and BKij are derived from kij

2 .

4 Security Details

The REKEY protocol with a backend server outlined in section 3.2 has been
checked against the Automated Validation of Internet Security Protocols and Ap-
plications (AVISPA) [21] tool which allows, through the High Level Protocol Speci-
fication Language (HLPSL), to specify a protocol in order to find possible attacks.
It uses several model checkers which analyze possible protocol behaviors and allow
to know if they accomplish certain correctness conditions or goals.

We have specified our protocol in the formal language HLPSL and check it
against AVISPA. The Fig. 3 shows HLPSL specification per each party involved
(the peer, the authenticator and the server) and the authentication requirements
or goals. For simplicity, we have only included the server that distributes kij

1

and kij
2 .

Although no attacks have been found in the protocol, it is important to make
some additional comments related with the security properties in our modelled
protocol. If we take a look at section 3.2, we shall realize that the same keys
kij
1 and kij

2 are transported to the same i-th authenticator for the j-th peer, as
long as the EAP authentication lifetime is valid. In other words, the server will
distribute the same couple of keys kij

1 and kij
2 during the EMSK lifetime and until

the next full EAP re-authentication refreshes the whole key hierarchy outlined
in section 3.3. This feature allows the authenticator to cache, at most, kij

1 and
kij
2 during EMSK lifetime. During this time the EAP authenticator will not

contact the server to fetch any keys, saving time to provide access. However, it
implies that same kij

1 and kij
2 may be used in different sessions. It does not mean

though, that the derived keys (IKij , EKij , BKij) are the same, since their
derivation depends on random values generated per session. However, if both
kij
1 and kij

2 are revealed, past and present sessions can be compromised. That is,
forward secrecy is not provided. Additionally, the attacker can impersonate the
authenticator or peer during kij

1 and kij
2 lifetime. The impact of compromising

these keys is, fortunately, limited to the particular peer j and authenticator i.
Therefore, sessions bound to different peers and same authenticator i are not
compromised. It is interesting to mention that this case is also accepted in the
EAP keying framework, where the MSK might be cached and used through
different sessions during EAP authentication lifetime.
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role peer (

Pj,Pi,S : agent,

F,KDF : hash func,

K1,K2,Kjs : symmetric key,

T : text,

SND,RCV : channel (dy))

played by Pj def=
local

Rj,Ri,Sd,Tpj : text,

State : nat,

Tag j,Tag i : {hash(agent.text.text.text)} symmetric key,

TokenAS : {text.agent.agent} symmetric key

const

sec k2 j,sec k1 j,sec sk j,tag j,tag i,sd,ri,rj : protocol id

init

State := 1

transition

0. State= 1 ∧ RCV(Pi.Sd’.Ri’) = | >
State’:= 2 ∧ Rj’:=new()

∧ Tpj’:=T

∧ Tag j’:={F(Pi.Ri’.Sd’.Rj’)} K1

∧ TokenAS’:={Tpj’.Pj.Pi} Kis

∧ SND(Pi.Ri’.Sd’.TokenAS’.Tag j’)

∧ witness(Pj,S,tpj,Tpj’)

∧ witness(Pj,Pi,tag j,Tag j’)

∧ witness(Pj,Pi,rj,Rj’)

1. State=2 ∧ RCV(Pi.Sd’.Tag i’)

∧ Sd=Sd’

∧ Tag i’={F(Pi.Ri.Sd’.Rj)} K1 = | >
State’:=7 ∧ secret(K2,sec k2 j,{Pj,Pi,S})

∧ secret(K1,sec k1 j,{Pj,Pi,S})
∧ request(Pj,Pi,tag i,Tag i’)

∧ request(Pj,Pi,sd,Sd)

∧ request(Pj,Pi,ri,Ri)

end role

role authenticator (

Pi,Pj,S : agent,

F,KDF : hash func,

Kis : symmetric key,

SND,RCV : channel (dy))

played by Pi def=
local

K1,K2 : symmetric key,

Tag j,Tag i : {hash(agent.text.text.text)} symmetric key,

TokenAS : {text.agent.agent} symmetric key,

Rj,Ri,Sd : text,

State : nat

const

tag i,tag j,rj,sd,ri,k1 s,k2 s: protocol id

init

State:=0

transition

0. State=0 ∧ RCV(start) = | >
State’:=1 ∧ Ri’:=new()

∧ Sd’:=new()

∧ SND(Pi.Sd’.Ri’)

∧ witness(Pi,Pj,ri,Ri’)

∧ witness(Pi,Pj,sd,Sd’)

1. State=1 ∧ RCV(Pj.Sd’.Rj’.Tag j’.TokenAS’)

∧ Sd=Sd’ = | >
State’:=3 ∧ SND(Pi.{Pj.Rj’.Ri.TokenAS’} Kis)

2. State=3 ∧ RCV({Rj’.Ri’.K1’.K2’} Kis)

∧ Tag j={F(Pj.Rj’.Sd’.Ri’)} K1’ = | >
State’:=6 ∧ Tag i’:={F(Pi.Ri.Sd.Rj)} K1’

∧ SND(Pi.Sd.Tag i’)

∧ witness(Pi,Pj,tag j,Tag i’)

∧ request(Pi,Pj,tag i,Tag j)

∧ request(Pi,Pj,rj,Rj)

∧ request(Pi,S,k1 s,K1’)

∧ request(Pi,S,k2 s,K2’)

end role

role server (

S,Pi,Pj : agent,

F,KDF : hash func,

K1,K2,Kis,Kjs : symmetric key,

T : text,

SND,RCV : channel (dy))

played by S def=
local

Ri,Rj,Sd,Tpj : text,

State : nat,

TokenAS : {text.agent.agent} symmetric key

const

sec k1 s,sec k2 s,k1 s,k2 s: protocol id,

init

State:=0

transition

0. State=0 ∧ RCV(Pi.{Pj.Rj’.Ri’.{Tpj’.Pj.Pi} Kjs} Kis)

∧ Tpj’=T = | >
State’:=1 ∧ SND({Rj’.Ri’.K1.K2} Kis)

∧ secret(K1,sec k1 s,{Pj,Pi,S})
∧ secret(K2,sec k2 s,{Pj,Pi,S})
∧ witness(S,Pi,k1 s,K1)

∧ witness(S,Pi,k2 s,K2)

∧ request(S,Pj,tpj,Tpj’)

end role

goal

%Peer authenticates Authenticator on tag i
authentication on tag i

%Peer authenticates Authenticator on tag j
authentication on tag j

%Server authenticates Peer on sd
authentication on sd

%Peer authenticates Server on rj
authentication on rj

%Peer authenticates Server on tpj
authentication on tpj

%Peer authenticates Authenticator on rj
authentication on ri

%Server authenticates Authenticator on k1 and k2.
authentication on k1 s

authentication on k2 s

%k1 and k2 remains secret.
secrecy of sec k1 j,sec k2 j,sec k1 s, sec k2 s

end goal

Fig. 3. HLPSL specification of REKEY protocol with an AAA server

5 Comparison with Other Proposals

We have made a comparative analysis between existing proposals which reduce
the handover latency and our proposal. We have mainly compared the number of
round trips involved between the authenticator and the server (which is, actually,
the bottleneck in the re-authentication process) under the consideration of the im-
pact on existing EAP deployments. Additionally, we have analyzed the capability
of allowing inter-technology handover (commonly named vertical handover) and
the level of security provided by the different alternatives. In particular, we have
analyzed and compared EAP-ER [6], EAP-EXT [7], and references [4], [8] against
our proposal. The Table 2 shows a summary of the comparison.
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Table 2. Comparative Table of Different Proposals

Proposal Round trips Impact Hand. Inter-Tech Security Level

EAP-EXT 2 or more - No Medium

EAP-ER 1 High No Medium

Aura et al 0 High No Low

Kim et al 2 High No Medium-High

REKEY with Serv. 1 Low Yes High

In case of EAP-ER, the proposal reduces the number of round trips between
the authenticator and the AAA server to only one in order to recover a new key
(rMSK). However, it assumes modifications in the original EAP state machine
at the peer, the authenticator and the server. It may create some deployments
issues, mainly in the case of the existing EAP authenticators whose firmware
should be updated. Alternatively, EAP-EXT defines a new EAP method which
is able to transport any other EAP method within, in order to perform the EAP
authentication and leverage the MSK generated for the inner EAP method to
create a security association at EAP-EXT level. EAP-EXT allows to include
some extra-functionality such as fast re-authentication. However, this fast re-
authentication process takes two or more round trips between the authenticator
and the server. As advantage, it does not need to modify any existing EAP
deployment with the cost of additional round trips.

Commonly, solutions based on EAP are intended to work directly on specific
link-layer technologies. This however makes more complex the inter-technology
handover and it does not help to support certain handover optimizations such
as pre-authentication [22].

The solution presented by Aura et al. [4] provides a trade-off between secu-
rity and fast handover in 802.11 networks. It allows certain data traffic, with a
restricted quality of service, to pass through an access point after performing a
fast and weak authentication process. After that, a strong authentication process
is carried out to enable data traffic with unrestricted quality of service. On the one
hand, for the weak authentication process, the solution does not need to contact
with the server at all and therefore the number of round trips between authentica-
tor and server is 0. On the other hand, the strong authentication requires to contact
the server, e.g. with a full EAP authentication. Apart from the solution mandates
some modification at link layer, the weak authentication process violates the prin-
ciples established in [5] as certain cryptographic material from the previous access
point are transferred (through the mobile node) to the new access point.

Another relevant solution is that presented by Kim et al. in [8] which imple-
ments a secure protocol verified in BAN logic [23]. The secure protocol implemen-
tation is applied to 802.11i networks where modification is required to support
the protocol. It also defines a key hierarchy based on a pre-shared key PK be-
tween the station (EAP peer) and the AAA server. However, no relationship is
established between this key hierarchy and keys generated during the initial EAP
authentication. Finally, the solution considers context transfer between different
domains without contacting the home domain. To achieve this optimization, it is



Secure Protocol for Fast Authentication in EAP-Based Wireless Networks 1049

assumed a business agreement between the visited domains involved in the roam-
ing. However, this may not be always true. In fact, a user may roam between two
visited domains that, though they do not have a direct business relationship be-
tween them, they have both an agreement with the home domain.

In contrast, our solution embraces the advantages of several of these solu-
tions, but adding new improvements. In fact, our secure protocol is based on
a well-known provable secure protocol [17] with the inclusion of a server in the
backend, which reduces to only one round trip the communications between the
authenticator and the server during authentication process as EAP-ER does,
but it does not imply any modification in the EAP implementations on ex-
isting deployments as EAP-EXT provides. Moreover, although both EAP-ER
and EAP-EXT are independent of the EAP lower-layer, it does not allow fast
re-authentication between different technologies. As our secure protocol is con-
ceived to be transported over IP, it is independent of the underlying technology.
Therefore, this kind of inter-technology handover is possible from the design.
Furthermore, our key hierarchy in section 3.3 has been designed for this purpose
by defining the bootstrapping key BK, specific for each technology. Finally it
provides the additional benefit of avoiding modification at link layer level and
existing standards. We require, however, that the ports accept the installation
of a pre-shared key which is used for a security association protocol. This is not
a strong requirement since there are already some technologies that have the op-
tion to start a security association protocol by using a pre-shared key. Therefore,
future technologies could easily include a mode that could be fed with a random
and dynamically generated key. In terms of performance, the relevant and key
point is the number of round trips between the authenticator and the server. For
example in an inter-continental communication we have found a mean value of
150 ms per each round trip. Reducing the number of round trips the performance
improves. That is the reason that EAP-ER and our solution provides a similar
optimization (only round trip). However, as we have mentioned, our solution
provide a more neat solution since it does not require EAP modification at all.

6 Conclusion and Future Work

We study the issue of efficient access control in wireless network, which is of
paramount importance in many of the operator-oriented applications of these
networks. We evaluate the application of traditional authentication schemes
based on EAP and show that they can limit very much the overall performance
of the system when mobile nodes change their point of attachment to fixed net-
works. The reason is that an authentication process can take up to a couple of
seconds, which means that data traffic may be lost until the authentication with
the new authenticator is completed.

Our proposal is the use of a single EAP lower-layer working on top of IP, which
leverages the keys generated during an initial EAP authentication, in order to
authenticate and derive new session keys with new authenticators. This reduces
the number of round trips with the home AAA server, by avoiding to run a
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complete EAP authentication during initial EAP authentication lifetime. To
achieve this objective, we have designed and verified with the formal tool AVISPA,
a secure protocol which is integrated in the EAP lower-layer. It is based on a well
proved secure two-party protocol but including a server in charge of distributing
and managing keys. Our comparison with existing proposals demonstrates that
we obtain a minimum number of rounds trips with strong security properties.
Furthermore, the improvement can be applied to different technologies. In fact,
this scheme finds a good trade-off between the benefit of reducing of the num-
ber of round trips, suitable security properties and the impact on existing EAP
deployments, in terms of modification or re-design on existing devices.
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