
Secure Mobile Content Delivery Using Dynamic

Group Key Agreement with Batch Verification�

Seokhyang Cho1, Kiwon Song1, Dongsub Cho1, and Dongho Won2

1 Department of Computer Science and Engineering, Ewha Womans University,
11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea

shcho@security.re.kr, keeweesong@hanmail.net, dscho@ewha.ac.kr
2 Information Security Group, Sungkyunkwan University,

300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
dhwon@security.re.kr

Abstract. Recently, the bilinear pairings such as the Weil and the Tate
pairings defined on algebraic curves over a finite field have found appli-
cations in the design of cryptographic protocols. One useful application
in mobile environments is for secure group communication over a public
network. The members in the group need to establish a common group
key that will be used to encrypt messages to be broadcast to the group.
Furthermore, it is important to update the group key with low compu-
tational costs when the members join and leave the group. In this paper,
we propose a pairing-based key exchange protocol for dynamic groups.
The proposed protocol achieves low communication complexity and pro-
vides some computational savings by the batch verification of signatures.
We show that the security of our scheme is guaranteed against an active
adversary in the random oracle model under the bilinear Diffie-Hellman
(BDH) assumption.

Keywords: Group key agreement, bilinear map, batch verification, BDH
assumption.

1 Introduction

The basic requirement for secure group communications through insecure public
channels is that all group members must agree on a common secret key. This
shared secret key, called the session key, can later be used to encrypt messages
to be broadcast to the group. Group key agreement protocols are designed to
meet this requirement, with the fundamental security goal being to establish the
session key in such a way that no one except the group members can know the
value of the session key.

In key agreement protocols, more than one party contribute information to
generate the common session key. In this paper we focus on contributory key
agreement protocols in which the session key is derived as a function of contri-
butions provided by all parties [1]. Therefore in our contributory key agreement
� This work was supported by the 2nd phase of Brain Korea (BK) 21 Project funded

by the Korea Research Foundation.

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4706, Part II, pp. 996–1007, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Secure Mobile Content Delivery Using Dynamic Group Key Agreement 997

protocols, a correctly behaving party is assured that as long as his contribution
is chosen at random, even a coalition of all other parties will not be able to have
any means of controlling the final value of the session key.

The mobile computing architecture we visualize is asymmetric in the sense
of computational capabilities of participants. That is, the protocol participants
consist of a stationary server (also called application server or service provider)
with sufficient computational power and a cluster of mobile devices (also called
clients) with limited computational resources. An unbalanced mobile environ-
ment is common in a number of applications such as Internet stock quotes, audio
and music delivery, and so on [17].

Unfortunately, signature verifications based on pairings are ten times or one
hundred times slower than that of RSA or DSA [9]. This problem may be critical
in some applications such as electronic commerce or banking services in which one
server has to verify many signatures simultaneously [25]. So, in order to enhance
the efficiency of verification process, we adopt a variant of the signature scheme
by F. Hess [16] consisting of multiple signatures generated by a single signer.

In this paper, we propose a pairing-based key exchange protocol. The proposed
protocol is suited for dynamic groups in which group members may join and leave
the current group at any given time. Our protocol achieves low communication
complexity and provides large computational savings by the batch verification of
signatures. Moreover, our protocol also achieves forward secrecy and is provably
secure against an active adversary in the random oracle model under the bilinear
Diffie-Hellman assumption.

Related Work. Ever since 2-party Diffie-Hellman key exchange was first pro-
posed in 1976, a number of works [1,4,5,7,10,18,22,23,24] have attempted to solve
the fundamental problem of securely distributing a session key among a group
of n parties. But unfortunately, all of them suffer from one or more of the draw-
backs as O(n) or O(log n) rounds of communication, O(n) broadcasts per round,
and lack of forward secrecy. In fact, most published protocols require O(n) com-
munication rounds to establish a session key, and hence become prohibitively
expensive as the group size grows. Other protocols [10,24], while they require
only a constant number of rounds to complete key agreement, do not achieve
forward secrecy.

In [7], Burmester and Desmedt (BD) presented a two-round protocol which
provides forward secrecy with no proof of security in the original paper. Recently
K. Y. Choi et al. [13] transformed the BD protocol into a pairing-based version(B-
GKA) and then proposed an ID-based authenticated group key scheme(AGKA)
with security proof. But their two-round B-GKA protocol turns out to be vul-
nerable to an impersonation attack by F. Zhang [26]. In 2005, they also proposed
an efficient ID-based AGKA protocol which achieves only half forward secrecy
in the sense that disclosure of client’s long-term secret keys does not compro-
mise the security of previously established session, while disclosure of server’s
long-term secret keys does compromise the security[14].

Katz and Yung [22] proposed a three-round protocol which provides a rigorous
security proof against an active adversary in the standard model. However, an

998 S. Cho et al.

obvious drawback of this protocol is that communication overhead is significant
with three rounds of n broadcasts. This means that each user in this protocol,
in each of three rounds, must receive n− 1 messages from the rest of the group
before he/she can proceed to the next step. It is obvious that this kind of extreme
connectivity inevitably delays the whole process of the protocol.

The initial work [6] proposed by Bresson et al. deals with the static case, and
shows a protocol which is secure under the DDH assumption. Later works [4,5,3]
focus on the dynamic group key agreement to support membership changes that
users join or leave and the session key must be updated whenever it occurs. More
recently, Bresson and Catalano proposed a constant round key exchange proto-
col, based on secret sharing techniques that combines with ElGamal cryptosys-
tem as underlying encryption primitive [2]. However, with increasing number of
users, the complexity of the protocol goes beyond the capabilities of limited-
function devices such as PDAs and handheld computers.

2 The Proposed Scheme

Let (G, +) and (V, ·) denote cyclic groups of prime order q, P ∈ G a generator
of G and let e : G × G → V be a bilinear mapping which satisfies the following
properties.

1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G and a, b ∈ Z∗
q . It is

known that this can be restated in the following way. For any P, Q, R ∈ G,
e(P + Q, R) = e(P, R)e(Q, R) and e(P, Q + R) = e(P, Q)e(P, R).

2. Non-degeneracy: If P is a generator of G, then e(P, P) is a generator of
V. In other words, e(P, P) �= 1.

We also assume that e(P, Q) can easily be computed while, for any given
random Q ∈ G and v ∈ V, it should be infeasible to compute P ∈ G such that
e(P, Q) = v. We define three hash functions

h : {0, 1}∗ × V→ Z
∗
q , H : {0, 1}∗ → G

∗, H : {0, 1}∗ → {0, 1}�

where G∗ := G \ {0} and � is the length of the session key to be distributed in
the protocols. We also abbreviate V∗ := V \ {1}.

By the notation Un, we denote a special user called server whose role will
become apparent in the description of the protocol. In the setup phase, any
trusted authority (or TA) chooses G, V and P as defined above. The public
parameters e, G, V, P, h, H andH are assumed to be known a priori to all parties.
We also assume that each user knows the authentic public keys of all other users.

We now present a dynamic key agreement scheme consisting of three protocols
Pgka, Pleave, and Pjoin for initial group key establishment, user leave, and user
join, respectively. First, the protocol Pgka proceeds as follows:

2.1 Group Key Agreement: Protocol Pgka

Let U = {U1, U2, · · · , Un} be a set of n users who wish to generate a session
key by participating in our group key agreement protocol Pgka.

Secure Mobile Content Delivery Using Dynamic Group Key Agreement 999

Setup. The TA picks a random integer t ∈ Z∗
q , computes QTA = tP and pub-

lishes QTA while t is a secret.
Extract. This algorithm is performed by the TA when a user Ui requests the

secret key corresponding to his identity which is given as the string IDi. The
TA then computes the secret key of IDi as SIDi = tH(IDi) and returns it
to the user Ui.

Key agreement. The protocol Pgka runs in two rounds, once with n− 1 uni-
casts and once with a single broadcast, as follows:
– Round 1. Each Ui (i ∈ [1, n − 1]) selects random integers ki, ri ∈ Z∗

q ,
precomputes si = e(SIDi , P)ki , Pi = riP and Qi = (h(si) + ki)SIDi . Then
each client Ui �= Un sends a message mi = (si, Pi, Qi) to the server Un. The
server Un also selects a random rn ∈ Z∗

q and then precomputes Pn = rnP .
– Round 2. After having received all the n − 1 messages from user Ui

(i ∈ [1, n − 1]), Un can do batch verification by checking the correctness of
the following equation:

n−1∏

i=1

si =
n−1∏

i=1

e(Qi, P)e(H(IDi),−QTA)h(si)

The server Un chooses a random r ∈ Z∗
q and computes Pr = rP . Then the

server generates a nonce δ ∈ {0, 1}� and computes X that

X =
⊕

i∈[1,n]

H(δ ‖ xi)

where � is a security parameter and xi = e(Pi, rQTA). Un also computes
Y = {Xi | Xi = X ⊕ H(δ ‖ xi), i ∈ [1, n − 1]} and then generates the
signature σn of message δ ‖ Pr ‖ Y ‖ U . Now Un broadcasts the message
mn = (δ, Pr, Y,U , σn) to the entire client group members.

Key computation. Having received the broadcast message from Un, each Ui �=
Un first verifies the correctness of the server’s signature, and then computes

X = Xi ⊕H(δ ‖ xi)

where xi = e(Pr, QTA)ri . Lastly, Ui(∈ U) computes its session key K as
K = H(X, Y).

2.2 User Leave: Protocol Pleave

Assume a scenario where a set of users L leaves the group U except for the
server Un. Then protocol Pleave is executed to provide each user of the new
group U ′ = U \ L with a new session key. Protocol Pleave requires only one
communication round with a single broadcast and it proceeds as follows:

Round 1. The server Un generates a new nonce δ1 ∈ {0, 1}� and computes

X ′ =
⊕

Ui∈U ′
H(δ1 ‖ xi).

1000 S. Cho et al.

= {U1, U2, ···, Un 1, Un}

···

Client U1

r1, k1 R q
* , P1 = r1 P

s1 = e (SID1
, P) k1

Q1 = (h (s1) + k1) SID1

r , rn R q
* , Pn = rnP, Pr = rP , {0, 1}l

x1 = e(P1 , r QTA), x2 = e(P2 , r QTA), ···, x n = e(Pn , r QTA)

X = (|| x1) (|| x2) ··· (|| xn 1) (|| xn)

X1 = X (|| x1) , X2 = X (|| x2) , ··· , Xn 1 = X (|| xn 1)

Y = {X1 , X2 , ··· , Xn 1}

Server Un

m1 = (s1, P1, Q1) mn 1 = (sn 1, Pn 1, Qn 1)

X = X1 (|| x1) X = X2 (|| x2) X = X n 1 (|| xn 1)

Common Session Key K = (X, Y)

···

mn = (, Pr, Y, , n)

Client U2

r2 , k2 R q
* , P2 = r2 P

s2 = e (SID2
, P) k2

Q2 = (h (s2) + k2) SID2

Client Un 1

rn 1, kn 1 R q
* , Pn 1 = rn 1P

sn 1 = e (SIDn 1
, P) kn 1

Qn 1 = (h (sn 1) + kn 1) SIDn 1

m2 = (s2, P2, Q2)

1

1

)(1

1
)),((),(

n

i

sh
TAii

n

i i
iQIDHePQes

Fig. 1. Initial Key Agreement Protocol (Pgka)

And Un also computes Y ′ = {X ′
i | X ′

i = X ′ ⊕ H(δ1 ‖ xi), Ui ∈ U ′\{Un}}.
Then Un generates the signature σ′

n of message δ1 ‖ Pr ‖ Y ′ ‖ U ′. Now Un

broadcasts the message m′
n = (δ1, Pr, Y

′,U ′, σ′
n) to the entire client group

members.
Key computation. Upon receiving the broadcast message m′

n, each Ui com-
putes

X ′ = X ′
i ⊕H(δ1 ‖ xi)

where xi = e(Pr, QTA)ri . Lastly, each user Ui(∈ U ′) computes its session key
K as K = H(X ′, Y ′).

2.3 User Join: Protocol Pjoin

Assume a scenario in which a set of j new users, J , joins the current group U
to form a new group U ′′ = U ∪J . Then the join protocol Pjoin is run to provide
the users of U ′′ with a session key. Pjoin takes two communication rounds, once
with j unicasts and once with a single broadcast, and it proceeds as follows:

Round 1. Each Ui ∈ J selects random ki, ri ∈ Z
∗
q and precomputes si =

e(SIDi , P)ki , Pi = riP , and Qi = (h(si) + ki)SIDi . Ui ∈ J then sends a
message mi = (Ui, si, Pi, Qi) to the server, and stores its random ki and ri.

Round 2. Having received all the messages from the new user Ui ∈ J , Un

verifies the following equation:
∏

Ui∈J
si =

∏

Ui∈J
e(Qi, P)e(H(IDi),−QTA)h(si)

Secure Mobile Content Delivery Using Dynamic Group Key Agreement 1001

Un proceeds in the usual way, generating a new random nonce δ2 ∈ {0, 1}�,
computing X ′′, Y ′′, and K = H(X ′′, Y ′′), updating the new xi’s. Then hav-
ing received all the j messages from the new users, Un computes X ′′ as

X ′′ =
⊕

Ui∈U ′′
H(δ2 ‖ xi)

where xi = e(Pi, rQTA). Un also computes Y ′′ = {X ′′
i | X ′′

i = X ′′ ⊕H(δ2 ‖
xi), Ui ∈ U ′′\{Un}}, and then generates the signature σ′′

n of message δ2 ‖
Pr ‖ Y ′′ ‖ U ′′. Now Un broadcasts the message m′′

n = (δ2, Pr, Y
′′,U ′′, σ′′

n) to
the entire client group members.

Key computation. Having received the broadcast message from Un, each Ui(�=
Un) first verifies the correctness of the server’s signature, and then computes

X ′′ = X ′′
i ⊕H(δ2 ‖ xi)

where xi = e(Pr, QTA)ri and its session key K as K = H(X ′′, Y ′′).

3 Efficiency

To analyze the communication complexity and computation cost, we now discuss
the efficiency of the protocol introduced in the preceding section.

Communication Complexity. It is easy to see that our Pgka protocol runs
only in two rounds of communication, requiring n− 1 unicasts in the first round
and a single broadcast in the second one. Hence the total number of messages
required by our Pgka protocol is n, which is optimal as shown in [11].

In contrast, the two-round protocol presented by Burmester and Desmedt
(BD) [7] requires n broadcasts in each of two rounds, and therefore requires, in
total, 2n broadcast messages to complete key agreement (as already mentioned,
the protocol presented by Katz and Yung [22], in its basic form, is essentially the
same as the BD protocol). More seriously, without the ability of broadcasting
communication, this protocol requires O(n2) messages to be sent or received,
which makes it inefficient for many applications.

And in the same manner, the protocol B-GKA, which is a bilinear variant of
the BD protocol and the ID-GKA (ID-based authenticated group key agreement
protocol) based on the B-GKA, which is by K. Y. Choi et al. [13], have the same
message complexity as the original protocol [7].

Computational Complexity. Each Ui in our Pgka protocol computes 2 pair-
ing operations, 2 scalar multiplications on G, and 2 exponentiations in V, ex-
cept Un who generates one signature, verifies the validity of n − 1 transcripts
from Ui simultaneously, and performs O(n) exponentiations, O(n) pairing op-
erations, and 3 scalar multiplications. If pre-computations are possible, most of
the computations in the first round can be performed off-line and thus, only 1
exponentiation and 1 pairing operation per client is required to be done on-line.
On the other hand, each user Ui in the K. Y. Choi et al ’s ID-GKA protocol

1002 S. Cho et al.

Table 1. Complexity Comparison

Complexity B-GKA [13] ID-GKA [13] Our protocol

Communication
Rounds 2 2 2
Unicast 0 0 O(n)

Broadcast O(n) O(n) O(1)

Computation

Multiplication O(n log n) O(n log n) 0

Exponentiation 1 1
2

(O(n) for Un)
Scalar

3 4
2

multiplication (3 for Un)
Pairing

2 4
2

operation (O(n) for Un)

computes O(n log n) multiplications, 1 exponentiation, 4 pairing operations and
4 scalar multiplications. And in the B-GKA protocol, each user Ui needs fewer
computations as many as 1 scalar multiplication and 2 pairing operations than
the B-GKA protocol. Furthermore all users in our Pleave protocol do not need
such a large amount of computations since they use the stored values and only
the newly members in our Pjoin protocol need the same amount of computations
as that required in Pgka.

In the table 1, we have compared the complexity of our protocol with those
of the K. Y. Choi et al ’s two protocols: the B-GKA protocol and the ID-GKA
protocol. As for computational costs, the table lists the amount of computation
performed per user. As seen from the table, our protocol is better than the K. Y.
Choi et al ’s ID-GKA protocol in terms of computational complexity. However, in
situations where users with equal computational capabilities communicate over a
broadcast network, the fully-symmetric protocol of Burmester and Desmedt (or
ID-GKA) might be more favorable than our protocol which, in contrast, is well
suited for more realistic settings where users with asymmetric computational
resources are spread across a wide area network.

4 Security Proof

We now claim that the group key agreement protocol proposed in this paper is se-
cure against active adversaries provided that the bilinear Diffie-Hellman (BDH)
problem is computationally hard. The scheme in [8] is shown to be secure if an
elliptic curve variant of the computational Diffie-Hellman problem is infeasible.

Definition 1 (Bilinear Diffie-Hellman (BDH) Problem). Let G be a cyclic
group 〈P 〉 of prime order q and a, b, c are chosen at random in Z∗

q . A (T, ε)-BDH-
attacker in (G, V, e) is a probabilistic algorithm running in time T that given
(P, aP, bP, cP), outputs e(P, P)abc with probability of at least ε. The advantage
of any probabilistic, polynomial time algorithm A for solving the BDH problem
in (G, V, e) is defined to be :

Secure Mobile Content Delivery Using Dynamic Group Key Agreement 1003

Adv BDH
A,(G,V,e) =

|Pr[e(P, P)abc ← A(G, V, e, P, aP, bP, cP) | P ∈G
∗; a, b, c ∈R Z

∗
q] |

The BDH problem is (T, ε)-intractable if there is no (T, ε)-attacker in (G, V, e).

Definition 2 (Authenticated Group Key Agreement). The security of
an authenticated group key agreement scheme P is defined in the following
context. The adversary executes a protocol Pgka, Pleave, or Pjoin as many times
as he/she wishes in an arbitrary order with Pgka being the first one executed.
During executions of the protocols, the adversaryA, at any time, asks Test query
to a fresh user, gets back an �-bit string as the response to this query, and at
some later point in time, outputs a bit b′ as a guess for the secret bit b. Let CG
(Correct Guess) be the event that the adversary A correctly guesses the bit b,
i.e., the event that b′ = b. Then we define the advantage of A in attacking P as

AdvA,P(k) = 2 · Pr[CG]− 1

We say that a group key agreement scheme P is secure if AdvA,P(k) is negli-
gible for any probabilistic polynomial time adversary A.

Theorem 1. Let AdvP(t, qex, qse) be the maximum advantage in attacking P,
where the maximum is taken over all adversaries that run in time t, and make qh

random oracle queries, qex Execute queries, and qse Send queries. Then we have

AdvP(t, qex, qse) ≤ 2nqhqex · AdvBDH
G,V,e(t) + nAdvForge

Γ (t),

where AdvForge
Γ (t) is the maximum advantage of any forger F running in time t.

Proof. First the adversary A is assumed to gain its advantage by forging au-
thentication transcripts. We can use A to construct a forger F that generates a
valid message pair 〈ID, rP, s, Q〉 with respect to an authentication scheme Γ as
follows: a forger F honestly generates all other public/private keys by running
the Extract algorithm. F then simulates the oracle queries of A in the natural
way. This results in a perfect simulation unless A makes the query Corrupt(ID).
If this occurs, F halts and outputs “fail”. Otherwise, ifA outputs 〈ID, rP, s, Q〉
as a valid forgery, then F generates the message pair 〈ID, rP, s, Q〉. The success
probability of F satisfies PrA[Forge] ≤ nAdvForge

Γ (t).
Assume that an adversary A can guess the hidden bit b correctly with prob-

ability 1/2 + ε. Then we construct from A an algorithm that solves the BDH
problem in (G, V, e) with probability ε/qhqex. Let us first define the following
two distributions:

Real =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T, K)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1, k2, · · · , kn−1, r1, r2, · · · , rn, r ∈R Z∗
q ; δ ∈ {0, 1}l;

P1 = r1P, P2 = r2P, · · · , Pn = rnP, Pr = rP ;
s1 = e(SID1 , P)k1 , · · · , sn−1 = e(SIDn−1 , P)kn−1 ;
Q1 =(h(s1)+ k1)SID1 , · · · ,
Qn−1 =(h(sn−1)+ kn−1)SIDn−1;
x1 = e(P, P)rtr1 , · · · , xn = e(P, P)rtrn ;
h1 = H(δ ‖ x1), h2 = H(δ ‖ x2), · · · , hn = H(δ ‖ xn);
X = ⊕n

i=1hi; yi = X ⊕ hi, i ∈ [1, n− 1]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

1004 S. Cho et al.

Fake =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T, K)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1, k2, · · · , kn−1, r1, r2, · · · , rn, r ∈R Z
∗
q ;

δ, w1, w2, · · · , wn ∈ {0, 1}l;
P1 = r1P, P2 = r2P, · · · , Pn = rnP, Pr = rP ;
s1 = e(SID1 , P)k1 , · · · , sn−1 = e(SIDn−1 , P)kn−1 ;
Q1 =(h(s1)+ k1)SID1 , · · · ,
Qn−1 =(h(sn−1)+ kn−1)SIDn−1;
h1 = w1, h2 = w2, · · · , hn = wn;
X = ⊕n

i=1hi; yi = X ⊕ hi, i ∈ [1, n− 1]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where T = (s1, · · · , sn−1, Pr, P1, · · · , Pn−1, Q1, · · · , Qn−1, δ, y1, · · · , yn−1) and
K = H(y1, · · · , yn, X).

Lemma 1. Let A′ be an algorithm that, given (T, K) coming from one of the
two distributions Real and Fake, runs in time t and outputs 0 or 1. Then we
have:

|Pr[A′(T, K) = 1|(T, K)←− Real]− Pr[A′(T, K) = 1|(T, K)←− Fake]|
� qhAdvBDH

G,V,e(t + (2n− 4)tsmul + tpair + (3n− 7)texp)

where tsmul, texp, and tpair are the time required to compute a scalar multipli-
cation on G, an exponentiation in V and a pairing operation respectively.

Proof. Assume that an algorithm A can distinguish between the two distri-
butions with a non-negligible probability. Then, since H is a random oracle
and a difference between the Real and the Fake is in the method of computing
hi(i ∈ [1, n]), we must find out at least one value of xi to distinguish between
them. Now, given an input tuple (P, rP, tP, r2P) in G4 we construct an algorithm
that outputs a value e(P, P)r′tr2 as follows.

We first choose random integers r1, r3, αi, βi, γi(i ∈ [4, n]) in Z∗
q and define

a random ri as r1αi + r2βi + r3γi(i ∈ [4, n]) mod q. We then can compute xi

and X = ⊕n
i=1hi with a random hi ∈ {0, 1}l, and finally construct yi = X ⊕ hi.

Consider the following distribution

Simul=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T, K)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1, · · · , kn−1, r1, r3, α4, β4, γ4, · · · , αn, βn, γn, x′
i ∈R Z

∗
q ;

δ, h1, h2, · · · , hn ∈ {0, 1}l;
r4 = r1α4 + r2β4 + r3γ4, · · · , rn = r1αn + r2βn + r3γn;
P1 = r1P, P2 = r2P, · · · , Pn = rnP, Pr = rP ;
s1 = e(SID1 , P)k1 , · · · , sn−1 = e(SIDn−1 , P)kn−1 ;
Q1 =(h(s1) + k1)SID1 , · · · , Qn−1 =(h(sn−1)+ kn−1)SIDn−1;
x1 = e(P, P)rtr1 , x2 = e(P, P)r′tr2 , x3 = e(P, P)rtr3 ,

x4 = e(P, P)t(rr1α4+r′r2β4+rr3γ4), · · · ,
xn = e(P, P)t(rr1αn+r′r2βn+rr3γn);

X = ⊕n
i=1hi; yi = X ⊕ hi, i ∈ [1, n− 1]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where T and K are as defined above. If (P, rP, tP, r2P, e(P, P)r′tr2) is a BDH
tuple (i.e., r = r′), we have Simul ≡ Real since xi = e(P, P)rtri for all i ∈ [1, n].

Secure Mobile Content Delivery Using Dynamic Group Key Agreement 1005

Otherwise, i.e., if (P, rP, tP, r2P, e(P, P)r′tr2) is a random tuple, it is clear that
Simul ≡ Fake.

Given the transcript (T, K) from the distribution Simul as an input of A′, we
simulate a random oracle H at the same time. When A′ finishes finally the ex-
ecution, we select a random δ ‖ x′

i that inputs in the random oracle simulation
table. If x′

i = xi, we can solve BDH problem xi = e(P, P)t(rr1αi+rr2βi+rr3γi).
Therefore the algorithm A′ having the transcript (T, K) provided by the simu-
lation can not distinguish between two distributions. �
Lemma 2. For any (computationally unbounded) adversary A, we have :

Pr[A′(T, Kb) = b|(T, K1)←− Fake ; K0 ←− {0, 1}l ; b←− {0, 1}] = 1/2.

Proof. In the experiment Fake, we represent from the transcript T the value yi

by the following n − 1 equations and can write the solution (h1, h2, · · · , hn) as
follows

y1 = h2 ⊕ h3 ⊕ · · · ⊕ hn = h1 ⊕ hn ⊕ yn, h1 = y1 ⊕ yn ⊕ hn

y2 = h1 ⊕ h3 ⊕ · · · ⊕ hn = h2 ⊕ hn ⊕ yn, h2 = y2 ⊕ yn ⊕ hn

...
yn−1 = h1 ⊕ h2 ⊕ · · · ⊕ hn−2 ⊕ hn = hn−1 ⊕ hn ⊕ yn, hn−1 = yn−1 ⊕ yn ⊕ hn

hn.

Therefore the adversary does not obtain any information about the value X
from any one of transcripts since there are a lot of solutions, amounting to 2l

solutions for an independent variable hn. This implies that

Pr[A′(T, Xb) = b|(T, X1)←− Fake ; X0 ←− {0, 1}l ; b←− {0, 1}] = 1/2.

Since H is a random oracle, the statement of Lemma 2 immediately follows. �
Armed with the two lemmas above, we now give the details of the algorithm B
from construction of the distribution Simul. Assume that an adversary A makes
its Test query to an oracle activated by the δthExecute query. The algorithm B
begins by choosing a random d ∈ {1, 2, · · · , qex} as a guess for the value of δ. B
then invokes A and simulates the queries of A. B answers all the queries from
A in the obvious way, following the protocol exactly as specified, except for the
case where a query is the dthExecute query. In this latter case, the algorithm B
generates (T, K) depending on the distribution Simul and answers the dthExecute
query of A with T .

The algorithm B outputs a random element in V if d �= δ. Otherwise, the
algorithm answers the Test query of A with K. At some later point, when A
terminates and outputs its guess b′. Applying the Lemma 1 and 2 together with
the fact that Pr[b = b′] = 1/2 and Pr[d = δ] = 1/qex, we obtain

Pr[A(T, Kb) = b |(T, K1)←− Real ; K0 ←− {0, 1}l; b←− {0, 1}] = 1/2 + ε,

AdvBDH
G,V,e(B) = ε/(qhqex),

which immediately yields the statement of Theorem 1. �

1006 S. Cho et al.

5 Conclusion

In this paper we have proposed a pairing-based group key agreement scheme
with optimal message complexity; the protocol runs only in two rounds, once
with n− 1 unicasts and once with a single broadcast. Therefore, due to its low
communication cost and reduced computational complexity resulting from the
batch verification, the protocol is well suited for dynamic groups. Furthermore,
the protocol provides forward secrecy and has been proven to be secure against
an active adversary under the bilinear Diffie-Hellman assumption. However, for
practical purposes, more realistic and suitable applications need to be found.
Also we leave some experimental results to demonstrate the efficiency of our
scheme for further research.

References

1. Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services
and key agreement protocols. IEEE Journal on Selected Areas in Communica-
tions 18(4), 628–639 (2000)

2. Bresson, E., Catalano, D.: Constant round authenticated group key agreement via
distributed computation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 115–129. Springer, Heidelberg (2004)

3. Bresson, E., Chevassut, O., Essiari, A., Pointcheval, D.: Mutual authentication
and group key agreement for low-power mobile devices. In: Proc. of MWCN’03,
pp. 59–62 (2003)

4. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-
Hellman key exchange — the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)

5. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key ex-
change under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)

6. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proc. of CCS’01, pp. 255–264 (2001)

7. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

8. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

9. Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient algorithms for pairing-based
cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369.
Springer, Heidelberg (2002)

10. Boyd, C., Nieto, J.M.G.: Round-optimal contributory conference key agreement.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer, Hei-
delberg (2002)

11. Becker, K., Wille, U.: Communication complexity of group key distribution. In:
Proc. of CCS’98, pp. 1–6 (1998)

12. Choo, K.R., Boyd, C., Hitchcock, Y.: Errors in computational complexity proofs
for protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 624–643.
Springer, Heidelberg (2005)

Secure Mobile Content Delivery Using Dynamic Group Key Agreement 1007

13. Choi, K.Y., Hwang, J.Y., Lee, D.H.: Efficient ID-based group key agreement with
bilinear maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 130–144. Springer, Heidelberg (2004)

14. Choi, K.Y., Hwang, J.Y., Lee, D.H., Seo, I.S.: ID-based authenticated key agree-
ment for low-power mobile devices. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 494–505. Springer, Heidelberg (2005)

15. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou,
J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 74–88.
Springer, Heidelberg (2005)

16. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidel-
berg (2003)

17. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. In:
Proc. of MobiDE’01, pp. 27–34 (2001)

18. Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system. IEEE
Trans. on Information Theory 28(5), 714–720 (1982)

19. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.-c.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer,
Heidelberg (1996)

20. Kim, H.J., Lee, S.M., Lee, D.H.: Constant-round authenticated group key exchange
for dynamic groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
245–259. Springer, Heidelberg (2004)

21. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
Proc. of CCS’05, pp. 180–189 (2005)

22. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

23. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE Trans. on Parallel and Distributed Systems 11(8), 769–780 (2000)

24. Tzeng, W.-G., Tzeng, Z.-J.: Round-efficient conference key agreement protocols
with provable security. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 614–627. Springer, Heidelberg (2000)

25. Yoon, H.J., Cheon, J.H., Kim, Y.: Batch verifications with ID-based signatures.
In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 233–248. Springer,
Heidelberg (2006)

26. Zhang, F., Chen, X.: Attack on an ID-based authenticated group key agreement
scheme from PKC 2004. In: Information Processing Letters archive, vol. 91(4), pp.
191–193. Elsevier Science Inc., Amsterdam (2004)

	Secure Mobile Content Delivery Using Dynamic Group Key Agreement with Batch Verification
	Introduction
	The Proposed Scheme
	Group Key Agreement: Protocol P_gka
	User Leave: Protocol P_leave
	User Join: Protocol P_join

	Efficiency
	Security Proof
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

