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espinolj@gmail.com

Abstract. This work concerns the problem of curve and surface fitting.
In particular, we focus on the case of 3D point clouds fitted with Bézier
curves and surfaces. Because these curves and surfaces are parametric, we
are confronted with the problem of obtaining an appropriate parameter-
ization of the data points. On the other hand, the addition of functional
constraints introduces new elements that classical fitting methods do not
account for. To tackle these issues, two Artificial Intelligence (AI) tech-
niques are considered in this paper: (1) for the curve/surface parameter-
ization, the use of genetic algorithms is proposed; (2) for the functional
constraints problem, the functional networks scheme is applied. Both
approaches are combined with the least-squares approximation method
in order to yield suitable methods for Bézier curve and surface fitting.
To illustrate the performance of those methods, some examples of their
application on 3D point clouds are given.

1 Introduction

Fitting curves and surfaces to measurement data plays an important role in real
problems such as manufacturing of car bodies, ship hulls, airplane fuselage, and
other free-form objects. One typical geometric problem in Reverse Engineering
is the process of converting dense data points captured from the surface of an
object into a boundary representation CAD model [17,19]. Most of the usual
models for fitting in Computer Aided Geometric Design (CAGD) are free-form
parametric curves and surfaces, such as Bézier, Bspline and NURBS.

Curve/surface fitting methods are mainly based on the least-squares approx-
imation scheme, a classical optimization technique that (given a series of mea-
sured data) attempts to find a function which closely approximates the data (a
“best fit”). Suppose that we are given a set of np data points {(xi, yi)}i=1,...,np ,
and we want to find a function f such that f(xi) ≈ yi, ∀i = 1, . . . , np. The typ-
ical approach is to assume that f has a particular functional structure which
depends on some parameters that need to be calculated. The procedure is to

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4706, Part II, pp. 680–693, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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find the parameter values minimizing the sum S of squares of the ordinate dif-
ferences (called residuals) between the points generated by the function and
corresponding points in the data:

S =
np∑

i=1

(yi − f(xi))2. (1)

It is well-known that if the function f is linear, the problem simplifies consid-
erably as it essentially reduces to a system of linear equations. By contrast, the
problem becomes more difficult if such function is not linear, since we then need
to solve a general (unconstrained) optimization problem.

In this work, we consider the case of f being a free-form parametric curve or
surface. In the former case, we have a curve C(t) given by:

C(t) =
M∑

j=0

PjBj(t) (2)

where Pj = (P x
j , P

y
j , P

z
j ) are the vector coefficients (usually called control points),

{Bj(t)}j=0,...,M are the basis functions (or blending functions) of the parametric
curve C(t) and t is the parameter, usually defined on a finite interval [α, β]. Note
that in this paper vectors are denoted in bold. Now we can compute, for each of
the cartesian components (x, y, z), the minimization of the sum of squared errors
referred to the data points according to (1), but we need a parameter value ti to
be associated with each data point (xi, yi, zi), i = 1, . . . , np:

Errµ =
np∑

i=1

⎛

⎝μi −
M∑

j=0

Pµ
j Bj(ti)

⎞

⎠
2

; μ = x, y, z (3)

Coefficients Pj , j = 0, . . . ,M , have to be determined from the information
given by the data points (xi, yi, zi), i = 1, . . . , np. Note that performing the
component-wise minimization of these errors is equivalent to minimizing the
sum, over the set of data, of the Euclidean distances between data points and
corresponding points given by the model in 3D space. This problem is far from
being trivial: because our curves and surfaces are parametric, we are confronted
with the problem of obtaining a suitable parameterization of the data points.
As remarked in [1] the selection of an appropriate parameterization is essen-
tial for topology reconstruction and surface fitness. Many current methods have
topological problems leading to undesired surface fitting results, such as noisy
self-intersecting surfaces. In general, algorithms for automated surface fitting
[2,13] require knowledge of the connectivity between sampled points prior to
parametric surface fitting. This task becomes increasingly difficult if the capture
of the coordinate data is unorganized or scattered. Most of the techniques used
to compute connectivity require a dense data set to prevent gaps and holes,
which can significantly change the topology of the generated surface. Therefore,
in addition to the coefficients of the basis functions, Pj , the parameter values,
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ti, i = 1, . . . , np, corresponding to the data points also appear as unknowns in
our formulation. Due to the fact that the blending functions Bj(t) are nonlinear
in t, the least-squares minimization of the errors becomes a strongly nonlinear
problem [20], with a high number of unknowns for large sets of data points, a
case that happens very often in practice.

Some recent papers have shown that the application of Artificial Intelligence
(AI) techniques can achieve remarkable results regarding this problem
[7,10,11,14,15,16]. Most of these methods rely on some kind of neural networks,
either standard neural networks [10], Kohonen’s SOM (Self-Organizing Maps)
nets [1,11], or the Bernstein Basis Function (BBF) network [16]. In some cases,
the network is used exclusively to order the data and create a grid of control
vertices with quadrilateral topology. After this preprocessing step, any standard
surface reconstruction method (such as those referenced above) has to be applied.
In other cases, the neural network approach is combined with partial differential
equations [1] or other approaches.

Our strategy for tackling the problem also belongs to this group of AI tech-
niques. As it will be described later on, we propose a hybrid method combining
genetic algorithms for searching the parameter values ti for the data points, and
computing the best least-squares fitting coefficients Pj and the corresponding
error for the set of parameter values provided by the genetic algorithm. The
process is performed iteratively until a certain termination condition is reached.
Details about this method will be given in Sections 2 to 5.

Although the genetic algorithm approach works well for curve/surface fitting
(particularly, with the problem of curve/surface parameterization), neither this
method nor the standard neural networks account for additional functional con-
straints that are described by mathematical equations rather than by discrete
sets of points. However, this case is quite usual in the realm of computer graphics
and CAGD. For instance, biomedical images are often generated from a sequence
of cross-sections, three-dimensional volumes can be generated from the intersec-
tion of the objects with parallel planes, etc. Even if the user is provided with
a large set of data points, any additional information (such as cross-sections
or any other kind of curve on the interpolating/approximating surface) might
greatly simplify the problem. This kind of functional information, while being
quite useful for the given problem, is rarely used in applied domains. Perhaps
the main reason is the difficulty to solve the functional equations arising from
such constraints (the reader is referred to [6] for a gentle introduction to func-
tional equations). In this paper, a new formalism, the functional networks, are
applied to solve the Bézier surface fitting when some functional constraints are
also considered (see Sections 6 and 7 for details).

2 Genetic Algorithms

Genetic Algorithms (GA) [9] are search procedures based on principles of evo-
lution and natural selection; they can be used in optimization problems where
the search of optimal solutions is carried out in a space of coded solutions as
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finite-length strings. They were developed by John Holland at the University of
Michigan [12] and are categorized as global search heuristics or meta-heuristics
[3], a group of techniques that encompasses trajectory methods such as Tabu
Search, Simulated Annealing or Iterated Local Search, and population-based
methods such as Genetic Algorithms, Ant Colonies and Particle Swarm Opti-
mization, to mention just a few methods.

Genetic Algorithms handle populations consisting of a set of potential solu-
tions, i.e. the algorithm maintains a population of n individuals Pop(iter) =
{x1(iter), . . . , xn(iter)} for each iteration iter, where each individual represents
a potential solution of the problem. Normally the initial population is randomly
selected, but some knowledge about the specific problem can be used to include
in the initial population special potential solutions in order to improve the con-
vergence speed. The size of this initial population is one of the most important
aspects to be considered and may be critical in many applications. If the size
is too small, the algorithm may converge too quickly, and if it is too large the
algorithm may waste computational resources. The population size can be either
constant or variable. A study about the optimal population size can be found
in [8]. Each individual in the population, i.e. potential solution, must be rep-
resented using a genetic representation. Commonly, a binary representation is
used, however other approaches are possible. Each one of the potential solutions
must be evaluated by means of a fitness function; the result of this evaluation is
a measure of individual adaptation.

The algorithm is an iterative process in which new populations are obtained
using a selection process (reproduction) based on individual adaptation and
some “genetic” operators (crossover and mutation). The individuals with the
best adaptation measure have more chance of reproducing and generating new
individuals by crossing and muting. The reproduction operator can be imple-
mented as a biased roulette wheel with slots weighted in proportion to individ-
ual adaptation values. The selection process is repeated n times and the selected
individuals form a tentative new population for further genetic operator actions.

After reproduction some of the members of the new tentative population
undergo transformations. A crossover operator creates two new individuals (off-
springs) by combining parts from two randomly selected individuals of the popu-
lation. In a GA the crossover operator is randomly applied with a specific proba-
bility, a good GA performance requires the choice of a high crossover probability.
Mutation is a unitary transformation which creates, with low probability, a new
individual by a small change in a single individual. In this case, a good algo-
rithm performance requires the choice of a low mutation probability (inversely
proportional to the population size). The mutation operator guarantees that all
the search space has a nonzero probability of being explored.

In spite of their surprising simplicity, GAs have been recognized as a powerful
tool to solve optimization problems in various fields of applications; examples of
such problems can be found in a great variety of domains such as transportation
problems, wire routing, travelling salesman problem [9]. The CAD (Computer-
Aided Design) journal devoted the 35 special issue of 2003 to genetic algorithms
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Table 1. Crossover operator

Parent 1 0.123 0.178 0.274 0.456 0.571 0.701 0.789 0.843 0.921 0.950

Parent 2 0.086 0.167 0.197 0.271 0.367 0.521 0.679 0.781 0.812 0.912

cross point

Offspring 1 0.123 0.178 0.274 0.271 0.367 0.521 0.679 0.781 0.812 0.912

Offspring 1 0.123 0.178 0.271 0.274 0.367 0.521 0.679 0.781 0.812 0.912
chromosomes sorting

Offspring 2 0.086 0.167 0.197 0.456 0.571 0.701 0.789 0.843 0.921 0.950

[18], and included one paper addressing data fitting with B-splines polynomials
in explicit form [21]. In this work we consider parametric models instead, which
are by far more relevant for CAGD than the explicit ones.

3 Using Genetic Algorithms for Data Fitting

In order to use GA for fitting curves/surfaces to data points, several aspects
must be previously considered. First of all, a typical GA requires two elements
to be defined prior to its use: the genetic representation of each potential solution
of the problem and a measure of the quality of the solution (usually referred to
as the fitness function). In our problem, we are interested on the assignment
process of parameter values to data points, so we propose the use of a real-coded
genetic algorithm in which the genetic representation of an individual will be
a real np-dimensional vector, where each coordinate represents the parameter
value assigned to a data point. The fitness function that allows measuring the
quality of an assignment will be based on the error function of the fitting process.

As initial population we will consider a randomly generated set of parameter
vectors (individuals). To widen the search area of the algorithm it is desirable that
the population size be large; however the computation time increases as this pa-
rameter rises, so a trade-off between both considerations is actually required. The
algorithm then uses three genetic operators to obtain new populations of individ-
uals: selection, crossover and mutation. In our case, the selection operator is im-
plemented as the classical biased roulette wheel with slots weighted in proportion
to individual fitness values. We use an one-point crossover operator that randomly
selects a crossover point within an individual, then swaps the two parent chromo-
somes to the left and to the right from this point and eventually sorts the obtained
vectors to produce two new offsprings. This process is illustrated in Table 1.

As a mutation method we propose to select the position k with worst fit error
in the vector parameter of the solution and change the value of the selected
parameter by the arithmetic mean of the previous and next parameters in the

vector, that is, tk =
tk−1 + tk+1

2
. Note that tk−1 < tk < tk+1, and hence no

sorting method is required. Using these genetic operators, the general structure
of the algorithm is described in Table 2.
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Table 2. General structure of the genetic algorithm

begin
iter=0
random initialization of Pop(iter)
fitness evaluation of Pop(iter)
while (not termination condition) do

Select individuals from Pop(iter)
Apply crossover and mutation operator with probabilities pc and pm

Set Pop(iter + 1)
iter = iter + 1

end
end

This procedure is repeated several times (thus yielding successive generations)
until a termination condition has been reached. Common terminating criteria
are that a solution is found that satisfies a lower threshold value, or that a fixed
number of generations has been reached, or that successive iterations no longer
produce better results.

4 Best Least-Squares Approximation

Let us consider a set of 3D data points Di = (xi, yi, zi), i = 1, . . . , np. We
describe our procedure in more detail for the x’s coordinates, (the extension to y’s
and z’s is immediate). The goal is to calculate the coefficients P x

j , j = 0, . . . ,M ,
which give the best fit in the discrete least-squares sense to the column vector
X = (x1, . . . , xnp)T where (.)T means transposition, by using the model x(t) =
M∑

j=0

P x
j Bj(t), supposing that ti (i = 1, . . . , np) are parameter values assigned to

the data points and the Bj(t) are the known blending functions of the model.
Considering the column vectors Bj = (Bj(t1), . . . , Bj(tnp))T , j = 0, . . . ,M and
solving the following system gives the coefficients P x

j :
⎛

⎜⎝
BT

0 .B0 . . . BT
M .B0

...
...

...
BT

0 .BM . . . BT
M .BM

⎞

⎟⎠

⎛

⎜⎝
P x

0
...
P x

M

⎞

⎟⎠ =

⎛

⎜⎝
XT .B0

...
XT .BM

⎞

⎟⎠ . (4)

The elements of the coefficient matrix and the independent terms are calcu-
lated by performing a standard Euclidean scalar product between finite-dimen-
sional vectors. This system (4) results from minimizing the sum of squared errors
referred to the xi coordinates of the data points, as indicated in Section 1. Con-
sidering all the xi, yi, zi coordinates, the solution of the three linear systems
with the same coefficient matrix provides the best least-squares approximation

for the curve C(t) =
M∑

j=0

PjBj(t). For surfaces in parametric form, one uses the
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tensor-product surface S(u, v) =
N∑

i=0

M∑

j=0

Pi,jBi(u)Bj(v), a very common model

in CAGD. The coefficients Pi,j are the control points in 3D, arranged in a quadri-
lateral topology, and functions Bi(u) andBj(v) are the same basis functions used
for representing curves, for example Bernstein polynomials or B-splines piece-
wise polynomials. The parameters u and v are valued on a rectangular domain
[um, uM ]× [vm, vM ], a Cartesian product of the respective domains for u and v.
If Bi(u) and Bj(v) are Bézier basis functions, the (M+1).(N+1) bivariate poly-
nomials Bi,j(u, v) = Bi(u).Bj(v), i = 0, . . . , N , j = 0, . . . ,M constitute a vector
basis for a linear vector space of polynomials in u and v on the squared domain
[0, 1]× [0, 1]. Given a cloud of points (xl,k, yl,k, zl,k), in 3D, with a quadrilateral
structure, l = 1, . . . , npu , k = 1, . . . , npv , and a set of parameter values (ul, vk)
associated one-to-one with the data points in the cloud such that these points
form a cartesian set in the parameter domain, a discrete formulation similar to
that for fitting points to a curve can be made. The best least-squares tensor
product surface fitting the points can be obtained using the system (4), in which
the role of the B’s is now assumed by the Bi,j(u, v) described earlier.

5 Examples

In this section two examples (a Bézier curve and a Bézier surface) aimed at
showing the performance of our method are discussed.

5.1 Fitting a Bézier Curve

As a first example we consider a Bézier curve of degree d whose parametric repre-
sentation is given by Eq. (2) where the basis functions of degree d are defined as:

Bd
i (t) =

(
d

i

)
ti (1 − t)d−i, i = 0, . . . , d. In this example, we have chosen a set of

eigth 3D points to be fitted to a Bézier curve of degree d = 4. The unknowns are
23 scalar values: a vector of 8 parameter values associated with the 8 data points,
plus 15 coefficients (3 for the coordinates of each of the 5 control points of the
curve of degree 4). The data for the genetic algorithm are set as follows: we select
an initial population of 100 parameter vectors, each having 8 elements generated
randomly from a Uniform[0, 1] distribution and sorted in increasing order. Then,
we apply the procedure shown in Table 2 to produce successive generations. In
this example, the crossover and mutation operators are applied with probabil-
ities pc = 0.90 and pm = 0.20, respectively. A typical output for a couple of
parent chromosomes is shown in Table 1, yielding two new offsprings in the next
generation. Regarding our termination condition, these steps are repeated until
the results no longer change for 20 successive iterations. In this example, the op-
timal fit is attained at the 76th generation with the following results: the error in
the population (the maximum point error in the best fitted parameter vector) is
1.8774, while the mean error in the population is 2.0875. The number of crossings
and mutations for the last generation are 46 and 24, respectively. The optimum
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Fig. 1. Example of a Bézier curve fitting: (left) the Bézier curve along with its control
points (stars) and the data points (spheres); (right) evolution of the mean (solid line)
and the best (dotted line) Euclidean errors along the generations

parameter vector obtained is [0, 0.0131, 0.0583, 0.3556, 0.5384, 0.7138, 0.7899, 1].
The computation time for this example (in Matlab, running on a Pentium IV, 3
GHz) has been 4.16 sec.

Fig. 1(left) shows the data points (represented as spheres), the fourth-degree
3D Bézier fitting curve and its 5 control points (represented as stars). Fig 1(right)
shows the evolution of the mean (solid line) and the best (dotted line) Euclidean
errors of the parameter vectors for each generation along the successive genera-
tions. Note that the best error becomes small very quickly at the beginning, the
reduction rate getting slower for later generations.

5.2 Fitting a Bézier Surface

We consider now a parametric Bézier surface of degree N in u and M in v whose
representation is given by:

S(u, v) =
N∑

i=0

M∑

j=0

Pi,jB
N
i (u)BM

j (v) (5)

where the basis functions (the Bernstein polynomials) are defined as above and
the coefficients Pi,j are the surface control points. For this example we take
256 data points from a bicubic Bézier surface, generated with the following
parameter values for u and v: for the u’s of data points, we choose two groups of 8
equidistant parameter values in the intervals [0, 0.2] and [0.8, 1] and similarly for
the v parameter. The unknowns are 3×16 = 48 scalar coefficients (3 coordinates
for each of 16 control points) and two parameter vectors U and V (each of size
16), which combined by product of sets, are associated with the 256 data points.
That makes a total of 80 scalar unknowns.

The input parameters for the procedure are as follows: Population size: 200;
pc = 0.95; pm = 0.20; Termination criteria =no improvement after 30 consecutive
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Fig. 2. Example of Bézier surface fitting: (left) bicubic Bézier surface and data points;
(right-top): evolution of the mean (solid line) and the best (dotted line) Euclidean errors
along the generations; (right-bottom): optimum parameter values on the parametric
domain

generations. Initially, we have a population of 200 U-vectors and 200 V-vectors,
each one constructed by assigning random parameter values with Uniform[0, 1]
distribution, and sorting them within each vector. The best solution is attained
at generation 198 with the following results: Least error in the fit: 0.9891; Mean
error: 1.2314; Number of crossings (resp. mutations) for the last generation: 103
(resp. 59); cpu time (Pentium IV, 3 GHz running Matlab): 33.81 sec.

Fig. 2(left) shows the data points and the bicubic Bézier fitting surface. In
Fig. 2(right-top) we display the evolution of mean error (solid line) and best
(dotted line) distance error for each generation along the iterations. The opti-
mum parameter values for u and v are depicted in Fig 2(right-bottom) where
one can see how the fitting process grasps the distribution of parameters val-
ues assigned to the data points. It is worthwhile to mention the tendency of
the obtained parameter values to concentrate at the corners of the unit square
parameter domain, thus adjusting quite well the input information.

6 Functional Networks

An alternative approach to solving the problem of scattered data parameteriza-
tion is to assume a predefined 2D-mesh with the desired connectivity between
neighbouring vertices or nodes. An interpolation algorithm is then used to it-
eratively adjust the nodes in the mesh in order to match the coordinate data
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Fig. 3. (left) Representation of the functional network for the parametric surface in
eq. (6); (right) Equivalent functional network

set. This interpolation can be replaced by a coarser approximation, provided
that some additional (functional) information is available. For instance, in some
practical cases we can determine either the boundary curves or some 3D cross-
sections of the surface. Sometimes, such curves are described by their mathe-
matical functions rather than by a set of data points (this situation is usually
referred to as transfinite interpolation), which cannot be embedded into the neu-
ral network paradigm [14]. In [5] the authors suggested a powerful extension of
the classical neural networks, the so-called functional networks, able to deal with
this kind of functional constraints. The functional network (FN) formalism has
been successfully applied to surface reconstruction problems [7,15].

In this paper we consider the case of a Bézier surface subjected to some
functional constraints. In particular, let us assume that we look for a Bézier
surface S(u, v) such that its isoparametric curves u = u0 and v = v0 are linear
combinations of the sets of functions (not necessarily belonging to the same
family of functions; see example below) f(u) = {f0(u), f1(u), . . . , fm(u)} and
f∗(v) = {f∗

0 (v), f∗
1 (v) . . . , f∗

n(v)} respectively. In other words, we look for surfaces
S(u, v) such that they satisfy the system of functional equations

S(u, v) ≡
n∑

j=0

αj(u)f∗
j (v) =

m∑

i=0

βi(v)fi(u) (6)

where the sets of coefficients {αj(u); j = 0, 1, . . . , n} and {βi(v); i = 0, 1, . . . ,m}
can be assumed, without loss of generality, as sets of linearly independent func-
tions. This problem admits the graphical representation given in Figure 3(left)



690 A. Gálvez et al.

which, at first sight, looks like a neural network. However, the previous descrip-
tion in terms of neural networks presents the following problems:

1. Neural functions in neural networks are identical, whereas neural functions
in our example are different. For instance, we may find product and sum
operators (symbols ‘×’ and ‘+’ in Figure 3(left) respectively).

2. In neural networks there are weights, which must be learned. These weights
do not appear in functional networks; neural functions are learned instead.

3. The neuron outputs of neural networks are different; however, in our scheme,
some neuron outputs in the example are coincident (this is the case of the
output S(u, v) in Figure 3(left)). This fact leads to a set of functional equa-
tions, which have to be solved.

These and other disadvantages suggest that the neural networks paradigm
should be improved. In this paper, we will do so by using the functional networks.
In particular, the solution of this problem is given by (see [4]):

S(u, v) =
m∑

i=0

n∑

j=0

Pijfi(u)f∗
j (v) = f(u).P.(f∗(v))T (7)

where Pij are elements of an arbitrary vector matrix P, that is, S(u, v) is a tensor
product surface. The resulting functional network is depicted in Fig. 3(right).

7 Using Functional Networks for Bézier Surface Fitting

In this section the functional networks approach is combined with the least-
squares method to solve the surface fitting problem. In this paper we focus
on Bézier surfaces, so the families of functions {fi(u)}i and {f∗

j (v)}j are both
Bernstein polynomials. Figure 4 shows a typical example of the problems the
functional networks can solve. We look for the Bézier surface that interpolates
some given curves (transfinite interpolation) and best approximates (in the sense
of least-squares) a given set of 3D data points (displayed as red spheres in Fig.
4(right)). The functional constraints in this example are given in the form of
cross-sections1, shown in Fig. 4(left-top and middle): 5 section curves in u di-
rection, described as polynomials of different degrees, and 6 section curves in v
direction, described as Bézier curves. We remark that the data points do not
have a rectangular structure, as shown in Fig. 4(left-bottom), where the (u, v)
coordinates of the given points are displayed on the parametric domain. Note
that in general we cannot expect data points to belong to the target surface
(see Fig. 4(right)), which is forced to fulfill the functional constraints. Those
constraints are described by systems of functional equations in our formulation.
Note also that several arbitrary constraints might become incompatible in prac-
tice. In those cases, the resulting functional equations have no solution, so the
system of functional equations play the role of the compatibility conditions [15].
1 This example is discussed here for illustrative purposes. Other (more awkward) kind

of functional constraints might also be considered.
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Fig. 4. Example of Bézier surface fitting: (left, top and middle) curve constraints; (left-
bottom) coordinates of the data points on the parametric domain; (right) fitted Bézier
surface along with the approximated data points

The least-squares method is now applied during the learning process, in
which the neural functions are estimated (learned). To do so, each neural func-
tion fi is approximated by a linear combination of functions in a given family
{φi0, . . . , φimi}. Thus, the approximated neural function f̂i(x) becomes f̂i(x) =
mi∑
j=0

aijφij(x) where x are the inputs associated with the i-th neuron. In our case,

this step reduces to estimating the neuron functions x(u, v), y(u, v) and z(u, v)
from a given sequence of triplets {(xk, yk, zk)}k=1,...,K which depend on u and v
so that x(uk, vk) = xk and so on. So we build the sum of squared errors function
(see Eq. (3)):

Qµ =
K∑

k=1

⎛

⎝μk −
I∑

i=0

J∑

j=0

aijφi(uk)ψj(vk)

⎞

⎠
2

(8)

where we must consider an error function for each variable x, y and z. This is
assumed by μ in the previous expression, so (8) must be interpreted as three
different equations, for μ = x, y and z. The optimum value is obtained for

∂Qµ

2∂ars
=

K∑

k=1

⎛

⎝μk −
I∑

i=0

J∑

j=0

aijφi(uk)ψj(vk)

⎞

⎠φr(uk)ψs(vk) = 0 (9)

In this example, we consider two sets of data points: a first set of 64 data points
(called the training points as they will be used to learn the neuron functions)
with parametric coordinates uniformly distributed on the square [0, 1] × [0, 1]
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and a larger set of 256 data points generated in a similar way (called the testing
points). To fit the training points, we have used Bernstein polynomials of degree
I (resp. J) in u (resp. v) for the functions {φi(u)}i=0,1,...,I and {ψj(v)}j=0,1,...,J

in (8). Of course, every different choice for I and J yields a new system (9),
which must be solved. In particular, we have taken values for I and J from 2
to 6. Solving the compatibility equations along with system (9) for all cases, we
can compute the Bézier surface of degree (I, J) interpolating the given curves
and that best approximate the data points. To test the quality of the model
we have calculated the mean, maximum, minimum and the root mean squared
(RMS) Euclidean errors for I and J from 2 to 6 for the 64 training data points.
The best choice is for I = J = 3 that corresponds to the bicubic Bézier surface
displayed in Fig. 4 (errors are as follows: maximum: 2.1457; minimum: 0.0052;
mean: 0.3564; RMS: 0.0795). We also performed a cross validation of the model
to check for overfitting. We have calculated the mean, the maximum and the
root mean squared (RMS) errors of the 256 testing points. The final values are
comparable, showing that no overfitting occurs. All computations have been
carried out on a Pentium IV, 3 GHz. running Mathematica v5.2.

8 Conclusions and Future Work

In this paper we propose the use of two Artificial Intelligence techniques: (1) the
curve/surface parameterization problem is performed by applying genetic algo-
rithms; (2) the functional constraints problem is addressed by using functional
networks. Both approaches are combined with the least-squares approximation
method to yield suitable methods for curve and surface fitting. Some examples
of their applications on 3D point clouds through Bézier curves and surfaces (in-
cluding the case of cross-section constraints) are also given.

Our future work include the consideration of piecewise polynomials models like
B-spline or NURBS for fitting the data, with some changes in the computational
process for dealing with the knot vectors, which are other parameters in these
models. The distance error function for fitting data to the different models seems
to present a behaviour with multiple relative minima. This makes more difficult
attaining a global optimum. Some ideas on how to improve globally the search
process are also part of our future work.

The authors would like to thank the financial support from the SistIng-Alfa
project, Ref: ALFA II-0321-FA of the European Union and the Spanish Ministry
of Education and Science, Project Ref. #TIN2006-13615.
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