
Adaptive Scheduling of Parallel Computations

for SPMD Tasks

Mikhail Panshenskov and Alexander Vakhitov

Saint Petersburg State University, Department of Mathematics and Mechanics,
Universitetsky pr. 28,

198504 Peterhof, Saint Petersburg, Russia

Abstract. A scheduling algorithm is proposed for large-scale, hetero-
geneous distributed systems working on SPMD tasks with homogeneous
input. The new algorithm is based on stochastic optimization using a
modified least squares method for the identification of communication
and performance parameters. The model of computation involves a server
distributing tasks to clients. The goal of the optimization is to reduce
execution time by the clients. The costs of getting the task from the
server, execution of the task and sending the results back are estimated;
and the scheduling is based on adaptive division of work (input for the
clients) into blocks.

1 Introduction

Results about load balancing are of high interest in the field of parallel algo-
rithms. In this paper the case of SPMD (Single Program - Multiple Data) with-
out any synchronizations and with homogeneous input is considered. For such
programs authors propose a method to reduce imbalance caused by different per-
formance and answer time of each processor. Primarily the algorithm proposed
can be applied for large-scale heterogeneous computer systems. The method is
based on stochastic optimization. The main motivation of using this method is
fundamental uncertainty in the system and the need of fast adaptation to the
parameter changes [1].

SPMD computing for independent tasks is a subclass of computing models
with the following properties: 1. Mechanisms for forming independent tasks by
input data and combining the general output by the outputs of subtasks 2.
Processing of each task is evaluated by the same program.

Good discussion about problems suitable for SPMD computing is provided in
[3]. The results about SPMD computing and adaptive techniques used there only
start to appear. Earlier, the comparatively simple strategies were used [4]. Later,
there appeared several different problems of adaptive learning class in scheduling
field. Firstly, the distributed computing runtime can adopt the number of client
computers used by any task in a way that if all the given computers are busy,
it can get more, on the other way some will be taken and given to another task.
This problem definition is stated in [5,3]. The approach by He, Hsu and Leiserson
[5] is generally preferred, something of this sort can be added to the research

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4706, Part II, pp. 38–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Adaptive Scheduling of Parallel Computations for SPMD Tasks 39

proposed here to generalize the problem solved. Here we address only problem
of optimal execution of the one SPMD task; in [5,3] it is assumed that there
are several concurrent. However, none of the papers deal with external priority
(for example, amount of money give for task solution up to some time moment),
trying to give the task only what it asks for during execution. We find that
external priority is a step to business use of distributed computing.

Some authors propose to adapt to the imbalance by changing the ”relative
power” on each step when imbalance is more than some threshold. In our opinion,
this is not often needed. If the system performs in average well, then there is no
need to change the work given to target systems on each step. However, authors
[4] state that their load balancing works well.

Adaptation of distribution to network structure is also researched. There are
several methods to identify clusters of well-connected computers to assign tasks
to them using this information. The approach proposed here can be extended
to dynamical hierarchical structure, when network identification will be of great
interest.

In this paper we consider special subclass of SPMD computing: SPMD com-
puting for independent tasks with homogeneous input.

SPMD computing for independent tasks with homogeneous input is SPMD
computing for independent tasks when for the given machine every task can be
computed in the same time.

SPMD computing for independent tasks with homogeneous input is used for
wide class of problems, including

– visualization problems (visualization of Julia fractals) [17]
– mathematical modeling (Monte-Carlo methods for surface reactions) [2]
– information retrieval problems (SETI@Home - search for UFO signals)[10]

The main problem of parallel computations nowadays is how to construct a
parallel program correctly. Many programming language extensions and soft-
ware applications are being developed to reduce the costs of parallel programs
construction.

However, after the construction, the program should be run effectively. This
thesis can have different formal implications. We consider the program evaluation
effective if it takes shortest time to finish. Usually computational resources, are
not acquired for free, so it is reasonable to set an upper bound on the number of
processors which can be used in computations. Scheduling is the mechanism of dis-
tribution the tasks between the processors to achieve minimal execution time for
the whole parallel program. The result of scheduling is load balancing, which can
be measured and improved by modifying scheduling algorithm. The consequences
of good balancing in the sense described are increase of system throughput and
performance. In this paper we present an algorithm for scheduling of SPMD com-
putation for independent tasks with homogeneous input. Formulation of the cost
function used in this paper can be found in the next section.

In parallel computing systems scheduling is always present, however the
algorithms do not vary greatly. We will observe next different algorithms of
scheduling for SPMD computations for independent tasks with homogeneous

40 M. Panshenskov and A. Vakhitov

input. If accurate information about the task complexity and processors per-
formance is known before runtime, static [6] scheduling can be done. Static
scheduling is a class of scheduling algorithms when distribution of tasks between
processors is defined before runtime. This approach is good when we can be sure
in the characteristics of the system and task. For instance, if we have run the
task several times on the system, and it demonstrates to be highly consistent
running this task. The opposite is dynamic scheduling.

Dynamic scheduling is a class of scheduling algorithms when the decisions
about the distribution of the tasks between processors are done in runtime using
the available information about results of runs of already finished tasks. Proces-
sors can change their performance. They can even leave or join the computations.
This leads to necessity of dynamic balancing scenarios instead of static balanc-
ing.Study about taxonomy of scheduling algorithms for parallel computations is
done in [7].

Dynamic (non-cooperative1) scheduling algorithms can be divided into dis-
tributed and centralized scheduling. Work-sharing and work-stealing [8,9,5] are
the only cases of distributed scheduling, differing in the initiator of imbalance
reduction.

In case of dynamic distributed scheduling, the tasks are given to systems in
equal amounts, and when one processor finishes execution, it either takes new
task from overloaded neighbor (work-stealing) or waits until busy neighbor gives
it (work-sharing). This can lead to communicational difficulties close to the end
of task execution, when many of the processors finish the work which was initially
their and try to take a part of work from randomly chosen overloaded processor.

The another class of dynamic scheduling algorithms is centralized scheduling.
In this case, there exists special target system (broker), which runs scheduling
algorithm, and other target systems get work from the broker. the algorithm
proposed in the paper belongs to this class (dynamic centralized scheduling).
Centralized scheduling gives different meaning to computers participating in the
system, so Target system is a computer, which participates in the distributed
computing system and executes tasks given by user Broker is a computer, to
which resource management is delegated. There are two levels of broker activities.
Firstly, broker gives resources for particular computation. Secondarily, broker
runs scheduling algorithm and manages which atomic tasks are being executed
on which target systems.

If the number of target systems is large, it can be reduced introducing the
hierarchical topology [9]. In this paper we concentrate on non-hierarchical, one-
level topology.

In this paper, we consider only one class of distributed computations and
therefore we are interested in the algorithm for second-level broker activity.

In the class of computations considered, usually atomic tasks are very small
and grouped into blocks. The dynamic scheduling algorithms class for this class
of computations can be divided into subclasses with constant and varying size of

1 Cooperative scheduling scenarios assume more complicated multi-agent methods,
which are not covered in this paper.

Adaptive Scheduling of Parallel Computations for SPMD Tasks 41

block. The size of block can vary int time and between target systems. The algo-
rithm proposed here uses both possibilities. First allows to overcome some com-
munication issues, second allows to perform balanced scheduling better. Com-
paring to other subclasses of centralized dynamic scheduling, we can say, that
these possibilities allow adaptation of the scheduling to performance and com-
munication parameters of every target system.

The paper is organized as follows. Section 2 determines the model of SPMD
computations for independent tasks with homogeneous input and cost function.
Section 3 is a short excerpt about stochastic optimization methods proposed to
use in the field of scheduling for distributed computing. The method based on least
squares estimator is a part of scheduling algorithm proposed and it is formalized as
a sequence of steps in this section. Section 4 is central: the other part of scheduling
algorithm which determines sizes of blocks is described and discussed there. The
last, 5th section, contains conclusions and further directions of research.

2 Model of Distributed SPMD Homogeneous Computing
and the Cost Function

2.1 Model

The case of SPMD computations for independent tasks with homogeneous input
is considered. We make several assumptions about the system, which we find
realistic. These are:

1. Tasks are given as blocks of iterations; Iteration is an atomic work unit of
the SPMD-computation.

2. Communication with client can be done in asynchronous way. It can be
regarded as the communication with two threads on the client computer,
one for calculation and one for communication.

3. Broker (we can call it server also) costs on communication are not counted;
broker is powerful enough to perform communication with arbitrary number
of target systems (clients) without any overhead; the time of task execution
depends on the times of executions of client applications.

4. The cost of communication and execution of the block of iterations on the
target system linearly depends on the number of iterations in a block (block
size).

We define cost function as maximal execution time on client. The work of
target system is iteration of the cycle (with corresponding time period label in
brackets):

1. getting the task from server (ci)
2. execution of the task (Li)
3. sending the results back to server (ni)

The sequence diagram for this process is in the Fig. 1.

42 M. Panshenskov and A. Vakhitov

Fig. 1. Algorithm scenario diagram

First time, phase 1 can be done only before the phase 2. Later, phase 1 and
3 can be done in asynchronous way with phase 2. Only the last time the task
result is sent back to the server after the total execution finishes.

If the asynchronous task loading is not performed before the previous task
execution finishes, then task loading is aborted notifying the server that task
need to be loaded again. After, the results are sent back and new task is loaded
the next task is executed. This event has corresponding indicator function χ

(m)
i .

max
m

{c(m)
1 +

N(m)∑

i=1

L
(m)
i +

N(m)−1∑

i=1

(ni−1 + ci+1)χ
(m)
i + nN(m)} → min (1)

2.2 Discussion

Many cost functions for distributed computations scheduling and SPMD com-
putations [4] in particular are proposed. The ones discussed in paper [4] can
be used for independent tasks with homogeneous input. Some cost functions in
work [4] evaluate only imbalance.

The possibility of asynchronous updates is one of the ideas how scheduling can
reduce not only final imbalance, but also system execution time on the whole run.

Authors find the cost of communication as a critical parameter for distributed
computing, following [6,8]. The set of task which can be solved by the enormously
fast distributed meta-computers [10] depends on the communication facilities.
Possibility to do asynchronous task and results sending seems to be realistic
with contemporary multi-threaded processors and highly-specialized computer
architecture.

Adaptive Scheduling of Parallel Computations for SPMD Tasks 43

However, the particular task chosen by authors seems to be realistic and
actual. The bounds on the problem allow to go deeper into the problem structure
and use more advanced special (learning) methods like discussed in the next
section.

3 Tracking Performance and Communication Costs

The problems of identification of true performance and communication cost pa-
rameters can be solved in similar way. We assume that the model of every such
parameter as a linear function of the block size (bi) is adequate enough. So, we
propose to use modified least squares method, similar to described in [16].

The algorithm proposed for scheduling in this paper consists of two parts.
One is parameters estimation, which is executed after every communication with
target system. It is executed at the moments labeled as est (pic. 1). Another is
block size determination, which is executed before sending new task to the target
system, at the moments labeled as dis (pic. 1).

In this part we consider first algorithm. Briefly introducing the ideas of recur-
sive estimation using least squares, we then formulate the steps of the algorithm.

3.1 Modified Least Squares

Let us assume that there is an observed value yn:

yn(xn) = an + knxn, (2)

where xn is known and an, kn are unknown. From the formula it can be seen
that all the values depend on n. Let an, kn be random with some variance and
expectation: Ean = a, Ekn = k. The problem is to identify a and k and then
track the changes in their expectation.

The algorithm proposed is of the form of least-squares estimation with some
discounting parameter α. Firstly, we define a discounted cost:

Jn(α, ân, k̂n) =
n∑

l=1

αn−l‖yn − ân − k̂nxn‖2 (3)

In (3) the values ân and k̂n are the estimated parameters, yn can be substituted
with (2). The parameters can be estimated as follows:

eyn = ‖yn − an − knxn‖2

The algorithm for estimation performs following operations on each step:
(

ân+1

k̂n+1

)
=

(
ân

k̂n

)
+ Qn(eyn), (4)

Qn+1 =
Pn

(
1̂
x̂n

)

α + Pn(1 + x2
n)

,

44 M. Panshenskov and A. Vakhitov

Pn+1 =
1
α

[
Pn − P 2

n(1 + x2
n+1)

α + Pn(1 + x2
n+1)

]−1

,

P1 = (1 + x2
1)

−1.

Parameter α is known as forgetting factor, α < 1. It defines how fast the
parameter is expected to change. There is an adaptive algorithm for adjusting
α, which should be used in this case. Due to insufficient space, we reference here
the book of Kushner and Yin [16]. The fact of α adjustment allows us to carry
on the difficulties with throughput of the network and performance of the target
system changing in time.

4 Determination of The Block Size

The algorithm for block size determination is discussed next. To simplify nota-
tion, we remove lower indices from c, n, L, assuming that at every moment there
is actual estimate of the coefficients in the linear model for each of these param-
eters. On every step bi is the current block size. For a target system, there is an
upper bound on the block size Bmax. The number of not-started tasks is global
updateable variable W . The number of tasks needed to do lowering of the block
size for all the target systems is U =

∑
B(j) + Bmax(j) where j is a number of

particular target system and B(j) is a variable which contains a number of tasks
needed for target system j to reach the upper bound of block size increasing it
by the algorithm proposed.

Algorithm is presented in 3 phases. In brackets near each phase there is a
condition needed to be satisfied to move to the next phase.

1. Block size growth (bi < Bmax)
(a) Δ = Li − ni−1

(b) bi+1 = Δ−aL

kL

(c) B = B + bi

(d) add bi to stack Q(j)

(e) return bi+1

2. Stable block size (W¿U)
(a) return Bmax

3. Lowering of block size
(a) take bi+1 from Q(j)

(b) return bi+1

5 Using Performance and Communication Parameters in
Scheduling

Scheduling algorithm can rely on the parameters (ĉn, n̂n, L̂n) estimated by the
algorithm discussed in previous section. The parameters of communication (ci

and ni) can be measured on the server due to interactivity of TCP/IP protocol.
Then, the execution time on client Li can be measured. So, the estimation of the
parameters for all target systems can be done on the server. Here the client-server
interaction algorithm is proposed, which uses these estimates.

Adaptive Scheduling of Parallel Computations for SPMD Tasks 45

5.1 Conditions on Block Sizes

As it was said earlier, iterations are grouped in blocks and sent to clients from the
server. There are two main questions arising about this algorithm of client-server
interaction:

1. How big should be the blocks?
2. How often should server send the blocks to client?

Informally, the answer to these questions has to depend on the communication
facilities. The new parameter s(m) is the time period between consequent data
sending, that is

s(m) = ts(c
(m)
i) − ts(c

(m)
i−1) (5)

for client m. For networks with high bandwidth, s(m) is small while for low
bandwidth it is high. The method to find s(m) is discussed later, by now assume
that we have some s(m) for every client m.

Earlier we said that in our model first getting task from the server can only be
done before execution. Then, the size of this first block should be small. During the
execution of the first block, bigger block can be asynchronously got from the server.

Let us denote ts(·) the starting time and tf (·) the finishing time of the interval.
Then there are obvious rules to follow to asynchronously get tasks:

ts(ni) = tf (Li), tf (ci) ≤ ts(Li+1) tf (ni) = ts(ci+2) + tsch (6)

These conditions mean that the Li interval should be overlapped by ni−1 and
ci+1 intervals. To make the phase 1 more robust, we can also define ri “reserve”
pseudo-interval which will depend on the error rate (eLi , see (4)) of the estimate
of execution time L̂i. This pseudo-interval will help when estimate is lower than
true value of execution time: Li = L̂i − δ, Li >> δ > 0.

Also, server performs calculation of scheduling parameters, that takes some
time, that is why in (6) tsch was added, however it is nearly constant.

5.2 Variation of Block Size During Execution

On the first steps with poor knowledge of the system parameters we cannot
expect the asynchronous task getting (phase 1 above) to perform good. However,
using reliable estimates of the parameters good accuracy can be achieved.

The block size during the run should be comparatively big. There are several
reasons for this. One is that to perform phase 1 better, we should have bigger
execution periods. Another is iterations affinity, such that several small block
perform lower than one big block.

The “asynchronous growth” of block size can be bounded, because we need
to do increasing in step-by-step manner, on each step satisfying condition

Li ≥ ci+1 + ni−1 (7)

46 M. Panshenskov and A. Vakhitov

Fig. 2. Block size chart

The parameters in (7) are linear dependent on bi. This allows us to rewrite
conditions (7) as system of linear inequalities:

pbi−1 + qbi + rbi+1 ≤ z i = 1...N (8)

Assuming that we have already found reliable coefficients for linear dependencies
of parameters on bi, the plan for increasing bi while minimizing the functional
(1) needs to satisfy the system (8) to make χi = 0 ∀i = 1.... But if we on every
step change the coefficients of dependency of c, n, L on b, then there can appear
some misses. The optimality of modified least squares in the sense described in
[16] allows us to state that the number of misses will be as low as it is possible.
Also, the positive side of block size step-by-step increasing is that we perform
estimation of the coefficients on the blocks from smallest to bigger, so while error
of prediction tends to zero, block size grows.

So, the algorithm of block size change can be as follows.

Block Size Increase

– Depending on s(m), find minimal b1 such that (5) is satisfied (probably with
some reserve r(m))

– Repeat until the threshold of increasing is reached:
• find bi according to the system (8)

The algorithm is illustrated in Fig. 2.
The idea is to increase block size up to the value when desired communication

rate does not allow to increase it more. This increase can be done in step-by-step
manner, satisfying the conditions above. Desired communication rate, however,
can be set manually or investigated via adaptive identification procedure. Then,
the average error of prediction (3) can be a good criteria to do this identification.

Adaptive Scheduling of Parallel Computations for SPMD Tasks 47

If the error rate is high in average, we should make shorter blocks and send them
to the target system more rapidly.

The last interval of execution according to (1) is nN(m) . It should be mini-
mized. It implies that last block bN(m) should be as small as s(m) allows. Then,
in some moment the server should start to shorten the blocks. It should be done
similar to Block Size Increase, but with decreasing instead of increasing. The
same system (8) needs to be satisfied.

In general, the system (8) provides lower and upper bound for each of bi.
While increasing, we take the value closer to upper, while decreasing - value
closer to lower bound is preferable.2

Next question arises: How to determine the moment to start the block size
decrease procedure?

After first steps of increasing are done, we assume that we can predict the
parameters good. Using them, we can find a solution of the system (8) with
requirement of the block size reducing adding initial condition bithr

= B and
minimization criteria

∑N :bN=bmin

i=ithr
bi → min.

Then, the only unknowns are bithr
and therefore step numbers ithr and N . We

propose to choose ithr closer to the maximal possible with
∑ithr

i=1 bi → max and∑N :bN=bmin

i=ithr
bi → min, while letting the total work of client m to be W (m) =

∑N(m)

i=1 b
(m)
i ‖W (k) − W (m)‖ → min ∀k �= m for every pair of different clients

k,m.3

The decreasing should start in a way that assumes entering the phase with
minimal block size in nearly same moments for each target system.

Remember assumed ”good” prediction capability of the parameters. In formal
definition, it adds some upper bound on the increasing of block size. We should
do some fixed number of recurrent estimation iterates to provide reliable results.
According to the big numbers law, the expected error is proportional to the
inverse of the number of iterates, with some constant which can be once found
for typical case.

5.3 Final Planning

When the planning of block decrease for the most of client is done, it is possible
to perform planning of the last blocks distribution. Important task of balancing
is to make the server to get the results of last block execution from each client
in nearly same time. The task of asynchronous task getting from server can be
called ”effective scheduling” or ”effective execution”. It gives reward in making
the cost functional value lower by some multiplicative factor.

The planning of last block distribution can decrease cost functional value only
on some additive term, which however can be significant. Without any planning
2 Probably, the “closer” term should be defined more formally.
3 The system to solve seems to be complicated; approximation methods can be used.

We still assume server to be capable to deal with these computations. Approximation
can be done introducing some “intensity” parameter for every target system and
computing the predicted work for the target system using the intensity as a scale in
division procedure.

48 M. Panshenskov and A. Vakhitov

average imbalance is a half of average execution time of the block on average
system. If the block is like SETI@Home project work unit, which is computed
during a day approximately [10], then this average imbalance is half of a day,
and it seems to be significant value to perform planning.

The planning of execution when task execution time on different systems is
known and the task set is given is a known and discussed problem [6]. The
method from [6] can be used to do the planning. Here we formalize the problem
of final planning as follows:

M∑

m=1

n(m)b(m) − W ≥ 0 (9)

M∑

m=1

n(m)b(m) − W ≤ min
m

{b(m)} (10)

max
m

{n(m)t(b(m)) + r(m)} → min (11)

Here r(m) denotes the remaining task to do before starting the final execution. All
the target systems have such remainder due to unsynchronized block execution.

5.4 Note on s(m)

The desired communication rate s(m) is defined from client behavior. It should
be equal to the lower bound of interval length in seconds such that if client-server
interaction will be performed every time interval greater or equal than that, then
it can be assumed that the client will answer server in most cases.

This parameter has importance for geographically distributed networks with
different communication facilities. Initial values for it can be found in some static
table, mapping client IP masks to possible desired communication rates. Then,
this data can be tuned and tracked with the system/network changes.

In our formal model, however, there can be found some condition on s(m)

derived from conditions (6): s(m) ≥ ac(m) + an(m) for aD : D(b) = aD + kDb.

5.5 Discussion

Several issues are of interest why talking about heterogeneous distributed com-
puting. Firstly, what if a target system wants to participate in the computations
which already started? Our system provides the model of inclusion of the tar-
get system as follows: it starts from minimal possible block size and runs the
increasing procedure together with identification of the parameters, maybe with
smaller steps, up to reaching the decreasing threshold found satisfying the con-
dition that decreasing threshold should lead to the nearly same time of entering
the phase with lowest possible block size.

Another question is what to do if the system leaves the computation before
finish. It seems that the most frightening is the case with biggest blocks in the
middle of execution. When target system stops reacting the server tasks (after
each block execution it should initiate the returning of results), it should be

Adaptive Scheduling of Parallel Computations for SPMD Tasks 49

removed from the execution and it’s block should be rescheduled. However, the
middle is not the end, and there is enough possibility to change the scheduling
(ithr) flexibly.

6 Conclusions

In this paper authors tried to present realistic model of SPMD computations in
homogeneous input case. The adaptive procedure discussed is complicated and
needs further explanations; however, it’s features (on-line system identification,
primarily, which is similar to non-clairvoyance in [5]) seem to be highly applicable
to the field.

Authors participate in the Saint-Petersburg State University project about
GRID computations, supported by Intel. Implementation of the proposed tech-
nique is one of the goals of the project. We find that reliable and robust imple-
mentation is as important as theoretical optimality results in distributed com-
puting, where practice is very close to theory.

References

1. Granichin, O., Polyak, B.: Randomized algorithms of estimation and optimization
under almost arbitrary noise. M. Nauka (2003)

2. Nakano, A.: High performance computing and simulations (Spring ’07). Available
online: http://cacs.usc.edu/education/cs653.html

3. Weissman, J.: Prophet: automated scheduling of SPMD programs in workstation
networks. Concurrency: Practice and Experience 11(6), 301–321 (1999)

4. Cermele, M., Colajanni, M., Necci, G.: Dynamic load balancing of distributed
SPMD computations with explicit message-passing. In: Proc. of the IEEE Work-
shop on Heterogeneous Computing, pp. 2–16 (1997)

5. He, Y., Hsu, W., Leiserson, C.: Provably efficient adaptive scheduling for parallel
jobs. In: The Proc. of the 12th Workshop on Job Scheduling Strategies for Parallel
Processing (2006)

6. Ichikawa, S., Yamashita, S.: Static load balancing of parallel PDE solver for dis-
tributed computing environment. In: Proc. ISCA 13th Int’l. Conf. Parallel and
Distributed Computing Systems (PDCS-2000), pp. 399–405 (2000)

7. Casavant, T., Kuhl, J.: A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans. on Software Engineering 14(2), 141–154 (1988)

8. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work steal-
ing. In: Proc. 35th Annual IEEE Conf. on Foundations of Computer Science
(FOCS’94), Santa Fe, New Mexico. IEEE Computer Society Press, Los Alamitos
(1994)

9. Neill, D., Wierman, A.: On the benefits of work stealing in shared memory multi-
processors. report, http://www.cs.cmu.edu/acw/15740/paper.pdf

10. Anderson, C., et al.: SETI@Home: an experiment in public-resource computing.
Comm. of the ACM 45(11), 56–61 (2002)

11. Jaillet, C., Krajecki, M.: Constructing optimal Golomb rulers in parallel. In: Proc.
6th European Workshop on OpenMP, pp. 29–34 (2004)

http://cacs.usc.edu/education/cs653.html
http://www.cs.cmu.edu/acw/15740/paper.pdf

50 M. Panshenskov and A. Vakhitov

12. Warren, M., Salmon, J.: A parallel hashed oct-tree n-body algorithm. Supercom-
puting, 12–21 (1993)

13. Lof, H.: Iterative and adaptive PDE solvers for shared memory architectures. Acta
universitalis: digital comprehensive summaries of Uppsala dissertations from the
faculty of science and technology (2006)

14. Hamidzadeh, B., Lilja, D.: Dynamic scheduling strategies for shared memory mul-
tiprocessors. In: International Conference on Distributed Computing Systems, pp.
208–215 (1996)

15. Autonomic computing: IBM’s perspective on the state of information technology,
http://www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf

16. Kushner, H., Yin, G.: Stochastic approximation and recursive algorithms and ap-
plications, 2nd edn. Springer, Heidelberg (2003)

17. Estkover, C.A. (ed.): Chaos and Fractals: A Computer Graphical Journey, p. 468.
Elsevier Science, Amsterdam (1998)

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

	Adaptive Scheduling of Parallel Computations for SPMD Tasks
	Introduction
	Model of Distributed SPMD Homogeneous Computing and the Cost Function
	Model
	Discussion

	Tracking Performance and Communication Costs
	Modified Least Squares

	Determination of The Block Size
	Using Performance and Communication Parameters in Scheduling
	Conditions on Block Sizes
	Variation of Block Size During Execution
	Final Planning
	Note on $s^(m)$
	Discussion

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

