
O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4706, Part II, pp. 1–12, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parallel Image Understanding on a Multi-DSP System

M. Fikret Ercan

School of Electrical and Electronic Engineering, Singapore Polytechnic, 500 Dover Rd.,
S139651, Singapore

mfercan@sp.edu.sg

Abstract. A course-grain multiprocessor architecture, based on an array of digi-
tal signal processors (DSPs), is presented to demonstrate the possibility of a
parallel implementation of image-understanding algorithms. Aerial image un-
derstanding is investigated as an application. The system is designed to exploit
temporal and spatial parallelism. A good speed-up was obtained for low- and
intermediate-level operations. However, the speed-up for high-level operations
was poor because of processor idle times, as the number of objects to be proc-
essed at higher level tends to be small. DSPs performed well as processing ele-
ments for number-crunching operations, but the performance was not so good
for implementing symbolic operations.

1 Introduction

Image understanding systems produce a description of the scene in a given image by
extracting meaningful features from the image and matching them with models.
Document image understanding, face recognition, aerial image understanding, medi-
cal image analysis are some of the applications areas. A vast amount of research has
been made in the last decade in which a combination of techniques ranging from
image processing to artificial intelligence were employed (see for instance [11,17] for
interpretation of aerial images, [7,10,14,13,15] for medical image analysis and [2,9]
for video data mining). A critical issue in image understanding applications is the
computation complexity. For some applications, such as face recognition and aerial
image understanding, operations have to be completed in real-time. On the other
hand, applications like image document retrieval or medical image analysis operations
have to be completed within a short period of time. A well known approach to over-
come high computation cost is to employ multiprocessor systems. In early studies,
tailor made computer architectures are designed to address computational require-
ments of image understanding algorithms. In these systems a combination of fine and
coarse grain parallelism exploited and various other design ideas were experimented
such as reconfiguration, multilayer hierarchy etc. [1, 3, 8]. However, a major draw-
back was inflexibility and difficulty of programming. The latest advances in micro-
processor and computer architecture made it possible to build a coarse grain multi-
processor system, which is flexible and easy to program. In this paper, we employ
such system and investigate parallel image understanding algorithms for a coarse
grain multiprocessor.

2 M.F. Ercan

The system employed in this study is homogenous, that is the same processor is
used for low, intermediate and high level processing. The processing element (PE) of
the system is Analog devices SHARC DSPs (TM-001 at 250MHz). Configuration of
the system allows both spatial and temporal parallelism to be exploited. Each proces-
sor holds 6 Mbytes of local memory and 128Mbytes memory is shared between the
four DSPs. Figure 1 shows a block diagram of the system.

Fig. 1. A block diagram of the system

An example problem, aerial image understanding, which is a widely investigated
problem [8,17], is implemented as an application. Although, the methods and the
computing platforms presented in these works are different than the one presented
here, these studies have made a good reference for the experiments conducted here.
The other reason for selecting this problem is that it does not require expert knowl-
edge as compared to more specific problems such as medical image understanding.

Unfortunately, there is no common method to solve image understanding problem.
In early studies, the black-board method is introduced where knowledge-based proc-
esses communicate through a central message utility. It is difficult to realize top-down
model directed feature extracting with this method [16]. In another study a data paral-
lel approach, namely geometric hashing, was introduced for high level image process-
ing [6]. This method is computationally intensive and requires a large memory space
for the hash table. In our approach, each object is treated as an independent agent and
they are distributed to the processors of the system which is more suitable to imple-
ment in coarse grain architectures. The algorithm builds a spatial network of objects
independently on the individual processors of the system.

In the following, feature detection and parallel image understanding algorithms
will be presented in detail. It is followed with the experimental results and a discus-
sion on the speed-ups achieved. Conclusions are given in the last section.

2 Parallel Image Understanding Algorithm

Interpretation of aerial images is a difficult problem considering the complexity of an
aerial picture. In the example application, a description of the scene is constructed by

 Parallel Image Understanding on a Multi-DSP System 3

using man-made objects, such as sport fields and houses detected in the image. As the
objective of the application is to test the merits of the parallel system rather than to
develop a full scale aerial image understanding system, we employed a small model
base. The flow of operations is bottom-up first (feature extraction) then followed with
a top-down analysis (search for missing object features). Integrating bottom-up and
top-down flow of operations in image understanding provides a better performance
since purely bottom up or top-down operations have limitations [4,5].

In our application, bottom up phase includes following operations: feature extrac-
tion (low level), feature grouping (intermediate level) to form non-pixel based repre-
sentation of the objects, and description of the scene (high level) using the spatial
relationships between these objects. Top-down phase of the operations are activated
to search missing object features or to search hypothesized objects in the scene. Ap-
parently, a major problem is to map these operations on a multiprocessor architecture
with a minimum compromise on the performance.

2.1 Feature Extracting and Generating Object Candidates

We employed a corner detection algorithm [12] as a primary source of feature detec-
tion from the image. The algorithm detects corner points through following steps:

• Image is convoluted with a set of masks one for each possible orientation. A pixel
is selected when response of at least two masks are greater than a threshold value.

• The off-edge points are eliminated in view of neighborhood values. If the re-
sponse is not significant when compared to the neighboring pixels then the edge point
is eliminated.

• Non-corner points are eliminated, if two half-edge orientations differ by 180º.

The algorithm employs, Gaussian based half edge detectors and it is inherently
data parallel. In our application, only right angle corners are needed hence the parallel
algorithm is realized as follows:

Step1: Distribute image segments to processors
Step2: Perform boundary data exchange
Step3: Perform corner detection
Step 4: Detect right angle candidates and form right angle tokens.

Detected corner points are labeled based on their half-edge pairs as shown in Figure 2.
A token for each potential right-angle corner is then produced. Each token contains x, y
coordinates of the corner point and its type (1 ~ 12) as shown in Figure 2.

In order to form rectangle candidates, at least three right angle corner points are re-
quired. Among all the corner features found in the image, those corner points that can
form a proper rectangle are combined as a rectangle candidate. For instance, consider
rectangles with 0º angle and assume that corner type 4 is the reference point. To form
a rectangle, a pair of corner points such as type 1 and 3 is required. The half edges of
these corner points should approximately intersect with a line drawn between two
corner points. The first step of the parallel algorithm provides each processor all the
corner points detected from the image. Algorithm searches for two adjacent corners
for a given corner point to form rectangle candidates. The parallel corner grouping
algorithm employs the following steps:

4 M.F. Ercan

Step 1. Processors perform all-to-all broadcast and obtain all the corner tokens.
Step 2. Processors sort corner tokens based on the corner labels
Step 3. For group=1,...,3

 Step3.1 Reference corner points are partitioned among the processors
evenly.

 Step 3.2. For each label=1,...,12
 Step 3.2.1 Processors search for possible rectangle candidates based on the

 reference corner points and the rest of the corner points in their group.
Step 4. Perform all-to-all broadcast and merge same rectangle candidates.

The above algorithm may produce more than one representation of the same rec-
tangle in separate processors. Therefore, at the final step a merge operation is per-

formed to avoid repetitions. Final rectangle candidates, rS , are submitted for high

level processing.

0o

90o

1

180o

90o

2

270o

180o

3

0o

270o

4

30o

120o

5

210o

6

300o

7

30o

300o

8

120o

210o

9

60o150o

240o

10

11

60o

12

150o

240o

330o

330o

Group 1 Group 2 Group 3

Fig. 2. Possible right angle corner points extracted by corner detecting algorithm

2.2 High Level Processing

The main objective of the high-level processing is to construct a description of the
scene. However, incomplete information is one of the major problems. Therefore, an
image understanding system is expected to perform with incomplete or faulty infor-
mation. Among the various types of methods introduced in literature, knowledge-
based analysis is a well-accepted approach. Formal logic, semantic networks and
production systems are three principle methods used. In knowledge based analysis,
intrinsic shortage of input information is compensated with the knowledge provided
to the system. Furthermore, this knowledge is used to minimize shortcomings of fea-
ture extraction operations. The high level operation discussed in this section is

 Parallel Image Understanding on a Multi-DSP System 5

knowledge based and utilizes the knowledge about the geometric and spatial relations
of the object instances.

The spatial reasoning seeks topological relations, such as adjacency, inclusion etc.,
and geometric relations, such as distance, bearing, direction etc., among the object
features. Image understanding with this method is simply based on accumulating
evidences by referring to the relations found between recognized objects. The high
level processing implemented here is extended from SIGMA system [11] which is a
sophisticated aerial image interpretation tool. However, in our application the inter-
pretation process is simplified and it’s more focused on the parallelization of the algo-
rithms and realization of the interpretation process with hypothesis generation.

In order to interpret image data, a model should be selected and it is a key opera-
tion at high level processing. There are two expert modules developed for this pur-
pose in SIGMA system and three types of knowledge bases are used: knowledge
about the attributes of objects such as location, area, size and shape, knowledge about
the relations between objects and knowledge to control the analysis. A recognized
object initiates reasoning about its spatial relations with other objects, that is, each
object instance acts as an independent reasoning agent and uses a set of production
rules stored in the object class to generate hypothesis about its related objects. For
instance, when a house object is recognized, hypothesis about its related objects such
as a driveway, or a parallel road, etc. are generated. An object is represented with
slots for links, attributes and rules. Relations between objects are established through
AKO (“a kind of”), PO (“part of”), AO (“Appearance of”) links. For instance, a rec-
tangular house frame and an L-shaped house frame are related to the house frame
with AKO links. An object contains slots to store attributes of the object (such as
dimensions) as well as a procedure slots (such as to calculate the area of the house
and store it in the area slot). These types of slots are also used to store rules that play a
key role in the interpretation process. A rule slot has three parts: control-condition,
hypothesis and action. The control-condition slot is a predicate that indicates when the
rule can be applied. The hypothesis slot specifies a procedure to generate an expected
description of a related object. Finally, the action part describes a procedure to be
executed when the hypothesis part is verified.

The frame mechanism and reasoning by object instances are selected in the high-
level processing for various reasons. Firstly, it is suitable for parallelization, as objects
can be treated as independent agents and executed on different processors. Secondly,
as object instances reason independently, establishing spatial relations between ob-
jects which reside in distant processors require minimum inter-processor communica-
tion. Thirdly, model directed feature extraction operations could be hypothesized
during the analysis phase.

At the first step of the high level processing, for each candidate rectangle a match-
ing model searched in the knowledge base using their length and width parameters.
There are two types of objects stored in the model base used in this experiment,
houses and sport fields. The area of a sport field is greater than a house. This simple
reasoning indicates which object group that a rectangle candidate belongs to. The
following predicates are used for matching:

6 M.F. Ercan

∀
× < < × ∧
× < < × →

⎡

⎣
⎢

⎤

⎦
⎥x

soccerf width Width x soccerf width

soccerf length Lenght x soccerf lenght SOCCERF x

. . () . .

. . () . . ()

0 8 12

08 12

∀
× < < × ∧
× < < × →

⎡

⎣
⎢

⎤

⎦
⎥x

handballf width Width x handballf width

handballf length Lenght x handballf lenght HANDBALLF x

. . () . .

. . () . . ()

0 8 12

08 12

[])()()(maxmax xHOUSEHxLenghtHxWidthx →<∧<∀

Here soccerf.width, soccerf.length, handballf.width, handballf.length and maxH

are constant values of actual object instances. Each processor holds a copy of the
model database and the rectangle candidates are scattered to the processors evenly.
The parallel model matching algorithm performs an exhaustive search. The purpose
of the first model match process is to recognize objects with their intrinsic proper-
ties (size, shape, color etc.) and to eliminate those erroneous candidates. With the
above reasoning, three types of rectangles will initiate three types of objects from
the model base. That is, each rectangle candidate receives a new definition as an
object. After model matching, a merge operation is performed to combine compo-
nents of the same object which were given different labels. This operation performs
following steps:

Step 1. Perform all-to-all communication so that processors get all the objects.
Step 2. Perform model merging.
Step 3. Perform all-to-all communication so that processors hold new set of

 objects.

In the example given with Figure 3, assume rectangle R11 in PE1, circle C21 in
PE2 instantiate soccer field and rectangle R32 in PE3 and circle C41 in PE4 instanti-
ate a handball field. After step 1, each processor obtains a list of object instances
generated by all the processors. Each processor then compares objects in local mem-
ory with the ones received from the neighboring processors. In Figure 3, R11 and C21
are instantiating the same soccer field, after analyzing parameters of SC11 and SC21
they are unified under new object SC12. Similarly, handball fields HND31 and
HND41 unified as HND32. All-to-all communication at step 3 provides an updated
list of the objects to all the processors. Each processor performs further processing
only one portion of the objects from the entire list.

Another major step in the image understanding process is to analyze individual ob-
ject instances for their completeness. After the first merging process, components of a
composite object are grouped into the same object instance, if they are available ini-
tially. If there are missing object instances, a further feature extraction is performed
on the image. These feature extraction tasks are model directed and performed within
a certain area in the image where the features of the composite objects are expected.
The output of the first model matching operation inputs to a function that constructs
spatial relations of an object with its related components. This function, namely spa-
tial relation constructor (SRC), completes the description of an object. Recognition of
an object by collecting evidences about its parts may require iterative occurrences of
the above operations. However, object recognition process will terminate when all the

 Parallel Image Understanding on a Multi-DSP System 7

PE1 PE2 PE3 PE4

R11,R12 R21,R22,C21 R31,R32 R41,C41

SC11.R11

HS11.R12

HS21.R21

HS22.R22

SC21.C21

HS31.R31

HND31.R32

HS41.R41

HND41.C41

RESULT AFTER LOAD
BALANCING

RESULT AFTER MODEL
MATCH

RESULT AFTER ALL-TO-
ALL BROADCAST

SC11.R11

HS11.R12

HS21.R21

HS22.R22

SC21.C21

HS31.R31

HND31.R32

HS41.R41

HND41.C41

HS21.R21

HS22.R22

SC21.C21

HS31.R31

HND31.R32

HS41.R41

HND41.C41

SC11.R11

HS11.R12

HS21.R21

HS22.R22

SC21.C21

HS31.R31

HND31.R32

HS41.R41

HND41.C41

SC11.R11

HS11.R12

HS21.R21

HS22.R22

SC21.C21

HS31.R31

HND31.R32

HS41.R41

HND41.C41

SC11.R11

HS11.R12

RESULT AFTER
MERGING SC12.R11.C21

HS11.R12

HS21.R21

HS22.R22

HS31.R31

HND32.R32.C41

HS41.R41

Fig. 3. An example to model matching and merging operations

hypothesis and constraints about the components of an object are satisfied. Once all
the processors complete this step; they perform an all-to-all communication to update
their local object list with the latest results.

The final step of the interpretation process in our system is to build a description of
the scene. The knowledge used for this step is also provided with object instances and
again based on the spatial relationships among the objects (performed by SRC
program).

In the following example, final step of the parallel interpretation process will be
elaborated. There are eight rectangle candidates available after processing the image
in Figure 4. The interpretation process is executed on two processors where different
reasoning operations are determined by the rule slots of the objects and the top-down
hypothesis generation/verification stages.

Step1: After model matching, rectangle candidates R11 and R12 instantiate soccer
fields SC11, and SC12 at PE1. Similarly R21 instantiates handball field HND21 at
PE2. Instantiation rules IN1, IN2, and IN3 are deterministic as mentioned earlier
and they utilize width and length parameters of the rectangle candidates to generate
soccer field or handball field instances (rather than utilizing AO and AKO links).
All the processors obtain a copy of the final object list and perform merge operation
locally.

8 M.F. Ercan

Step2: SC11, SC12 and HND21 are passed to SRC running at PE1 and PE2. Spatial
rules SP1, SP2 and SP3, which are stored in the rule part of the objects, generate hy-
pothesis H11, H12 and H21. The hypothesized objects initiate a top-down search by
SRC. Once object instances CF11, CF12 and CF21 are determined, satisfy the spatial
rules SP1, SP2, and SP3 than objects SC11, SC12, and HND21 will instantiated
(Figure 5-a,b,c). Here, rules SP1, SP2 and SP3 are the same and includes the same
predicate at_the_center(). Although, each processor handles a group of objects indi-
vidually, they pass their result to each other and update the local object list which is
needed for SRC program.
Step 3: At this step, rules associated with object instances are applied to establish
spatial relationships among objects (Figure 5-d, e). For instance object SC11, gener-
ates hypothesis H11-12 and H11-21. SRC searches for the existence of a soccer field,
which is next to SC11, and a handball field, which is in front of SC11. These relations
are verified by each processor for their respective object instances.
Step 4: Objects SC11, SC12 and HND21 instantiate a hypothetical object called
play ground. The hypothesis H13, H14 and H23 intersect in the same location
though every object instance generates one playground object (Figure 5-f, g).
There is no function defined for the spatial rule part_of so that each object in-
stance will initiate the same object “play ground”. At the end of this cycle, new
object instances will be produced. After the merge operation, a playground in-
stance PG13 that includes SC11, SC21 and HND21 as its parts and PG13 will be
generated and it will reside in the first processor (PE1) according to the merge
algorithm. Playground object may include rules for houses, roads or car park in-
stances, which may generate new hypothesis for them. Interpretation process will
terminate, if there are no more rules to evaluate.

Fig. 4. Test image used in experiments

 Parallel Image Understanding on a Multi-DSP System 9

Iconic
descrip tion

rectangle
candidates

(A)

In terpretation netw ork

R 11 R 12 R 21

SC11

SC12

HN D 21

(B)

SC 1
1

SC 1
2

H N D
21

H 11 H 12 H 21

H 1

1

H 12

H 21

SC 11

SC12

HN D 21

(C)

SC1
1

SC1
2

H N D
21

C F1
1

C F1
2

C F2
1

C F11

C F12

C F21

SP1 SP2 SP3

PE1 PE2

SC 1
1

SC 1
2

H N D
21

R 11
R 12

R 21

IN 1 IN 2 IN 3

R 11 R 12 R 21

IN1 IN 2 IN 3

SP1 SP2 SP3

SC11

SC1
2

HND21

(D)

SC11 SC12
HND

21

CF11 CF12 CF21

CF11

CF12

CF21

SP1 SP2 SP3

H11-21

H11-12 H12-21

H21-12

H21-11

H12-11

H11-21

H11-12

H21-11

H12-11

H21-12

H12-21

Fig. 5. An example to model matching and merging operations

10 M.F. Ercan

Sp11-

12

SC11

SC12

HND21

(E)

SC11 SC12
HND

21

CF11 CF12 CF21

CF12

CF21

SP1 SP2 SP3

Sp11-21

Sp11-12 Sp12-21

Sp21-12

Sp21-

11

Sp12-

11

Sp11-

21

Sp11-

12

Sp21-

11

Sp12-

11

Sp21-

12

Sp12-

21

SC11

SC12

HND21

(F)

SC11 SC12
HND

21

CF11 CF12 CF21

CF12

CF21

SP1 SP2 SP3

Sp11-21

Sp11-12 Sp12-21

Sp21-12

Sp21-

11

Sp12-11

Sp11-

21Sp21-

11

Sp12-

11

Sp21-

12

Sp12-

21

H13 H14 H23

H23

H13

H14

Sp11-

12

SC11

SC12

HND21

(G)

SC11 SC12
HND

21

CF11 CF12 CF21

CF12

CF21

SP1 SP2 SP3

Sp11-21

Sp11-12 Sp12-21

Sp21-12

Sp21-

11

Sp12-11

Sp11-

21Sp21-

11

Sp12-

11

Sp21-

12

Sp12-

21

PG13

PG11

IN4 IN5 IN6

Fig. 5. (continued)

3 Results

The image understanding problem is computationally demanding. A parallel algo-
rithm needs to exploit all the possible data and functional parallelism. In the image
understanding algorithm presented here, low and intermediate level operations utilize
the available data parallelism. On the other hand, high level algorithm employs func-
tional parallelism. Although, interpretation phase is rather simplified (for instance,
link mechanism introduced in [11] is not used and no mechanism developed for

 Parallel Image Understanding on a Multi-DSP System 11

complex cases and for mutually conflicting objects etc) in our application, algorithm
still requires many inter-processor communication which adversely affects the
speed-up.

All the algorithms are developed using C language. Table 1 shows the performance
of algorithms on various numbers of processors. A good speed-up is obtained for low
and intermediate level operations. The speed-up for high level algorithms was rather
poor. This is due to idle times of high level processor, as the number of objects to
process at this level was small. DSPs used as processing elements in this system per-
form well with number crunching type operations. However, implementing symbolic
operations was rather tedious and the performance obtained was not outstanding. In
this example the number of objects created for the test image and the size of the
model data base rather small which results in a small computation overhead as com-
pared to communication cost and reduces the speed-up. Apparently, for a large num-
ber of objects, the computation cost will be higher and the parallel algorithm will
produce a better performance. From the results, it can be concluded that by employing
8 DSP processors a video processing rate of 3 frames per second can be achieved.

Table 1. Timings (msec.) and speed ups for low, intermediate and high level algorithms for the
image shown in Figure 4. (L = lines, C= Corners, Px= Pixels, R= Rectangles S= Objects).

Tasks Processing time Speed-up
Number of processors 8 4 2 8 4 2
Low level:
2562 Px input ->28C output

284.4 521.1 911.3 5.83 3.18 1.82

Intermediate Level:
28C input->534R candi-
dates generated

6.7 11.6 18.3 4.37 2.52 1.6

High level:
10 R input -> 3 S output
(three iterations for top-
down search for missing
features)

28.6 39.2 56.43 2.97 2.17 1.51

4 Summary

In this paper, implementation of an image understanding problem on a coarse grain
multiprocessor computing platform is presented. The problem incorporates three
image processing levels and the purpose of this application is to implement a parallel
interpretation mechanism and evaluate the merits of the system. Due to the small size
of the test problem a moderate speed up is achieved. Distributed interpretation is
achieved by distributing object instances to the processors and treating them as inde-
pendent reasoning agents. The parallel algorithm can exploit all the available proces-
sors, it can hypothesize low-level operations, and it is not computationally expensive.
However, these algorithms are still at the experimental stage and further improve-
ments are necessary.

12 M.F. Ercan

References

1. Cantoni, V., Lombardi, L.: Hierarchical Architectures for Computer Vision. In: Proceed-
ings of Euromicro Workshop on Parallel and Distributed Processors, pp. 392–398 (1995)

2. Chen, W., Meer, P., Georgescu, B., He, W., Goodell, L.A., Foran, D.J.: Image Mining for
Investigative Pathology Using Optimized Feature Extraction and Data Fusion. Computer
Methods and Programs in Biomedicine 79, 59–72 (2005)

3. Davis, L.S.: Foundations of Image Understanding. Springer, Heidelberg (2001)
4. Diamant, E.: Paving the Way for Image Understanding: A New Kind of Image Decompo-

sition is Desired. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS,
vol. 3540, pp. 17–24. Springer, Heidelberg (2005)

5. Ercan, M.F., Fung, Y.F.: The Design and Evaluation of a Multiprocessor System for Com-
puter Vision. Microprocessors and Microsystems 24, 365–377 (2000)

6. Hecker, C.Y., Bolle, R.M.: On Geometric Hashing and the Generalized Hough Transform.
IEEE Transactions on Systems, Man, and Cybernetics 24, 1328–1338 (1994)

7. Grimson, W.E.L.: Medical Applications of Image Understanding. In: IEEE Expert, pp.
18–28. IEEE Computer Society Press, Los Alamitos (1995)

8. Kumar, V.P., Wang, C.L.: Parallelism for Image Understanding. In: Zomaya, A.D. (ed.)
Parallel and Distributed Computing Handbook, pp. 1042–1070. Mcgraw-Hill, New York
(1996)

9. Lienard, B., Desurmont, X., Barrie, B., Delaigle, J.F.: Real-time High-Level Video Under-
standing Using Data Warehouse. Real-Time Image Processing 2006. In: Kehtarnavaz, N.,
Laplante, P.A. (eds.) Proceedings of the SPIE, vol. 6063, pp. 40–53 (2006)

10. Navulur, K.: Multispectral Image Analysis Using the Object-Oriented Paradigm. CRC
press, Boca Raton, USA (2006)

11. Matsuyama, T., Hwang, S.: SIGMA A Knowledge-based Aerial Image Understanding
System. Plenum Press, New York (1990)

12. Mehrotra, R., Nichani, S., Ranganathan, N.: Corner Detection. Pattern Recognition 23,
1223–1233 (1990)

13. Ogelia, M.R., Tadeusiewicz, R.: Picture Languages in Medical Pattern Knowledge Repre-
sentation and Understanding. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI
2005. LNCS (LNAI), vol. 3558, pp. 442–447. Springer, Heidelberg (2005)

14. Robertson, P.: An Architecture for Self-Adaptation and Its Application to Aerial Image
Understanding. In: Proceedings of the first international workshop on Self-adaptive soft-
ware, pp. 199–223 (2000)

15. Spyridonos, P., Papageorgiou, E.I., Groumpos, P.P., Nikiforidis, G.N.: Integration of Ex-
pert Knowledge and Image Analysis Techniques for Medical Diagnosis. In: Campilho, A.,
Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 110–121. Springer, Heidelberg
(2006)

16. Weymouth, T.E., Amini, A.A.: Visual Perception Using a Blackboard Architecture. In:
Kasturi, R., Trivedi, M., Marcel, D. (eds.) Image Analysis Applications, New York, pp.
235–281 (1990)

17. Wang, F.: A Knowledge-Based Vision System for Detecting Land Changes at Urban
Fringes. IEEE Transactions on Geosciences and Remote Sensing 31, 136–145 (1993)

	Parallel Image Understanding on a Multi-DSP System
	Introduction
	Parallel Image Understanding Algorithm
	Feature Extracting and Generating Object Candidates
	High Level Processing

	Results
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

