LNCS 4705

Osvaldo Gervasi
Marina L. Gavrilova (Eds.)

Computational
Science and Its
Applications -
ICCSA 2007

International Conference
Kuala Lumpur, Malaysia, August 2007
Proceedings, Part |

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4705

Osvaldo Gervasi Marina L. Gavrilova (Eds.)

Computational
Science and Its
Applications —
ICCSA 2007

International Conference
Kuala Lumpur, Malaysia, August 26-29, 2007
Proceedings, Part I

@ Springer

Volume Editors

Osvaldo Gervasi

University of Perugia, Department of Mathematics and Computer Science
Via Vanvitelli, 1, 06123 Perugia, Italy

E-mail: osvaldo@unipg.it

Marina L. Gavrilova

University of Calgary, Department of Computer Science
2500 University Dr. N.W., Calgary, AB, Canada

E-mail: marina@cpsc.ucalgary.ca

Associated Editors:

David Taniar
Monash University, Clayton, Australia

Andres Iglesias
University of Cantabria, Santander, Spain

Antonio Lagana
University of Perugia, Italy

Deok-Soo Kim
Hanyang University, Seoul, Korea

Youngsong Mun
Soongsil University, Seoul, Korea

Hyunseung Choo
Sungkyunkwan University, Suwon, Korea

Library of Congress Control Number: 2007933003
CR Subject Classification (1998): F, D, G, H, I, J, C.2-3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74468-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74468-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12112050 06/3180 543210

Preface

This three volume set constitutes the proceedings of the 2007 International Con-
ference on Computational Science and its Applications, ICCSA 2007, held in
Kuala Lumpur, Malaysia, from August 26-29, 2007. It represents a compre-
hensive collection of 300 refereed full papers selected from approximately 1,250
submissions to ICCSA 2007.

The continuous support of computational science researchers has helped
ICCSA to become a firmly established forum in the area of scientific computing.
This year, the collection of fully refereed high-quality original works accepted as
long papers for presentation at ICCSA 2007 have been published in this LNCS
volume. This outstanding collection complements the volume of short papers,
published for the first time by IEEE CS. All of the long papers presented in this
collection of volumes share a common theme: computational science.

Over the past ten years, since the first conference on computational science
took place, this vibrant and promising area has firmly established itself as a vital
part of many scientific investigations in a broad gamut of disciplines. Having deep
roots in fundamental disciplines, such as mathematics, physics, and chemistry,
the computational science field is finding new applications in such broad and
diverse areas as aerospace and automotive industries, bioinformatics and nan-
otechnology studies, networks and grid computing, computational geometry and
biometrics, computer education, and art. Due to the growing complexity and so-
phistication of many challenges in computational science, the use of sophisticated
algorithms and emerging technologies is inevitable. Together, these far reaching
scientific areas help to shape this conference in the realms of state-of-the-art
computational science research and applications, encompassing the facilitating
theoretical foundations and the innovative applications of such results in other
areas.

The topics of the short refereed papers presented in this volume span all
the traditional as well as the emerging computational science areas, and are
structured according to the major conference themes:

— Computational Methods, Algorithms and Applications
— High Performance Technical Computing and Networks
— Advanced and Emerging Applications

Geometric Modeling, Graphics and Visualization

— Information Systems and Information Technologies

Moreover, selected short papers from 30 workshops and technical sessions on
such areas as information security, web learning, software engineering, compu-
tational intelligence, digital security, mobile communications, grid computing,
modeling, optimization, embedded systems, wireless networks, computational
geometry, computer graphics, biometrics, molecular structures, geographical in-
formation systems, ubiquitous computing, symbolic computations, molecular

VI Preface

structures, web systems and intelligence, e-printing, and education are included
in this publication.

We are very grateful to the International Steering Committee and the In-
ternational Program Committee for their tremendous support in putting this
conference together, the nearly four hundred referees for their diligent work in
reviewing the submissions, and all the sponsors, supporting organizations and
volunteers of ICCSA for contributing their time, energy and resources to this
event.

Finally, we thank all authors for their submissions making the ICCSA confer-
ence year after year one of the premium events on the scientific community scene,
facilitating the exchange of ideas, fostering new collaborations, and shaping the
future of computational science.

August 2007 Osvaldo Gervasi
Marina L. Gavrilova

Organization

ICCSA 2007 was organized by the University of Perugia (Italy), the University
of Calgary (Canada) and the Universiti Teknologi Malaysia (Malaysia).

Conference Chairs

Marina L. Gavrilova (University of Calgary, Calgary, Canada), Scientific Chair
Osvaldo Gervasi (University of Perugia, Perugia, Italy), Program Chair

Steering Committee

Alexander V. Bogdanov (Institute for High Performance Computing and Data
Bases, Russia)

Hyunseung Choo (Sungkyunkwan University, Korea)

Marina L. Gavrilova (University of Calgary, Canada)

Osvaldo Gervasi (University of Perugia, Perugia, Italy)

Andres Iglesias (University of Cantabria, Spain)

Vipin Kumar (Army High Performance Computing Center and University of
Minnesota, USA)

Antonio Lagana (University of Perugia, Italy)

Youngsong Mun (Soongsil University, Korea)

C.J. Kenneth Tan (OptimaNumerics, UK)

David Taniar (Monash University, Australia)

Session Organizers

Advanced Security Services (ASS 07)

Eui-Nam Huh, Kyung Hee University (Korea)

Advances in Web Based Learning (AWBL 07)

Mustafa Murat Inceoglu and Eralp Altun, Ege University (Turkey)

CAD/CAM and Web Based Collaboration (CADCAM 07)

Yongju Cho, KITECH (Korea)
Changho Lee, Yonsei University (Korea)

VIII Organization

Component Based Software Engineering and Software
Process Models (CBSE 07)

Haeng-Kon Kim, Daegu University (Korea)
Computational Geometry and Applications (CGA 07)

Marina Gavrilova, University of Calgary (Canada)

Computational Intelligence Approaches and Methods for
Security Engineering (CIAMSE 07)

Tai-hoon Kim, Ewha Womans University and SERC (Korea)
Haeng-kon Kim, Catholic University of Daegu (Korea)

Computational Linguistics (CL 07)
Hyungsuk Ji, Sungkyunkwan University (Korea)

Digital Content Security and Management of Distributed
Computing (DCSMDC 07)

Geuk Lee, Hannam University (Korea)

Distributed Data and Storage System Management
(DDSM 07)

Jemal Abawajy, Deakin University (Australia)
Maria Pérez, Universidad Politécnica de Madrid (Spain)
Laurence T. Yang, St. Francis Xavier University (Canada)

Data Storage Device and Systems (DS2 07)

Yeonseung Ryu, Myongji University (Korea)
e-Printing CAE Technology (E-PCAET 07)
Seoung Soo Lee, Konkuk University (Korea)

Embedded Systems for Ubiquitous Computing (ESUC 07)

Jiman Hong, Kwangwoon University (Korea)
Tei-Wei Kuo, National Taiwan University (Taiwan)

Organization X

High-Performance Computing and Information
Visualization (HPCIV 07)

Frank Devai, London South Bank University (UK)
David Protheroe, London South Bank University (UK)

Integrated Analysis and Intelligent Design Technology
(IAIDT 07)

Jae-Woo Lee, CAESIT and Konkuk University (Korea)
Intelligent Image Mining (IIM 07)
Hyung-I1 Choi, Soongsil University (Korea)

Intelligence and Security Informatics (ISI 07)

Kuinam J. Kim and Donghwi Lee, Kyonggi University (Korea)

Information Systems and Information Technologies
(ISIT 07)

Youngsong Mun, Soongsil University (Korea)

Mobile Communications (MobiComm 07)

Hyunseung Choo, Sungkyunkwan University (Korea)

Molecular Simulations Structures and Processes
(MOSSAP 07)

Antonio Lagana, University of Perugia (Italy)

Middleware Support for Distributed Computing
(MSDC 07)

Sung Y. Shin, South Dakota State University (USA)
Jaeyoung Choi, Soongsil University (Korea)

Optimization: Theory and Applications (OTA 07)

Dong-Ho Lee, Hanyang University (Korea)
Ertugrul Karsak, Galatasaray University (Turkey)
Deok-Soo Kim, Hanyang University (Korea)

X Organization

Pattern Recognition and Ubiquitous Computing
(PRUC 07)

Jinok Kim, Daegu Haany University (Korea)

PULSES - Logical, Technical and Computational Aspects
of Transformations and Suddenly Emerging Phenomena
(PULSES 07)

Carlo Cattani, University of Salerno (Italy)
Cristian Toma, University of Bucarest (Romania)

Technical Session on Computer Graphics (TSCG 07)

Andres Iglesias, University of Cantabria Santander (Spain)
Deok-Soo Kim, Hanyang University, Seoul (Korea)

Ubiquitous Applications & Security Service (UASS 07)

Hai Jin, Huazhong University of Science and Technology (China)
Yeong-Deok Kim, Woosong University (Korea)

Virtual Reality in Scientific Applications and Learning
(VRSAL 07)

Osvaldo Gervasi, University of Perugia (Italy)

Wireless and Ad-Hoc Networking (WAD 07)

Jongchan Lee and Sangjoon Park, Kunsan National University (Korea)

Workshop on Internet Communication Security
(WICS 07)

José Maria Sierra Camara, University of Madrid (Spain)

Wireless Sensor Networks (WSNs 07)

Jemal Abawajy, Deakin University (Australia)

David Taniar, Monash University (Australia)

Mustafa Mat Deris, University College of Science and Technology (Malaysia)
Laurence T. Yang, St. Francis Xavier University (Canada)

Organization XI

Program Committee

Jemal Abawajy (Deakin University, Australia)

Kenny Adamson (EZ-DSP, UK)

Frank Baetke (Hewlett Packard, USA)

Mark Baker (Portsmouth University, UK)

Young-Cheol Bang (Korea Politechnic University, Korea)

David Bell (The Queen’s University of Belfast, UK)

J.A. Rod Blais (University of Calgary, Canada)

Alexander V. Bogdanov (Institute for High Performance Computing and Data
Bases, Russia)

John Brooke (University of Manchester, UK)

Martin Buecker (Aachen University, Germany)

Yves Caniou (INRIA, France)

YoungSik Choi (University of Missouri, USA)

Hyunseung Choo (Sungkyunkwan University, Korea)

Min Young Chung (Sungkyunkwan University, Korea)

Yiannis Cotronis (University of Athens, Greece)

Jose C. Cunha (New University of Lisbon, Portugal)

Alexander Degtyarev (Institute for High Performance Computing and Data
Bases, Russia)

Tom Dhaene (University of Antwerp, Belgium)

Beniamino Di Martino (Second University of Naples, Italy)

Hassan Diab (American University of Beirut, Lebanon)

Marina L. Gavrilova (University of Calgary, Canada)

Michael Gerndt (Technical University of Munich, Germany)

Osvaldo Gervasi (University of Perugia, Italy)

Christopher Gold (Hong Kong Polytechnic University, Hong Kong)

Yuriy Gorbachev (Institute of High Performance Computing and Information
Systems, Russia)

Andrzej Goscinski (Deakin University, Australia)

Ladislav Hluchy (Slovak Academy of Science, Slovakia)

Eui-Nam John Huh (Seoul Woman’s University, Korea)

Shen Hong (Japan Advanced Institute of Science and Technology, Japan)

Terence Hung (Institute of High Performance Computing, Singapore)

Andres Iglesias (University of Cantabria, Spain)

Peter K Jimack (University of Leeds, UK)

Benjoe A. Juliano (California State University at Chico, USA)

Peter Kacsuk (MTA SZTAKI Research Institute, Hungary)

Kyung Wo Kang (KAIST, Korea)

Daniel Kidger (Quadrics, UK)

Haeng Kon Kim (Catholic University of Daegu, Korea)

Jin Suk Kim (KAIST, Korea)

Tai-Hoon Kim (Korea Information Security Agency, Korea)

XII Organization

Yoonhee Kim (Syracuse University, USA)

Dieter Kranzlmueller (Johannes Kepler University Linz, Austria)

Deok-Soo Kim (Hanyang University, Korea)

Antonio Lagana (University of Perugia, Italy)

Francis Lau (The University of Hong Kong, Hong Kong)

Bong Hwan Lee (Texas A&M University, USA)

Dong Chun Lee (Howon University, Korea)

Sang Yoon Lee (Georgia Institute of Technology, USA)

Tae-Jin Lee (Sungkyunkwan University, Korea)

Yong Woo Lee (University of Edinburgh, UK)

Bogdan Lesyng (ICM Warszawa, Poland)

Er Ping Li (Institute of High Performance Computing, Singapore)

Laurence Liew (Scalable Systems Pte, Singapore)

Chun Lu (Institute of High Performance Computing, Singapore)

Emilio Luque (Universitat Autonoma de Barcelona, Spain)

Michael Mascagni (Florida State University, USA)

Graham Megson (University of Reading, UK)

John G. Michopoulos (US Naval Research Laboratory, USA)

Byoung Joon Min (U.C. Irvine, USA)

Edward Moreno (Euripides Foundation of Marilia, Brazil)

Youngsong Mun (Soongsil University, Korea)

Jiri Nedoma (Academy of Sciences of the Czech Republic, Czech Republic)

Salvatore Orlando (University of Venice, Italy)

Robert Panoff (Shodor Education Foundation, USA)

Marcin Paprzycki (Oklahoma State University, USA)

Gyung-Leen Park (University of Texas, USA)

Ron Perrott (The Queen’s University of Belfast, UK)

Dimitri Plemenos (University of Limoges, France)

Richard Ramaroson (ONERA, France)

Rosemary Renaut (Arizona State University, USA)

Alistair Rendell (Australian National University, Australia)

Alexey S. Rodionov (Russian Academy of Sciences, Russia)

Paul Roe (Queensland University of Technology, Australia)

Heather J. Ruskin (Dublin City University, Ireland)

Muhammad Sarfraz (King Fahd University of Petroleum and Minerals,
Saudi Arabia)

Siti Mariyam Shamsuddin (Universiti Technologi Malaysia, Malaysia)

Jie Shen (University of Michigan, USA)

Dale Shires (US Army Research Laboratory, USA)

Jose Sierra-Camara (University Carlos IIT of Madrid, Spain)

Vaclav Skala (University of West Bohemia, Czech Republic)

Alexei Sourin (Nanyang Technological University, Singapore)

Olga Sourina (Nanyang Technological University, Singapore)

Elena Stankova (Institute for High Performance Computing and Data Bases,
Russia)

Organization XIII

Gunther Stuer (University of Antwerp, Belgium)

Kokichi Sugihara (University of Tokyo, Japan)

Boleslaw Szymanski (Rensselaer Polytechnic Institute, USA)

Ryszard Tadeusiewicz (AGH University of Science and Technology, Poland)

C. J. Kenneth Tan (OptimaNumerics, UK, and The Queen’s University of
Belfast, UK)

David Taniar (Monash University, Australia)

Ruppa K. Thulasiram (University of Manitoba, Canada)

Pavel Tvrdik (Czech Technical University, Czech Republic)

Putchong Uthayopas (Kasetsart University, Thailand)

Mario Valle (Swiss National Supercomputing Centre, Switzerland)

Marco Vanneschi (University of Pisa, Italy)

Piero Giorgio Verdini (University of Pisa and Istituto Nazionale di Fisica
Nucleare, Italy)

Jesus Vigo-Aguiar (University of Salamanca, Spain)

Jens Volkert (University of Linz, Austria)

Koichi Wada (University of Tsukuba, Japan)

Ping Wu (Institute of High Performance Computing, Singapore)

Jinchao Xu (Pennsylvania State University, USA)

Chee Yap (New York University, USA)

Osman Yasar (SUNY at Brockport, USA)

George Yee (National Research Council and Carleton University, Canada)

Yong Xue (Chinese Academy of Sciences, China)

Myung Sik Yoo (SUNY, USA)

Igor Zacharov (SGI Europe, Switzerland)

Alexander Zhmakin (SoftImpact, Russia)

Zahari Zlatev (National Environmental Research Institute, Denmark)

Albert Zomaya (University of Sydney, Australia)

Local Organizing Committee

Alias Abdul-Rahman (Universiti Teknologi Malaysia, Chair)
Mohamad Nor Said (Universiti Teknologi Malaysia)

Zamri Ismail (Universiti Teknologi Malaysia)

Zulkepli Majid (Universiti Teknologi Malaysia)
Muhammad Imzan Hassan (Universiti Teknologi Malaysia)
Ivin Amri Musliman (Universiti Teknologi Malaysia)

Chen Tet Khuan (Universiti Teknologi Malaysia)

Harith Fadzilah Khalid (Universiti Teknologi Malaysia)
Mohd Hasif Nasruddin (Universiti Teknologi Malaysia)
Mohd Hafiz Sharkawi (Universiti Teknologi Malaysia)
Muhamad Uznir Ujang (Universiti Teknologi Malaysia)
Siti Awanis Zulkefli (Universiti Teknologi Malaysia)

X1V Organization

Venue

ICCSA 2007 took place in the magnificent Sunway Hotel and Resort in Kuala
Lumpur, Malaysia

Sunway Hotel & Resort

Persiaran Lagoon, Bandar Sunway

Petaling Jaya 46150

Selangor Darul Ehsan

Malaysia

Sponsoring Organizations

ICCSA 2007 would not have been possible without the tremendous support of
many organizations and institutions, for which all organizers and participants of
ICCSA 2007 express their sincere gratitude:

University of Perugia, Italy

University of Calgary, Canada

OptimaNumerics, UK

Spark Planner Pte Ltd, Singapore

SPARCS Laboratory, University of Calgary, Canada
MASTER-UP, Italy

Table of Contents — Part 1

Workshop on Computational Geometry and
Applications (CGA 07)

Some Problems Related to Good Illumination
Manuel Abellanas, Antonio Bajuelos, and Inés Matos

A New Dynamic Programming Algorithm for Orthogonal Ruler Folding
Problem in d-Dimensional Space i,
Ali Nourollah and Mohammad Reza Razzazi

Efficient Colored Point Set Matching Under Noise
Yago Diez and J. Antoni Sellarés

On Intersecting a Set of Isothetic Line Segments with a Convex Polygon
of Minimum Areaco.i i
Asish Mukhopadhyay, Eugene Greene, and S.V. Rao

Real-Time Triangulation of Molecular Surfaces
Joonghyun Ryu, Rhohun Park, Jeongyeon Seo, Chongmin Kim,
Hyun Chan Lee, and Deok-Soo Kim

Weak Visibility of Two Objects in Planar Polygonal Scenes............
Mostafa Nouri, Alireza Zarei, and Mohammad Ghodsi

Shortest Path Queries Between Geometric Objects on Surfaces.........
Hua Guo, Anil Maheshwari, Doron Nussbaum, and
Jorg-Ridiger Sack

Optimal Parameterized Rectangular Coverings.......................
Stefan Porschen

Shortest Path Queries in a Simple Polygon for 3D Virtual Museum.
Chenglei Yang, Meng Qi, Jiaye Wang, Xiaoting Wang, and
Xiangzu Meng

Linear Axis for General Polygons: Properties and Computation
Vadim Trofimov and Kira Vyatkina

A Geometric Approach to Clearance Based Path Optimization.........
Mahmudul Hasan, Marina L. Gavrilova, and Jon G. Rokne

3D Spatial Operations in Geo DBMS Environment for 3D GIS.........
Chen Tet-Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

15

26

41

95

68

82

XVI Table of Contents — Part I

Workshop on Data Storage Device and Systems
(DS2 07)

A Page Padding Method for Fragmented Flash Storage 164
Hyojun Kim, Jin-Hyuk Kim, ShinHo Choi, HyunRyong Jung, and
JaeGyu Jung

Supporting Extended UNIX Remove Semantics in the OASIS Cluster

Filesystem 178
Sangmin Lee, Hong-Yeon Kim, Young-Kyun Kim, June Kim, and
Myoung-Joon Kim

Cache Conscious Trees: How Do They Perform on Contemporary
Commodity Microprocessors?ouuiiuniini e, 189
Kyungwha Kim, Junho Shim, and Ig-hoon Lee

Page Replacement Algorithms for NAND Flash Memory Storages 201
Yun-Seok Yoo, Hyejeong Lee, Yeonseung Ryu, and Hyokyung Bahn

An Efficient Garbage Collection Policy for Flash Memory Based Swap
SYStemS ..o 213
Ohhoon Kwon, Yeonseung Ryu, and Kern Koh

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for

Flash Memoryo 224
Hoyoung Jung, Kyunghoon Yoon, Hyoki Shim, Sungmin Park,
Sooyong Kang, and Jaehyuk Cha

FRASH: Hierarchical File System for FRAM and Flash 238
Eun-ki Kim, Hyungjong Shin, Byung-gil Jeon, Seokhee Han,
Jaemin Jung, and Youjip Won

Memory-Efficient Compressed Filesystem Architecture for NAND
Flash-Based Embedded Systems 252
Seunghwan Hyun, Sungyong Ahn, Sehwan Lee, Hyokyung Bahn, and
Kern Koh

Workshop on Molecular Simulations Structures and
Processes (MOSSAP 07)

On the Use of Incomplete LU Decomposition as a Preconditioning
Technique for Density Fitting in Electronic Structure Computations 265
Rui Yang, Alistair P. Rendell, and Michael J. Frisch

Nonadiabatic Ab Initio Surface-Hopping Dynamics Calculation in a

Grid Environment — First Experiences 281
Matthias Ruckenbauer, Ivona Brandic, Siegfried Benkner,
Wilfried Gansterer, Osvaldo Gervasi, Mario Barbatti, and
Hans Lischka

Table of Contents — Part I ~ XVII

A Molecular Dynamics Study of Zirconium Phosphate Membranes 295
Massimiliano Porrini and Antonio Lagana

Workshop on Virtual Reality in Scientific
Applications and Learning (VRSAL 07)

Non-classical Logic in an Intelligent Assessment Sub-system 305
Sylvia Encheva, Yuriy Kondratenko, Sharil Tumin, and
Kumar Khattri Sanjay

Research on XML-Based Active Interest Management in Distributed
Virtual Environment 315
Jiming Chen, Dan Xu, Jia Bei, Shiguang Ju, and Jingui Pan

Workshop on Middleware Support for Distributed
Computing (MSDC 07)

Design and Implementation of the Context Handlers in a Ubiquitous
Computing Environment o 325
Eunhoe Kim and Jaeyoung Choi

A Context-Aware Workflow System for Dynamic Service Adaptation ... 335
Jongsun Choi, Yongyun Cho, Kyoungho Shin, and Jaeyoung Choi

A UPnP-ZigBee Software Bridge o i i 346
Seong Hoon Kim, Jeong Seok Kang, Kwang Kook Lee,
Hong Seong Park, Sung Ho Baeg, and Jea Han Park

Parameter Sweeping Methodology for Integration in a Workflow
Specification Framework 360
David B. Cedrés and Emilio Herndndez

Workshop on Pattern Recognition and Ubiquitous
Computing (PRUC 07)

Color Image Segmentation Based on the Normal Distribution and the
Dynamic Thresholding.......... ... i 372
Seon-Do Kang, Hun-Woo Yoo, and Dong-Sik Jang

Embedded Scale United Moment Invariant for Identification of
Handwriting Individuality o i i 385
Azah Kamilah Muda, Siti Mariyam Shamsuddin, and Maslina Darus

Real-Time Capable Method for Facial Expression Recognition in Color
and Stereo VISIONt 397
Robert Niese, Ayoub Al-Hamadi, Axel Panning, and Bernd Michaelis

XVIII Table of Contents — Part I

Workshop on Computational Linguistic (CL 07)

Printed Romanian Modelling: A Corpus Linguistics Based Study with
Orthography and Punctuation Marks Included 409
Adriana Viad, Adrian Mitrea, and Mihai Mitrea

Improving the Customization of Natural Language Interface to

Databases Using an Ontology 424
M. Jose A. Zarate, R. Rodolfo A. Pazos, Alexander Gelbukh, and
0. Joaquin Perez

Workshop on PULSES - Logical, Technical and
Computational Aspects of Transformations and
Suddenly Emerging Phenomena (PULSES 07)

Computer Modeling of the Coherent Optical Amplifier and Laser
SYSEEINS . o oot 436
Andreea Rodica Sterian

Solitons Propagation in Optical Fibers Computer Experiments for
Students Training 450
Andrei D. Petrescu, Andreea Rodica Sterian, and Paul E. Sterian

A Measure for the Finite Decentralized Assignability of Eigenvalues of
Generalized Decentralized System i, 462
Pang Yanrong, Li Xiwen, and Fang Lide

Tool Condition Monitoring Based on Fractal and Wavelet Analysis by
Acoustic Emission. 469
Wanging song, Jianguo yang, and Chen qiang

An Iterative Uniformly Ultimate Boundedness Control Method for
Uncertain Switched Linear Systems 480
Liguo Zhang, Yangzhou Chen, and Pingyuan Cui

Wavelet Solution for the Momentless State Equations of an Hyperboloid
Shell with Localized Stress i, 490
Carlo Cattani

Workshop on Computational Intelligence Approaches
and Methods for Security Engineering (CIAMSE 07)

Modeling of the Role-Based Access Control Policy with Constraints Using
Descriptions Logic 500
Junghwa Chae

Feature Selection Using Rough-DPSO in Anomaly Intrusion

Detection 512
Anazida Zainal, Mohd Aizaini Maarof, and
Siti Mariyam Shamsuddin

Table of Contents — Part I

Multiblock Grid Generation for Simulations in Geological Formations. . .
Sanjay Kumar Khattri

UPC Collective Operations Optimization
Rafik A. Salama and Ahmed Sameh

Using Support Vector Machines and Rough Sets Theory for Classifying
Faulty Types of Diesel Engine
Ping-Feng Pai and Yu-Ying Huang

Supplier Selection for a Newsboy Model with Budget and Service Level
ConStralnts . ..ottt
P.C. Yang, HM. Wee, E. Zahara, S.-H. Kang, and Y.F. Tseng

Workshop on Integrated Analysis and Intelligent
Design Technology (IAIDT 07)

Fuzzy Water Dispersal Controller Using Sugeno Approach.............
Sofianita Mutalib, Shuzlina Abdul Rahman, Marina Yusoff, and
Azlinah Mohamed

Workshop on Ubiquitous Applications and Security
Service (UASS 07)

Security Analysis of Two Signature Schemes and Their Improved
Schemes
Jianhong Zhang and Jane Mao

Provably Secure Framework for Information Aggregation in Sensor
NetWOTKS . oot
Mark Manulis and Jorg Schwenk

Low-Complexity Unequal Packet Loss Protection for Real-Time Video
over Ubiquitous Networks i
Hojin Ha, Changhoon Yim, and Young Yong Kim

Strong Authentication Protocol for RFID Tag Using SHA-1 Hash
Algorithm.o
Jin-Oh Jeon, Su-Bong Ryu, Sang-Jo Park, and Min-Sup Kang

A Fragile Watermarking Scheme Protecting Originator’s Rights for
Multimedia Service.
Grace C.-W. Ting, Bok-Min Goi, and Swee-Huay Heng

Authentication and Key Agreement Method for Home Networks Using
aSmart Card
Jongpil Kim and Sungik Jun

XIX

XX Table of Contents — Part I

A Study on Ticket-Based AAA Mechanism Including Time
Synchronization OTP in Ubiquitous Environment
Jong-Sik Moon and Im-Yeong Lee

Workshop on Modelling of Location Management in
Mobile Information Systems (MLM 07)

A Novel Real Time Method of Signal Strength Based Indoor
Localization
Letian Ye, Zhi Geng, Lingzhou Xue, and Zhihai Liu

Fast Inter-skip Mode Selection Algorithm for Inter Frame Coding in
H.264/AVC o
Sung-Hoon Jeon, Sung-Min Kim, and Ki-Dong Chung

Business Process Modeling of the Photonics Industry Using the
UM M
YunJung Ko

Workshop on Optimization: Theories and
Applications (OTA 07)

Rough Set-Based Decision Tree Construction Algorithm
Sang-Wook Han and Jae-Yearn Kim

Optimal Replenishment Policy for Hi-tech Industry with Component
Cost and Selling Price Reduction
P.C. Yang, HM. Wee, J.Y. Shiau, and Y.F. Tseng

Using AI Approach to Solve a Production-Inventory Model with a
Random Product Life Cycle Under Inflation
H.M. Wee, Jonas C.P. Yu, and P.C. Yang

An Integrated Approach for Scheduling Divisible Load on Large Scale
Data Gridso
M. Abdullah, M. Othman, H. Ibrahim, and S. Subramaniam

Cycle Times in a Serial Fork-Join Network
Sung-Seok Ko

Minimizing the Total Completion Time for the TFT-Array Factory
Scheduling Problem (TAFSP) i
A.H.I. Lee, S.H. Chung, and C.Y. Huang

A Common-Weight MCDM Framework for Decision Problems with
Multiple Inputs and Outputst
E. Ertugrul Karsak and S. Sebnem Ahiska

Table of Contents — Part I

Evaluating Optimization Models to Solve SALBP
Rafael Pastor, Laia Ferrer, and Alberto Garcia

On Optimization of the Importance Weighted OWA Aggregation of
Multiple Criteria.
Wiodzimierz Ogryczak and Tomasz Sliwiriski

A Joint Economic Production Lot Size Model for a Deteriorating Item
with Decreasing Warehouse Rental Overtime
Jonas C.P. Yu

Product Development Process Using a Fuzzy Compromise-Based Goal
Programming Approach
Ethem Tolga and S. Emre Alptekin

A Heuristic Algorithm for Solving the Network Expanded Problem on
Wireless ATM Environment
Der-Rong Din

Collaborative Production-Distribution Planning for Semiconductor
Production Turnkey Service i i
Shu-Hsing Chung, I-Ping Chung, and Amy H.I. Lee

Optimal Recycling and Ordering Policy with Partial Backordered
ShOTTAZE .« o v et et
Hui-Ming Teng, Hui-Ming Wee, and Ping-Hui Hsu

Parameter Setting for Clonal Selection Algorithm in Facility Layout
Problems
Berna Haktanirlar Ulutas and A. Attila Islier

Workshop on Digital Content Security and
Management of Distributed Computing
(DCSMDC 07)

A Secure Communication Scheme for Mobile Wireless Sensor Networks
Using Hamming Distance i
Seok-Lae Lee, Bo-Sung Hwang, and Joo-Seok Song

Improvement on TCG Attestation and Its Implication for DRM.
SuGil Choi, JinHee Han, and Sunglk Jun

Improving the Single-Assumption Authenticated Diffie-Hellman Key
Agreement Protocols
Eun-Jun Yoon, Wan-Soo Lee, and Kee-Young Yoo

Content-Based Image Watermarking Via Public-Key Cryptosystems
H.K. Dai and C.-T. Yeh

XXII Table of Contents — Part 1

Cryptanalysis of Two Non-anonymous Buyer-Seller Watermarking
Protocols for Content Protection
Bok-Min Goi, Raphael C.-W. Phan, and Hean-Teik Chuah

Workshop on Intelligent Image Mining (IIM 07)

Production of User Creative Movie Using Analysis of Music and
Picture
Myoung-Bum Chung and II-Ju Ko

Realtime Hybrid Shadow Algorithm Using Shadow Texture and Shadow

KyoungSu Oh and Sun Yong Park

The Image Retrieval Method Using Multiple Features
JeungYo Ha and Hyungll Choi

Robust Estimation of Camera Homography Using Fuzzy RANSAC
Joong jae Lee and Gyeyoung Kim

Robust Scene Change Detection Algorithm for Flashlights.............
Kyong-Cheol Ko, Young Min Cheon, Gye-Young Kim, and
Hyung-1l Choi

Off-Line Verification System of the Handwrite Signature or Text, Using
a Dynamic Programming i
Se-Hoon Kim, Kie-Sung Oh, and Hyung-Il Choi

A Real-Time Evaluation System for Acquisition of Certificates in
Computer Skills
SeongYoon Shin, OhHyung Kang, SeongEun Baek, KiHong Park,

YangWon Rhee, and MoonHaeng Huh

Contour Extraction of Facial Feature Components Using Template
Based Snake Algorithm
Sunhee Weon, KeunSoo Lee, and Gyeyoung Kim

Image Retrieval Using by Skin Color and Shape Feature
Jin-Young Park, Gye-Young Kim, and Hyung-Il Choi

Fractal Dimension Algorithm for Detecting Oil Spills Using
RADARSAT-1 SAR ..o
Maged Marghany, Mazlan Hashim, and Arthur P. Cracknell

Simple Glove-Based Korean Finger Spelling Recognition System
Seungki Min, Sanghyeok Oh, Gyoryeong Kim, Taehyun Yoon,
Chungyu Lim, Yunli Lee, and Keechul Jung

Table of Contents — Part I

Real Time Face Tracking with Pyramidal Lucas-Kanade Feature

Tracker . .o

Ki-Sang Kim, Dae-Sik Jang, and Hyung-Il Choi

Enhanced Snake Algorithm Using the Proximal Edge Search Method . ..

JeongHee Cha and GyeYoung Kim

A Time Division Multiplexing (TDM) Logic Mapping Method for

Computational Applications

Taikyeong Jeong, Jinsuk Kang, Youngjun John, Inhwa Choi,
Sungsoo Choi, Hyosik Yang, Gyngleen Park, and Sehwan Yoo

An Efficient Feature Selection Approach for Clustering: Using a

Gaussian Mixture Model of Data Dissimilarity

Chieh-Yuan Tsai and Chuang-Cheng Chiu

Workshop on Advances in Web Based Learning
(AWBL 07)

Applying Dynamic Blog-Based Learning Map in Web Tutoring

ASSISEANICES .« o vt et

Kun-Te Wang, Yu-Lin Jeng, Yueh-Min Huang, and Tzone-I Wang

Machine Learning Based Learner Modeling for Adaptive Web-Based

Learning

Burak Galip Aslan and Mustafa Murat Inceoglu

Using Ontologies to Search Learning Resources

Byoungchol Chang, Dall-ho Ham, Dae-sung Moon,
Yong S. Choi, and Jaehyuk Cha

Author Index

XXIIT

Some Problems Related to Good Illumination*

2,% x % 2,% % %

Manuel Abellanas**, Antonio Bajuelos , and Inés Matos
! Facultad de Informética, Universidad Politécnica de Madrid, Spain
mabellanas@fi.upm.es
Departamento de Matematica & CEOC, Universidade de Aveiro, Portugal
{leslie,ipmatos}@mat.ua.pt

»

Abstract. A point p is 1-well illuminated by a set of n point lights if
there is, at least, one light interior to each half-plane with p on its border.
We consider the illumination range of the lights as a parameter to be opti-
mized. So we minimize the lights’ illumination range to 1-well illuminate
a given point p. We also present two generalizations of 1-good illumi-
nation: the orthogonal good illumination and the good ©-illumination.
For the first, we propose an optimal linear time algorithm to optimize
the lights’ illumination range to orthogonally well illuminate a point.
We present the E-Voronoi Diagram for this variant and an algorithm to
compute it that runs in O(n*) time. For the second and given a fixed
angle © < 7, we present a linear time algorithm to minimize the lights’
illumination range to well ©-illuminate a point.

Keywords: Computational Geometry, Limited Range Illumination,
Good Illumination, E-Voronoi Diagrams.

1 Introduction and Related Works

Visibility and illumination have been a main topic for different papers in the area
of Computational Geometry (for more information on the subject, see Asano et.
al [4] and Urrutia [I6]). However, most of these problems deal with ideal concepts.
For instance, light sources have some restrictions as they cannot illuminate an
infinite region since their light naturally fades as the distance grows. This is also
the case of cameras and robot vision systems, both have severe visibility range
restrictions since they cannot observe with sufficient detail far away objects. We
present some of these illumination problems adding several restrictions to make
them more realistic. Each light source has limited illumination range so that
their illuminated regions are delimited. We use a definition of limited visibility
due to Ntafos [T4] as well as a concept related to this type of problems, the

* When this paper was finished, the third author was supported by a FCT fellowship,
grant SFRH/BD/28652/2006.
** Supported by grant TIC2003-08933-C02-01, MEL-HP2005-0137 and partially sup-
ported by CAM:P-DPI-000235-0505.
*** Supported by CEOC through Programa POCTI, FCT, co-financed by EC fund
FEDER and by Acgao Integrada Luso-Espanhola No. E-77/06.

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 1-{I4] 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 M. Abellanas, A. Bajuelos, and I. Matos

t-good illumination due to Canales et. al [37]. This study is solely focused on
an optimization problem related to limited range illumination. In its original
definition [1I], a point is 1-well illuminated if it lies in the interior of the convex
hull of a set of light sources.

This paper is structured as follows. In the next section we formalize the 1-good
illumination and propose an algorithm to calculate the Minimum Embracing
Range (MER) of a point in the plane. SectionsBland [are devoted to extensions
of 1-good illumination. In section Bl we present the orthogonal good illumination
and propose an algorithm to compute the MER to orthogonally well illuminate
a point. We follow presenting the E-Voronoi Diagram for this variant and an
algorithm to compute it. In section @] we extend 1-good illumination to cones
and make a brief relation between this variant and the Maxima Problem [BIT3].
We conclude this paper in section [l

1.1 Preliminaries and Problem Definition

Let F = {f1,f2,...,fn} be a set of light sources in the plane that we call
sites. Each light source f; € F' has limited illumination range r > 0, so f; only
illuminates objects that are within the circle centered at f; with radius r. The
next definitions follow from the notation introduced by Chiu and Molchanov [9].
The set CH(F) represents the convex hull of the set F.

Definition 1. A set of light sources F' is called an embracing set for a point p
in the plane if p lies in the interior of the CH(F).

Definition 2. A site f; € I is an embracing site for a point p if p lies in the
interior of the convex hull formed by f; and by all the sites of F' closer to p than

fi

As there may be more than one embracing site per point, our main goal is to
compute a Closest Embracing Site for a given point p since we are trying to
minimize the light sources’ illumination range (see Fig. [[[a) and Fig. I(b)).

Definition 3. Let F' be a set of n light sources. A set formed by a closest em-
bracing site for p, f;, and all the lights sources closer to p than f; is called a
minimal embracing set for p.

Definition 4 ([7]). Let F be a set of n light sources. We say that a point p in
the plane is t-well illuminated by F if every open half-plane with p on its border
contains at least t light sources of F' illuminating p.

This definition tests the light sources’ distribution in the plane so that the greater
the number of light sources in every open half-plane containing the point p, the
better the illumination of p. This concept can also be found under the name of
A-guarding [I5] or well-covering [I0]. The motivation behind this definition is the
fact that, in some applications, it is not sufficient to have one point illuminated
but also some of its neighbourhood [10].

Some Problems Related to Good Illumination 3

__nf2 __af2
fl/-/,— '\ fl’,//.
, \\ / T/,
7 N // /
’ °p . x pe .

x
fs . T8 fs > /’ f3

Fig. 1. (a) The light sources f2 and f3 are embracing sites for point p. (b) The light
source f2 is the closest embracing site for p and its illumination range is r = d(p, f2).
The set {f1, f2, f1, f5} is a minimal embracing set for p. (c) AZ(f1, fo, f3) is the shaded
open area, so every point that lies inside it is 1-well illuminated by fi, f2 and fs.

Let C(fi,r) be the circle centered at f; with radius r and let A.(fi, f;, fx)
denote the r-illuminated area by the light sources f;, f; and fi. It is easy to
see that A, (f;, fi, fx) = C(fi,7) N C(f;,7) N C(fx,7). We use AL (f;, f;, fr) =
Ar(fis [y fre) N int(CH(fs, f5, fx)) to denote the illuminated area embraced by
the light sources f;, f; and f.

Definition 5. Let F' be a set of light sources, we say that a point p is 1-well
illuminated if there exists a set of three light sources {fi, fj, fx} € F such that
p € AZ(fi, £, fr) for some range r > 0.

Definition 6. Given a set F' of n light sources, we call Minimum Embracing
Range to the minimum range needed to 1-well illuminate a point p or a set of
points S in the plane, respectively MER(F, p) or MER(F, S).

Fig.M(c) illustrates Definition[Bl Since the set F is clear from the context, we will
use “MER of p” instead of MER(F, p) and “MER of S” instead of MER(F, S).
Once we have found the closest embracing site for a point p, its MER is given by
the euclidean distance between the point and its closest embracing site. Comput-
ing the MER of a given point p is important to us. The minimum illumination
range that the light sources of the minimal embracing set need to 1-well illumi-
nate p is its MER.

As an example of application, suppose that a user needs to be covered by at
least one transmitter in every half-plane that passes through him in order to be
well located. In such situation, the user is 1-well illuminated by the transmitters.
Suppose now that we have a group of users moving from time to time, while
someone has to adapt the transmitters’ power so that the users don’t get lost.
The power of all the transmitters is controlled by a gadget that allows a constant
change of the power of all the transmitters at once. But the more power, the more
expensive the system is. So, it is required to know which is the minimum power
that 1-well illuminates all users every time they move, that is, this problem is
solved by computing the MER of each user.

4 M. Abellanas, A. Bajuelos, and I. Matos
2 1-Good Illumination

Let F be a set of n light sources in the plane and p a point we want to 1-well
illuminate.

Definition 7. We call Closest Embracing Triangle for a point p, CET(p), to a
set of three light sources of F' containing p in the interior of the triangle they
define, such that one of these light sources is a closest embracing site for p and
the other two are closer to p than its closest embracing site.

The objective of this section is to compute the value of the MER of p and a
CET(p). The Nearest Neighbourhood Embracing Graph (NNE-graph) [9] con-
sists of a set of vertices V' of the graph where each vertex v € V is connected to
its first nearest neighbour, its second nearest neighbour, ..., until v is an interior
point to the convex hull of its nearest neighbours. Chan et al. [8] present several
algorithms to construct the NNE-graph. A closest embracing site for p can be
obtained in linear time using this graph. The algorithm we present in this sec-
tion has the same time complexity but it has the advantage of also computing a
CET(p).

2.1 Minimum Embracing Range of a 1-Well Illuminated Point

To compute the MER of p, we start by computing the distances from p to all the
light sources. Afterwards, we compute the median of all the distances in linear
time [6]. Depending on this value, we split the light sources in two halves: the set
F. that contains the closest half to p and the set F; that contains the furthest
half. We check whether p € int(CH(F,)), what is equivalent to test if F. is an
embracing set for p (see Fig. Bl(a)). If the answer is negative, we recurse adding
the closest half of Fy. Otherwise (if p € int(CH(F¢))), we recurse halving F; (see
Fig.[2(b)). This logarithmic search runs until we find the light source f,, € F' and
the subset F'¥ C F such that p € int(CH(F¥)) but p ¢ int(CH(FF \ {f,}). The
light source f, is the closest embracing site for p and its MER is r = d(fp, p)
(see Fig. 2l(c)).

On each recursion, we have to check whether p € int(CH(F")), F’ C F. This
can be done in linear time [12] if we choose the set of points carefully so that each
point is studied only once. When we have the closest embracing site for p, f,, we
find two other vertices of a CET(p) in linear time as follows. Consider the circle
centered at p of radius r and the line pf, that splits the light sources inside the
circle in two sets. Note that if f, is the closest embracing site for p then there is
an empty semicirle. A CET(p) has f, and two other light sources in the circle as
vertices. Actually, any pair of light sources fj, f, interior to the circle such that
each lies on a different side of the line pf, verifies that p € int(CH(f;, fp, fr))-

Proposition 1. Given a set F' of n light sources and a point p in the plane,
the algorithm just presented computes the MER of p and a Closest Embracing
Triangle for it in ©(n) time.

Some Problems Related to Good Illumination 5

fi fi fi
L L
. |\\ .. . \\
| S X | S
. 1 N . nr ~
fQ-"‘ \)f5 ;f5 f2- \)f5
! liop 7 * e : |I 7
I // B // Il //
| 7 'fS 7/ | 7
A “ S H "

Fig. 2. (a) Point p € int(CH(F.)), where F. = {f1, f3, f5} and Fy = {f2, f4}. (b) Point
p & int(CH(Fe)), where F. = {fs, fs} and Fy = {f1}. (c) The set {fi, fs, fs} is a
minimal embracing set for p and the MER of p is r.

Proof. Let F be a set of n light sources. The distances from p to all the light
sources can be computed in linear time. Computing the median also takes linear
time [6], as well as splitting F' in two halves. Checking if p € int(CH(F")), F' C F,
is linear on the number of light sources in F”. So the total time for this logarithmic
search is O(n+ 5 + 7 + 5 +...) = O(n). Therefore, we find the closest embracing
site for p in linear time. So this algorithm computes the MER of p and a CET(p)
in total O(n) time.

All the light sources of F' must be analyzed at least once since they are all
candidates to be the closest embracing site for a point p. Knowing this, we have
Q(n) as a lower bound which makes the linear complexity of this algorithm
optimal. a

The decision problem is trivial after the MER of p is computed. Point p is 1-well
illuminated if the given illumination range is greater or equal to its MER.

3 Orthogonal Good Illumination

This section is devoted to a variant of the 1-good illumination of minimum range
using quadrants, the orthogonal good illumination. We propose an optimal linear
time algorithm to compute the MER of an orthogonally well illuminated point,
as well as a minimal embracing set for it. Next we present the E-Voronoi Diagram
[2] for this variant, as well as an algorithm to compute it that runs in O(n?)
time.

An oriented quadrant is defined by two orthogonal rays that are axis-parallel.
The next definition is illustrated in Fig. Bla).

Definition 8. Let F be a set of n light sources in the plane. We say that a point
p in the plane is orthogonally well illuminated if there is, at least, one light source
interior to each of the four oriented quadrants with origin at p, NE,NW,SW and
SE.

As it is clear from the context of this section, orthogonal good illumination will
be referred to just as good illumination. The main structure in this section is

6 M. Abellanas, A. Bajuelos, and I. Matos

NWa " NE
|
= : -
n |
77777 oo™
n |
. |
| []
SW ‘ SE

©

Fig. 3. (a) Point p is orthogonally well illuminated because all oriented quadrants
centered at p are non-empty. (b) Point p is interior to the orthogonal convex hull of F,
so it is orthogonally well illuminated. (¢) An orthogonal convex hull decomposed into
several rectangles.

the orthogonal convex hull (see Karlsson and M. Overmars [I1]). The convex
hull of a set of points is the smallest convex region that contains it. The prefix
orthogonal means that the convexity is defined by axis-parallel point connections.
When |F| > 4 there is, at least, one light source of F' in each quadrant centered
at a point interior to the orthogonal convex hull of F. So the interior points to
the orthogonal convex hull of F are well illuminated (see Fig. BI(b)).

3.1 Minimum Embracing Range of an Orthogonally Well
Illuminated Point

Let F be a set of n light sources and p a point we want to well illuminate. The
decision problem is easy to solve, we have to check if there is, at least, one light
source interior to each of the four quadrants centered at p. If there is an empty
quadrant then p is not well illuminated. Since there must be a light source in each
quadrant centered at p, a minimal embracing set for p has four light sources. Let
us consider the closest light source to p in each quadrant, the closest embracing
site for p is the furthest of these four. The MER of p is given by the distance
between p and its closest embracing site.

Proposition 2. Given a set F' of n light sources and a point p in the plane,
computing a minimal embracing set for p and its MER takes ©(n) time.

Proof. Given a set F' of n light sources and a point p in the plane, checking if all
quadrants are empty can be done while searching for the closest light source to
point p in each quadrant. This search is obviously linear on the number of light
sources, while computing the MER is constant. So the total time for computing
a minimal embracing set for p and its MER is O(n).

Since all the light sources of F' are candidates to be the closest embracing site
for a point p in the plane, we have to search through them all. Knowing this, we
have Q(n) as a lower bound which makes the linear complexity of this algorithm
optimal. a

Some Problems Related to Good Illumination 7

3.2 The E-Voronoi Diagram

When studying problems related to good illumination, one question naturally
pops up: how do we preprocess the set F' so that it is straightforward to know
which is the closest embracing site for each point in the plane? Having such
a structure would be of a great help to efficiently answer future queries. This
problem is already solved by Abellanas et al. [2] when considering the usual
1-good illumination.

Definition 9 ([2]). Let F be a set of n light sources in the plane. For every
light source f; € F, the E-Voronoi region of f; with respect to the set F' is the
set E-VR(f;, F) = {x € R? : f; is the closest embracing site for x}.

The region E-VR(f;, F') will be denoted by E-VR(f;) since the set F' is clear from

the context. The union of all the E-Voronoi regions (U E-VR(f:)) is called the
fieF

E-Voronoi Diagram of F. So if p € E-VR(f;) then the MER of p is the distance

between f; and p, whereas f; is the closest embracing site for p.

Now we present an algorithm to compute the E-Voronoi diagram of F' using
the orthogonal good illumination. We know that the well illuminated points are
inside the orthogonal convex hull of F' so we start by computing it, uniting
at most four monotone chains (see Fig. Bl(b)). Afterwards, we decompose the
orthogonal convex hull of F' by extending horizontal and vertical lines from each
light source into the polygon (see Fig.[Bl(c)). This procedure generates a grid and
it can be scanned using the sweeping technique. The resulting partition has a
linear number of rays whose arrangement can make up to a quadratic number
of rectangles. The algorithm is based on the next lemma.

Lemma 1. Given a set F' of n light sources and a grid that decomposes the
orthogonal convex hull of F in rectangles as explained above, every point inte-
rior to the same rectangle of the grid shares the light sources’ distribution into
quadrants.

Proof. Let F be a set of n light sources and a grid that decomposes the ortho-
gonal convex hull of F into a quadratic number of rectangles as in Fig. B{(c).
Suppose that there is an interior point x of a rectangle R which has the light
source f; € F in some quadrant while another interior point y € R has f; in
another quadrant. Since the grid is constructed by extending horizontal and
vertical lines from each light source into the polygon, one of these lines from f;
must separate r and y into different rectangles. Therefore z and y cannot be
interior points to the same rectangle. O

According to this lemma, every point interior to the same rectangle of the grid
has the same light sources in the quadrant NE, the same light sources in the
quadrant NW, etc. (see Fig.[](a)). In this subsection, we assume that the points
on the border of the rectangles have the same light sources’ distribution into
quadrants as the interior points. However, this is only true for points of the
border of the rectangles that are not simultaneously points of the border of

8 M. Abellanas, A. Bajuelos, and I. Matos

(@) f 5 (b)

Fig. 4. (a) All the points in R share the light sources’ distribution into quadrants.
(b) The Voronoi Diagram for the light sources in each quadrant is represent by a
dotted line. In this case, all the interior points to R have the same minimal embracing
set, {f1, f2, f3, fa}. (c) The resulting intersection between R and the Furthest Voronoi
Diagram of fi, f2, f3 and f4 decomposes the rectangle in two regions: E-VR(f3) (grey
region) and E-VR(f1) (white region).

the orthogonal convex hull of F. The idea of the algorithm is to compute the
E-Voronoi Diagram restricted to each rectangle of the grid and unite them to
build the E-Voronoi Diagram of F. For each rectangle R of the grid, we have
to compute the points that share their closest embracing site. So we are looking
for the points in R that are in the same E-Voronoi region. We compute a usual
Voronoi Diagram for the light sources in each of the four quadrants. The inter-
section of these four Voronoi Diagrams with R gives us the points of R that have
the same four closest light sources (one in each quadrant), that is, the points
that have the same minimal embracing set (see Fig. @(b)). So now we compute
the points of these regions that share their closest embracing site since it changes
according to the light sources’ perpendicular bisectors. In order to do this last
decomposition of R, we have to compute the Furthest Voronoi Diagram of the
four light sources of the minimal embracing set and intersect it with the current
region of R (see Fig. Hl(c)).

We construct the E-Voronoi Diagram of F' repeating this procedure for all the
rectangles of the grid and uniting them afterwards (see Fig. Bl(a) and B(b)).

Proposition 3. Given a set F' of n light sources, the described algorithm com-
putes the E-Voronoi Diagram of F in O(n*) time.

Proof. Given a set F' of n light sources, computing the orthogonal convex hull
of F' takes O(nlogn) time (since it is the union of four monotone chains at the
most). To decompose the orthogonal convex hull of F' in rectangles we need two

Some Problems Related to Good Illumination 9

Fig. 5. (a) A set of light sources and its orthogonal convex hull decomposed in rectan-
gles. (b) The E-Voronoi Diagram of the light sources (the light sources represented by
a black dot do not have a E-Voronoi region).

sweepings that take O(nlogn) time though this results in a quadratic number
of rectangles. We make a partition of each rectangle in O(n?) time by compu-
ting its intersection with four Voronoi Diagrams (one per quadrant). For each
partition of a rectangle, we intersect it with the Furthest Voronoi Diagram of its
minimal embracing set which can be done in O(nlogn) time. After this proce-
dure, we have computed the E-Voronoi Diagram of F' restricted to a rectangle
in O(n?) time. As we have a quadratic number of rectangles, the union of all
these restricted E-Voronoi Diagrams results on the E-Voronoi Diagram of F' in
O(n*) time. O

Once the E-Voronoi Diagram is computed, we can make a query to know exactly
where a point is. After the region where the point is has been located, knowing
its closest embracing site is straightforward and so is its MER.

4 Good O-Illumination

In this section we approach a more general variant of the 1-good illumination of
minimum range, the good ©-illumination. Let F' be a set of n light sources in
the plane. A cone emanating from a point p is the region between two rays that
start at p.

Definition 10. Let F' be a set of n light sources and © < m a given angle. We
say that a point p in the plane is well O-illuminated by F if there is, at least,
one light source interior to each cone emanating from p with an angle ©.

There is an example of this definition in Fig. [6(a) and Fig. [B(b). These well
O-illuminated points are clearly related to dominance and maximal points. Let
p,q € S be two points in the plane. We say that p = (p,,p,) dominates ¢ =
(4z+qy), ¢ < p,if py > g, and p, > q,,. Therefore, a point is said to be maximal (or
maximum) if it is not dominated or in other words, it means that the quadrant
NE centered at p must be empty (see Fig.[6c)). This version of maximal points
can be extended. According to the definition of Avis et. al [5], a point p in the

10 M. Abellanas, A. Bajuelos, and I. Matos

" fs fa "

(a) (b) ()

Fig. 6. (a) Point p is not well 7-illuminated because there is, at least, one empty cone
starting at p with an angle 7. (b) Point p is well 7-illuminated, its minimal embracing
set is {f1, f2, f3, fa} and its MER is r. (c) Point p is a maximum.

plane is said to be an unoriented ©-maximum if there is an empty cone centered
at p with an angle of, at least, ©. The problem of finding all the maximal points
of a set S is known as the mazima problem [I3] and the problem of finding all
the unoriented ©-maximal points is known as the unoriented ©-mazxima problem
[5]. The next proposition follows from the definitions of good ©-illumination and
unoriented ©-maxima.

Proposition 4. Let F' be a set of n light sources and © < w a given angle.
Given a point p in the plane, p is well ©-illuminated by F if and only if it is not
an unoriented ©-mazimum of the set F'U {p}.

4.1 Minimum Embracing Range of a Well ®-illuminated Point

We now present a linear time algorithm that not only decides if a point is well
O-illuminated as it also computes the MER and a minimal embracing set for a
given point p in the plane. The main idea of the algorithm is to decide whether
a point is well O-illuminated by a set of light sources while doing a logarithmic
search for its closest embracing site. The logarithmic search is used in the same
way as in the algorithm in subsection 2] so we will only explain how to decide
if a point is well ©-illuminated by a set of light sources.

Let F be a set of n light sources, p a point in the plane and © < 7 a given
fixed angle. To check if p is well ©-illuminated, we divide the plane in several
cones of angle ? emanating from p. Let n. be the number of possible cones, if
2m is divisible by © then n. = (see Fig. [(a)). Otherwise n. = [] because
the last cone has an angle less than § (see Fig. [f(b)). Since the angle © is
considered to be a fixed value, the number of cones is constant. Let i be an
integer index of arithmetic mod n.. For ¢ = 0,...,n., each ray i is defined by
the set {p+ (cos(’9),sin(‘S))A : A > 0}, while each cone is defined by p and two
consecutive rays.

Since we have cones with an angle of at least S), p is not well O-illuminated
if we have two consecutive empty cones of angle (see Fig. [[(c)). Note that we
have to be sure that the angle of both cones is ?7 otherwise this may not be
true and we need to proceed as in the third case. If all cones have at least one

Some Problems Related to Good Illumination 11

Fig. 7. (a) To check if p is well 7-illuminated, the plane is divided in eight cones of

angle 7. (b) To check if p is well 2;7T-illuminated7 the plane is divided in six cones and

the last one has an angle less than 1787r because 27 is not divisible by 1787r. (c) Point p
5+

is not well 7-illuminated because there is an empty cone of angle

Fig. 8. (a) Point p is well 7-illuminated since there is a light source interior to each
cone of angle 7. (b) There are two non-consecutive empty cones. (c) Point p is not well
5 -illuminated since there is an empty cone defined by p and the light sources f; and

fr with an angle greater than 7.

interior light source then p is well ©-illuminated (see Fig.Bl(a)). In the last case,
there can be at least one empty cone but no two consecutive empty ones (see
Fig. B(b)). We need to spread each empty cone, opening out the rays that define
it until we find one light source on each side. Let f; be the first light source we
find on the left and f, the first light source we find on the right (see Fig.[(c)).
If the angle formed by f;,p and f, is at least equal to © then there is an empty
cone of angle ® emanating from p. So p is not well ©-illuminated.

Once the decision algorithm is known, we use it to compute the closest em-
bracing site for p using a logarithmic search. The MER of p is naturally given by
the distance between p and its closest embracing site. All the light sources closer
to p than its closest embracing site together with the closest embracing site form
the minimal embracing set for p. Otherwise p cannot be well ©-illuminated.

Theorem 1. Given a set F' of n light sources, a point p in the plane and an
angle © < 7, checking if p is well O-illuminated, computing its MER and a
minimal embracing set for it takes ©(n) time.

12 M. Abellanas, A. Bajuelos, and I. Matos

Proof. Let F be a set of n light sources, p a point in the plane and © < 7 a given
angle. Dividing the plane in cones of angle (2 and assigning each light source to
its cone takes O(n) time.

The distances from p to all the light sources can be computed in linear time.
Computing the median also takes linear time [6], as well as splitting F in two
halves. Since we consider the angle © to be a fixed value, the number of cones is
constant (é is constant). Consequently, spreading each empty cone by computing
a light source on each side of the cone is linear. So checking if p is well ©-
illuminated by a set F’/ C F' is linear on the number of light sources of F’. Note
that we never study the same light source twice while searching for the MER of
p- So the total time for this logarithmic search is O(n+ 5+ +§ +...) = O(n).
Therefore, we compute a closest embracing site and a minimal embracing set for
p in linear time.

All the light sources of F' are candidates to be the closest embracing site for
a point in the plane, so in the worst case we have to study all of them. Knowing
this, we have Q(n) as a lower bound which makes the linear complexity of this
algorithm optimal. a

Note that this algorithm not only computes the minimal embracing set and the
MER of a well ©-illuminated point as it also computes an embracing set for
a t-well illuminated point (Definition E). The next theorem solves the t-good
illumination of minimum range using the O-illumination of minimum range.

Proposition 5. Given a set F' of n light sources, a point p in the plane and a
giwen angle © < 7, let r be the MER to well ©-illuminate p. Then r also t-well
illuminates p fort = [§|.

Proof. Let F be a set of n light sources, p a point in the plane and © < 7 a
given angle. If p is well ©-illuminated then we know that there is always one
interior light source to every cone emanating from p with an angle ©. On the
other hand, p is t-well illuminated if there are, at least, ¢ interior light sources
to every half-plane passing through p. An half plane passing through p can be
seen as a cone of angle m emanating from p. So if we know that we have at least
one light source in every cone of angle ® emanating from p then we know that
we have at least | § | light sources in every half-plane passing through p. This
means that p is | § |-well illuminated. So the MER needed to well ©-illuminate
p also | § |-well illuminates p. O

Corollary 1. Let F be a set of n light sources, p a point in the plane and
O < 7 a given angle. A minimal embracing set that well O-illuminates p also
t-well illuminates p fort = | [|.

Proof. Let I be a set of n light sources, p a point in the plane and ©® < 7 a
given angle. According to the last proposition, the MER to well ©-illuminate p
also t-well illuminates it, ¢ = [§ |. So a closest embracing site for p when it is
well ©-illuminated is at the same distance or further than a closest embracing
site for p when t-well illuminated, ¢t = | § |. So the minimal embracing set that
well ©-illuminates p also t-well illuminates it for t = | g |. O

Some Problems Related to Good Illumination 13

Fig.9. (a) Point p is 2-well illuminated since there are at least two light sources in
every open half plane passing through p. (b) Point p is not well 7 -illuminated because

there is an empty cone of angle 7.

Note 1. If a point is well O-illuminated by a set F' of light sources, it is also t-well
illuminated by F for ¢ = | § |, however the other implication is not necessarily
true as it is shown in Fig.

5 Conclusions

The visibility problems solved in this paper consider a set of n light sources.
Regarding the 1-good illumination, we presented a linear algorithm to compute a
Closest Embracing Triangle for a point in the plane and its Minimum Embracing
Range (MER). This algorithm can also be used to decide if a point in the plane
is 1-well illuminated.

In the following sections, we presented two generalizations of the t-good
illumination of minimum range: orthogonal good illumination and the good
O-illumination of minimum range. We proposed an optimal linear time algo-
rithm to compute the MER of an orthogonally well illuminated point, as well as
its minimal embracing set. Related to this variant, the E-Voronoi Diagram was
also presented as well as an algorithm to compute it that runs in O(n?) time.

We introduced the O-illumination of minimum range and an optimal linear
time algorithm. The algorithm computes the MER needed to well ©-illuminate a
point in the plane and a minimal embracing set for it. We established a connection
between the t-good illumination of minimum range and the good ©-illumination
of minimum range in Proposition[Bl The MER to well ©-illuminate a point also
t-well illuminates that point, for t = [J |.

All the algorithms in this paper apart from the one that computes the
E-Voronoi Diagram have been implemented using Java. They all have been im-
plemented without any major issues and take the expected run-time to com-
pute a solution. The algorithm to compute the E-Voronoi Diagram is by far the
most challenging since it needs a good data structure to compute and merge
five Voronoi Diagrams. Nevertheless, this must be done a quadratic number of
times which can be disastrous if the data structure takes too much time to be
processed. Though it hasn’t been implemented yet, it is in our plans to do so.

14

M. Abellanas, A. Bajuelos, and I. Matos

Acknowledgments. We wish to thank Belén Palop from the Universidad de
Valladolid for helpful discussions about the algorithm to compute the MER of a
1-well illuminated point.

References

10.

11.

12.

13.

14.

15.

16.

. Abellanas, M., Bajuelos, A., Herndndez, G., Matos, I.: Good Illumination with Lim-

ited Visibility. In: Proceedings of the International Conference of Numerical Anal-
ysis and Applied Mathematics, pp. 35-38. Wiley-VCH Verlag, Chichester (2005)

. Abellanas, M., Bajuelos, A., Hernandez, G., Matos, 1., Palop, B.: Minimum Illu-

mination Range Voronoi Diagrams. In: Proceedings of the 2" International Sym-
posium on Voronoi Diagrams in Science and Engineering, pp. 231-238 (2005)

. Abellanas, M., Canales, S., Herndndez, G.: Buena iluminacién. Actas de las IV

Jornadas de Matemadtica Discreta y Algoritmica, 239-246 (2004)

. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Sack, J.-R.,

Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 829-876. Elsevier,
Amsterdam (2000)

. Avis, D., Beresford-Smith, B., Devroye, L., Elgindy, H., Guévremont, H., Hurtado,

F., Zhu, B.: Unoriented ©-maxima in the plane: complexity and algorithms. Siam
J. Computation 28(1), 278-296 (1998)

. Blum, M., Floyd, R.W., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.

Journal of Computer and System Sciences 7, 448-461 (1973)

. Canales, S.: Métodos heuristicos en problemas geométricos, Visibilidad, ilumi-

nacién y vigilancia. Ph.D. thesis, Universidad Politécnica de Madrid (2004)

. Chan, M.Y., Chen, D., Chin, F.Y.L., Wang, C.A.: Construction of the Nearest

Neighbor Embracing Graph of a Point Set. Journal of Combinatorial Optimiza-
tion 11(4), 435-443 (2006)

. Chiu, S.N., Molchanov, I.S.: A new graph related to the directions of nearest neigh-

bours in a point process. Advances in Applied Probability 35(1), 47-55 (2003)
Efrat, A., Har-Peled, S., Mitchell, J.S.B.: Approximation Algorithms for Two Op-
timal Location Problems in Sensor Networks. In: Proceedings of the 14" Annual
Fall Workshop on Computational Geometry, MIT Press, Cambridge (2004)
Karlsson, R., Overmars, M.: Scanline Algorithms on a Grid. BIT Numerical Math-
ematics 28(2), 227-241 (1988)

Megiddo, N.: Linear-time algorithms for linear programming in R*® and related
problems. STAM Journal on Computing 12(4), 759-776 (1983)

Kung, H., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors.
Journal of ACM 22, 469476 (1975)

Ntafos, S.: Watchman routes under limited visibility. Computational Geometry:
Theory and Applications 1(3), 149-170 (1992)

Smith, J., Evans, W.: Triangle Guarding. In: Proceedings of the 15" Canadian
Conference on Computational Geometry, pp. 76-80 (2003)

Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, pp. 973-1027. Elsevier, Amsterdam
(2000)

A New Dynamic Programming Algorithm for
Orthogonal Ruler Folding Problem in
d-Dimensional Space

Ali Nourollah! and Mohammad Reza Razzazi!2*

1 Software Systems R&D Lab.
Department of Computer Engineering & IT
Amirkabir University of Technology,
#424 Hafez Avenue, P. O. Box 15875-4413
Tehran, Iran
2 Institute for Studies in Theoretical Physics and Mathematics(I.P.M.)
{nourollah,razzazi}@aut.ac.ir

Abstract. A chain or n-link is a sequence of n links whose lengths
are fixed joined together from their endpoints, free to turn about their
endpoints, which act as joints. ” Ruler Folding Problem”, which is NP-
Complete is to find the minimum length of the folded chain in one di-
mensional space. The best result for ruler folding problem is reported by
Hopcroft et al. in one dimensional space which requires O(nL?) time com-
plexity, where L is length of the longest link in the chain and links have
integer value lengths. We propose a dynamic programming approach to
fold a given chain whose links have integer lengths in a minimum length
in O(nL) time and space. We show that by generalizing the algorithm it
can be used in d-dimensional space for orthogonal ruler folding problem
such that it requires O(2%ndL?) time using O(29ndL?) space.

Keywords: Ruler Folding Problem, Carpenter’s Ruler, Dynamic Pro-
gramming.

1 Introduction

A carpenter’s ruler is a ruler divided up into pieces of different lengths which
are hinged where the pieces meet, which makes it possible to fold the ruler. The
problem, originally posed by Sue Whitesides (McGill) is to determine the small-
est case into which the ruler will fit when folded. Here we are again idealizing
a physical ruler because we are imagining that the ruler will be allowed to fold
onto itself so that it lies along a line segment (whose length is the size of the
case) but that no thickness results from the segments which lie on top of each
other.

We consider a sequence of closed straight line segments [Ag, 4], [A1, As], ...
[An—1, A,] of fixed lengths Iy, la, ...l,, respectively, imagining that these line

* This research was in part supported by a grant from I.P.M.(No. CS1385-4-01).

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 15-25] 2007.
© Springer-Verlag Berlin Heidelberg 2007

16 A. Nourollah and M.R. Razzazi

segments are mechanical objects such as rods, and their endpoints are joints
about which these rods are free to turn. The aim is to find the minimum length
of folded chain in which each joint is to be completely straight, or completely
folded. This problem has been known as ” Ruler Folding Problem”

” Ruler Folding Problem” was stated by Hopcroft et al. for the first time and it
has been shown to be NP-Complete by a reduction from PARTITION problem
[1]. They developed an O(nL?) pseudo polynomial algorithm for folding an n-
link open chain in one dimensional space where L is the length of the longest
link [TI2]. Hopcroft et al. proposed an approximation algorithm for the ” Ruler
Folding Problem” with the upper bound of 2L for the length of the folded chain.
They showed that this upper bound is tight using an example [I].

Part of the motivation of Hopcroft, Joseph, and Whitesides in studying the
complexity of ruler folding was that it was a very simplified model for a mo-
tion planning problem for a robot. As engineers have moved in the direction
of designing more complex robotic systems, computer scientists and mathemati-
cians have been studying the complexity of the algorithms that are involved with
implementing such robotic systems.

Recently, Calinescu and Dumitrescu improved the previous result and pro-
vided a fully polynomial-time e-approximation scheme (FPAS) for ruler folding
problem[3]. Total running time of their algorithm is O(n*(1/€)3log L) and it
requires O(n*(1/€)?log L) additional space. Kantabutra presented a linear time
algorithm for reconfiguring certain chains inside squares, considering an unan-
chored n-link robot arm confined inside a square with side length at least as
long as the longest arm link[4]. He found a necessary and sufficient condition
for reachability in this square. Biedl et al. have investigated locking tree like
linkages in two dimension and proved that transforming any closed chain to a
simple closed chain such that links be horizontal or vertical is NP-Complete.
This problem remains NP-Complete even in one dimension. The proof is done
by a reduction from PARTITION problem [5l6].

Lenhart and Whiteside defined an operation called ”linear movement” for
closed chains and showed that any closed chain can be transformed to an-
other closed chain by O(n) linear movements, in the three or more dimensional
spaces[f]. They showed for 2D spaces it is possible if and only if sum of the
lengths of the second and the third largest links be less than half the sum of all
links’s lengths. Linkage problems have been studied extensively in the case that
links are allowed to cross [8]. Recently there has been much work on the case
that the linkage must remain simple and no crossing are allowed. Such linkage
folding has applications in hydraulic tube bending and motion planning of robot
arms. There are also connections to protein folding in molecular biology [9].

In this paper, we reduce the time complexity of the algorithm given by
Hopcroft et al. and also introduce a new problem, Orthogonal Ruler Folding,
which is a generalization of Ruler Folding Problem. In the real word, robot arms
are constructed as sequence of links whose thickness are not zero. In the Ruler
Folding Problem, thickness of each link is considered as zero but in the reality it
is not zero. 2D and 3D version of the Ruler Folding Problem have applications

A New Dynamic Programming Algorithm 17

"t

(a) (b) (c)

Fig. 1. Orthogonal Ruler Folding (a)One dimensional space (b)Two dimensional space
(¢)Three dimensional space

when the thickness of the links are greater than zero, an also in moving robot
arms when obstacles are present. We present a pseudo polynomial time algo-
rithm for ” Ruler Folding Problem” in one, two, and d-dimensional space based
on the dynamic programming approach such that lengths of the links are integer
values. Figure ([IJ) shows the Orthogonal Ruler Folding in three cases.
Preliminaries are stated in section 2, our algorithm in one dimensional space
is presented in section 3, we generalize the algorithm to solve the problem in d-
dimensional space in section 4 , and finally the conclusion is stated in section 5.

2 Preliminaries

A linkage is a planar straight line graph G = (V, E) and a mapping [: £ —— RT
of edges to positive real lengths. Each vertex of a linkage is called a joint or an
articulation point, each straight line edge e of a linkage, which has a specified
fixed length I(e) is called a bar or a link. A linkage whose underlying graph
is a single path is called polygonal arc, open chain or a ruler, a linkage whose
underlying graph is a single cycle is called polygonal cycle, closed chain or a
polygon and a linkage whose underlying graph is a single tree is called polygonal
tree or tree linkage. In an n-link polygonal arc, let [; denote ith link of the open
chain, and A; denote the joint connecting [; and [; 1 links, for i =0,...,n — 1.
A linkage can be folded by moving the links around their joints in R? in any
way that preserves the length of each link. The length of a link [is shown by ||.
Given an n-link open chain I" = (I4,...,1,), Lp is defined as follows.

Lr = Maz{|l;|; fori=1,...,n}. (1)
and [is defined as follows.
Fi:(lla"'vli)‘ (2)

L is the length of the longest link in the given chain which is denoted by I" and
I’; is the ith subchain of I'. Now we introduce Ruler Folding Problem as follows.

18 A. Nourollah and M.R. Razzazi

Problem 1: Given an n-link open chain I" = (ly,...,l,) with links having
integer length, what is the minimum length of the folded chain such that all
joint’s angles must be 0 or 1807

Note that different orders of lengths can mean a different minimum sized
folding. The abstract problem we are raising is: Given a collection of numbers
l1,1l2,...,1, which are to be interpreted as the lengths of the sections of the
carpenter’s ruler, with the first section of the ruler having length [, the second
section of the ruler having length lo, ..., and the last section of the ruler having
length [,,, can the ruler be stored in a case with length at most K7 (For the
problem to make sense K should be at least as large as the largest link in the
ruler; otherwise there is no hope of fitting the ruler into a case of length K.)

In the next section we propose a dynamic programming approach to solve the
above problem.

3 One Dimensional Algorithm

Hopcroft et al. [I] developed an approximation algorithm for ruler folding prob-
lem. This algorithm takes an n-link open chain as input and folds it such that
the length of the folded chain does not exceed 2L, where L is defined in equation
(). A short description of the algorithm is as follows. Using = axis, place joint
Ap on the origin and then for each link [;, for i = 1,...,n, if folding [; to the
left direction results in placing A; on a negative axis then fold [; to the right,
otherwise fold ; to the left. The sketch of their algorithm is given in Figure (2]).
Result of their algorithm is stated by a theorem which is as follows.

Theorem 1. Given an n-link open chain, it can be folded in less than 2L length
in O(n) time, where L is the length of the longest link in the given chain.

Proof. See [1]. 0

Hopcroft et al. also developed a dynamic programming approach which folds
a given chain I" whose links have integer lengths within the optimum interval.
Their algorithm is as follows.

For k = L to 2L — 1 repeat steps 1 to 4.

Step 1: Characterizing optimal subproblems Consider any optimal fold-
ing and let j be the position within & where A; lands. Then links 1 through
i—1 must be folded within & such that A;_; lands at j—|l;| = 0 or j+|l;| = k.

Step 2: Recursive definition We get this recursive definition which is as fol-
lows.

T(i,7): true if and only if links 1 through ¢ of the ruler can be folded such
that A; lands at position j.

T(i,7) =true if T(i— 1,7 — |l;]) is true for j — |l;| =0, or T'(: — 1,5 + |I;]) is
true for j + |l;| = k, false otherwise.

Step 3: Algorithm Build a table with n + 1 rows (indexed 0 to n), and with
k + 1 columns (indexed 0 to k). Initialize row 0 to true everywhere, and all

A New Dynamic Programming Algorithm 19

other rows to false everywhere. Fill the table from left to right, from top to
bottom, as per step 2. Its important to keep track of whether a true on row
i came from T(i — 1,5 — |l;]) or from T'(: — 1,75 + |l;]) so that we know in
which directions to fold the links in an eventual optimal solution.

Step 4: Reconstructing optimal solution If no true in row n, ruler can not
be folded within k. Otherwise, backtrack from any such true entry up the
table using the data of step 3.

Analysis. It is easy to see that their algorithm requires O(nL?) time and O(nL)
space where L is the length of the longest link in the given chain.

Algorithm 1D — Approzimation(I',n, F)
// This algorithm folds the given sub-chain I" = (I1,...,l,) within the interval [0, 2L]
Input: I' is the given chain.
Output:ArrayF = (f1,..., fn) of size n such that f; = +1, if [, has been
folded to the right and f; = —1, if [; has been folded to the left.
Begin
Place joint Ap on point x =0
CurrentPos «— 0
for i — 1 to n do
if CurrentPos — |l;] < 0 then
//place joint A, on the right side of A;_1
CurrentPos <« CurrentPos + |l;]
fi — +1
else
CurrentPos « CurrentPos — |l;]
fi — —1
End of Algorithm

Fig. 2. Approximation algorithm in one dimensional space

We use a dynamic programming approach to achieve a pseudo polynomial
algorithm for ruler folding problem which requires O(nlL) time using O(nL)
space. Given an n-link open chain I = (Iy,...,1,) with integer length links, let
m;,; (if m; ; > 0) be the minimum length of the folded chain I for which

Min{x(Ay); for k=0,...,i} =0

and joint A; (endpoint of I5) is placed at point j and let m;; be +oo if it is
impossible to fold I in the minimum length such that

Min{x(Ay); for k=0,...,i} =0

and joint A; is placed at point j where x(Ay) is x coordinate of joint Ayg.
For the whole chain, the minimum length of the folded I, would thus be

20 A. Nourollah and M.R. Razzazi

Algorithm 1D RulerFolding(I', n);
Input: I' is an n-link open chain whose links have integer lengths.
Output: Minimum length of the folded open chain I"
Begin
L — Maz{|l;|; fori=1,...,n}
for i — 0 to n do
for j — 0 to 2L do
mg j «— +00
mo,0 < 0
for i — 1 to n do
for j — 0 to 2L do
if m;_1,; < +oo then
if j + |l;| < 2L then
M gty = Min{mg oy, Maz{j + [li], mi—1,5}}
if j —|l;| < 0 then
mi,o0 «— Min{m; o, [li| + mi—1,; — j}
else
Mgy Min{mg ;o) mizs}
return Min{m,, ;; for j =0,...,2L}
End of Algorithm

Fig. 3. One dimensional Ruler Folding algorithm

Min{my j; for j = 0,...,2L}. It is easy to see that if ¢ = 0, the problem is

trivial. Thus
o _Jo itj=o,
03 7 1 400 otherwise.

Furthermore using [I, we get m; ; = +o00 ,if j < 0 or j > 2L. m; ; is computed
from m;_y j1y;,) and m;_y ;_y;,|- We should fold /; to both the left and the right
directions from A;_1. If left folding of [; implies that A; is positioned at a negative
point then we should shift whole of I to the right until A; is positioned at point
zero. Hence, when j = 0, m; ; may be modified. The recurrence equation of m; ;
is as follows.

e — Min{\lﬂ%—mi,l,k—k; fork:0,...7\li|} if =0, (3)
J Min{mi_17j+|li|,Max{j, mi_Lj_””}} lf_] > 0.

Based on the recurrence equation (3)), we achieve a dynamic programming algo-

rithm which is shown in Figure ([@)). Note that for simple implementation of the

algorithm 1DRulerFolding we fill m; j, for j =0, ..., 2L, discretely.

Analysis. It is easy to see that algorithm 1DRulerFoilding requires O(nL) time
and space.

A New Dynamic Programming Algorithm 21

4 d-Dimensional Algorithm

In this section, first we state 2-dimensional ruler folding problem and introduce
an algorithm for it and then generalize it to d-dimensional space.
Consider an object function for 2-dimensional space which is defined as follows.

fo(I') = (Maz{z(A;); for i =0,...,n} — Min{z(4;); for i =0,...,n})+
(Max{y(4;); for i =0,...,n} — Min{y(4;); fori=0,...,n})

where z(A;) is x coordinate of joint A; and y(A;) is y coordinate of joint A;.

Problem 2: Given an n-link open chain I" = (Iy,...,l,) with integer length
links, what is the minimum value of the object function fo(I") for the folded
chain in the plane such that all links of the given chain are parallel to at least
one axis?

Let m; ;i (if m; 5, > 0) be the minimum value of object function f>(I") for
the folded chain I'; for which

Min{z(Ay); for k=0,...,i} =0
and
Min{y(Ag); for k=10,...,i} =0

and A; (endpoint of I7) is placed at point (j,k) and let m; ;i be +oo if it is
impossible to fold I; in the minimum length such that

Min{z(Ay); for k=0,...,i} =0

and
Min{y(Ag); for k=0,...,i} =0

and A; is placed at point (7, k). For the whole chain, the minimum length of the
folded I3, would thus be

Min{my, ji; for j=0,...,2L and k =0,...,2L}.

If i = 0, the problem is trivial. Thus

0.5k =\ 400 otherwise,

and m; ;1 = +oo ,if § <0, 7 > 2L, k <0, or k> 2L. m;; is computed from
M1+l ks i1 ,5—|Li] ks Mi—1,5,k—|Li]> and M1 j k+|ls]- We should fold I; to
the left, right, up, and down directions from A; ;. If left folding of I; implies
that A; is positioned at a negative x coordinate then we should shift right whole
of I'; until x(A;) is zero, and if down folding of [; implies that A; is positioned at
a negative y coordinate then we should shift up whole of I; until y(A;) is zero.
Hence, when j = 0 or k = 0, m; j,» may be modified. Since

Min{z(Ay); for k=0,...,i} =0

22 A. Nourollah and M.R. Razzazi

Algorithm 2D RulerFolding(I",n);
Input: I is an n-link open chain whose links have integer length.
Output: Minimum value of f2(I") for the folded open chain I"
Begin
L «— Maxz{|l;|; fori=1,...,n}
for i — 0 to n do
for j +— 0 to 2L do
for k — 0 to 2L do
m; gk < +00
mop,0,0 < 0
B,(0,0,0) < 0
B,(0,0,0) — 0
for i — 1 to n do
for j «+ 0 to 2L do
for k +— 0 to 2L do
if m;_1 j 1 < +oo then
if k + |l;| < 2L then//Right Direction
Mgt ltg) — Mindma)
Maz{k + |l;|, B+ (i — 1,4, k) + By (i — 1,5, k)}}
By (i,j,k + |l;]) «— Maz{k + |l;|,B+(i — 1,4,k)}
if k —[l;| < 0 then //Left Direction
if |Li| 4+ Ba(i— 1,5,k) — k+ By(i — 1,4, k) < mi ;.0 then
mijo — |lil + Ba(i—1,5,k) — k + By (i — 1,5, k)
By (i,7,0 < |lj| + Bg(i —1,5,k) — k
else
if mi_1 56 < My k=1, then
MG k—|1;] < Mi—1,5,k
Bu(i,jok — |Lil) — Ba(i— 1,4, k)
if j + |l;| < 2L then //Up Direction
My i)k Min{mg o)
Maa{j+ |lil, By (i — 1,5,k) + Bali — 1,5, k)}}
Ba(iyj + |l k) — Maz{j + [Li], B, (i — 1,5.k)}
if j —|l;| < 0 then //Down Direction
if |1;| + By (i — 1,4, k) — j 4+ Ba(i — 1,4, k) < my 0, then
miok < |lil + By(i — 1,5, k) —j 4+ B (i — 1,5, k)
By(i,0, k) — || + By (i — 1,3, k) —
else
if mi—1,4,6 <M,k then
M j—[1; 1k < Mi—1,5,k
By(irj — Ll k) — By(i — 1.5 k)
return Min{m, jx; for j =0,...,2L and k =0,...,2L}
End of Algorithm

Fig. 4. Two dimensional Ruler Folding algorithm

and
Min{y(Ag); for k=0,...,i} =0

in step i, thus we need to save right point and up point in each step. Let B be
a data structure in which it records = coordinate and y coordinate of each step.
Note that in one dimensional space the values of B and m are the same and it
is not necessary to use the data structure B. The recurrence equation of m; j i
is as follows.

A New Dynamic Programming Algorithm 23

Minogs§j+|li|{‘li|+
By (i —1,8,k) = s + Bu(i = 1,j,k)} ifj =0,
Ming< <, {|l:i|+
BT = st By =1k} TE=0.
bk = Min{mi i)k Maxdj, By (i =1, 7 = [li], k) }+
Min{m;_y ; g1, Maw{k, Bo(i = 1,5,k — [li]) }+
By(i— 1,5,k —|li])} k=0

Based on the recurrence equation (), we achieve a dynamic programming algo-
rithm which is shown in Figure ().

Analysis. It is easy to see that algorithm 2DRulerFoilding requires O(nL?) time
and space.

Algorithm d — Dimensional Ruler Folding(I', n);
Input: I' is an n-link open chain whose links have integer length.

Output: Minimum value of f4(I") for the folded open chain I"

Begin
L — Maz{|l;]; fori=1,...,n}
for i — 0 to n do
for all 0 < ji,...,jqa < 2L do
i
My singq T T

7”3,...,0 — 0
for k — 1 to d do
BY(0,...,0) <0
for i — 1 to n do
for all 0 < j1,...,j4 < 2L do
i—1
F1aees g < 400 then
for k — 1 to d do
if ji + |l;| < 2L then//+ji, Direction
15k —1:dk g1 0da - JWLn{mjl,---,jk71~J'k+\li|~]'k+1,m,jd
Max{j, + il), B G- da)}b}

if m

m s

Bi(ts o dh—1,dk + il drtrs o da) = Maa{jy + [Lil, By (1, -5 da)}
if jr — |l;] < 0 then //—j, Direction
i 0| + Zt:l Ld BZ_I(jl’ e ja) = Jk < 7”;’1,...,3‘)6,1.O,jk+1,...,jd then
T :)
m;h---r-jk—l<0»-7k:+17”’vjri — [l + Zt:l,...,d By U da) = gk
Bi(dis k=150, kx5 - -+ da) — Ll + B (Jas - -+ da) — ik
else
e i1 i
if mj1,m,jd < m]lv-"vjk;—lvjk_‘li‘vjk;+17"'7jd then
i i1
15 dk—10k —lilig41s-0dd <;m'.h,---,.jd, »
BiG1s - dk—1,9k — Ll drs1y- - da) < By G, -0 da)
return Mi"{mﬁ,...,jd% for all 0 < ji,...,j54 < 2L}

End of Algorithm

Fig. 5. d-dimensional Ruler Folding algorithm

24 A. Nourollah and M.R. Razzazi

Now, consider an object function for d-dimensional space which is defined as
follows.

where z(A4;) is the kth coordinate of joint A;.

Problem 3: Given an n-link open chain I" = (Iy,...,l,) with integer length
links, what is the minimum value of the object function f4(I") for the folded
chain in the d—dimensional space such that all links of the given chain are
parallel to at least one axis?

By a little modification of algorithm 2DRulerFolding we can achieve a d -
dimensional algorithm which solve problem 3. Figure (Bl shows the d-dimensional
algorithm for Ruler Folding problem in which B} (j1,...,jq) represents the ex-
treme point of the the folded chain I in the kth dimension in which A; is
positioned at point (ji,...,Jq) and mj‘l,...,jd stands for the minimum value of
fa(l3).

Analysis. d-DimensionalRulerFolding algorithm requires O(29ndL?) time using
O(2%ndL?) space.

An optimal solution can be obtained by using an extra array and utilizing the
information provided by the algorithm. For optimal substructure, it is easy to
see that an optimal solution to a problem contains within it an optimal solution
to subproblems.

5 Conclusion

The best previously known algorithm for the ruler folding problem was developed
by Hopcroft et al.[I]. They introduced a pseudo polynomial time algorithm which
required O(nL?) time using O(nL) space, where L is the length of the longest
link of the given chain. In this paper, we developed a pseudo polynomial time
algorithm using dynamic programming approach for ruler folding problem in
one dimensional space. Our algorithm requires O(nL) time using O(nL) space,
which beats the Hopcroft’s result in time complexity.

By defining a new problem which is derived from Ruler Folding problem in
d-dimensional space,we generalize the algorithm to solve orthogonal ruler folding
problem in d-dimensional space. It requires O(29ndL?) time using O(29ndL?)
additional space. By modifying the object function f4(I"), the algorithm can
solve other problems which can be constructed in d-dimensional space. It can be
used for many kind of problems such as minimizing area of the bounded region of
orthogonal folded chain. Ruler folding problem has many applications including
robot motions and protein folding in biology science. The introduced algorithms
are useful in robot motion planning problems in which robot arms are modeled
by linkages.

A New Dynamic Programming Algorithm 25

References

1. Hopcroft, J., Joseph, D., Whitesides, S.: On the movement of robot arms in 2-
dimensional bounded regions. STAM J. Comput. 14(2), 315-333 (1985)

2. Whitesides, S.: Chain Reconfiguration. The Ins and Outs, Ups and Downs of Moving
Polygons and Polygonal Linkages. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001.
LNCS, vol. 2223, pp. 1-13. Springer, Heidelberg (2001)

3. Calinescu, G., Dumitrescu, A.: The carpenter’s ruler folding problem. In: Goodman,
J., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, pp. 155—
166. Mathematical Sciences Research Institute Publications, Cambridge University
Press (2005)

4. Kantabutra, V.: Reaching a point with an unanchored robot arm in a square. Inter-
national journal of Computational Geometry & Applications 7(6), 539-549 (1997)

5. Biedl, T., Demaine, E., Demaine, M., Lazard, S., Lubiw, A., O’'Rourke, J., Robbins,
S., Streinu, I., Toussaint, G., Whitesides, S.: A note on reconfigurating tree linkages:
Trees can lock. Discrete Appl. Math. (2001)

6. Biedl, T., Lubiw, A., Sun, J.: When Can a Net Fold to a Polyhedron? In: Eleventh
Canadian Conference on Computational Geometry, U. British Columbia (1999)

7. Lenhart, W.J., Whitesides, S.: Reconfiguring Closed Polygonal Chains in Euclidean
d-Space. Discrete and Computational Geometry 13, 123-140 (1995)

8. Whitesides, S.: Algorithmic issues in the geometry of planar linkage movement.
Australian Computer Journal, Special Issue on Algorithms 24(2), 42-50 (1992)

9. O’Rourke, J.: Folding and unfolding in computational geometry. Discrete and Com-
putational Geometry 1763, 258-266 (1998)

Efficient Colored Point Set Matching Under
Noise

Yago Diez* and J. Antoni Sellares*

Institut d’Informatica i Aplicacions, Universitat de Girona, Spain
{ydiez,sellares}@ima.udg.es

Abstract. Let A and B be two colored point sets in R?, with |A| < |B].
We propose a process for determining matches, in terms of the bottleneck
distance, between A and subsets of B under color preserving rigid motion,
assuming that the position of all colored points in both sets contains a
certain amount of "noise”. The process consists of two main stages: a
lossless filtering algorithm and a matching algorithm. The first algorithm
determines a number of candidate zones which are regions that contain
a subset S of B such that A may match one or more subsets B’ of S. We
use a compressed quadtree to have easy access to the subsets of B related
to candidate zones and store geometric information that is used by the
lossless filtering algorithm in each quadtree node. The second algorithm
solves the colored point set matching problem: we generate all, up to a
certain equivalence, possible motions that bring A close to some subset B’
of every S and seek for a matching between sets A and B'. To detect these
possible matchings we use a bipartite matching algorithm that uses Skip
Quadtrees for neighborhood queries. We have implemented the proposed
algorithms and report results that show the efficiency of our approach.

1 Introduction

Determining the presence of a geometric pattern in a large set of objects is a
fundamental problem in computational geometry. More specifically, the Point Set
Matching (PSM) problem arises in fields such as astronautics [I1], computational
biology [I] and computational chemistry [6].

In all these areas the data used present a certain degree of ”fuzzyness” due
to the finite precision of measuring devices or to the presence of noise during
measurements so the positions of the points involved are allowed to vary up to a
fixed quantity. In some cases, as in the constellation recognition problem (con-
sidering fixed magnification) in astronautics or the substructure search problem
in molecular biology, the points to be matched represent objects that can be
grouped in finite range of categories (by the brightness of the stars or by types
of the atoms involved respectively). By assigning a color to each of this cat-
egories and working with colored points we may focus on an problem usually

* Partially supported by the Spanish Ministerio de Educacién y Ciencia under grant
TIN2004-08065-C02-02.

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 26-40] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Colored Point Set Matching Under Noise 27

not considered while retaining the same applicability and geometric interest (as
the PSM problem is just a particular case of the one just stated, when there
is only one color present). Another aspect that we will consider is that in most
applications the sets to be matched do not have the same cardinality, so the
objective is to match one of the sets to a subset of the other (this is also known
as partial matching). Finally, bearing in mind that in our motivational problems
the correspondences between the colored points to be matched are required to
be one-to-one, we will use the bottleneck distance.

1.1 Problem Formulation

Let P(q,r) represent the colored point ¢ € R? with associated color r. Fixed a
real number ¢ > 0, we say that two colored points A = P(a,r),and B = P(b, s)
match when r = s and d(A, B) = d(a,b) < ¢, where d denotes the Euclidean
distance.

Let D, S be two colored points sets of the same cardinality. A color preserving
bijective mapping f : D — S maps each colored point A = P(a,r) € D to a
distinct and unique colored point f(A) = P(b,s) € S so that r = s. Let F be the
set of all color preserving bijective mappings between D and S. The bottleneck
distance between D and S is defined as:

dy(D, S) = i max d(A, f(4)).
The Noisy Colored Point Set Matching (NCPSM) problem can be formu-
lated as follows. Given two Colored Points sets A, B, |A| = n, |B| =m, n < m,
and ¢ > 0, determine all rigid motions 7 for which there exists a subset B’ of
B such that dy(7(A),B") < e. We define 7(P(a,r)) as P(r(a),r) and 7(A) as
{r(P(a,r)) | Pla,r)e A}.

If 7 is a solution to the NCPSM problem, every colored point of 7(.A) ap-
proximately matches to a distinct and unique colored point of B’ of the same
color, and we say that A and the subset B’ of S approzimately match or are
noisy congruent. A graphical example of the problem can be found in Figure [l
In the case when all the points are of the same color and sets of the same car-
dinality are considered, then the NCPSM problem becomes the Noisy Point
Set Matching (NPSM) problem [4].

To make the visualization of the graphical examples easier throughout this
paper the colored points will be represented as disks and different colors will be
indicated by different radii. It must be noted that we will not use the geometric
properties of the disks and use their radius only as ”color” categories.

1.2 Previous Results

The study of the NPSM problem was initiated by Alt et al. [2] who presented
an exact O(n®) time algorithm for solving the problem for two sets A, B of
cardinality n. Combining Alt et alt. algorithm with the techniques by Efrat
et al. [] the time can be reduced to O(n”logn). To obtain faster and more
practical algorithms, several authors proposed algorithms for restricted cases or

28 Y. Diez and J.A. Sellares

Fig. 1. Our problem consists on finding all the subsets of B that approximately match
to some color-preserving rigid motion of set A. In the figure rectangles contain such
subsets. Points of different color are represented as disks with different radii.

resorted to approximations [7/4]. This line of research was initiated by Heffernan
and Schirra [7] who presented an O(n*®)-time algorithm conditioned to the fact
that the noise regions were small. Indyk and Venkatasubramanian [I0] claim
that this last condition can be removed without increasing the computational
complexity using the techniques by Efrat, Itai and Katz [4].We must remark that
although the widely known Hausdorff distance is commonly used and faster to
compute than the bottleneck distance, our motivational problems demand the
matching between colored points to be one to one, forbidding its use.

2 Owur Approach

The main idea in our algorithm is to discretize the NCPSM problem by turning
it into a series of ”smaller” instances of itself whose combined solution is faster
than the original problem’s. To achieve this discretization, we use a conservative
strategy that discards those subsets of B where no match may happen and, thus,
keep a number of zones where this matches may occur.

Our process consists of two main algorithms. The first one, the lossless filtering
Algorithm, yields a collection of candidate zones, which are regions determined
by one, two or four squares that contain a subset S of B such that A may
approximately match one or more subsets B’ of S. The second algorithm solves
the NCPSM problem between A and every S.

The discarding decisions made throughout the lossless filtering algorithm are
made according to a series of geometric parameters that are invariant under
rigid motion. These parameters help us to describe and compare the shapes of
A and the different subsets of B that we explore. To navigate B and have easy
access to its subsets, we use a compressed quadtree [5]. This capacity to discard

Efficient Colored Point Set Matching Under Noise 29

parts of B results in a reduction of the total computational time, corresponding
to a pruning of the search space. Notice that the earlier the discards are made,
the bigger the subsets of B that are discarded. In the following paragraphs we
provide a more detailed explanation of the structure of our solution. We also
provide Figure[2] as a visual complement.

The first algorithm (Lossless Filtering algorithm) consists itself on two sub-
parts. A quadtree construction algorithm and a search algorithm. The quadtree
construction algorithm can also be subdivided in two more parts: a compressed
quadtree building algorithm that uses the colored points in B as sites (without
considering their color), and an algorithm that adds the information related to
the geometric parameters being used to each node. The search algorithm tra-
verses the quadtree looking for the candidate zones

e | Overview of all the algorithms used:

. | LFA: Lossless Filtering Algorithm,
=D—>|:| QBA: Quadtree Building Algorithm

LFA

CQBA: Compressed Quadtree Building Algorithm

QBA SA E T
cosr A ’D_’I:l AGIA: Adding Geometric Information Algorithm
g : . SA: Search Algorithm

CPSMA: Colored Point Set Matching
Algorithm
. E: Enumeration,

> D—’D T: Testing

The second algorithm (matching algorithm) consists on two more parts. The
first one, the ”enumeration” part, groups all possible rigid motions of A in equiv-
alence classes in order to make their handling feasible and chooses a represen-
tative motion 7 for every equivalence class. The second step, the ”testing” part,
performs a bipartite matching algorithm between every set 7(.A) and every col-
ored point set B’ associated to a candidate zone. For these matching tests we
modify the algorithm proposed in [4] by using the skip-quadtree data structure
[5] in order to make it easier to implement and to take advantage of the data
structures that we have already built.

Notice that although our algorithms are designed to solve the generic NCPSM
problem, the possibility to define different geometric parameters allows the algo-
rithm to take advantage of the characteristic properties of specific applications.
We have implemented the algorithms presented, which represents a major dif-
ference to the previous and mainly theoretical approaches.

3 Lossless Filtering Algorithm

The subdivision of R? induced by a certain level of the quadtree is formed by
axis-parallel squares. To take advantage of this, we will just search for a certain

30 Y. Diez and J.A. Sellares

axis-parallel square in the quadtree big enough to contain set A even if it appears
rotated. In order to make this search more effective, we will also demand the
square that we are looking for to contain a part of B similar to A in terms of
some (rotation invariant) geometric parameters. By doing this, we will be able
to temporarily forget about all the possible motions that set A may undergo
and just find those zones of the quadtree where they may actually appear by
performing a type of search that is much more adequate to the quadtree data
structure. The following paragraphs provide some more details on this idea.

Through the rest of the paper, all rectangles and squares considered will
be axis-parallel unless explicitly stated. Let R4 be the minimal rectangle that
contains all the (colored) points in A, and let s be the smallest positive integer
for which (diagonal(R.4) + 2¢) < 2° holds. Let us also denote any square with
side length 2° as a square of size s. Note that we use powers of two as side lengths
of the squares considered to simplify the explanations in section 3.2l although it
is not really necessary for our algorithm.

For any rigid motion 7 there exists a square of size s containing all the points
in 7(A). This allows us to affirm that, for any & C B noisy congruent with A
there exists a square of size s that contains its points. We store the points in B in
a compressed quadtree Qg and describe the geometry of each of the nodes in this
quadtree by using a number of geometric parameters that are invariant for rigid
motions. Then we look for candidate zones in the quadtree whose associated
geometric parameters match those of A. To sum up, we can say that, in the first
step of the algorithm, instead of looking for all possible rigid motions of set A, we
look for squares of size s covering subsets of B, which are parameter compatible
with A. It is important to stress the fact that ours is a conservative algorithm,
so we do not so much look for candidate zones as rule out those regions where
no candidate zones may appear. A technical issue that arises at this point is
that, although our intention would be to describe our candidate zones exactly
as squares of size s this will not always be possible, so we will also have to use
couples or quartets of squares of size s.

3.1 Quadtree Building Algorithm

Compressed Quadtree Construction. Although for the first algorithm we
only use the quadtree levels between the root and the one whose associated nodes
have size s, we use the remaining levels later, so we build the whole compressed
quadtree Qp. This takes a total O(mlogm) computational time [5]. The use of
the compressed quadtree data structure is motivated by the necessity to keep the
number of nodes bounded. This happens because compressed quadtrees, unlike
“usual quadtrees, guarantee this number of nodes to be in O(m).

Adding information to the quadtree. To simplify explanations we consider
9 to be complete. Although it is clear that this is not the general situation this
limitation can be easily overcome in all the parts of the algorithm.

At this stage the quadtree Qp contains no information about the different
colors of the points in B or the geometric characteristics of B as a whole. Since

Efficient Colored Point Set Matching Under Noise 31

these parameters will guide our search for matches they must be invariant under
rigid motion. The geometric parameters we use are: a) parameters that take
into account the fact that we are working with point sets: number of points
and histogram of points’ colors attached to a node; b) parameters based on
distances between points: maximum and minimum distance between points of
every different color. For every geometric parameter we will define a parameter
compatibility criterium that will allow us to discard zones of the plane that
cannot contain a subset B’ of B to which A may approximately match (see figure
for an example). Other general geometric parameters may be considered in
future work as well as specific ones in specialized applications of the algorithms.
Once selected the set of geometric parameters to be used, in the second stage of

(8 |41
A

Fig. 2. There cannot be any B’ that approximately matches A fully contained in the
four top-left squares because A contains twelve disks (representing colored points) and
the squares only six

the quadtree construction, we traverse Qg and associate the selected geometric
parameters to each node. We also compute them for set A. The computational
cost of adding the geometric information to Qi depends on the parameters that
we choose. In the case of the "number of points” and ”histogram of points’ colors”
parameters we can easily keep track of them while we build the quadtree, so no
additional cost is needed. For the "minimum and maximum distance between
points of the same color” parameters, the necessary calculations can be carried
out in O(m?logm) time for each color category. Adding other parameters will
indeed need extra computational time but will also make the discarding of zones
more effective. This O(m? logm) dominates the O(mlogm) cost of building the
quadtree yielding the following:

Lemma 1. The cost of the Quadtree building algorithm is O(m?logm).

3.2 Lossless Filtering

This algorithm determines all the candidate zones where squares of size s that
cover a subset of B which is parameter compatible with A can be located. The
subdivision induced by the nodes of size s of Qi corresponds to a grid of squares
of size s superimposed to set B. As we are trying to place a certain square in
a grid of squares of the same size, it is easy to see that the only three ways to

32 Y. Diez and J.A. Sellares

A
/)
‘1
II,
ue

1 P
1

O PG

Fig. 3. Position of the candidate zones in the grid. Overlapping: (a) a single grid-square
(corresponding to a single quadtree node), (b) two (vertically or horizontally) neigh-
boring nodes, or (¢) four neighboring nodes. In this example we observe occurrences of
set A in zones of the first two types and an ellipse showing where occurrences of the
third type (not present) would appear.

place one of our squares respect to this grid correspond to the relative position of
one of the square’s vertices. This yields three different kinds of candidate zones
associated to, respectively one, two or four nodes (see Figure B]). The subsets 5’
that we are looking for may lie anywhere inside those zones.

Search algorithm. We provide a brief overview of the algorithm that traverses
Qp searching for the set C of candidate zones (see also algorithm [[]). The hierar-
chical decomposition of B provided by Q; makes it possible to begin searching at
the whole of B and later continue the search only in those zones where, according
to the selected geometric parameters, it is really necessary.

The algorithm searches recursively in all the quadrants considering also those
zones that can be built using parts of more than one of them. The zones taken
into account through all the search are easily described in terms of QOp’s nodes
and continue to decrease their size, until they reach s, following the algorithm’s
descent of the quadtree. Consequently, early discards made on behalf of the ge-
ometric parameters rule out of the search bigger subsets of B than later ones.
Given that two or four nodes defining a candidate zone need not be in the same
branch of Qp, at some points we will need to be exploring two or four branches
simultaneously. This will force us to have three separate search functions, de-
pending on the type of candidate zones we are looking for, and to keep geometric
information associated to those zones that do not correspond exactly to single
nodes in the quadtree but to couples or quartets.

The main search function, denoted search 1, seeks for candidate zones formed
by only one node and invokes itself and the other two search functions, called
search 2 and search 4 respectively. Consequently, search 2 finds zones formed
by pairs of nodes and also launches itself and search 4. Finally, search 4 locates
zones formed by quartets of nodes and only invokes itself.

Efficient Colored Point Set Matching Under Noise 33

Algorithm 1. Search 1(node N)

for all S sons of N do
if (S is parameter compatible with A) then
if (We have not reached the node size to stop the search) then
Call Search 1(S)
else {We have found a candidate node}
Report candidate zone
end if
end if
end for
{Continue in pairs of nodes if necessary (four possibilities)}
for all Si, S pairs of neighboring sons of N do
if (The couple (S1, S2) is parameter compatible with .4) then
if (We have not reached the node size to stop the search) then
Call Search 2(51,.52)
else {We have found a candidate pair}
Report candidate zone
end if
end if
end for
{Finally, continue in the quartet formed by the four sons if necessary}
(S1,S2,53,54): Quartet formed by the sons of N.
if ((Si1,S2,S53,54) are parameter compatible with A) then
if (We have not reached the node size to stop the search) then
Call Search 4 (51,52, 53,S54)
else {We have found a candidate quartet}
Report candidate zone
end if
end if

The search step begins with a call to function search 1 with the root node
as the parameter. We denote t the size of the root and assume ¢ > s. Function
search 1 begins testing if the information in the current node is compatible to the
information in A. If this doesn’t happen, there is no possible matching contained
entirely in the descendants of the current node and we have finished. Otherwise,
if the current node has size s then we have found a candidate zone. If this does
not happen, we must go down a level on the quadtree. To do so, we consider the
four sons of the current node (s1, s2, 83 and s4).

The candidate zones can be located: Inside any of the s;. So we have to call
search 1 recursively in all the s;’s. Partially overlapping two of the s;’s. In
this case, we would need a function to search both subtrees for all possible pairs
of nodes (or quartets) that may arise below in the subdivision. This is function
search 2. Partially overlapping each of the four s;’s. In this case, we would
invoke function search 4 that traverses all four subtrees at a time.

Functions search 2 and search 4 work similarly but take into account that they
need two and four parameters respectively that those must be chosen adequately.

34 Y. Diez and J.A. Sellares

The process goes on recursively until the algorithm reaches the desired size s,
yielding a set C of candidate zones of all three possible types.

Lemma 2. The number of candidate zones c = |C| is O(""). This bound is tight.

Proof. Each point in B belongs to a unique node of Qp, each node may belong
to up to 9 zones (one of type one, four of type two and four of type four) and
thus each point in in B may belong to, at most, 9 candidate zones. Subsequently,
¢ € O(m). To improve this bound we consider n;, the number of points inside the
ith candidate zone. As each colored point belongs to at most 9 zones, ZciEC n; <
9m. As every candidate zone must contain, at least, n points then cn < Zci cc Mis
putting this two statements together, we obtain ¢ < 9;”. The tightness of the
bounds follows from considering, for example, the case when A = B.

Lemma 3. a)The total cost of the Search algorithm is O(m). b) The total cost
of the lossless filtering algorithm is O(m?logm).

Proof. a) Through the search algorithm every node is traversed at most 9 times
corresponding to the different candidate zones it may belong to, as the com-
pressed quadtree data strucure guarantees that there are at most 9 O(m) nodes
the total computational cost is O(m). b) The result follows from considering the
sepparate (additive) contributions of the O(m?logm) Quadtree building algo-
rithm and the O(m) contribution of the search algorithm.

4 NCPSM Solving Algorithm

At this stage of the algorithm we are considering a NCPSM problem where the
sets involved, A and § € C, n = |A| < n’ = |S| < m, have "similar” cardinality
and shape as described by the geometric parameters. We present an algorithm
to solve this NCPSM problem, based on the best currently existing algorithms
for solving the NPSM problem [2/4], that takes advantage of the compressed
quadtree that we have already built and is implementable. Our approach will
consist on two parts called ”enumeration” and ”testing” that will be detailed
through this section. We also provide Algorithm [Z] as a guideline.

4.1 Enumeration

Generating every possible rigid motion that brings set A onto a subset of S is
infeasible due to the continuous nature of movement. We partition the set of
all rigid motions in equivalence classes in order to make their handling possible
following the algorithm in [2].

For b € R?, let (b)¢ denote the circle of radius € centered at point b. Let S¢
denote the set {(b)¢|P(b,s) € S}. Consider the arrangement G(S¢) induced by
the circles in 8. Two rigid motions 7 and 7’ are considered equivalent if for
any colored point P(a,r) € A, 7(a) and 7’'(a) lie in the same cell of G(S¢). We
generate a solution in each equivalence class, when it exists, and its corresponding

Efficient Colored Point Set Matching Under Noise 35

Algorithm 2. Search for noisy matching (A, S)

{Generate all possible equivalence classes:
ENUMERATION}
for all quartets a;, aj, by, b; do
for every couple (am,bp) do
Calculate curve ojkim
Intersection((bp), 0ijrim(x)) — Im,p
{Critical Events} = {Critical Events} U I p
end for
end for

{Search for possible matching in every equivalence class: TESTING}
x=0
while x < 21T do
x +— next critical event
T « associated rigid motion(z)
if (matching(r(A),S)) then
{Use algorithm in the ”testing” section }
Annotate((7))
end if
end while

representative motion: A simple geometric argument shows that if there exists
any rigid motion 7 that solves our NCPSM problem then there exists another
rigid motion 7" holding: 1) 7" belongs to the equivalence class of 7, 2) 7/ is also a
solution, 3) we can find two pairs of colored points P(a;,r;), P(aj,rj) € A and
P(bk, sk), P(bi,s1) € S, ri = s and rj; = s, with 7/(a;) € (br)® and 7/(a;) €
(b1)¢. We check this last property for all quadruples 4, j, k, [holding r; = s and
r; = s;. This allows us to rule out those potential matching couples whose colors
do not coincide.

Mapping a;, a; onto the boundaries of (by)¢, (b;)¢ respectively in general leaves
one degree of freedom which is parameterized by the angle ¢ € [0, 27| between
the vector |a; — bg| and a horizontal line. Considering any other colored point
P(ap,ry) € A, h # 4,7 for all possible values of ¢, the point will trace an
algebraic curve o, of degree six (corresponding to the coupler curve of a
four-bar linkage [9]), so that for every value of ¢ there exists a rigid motion
74 holding 74(a;) € (br)S, Tp(a;) € (b)) and 74(an) = oijrn(@). For every
remaining colored point P(b,,sp) in S with s, = rj,, we compute (using Brent’s
method for nonlinear root finding) the intersections between (b,)° and o;;un (¢)
which contains at most 12 points. For parameter ¢, this yields a maximum of 6
intervals contained in I = [0, 27[where the image of 74(ay) belongs to (b,)¢. We
name this set I, , following the notations in [2]. Notice for all the values ¢ € I, ,
we may approximately match both colored points. We repeat the process for
each possible pair p(an,74), p(bp, sp) and consider the sorted endpoints, called
critical events, of all the intervals I, ,. Notice that the number of critical events is
O(nn’). Subsequently, any ¢ € [0, 27| that is not one of those endpoints belongs

36 Y. Diez and J.A. Sellares

to a certain number of I, ;’s and ¢ corresponds to a certain rigid motion 74
that brings the colored points in all the pairs P(ap,rp), P(bp, $p) near enough to
be matched. The subdivision of [0, 27| consisting in all the maximal subintervals
that do not have any endpoints of any I, j, in their interior stands for the partition
of the set of rigid motions that we were looking for.

In the worst case, O(n?n'?) quadruples of colored points are considered. For
each quadruple, we work with O(nn’) pairs of colored points, obtaining O(nn')
critical events. Summed over all quadruples the total number of critical events
encountered in the course of the algorithm is O(n®n?).

4.2 Testing

We move parameter ¢ along the resulting subdivision of [0, 27[. Every time a
critical event is reached, we test sets 74(A) and S for matching. Whenever the
testing part determines a matching of cardinality n we annotate 7, and proceed.
Following the techniques presented in [8] and [4], in order to update the matching,
we need to find a single augmenting path using a layered graph. Each critical
event adds or deletes a single edge. In the case of a birth, the matching increases
by at most one edge. Therefore, we look for an augmenting path which contains
the new edge. If an edge of the matching dies, we need to search for a single
augmenting path. Thus in order to update the matching, we need to find a single
augmenting path, for which we need only one layered graph.

When searching for augmenting paths we need to perform efficiently two op-
erations. a) neighbor (D(7),q): for a query point ¢ in a data structure D(7)
that represents a point set 7, return a point in 7 whose distance to ¢ is at
most € or () if no such element exists. b) delete(D(7), s): deletes point s from
D(T). For our implementation we use the skip quadtree, a data structure that
combines the best features of a quadtree and a skip list [5]. The cost of building
a skip quadtree for any subset 7 of the set of colored points in § is O(n'logn’).
In the worst case, when n’ = m, this computational cost is the same needed
to build the data structure used in [4]. The asymptotic computational cost of
the delete operation in 7’s skip quadtree is O(logn’). The neighbor operation
is used combined with the delete operation to prevent re-finding points. This
corresponds to a range searching operation in a skip quadtree followed by a set
of deletions. The range searching can be approximated in O(6~! logn’ 4+ u) time,
where u is the size of the output, for a small constant ¢ such that e > ¢ > 0 [5].
The approximate range searching outputs some ”false” neighbor points that can
be detected in O(1) time. We will denote ¢(n,n’) an upper bound on the amor-
tized time of performing neighbor operation in 7’s skip quadtree. This yields
a computational cost of O(nt(n,n’)) for finding an augmenting path. Since we
spent O(nt(n,n’)) time at each critical event for finding an augmenting path,
the total time of the testing algorithm sums O(n*n'3t(n,n’)).

In the worst case t(n,n’) € O(n’). However, if we assume that the amount of
noise in set 4 data is "reasonable” it can be proved that t(n,n’) € O(logn). More
specifically, we need any circle of radius € to intersects at most O(logn) colored

Efficient Colored Point Set Matching Under Noise 37

points in A. Regarding this condition we must bear in mind that e represents the
noise considered for every colored point, so supposing that at most a logarithmic
number of colored points can be in the same disk of radius € seems reasonable.
Otherwise, if we allowed O(n) points to be simultaneously in such a disk, the
amount of noise in the set would be similar to its diameter and we would actually
know very little about it.

4.3 Overall Computational Costs

If we put together the computational costs of the two parts of the matching
algorithm we can state that, under the assumptions presented in section

Lemma 4. The overall computational cost is O(n*m3logn). The bound is tight.

Proof. The lossless filtering step takes O(m? logm) computational time.

Given the O(n*n’3t(n,n’)) cost for every candidate zone, S with n’ = |S|,
when all candidate zones are considered, the total computational cost T is
>oc,cc O(n*ni®t(n,n;)) where n; = |C;]. Bearing in mind that t(n,n;) is logn
and factorizing we can say that T € n*logn) . .. O(n;®) taking into ac-
count that > . .. O(ni®) < (3¢ cc O(n;))® we obtain that T belongs to n*

logn(Q_sec O(n;))?, as each point belongs to at most 9 candidate zones then
>.c,cc O(n;) is O(m) and thus, the result follows. The tightness of the bound is
reached, for example, when A = B

This shows that from a formal point of view, our process takes, at its worst,
the same computational time as the algorithm that does not use the lossless
filtering step. Consequently we benefit from any reduction of the computational
time that the filtering achieves without any increase in the asymptotic costs. We
will quantify this (important) reduction in next section.

5 Implementation and Results

We have implemented all our algorithm using the C++ programming language
under a Linux environment. We used the g++ compiler without compiler opti-
mizations. All tests were run on a Pentium D machine with a 3 Ghz processor.
We have carried out a series of synthetic experiments in order to test the perfor-
mance of our algorithms. We focus specially on the lossless filtering algorithm
because it contains this paper main contributions.

Before describing the different aspects on which we have focused on each
of the tests, we state the part that they all have in common. In all the tests
we begin with a data set A that is introduced by the user. With this data we
generate a new set B that is built applying a (parameterized) number of random
transformations (rotations and translation) to set A. These transformation have
a fixed maximum distance of translations and each of the resulting points is
moved randomly (up to a fixed €) to simulate noise in data. Finally, we introduce
”white noise” by adding randomly distributed colored points.

38 Y. Diez and J.A. Sellares

25000
22500
20000
17500

g 15000 ‘//‘

g 12500 /‘

* 10000 A T
7500 "\'/
5000 ‘/ \y//

2500 Ay
pe—p—ppt—pf 0 o o oo Do o Qg or

40 80 10 16 20 22 24 28 30 32 40 44 50 60 66 80 88 96 11 11 13
000 O0O0OUOO0OOOUOOOO0O 0 0 002020

1B|

Fig. 4. Algorithm using searching step (T1) and not using it (T2)

The number of "noise points” introduced is| Apnumber of transformations)*
(noise parameter). In order to keep the discussion as simple as possible, all the
results in this section refer to an initial set of 20 colored points with 4 different col-
ors. The diameter of the set is 20, the maximum distance of translation is 1000 and
€ = 1. We will build different sets related to different number of transformations
and noise parameters. In each case, |B| = | A| * (number of transformations) x
(noise parameter + 1).

Effects of the Lossless Filtering Algorithm

The performance of the algorithm depends on the effectiveness that the lossless
Filtering step and the different parameters have on every data set, but at worst
it meets the best (theoretical) running time up to date. In the best case, the
initial problem is transformed into a series of subproblems of the same kind but
with cardinality close to n = |A|, producing a great saving of computational
effort. In this section we aim at quantifying this saving in computational time.
Figure @ shows the compared behavior of the matching algorithm undergoing
and not undergoing the lossless filtering algorithm (represented by times T1 and
T2 in respectively in the figure, both times are given in seconds). This lossless
filtering algorithm uses all the parameters described through this paper.

We must state here that the sizes considered here are small given the huge
computational time needed by the algorithm that does not include lossless fil-
tering. It is clear from the figure that, even when the theoretical computational
costs are still high due to the problem’s inherent complexity, using the lossless
filtering algorithm saves a lot of computational effort.

Discussion on geometric parameters

In this section we provide results that measure the effectiveness of the differ-
ent geometric parameters used during the lossless filtering algorithm. Figure
presents the number of candidate zones and computational costs for the search
algorithm resulting from 1) using only the "number of colored points* (Num.)
parameter 2) using the former and the histogram of points’s colors (Histo.) and
3) using the two just mentioned and the ”"maximum and minimum distance be-
tween points of the same color® (Dist.) parameters. All test were carried out

Efficient Colored Point Set Matching Under Noise 39

|B| Num. Num. / Histo. Num. / Histo. / Dist.
Number of zones|Time(s) [Number of zones|Time(s) |[Number of zones|Time(s)

500 281 << 0.01|13 << 0.01|10 0.01
5000 |2974 0.01 18 0.01 13 0.55
10000 (3760 << 0.01|26 0.01 18 1.06
15000 (4030 0.01 36 << 0.01|23 2.09
20000 (4745 0.01 44 0.01 14 2.73
25000 (6307 0.01 637 0.01 13 2.93
50000 (12397 0.01 3029 0.01 40 40

75000 |15564 0.01 6382 0.02 240 3.72
100000{15746 0.01 9564 0.02 1078 3.44
125000{15879 0.02 11533 0.02 2940 4.12

with a fixed number of transformations (10) and with fixed distance of transla-
tion (1000).

We observe that the number of candidate zones is always lower when we use
more ”sophisticated “ geometric parameters and that this difference is much big-
ger in the case of the "number of colored points“ parameter. The time needed to
perform the search algorithm is bigger when we use more geometric parameters,
but still very far away from the cost of the matching algorithm. For example,
for a test with |B| = 500 the Losless Filtering algorithm takes 0.07 seconds (0.06
from the Quadtree Building Algorithm and 0.01 from the searching algorithm)
and the Matching algorithm takes 377.89 seconds. As a conclusion, the use of
more geometric parameters results in the output of less candidate zones that
we get. Moreover, although the use of more geometric parameters slightly in-
creases computational time, the cost of the Lossless filtering algorithm is still
much smaller than the matching algorithm’s.

6 Future Work

In our future work we will study the effect of considering other ”geometric pa-
rameters” in our algorithm. This includes ” general “ parameters that can be used
in any situation as well as specific ones related to ”real-life“ problems. Our meth-
ods are parallelizable, not only because calculations in its search step that run
on different subsets of the compressed quadtree can take place simultaneously,
but also because the subproblems that this search yields are all independent.
Consequently we also aim at using parallelization techniques to improve the
performance of our algorithm. Another main aspect comprehends the adapta-
tion of the algorithm to the 3D case.

References

1. Akutsu, T., Kanaya, K., Ohyama, A., Fujiyama, A.: Point Matching Under Non-
Uniform Distortions. Discrete Applied Mathematics, special issue: computational
biology series IV, 5-21 (2003)

40

10.

11.

Y. Diez and J.A. Sellares

Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity and symme-
tries of geometric objects. Discrete & Computational Geometry 3, 237-256 (1988)
Choi, V., Goyal, N.: A Combinatorial Shape Matching Algorithm for Rigid Protein
Docking. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 285-296. Springer, Heidelberg (2004)

. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in Bottleneck Matching and related

problems. Algorithmica 31, 1-28 (2001)

Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data
structure for multidimensional data. In: 21st ACM Symp. on Comp. Geom., pp.
296-305. ACM Press, New York (2005)

Finn, P., Kavraki, L.E., Latombe, J.C., Motwani, R., Shelton, C., Venkatasubra-
manian, S., Yao, A.: Rapid: Randomized pharmacophore identification for drug
design. In: Proc. 13th ACM Symp. Comp. Geom., pp. 324-333. ACM Press, New
York (1997)

Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congru-
ence. Computational Geometry: Theory and Applications 4(3), 137-156 (1994)
Hopcroft, J.E., Karp, R.M.: An n®/? algorithm for maximum matchings in bipartite
graphs. STAM Journal on Computing 2(4), 225-231 (1973)

Hunt, K.H.: Kinematic Geometry of Mechanisms, ch. 4,7. Oxford University Press,
Oxford (1978)

Indyk, P., Venkatasubramanian, S.: Approximate congruence in nearly linear time.
Comput. Geom. 24(2), 115-128 (2003)

Weber, G., Knipping, L., Alt, H.: An Application of Point Pattern Matching in
Astronautics. J. Symbolic Computation 11, 1-20 (1994)

On Intersecting a Set of Isothetic Line Segments
with a Convex Polygon of Minimum Area

Asish Mukhopadhyay!, Eugene Greene!, and S.V. Rao?

1 School of Computer Science, University of Windsor, Canada
2 Department of Comp. Sc. and Engg., IIT Guwahati, India

Abstract. We describe an O(n?)-time algorithm for computing a
minimum-area convex polygon that intersects a set of m isothetic line
segments.

1 Introduction

At the 4th NYU Computational Geometry Day, A. Tamir [O'R87] posed the
problem of deciding if there exists a convex polygon whose boundary intersects
a set of n line segments in the plane. Goodrich and Snoeyink [GS90] proposed
a decision algorithm that runs in O(nlogn) time and O(n) space for a set of
vertical line segments. In addition, they showed how to compute one of minimum
area/perimeter in O(n?) time whenever such a convex polygon exists.

Subsequently, some authors considered a slightly weaker version of this prob-
lem by interpreting “intersection” to mean intersection with the boundary or
interior of the convex polygon. Mukhopadhyay et al proposed an
O(nlogn) time algorithm to compute a minimum-area convex polygon that in-
tersects a set of n vertical segments. This algorithm was rediscovered by Lofter
and Kreveld twelve years later [LvK06] in a completely different context!! Lyons
et al [LMR] proposed an interesting O(n log n) algorithm to compute a minimum-
perimeter convex polygon that intersects a set of n isothetic line segments by
reducing the problem to a shortest-path computation. Rappaport gen-
eralized this result further by providing an O(nlogn) algorithm for a set of line
segments, each allowed to be oriented in a fixed number of directions.

Tamir’s original problem, to the best of our knowledge, still remains open and
the principal motivation behind this research is that it might provide a clue as to
how to solve this difficult problem. In this paper we propose an O(n?) algorithm
to compute a minimum-area convex polygon for which the boundary or interior
intersects a set of n isothetic segments, building primarily on the ideas implicit
in the work of Mukhopadhyay et al [MKB93]. It is an improved and corrected
version of the technical report [Muk06] in which we had proposed an O(n®)
algorithm for the same problem. After this report was written, we became aware
of the work of Loffler and van Kreveld [LvKO06|, who, in an entirely different
context, proposed an O(n?) algorithm to find the minimum area convex polygon
that intersects a set of n iso-oriented squares that parallels our own effort to solve
the problem discussed here. It turns out that a simple classification scheme of

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 41 2007.
© Springer-Verlag Berlin Heidelberg 2007

42 A. Mukhopadhyay, E. Greene, and S.V. Rao

(a) (0)

Fig.1. (a) A set of vertical line segments with a common transversal (b) Convex
polygon that must be included by any polygon that intersects S

/

[LvK06] can be used to improve the time-complexity of the algorithm reported
in our earlier effort [Muk06] to O(n?) as we show below.

The paper is organised as follows. In the following section we briefly discuss
the problem for a set of n vertical line segments. This provides a basis for an
algorithm for isothetic segments, discussed in the next section. We provide an
analysis of the algorithm in the following section. Conclusions and pointers to
further research are discussed in the next and final section.

2 Vertical Line Segments

In this section we briefly revisit Mukhopadhyay et al’s algorithm for computing
a minimum-area polygon for a set S of n vertical line segments [MKB93]. A line
segment in S with end-points p and ¢ is denoted by pq. The functions top(.) and
bot(.) return its upper and lower end-points. In what follows, by a line segment
we shall mean a vertical line segment.

We first observe that the minimum-area polygon reduces to an arbitrary line
segment that crosses all the segments in S when all the segments have a common
transversal, as in Fig. [[[(a). In this case, the area is defined to be 0. We will not
be considering this case (see Edelsbrunner et al [EMPT82]).

We assume, without loss of generality, that there is a unique leftmost line-
segment [L and a unique rightmost line-segment rR. The minimum-area convex
polygon has its vertices among the top and bottom end points of the segments
that lie between the leftmost and rightmost segments and a vertex on each of
the latter. The main algorithmic problem is to determine the latter vertices, and
to do this we need a characterization of the minimum-area polygon P, .

The upper chain of the convex hull of the bottom end-points of the line-
segments in S has the property that bot(s) of each line-segment s lies on or
below it. If we partially order convex chains over a given range of z-values
by defining a chain to be “less than or equal” to another if at every point of

On Intersecting a Set of Isothetic Line Segments 43

the range the corresponding y-value of the former is less than or equal to the
corresponding y-value of the latter, then the upper hull of the lower end-points
is the “smallest” one in the given partial order to have the above property. To
reflect this we denote this lowest upward-convex chain by luc(S).

Similarly, the lower chain of the convex hull of the top end-points is the
“largest” among all convex chains which have top(s) for each line segment s
lying on or above it. We denote this highest downward-convex chain by hde(S).

Lemma 1. If P is a convex polygon, lying between IL and rR, that intersects
all the line-segments in S then at every value of x between [L and rR the upper
hull of P lies “on or above” luc(S) and its lower hull lies “on or below” hdc(S).

Thus any convex polygon P which intersects all the segments must include the
area bounded by the polygon with thick edges as shown in Fig. dI(b).

In particular, this is true of the minimum area convex polygon, P,,. To
further sharpen the characterization of Py, let v; be its leftmost vertex (on
IL) and v, its rightmost vertex (on rR).

Lemma 2. P,,;, is obtained by drawing tangents from v; and v, to hdc(S) and

luc(S).

As noted earlier, the essential algorithmic problem is to determine v; and v,.. The
following lemma suggests that the determination of these vertices can proceed
independently.

Lemma 3. v; is invisible to v, with respect to hde(S) and luc(S).

Each can be determined by solving local optimization problems. See Fig. [X(a).
On the left, we have to determine v;, with tangent to luc(S), at the point a,
and with tangent to hdc(S), at the point b, so that the area of the Avab is
a minimum. Similarly, on the right we have to determine v,, with tangent to
luc(S), at the point o/, and with tangent to hde(S), at the point ¥, so that the
area of the Av,a’b’ is a minimum.

We discuss how to solve the optimization problem on the left; the solution is
exactly the same for the right side. The edges that make up hde(S) and luc(S)
are extended to partition the leftmost interval [L into subintervals. From each
point of a given subinterval, we can draw tangents to a vertex of hde(S) and to
a vertex of luc(S) as shown in Fig. 2(b), where from the point p in the interval
[u,v] on IL, tangents have been drawn to the convex chains hde(S) and luc(S).
The optimization for each interval is quite simple - the point for which the area
18 a mintmum will have to be an end point of the interval, determined by the
skew of the line joining the points of tangency with respect to [L.

The following is an interesting property of the partition point, v;, on [L,
generated by edge e on luc(S) or hde(S), that results in the left half of the
minimum polygon.

Lemma 4. The point of tangency from v; to the chain not containing e lies in
the vertical strip defined by e.

44 A. Mukhopadhyay, E. Greene, and S.V. Rao

(a) (b)

Fig. 2. (a) Two independent optimization problems (b) Tangents to hdc(S) and luc(S)
from a point on a subinterval of [L

It is simple enough to look through all partition points on [L for the one with
this property. The same can be done for the partition points on rR. A formal
algorithm for doing this is shown in Fig.

Algorithm VerticalMinPolyStabber(S)

1. Compute the upper hull luc(S) of the points bot(s) and the lower hull hdc(S) of
the points top(s).

2. Extend the edges of these chains to partition L (rR); store the extended edges and
corresponding points of tangency, on luc(S) and hde(S), for each partition point.

3. For each partition point on [L (rR), test it for the above property; store the point
as the optimal left (right) partition point if the property is present.

4. Report the minimum polygon by joining the left half to the right half using the
portions of luc(S) and hdc(S) between the points of tangency and the extended
edges.

Fig. 3. The algorithm for vertical segments

2.1 Analysis of VerticalMinPolyStabber

The time-complexity of Step 1 is in O(nlogn). The time-complexities of Steps
2, 3, and 4 are in O(n). Hence the time-complexity of VerticalMinPolyStabber
is in O(nlogn).

3 Isothetic Line Segments

We now consider the case where a line segment in .S can be vertical or horizontal.

On Intersecting a Set of Isothetic Line Segments 45

Four functions are associated with each line segment s - top(s), bot(s),
left(s) and right(s) that respectively return the top, bottom, left and right
end-points of s. For a vertical line segment, the functions left() and right()
are undefined, while top() and bot() are undefined for a horizontal line segment.

We first find four particular line segments in S. Find the vertical segment
t; for which bot(t1) has the highest y-value, and find the highest horizontal
segment to. If bot(t1) is above to, then call ¢; the “top-most” extreme segment
(tT). Otherwise, to will be the top-most. Similarly, find the horizontal segment
r1 for which left(ry) has the highest z-value, and find the vertical segment
ro with the highest z-value. If left(ry) is to the right of ro, then call r; the
“right-most” extreme segment (rR). Otherwise, ro will be the right-most. If the
vertical segment by, for which top(b1) has the lowest y-value, is completely below
the lowest horizontal segment by, then b; will be the “bottom-most” extreme
segment (bB). Otherwise, b will be the bottom-most. And if the horizontal
segment [y, for which right(ly) has the lowest a-value, is completely to the
left of the left-most vertical segment l5, then [; will be the “left-most” extreme
segment (IL). Otherwise, Iy will be the left-most one. We will assume that these
extreme segments are unique.

In the case of vertical segments, we had two segments (/L and rR) on which
an internal point had to be chosen. In this case, we can have at most four seg-
ments: the extreme segments [L, tT', rR, and bB. Let v;, v;, v, and v, be the
points that (L, tT', rR, and bB respectively contribute to P,;,. We can have
sixteen different cases. At one end of the spectrum, we have the simplest case
in which the left-most and right-most segments are horizontal and the top-most
and bottom-most are vertical. In this case, each extreme segment contributes
one endpoint to Pp,n. At the other end of the spectrum we have the most diffi-
cult case, in which the top-most and the bottom-most are horizontal segments,
while the left-most and the right-most are vertical segments (see Fig. d(a)). In
the following discussion, we focus on this case only as it subsumes all others.

We compute 4 different hull chains as shown in Fig. @l(a).

— The convex chain going from [to T is part of the convex hull of right(s)
and bot(s) of all segments s in S, whenever these are defined. We call this
the RB-chain.

— The convex chain going from ¢ to r is part of the convex hull of 1eft(s) and
bot(s) of all segments s in S, whenever these are defined. We call this the
L B-chain.

— The convex chain going from R to b is part of the convex hull of 1eft(s) and
top(s) of all segments s in S, whenever these are defined. We call this the
LT-chain.

— The convex chain going from B to L is part of the convex hull of right(s)
and top(s) of all segments s in S, whenever these are defined. We call this
the RT-chain.

Following [Rap95], we will call the above convex chains collectively “critical”
chains.

46 A. Mukhopadhyay, E. Greene, and S.V. Rao

Fig. 4. (a) Four hull chains for isothetic line segments (b) No common intersection,
yet no line transversal

Lemma 5. Let P be any convex polygonal stabber of S. Then the upper-left
convex chain of P must be on or above and to the left of the RB-chain; the
upper-right chain of P must be on or above and to the right of the L B-chain; the
lower-right chain of P must be on or below and to the right of the LT -chain, and;
the lower-left chain of P must be on or below and to the left of the RT-chain.

Proof: By the definition of P, no horizontal segment h can have right(h) to the
left of the upper left convex subchain of P. The RB-chain by construction has
the property of being on or to the left of right(h) for the horizontal segments
h in the horizontal strip defined by RB. Thus the subchain must be on or to
the left of the RB-chain. Similarly, no vertical segment v can have bot(v) above
the same convex subchain of P. Again by construction, bot(v) for the vertical
segments v in the vertical strip defined by RB are all on or below RB. Thus
the convex subchain of P must be on or above the RB-chain. This means a
vertical line dropped from +oco will not hit the RB-chain before it hits this
convex subchain of P; and a horizontal line from —oo will not hit the RB-chain
first.

We can argue similarly for the remaining three convex subchains of P, to
complete the proof. O

In the case of vertical segments, if the areas defined by luc(S) and hdc(S) have
no common intersection, then there is a line transversal of S. In this case, how-
ever, if the areas defined by RB, LB, LT, and RT do not have a common
intersection, a line transversal of S does not necessarily exist (see Fig. E(b) for
a counterexample).

As in the case of only vertical segments, we extend the edges of the convex
chains to partition the segments (L, rR, tT' and bB into subintervals. From
any point of [L, we can draw a tangent to the RB-chain or the LB-chain and a

On Intersecting a Set of Isothetic Line Segments 47

Fig. 5. An example of each connection

tangent to the RT-chain or the LT-chain. The points of tangency on these chains
will be the same for all points in a given subinterval. So we label a subinterval
with the associated points of tangency on these chains.

For a given quadruplet of subintervals, one subinterval from each of IL, rR,
tT and bB, we must solve an optimization problem, where the objective function
is the area of P. There are at most four unknown parameters oy, oy, a,., and
ap. These parameters correspond to the positions of v;, v, v, and v, in the
subintervals. (For example: v; = ;L + (1 — oy)l, where 0 < oy < 1.) Let us call
these points the “extreme” vertices of P. The objective function is a degree two
function of these parameters. The solution can be obtained using the method of
Lagrange multipliers with inequality constraints. There are O(n) subintervals on
each extreme segment, and so there are O(n?) quadruplets of subintervals. This
immediately suggests a brute-force algorithm of complexity O(n°), if we allow
O(n) additional time for the area computation in each case. Below we show how
to reduce the complexity of this brute-force algorithm to O(n?).

There are many possibilities regarding the shapes of the connections between
extreme vertices (see Fig.H), and regarding which extreme vertices are connected
(see Fig.[Bla) and Fig. Bl(b) for examples).

Case 0. A connection is a single edge that does not touch any of the critical
chains.

Case 1. A connection is a single edge that is tangent to an underlying critical
chain.

Case 2. A connection is composed of many edges; this means that an underlying
critical chain contributes some structure to it.

Each of the above cases can be further subdivided according to which extreme
vertices they join. These subdivisions were not considered in [LvK06], and they
result in more configurations for consideration.

(i) A connection can join two “adjacent” extreme vertices (for example: v; to
ve; v to vy ete.; see Fig. B).

48 A. Mukhopadhyay, E. Greene, and S.V. Rao

(b)

Fig. 6. (a) A connection that bypasses bB (b) A connection that bypasses rR and bB

vy

vy

vy,

Fig. 7. Pattern A (lower half of bold polygon) and Pattern C (upper half of bold
polygon)

(ii) A connection can join two non-adjacent extreme vertices (v; to v, or v; to
vp), bypassing one of the extreme segments. See Fig. [Bf(a).

(iii) There can be two connections that join two adjacent extreme vertices: one
of (i) and another that bypasses the other extreme segments. See Fig. [6(b).

Note that it is not possible for a connection to bypass three extreme segments.
All of the convex chains of P,,;,, separated by extreme vertices, have to match one
of the above cases. When these connections occur in certain patterns, the number
of interval tuples to be considered can be reduced by at least one order of n.

Pattern A. Two occurrences of Case 2: This divides the problem into two in-
dependent sub-problems.
If the two connections occur on “adjacent” critical chains (like RB and LB,
or LB and LT') then the problem is reduced to searching through O(n) inter-
vals on one extreme segment, and searching through O(n?) interval triplets,
for the other three extreme segments. See Fig. [for an example of this.

On Intersecting a Set of Isothetic Line Segments 49

If the connections occur on “opposite” chains (RB and LT, or RT and LB)
then the problem is reduced to choosing from O(n?) interval pairs for the
two extreme segments on one side of the chains, and choosing from O(n?)
interval pairs for the two extreme segments on the other side.

Pattern B. An occurrence of Case 1: (For example, the connection between
vy and v in Fig. B{l) There are only O(n) interval pairs that are connected
by a line that is tangent to the underlying critical chain. One can think
of a tangent line rotating along the underlying critical chain: this line will
hit only O(n) interval pairs. So, there will be O(n?) interval quadruplets to
consider.

Pattern C. Two adjacent occurrences of Case 0: (See Fig. [l The extreme
segment attached to these connections will not have to be divided into any
intervals, since the underlying critical chains will not contribute any structure
to that part of Pi,. Again, there will be only O(n?) interval quadruplets
to consider.

We will show that in each possible configuration of connections, there will be
at most O(n?) interval tuples through which we will have to search.

(i) Assume that, in Py, there is a connection that bypasses two consecutive
extreme edges. Then there are only two segments from which to choose
extreme points, and hence only O(n?) interval pairs through which to search.

(ii) Assume that P,,;, has two connections that bypass exactly one extreme
segment each. Then again there are only two extreme segments from which
to choose a point, and so only O(n?) interval pairs.

(iii) Assume that P,,;, has exactly one connection that bypasses only one ex-
treme edge. That means that there are three extreme segments, and O(n?)
interval triplets. But, there are three connections in Py,;,. So, at least one
pattern has to occur in P,,;,,. Either there will be (A) a pair of connections of
Case 2, (B) a connection of Case 1, or (C) an adjacent pair of connections of
Case 0. The occurrence of any one of these patterns will reduce the number
of interval triplets to O(n?).

(iv) Assume none of the connections bypass any extreme segments. In every
configuration except the ones similar to that shown in Fig. B, at least two
patterns occur, reducing the number of interval tuples by two orders of n.

If, as in Fig. B there are exactly two non-adjacent Case 0 connections, one
Case 2 connection, and one Case 1 connection, then there are only O(n) interval
quadruplets to consider: We have two segments, rR and bB, that are similar
to the extreme segments in the vertical segment problem. v, and v, will be
partition points determined by edges on LT'. v, will be chosen such that v; is
in the vertical strip defined by the edge that generates v,.. Similarly, v, will be
chosen such that v; is in the horizontal strip defined by the edge that generates
vp. There are only O(n) interval pairs on [L and tT that are joined by a Case
1 connection, and it is these interval pairs that will determine the choice of v
and v,.. So, in configurations with these connections, there are only O(n) interval
tuples to consider.

50 A. Mukhopadhyay, E. Greene, and S.V. Rao

v vr

Vb

Fig. 8. Only Pattern B occurs

Algorithm IsotheticMinPolyStabber(.S)

1. Compute the critical chains RB, LB, LT, and RT.

2. Extend the edges of these chains to partition the extreme segments [L, tT', r R, and
bB; store the extended edges and corresponding points of tangency, on the critical
chains, for each partition point.

3. For each configuration of connections:

3.1 For each possible tuple of intervals:
3.1.1 Solve an optimization problem with suitable constraints, resulting in
two to four extreme vertices.
3.1.2 Find the area of the polygon using these extreme vertices.
3.1.3 If this is the smallest polygon seen so far then store these extreme
vertices as the optimal ones.

4. Report the minimum polygon by joining the optimal extreme vertices, using their

points of tangency to the critical chains.

Fig. 9. The algorithm for isothetic segments

4 Analysis of the Algorithm

See Fig. [@ for the algorithm. We need to go through all configurations of connec-
tions. There are a constant number of them (219). For each configuration, there
are O(n?) interval tuples to consider. A brute force O(n)-time area calculation
for each tuple would be too expensive. It is not clear in [LvK06] how areas are
calculated in O(1) time per tuple. The following is a solution to this.

When going through the possible intervals on an extreme segment, we can
move incrementally, and so it is possible to update the area from the previous

On Intersecting a Set of Isothetic Line Segments 51

v3

Fig. 10. Moving incrementally in Case 0 - Case 2

polygon to find the area for the new polygon just created. Updates can be done
quickly so that we need O(1) amortized time per tuple. On an extreme segment,
there are six possibilities regarding the adjacent connections.

Case 0 - Case 0. We are only considering one interval in this case, so we just
calculate the polygon area once.

Case 0 - Case 2. See Fig. Assume we are updating the polygon by chang-
ing from a vertex pg between vy and vy, to a vertex p; between vy and vs.
The Case 0 connection forms one side of a triangle. Another side is formed
by the first edge of the case 2 connection (the edge that touches the extreme
segment). In Fig. [IQ this triangle will be Aappb;. Another triangle is formed
by the vertex on the far end of the Case 0 connection (vertex a in Fig. [I0),
and the first edge, on the chain under the Case 2 connection, that is invisible
to the previous point on the extreme segment (b1bs in Fig. [[0)). In Fig.
this will be Aabibs. We are able to compute the new area by subtracting
the areas of Aapgby and Aabiby, and then adding the area of the triangle
formed by the farther vertex of the Case 0 connection (vertex a) and the
first edge of the Case 2 connection (Aapibs).

Case 1 - Case 0, Case 1 - Case 1, Case 1 - Case 2. Whenever there is a
Case 1 connection, we are moving along two line segments at once. First,
assume that all of the connections in the configuration are Case 1. Then,
it is trivial to just recompute the polygon area, because the polygon is a
quadrilateral. Assuming there are between one and three adjacent Case 1
connections, the area defined by the Case 1 connections will be composed of
at most 6 vertices (b, vy, vt, vy, vy, and ap in Fig. [I). When the extreme
vertices change, the polygon area can be updated by removing the area
formed by the previous hexagon, and adding the area formed by the new
hexagon. If the points of tangency (ay or b,) change, it is a matter of adding
or subtracting the area of a triangle. (Assuming the extreme vertices are
moving in the directions of the arrows, if a; changes then a triangle will
have to be added, and if b, changes then a triangle will have to be removed.)

52 A. Mukhopadhyay, E. Greene, and S.V. Rao

Fig.11. Three Case 1 connections

Fig.12. Two Case 1 connections on opposite sides

If there are two Case 1 connections opposite each other (see Fig. [[2)), there
are two changing areas, defined by four vertices each. Again, it is simple
enough to update these areas.

Case 2 - Case 2. On an extreme segment, some of the partition points will
have been generated by a chain on one side (in Fig. [[3] u; is generated by a;
and a;y1), and other partition points will have been determined by a chain
on the other side (v; is generated by b; and bj;1). Assume we are going
through the intervals in the direction of the arrow. For the point py found in
interval vgvy, we will find the area of the resulting polygon in a traditional
manner. For the point p; found in the next interval, we will subtract the area
of Apgagby from the area of the previous polygon. Then we will subtract the

On Intersecting a Set of Isothetic Line Segments 53

Fig. 13. Moving incrementally in Case 2 - Case 2

area of Aagb1bs and then add the area of Aagpibs. For ps in the next interval,
we subtract the area of Aagp1bs and add the area of Aagaibs. Then we can
add the area of Aajpabs. We can discern a general principle here. Whenever
we pass a u;, we have to remember to add the area of a triangle defined
by critical chain vertices. Whenever we pass a v;, we have to remember to
subtract the area of a triangle defined by critical chain vertices.

Since we can use the previously calculated polygon area to find a new polygon
area in constant time, then we don’t need to spend O(n) time recalculating the
new polygon area for each interval tuple. The total time spent finding polygon
areas will be O(n?), and so we can solve the whole problem in O(n?) time.

5 Conclusions

In this paper we have described an O(n?) time algorithm for computing a
minimum-area convex polygon that stabs a set of n isothetic line segments.
It would be interesting to know if this is optimal since for the isothetic case,
a minimum perimeter convex polygon that intersects all the segments can be
found in O(nlogn) time. Another interesting question is to extend the approach
presented here to the case of a set of arbitrarily oriented line segments, which
brings us back to Tamir’s original problem in its watered-down version.

We have an implementation of the vertical segments version, available at
http://cs.uwindsor.ca/“asishm/ software.html, and are looking into the
possibility of implementing this much more complex isothetic case.

References

[EMP*82] Edelsbrunner, H., Maurer, H.A., Preparata, F.P., Rosenberg, A.L., Welzl,
E., Wood, D.: Stabbing line segments. BIT 22, 274-281 (1982)

[GS90] Goodrich, M., Snoeyink, J.: Stabbing parallel segments with a convex poly-
gon. Computer vision, Graphics and Image Processing 49, 152-170 (1990)

54 A. Mukhopadhyay, E. Greene, and S.V. Rao

[LMR]

[LvKO06]

[MKB93]

[MukO06]

[O’R87]

[Rap95]

Lyons, K.A., Meijer, H., Rappaport, D.: Minimum polygon stabbers of iso-
thetic line segments. Department of Computing and Information Science,
Queen’s University, Ontario, Canada

Loffler, M., van Kreveld, M.: Largest and smallest convex hulls for impre-
cise points. Technical Report UU-CS-2006-019, Institute of Information
and Computing Sciences, Utrecht University (2006)

Mukhopadhyay, A., Kumar, C., Bhattacharya, B.: Computing an area-
optimal convex polygonal stabber of a set of parallel line segments. In:
Proceedings of the 5th Canadian Conference on Computational Geometry,
pp. 169-174 (1993)

Mukhopadhyay, A.: On intersecting a set of isothetic line segments with
a convex polygon of minimum area. Technical Report 06-010, School of
Computer Science, University of Windsor (2006)

O’Rourke: Computational geometry column #3. SIGGRAPHB: Computer
Graphics (SIGGRAPH) 21 (1987)

Rappaport, D.: Minimum polygon transversals of line segments. Interna-
tional Journal of Computational Geometry & Applications 5(3), 243-256
(1995)

Real-Time Triangulation of Molecular Surfaces

Joonghyun Ryu', Rhohun Park!,
Jeongyeon Seo?, Chongmin Kim?, Hyun Chan Lee?, and Deok-Soo Kim?

! Voronoi Diagram Research Center, Hanyang University
17 Haengdang-dong, Seongdong-gu Seoul 133-791, Korea
{jhryu, rhpark}@voronoi.hanyang.ac.kr
2 Department of Industrial Engineering, Hanyang University
17 Haengdang-dong, Seongdong-gu Seoul 133-791, Korea
{jyseo, cmkim}@voronoi.hanyang.ac.kr, dskim@hanyang.ac.kr
Department of Industrial Engineering , Hongik University
Sangsu-dong, 72-1. Mapo-gu, Seoul, Korea
hclee@wow.hongik.ac.kr

Abstract. Protein consists of a set of atoms. Given a protein, the molec-
ular surface of the protein is defined with respect to a probe approximat-
ing a solvent molecule. This paper presents an efficient, as efficient as the
realtime, algorithm to triangulate the blending surfaces which is the most
critical subset of a molecular surface. For the quick evaluation of points
on the surface, the proposed algorithm uses masks which are similar
in their concepts to those in subdivision surfaces. More fundamentally,
the proposed algorithm takes advantage of the concise representation of
topology among atoms stored in the [-shape which is indeed used in
the computation of the blending surface itself. Given blending surfaces
and the corresponding (3-shape, the proposed algorithm triangulates the
blending surfaces in O(c - m) time in the worst case, where m is the
number of boundary atoms in the protein and c is the number of point
evaluations on a patch in the blending surface.

Keywords: a protein, a molecular surface, 3-shape, a Voronoi diagram
of atoms.

1 Introduction

It has been generally agreed that the structure of molecule is one of the most
important factors which determine the functions of a molecule. Hence, studies
have been conducted to analyze the structure of a molecule. Molecular surface
is an important example of molecular structure.

Protein consists of a set of atoms where the atoms are usually modelled by
spherical balls. Since a protein is usually solvated and the interaction between
a protein and solvent molecules is important, we build a protein model in the
solvent so that the interaction can be conveniently analyzed. A solvent molecule
is usually approximated by a spherical ball, called a probe, which encloses a
solvent molecule. This approximation is due to geometric as well as stochastic

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part 1, pp. 55[67] 2007,
© Springer-Verlag Berlin Heidelberg 2007

56 J. Ryu et al.

complexities of the system. Then, different types of surfaces, including a molec-
ular surface, corresponding to the probe are defined on a protein [TI2J3I4].

Visualization of a molecular surface is important for studying various biolog-
ical properties of molecules [4I56]. In particular, a fast visualization is preferred
since there are usually many atoms in proteins. Ordinary proteins consist of
thousands to hundreds of thousands atoms. Hence, the efficient triangulation of
a molecular surface is critical to facilitate a fast visualization. Besides, the sur-
face area and volume, which are important mass properties for understanding the
characteristics of a molecule, can be also easily calculated from the triangulation
of the surface [7].

This paper presents an algorithm for efficiently triangulating the blending
surfaces of a protein which is the important part of the molecular surface of the
protein. We consider that the blending surfaces themselves are computed as a
preprocessing via the (-shape of a protein corresponding to the probe [8/9].

2 Related Works

Richards was the first who defined the molecular surface of protein [2]. Since
then, several computational studies of the surfaces on a protein have been
conducted. Connolly computed the molecular surface of a protein to calcu-
late the protein volume, electrostatic potential, and interface surfaces between
molecules [3]. Connolly also presented an analytic representation of a molecular
surface [10] where he pointed out that a molecular surface consists of three types
of patches: a convex spherical patch, a saddle-shaped toroidal patch and a con-
cave spherical patch. Later, Connolly discussed a triangulation of a molecular
surface [7].

Sanner et al. provided a more efficient algorithm for a molecular surface which
uses a reduced surface of a molecule which can be computed from a binary spatial
division tree [I1]. It is very interesting to find that the reduced surface is indeed
equivalent, in its concept, to an instance of the (-shape. Varshney et al. pre-
sented an algorithm based on a spatial grid which facilitates a relatively efficient
neighbor search among atoms [12]. Bajaj et al. presented a trimmed NURBS
(Non-Uniform Rational B-Spline) representation of a molecular surface so that
a standard graphics library such as OpenGL can be conveniently used [I3]. In this
work, they used the power diagram of atoms for a neighbor search. Later, they
also discussed a condition for re-computing molecular surfaces for the probes of
varying sizes without re-computing the power diagram [14].

Edelsbrunner et al. introduced the concept of a molecular skin surface, which is
the implicit surface defined by the envelope of a family of infinitely many spheres
controlled by a finite collection of weighted points [15]. Different from other
approaches, the skin surface is tangent continuous and does not self-intersect.
There are several works on the triangulations of a molecular skin surface [L6/I7].

In this paper, we present a fast, as fast as a realtime, algorithm for triangu-
lating blending surfaces in a molecular surface of a protein. We consider that
blending surfaces in a molecular surface are available, as a preprocessing, via

Real-Time Triangulation of Molecular Surfaces 57

o m 1 3

10) 0 i
(b) (c)

Fig. 1. An example of a molecular surface. (a) Examples of link patches and rolling
patches, (b) the topology of a triangle on a link patch of the crudest resolution(depth 0),
and (c) the topology of two triangles on a rolling patch of the crudest resolution(depth
0)

the [-shape of atoms which is again computed from the quasi-triangulation of
atoms [I8IT9120]. Note that a quasi-triangulation is the dual structure of the
Voronoi diagram of atoms.

3 Surface Types on a Molecule

Let A = {a1,a2,...,a,} be a finite set of three-dimensional spherical atoms
a; = {x||x — ¢;| < r;} where ¢; and r; are the center and van der Waals radius
of a;, respectively. A protein, a DNA, or a RNA may be considered an example
of the set A.

Definition 1. Let V(A) = {z € R3|z C Ja; € A}. Then, the boundary 0V(A)
of V(A) is the van der Waals surface of a molecule A.

Let a probe p = (¢, 7p) be an open ball where ¢, and r,, are the center and the
radius of the probe. Consider the union of all possible empty probes in R?. Then,
we can define a molecular surface of A by the complement of the union and V(A).

Definition 2. M S,(A4) = {0(R> — Jp)[pV(A) = 0} is the molecular surface
of a molecule A for a given probe p.

M S, (A) consist of points on the van der Waals surface of atoms, called a solvent
contact surface SC'S and other points from the surface of a probe, called a
reentrant surface RS. RS consists of two types of surface regions: a link blending
surface and a rolling blending surface. A link blending surface is defined when a
probe is located on the top of a triplet of atoms and a rolling blending surface
is defined when a probe rolls over a pair of atoms [TOJT2I]]. In this paper, we
present a realtime algorithm for triangulating all blending surfaces in M S, (A).

A link blending surface consists of a set of spherical reentrant surface patches,
called link patches, from the probe boundaries which are on the top of nearby
three atoms. A rolling blending surface consists of a set of toroidal reentrant
surface patches, called rolling patches, which are defined by a set of empty probes
between two nearby atoms. Examples of link patches and rolling patches are
shown in Fig. [(a).

58 J. Ryu et al.

4 (B-Shape for Blending Surfaces

A [(-shape is a generalization of the well-known theory of a-shape which is
initially proposed in [2I] and later extended to the concept in 3D by Edelsbrunner
et al. [22]. Since the initial proposal of a-shape is not able to incorporate the
weights of points properly, the weighted a-shape was proposed [23]. However, the
weighted a-shape is not very convenient to provide a correct answer efficiently
to general queries on the proximity among non-intersecting atoms in Euclidean
distance metric because the weighted a-shape is based on the power distance
metric [I8]. To fully incorporate the variation of atom sizes, a theory of S-shape
was devised. The B-shape in 3D is a polytope bounded by vertices, edges and
triangles as an a-shape is. Given an atom set A corresponding to a protein, a
(-shape Sg(A) for A by a particular S-probe, where its radius is (3, is defined as
adopted from [I§].

Definition 3. Let p be a B-probe corresponding to a particular value of 3, 0 <
B < 00, and located at a particular location in R3. Let A(p) ={a€ A|pNA=
0,and(p) # 0} and C(p) = {c| a = (c,r) € A(p)}. Suppose 1\, is the convex
combination of elements in C(p). Then, the 3-shape Sp(A) of A is defined as a
polytope bounded by a set |, for all possible p in the space.

Each blending patch in a molecular surface M.S,(A) can be identified by refer-
ring to the edges and the triangular faces in 0Sg(A). It is known that the num-
ber of edges and triangular faces in dSg(A) is bounded by O(n) for molecules
in the worst case where n = |A| [QI24I12]. Therefore, it is obvious that the
blending surfaces in a molecular surface M S,(A) can be computed in O(n) if
each edge or triangular face on 0Sg(A) independently defines a rolling or a
link patch, respectively. However, it is not the case in the molecular surface
since intersections may often exist among link patches. Surprisingly, it is shown
that, even in this case, the blending surfaces in a molecular surface can be
correctly computed in O(n) time in the worst case if the §-shape is properly
used [9].

5 Triangulation of Blending Surfaces

Visualization of a molecular surface is important for studying various biological
properties of molecules [AB6]. For this purpose, the efficient computation of
both the mathematical representation and the triangulation of the surfaces are
critical since the number of atoms in molecules is usually significant [25126]27].
In this section, we discuss how to triangulate the blending surfaces efficiently
assuming that blending surfaces are available.

5.1 Triangulation of a Link Patch

Once a link patch and a rolling patch are computed, we need to triangulate the
patches in order to render the protein. In this case, the evaluation of sample
points on a patch is necessary for the triangulation of the patch.

Real-Time Triangulation of Molecular Surfaces 59

Fig. 2. Sampling points on a link patch via mid point calculation. (a) an example for
depth 1, (b) an example for depth 2.

A link patch is defined when a probe is on the top of three nearby atoms. If
we assume that a link patch does not intersect any other link patch, an initial
link patch A’ is a spherical triangle where each boundary edge of the patch is
an arc on a great circle of probe boundary Op.

Let ¢;,© = 0,1 and 2, be the contact points on three atoms where a probe p
touches the atoms. Hence, ¢;’s are the vertices of A\I. Let b/,i = 0,1 and 2, be
three arcs of A defined by the vertices ¢; and a probe center c,. Then, sample
points on b! can be evaluated with a uniform distribution (in the distance point
of view between consecutive evaluations) by recursive bisections on bf. Suppose
that the edge b{) is defined between ¢y and ¢; and let m3 be the mid point on
the edge. Then, mg can be obtained by the following equation.

mg = cp + Uoi X Tp (1)

where 7, is a radius of a probe p and g7 is the unit vector which bisects the angle
between ¢,¢; and ¢,¢i. Other sample points on the edge can be evaluated by
recursively applying Eq. ([I). Similar calculations can be applied to other edges
of bl and bl.

Once sample points on the boundary arcs are evaluated, we can also evaluate
sample points in the interior of a link patch via Eq. (). Fig. [shows schematic
diagrams of two examples for evaluating sample points on a link patch. The
black rectangles in this figure represent three contact points ¢;,i = 0,1, and 2
and the black dots represent the uniformly evaluated sample points. All sample
points in Fig. 2] (a) are on the boundary edge while sample points in Fig.[2 (b)
are both on the boundary and in the interior.

Definition 4. Consider a link patch A with three contact points c¢;,i = 0,1, and
2. Let D* be the sampling depth of a link patch A where 40" is the number
of triangles on \. The triangles are obtained by recursive subdivisions from the
wnitial triangle defined by ¢;,i = 0,1, and 2.

Fig. [l (b) shows an example of a link patch with sampling depth D = 0. Fig.
(a) and (b) show the sampling depths of 1 and 2, respectively. Note that the link
patches in Fig. 2l (a) and (b) consist of 4 and 16 triangles. Given three contact

60 J. Ryu et al.

points, we can evaluate additional points between every pair of sample points
and the order of point evaluations can be determined a priori.

Lemma 1. Given a sampling depth D* and three contact points of a link patch,
uniformly distributed sample points on the patch can be evaluated in an order
determined a priori.

Proof. Given two sample points v; and v; in an initial link patch A, anew sample
point between v; and v; can be computed via Eq. () regardless v; and v; are
on the boundary edges of A’ or not. Hence, we can evaluate all sample points
necessary for a given sampling depth in two steps as follows. First, evaluate a new
sample point between old sample points on each boundary edge of a link patch.
Then, evaluate new sample points in the interior of a link patch by using sample
points on boundary edge. Therefore, if three contact points have a consistent
order in their sequence, new sample points are evaluated in consistent order. 0O

The numbers attached near sample points in Fig. 2] represent the orders that
the points themselves are evaluated in case that three contact points are given
in a counter-clockwise order. To evaluate sample points in consistent order and
triangulate the evaluated sample points, we maintain two types of masks: an
edge index mask and a triangle index mask.

Definition 5. Suppose that D* =i. An edge index mask EF is a set of a pair of
integers where each pair of integers represents two indices for two sample points
on a link patch.

An edge index mask of a link patch with sampling depth D = 0 is EF =
{(0,1),(1,2),(2,0)} if three indices of three contact points are 0, 1 and 2. Sim-
ilarly, ElL ={(0,3),(3,1),(1,4),(4,2),(2,5),(5,0),(3,4), (4,5), (5,3) } is an edge
index mask for a link patch with D =1 (See Fig. @ (a)). Each edge in an edge
index mask corresponds to a new sample point to be evaluated. For example, v
is computed by referring to an edge (0,1) € EL. Note that an edge index mask
is invariant for any link patch with same sampling depth.

Definition 6. Suppose that DY = i. A triangle index mask TE is a set of a
triplet of integers where each triplet of integers represents three vertices of each
triangle defined by sample points on a link patch.

Hence, a triangle index mask of a link patch with D = 0 is T = {(0,1,2)}
and similarly, T = {(0,3,5), (1,4,3),(2,5,4), (3,4,5)} is a triangle index mask
for a link patch with D = 1. Once a triangle index mask T} is obtained for
a given sampling depth D = 4, the triangulation of sample points in all link
patches is completed because a triangle index mask T is invariant for any link
patch with DF = 4.

Theorem 1. Given an edge index mask EF | and a triangle index mask TL |,
an edge index mask EX and a triangle index mask T} can be obtained by splitting
each edge in EX | into two edges and subdividing each triangle in T} | into four
triangles.

Real-Time Triangulation of Molecular Surfaces 61

Proof. EF consist of two types of edges: the boundary edges EP or the interior
edges E! of a link patch with DL = i. EP can be obtained by splitting each edge
in EP | into two contagious edges where each edge can be split into two edges by
inserting a new vertex between two vertices of the edge. E! can be obtained by
splitting each edge in EL ; or by connecting each pair of new inserted vertices
which can be identified by referring to each triangle ¢ € T} .

Once EF is obtained, TF can be constructed by subdividing each triangle
t € TE, into four smaller triangles. The subdivision can be done by referring to
three new vertices in E} which are inserted to each edge of t € T} ;. O

Therefore, EF and T can be computed by repeatedly applying the procedure
in Theorem [to EY and TL. Given EF |, TF and three contact points, all the
necessary sample points of all link patches can be evaluated by referring to B |
and all link patches can be triangulated by referring to T/'. The order that each
triangle in T} is generated can be identified by referring to the order of three
vertices of t € T} | as shown in Fig. 2 (a). Note that EX ; and T/ are invariant
for a given sampling depth D¥ = i and the computation for generating EL |

and T is needed only once.

5.2 Triangulation of a Rolling Patch

A rolling patch is defined when a probe rolls over two nearby atoms. Hence,
sample points on a rolling patch can be determined by a set of sample probes
(probe positions) which come in tangential contact with two atoms. The locus of
the probes defining a rolling patch is either an arc or a complete circle. Therefore,
sample probes for determining sample points on a rolling patch can be computed
via Eq. ([@). Given a particular probe from sample probes, sample points defined
by the probe can be evaluated by using Eq. ([l) due to the following property.

Property 1. Given a particular probe p which is in tangential contact with two
nearby atoms, sample points of the rolling patch defined by p are on an arc of a
great circle of the probe boundary dp.

Fig. Blshows schematic diagrams of two examples for evaluating sample points
of a rolling patch. Black rectangles and dots are sample points on the sharing
boundary edges with adjacent link patches and each column of white dots rep-
resents sample points evaluated from each sample probe.

In this section, we assume that a rolling patch is partial where the locus of
a rolling patch is a circular arc. Note that a rolling patch can be complete; i.e.,
a rolling patch does not have adjacent link patches and its locus is a complete
circle [§]. In this case, if we divide the rolling patch into two sheet of patches, we
can handle these two patches as if they are two separate partial rolling patches.

Definition 7. Consider a rolling patch ~v with four corner points. Let DT be the
sampling depth of a rolling patch v where 2 - 4" s the number of triangles on
~. The triangles are obtained by recursive subdivisions from initial two triangles
defined by four corner points.

62 J. Ryu et al.

1 3 1 Q—Q M 3
4 8
3 p 10T T2 Tea| 14
4 80 5 4 C 5
7 2
2 6
9 Q 13
; 5 123
L S 2 2
6 15 6 20

Fig. 3. Sampling points on a rolling patch. (a) an example for depth 1, (b) an example
for depth 2.

Fig. @ (c) shows an example of a rolling patch with sampling depth D¥ = 0
where four corner points are from two adjacent link patches. Fig. Bl (a) and (b)
show the rolling patches with the sampling depths 1 and 2, respectively. Note
that the rolling patches in Fig.[3] (a) and (b) consist of 8 and 32 triangles. Given
four corner points, we can evaluate additional sample points between every pair
of sample points and on the boundary of additional sample probes. The order
of point evaluations can be determined a priori.

Lemma 2. Given a sampling depth and four corner points of a rolling patch,
all of the necessary points uniformly distributed on the patch can be evaluated in
an order determined a priori.

Proof. Each sample point on a rolling patch has its corresponding sample probe
p where p is in tangential contact with two nearby atoms. Hence, we can eval-
uate all sample points necessary for a given sampling depth in two steps. First,
evaluate new sample points between old sample points which correspond to old
sample probes. Then, compute new sample probes between old sample probes
and evaluate new sample points on the boundaries of new sample probes. There-
fore, if four corner points of a rolling patch have a consistent order in their
sequence, new sample points are evaluated in consistent order. a

The number attached near sample points in Fig. [3] represent the order that the
points are evaluated in case that four corner points are given in the order shown
in Fig. [(c). To evaluate sample points in consistent order and triangulate the
evaluated sample points, we maintain two types of index masks: an edge index
mask and a triangle index mask.

Definition 8. Suppose that D =i. An edge index mask EF is a set of a pair
of integers where each pair of integers represents two indices for two contagious
sample points on each sample probe defining a rolling patch.

An edge index mask of a rolling patch with sampling depth DF = 0 is Eft =
{(0,1),(2,3)} if the indices of four corner points are 0, 1, 2 and 3. Similarly,

Real-Time Triangulation of Molecular Surfaces 63

EF =1{(0,4),(4,1),(6,8),(8,7),(2,5),(5,3)} is an edge index mask for a rolling
patch with D = 1 (See Fig.[l(a)). Each edge in an edge index mask corresponds
to a new sample point to be evaluated. For example, vg is computed by referring
to an edge (6,7) € Eft. Note that an edge index mask is invariant for any rolling
patch with same sampling depth.

Definition 9. Suppose that DF = i. A triangle index mask T is a set of a
triplet of integers where each triplet of integers represents three vertices of each
triangle defined by sample points on a rolling patch.

Hence, a triangle index mask of a rolling patch with DFf = 0 is T =
{(0,2,1),(1,2,3)} and similarly, T{* = {(0,6,4), (4,6,8),---,(8,5,7),(7,5,3)}
is a trlangle 1ndex mask for a rolling patch with D® = 1. Once a triangle index
mask T is obtained for a given sampling depth D® = i, the triangulation of
sample points in all rolling patches is completed because a triangle index mask
is invariant for any rolling patch with D® = i.

Theorem 2. Given an edge index mask EE | and a triangle index mask TI,,
an edge index mask Ef* and a triangle index mask TF can be obtained by splitting
each edge in EF | into two edges and inserting new edge list corresponding to
new sample probes.

Proof. Sample points corresponding to the indices of Ef* belong to one of (2/+1)
groups where each group of sample points is defined by a sample probe in PF.
Sample probes in Pf for Ef* consist of two types of probes: old sample probes for
E | and new sample probes for ER. Hence, Ef can be obtained in two steps.
Flrst split each edge in E*| into two contagious edges by inserting a vertex
between two vertices of the edge. Then, insert new groups of edges between old
groups of edges which correspond to Pff 1-

Once EF is obtained, T/ can be constructed by indexing each triplet of indices
in two contagious groups of edges in E* as three vertices for each triangle in
TE. O

K3

Therefore, given a sampling depth D = i of a rolling patch, Ef* and T can be
computed by repeatedly applying the procedure in Theorem [to EJ and T.
Given E!* | and T and four corner points, all the necessary sample points of
all rolhng patches can be evaluated by computing sample probes and referring
to Ef | and all rolling patches can be triangulated by referring to T

The order that each triangle in Tf* is generated can be identified by referring
to each triplet of vertices in two contagious groups of edges in EF as shown
in Fig. Bl (a). Note that E*; and T} are invariant for a given samphng depth
D% =i and the computation for generating Ef*; and T is needed only once.

5.3 Handling of Intersections Among Link Patches

Intersections may occur among link patches either at the boundary or in the inte-
rior of the patches [T3IT4I]]. When intersections occurs, we need to modify the tri-
angulation scheme discussed in Sec. Bdland [5.2]in order to obtain the water-tight

64 J. Ryu et al.

(a) (b)

Fig.4. An example for the triangulation of the blending patches. (a) the triangular
mesh with a gap between the boundary with depth D = DT = 2 (b) a water-tight
triangular mesh with depth D* =2 and D = 0.

(b)

Fig.5. An example of a molecular surface. (a) a protein model (Inhibitor of HIV
protease, PDB ID: 11ZH), (b) a molecular surface of a protein in (a) corresponding to
a water molecule and (c) blending surfaces in the molecular surface of (b).

triangular mesh. Consider two adjacent link patches intersect each other and
in-between rolling patch self-intersects. In this case, if we apply same sampling
depth to two link patches and two disconnected components of a self-intersecting
rolling patch, we will necessarily have the gap at the boundary as shown in Fig. [
(a). In this figure, shown are two adjacent link pathes of depth D* = 2 and an
in-between rolling patch with two disconnected components of D = 2.

Fig. @ (b) shows that the gap between a link patch and a rolling patch in
Fig. @ (a) can be filled by applying sampling depths D¥ = 0 and D = 2 to a
rolling patch and a link patch, respectively, based on the following lemma.

Lemma 3. Suppose we apply D¥ = i and D® = i — 2 to a link patch and a
self-intersecting rolling patch. Then, we can fill the gap between a link patch and a
rolling patch by using 2° =1 — 1 points to represent the set of trimming arc segments.

6 Discussion and Conclusion

We tested the proposed algorithm using 50 protein models available from Protein
Data Bank (PDB) [26]. Fig. [l (a) shows a protein model (PDB ID: 11ZH) from

Real-Time Triangulation of Molecular Surfaces 65

Triangulation time for blending surfaces
1.2
1
Q08
2 ——depih 1
o 0.6 | —=—depth 2
E —
Eosl / — depth 3
02 e
0 B e s S A T
0 500 1000 1500 2000 2500 3000 3500 4000 4500
of boundary atoms
(a)
of triangles in blending surfaces
3,000,000
2,500,000
5
© 2,000,000 [
g —e—depth 1
‘= 1,500,000 —=—depth 2
5 L deoth 3
+ 1,000,000
500,000 e e "
e
0 g w———a e
0 500 1000 1500 2000 2500 3000 3500 4000 4500
of boundary atoms

Fig. 6. Triangulation time and the number of triangles of blending surfaces. (a) trian-
gulation time for blending surfaces in each protein data, (b) the number of triangles in
blending surfaces of each protein data used in (a).

PDB which is an inhibitor of HIV protease and consists of 1570 atoms. Fig. [0l (b)
and (c) illustrate the molecular surface of the protein in Fig.[H (a) corresponding
to a water molecule and its blending surfaces, respectively.

Fig.[6l (a) shows the time statistics for triangulating blending surfaces in molec-
ular surfaces for each sampling depth. X-axis of the graph in Fig. [0l (a) represents
the number of boundary atoms in each protein and Y-axis represents time for
triangulating blending surfaces in molecular surfaces corresponding to a water
molecule.

For each fixed sampling depth, the times to triangle blending surfaces show a
strong linear pattern with respect to the number of boundary atoms in a protein.
Note that the computation for generating an edge mask and a triangle mask is
needed only once for a fixed sampling depth. Hence, once the proposed algorithm
generates edge and triangle index masks for each sampling depth, the algorithm
can triangulate all blending patches just by evaluating necessary sample points
of the blending patches. Fig. [(b) shows the number of triangles in blending
surfaces of same protein data referred in the graph of Fig. [d (a).

This paper presents an algorithm to triangulate the blending surfaces in a
molecular surface of a protein efficiently. Thfig:blendingPatche number of link
patches and rolling patches in blending surfaces of a molecular surface is bounded
by the number of the boundary atoms in a protein. Given the blending surfaces
and its corresponding (-shape, the blending surfaces can be triangulated in

66

J. Ryu et al.

O(c - m) in the worst case, where m is the number of boundary atoms in the
protein and c is the number of point evaluations on a patch in the blending
surface.

Acknowledgments

Joonghyun Ryu and Rhohun Park were supported by the Creative Research Ini-
tiatives and Jeongyeon Seo, Chongmin Kim and Deok-Soo Kim were supported
by BK21. Hyun Chan Lee was supported by the Basic Research Program of the
Korea Science & Engineering Foundation (No. R01-2006-000-10327-0).

References

10.

11.

12.

13.

14.

15.

. Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of

static accessibility. Journal of Molecular Biology 55, 379-400 (1971)

. Richards, F.M.: Areas, volumes, packing, and protein structure. Annual Review of

Biophysics and Bioengineering 6, 151-176 (1977)

. Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Sci-

ence 221, 709-713 (1983)

. Connolly, M.L.: Molecular surfaces: A review. Network Science (1996),

http://www.netsci.org/Science/Compchem/featurel4.html

. Leach, A.R.: Molecular Modelling: Principles and Applications. Prentice-Hall, En-

glewood Cliffs (2001)

. Bourne, P.E.; Addess, K.J., Bluhm, W.F., Chen, L., Deshpande, N., Feng, Z., Fleri,

W., Green, R., Merino-Ott, J.C., Townsend-Merino, W., Weissig, H., Westbrook,
J., Berman, H.M.: The distribution and query systems of the rcsb protein data
bank. Nucleic Acids Research 32, D223-D225 (2004)

. Connolly, M.L.: Molecular surface triangulation. Journal of Applied Crystallogra-

phy 18, 499-505 (1985)

. Ryu, J., Park, R., Kim, D.S.: Molecular surfaces on proteins via beta shapes.

Computer-Aided Design (2007) (in press)

. Ryu, J., Park, R., Cho, Y., Seo, J., Kim, D.S.: beta-shape based computation of

blending surfaces on a molecule. In: The 4th ISVD International Symposium on
Voronoi Diagrams in Science and Engineering (2007) (accepted)

Connolly, M.L.: Analytical molecular surface calculation. Journal of Applied Crys-
tallography 16, 548-558 (1983)

Sanner, M., Olson, A.J., Spehner, J.-C.: Reduced surface: An efficient way to com-
pute molecular surfaces. Biopolymers 38, 305-320 (1996)

Varshney, A., Brooks, Jr., W.V.W.: Computing smooth molecular surfaces. IEEE
Computer Graphics and Applications 14, 19-25 (1994)

Bajaj, C.L., Lee, H.Y., Merkert, R., Pascucci, V.: NURBS based b-rep models for
macromolecules and their properties. In: Proceedings of the 4th Symposium on
Solid Modeling and Applications, pp. 217-228 (1997)

Bajaj, C.L., Pascucci, V., Shamir, A., Holt, R.J., Netravali, A.N.: Dynamic main-
tenance and visualization of molecular surfaces. Discrete Applied Mathemat-
ics 127(1), 23-51 (2003)

Edelsbrunner, H.: Deformable smooth surface design. Discrete & Computational
Geometry 21, 87-115 (1999)

http://www.netsci.org/Science/Compchem/feature14.html

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Real-Time Triangulation of Molecular Surfaces 67

Cheng, H.L., Dey, T.K., Edelsbrunner, H., Sullivan, J.M.: Dynamic skin triangu-
lation. Discrete & Computational Geometry 25(4), 525-568 (2001)

Cheng, H.-L., Shi, X.: Guaranteed quality triangulation of molecular skin surfaces.
In: [Vis 2004] IEEE Visualization, Austin, Texas, USA, October 10-15, pp. 481-488.
IEEE Computer Society Press, Los Alamitos (2004)

Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its com-
putation via tracing edges. Computer-Aided Design 37(13), 1412-1424 (2005)
Kim, D., Kim, D.S.: Region-expansion for the Voronoi diagram of 3D spheres.
Computer-Aided Design 38(5), 417-430 (2006)

Kim, D.S., Kim, D., Cho, Y., Sugihara, K.: Quasi-triangulation and interworld
data struction in three dimensions. Computer-Aided Design 38(7), 808-819 (2006)
Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in
the plane. IEEE Transactions on Information Theory 1T-29(4), 551-559 (1983)
Edelsbrunner, H., Miicke, E.P.: Three-dimensional alpha shapes. ACM Transac-
tions on Graphics 13(1), 43-72 (1994)

Edelsbrunner, H.: The union of balls and its dual shape. Discrete & Computational
Geometry 13, 415-440 (1995)

Halperin, D., Overmars, M.H.: Spheres, molecules, and hidden surface removal.
In: Proceedings of the 10th ACM Symposium on Computational Geometry, pp.
113-122. ACM Press, New York (1994)

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,
Shindyalolv, 1., Bourne, P.: The protein data bank. Nucleic Acids Research 28,
235-242 (2000)

RCSB: Protein Data Bank Homepage, http://www.rcsb.org/pdb/

Seidl, T., Kriegel, H.-P.: Solvent accessible surface representation in a database
system for protein docking. In: ISMB’95. Proceedings of the 3rd International
Conference on Intelligent Systems for Molecular Biology, pp. 350-358. AAAI Press,
USA (1995)

http://www.rcsb.org/pdb/

Weak Visibility of Two Objects in Planar
Polygonal Scenes*

Mostafa Nouri, Alireza Zarei**, and Mohammad Ghodsi

! Computer Engineering Department
Sharif University of Thechnology
2 IPM School of Computer Science

Abstract. Determining whether two segments s and ¢ in a planar polyg-
onal scene weakly see each other is a classical problem in computational
geometry. In this problem we seek for a segment connecting two points
of s and ¢ without intersecting edges of the scene. In planar polygonal
scenes, this problem is 3sUM-hard and its time complexity is £2(n?) where
n is the complexity of the scene. This problem can be defined in the same
manner when s and ¢ are any kind of objects in the plane. In this paper
we consider this problem when s and t can be points, segments or convex
polygons. We preprocess the scene so that for any given pair of query
objects we can solve the problem efficiently. In our presented method, we
preprocess the scene in O(n*"¢) time to build data structures of O(n?)
total size by which the queries can be answered in O(n'*¢) time. Our
method is based on the extended visibility graph [I] and a range search-
ing data structure presented by Chazelle et al. [2].

Keywords: Computational geometry, weak visibility, 3sum-hard prob-
lems, object inter-visibility.

1 Introduction

The problem of detecting visibility between objects has many applications in
computer graphics, VLSI, motion planning and computational geometry. In com-
puter graphics and simulations, for example, computing the regions illuminated
by a fluorescent lamp in a scene may be needed. As the light source may be in
different positions, we seek for a way to quickly find the lightened up regions
in each position. This can be achieved by preprocessing the scene to do queries
efficiently. However, various versions of visibility problems has been defined.

In this paper, we focus on weak-visibility between objects in a planar polygonal
scene. Two objects s and ¢ are said to be weakly visible from each other (or
simply weakly visible) if a point of s sees a point of . Two points see each other
if the segment connecting them does not intersect edges of the scene. Given

* This work was partially supported by IPM school of computer science (contract:
(CS1385-2-01).

** This author’s work was partially supported by Iran Telecommunication Research
Center(ITRC).

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 68, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Weak Visibility of Two Objects in Planar Polygonal Scenes 69

two objects and a scene, the problem is whether these two objects are weakly-
visible. When s and ¢ are line segments, it has been proved by Gajentaan and
Overmars [3] that this problem is in the class of 3sum-hard problems and thus
the lower bound of the time complexity of its solutions is £2(n?). Throughout
this paper n is the complexity of the scene which is the number of its vertices
or edges. Wismath [4] has presented an algorithm for this problem with optimal
O(n?) time complexity. His method is based on the visibility graph which will
be introduced in the next section.

The set of points of the scene that are visible from a point p is called its
visibility polygon and is denoted by VP(p). We know that VP(p) is a star-
shaped simple polygon. Visibility polygon can also be defined for a segment or
polygon of a scene. Visibility polygon of a planar object s, or VP(s), is the set
of the points of the scene that are visible from at least one point of s. Generally
VP(s) is a polygon with holes.

We consider weak-visibility problem for two objects s and ¢, when these ob-
jects are points, segments or convex polygons. Also, we consider this problem in
two cases: (1) when one of the objects is known in advance and the other one is
given in query time, and (2) when both of the objects are given in query time.
For the first case, we can preprocess the scene based on the given object say s,
so that the queries for each ¢ can be answered efficiently. This is done by first
finding VP(s) in the preprocessing step and then checking the intersection of ¢
with this region in query time.

In the second case, the scene is preprocessed to build data structures by which
the queries can be answered efficiently. Initially, we assume that the objects are
line segments. In this case, we first preprocess the scene to find its extended
visibility graph, to be explained later. Then we build a multi-level range searching
structure on the edges of this graph. This range searching structure is based on
the scheme proposed by Chazelle et al. to be discussed in the next section. Having
this structure, we can find the edges of the extended visibility graph that are
intersected by both query segments. We will show that if the intersection is not
empty, then the query segments are weakly visible, otherwise, it is sufficient to
check the weak-visibility of the endpoints of the query segments.

When the query objects are convex polygons, we will prove that the convex
polygons are weakly visible if and only if two of their edges are weakly visible.
Therefore, to solve the problem for convex objects, we just need to solve the
problem for any pair of edges.

In a brief summary, we achieve the following results on weak-visibility problem
in planar polygonal scenes when the complexity of the query objects is constant
and an object can be a point, a segment, or a convex polygon.

— The weak-visibility between a query object and a given point can be answered
in O(logn) time using O(nlogn) and O(n) preprocessing time and space,
respectively.

— The weak-visibility between two query points can be answered in O(y/nlogn)
time using O(nlog®n) and O(ny/nlog*®n) preprocessing time and space.

70 M. Nouri, A. Zarei, and M. Ghodsi

— The weak-visibility between a query point and a line segment or a convex
polygon can be answered in O(nlogn) time.

— The weak-visibility between two query line segments or convex objects can
be detected in time O(n'T¢) using O(n?t¢) and O(n?) preprocessing time
and space, respectively.

Other than the weak-visibility problem, we have proposed a range searching
method for determining the segments of a planar arrangement that are inter-
sected by two given line segments. This solution can also be used in other range
searching problems.

In the rest of this paper, the basic concepts and data structures are discussed
in Section [2l Some properties of weak-visibility are described and proved in
Section [l and our methods and results are presented in Section @l The materials
are summarized and concluded in Section

2 Basic Data Structures and Concepts

In this section we introduce the basic data structures and concepts that are
used in our weak-visibility detection methods. We first describe the extended
visibility graph of a scene. The edges of this graph define the boundaries of the
regions with different views. Then, we describe a point location algorithm in
a star-shaped simple polygon. This method help us to solve the weak-visibility
problem when one of the objects is a point. Another problem that we have
to solve as a subproblem in our method is ray shooting problem in a planar
environment. If the environment was a simple polygon, we can do this work
more efficiently than doing it in a planar arrangement as will be discussed next.
Finally, we describe range searching in a planar scene and present a method for
solving an special version of range searching: in a planar scene, find the set of
segments intersected by two query segments.

To solve this problem, we extend the range searching scheme presented by
Chazelle et al. [2]. As will be proved, we can answer this range searching problem
in O(n!/?*¢) using O(n'*¢) preprocessing time and O(n) space.

2.1 Extended Visibility Graph

Consider a set S = {s1, S2, ..., $p } of n segments in the plane. The visibility graph
G = (V,E) is defined as a graph whose vertices are the set of the end points of
the segments in S and there is an edge v;v; € ¥ when v; sees v;. It is easy to
show that the number of edges of G is O(n?). Initial algorithms for computing
the visibility graph were proposed by Welzl [B] and Asano et al. [6] with time
complexity of O(n?). Later, Ghosh and Mount [7] developed an optimal output
sensitive algorithm that computes the visibility graph in O(E + nlogn) time.
Finally, Overmars and Welzl [§] presented a suboptimal but practical algorithm
that computes the visibility graph in O(|E|logn) time.

The extended visibility graph [I] is defined over the visibility graph by extend-
ing each edge v;v; € E at both ends until it intersects a segment in S. Assume

Weak Visibility of Two Objects in Planar Polygonal Scenes 71

Fig. 1. The dashed segments are the edges of the extended visibility graph of S =
{517827837500}

that s; and s,, are the first segments intersected by v;v; when it is extended
from its endpoints. If p and ¢ are these intersection points then they are two
vertices of the extended visibility graph and pq is an edge of this graph. In cases
that there is no intersection, a segment s, is assumed at infinity that is inter-
sected by all extended edges. Therefore each extended edge of G intersects two
segments in the set S U so, and itself is a segment. The set of these extended
edges compose an arrangement of O(n?) possibly intersecting segments in the
plane. Fig. [shows a sample extended visibility graph.

Suri and O’Rourke [I] used a modified version of Welzl’s algorithm [5] and
compute the extended visibility graph in O(n?) time. Keil et al. [9] presented
a method that for any edge of the visibility graph, its corresponding edge in
the extended visibility graph can be computed in constant time. Combining this
method and the algorithm of Ghosh and Mount [7], the extended visibility graph
can be computed in O(E + nlogn) time.

2.2 Point Location

As a subproblem in our methods, we need to solve a special case of the point
location problem. The general point location problem is to preprocess a planar
subdivision § with n edges, so that we can quickly find the face f of S that
contains a query point g. This problem can be solved in O(logn) query time
using O(nlogn) and O(n) preprocessing time and space, respectively [10]. But,
the point location problem that we need to answer is to check whether a query
point ¢ lies inside a give star-shaped simple polygon P.

We can solve this version of point location problem more efficiently than the
general case, when we know a kernel point of P. Recall that a polygon P is
star-shaped when there is a point p inside it such that for any other point p’
inside P, the segment pp’ lies completely inside P. If so, p is said to be a kernel
point of P. Assume that p is a kernel point of P and vvs...v,, are the vertices of
P in counterclockwise order such that pv; has the least angle with the x-axis.

Having this ordered list of vertices vyvs...v,, we can locate position of a query
point ¢ in this list in O(logn) time by a classical binary search. Assume that

72 M. Nouri, A. Zarei, and M. Ghodsi

q lies between vy, and viy1. Then, we must only check whether the segment pq
intersects vivg1 or not which can be performed in constant time. Therefore, we
can answer the point location query in O(logn) time only by having a kernel
point and the ordered list of the vertices of P. Trivially, p is a kernel point of
VP(p) and we can use this method for point location on these polygons.

2.3 Ray Shooting

In a planar scene, the ray shooting problem is to find the first segment intersected
by a ray from a given point toward a given direction. We examine this problem
when the scene is a simple polygon and when the scene is a planar arrangements
of segments.

Ray shooting in a simple polygon. The problem of shooting a ray in a simple
polygon was first addressed by Chazelle and Guibas [I1]. They showed that it
can be answered in O(logn) time using O(n) preprocessing time and space.
Then, simpler methods were presented by Chazelle et al. [12] and Hershberger
and Suri [T3]. The method of Hershberger and Suri is based on finding a Steiner
triangulation of the polygon. In this triangulation, any ray intersect at most
O(logn) triangles and by tracing the set of the intersected triangles, we can find
the first intersection point of the ray and the polygon boundary.

Ray shooting in a planar subdivision. There are many approaches for
solving the ray shooting problem in a planar subdivision. This problem can be
solved using half-plane range searching data structures to be discussed later.
Using this approach, Agarwal and Erickson [14] have shown that this problem
can be solved in O(n'/2t€) query time using O(nlog®n) preprocessing time and
space, or it can be solved in O(log®n)query time using O(n?*¢) preprocessing
time and space.

Another method with near linear space requirement, is the ray shooting algo-
rithm introduced by Cheng and Janardan [I5]. They showed that ray shooting in
an arrangement of n non-intersecting segments can be answered in O(y/nlogn)
by spending O(nlog?n) space and O(ny/nlog® n) preprocessing time, where w
is a constant less than 4.3. In the case of possibly intersecting segments, the
space increases to O(n log® n).

2.4 Range Searching

In range searching problems, there is a set of n points in d-dimensional space
and we want to report (or count) the points lying in a region R in this space. In
this paper, we need to solve this problem when P is a set of points in the plane
and R is a half-plane or a triangle.

The first near optimal query time using linear preprocessing time and space
was achieved by Welzl [16]. He used the idea of spanning tree with low cross-
ing numbers and answered the queries in time close to O(y/n). Matousek and
Welzl [17] developed a method that solve half-plane range queries in O(y/nlogn)

Weak Visibility of Two Objects in Planar Polygonal Scenes 73

time using O(n log n) preprocessing time and space. Chazelle et al. [2] introduced
a simplex range searching method, called CSW, for any dimension d that answer
queries in O(n'~1/4+¢) by using O(n'*+¢) preprocessing time and O(n) space, for
any arbitrary small positive constant €. They also allow a tradeoff between stor-
age and query time, so if one can spend storage of size O(m), where n < m < n¢,
the preprocessing can be done on the set of points in time O(m!™¢), so that the
query can be answered in O(:@T/;). This solution comes close to the lower bound,
up to a factor of n¢. Since we use this approach for our problem(finding the set
of segments intersected by two given segments), we give an overview of this
method.

We briefly describe the CSW method just for 2 dimension. For a point set S of
n points, a family F = {=;, ..., Z;} of triangulations of the plane is constructed
such that the size of any one of these triangulations is O(r?) for some constant
r. This family of triangulations has this property that for any line [, there is at
least one triangulation Z; that only O(n/r) of the set of n points lie inside the
triangles of =; that are intersected by [. We denote this triangulation associated
for a line [by 7;. This process is continued recursively for each triangle of these
family of triangulations that contains more that ¢ pints for some constant value
of i. Inside the leaf nodes of this tree the search is done in a standard partitioning
scheme.

Assume that we want to search for points lie inside a half-plane H that is
above a line [. We first find 7; from the above range searching data structure.
The points lie inside the triangles of 7; which are above (below) [are (are not)
inside the half-plane and we must recursively continue the search only over the
triangles of T} intersected by . However these triangles only contains O(n/r) of
the points.

The size of this data structure is O(n) and can be constructed in O(n'**)
time. Using this data structure, the half-plane range searching (counting) can
be answered in time O(n2%¢).

The above data structure, or generally any other partition tree gives the result
of range searching as the disjoint union of some canonical subsets. As previously
has been used, e.g. by Dobkin and Edelsbrunner [18], these canonical subsets
can further be preprocessed, so that a conjunction of range searchings can be
answered on the point set. It can be shown that using these data structures in
a multilevel fashion does not increase the amount of needed space, but increase
the amount of query time by a poly-logarithmic factor, however since the query
time has a factor n¢, this factor can be neglected. Therefore we can use the
data structure of Chazelle et al. recursively to answer a conjunction of range
searchings, without any space/time overhead.

2.5 Common Intersecting Segment Detection

A new problem we encountered while trying to solve the weak-visibility problem
is to determine if any line segment e; from a set E = {ej, e, ..., €, } of n segments
in the plane is intersected by two given segments s and t. We refer to this problem
as CISD for Common Intersecting Segment Detection.

74 M. Nouri, A. Zarei, and M. Ghodsi

In order to solve CISD we use the technique described above for half-plane and
triangle range searching. If a segment e; with z; and) as end points intersects
segment s, then x; and z} are in opposite sides of the supporting line of s,
denoted by 5. The same statement is true for the endpoints of s, vs and v/, and
the supporting line of e;, l.;. When e; intersects both s and ¢, x; and 2} lies in
certain positions. As can be seen in Fig. 2 I, and [; divide the plane into four
regions. Let call them by the position of them relative to l5 and [;. If the two
segments are intersecting, one of x; and 2} lies in UU and the other one in LL,
or one in LU and the other one in U L. But if the two segments do not intersect,
only one of these situations are possible. Therefore in order to detect whether
e; intersects both s and ¢, we should check the positions of z; and 2} in that
four regions, and the positions of the end points of s and ¢ in the two regions
separated by I, .

Thus, the CISD problem can be solved in this way: Consider s and ¢ intersect
each other. We first find all segments in E that have one end point in UU and
the other one in LL. We also find all segments that have one end point in LU
and the other one in U L. These segments are the set of segments that intersects
ls and [;. The same thing should be done for end points of s and ¢. We dualize s
and t and also [, for each e; in the resulting set of segments. In the dual plane,
each [, is mapped to a point and segments s and ¢ are mapped to two double
wedges. In this plane, we should search for points lie in the intersection of two
double wedges corresponding to s and ¢.

The procedure for non-intersecting query segments is similar, except that in
some cases we should search in only one pair of regions (UU, LL) and (LU, UL).
If both s and ¢ lies in one side of the vertical line drawn from the intersection of
ls and [;, then we must only search intersecting segments that has an end point
in UU and the other in LL. If both s and ¢ lies in different sides of this vertical
line we should search in regions LU and UL. Otherwise, we should search in
both pairs of regions.

Therefore we solve the problem by combining a series of half-plane and triangle
range searchings. We define three range searching problems P; for 1 <4 < 3 with
relations ¢% as below [14]:

— eQ'H: The left endpoint of segment e lies in half-plane H.

— eQ?H: The right endpoint of segment e lies in half-plane H.

— e{3y: The supporting line of segment e intersects segment ; or equivalently,
in the dual plane, the point dual to [, lies in the double wedge dual to ~.

By combining this searching problems, we can solve the CISD problem. Let
problems P;, 1 <1 < 3, use the relation O%. In order to solve we must solve four
subproblems:

— 1(2): Find segments whose left end points lie above(below) both lines I, and
l; and right end points lie below(above) both lines I5 and [; and also the
supporting line of them intersects both segments s and t.

— 3(4): Find segments whose left end points lie above(below) Is and below
(above) [; and right end points lie below(above) I; and above(below) I; and
also the supporting line of them intersects both s and t.

Weak Visibility of Two Objects in Planar Polygonal Scenes 75

Fig. 2. Different cases arise when a segment intersects s and ¢

In the first subproblem we should find segments whose left end points lie above
ls and I;. It can be done by using P; two times, the first time with the half-plane
above [; and the second time with the half-plane above [;. In the result set, we
should select those segments, whose left end point lie below [and [;. This can be
achieved by using P5 two times, with the half-planes below [, and Iy, respectively.
Then, we select those segments of the result that intersect both [, and l;, and
it can be done by using P3 two times with s and ¢, respectively. Therefore, by
joining problems Pi, P2 and Ps, we can solve subproblem 1. As discussed in
Section [Z4] for multi-level searches, and discussions in [I4], we conclude that
subproblem 1 can be solved in O(::;Z) time using O(m) space and O(m!*¢)
preprocessing time, where n? > m > n. As commented, the n° factor can also
be replaced by a poly-logarithmic factor. Similarly, other subproblems (2-4) can
be solved with the same time and space complexities.

This discussion leads to the following lemma about solving the CISD problem:

Lemma 1. We can preprocess a scene of n segments in time O(n**€) and build
a data structure of size O(n) such that for any given pair of segments s and
t, we can determine whether both segments intersect a segment of the scene in
O(n'/?*€) query time.

76 M. Nouri, A. Zarei, and M. Ghodsi

Fig. 3. Weak-visibility between two segments

In our main weak-visibility problem, we need to solve the CISD problem on the
edges of the extended visibility graph of a scene of n segments. Since the size of
the extended visibility graph is O(n?) we can conclude the following theorem:

Theorem 1. The extended visibility graph of a scene of n segments can be pre-
processed in O(n?T¢) time and O(n?) space such that for any given pair of seg-
ments s and t, we can determine whether there is a segment in this graph that
intersects both segments in O(n'*¢) query time.

3 Weak-Visibility Properties

In this section we illustrate two properties that facilitate detection of the weak-
visibility between two objects s and ¢ in a planar polygonal scene. The first
property is about the visibility of two segments and the second property is about
the visibility between two convex polygons.

Lemma 2. In a planar polygonal scene, two segments ss' and tt' are weakly
visible from each other if and only if one endpoint of ss' or tt’ sees a point on
the other segment or there is at least one edge in the extended visibility graph of
the scene which is intersected by both ss' and tt' segments.

Proof. Proof of the if part: Trivially, when an endpoint of one segment sees
the other segment, the segments are weakly visible. Moreover, the edges of the
extended visibility graph do not intersect the scene objects. So, if both segments
intersect an edge of this graph they can weakly see each other along this edge
and therefore they are weakly visible.

Proof of the only if part: Assume that the segments are weakly visible. Then,
there are middle points p and ¢ on ss’ and tt’, respectively, which are visible
from each other. As shown in Fig.[B] we move the endpoints of pq along ss’ and
tt’ in opposite directions. We do this process in a manner such that pg does not
intersect edges of the scene. Continuing this movement, either p or ¢ reaches the
corresponding endpoint of ss” or tt’, or pg touches two vertices A and B of the
scene from its opposite sides. The former means that one endpoint of ss’ or ¢t/
sees the other segment. In the latter, both ss’ and ¢t intersect the edge of the
extended visibility graph drawn from A and B.

Weak Visibility of Two Objects in Planar Polygonal Scenes 7

Fig. 4. Weak-visibility between two objects

Using the above lemma, we can determine the weak visibility of two segments by
reducing it to range search and point-segment visibility problems to be discussed
in the next section.

The next lemma is about the weak visibility of two convex polygons. Assume
that O and O are two disjoint convex objects and C Hpor is the convex hull of
these polygons. Some of the segments of O and O’ lie on the boundary of CHpor
and other segments lie inside this convex hull. Assume that O,y and Oj,, are
respectively those segments of O and O’ that lie inside CHpo (See Fig. H)).

Lemma 3. In a planar polygonal scene, the objects O and O’ are weakly visible
if and only if a segments of Oss is weakly visible from a segment of O},,.

Proof. Proof of the if part: Trivially, the segments belong to their corresponding
objects and if an edge of O sees an edge of O’, the objects are also weak-visible.

Proof of the only if part: Trivially, when the objects are weakly visible, a point
p from O sees a point g of O'. The segment pq intersects an edge of Ogs and an
edge of O},, and therefore these intersected edges are also weakly visible.

According to this lemma, to determine the weak visibility of two convex objects,
it is enough to check this problem for any pair of their segments(one from each
object).

We use these lemmas in the following section to determine whether two seg-
ments or two convex polygons are weakly visible.

4 Visibility Detection Methods

Now, we are ready to discuss our method of detecting weak-visibility between
two objects. The objects we consider in this paper can be points, line segments
or convex polygons. To simplify our analysis, we assume that convex objects
have constant complexities, i.e they have at most ¢ vertices for some constant
value of c.

We consider two versions of this problem: In the first version, one of the
objects is known in advance and we can do some preprocesses on it and the
other object is given in query time. In the other version, both of the objects are
given as query. We refer to the first problem by SOQ(Single Object Query) and
the socond by TOQ(Two Objects Query).

78 M. Nouri, A. Zarei, and M. Ghodsi

4.1 Visibility Detection in SOQ

Assume that object s is known in advance and ¢ is given in query time. If s is
a point, VP(s) can be obtained in O(nlogn) [I] in the preprocessing phase. In
query time, the query object, ¢, is tested against VP(s). If ¢ intersects VP(s)
then s and ¢ are weakly visible. Whereas VP(s) is a simple polygon of size O(n),
we can build a point location structure on it in linear time (as discussed in
Section [2:2)) by which any point location query is answered in O(logn) time. As
discussed in Section 223 we can also build a ray shooting structure on it in O(n)
time and space by which any ray shooting query is answered in O(logn) time.
Therefore, if we preprocess VP(s) for point location and ray shooting queries, we
can find the answer in O(logn) time when ¢ is a point. If ¢ is a segment, we first
locate one endpoint of it and do a ray shooting towards the other endpoint and
check the result of this ray shooting. If the intersection point of the ray shooting
problem(if any) lies on the segment ¢, it means that ¢ intersects VP(s). Finally,
if ¢ is a convex object, it is enough to only check its edges and while it has a
constant number of edges, we can check the intersection between t and VP(s) in
O(logn) query time. So, we can say the following result about this case of the
problem:

Corollary 1. In a planar polygonal scene, the visibility between a query object t
and a given point s can be answered in O(logn) time using O(nlogn) and O(n)
preprocessing time and space, respectively.

When s is a line segment, we can use the same method as the one discussed
above. However, for a line segment s, VP(s) can be of size O(n?) and is ob-
tained in O(n?) time [I]. Moreover, VP(s) is not a simple polygon and it is a
polygon with holes. For this kind of VP(s), to answer the point location queries
in O(logn) time, a point location data structure of size O(n?) is required [10].
Unfortunately, preparing the corresponding ray shooting data structure requires
O(n%log**n) and O(n*log® n) preprocessing time and space by which the ray
shooting problems can be answered in O(n?logn) time [15]. Although, we can
reduce the preprocessing cost by considering V P(s) as a set of overlapping tri-
angles, but, the query time will be still high. According to Lemma [3 the same
result is obtained when s is a convex polygon.

In the next section we present a method with less preprocessing cost and
better query time when both objects are given in query time. Also, we can use
this method in SOQ problems in which one of the query objects is known in
advance.

4.2 Visibility Detection in TOQ

In TOQ version of the problem, both objects s and ¢ are given in query time
and it is not possible to preprocess based on them in advance. However we
can preprocess the underlying scene to facilitate answering the TOQ problems.
We present the visibility detection methods in four subversions of the problem:
both object are points, only one of the objects is a point, both objects are line
segments, and one or both objects are convex polygons.

Weak Visibility of Two Objects in Planar Polygonal Scenes 79

If both s and ¢ are points, we can preprocess the scene for ray shooting to
answer the problem efficiently. Whereas the scene is a polygonal scene, its ray
shooting data structure requires O(ny/nlog** n) time and O(n log? n) space and
the ray shooting queries can be answered in O(y/nlogn) time (Section [Z3)).
Having this data structure, we shoot a ray from s towards ¢ and if the first
intersection point lies between s and ¢ they are not visible from each other and
otherwise they are visible from each other. So, we can say,

Corollary 2. In a planar polygonal scene, the visibility between two query points
can be answered in O(y/nlogn) time using O(ny/nlog"> n) and O(nlog®n) pre-
processing time and space, respectively.

If one of the objects is a point we do not preprocess the scene. If s is the point,
VP(s) is found in O(nlogn) time. While VP(s) is a star-shaped simple polygon
we can test whether it is intersected by ¢ in O(n) time. This can be done when
t is a line segment or it is a convex polygon of constant complexity. Therefore,

Corollary 3. In a planar polygonal scene, the wvisibility between a query point
and a query line segment or convex polygon can be answered in O(nlogn) time.

Now, we return to our main problem: assume that both s and ¢ are line segments
and both are given in query time and we need to decide whether they are weakly
visible. To solve this problem we use the result of Lemma 2] and Theorem [

Theorem 2. A planar polygonal scene of total complexity of n can be prepro-
cessed in O(n**€) time to build data structures of O(n?) total size, so that the
weak-visibility between two query line segments can be determined in O(n'*€)
time.

Proof. According to Lemma [l we must check two cases to decide about the
weak-visibility between two segments: an endpoint of one segment weakly sees
the other segment or both segments intersect some edges of the extended visi-
bility graph of the scene. According to Corollary 3l the first case can be checked
in O(nlogn) time without any preprocessing cost. To check the other one, the
extended visibility graph of the scene can be constructed in O(n?) in the pre-
processing phase as described in Section [2I This extended visibility graph is
preprocessed for range searching according to the result of Theorem [Il There
are O(n?) segments in the extended visibility graph. So, the range searching
structure of size O(n?) can be constructed in O(n?*¢) preprocessing time. Ac-
cording to Theorem [l this range searching structure enables us to check if two
query segments intersect some edges of the extended visibility graph in O(n!'™¢)
time. Clearly, the preprocessing cost and the query time of this argument follow
the theorem.

We can extend our result of two line segments to solve the problem for two convex
polygons. According to Lemma [B to determine the weak visibility between two
convex polygons, it is enough to decide about the weak-visibility of any pair of
their edges. If we assume that the complexity of the objects is constant, the above

80 M. Nouri, A. Zarei, and M. Ghodsi

argument along with the result of Theorem [leads to the following theorem
about determining weak visibility of two convex object in a planar polygonal
scene:

Theorem 3. A planar polygonal scene of total complexity of n can be prepro-
cessed in O(n?T¢) time to build data structures of O(n?) total size so that the
weak-visibility problem for two query convex polygons with constant complexity
can be determined in time O(n'*e).

5 Conclusion

Despite the extensive research and results on visibility problems, there are still
many open problems in this area. Many practical applications of these problems
motivate researchers to optimize solutions of these problems and make them
more practical. Here, we focus on determining weak visibility between two ob-
jects in a planar environment. We use the extended visibility graph and build a
multi-level range searching structure to facilitate answering our problem.

In this problem, the preprocessing data structures are used to efficiently de-
cide whether two query objects are weakly visible. Our method uses O(n?*¢)
preprocessing time to build a data structure of size O(n?) which enables us to
answer the queries in O(n'™¢) query time. It is notable that this problem is
3suM-hard and the lower bound of its solutions is £2(n?).

Although the off-line version of the problem has been solved optimally, but
to our best knowledge, this is the first attempt to solve this problem in the
query version. This work can be extended in several directions: we can extend
this method to other types of objects, for example, to concave objects. The
method can also be extended for upper dimensions as well as to cover dynamic
environments.

References

1. Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility
polygons with holes. In: Symposium on Computational Geometry, pp. 14-23 (1986)

2. Chazelle, B., Sharir, M., Welzl, E.: Quasi-optimal upper bounds for simplex range
searching and new zone theorems. Algorithmica 8(5&6), 407-429 (1992)

3. Gajentaan, A., Overmars, M.H.: On a class of o(n2) problems in computational
geometry. Comput. Geom. 5, 165-185 (1995)

4. Wismath, S.K.: Computing the full visibility graph of a set of line segments. Inf.
Process. Lett. 42(5), 257-261 (1992)

5. Welzl, E.: Constructing the visibility graph for n-line segments in o(n) time. Inf.
Process. Lett. 20(4), 167-171 (1985)

6. Asano, T., Asano, T., Guibas, L.J., Hershberger, J., Imai, H.: Visibility of disjoint
polygons. Algorithmica 1(1), 49-63 (1986)

7. Ghosh, S.K., Mount, D.M.: An output sensitive algorithm for computing visibility
graphs. In: FOCS, pp. 11-19. IEEE Computer Society Press, Los Alamitos (1987)

8. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Sym-
posium on Computational Geometry, pp. 164171 (1988)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Weak Visibility of Two Objects in Planar Polygonal Scenes 81

. Keil, M., Mount, D.M., Wismath, S.K.: Visibility stabs and depth-first spiralling on

line segments in output sensitive time. Int. J. Comp. Geom. Appl. 10(5), 535-552
(2000)

Lee, D., Preparata, F.: Location of a point in a planar subdivision and its appli-
cations. STAM Journal of Computing 6(3), 594-606 (1977)

Chazelle, B., Guibas, L.J.: Visibility and intersection problems in plane geometry.
Discrete & Computational Geometry 4, 551-581 (1989)

Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir,
M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algo-
rithmica 12(1), 54-68 (1994)

Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take
a walk. J. Algorithms 18(3), 403-431 (1995)

Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In:
Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Compu-
tational Geometry, AMS Press, Providence, RI (1998)

Cheng, S.W., Janardan, R.: Space-efficient ray-shooting and intersection searching:
algorithms, dynamization, and applications. In: SODA ’91. Proceedings of the sec-
ond annual ACM-SIAM symposium on Discrete algorithms, pp. 7-16. ACM Press,
New York (1991)

Welzl, E.: Partition trees for triangle counting and other range searching problems.
In: Symposium on Computational Geometry, pp. 23-33 (1988)

Matousek, J., Welzl, E.: Good splitters for counting points in triangles. J. Algo-
rithms 13(2), 307-319 (1992)

Dobkin, D.P., Edelsbrunner, H.: Space searching for intersecting objects. J. Algo-
rithms 8(3), 348-361 (1987)

Matousek, J.: Efficient partition trees. Disc. & Comp. Geom. 8, 315-334 (1992)

Shortest Path Queries Between Geometric
Objects on Surfaces*

Hua Guo, Anil Maheshwari, Doron Nussbaum, and Jorg-Riidiger Sack

School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
K1S 5B6, Canada

Abstract. We consider geometric shortest path queries between arbi-
trary pairs of objects on a connected polyhedral surface P of genus g. The
query objects are points, vertices, edges, segments, faces, chains, regions
and sets of these. The surface P consists of n positively weighted trian-
gular faces. The cost of a path on P is the weighted sum of Euclidean
lengths of the sub-paths within each face of P. We present generic algo-
rithms which provide approximate solutions.

1 Introduction

Shortest path queries between point objects arise in fields such as Computa-
tional Geometry and Graph Theory in the design of algorithms. They are also
frequently executed in application domains such as tourist information systems,
GIS, and Computer Graphics. Considering shortest path queries between geo-
metric objects other than points is a natural generalization. This generalization
is motivated, for example, by the following scenarios. Suppose that, we are given
safe zones located inside a geographical area and the safe zones may change over
time as a result of a new risk assessment. Outside the safe zones travel is consid-
ered to be hazardous, but unavoidable if one wishes to travel between two safe
zones. The weighted shortest path between the two zones then minimizes the risk
for the required travel. In Computer Graphic, e.g., interactive 3-dimensional ob-
ject editing, distances between each vertex of a set to a user-selected area of an
object surface are used in computing a smooth transition after editing the surface
(cf. [1). Shortest path computations in weighted domains have relatively high
time complexities, whereas these applications require timely responses. This mo-
tivates our search for efficient approximation algorithms for answering shortest
path queries between geometric objects.

Problem Definition: Let P be a connected polyhedral surface of genus ¢ in
3-dimensional Euclidean spaceﬂ P consists of n triangular faces and each face
has an associated positive weight w(-), representing the cost of traveling a unit
Euclidean distance inside it We first define geometric query objects. Let points,

* Research supported by NSERC, SUN Microsystems, Stantive Computing.

! The surface P can be any polyhedral 2-manifold without assumption of additional
geometric/topological properties (e.g., convexity, being a terrain, absence of holes.)

2 An edge of P belongs to the triangle from which it inherits its weight.

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 82-[35] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Shortest Path Queries Between Geometric Objects on Surfaces 83

vertices, edges, segments, faces, chains, regions be geometric objects in P, in
which objects like points, vertices, edges, segments and faces are called basic
objects, and objects like chains and regions are called compound objects in P.
As basic objects, vertices, edges and faces are those of P. A segment is a straight
line with end-points on the edges incident to the same face of P. A chain consists
of a set of segments in PR A chain can be open or close and/or simple or self-
intersecting. A query region is a connected union of faces of P, in which a pair
of faces shares a vertex or an edge of P or nilf A region may have holes.

We consider paths that stay on the surface P. For a pair of geometric objects
01 and o9 in P, we denote the path between them by mp(01,02) and the cost of
the path by ||[7p(01,02)]]. The path mp (01, 02) of least cost is called shortest path,

denoted by {o; 5 02}. The cost of the shortest path is called distance between o4

and oy. We denote the distance by distp(01,02), i.e. distp(01,02) = ||o1 5 02]].
Throughout the paper, € € (0, 1) is a user-specified accuracy parameter, i.e., a
fixed real number. A path whose cost divided by the cost of the shortest path is
in (1 —¢,14¢) is called an e-approximate (or approximate) shortest path. The
cost of an approximate shortest path is called approzimate distance (or distance).

The All Pairs Query (APQ) problem is to answer shortest path and/or dis-
tance queries for any pair of points in P. We are interested in finding approximate
solutions to the following APQ problem for any pair of geometric objects: Pre-
process the polyhedral surface P such that for any pair of geometric objects,
report an approximate distance and/or shortest path between them efficiently.
We proposed a solution to the APQ problem for point-point pairs in [2] (cf. [3]).
Here we focus on answering queries for other object pairs. To place our work in
the context of the literature we state some relevant results next.

Exact and Approximate APQs for Points: Many results found exact or ap-
proximate solutions to the APQ problem for points on the surface of unweighted
or weighted, convex or nonconvex polyhedra. We review relevant results. Agar-

wal et al. [4] presented an exact solution for unweighted convex polytopes and

they answered queries in O(ﬂ;/f;4 log n) time with O(n%m!*?®) preprocessing time

and space, for a parameter 1 < m < n? and any § > 0, using star-unfoldings
[5]. For unweighted nonconvex polyhedra, Chiang and Mitchell [6] proposed a
scheme which computes an exact solution in O(logn) query time with O(n'!)
in space and preprocessing time. The scheme permits trade-offs between query
time and space. If P is a convex polytope, a result of Dudley [7] shows that a
convex set @ of size O(531/2) exists, such that P C @ and the Hausdorff distance
between P and @ is ¢ - diameter(P). This was used in the algorithm of [§] to
answer approximate APQs in O(logn/e!® + 1/e%) time. Chazelle et al. [9] pre-
sented a sub-linear randomized algorithm for solving APQs on convex polyhedral
surfaces. Approximate APQs for weighted polyhedra was studied in [I0], where
the authors conjectured that more efficient methods might exist. Very recently,
we presented algorithms for solving the approximate APQ problem for weighted

3 A segment can be an edge of P. Here,“segments” means “edges and/or segments”.
4 We distinguish between a query region and regions induced by a separator of P.

84 H. Guo et al.

polyhedral surfaces of arbitrary genus ¢ in [2]. Our space-query time trade-off
algorithm takes as input a query time parameter q within a certain range and
builds a data structure to answer queries in O(q) time. The data structure is of

2 2
size O((9;}3: log* !) and can be constructed in O((g€~§/12);L log " log* b timed

Queries Between Edges: Hwang et al. [I2] proposed an algorithm for com-
puting the exact distance between any pair of edges of a convex polyhedron in
O(k + logn) time with O(n°®logn) preprocessing time and O(n?) space, where
k is the number of edges crossed by the shortest path.

New Results: Our main contribution is that we present approximate solutions
to the APQ problem for any pair of geometric objects in P (Section [and [).
In particular,

1. We present a generic algorithm (Section [3)) for answering distance queries
between any pair of basic objects, e.g., points, vertices, edges, segments and
faces in P. For a query time parameter q, O(d?) < q < O(g), where d =

/317
\}E log 2, q = (ngl)\r"/;"1 ’ , we build a data structure of sizeO((g;lgln2 log* i)

in O ((ggén2 log " log? ;) time, such that we can report an e-approximate
distance between two query objects in O(q) time. This algorithm permits
trade-offs between query time and space.

2. For two arbitrary sets A and B consisting of m; and mo segments, respec-
tively, where no segment in A intersects any segment in B, we present an
algorithm (Subsection [L]) for answering distance queries between the two
sets.

(a) If my = 2(n) and mg = 2(n), then we can report an e-approximate
distance between sets A and B in O(Tssgp) time using O(|Vz|) space,

where Tsssp = O(\?E log " log !) and |V.| = O(:/‘E log 1).

(b) Otherwise, we construct a data structure such that the distance query
can be answered in O(mimad? + (m1 + ma)dc(S)) time, where ¢(S) =

@) (((?;;222 log i) \/n> and ¢t € (0,n~1/3). The data structure of size

O(c(8)|Ve|) can be pre-computed in O(¢(S)Tsssp) time.

(c) We use the above algorithm (Subsection [1]) as a subroutine to answer
queries between compound objects, e.g. chains, regions and sets of these
(Subsection E22)). We obtain the same bounds as above.

The results proposed in this paper answer queries for edge-edge pairs as proposed
in [I2] and report approximate distances using significantly lower preprocessing
time and space. The complexities of all our algorithms depend on geometric
parameters and that are inherited from [3].

51In [2] it is assumed that the faces containing the query points are already known.
Otherwise, spatial point location is needed, cf. [11].

Shortest Path Queries Between Geometric Objects on Surfaces 85

e R

(b) (© (@

Fig. 1. (a) Steiner points are inserted in a bisector [. The vertex vicinity £(v) of v is a
star-shaped polygon around v. The face neighborhood of (b) a vertex v, (¢) a point a
on an edge e, (d) a node p of G and a point a incident to the interior of a face.

2 Preliminaries

Nodes of G: We briefly review the discretization of P using the scheme in [2].
An approzimation graph G = (Vz, E.) is constructed as follows. The nodes of
G are of two types: Steiner point nodes and vertex vicinity nodes, representing
geometric objects, namely, Steiner points and vertex vicinities of “small” radius
in P See Figure [(a). Steiner points are placed along the bisectors (of the
angles) of the faces of P forming a geometric progressions with ratios depending
on ¢ and on the geometry of P (cf. [3]). We define a small star-shaped polygon
E(v) around each vertex v of P and call £(v) vertex vicinity. More precisely, €(v)
is contained within the union of the triangles incident to v and its intersections
with each of the triangles is a small isosceles triangle with side length er(v),
where r(v) is set to be (1/8)th of the distance from v to the boundary of the
union of the triangles incident to v (cf. [3], Definition 2.1). We bound |V;| next.

Lemma 1. [3/ (a) The number of nodes in G incident to a triangle f of P
is bounded by C(f)d, where d = \}E log i, the constant C(f) depends on the
geometr@ﬂ of the triangle f. (b) The total number of nodes of G, |Ve|, is less
than C(P)dn, i.e., C(P) e log 2, where the constant C(P) =} > rep CUf)

Face Neighborhood: Edges of G exist between nodes of G where one is in the
face neighborhood of another. The face neighborhood of an object o, e.g. a vertex,
point, edge, segment or a face in P, is denoted by AN (0). The face neighborhood
of a vertex is the union of the faces incident to it. The face neighborhood of an
edge or a point on an edge is the union of the faces incident to that edge. The
face neighborhood of a face is the union of its neighboring faces. Two faces are
neighbors if they share an edge. The face neighborhood of a point or a segment,
o, contained by a face f(0) is the union of f(0) and the neighboring faces of f(o).
See Figure [l for an illustration. The face neighborhood N (p) of a node p of G
is the face neighborhood of its representation (i.e., a Steiner point or a vertex

5 A vertex vicinity node of G represents each vertex and its vicinity in P.
" Roughly it is about two times the sum of the reciprocals of the sinuses of the angles
of f and is a small constant for faces having a good aspect ratio, cf. [3].

86 H. Guo et al.

vicinity) in P. We denote a node p whose representation is incident to a face
f(p) by p € f(p), and incident to a face in a region R(p) by p € R(p).

Edges of G: A node p of G is connected to all nodes ¢ € N(p) for p # q. Costs
are assigned to the edges of G so that distances between nodes in G approximate
the distances between their representations in P. We define costs of the edges
of G using the notion of local paths. A path in P is called local if it intersects at
most two faces. The cost ¢(p, q) of an edge (p,q) in G is defined as the cost of
the local shortest path between p and q that is restricted to lie in the intersection

of their face neighborhoods N (p) N N (g) (but restricted to at most two faces).

N ..
We denote the local shortest path by p {2 q and the minimum cost of the

local path by ||p N q||]§ Thereby, the cost ¢(p,q) of an edge (p,q) joining a
pair of Steiner points p and ¢ of G, where ¢ € N (p), is defined as the cost of
the shortest path restricted to lie in the union f(p) U f(g). The cost of an edge
between a vertex vicinity node and a Steiner point is the cost of the shortest
path restricted to lie in the triangle containing the Steiner point. The cost of an
edge between two vertex vicinity nodes is the cost of the segment along the edge
of P joining these two vertex vicinities.

Approximate Discrete Path: Paths in the approximation graph G are called
discrete paths. The cost ¢(ma(p, q)) of a discrete path 7¢(p, ¢) between a pair of

nodes p and ¢ is the sum of the costs of its edges. Let p S q be any shortest
discrete path in G between p and gq.

Definition 1. [2] A path between a pair of points a and b in P is called approx-

imate discrete path if it is either a shortest local path joining a and b or a path
) G N(@®

N
of the form {a 8% P~ q) b}, where p € N(a), ¢ € N(b). The cost of an
N N(b
approzimate discrete path is ||a) pl|+c(p 4 q)+ g P b|| orits cost in P if
it is a local path. The cost of a shortest approximate discrete path between a and
b is called approximate distance between a and b and is denoted by distg(a,b).

The approximate distance distg(a,b) between points a and b lying in neigh-

. N(b
boring triangles is the minimum of the cost of the shortest local path, ||a 4 bl|,

N(a N
and the cost of any path of the form {a AR P & q A% b} see Figure2 (a). It was

proved in Theorem 4 in [2] that approximate discrete paths are e-approximate
shortest paths.

Theorem 1. [3] The Single Source Shortest Path (SSSP) problem in the ap-
prozimation graph G can be solved in O(|Vz|log|Vz|) = O(\;LE log " log 1) time.

Local Voronoi Diagram: Let p1,...,pr be the nodes of G that incident to
the face neighborhood N(f), for any face f of P. A data structure, called Local
Voronoi Diagram in f with respect to a source point a, can be constructed. We
denote it by LVD(a, f). Let §; = distg(a,p;) fori =1,... k.

8 A local path can be computed either directly or by applying Snell’s Law, the law of
refraction. cf. [3].

Shortest Path Queries Between Geometric Objects on Surfaces 87

Lemma 2. [2] A data structure LND(a, f) exists so that for a point b € f the

N (b
minimum ming<;<(6; + [|b w pill) and the point for which it is achieved can

be computed in O(logk) time. The size of the data structure IND(a, f) is O(k)
and it can be constructed in O(klogk) time.

B-regular Separator: For a real t € (0,1) and an embedded graph G = (V, E)
of genus g with positive weights w(-) and costs ¢(-) assigned to its vertices, a set
of vertices S of G is called a t-separator if its removal from G leaves no component
of weight exceeding tw(G). Any t-separator S naturally defines a partitioning of
the vertices of G into sets Vi, ..., V} inducing the connected components of G\ S
and S itself. The subset of vertices in S that are adjacent to vertices in V; is
called boundary of V; (or of the component induced by V;) and is denoted by
dV;. A partitioning V7,..., Vg, S of the vertices of G defined by a t-separator S
is called B-regular (or regular), where B is a real number, if the costs ¢(9V;) for
t=1,...,k are bounded by B.

Theorem 2. [Z] Let G be an embedded graph of genus g with mazimum degree
three and with weights w(-) and costs ¢(-) assigned to its vertices. For any t €
(0,1) there exists a t-separator S, that defines a 2B-regular partitioning of G

with B = /(g + 1)ta(G), whose cost is O (\/(g+ 1)0(@)/2&), where o(G) =
zvev(g)(c(v))z. Such a separator can be constructed in O(|G|log |G]|) time.

3 Queries Between Basic Geometric Objects

In this section, we first show that approximate discrete paths between geometric
objects are e-approximate shortest paths, then describe and analyze a generic
algorithm, APQ), for answering queries for any pair of basic objects excluding
point-point pairs which was studied in [2].

We use an approximation graph G of P to approximate shortest paths between
any pair of geometric objects (01, 02). For simplicity, we assume that distances
and shortest paths between any pair of nodes of G are given to us. There exists
a true shortest path between objects 0; and o2 such that its end-points, denoted
by u, v, are on the boundary of 0; and og, respectively. By applying Theorem 4 in
[2], we can find an e-approximate shortest path between o; and o2 by computing
an approximate shortest path between the points u and v.

Definition 2. A path between a pair of geometric objects, (01,02), is called ap-
proximate (discrete) path wg(o1,02) if it is either a shortest local path join-

N N
ing 01 and oy or a path of the form {oy Lo P g q) 02}, where nodes

p € N(01),q € N(02). The cost of an approximate shortest path is the minimum

t ted b N N
cost computet O min(Jloy M2 pll + ep &) + ¢ 0a])), (1)
p.q

or the cost of the shortest local path between o1 and os in P if it is a local path.
The cost of a shortest approrimate path between o1 and oz is called approximate
distance between them and is denoted by disti(01,02).

88 H. Guo et al.

Theorem 3. For any pair of geometric objects (01,02) in P, one of the following
holds, either (a) (1 — 2¢)distp(01,092) < distg(01,02) < (14 2¢)distp(01,02), or
(b) there is a vertex v of P (resp., v of an object 02) such that objects 01 and o9
are (resp., the object o1 is) inside the face neighborhood N (v), there is a shortest
path in P between o1 and oy that stays in N'(v) and intersects the vertex vicinity
E(v). Moreover, distp(o1,02) — 2er(v) < distg(o1,02) < distp(o1,02), where
er(v) is the radius of E(v).

Next, we propose a novel generic algorithm APQ for answering queries between
any pair of basic objects. First, we present the main result of this section.

Theorem 4. Let P be a connected polyhedral surface of genus g and let P con-
sist of n positively weighted triangular faces. Let € € (0,1). For a query time pa-

rameter q, O(d?) < q < O(q), where d = \} log 2, q = (gﬂ)j/; i

a data structure APQ(P, e;q) such that e-approximate distance queries between
basic objects in P can be answered in O(q) time. The data structure APQ(P, ¢; q)

is of size O ((g;;”? log® i) and can be built in O ((g;l;”? log ? log? ;) time.

, there exists

Algorithm APQ consists of a generic preprocessing and query algorithm. The
preprocessing algorithm, Algorithm APQ Preprocessing(P, ¢; q), takes as input a
surface P, an approximation parameter € and a query time parameter q. It builds
a data structure APQ(P, ;) which stores (1) a face t-separator S of P; (2) a
set of SSQ(a) data structures for each node a € f(a) and the face f(a) neighbors
a face in S; (3) a set of SSQ(a, R;) data structures for each region R; defined by
S and for each node a € R;, i =1,...,[}]. For a node a € G, a SSQ(a) data
structure stores (1) approximate distances in G from a to each node of G and to
each edge of P; (2) a set of local Voronoi diagrams LVD(a, f) for all faces f € P
(Lemmal2]). A SSQ(a, R;) data structure stores distances and LVDs within each
region R; for each node a € R;. Next, we present the preprocessing algorithm.

Algorithm APQ Preprocessing(P,e;q): In Step 1, compute the set of nodes

V. (i.e., Steiner points and vertex vicinities) of the approximation graph G and

build a dual graph P*[For each node u of P*, assign the weight w(u) equal

to the number of nodes of G, that are incident to the face f(u) in P. Assign

the cost c¢(u) equal to the number of nodes of G, that are incident to the face

neighborhood N(f(u)). Compute a ¢-separator S of P*, for a pre-computed
2

t= A +1)o? P)log? ! . In the dual, S corresponds to a face separator of P. Denote
the face separator by S if no ambiguity arises. Removal of S partitions P into
a set of regions Ry, .. Rf 1. In Step 2, compute and store a data structure
SSQ(a) for each node a € f() and the face f(a) neighbors a face in S. In Step

3, compute and store SSQ(a, R;) for each region R; and for each node a € R;.

9 The set of nodes of P* corresponds to the set of faces of P. Two nodes in P* are
connected by an edge if their corresponding faces in P are neighbors.

Shortest Path Queries Between Geometric Objects on Surfaces 89

Table 1. The generic query algorithm APQ Query(o1,02)

ALGORITHM: APQ_Query(o1,02)

Input: A pair of basic objects (01, 02) and their face neighborhoods A (01) and N (02);
Output: An approximate distance diste (01, 02);

1. If 01 N o2 # ¢, output Mo = 0.

2. If 01 and o> lie in neighboring faces, then compute Mo = distg (01, 02) locally.

3. Set M1 = Q.

4. If one of 01,02 is incident to a face f(a) which neighbors a face in the separator S,
or 01,02 are in the same region;

(a) If (01,02) is a vertex-vertex or vertex-edge pair, M; = dista (01, 02) is pre-computed.

(b) Otherwise, compute M; by Equation (1), where ¢(p A q) is pre-computed.

5. For each node a € O9R(01), for nodes p,q of G, p € N'(01),q € N(02),

(a) if (01,02) is a vertex-vertex or vertex-edge, M> = min, (distg (01, a) + dista(a, 02)),

where the distances dista (01, a), distg(a, 02) are pre-computed.

(b) Otherwise, Ma> = ming,p,q(|lo1 N p|| + dista(p, a) + diste(a, q) + g) o2])),

where the distances diste(p, a), diste(a,) are pre-computed.
6. Output diste (01, 02) = min(Mo, M, M>).

Lemma 3. For any O(d?) < q < O(q), Algorithm APQ Preprocessing(P, ¢; q)
builds a data structure APQ(P,e;q) of size O <(9Jg§3"2 log? ;) in

0 ((gg;”rz log " log® ;) time.

Proof. The execution of Step 2 dominates the algorithm in running time and
space. With the choice of ¢, the claim follows. a

Next, we present a generic query algorithm APQ Query(o1,02) (Table [). Al-
gorithm APQ Query(o01,02) takes as input a pair of basic objects (01,02) and
outputs an e-approximate distance distg(o1,02) between them. If the required
distance dist(01, 02) is not pre-computed, our task is to find a pair of nodes p(o01)
and ¢(o2) that minimize Equation (). Two cases arise. Case 1: 01, 09 are in the
same region, or one of them is incident to a face neighboring a face in .S, approx-
imate shortest paths either stay inside the region (Step 4) or cross the boundary
of the region (Step 5). Case 2: 01,09 are in different regions (Figure 2l (b)), ap-
proximate shortest paths must cross the boundary of the region R(01) containing
01 (Step 5). More precisely, in Case 1, (a) if (01, 02) is a vertex-vertex or vertex-
edge pair, the distance M; = distg(01,02) is pre-computed. (b) Otherwise, we
compute My by Equation (), where ¢(p 4 q) can be retrieved in O(1). Analo-
gously, in Case 2, if (a), compute Mz = mingepr(o,)(dista (o1, a) +distg(a, 02)),

where distg (01, a),distg(a, 02) are pre-computed. In Case 2, if (b), compute

. N(o . . N(o
M; = ming p 4(]|o1) p|| + distg(p, a) + distg(a,q) + |lq) 0z2]]), for a €

OR(01), p € N(01), q € N(02), where distg(p, a), distg(a, q) are pre-computed.
The key steps of the algorithm are Steps 2, 4, 5 and 6. We have explained
Steps 4 and 5 above. In Step 2, if 03 and o0y lie in neighboring faces, compute

90 H. Guo et al.

Fig. 2. (a) The true shortest path {a NS b} between points a and b is shown as solid
lines. An approximate discrete path between a and b is shown as dotted lines. (b) For
any pair of query segments 01,02 contained in regions R(o01) and R(o2), respectively,
an approximate shortest path between o1 and o2 (shown as dotted lines) must pass
through a node a € S, where S is a face separator of P.

My = distg(01,02) locally. The approximate distance distg (01, 02) is computed
by the minimum min(My, M;, Ms) (Step 6). We summarize the complexity.

Lemma 4. Algorithm APQ Query(o1,02) correctly computes the approzimate
distance distg (01, 02) in O(q) time, for O(d?) < q < O(q).

Proof. The required distance distg(o1,02) is correctly computed by the values
My, My and Ms. In Step 4, it takes O(1) time to compute M if (a) and O(d?)
time if (b) (Lemmal[ll). In Step 5, it takes O(c(S)t) time to compute M; if (a) or
O(de(9)t) time if (b). The execution of Step 5 dominates the running time of the
algorithm. By Theorem [2] and the choice of ¢ in Algorithm APQ Preprocessing,
we obtain dec(S)t < g. O

For query objects consisting of constant-size basic objects, we can obtain the
same bounds as in Theorem M by finding the minimum distance among all-pair
of basic objects of the query input.

4 Queries Between Arbitrary Compound Objects

Let A and B be two sets of segments in P. Let |A| = my and |B| = ma. No
segment in the set A intersects any segment in the set B. A segment in A can
intersect other segments in A. So do segments in B. We answer queries between
sets A and B. We present our main results in Theorem [Blfollowed by a description
and analysis of a general algorithm for computing approximate distance between
A and B. More importantly, we use this general algorithm as a subroutine to
answer queries between compound objects, e.g., chains, regions and sets of these.

Theorem 5. Let P be a connected polyhedral surface of genus g and P consists
of n positively weighted triangular faces. Let € € (0,1). Let A and B be two
arbitrary sets of segments in P of size my and ms, respectively, where no segment
in A intersects any segment in B.

(a) If my = 2(n) and ma=192(n), then an e-approxzimate distance distg(A, B)
between A and B in P can be reported in O(Tsgsp) time using O(|Ve|) space.

Shortest Path Queries Between Geometric Objects on Surfaces 91

(b) Otherwise, there exists a data structure such that the distance distg (A, B)

can be answered in O(mimad® + (my + ma)dc(S)) time, where d = \}E log 2,

c(S)=0 (((?;;2;;2 log i) \/n> and t € (0,n~/3). The data structure is of size

O(c(s)|Vz|) and can be pre-computed in O(c(S)Tsssp) time.

Corollary 1. We obtain the same bounds as above to answer queries between
compound objects, e.g., chains, regions and sets of these.

4.1 Queries Between Arbitrary Sets of Segments

We present and analyze a general algorithm for answering queries between sets
A and B. This algorithm takes advantage of the magnitude of m; and msy and
executes Algorithm Simple if m; and mo are 2(n) or Algorithm APQ Sets, oth-
erwise. Next, we start with a brute force algorithm. The brute force algorithm
computes and stores approximate distances between all pairs of segments in a
mid X mad matrix in O(|Vz|?log |VZ|) time and O(m;mad?) space, and reports
an approximate distance distg(A, B) in O(mimad?) time by searching in the
matrix for the minimum.

We proceed with notations used. Let F/(A) be the set of faces intersected by
segments of the set A. Let AV/(A) be the face neighborhood of A, i.e., the union
of the face neighborhood of each segment of A. Analogously, we define F'(B) and
N(B) for the set B.

Algorithm Simple basically runs Dijkstra’s SSSP algorithm from a dummy
source node p to all nodes of the approximation graph G (Theorem [II). The
dummy node p is added to G and connected to each segment in A (at any
possible point of the segment as required) with dummy edges of zero cost. For
each node ¢ € N'(B), we propagate shortest paths from ¢ to the closest segment
incident to N(g). The shortest distance from p to each segment of B is the
approximate distance distg (A4, B). We summarize this in the next lemma.

Lemma 5. We can report an approzimate distance distg(A, B) in O(Tsssp)
time by running a SSSP in G using O(|VZ|) storage.

Our general algorithm executes Algorithm, APQ Sets, when O(1) < my,mg <
2(n). Algorithm APQ Sets consists of a preprocessing and a query algorithm.
The preprocessing algorithm takes as input the surface P, ¢, ¢t € (0,1) and
outputs a data structure APQ Sets ds[M

APQ Sets Preprocessing(P, e,t): Call Algorithm APQ Preprocessing(P, ¢;q) as a
subroutine with ¢t € (0,n~/3).

Lemma 6. Algorithm APQ Sets Preprocessing(P, e, t) constructs a data struc-
ture APQ Sets ds of size O(c(S)|Vz|) in O(c(S)Tsssp) time.

The query algorithm, APQ Sets Query(A4, B), takes sets A and B as input and
outputs an e-approximate distance distg (A, B) See Table[2l Assume that F'(A),
N(A), F(B) and N(B) are known. Considering the relative locations of A and
B and the regions Ry, ..., RH] induced by the separator S, we determine which

19 The data structure APQ Sets ds is the same as APQ(P,¢;q) (Section [).

92 H. Guo et al.

(®)

Fig. 3. Approximate shortest paths (thin lines) between regions A and B. Cases 1, 2
and 3 arise, as shown in (a), (b) and (c), respectively. In (c), vertical curves illustrate
portions of S.

of the three possible cases arise (Figure B), i.e., Case 1: A, B C Ry; Case 2:
A C Ry and B ¢ Ry; Case 3: A intersects several regions and so does B. The
query time varies depending on which case arises.

First, we consider Case 2, i.e., A C Ry and B ¢ R;. Shortest paths m¢(A, B)
between A and B must pass through a node a € Ry since A C R; and B does
not. The distance distg (A, B) is computed by

distg(A4, B) = v;relg}% (distg(a, A) + distg(a, B)), (2)

where distg(a, A) = minyg, q,ea distg(a, a1as2), distg(a, B) = ming, 4 - p diste
(a,b1bs), distg(a,arae) and distg(a,bibs) are pre-computed. Consider Case 1,
ie., A,B C R;. Shortest paths 7g(A, B) either stay fully inside R; or pass
through a node in OR;. Using Equation (), we compute a distance distg, (A, B)
with a € N(A) and G as R; for the former and distg(A, B) with a € OR; for
the latter. We take the minimum min(distg, (4, B), distq(4, B)).

Now we consider Case 3. Let R4 = {R{', R§',... R} be the set of regions
intersected by A. Analogously, we define R” for B. Let R® = {RF,RY,... R7}.
1<i,j <[;] Let RAB = {R{!? R{B, ... R{}P} be the set of regions that A
and B intersect, k < min(z,). Identify the faces S’ in S that are adjacent
to the regions in R4® and remove faces from S’ that are in F(A) and F(B).

Table 2. The algorithm APQ Sets Query(A, B)

ALGORITHM: Intersection(A, B)

Input: Regions A and B of sizes ma, mp with boundary sizes m1, ms, respectively.
Output: TRUE if A intersects B or FALSE otherwise.

1: Check if AN B as A C B or B C A. Mark all boundary faces of A red. Seek for
red faces in B and keep them in a set B(AB). If B(AB) = ¢, tag each face in A.
Pick any face in B. If it is tagged, B C A, return TRUE. Else, visit each face in
B. If find a tagged face, A C B, return TRUE. Otherwise, return FALSE.

2: If B(AB) # ¢, check if AN B at a common boundary face. For each face in
B(AB), check if (a) there exists a pair of boundary segments of A and B that
intersects. If found, return TRUE. Else, check if (b) a boundary segment of A is
contained in B or vice versa. If found, return TRUE. Otherwise, return FALSE.

Shortest Path Queries Between Geometric Objects on Surfaces 93

Shortest paths between A and B must (a) either pass through a node in S’, or
(b) exist between A and B within a region in the set R4, In (a), we compute a
distance M3 applying Equation (@) for a € S’. In (b), for each region R, € R45,
1 < k < k, compute a distance M, = distg, (A, B) within R,. The query
distance is M3 = min(Ms, miny,(M,)). We summarize the complexity next.

Lemma 7. Algorithm APQ Sets Query(A, B) reports the distance distg (A, B)
in the worst case in O(mimad? + (my + ma)de(S)) time.

Proof. The query algorithm addresses all possible cases and computes Mg, M,
My and M3 correctly. We can report the query distance in O(m1m2d2 + (m1 +
ma)de(S)t) time if Case 1 arises, in O((m1 4+ mo)dc(S)t) time if Case 2 arises,
in O(mymad? + (my + ma)de(S)) time if Case 3 arises. The claim follows. O

4.2 Queries Between Arbitrary Compound Objects

For a pair of compound objects, e.g., chains, regions and sets of these, we com-
pute approximate distance between them. The key idea is that first, we need to
verify if two query objects intersects. If yes, then their distance is zero. Other-
wise, we use the general algorithm (Subsection L)) as a subroutine to answer
distance queries. The process of checking if two objects intersect varies with in-
put. Last, we present Algorithm Intersection(A, B) (Table B]) as an illustration
of detecting if two regions A and B intersect.

We proceed with notations used. The boundary of a query region consists
of a set of segments, namely boundary segments. The boundary size of a query
region is the number of boundary segments of the region. The faces intersected
by boundary segments (resp., segments) of any query region A (resp., a chain
C) are called boundary faces of the region A (resp., the chain C'). We denote
the boundary face set by B(A) (resp., B(C)). The face neighborhood N (4) of
a query region A is the union of the boundary faces of A and their neighboring
faces that are not in A. The face neighborhood A (C) of a chain C is the union
of the face neighborhood of each segment in the chain. We assume that B(A),
N (A) and the faces belonging to A are known for a query region A, B(C) and
N(C) are known for a query chain C.

Queries Between Regions: For any pair of query regions A and B of sizes
m 4 and mp with their boundary sizes as mq and mao, respectively, we compute
an approximate distance distg(A, B) between A and B in two steps. In Step
1, call Algorithm Intersection(A4, B) (Table B)) to check if A intersects B. If yes,
return distg (A, B) = 0. Otherwise, we collect the boundary segments of A and
B and keep them in sets S(A) and S(B). In Step 2, call the general algorithm
with input as S(A) and S(B). The query time is dominated by the execution of
the general algorithm. Hence, we obtain the same bounds as in Theorem [B

Queries Between Chains: For an arbitrary pair of query chains (Cy,C2) of
sizes m, and ms, respectively, we answer queries between C7 and C5 as follows.
Make Step 1 of Algorithm Intersection as a subroutine for detecting intersections

94 H. Guo et al.

between Cy and Cs. If C; intersects Cy, return distance distg(Cp,Cs) = 0.
Otherwise, call the general algorithm as a subroutine. Analogously, we obtain
the same bounds as in Theorem [l

Queries Between a Chain and a Region: Let (A, C) be a pair consisting of
a region and a chain. The region A consists of my faces and m, boundary seg-
ments. The chain C' consists of mg boundary segments. We compute the distance
distg (A4, C). First we check if A intersects C' by checking if A intersects C' at a
pair of boundary segments and if C' C A. If yes, then return distg(A,C) = 0.
Otherwise, we call the general algorithm for computing the distance distg (A, C).
Analogously, we obtain the same bounds as in Theorem [B

Queries Between Sets of Compound Objects: We generalize the result
as in Theorem [l to two query sets (i.e., a blue set and a red set) of com-
pound objects. The blue set has b compound objects and the red set has r
compound objects. Let the boundary size of each compound object in the blue
set be m11,...,m1p and in the red set be maq, ..., mo,.. Let my = Zi’:l m1; and
mo = Z;:l m1;. Analogously, we first determine if there is a pair of compound
objects from each set that intersects. If yes, return 0 as their distance. Otherwise,
we collect the boundary segments of all objects from each set and keep them in
two sets, then call the general algorithm to compute the distance between the
two sets. We obtain the same bounds as in Theorem [G

Intersection Detection: Two query regions can intersect either at a pair of
boundary segments (i.e., one segment from each region) or if one region is a
subset of the other (Figured]). Two query chains can intersect at their boundary
segments only. A pair of query region and chain intersects either at a pair of their
boundary segments, or the chain is inside the region. Analogously, detecting if
two sets of compound objects intersect is based on verifying if there exists a
pair of objects from each set that intersects. Next, as an example, we present
Algorithm Intersection(A, B) (Table B)) which takes query regions A and B as
input and detect if A intersects B.

Lemma 8. For any pair of query regions A and B, |A| = ma and |B| = mp, Al-
gorithm Intersection(A, B) verifies if A and B intersect in O((mq +msz) log(m +
ma)+(ma+mp)) time, for A, B with boundary sizes as my and maz, respectively.

AN
DEDE
(2) (b) © (d)

Fig. 4. An illustration of a region A intersects a region B, e.g., (a) A and B have no
common boundary faces, B C A; (b) A intersects B at a pair of boundary segments;
(¢) A boundary segment of B is contained in A. (d) A and B do not intersect, but they
have a common boundary face.

Shortest Path Queries Between Geometric Objects on Surfaces 95

Table 3. Algorithm Intersection(A, B) verifies if query regions A and B intersect

ALGORITHM: Intersection(A, B)

Input: Regions A and B of sizes ma, mp with boundary sizes m1, ms, respectively.
Output: TRUE if A intersects B or FALSE otherwise.

1: Check if AN B as A C B or B C A. Mark all boundary faces of A red. Seek for
red faces in B and keep them in a set B(AB). If B(AB) = ¢, tag each face in A.
Pick any face in B. If it is tagged, B C A, return TRUE. Else, visit each face in
B. If find a tagged face, A C B, return TRUE. Otherwise, return FALSE.

2: If B(AB) # ¢, check if AN B at a common boundary face. For each face in
B(AB), check if (a) there exists a pair of boundary segments of A and B that
intersects. If found, return TRUE. Else, check if (b) a boundary segment of A is
contained in B or vice versa. If found, return TRUE. Otherwise, return FALSE.

References

1. Bendels, G.H., Klein, R., Schilling, A.: Image and 3d object editing with precisely
specified editing regions. In: Workshop on Vision, Modelling, and Visualization
VMV 03, pp. 451-460 (2003)

2. Aleksandrov, L., Djidjev, H., Guo, H., Maheshwari, A., Nussbaum, D., Sack, J.R.:
Approximate shortest path queries on weighted polyhedral surfaces. In: Kralovic,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 98-109. Springer, Hei-
delberg (2006)

3. Aleksandrov, L., Maheshwari, A., Sack, J.R.: Determining approximate shortest
paths on weighted polyhedral surfaces. J. ACM 52(1), 25-53 (2005)

4. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a poly-
tope with applications. SIAM J. Comput. 26(6), 1689-1713 (1997)

5. Aronov, B., O’'Rourke, J.: Nonoverlap of the star unfolding. Discrete Comput.
Geom. 8(3), 219-250 (1992)

6. Chiang, Y.J., Mitchell, J.S.B.: Two-point euclidean shortest path queries in the
plane. In: Proc. 10th ACM-SODA, Philadelphia, PA, USA, pp. 215-224. ACM
Press, New York (1999)

7. Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundaries.
J. Approx. Theory 10(3), 227-236 (1974)

8. Har-Peled, S.: Approximate shortest paths and geodesic diameters on convex poly-
topes in three dimensions. Discrete Comput. Geom. 21, 216-231 (1999)

9. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. STAM J. Com-
put. 35, 627-646 (2006)

10. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.R.: An e-approximation
algorithm for weighted shortest path queries on polyhedral surfaces. In: Proc. 14th
Euro CG Barcelona, pp. 19-21 (1998)

11. Tan, X.H., Hirata, T., Inagaki, Y.: Spatial point location and its applications. In:
Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS, vol. 450,
pp. 241-250. Springer, Heidelberg (1990)

12. Hwang, Y.H., Chang, R.C., Tu, H.Y.: Finding all shortest path edge sequences on
a convex polyhedron. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS 1989.
LNCS, vol. 382, pp. 251-266. Springer, Heidelberg (1989)

Optimal Parameterized Rectangular Coverings

Stefan Porschen

Institut fiir Informatik, Universitat zu Koln,
Pohligstr. 1, D-50969 Koéln, Germany
porschen@informatik.uni-koeln.de

Abstract. Recently in [12] a deterministic worst-case upper bound was
shown for the problem of covering a set of integer-coordinate points in the
plane with axis-parallel rectgangles minimizing a certain objective func-
tion on rectangles. Because the rectangles have to meet a lower bound
condition for their side lengths, this class of problems is termed 1-sided.
The present paper is devoted to show that the bounds for solving this
1-sided problem class also hold for problem variants with 2-sided length
constraints on coverings meaning that the rectangles are subjected also
to an upper bound for side lengths. All these 2-sided variants are NP-
hard. We also provide a generalization of the results to the d-dimensional
case.

Keywords: parameterized rectangular covering, optimization problem,
dynamic programming, NP-hardness, integer grid, exact algorithmics,
closure operator.

1 Introduction

We are interested in parameterized rectangular coverings meaning that together
with the input point set to be covered, a set of parameters is given restricting the
geometrical size of patches used. Such rectangular covering optimization prob-
lems and their computational aspects from the exact algorithmics point of view
have been classified and studied recently [I2II3]. There a dynamic programming
algorithm has been designed for finding a minimum weight covering of a set of
integer grid points by rectangles that are required to have a fixed smallest side
length, called 1-sided parameterized coverings. The corresponding time bound
of O(n?3™) as well as its structurally gained improvement O(n%2") for input
instances of size n are exponential even though the NP-hardness classification
of the problem is still open.

In [I3] the open algorithmical problem is stated whether it is possible to
tackle the problem’s variants of 2-sided parameterized coverings, where also a
largest side length is prescribed, within the same time bound as stated above.
The present paper is devoted to show that the algorithmic approach of [12]
can be adapted to the NP-hard 2-sided cases establishing non-trivial worst-case
exact upper bounds for these problem classes thus solving the open problem just
mentioned. There are several variants of related NP-hard covering and partition

problems [2I3I8/9].

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 96-{L09} 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimal Parameterized Rectangular Coverings 97

More concretely, we study the following geometric optimization problem:
Given a set M of n integer points in the plane, and two real-valued parame-
ters 0 < k < k' together with an objective function w on rectangles. Find a
set C of admissible rectangles covering M thereby minimizing w(C) over all
such coverings. Here a rectangle is called admissible if it is placed parallel to
the Euclidean, i.e. cartesian, coordinate axes and in addition side lengths are
in the range [k, k']. We show that the members of the 2-sided problem class all
are NP-hard, for arbitrary objective functions. A special problem case occurs
if & = K’ meaning that rectangles become squares of fixed side length. (If in
addition k = 0 then each point z of M has to be covered separate by a zero-size
square coinciding with z itself.) Another special case occurs if k' is set to oo
meaning that rectangles only have to meet a lower side length condition, refered
to as the 1-sided problem class as stated above. Therefore NP-hardness of the
2-sided case does not yield NP-hardness of the 1-sided case, in general. There are
some variants and objectives where the 1-sided problem behaves trivial, others
are unresolved from the point of view of computational complexity. So, we leave
it as an open problem whether the underlying decision problem for the 1-sided
class is NP-complete, in case of objective functions w that involve simultaneous
minimization of sums of areas, circumferences and the total number of rectangles
used (cf. [12]).

The main focus of the paper therefore is to provide a dynamic programming
exact algorithm for the solution of the NP-hard 2-sided class of exponential
bound. The running time afterwards can be improved according to an adapta-
tion of the structural features exhibited in [II]. There an equivalence relation
is exploited on all subsets of the input point whose classes are given by all sets
admitting the same rectangle enclosing all these sets tight. This relation directly
corresponds to a closure operator and enables us to polynomially bound the
number of covering pachtes.

The paper is structured as follows: in the next section we formulate the prob-
lem in precise terms and discuss its computational complexity. In Section Bl we
provide some facts on coverings preparing the problem’s algorithmic treatment
via dynamic programming as presented in Section [dl In Section 5l we gain some
upper bound improvement using similar structural features as in [T1IT2]. Section
is devoted to consider a higher dimensional generalization of the problem and
its solution techniques. Finally, in Section [1, we essentially collect some relevant
open problems, resp., future work directions.

For finally fixing the notation, let R? be the Euclidean plane. For z € R?
its coordinate values are z(z),y(z). Let Ly = Zey\ + ZeyA be an axis-parallel
integer grid embedded in R? with lattice constant A € R, , which w.l.o.g. from
now on is fixed to value 1: L; =: L = Z?. Due to translational invariance
it is sufficient to restrict ourselves to a bounded region of the first quadrant:
B = [0,N,] x [0,N,] C R?, for N,,N, € N. Let I := BN L. A reqular (or
isothetical) rectangle r, is placed axis-parallel in B. Let r;, resp. r, denote the
length of the z-parallel resp. y-parallel sides of 7. A rectangle » C B is uniquely
determined by its upper right z,, := (., y.) and lower left z; := (x4, yq4) diagonal

98 S. Porschen

points such that r = [xg, Zy] X [Yd; YulsTe = Tu — TdsTy = Yu — Yd- Let Rreg
denote the set of all regular rectangles r C B each represented by its upper
right and lower left diagonal points (z4(r), z,(r)) € B?. For n € N, we write
[n] :={1,...,n}. The power set of a set M is denoted as 2™, and we denote the

collection of all p-subsets in M as (1\1)4)

2 The Problem and Its Computational Complexity

Assume that a set M = {z1,...,2,} C I of n € N points is fixed. The task is to
construct a covering of M by regular rectangles subjected to certain length con-
straints. (Rectangles » C R? are considered as closed sets in the norm topology.
This specifically means that points of M lying on the boundary of a rectangle r
are also contained in r and thus are covered by r.) We impose a further param-
eterized constraint on a covering of M to be admissible: Each of its rectangles
must have sides of length lying in an interval K = [k, k'] C R4, given in ad-
vance, meaning 2-sided (interval) constraints. So, a K -admissible rectangle r by
definition is regular such that r,,r, € K. The class of objectives for our covering
minimization problems is rather general, as defined next.

Definition 1. An objective function on rectangles is a map w : Ryeg — R4 —
{0}, whose values w(r) are assumed to be computable in constant time. Its ex-
tension to a set U C Rieg as usual is defined via w(U) :=) ., w(r). w is called
monotone if it satisfies: C v’ = w(r) < w(r'), for all r,7" € Rieg.

For an integer point set S, a rectangular covering (rc) is a set C' C Ryeg of
regular rectangles such that S C |, 7. We call C an i-rc of S'if |C| =i < [S)].
Given K C Ry, we call a (i-)rc C' optimal K-admissible if C is K-admissible,
and w-minimal, i.e. w(C') is minimal over all K-admissible coverings of M. Let
C*4(8) (€24(8)) denote the set of all optimal K-admissible (i-)rc’s of S.

Let us state in precise terms the problem(-class) to be discussed in the fol-
lowing:

Definition 2. Let w : Ryeg — Ry be a monotone objective function. The (2-
sided) rectangular covering problem RCg is the following optimization problem:
Given an input point set M = {z1,...,2,} C I (n € N) and a closed interval
K :=[k k] CRy (0<k<E) find an optimal K -admissible covering C' C Ryeg
of M.

In the decision version DRCg, with additional input parameter W € R, one
has to decide whether there exists a K -admissible covering C' C Ryeg of M with
w(C) <W.

Regarding the problem’s computational complexity we have according to [10]:

Theorem 1. DRCg is NP-complete and RCx is NP-hard, for each objective
function w on rectangles.

Proof. To keep the presentation self-contained we give a sketch of the proof. As
basis serves a result cited in [QT6] stating that covering an input point set M

Optimal Parameterized Rectangular Coverings 99

A
° o o o (o]
() L] ()
-« >
() L] ()
. o e o e
\
S r(S) r%(9)

Fig. 1. Black dots represent points of S (left), white dots represent the base points
zu(S),za(S) € b(S) of the rectangle r(S) enclosing S (middle); symmetrical enlarged
rectangle 7 (S) containing r(S) (right); grid lines are omitted.

with squares of a fixed side length is NP-hard when subjected to minimizing the
number of covering components. It is obvious how to define the corresponding
canonical decision problem.

We establish a polynomial-time reduction from this square covering deci-
sion problem to DRCyg yielding NP-completeness of the latter. To that end,
let (M,t,N) be an instance of the square problem, where M is the integer
input point set, ¢ the fixed side length allowed for squares, and N € N the
upper bound for the covering cardinality. In polynomial time we compute the
instance (M, K = [t,t],W = Nuw(q)) of DRCg where ¢, denotes the square
of side length t. Now assume that C' is a square covering of M such that
|C] < N. Then (M,K = [t,t],W = Nw(q)) € DRCk, for the same cover-
ing C, since each ¢ € C has sides of length in [k, k'] = {t} and moreover holds
w(C) = |Clw(qr) < Nw(q:) = W. The converse direction proceeds analogously.

O
For an integer point set S, we call 7(S) the rectangular base of S defined as
r(S) == [2a(S), zu(S)] %X [ya(S), yu(S)], with lower left and upper right diag-
onal base points z4(S) = (24(5),y4(9)) and z,(S) = (xu(S),y.(5)). These
point are determined via z4(S) := min.esx(2), yq(S) = min,csy(z) and
2 (S) == max.ecs x(2), yu(S) := max.cs. Thus r(S) encloses S tight, and
may be identified with b(S) := (24(95), z4(5)). Again let r,(5), 7, (S) be the side
lengths parallel to the x-, y-directions, respectively; these side lengths can be
zero.

It is convenient to use the notation r (S) for a K-admissible rectangle con-
taining 7(S) defined as follows: 7 (S) equals r(.S) if 7(S) already is K-admissible,
K = [k, k']. Otherwise if both 7, (S) and 7, (S) are smaller than &', let r(S) de-
note a smallest enlargement of the non-admissible sides of r(.S) (of which there is
at least one) such that it becomes a smallest K-admissible rectangle containing
r(S) D S. To keep this step deterministic, we enlarge sides symmetrical at both
ends about the half of the difference to & (cf. Fig.). Finally, if at least one of
72(S), 7 (S) is larger than &’ then 7% (S) remains undefined, resp., is identified
with oo, for convenience in this case we set w(oo) := 0.

It can occur that r(S) covers input points not covered by r(S) thus yield-
ing a covering component for S’ C M, with S C §’. As will turn out below

100 S. Porschen

TK(Sl) ’I‘K(S:;)

Fig. 2. Point set M = |J;_, S; (black dots) cannot be covered via an i-rc for i < 3,
e.g., if patches are required to be squares of fixed size

this situation is treated adequately within our dynamic programming frame-
work systematically testing all relevant candidates of admissible coverings for
w-optimality.

3 Parameterized Coverings

Concerning rectangular coverings of prescribed fixed cardinalities the 2-sided
covering problem decomposes into subproblems as follows:

Definition 3. Problem i-RCk is defined as:
Input: Integer point set M # (), side length intervall K := [k, k'] C Ry
Output: optimal K -admissible (i-)rc of M if existing, else nil.

Given an integer point set S and integer i < |S|, when does exist an i-rc as
defined above? Clearly, a w-optimal i-rc of S always exists, in case there are no
side length restrictions or only those requiring a minimal side length as for the
1-sided problem class.

However, in the 2-sided case existence of a K-admissible i-rc is not necessarily
guaranteed due to the fact that even a small number of n input points might
be distributed infeasible if ¢ < n as is illustrated in Fig. 2 where for example
patches are required to be of fixed size. Obviously an i-rc exists whenever |S| < 4,
whereas for an optimal i-rc C' always holds |C] < 1.

Therefore, given input point set M, the main task from the point of view of
dynamic programming is to characterize, for each fixed ¢ > 1, those sets S C M
with |S| > ¢ admitting a K-admissible i-rc. To that end, let

SM(M) = {S € M|C}(S) # 0}

Optimal Parameterized Rectangular Coverings 101

denote the collection of all subsets of M admitting a K-admissible i-rc. Similarly,
define $24(9), for each fixed S C M, which clearly satisfies S24(S) C S24(M).
For the base case, things are easy because we obviously have

S (M) = {S € M|rF(S) # oo exists}
By definition, it is easy to see that for each S € Sd(M), rectangle r(S)
provides an optimal 1-rc of S. To attack the other cases consider the sets:
Q1(S) = S§p4(S) € 87 (M)
QM(8) ={TcCS:TeSMMANS—-TeS (M)} for (i>2)
which can be empty, but are well-defined for each S € 2™. We have:

Claim 1: There is a K-admissible i-rc of S (hence also an optimal one) if and

only if Q24(S) # @.

Proof of Claim 1: For S # @&, otherwise we are done as well as in case ¢ = 1. So,
let i > 2 and assume that Q24(S) = @, but that there is a K-admissible i-rc
C of S. Let 7' € C be arbitrary, then clearly holds T := ' NS C S € S (M),
and C — {7’} is an admissible (i — 1)-rc of S — T which therefore is in S, (M)
yielding a contradiction. The converse direction of the assertion is obvious. 0O

Note that ©24(S) is non-empty whenever Q24 (S) is non-empty, for i > 2, and
that for each S there is a smallest ¢(.S) with 1 < i(S) < |S]| such that S;‘d(S) is
non-empty for each j > i(.5).

Claim 2: Let i > 2 be fized. If Q24,(S) # @ then there is an optimal K-

admissible i-rc C; of S which is determined via C; = C;_1 U {r¥(Ty)} where
Ci—1 €CM,(S—Tp) and
wi,1(S - To) + w1y (T()) = min (wi,l(S — T) + wy (T))

T€Q3d4(9):5-T€Q2d (S)

Here w;(S) := w(C;) is defined to be the constant value of an optimal K-
admissible i-rc C; € C2(S) of S; specifically wy(S) = w(r¥(S)), for each
S e SM(M).

Proof of Claim 2: The above equations for all S and corresponding ¢ form the
Bellman optimality conditions underlying our problem class. If Q4 ,(S) # @
then S admits an optimal K-admissible (i — 1)-rc adding any admissible rect-
angle serves for a K-admissible i-rc of S, so it exists. Removing any covering
rectangle r from an arbitrary K-admissible i-rc of S yields a K-admissible (:—1)-
rc of S—(rN.S). Thus the assertion follows since among all candidates one having
optimal w; value is selected. O

Deriving a covering for the whole point set M we have.

Claim 3: Let w; := w(C;) denote the constant weight value for each C; €
Cad(M), 1 <i < |M| (set w; := oo, if C24(M) = @). An optimal K -admissible

102 S. Porschen

covering C* € C* (M) of M thus is obtained via w := min;e(ar)) wi, namely

as C* € C3(M).

Proof of Claim 3: First observe that there must exist an i € [|[M]] such that
C34(M) # @ because obviously Clal\%l(M) # @ simply cover each point separate
by a K-admissible rectangle. Clearly, we never need more than n := |M| mem-
bers in every K-admissible covering of M, because one of these must be optimal.
The correctness therefore immediately follows from Claim 2.

4 Providing Exact Upper Time Bounds

Let K = [k, k], and M be an integer point set. Because of the argumentation
above we cannot simply transfer the dynamic programming approach as provided
in [12] for the 1-sided case meaning k&’ = co. There one successively computes
w-optimal i-rc’s, for all sets S C M, and for each fixed 1 < i < |M|. However, in
the 2-sided case, i.e., k' < oo, for a given S and arbitrary ¢ < |S|, a K-admissible
i-rc of S might not exist. So in the dynamic program we obtain forbidden values
or in other words undefined values. This simply means that also no set S’ O §
admits an i-rc and might even not admit an i+ 1-rc. However, each set S admits
an i-rc for all i > | S|, where of course only those for i < |S| can be w-optimal.

So informally, the adapted dynamic program for the 2-sided case proceeds
as follows: If M € S34(M) then we are done, for monotone objectives, as the
whole set is admissible covered by one rectangle which obviously is optimal. In
the general case proceed as follows. Start with a computation of S34(M) which
is straightforward as defined above. In view of Claim 1 above the K-admissible
i-rc’s of S are determined by Q24(S). Hence, according to the results stated
above, what we need before starting the round of computing the optimal K-
admissible (i + 1)-coverings for each set S € 2M is the collection S24(M), where
1 > 2 is fixed. Moreover we need constant time access to its members which
therefore should be stored in an array of appropriate length. Thereby we should
organize the array corresponding to Q?4(S) by the sets 7" := S — T, for which
we know that T = S — T' € S¥, (M) AT € S2(M). So we next explain
how these collections can be computed and organized effectively: Keep an array
S24(M), for each fixed i such that 1 < i < |M|, whose indices correspond to
fixed pre-scribed ordering of the subsets of integer point set M such that in
constant time we have access to the entry for given subset S. The array entry
for each S is assumed to be a pair, the first component keeps the value of w
for a corresponding optimal K-admissible i-rc of S. This value, by definition
becomes oo if S is characterized to possess no K-admissible i-rc, due to Claim
3 above. The second component of each entry is a pointer to the corresponding
set Q24 (9), whose members have to be considered due to Claim 2.

In order to reasonably reduce in advance the subsets to be touched when
searching for an i-rc of a set S C M with [S| > ¢ we concentrate on those
subsets T' of S satisfying

T <[S]—=(i—1)

Optimal Parameterized Rectangular Coverings 103

Thus we check only those T' C S such that the difference set S — 1" contains at
least ¢ — 1 input points. It is obvious that other candidates never can contribute
to an overall optimal K-admissible covering of M.

For convenience, let us recall the data structures that turned out to be useful
for the overall procedure, cf. [I2]. Rectangles will be represented by their lower
left and upper right diagonal points in a data type rectangle storing objects of
type point. Thinking of M as a sorted alphabet, each subset S C M corresponds
to a unique word over M, denoted word(S) or S for short, thus 2™ may be sorted
by the corresponding lexicographic order. For each S, there can be determined
an unique index ind(S) according to this order. A datatype subset is used for
storing a rectangle and an integer. Then in a preprocessing step for each S C M
there can be defined subset A S holding ind(S) and also r(S) such that it
is possible to read each of them in constant time. We make use of two further
container arrays Opt;, Rect; for i = 0, 1, each sorted by increasing ind(S). Two of
each kind are needed, because during the algorithm they may be read and filled
up alternately. The arrays Opt;, i = 0, 1, shall store the intermediately computed
w;(S)-values. Recall that w;(S) = w(C;(9)) if an optimal K-admissible j-rc
C;(S) of S C M exists, otherwise w;(S) := oo, for j € [n], with n := |M|. The
other two arrays Rect; of dynamic length have the task to hold at each index
ind(S) a set for storing the intermediately computed K-admissible rectangles
covering S. These arrays are also (re-)used alternately, and get entry @ if the
corresponding covering does not exist. By the common order of these arrays the
task of determining for a given set T' C M its array position is solved in O(1) by
referring to A S.ind = ind(S). Finally, we make use of two arrays Subs;,i = 0,1,
of dynamic length. The first one shall store word(T') and the second word(T")
for each subset T of the current S C M, where T = S — T'. These arrays may
be sorted by lexicographic order.

Algorithm RCk
Input: set of integer points M C I in the plane M as array of points
Output: optimal K-admissible covering C*(M); value w(M) := w(C*(M))
begin
if (M) < co then return w(M) « wi(M), C*(M) « {r¥(M)}
else
sort 2M by lexicographic order, thereby:
vS € 2™ . compute r(S),ind(S) and £fill A S
VS € 2™ Optolind(S)] — wi(S), Rectolind(S)] — {r(S)}
w(M) « Optolind(M)], Recto[ind(M)] «— {r® (M)}
if n > 3 then
for j =2 to n—1 do
for all S € {S € 2™\ {0};|S| > s} do
sort 29\ {0} by lexicographic order, thereby:
VT € 25\ {0} : Subsolind(T)] «— word(T), Subs:[ind(T)] — word(T")
Opl(;—1) mod 2[ind(S)] — oo (xw;(S) «— ocox)
for all T € {2°\ {0}; |T| < [S| - (j — 1)} do
temp = w1 (T) + Opt; moa 2[ind(T")] Grw;j_1(T")*)
if temp < Opt(;_1) moa 2[ind(S)] then
Opt(;—1) mod 2[ind(S)] «— temp
Rect(;—1) mod 2[ind(S)] — {r"™(T)} U Rect; wmoa 2[ind(T")]
end do G+ now: Opt(j_1) mod 2[ind(S)] = w;(S)*)

104 S. Porschen

end do
if Opt(;—1) moa 2[ind(M)] < w(M) then
’LU(M) — Opt(J,D mod g[znd(M)], C*(M) — Rect(j,l) mod Q[an(M)]
end do
end if (x case n >3 %)
Opt(n—1) mod 2[ind(M)] — 0o, Rect(n—1) mod 2lind(M)] — 0
forall TCM:|T|=1 do
temp = wi(T) + Optyn mod 2(ind(T")) Gewn—1(T")*)
if temp < Opt(n—1) moa 2[ind(M)] then
Opt(n-1) mod 2[ind(M)] — temp
Rect(n—1) moa 2[ind(M)] «— {TK(T)} U Rectn mod 2[ind(T"))]
end do (x now: wn(M) = minjp= (wi(T) +wn—1(T")) *)
if Opt(n—1) moa 2[ind(M)] < w(M) then
w(M) «— Optn_1) moa 2[ind(M)], C*(M) < Rect(,—1) moa 2[ind(M)]
(« now: w(M) = min{w;(M);i € [n]} *)
end

So, the algorithm iteratively computes for each fixed i + 1 with 1 < i < n and
each set S C M with |S| =i+ 1 an optimal K-admissible (i 4+ 1)-rc if existing.
For this computation only the results of the previous round ¢ are needed. So,
it indeed suffices to alternately use two arrays of each type; one for storing the
current results while the other keeping previous results needed for computing
the current results. Then their roles are exchanged.

Theorem 2. For input (M, K, w) with n := |M|, an optimal K -admissible rect-
angular covering of M can be computed in time O(n?3m).

Proof. The correctness follows from the considerations in the previous sec-
tion. Regarding the running time observe that as explained before we essentially
treated all subsets of all subsets of M. In consequence we can organize the pro-
cedure as shown in [I2] for the 1-sided case yielding the same time bound as
proved there. ad

5 Improving Time Bounds

In [12] the set A(M) = {S € 2M|r(S) N M = S} is defined helping to decrease
the time bound for the class of 1-sided parameterized covering problems. The
structural background underlying this improvement can be summarized roughly
as follows [I1]: The relation S1 ~, Sa <qet 7(S1) = 7(S2),V0 # S1,5; € 2M
defines an equivalence relation on 2™ \ {#}. We write M := [2M \ {0}]/ ~,.
Moreover, the map

0:2M 3 8 0(S) :=r(S)NM € 2M

(r(0) := () is a closure operator having image o(2M) = A(M) U {(}. Finally,
the sets A(M) and M are isomorphic. Thus each A € A(M) defines a class
of subsets of M that are all equivalent because admitting the same rectangular
base. All these subsets are contained in the given set A.

Optimal Parameterized Rectangular Coverings 105

In this section we describe how these methods apply also to decrease the
bound obtained in the preceding section where almost all subsets S € 2™ have
been considered in the algorithm. Many of these subsets can be identified in the
sense that they lead to the same K-admissible 1-rc. To that end, let A (M) :=
S3d(M) N A(M), then by the corresponding results in [T1] we have:

Lemma 1. For input (M, K) holds | A*(M)| € O(|M|*). |
For convenience, we define the sets
T;(S) ={T C S;|T| < |S| - (j — 1)}

for each S C M with |S| > j > 2. Similar to the corresponding result in [I2] one
can prove:

Lemma 2. Let (M, K,w) be an instance of RCk. If, for each S € Sfd(M)
one replaces T;(S) by the set ’Z}ad(S) = T;(9) N AM(M),j € {2,...,|M|}, in
Algorithm RCg, then it still works correctly.

Proof. We have to show that
(4 wy(S) = min{w((7)) + w1 (5): T € T(5)}
holds. By Claim 2 we surely have
w;(8) = min{ F4(T): T € T;(5)}

where we defined ffg(T) == w(r®(T)) + wj—1(T"). Now we claim that for each
T € T;(S) there is A € T2(S) : fi(A) < fL(T), from which the assertion
immediately follows, because in that case we do not miss any relevant candidate
computing w;(S) as in (). To show the claim consider any T € 7;(S); if T €
T74(S) we are ready by setting A := T = fL(A) = f4(T). T € T;(S) \ T24(S)
implies T' ¢ A*(M), and we set A := A(T) := r(T)NM € A(M), and obviously
w(r®(T)) = w(r(A)). Moreover, we have S\ A C S\ T, because T C A(T),
which in case |S'\ A] > j — 1 directly implies fZ(A) < f4(T). In the remaining
case |S'\ A] < j — 1, we have

wj—1(S\A) = wi(S\T) + wj-1-1(0)
<Swi(S\T) +wj—1-4(0)
<w;j1(S\T)
where the last inequality follows because |S'\ T'| > j — 1 and w;_1_;()) means

the value of w for j — 1 — [rectangles being smallest according to k, from which
the claim and also the lemma follow. O

Theorem 3. For input (M, K,w), problem RCx can be solved in O(|M|62IM1)
time.

106 S. Porschen

Proof. The correctness directly follows from Lemmal2l To verify the time bound
first observe that from the proof of Theorem [(see the proof of Thm. 1 in [12])
follows that for the most inner loops instead of considering each element of 7;(.5)
we have to consider only those also being elements of A*d(M). Thus, instead of
p2P, for fixed S C M : [S| = p, one obtains 37 _. (Z)p|Aad(M)\ < n2m| A (M)
and the outer loop never is iterated more than n times leading to another factor
n := |M]|. Finally, using | 42¢(M)| € O(]M|*) due to Lemma [finishes the proof.

O
Consider the following parameterized variant of the problem at hand: For fixed
p € N, let RCk(p) be the problem of solving RCx with at most p covering
components. For this situation we have:

Theorem 4. For fized p € N, and input (M, K,w,p), RCx(p) can be solved, or
reported that no solution exists in time O(pn*PT1).

Proof. Even as brute force search: we only have to check each covering candidate

R in the set

O (Aad(M))

i=1 p
whose cardinality is in O(|].A*d(M)|?), hence the bound follows, as |A*(M))|
€ O(|M[*). O

6 Generalization to the d-Dimensional Case

The setup described in the preceeding section will be generalized in the sequel to
the d-dimensional case for 2 < d € N. This generalization is not only interesting
from an abstract point of view but it may be profitable also for modeling higher
dimensional applications.

For fixed 1 < d € N, let E? be the Euclidean space in d dimensions with fixed
(orthogonal) standard basis B¢ = {ey,...,eq}. For the (orthogonal) integer
lattice LY = Zey + - + Zeq = Z%, we fix via N := (N!,...,N%) € N? the
bounded region

I = ([0,N'] x --- x [0, NY) n L4

Let M = {my,...,m,} C I where each m; = (m},...,m¢) is represented

by its coordinate values with respect to B¢ We are searching for a covering of
M, by regular, i.e., B%parallel d-boxes of minimal fixed side lengths k with 0 <
kE < minj<;<q N;, s.t. the overall volume, boundary volume and number of boxes
used are minimized. Let r be a d-box with side-length vector (r',...,7%), ¢; >k,
then its volume is given by vol(r) = H?Zl r, and the volume of its boundary
Or is vol(0r) = 2 Zle Hf " 7. Here Or denotes the boundary of topologically
viewed as closed set. By Reg, denote the set of all regular d-boxes.

Definition 4. Let K C Ry be fized. A K-admissible d-box is a regular d-box
r such that r* € K, 1 < i < d. An K-admissible d-box covering of M is a set

Optimal Parameterized Rectangular Coverings 107

C C Ryeg, of K-admissible components such that M C UTEC rNI% and for each
reC:rnNM#0.

K,d-RECTANGULAR COVER (RC%) is the following optimization problem.:
Given M C I, find a K -admissible covering C of M such that w(C) is minimal
over all K-admissible coverings of M.

Given m € I? and e; € B?, there is a unique hyperplane H,,(e;) C E? con-
taining m and being orthogonal to e;, which is given by H,,(e;) := {m'e; +
> jzi @jej 1 aj € R} Hence given S € 2M by by(9) = {ma(9), my(S)} € (I;),
a unique d-box base r4(S) is determined in time O(d|M]|) via the intersections
of the corresponding hyperplanes, where m?(S) := min{m’ : m € S} and
mi(S) := max{m’ : m € S}, 1 < i < d. Similarly, as in the planar case, we
define the K-admissible d-box 7 (S) containing ry(S): rX(S) := oo if there is
at least one 1 < i < d such that r%(S) > k’. Otherwise it is obtained from r4(9)
via enlarging symmetrical each 7%(S) that is smaller than k.

On that basis it is not hard to see that Algorithm RCg can be modified to
Algorithm RC?(solving the corresponding d-dimensional problem within worst
case time O(d|M|?31M1).

This bound can be improved by generalizing the structural features discussed
in Section [l to the d-dimensional case. The equivalence relation ~ on the power
set 2M can also be generalized to the d-dimensional case where M C L¢:

S1 ~a Sz Sdet ba(S1) = ba(92), V51,52 € 2V
with classes [S]4. Defining M, :=2M / ~; as well as
0q:2M 3 8 04(8) == ra(S) N M € 2M
(ra(2) = @) and A3(M) :={S C M : 04(S) = S} we arrive at:

Proposition 1. o4 : 2M — 2M s o closure operator and there is a bijection
pa 2 AB(M) — My defined by S — pa(S) := [S]a, S € A(M). O

We now have [A34(M)| € O(|M|??) which for fixed d defines a polynomial bound.
Collecting all parts of the preceeding discussion we obtain the result:

Theorem 5. A worst case time bound for exactly solving RC% for input (M, K,
w) is O(d|M|?(d+1)2IMI),

For fixed p € N, let RC‘I{((p) be the problem of solving RC% with at most p
covering components, we have adapting the proof of Theorem [

Theorem 6. Given (M, K,w,p), problem RC?((p) can be solved, or reported
that no solution exists in time O(dp|M|?@P+1).

7 Concluding Remarks and Open Problems

We investigated NP-hard rectangular covering optimization problems for sets of
n integer grid points within the framework of exact algorithmical theory [I7].

108 S. Porschen

Concretely, we designed dynamic programming algorithms providing exact de-
terministic worst-case upper time bounds of O(n2?3") for solving the variants of
coverings parameterized by 2-sided length constraints. Structural properties as
studied and used in [TTT12] were shown to be applicable here, too, asymptotically
decreasing the time bound to O(n®2m).

The derived time bound touches all subsets of a given set of input points,
thus containing factor 2". It should be a challenging task to construct exact
algorithms such that this factor is decreased to 2", for appropriate o < 1.

Another open problem appears regarding parameterized computational com-
plexity [5l6]: We specifically showed that, given a further parameter p, fixing the
number of admissible covering components that maximally are allowed for a cov-
ering yields a time bound for the problem essentially of O(pn*P*1). Is it possible
to characterize this p-parameterized problem to belong to the class FPT, mean-
ing to devise an exact algorithm having a time bound of the form O(g(n) - f(p))
where ¢ is a polynomial, and f is an arbitrary (exponential) function. In this
context, one also can consider the decision version DRCg. Here the question
arises whether it belongs to the class FPT w.r.t. parameter W € R, serving as
upper bound for weight values for coverings, namely it is required w(C) < W.
Notice that similar FPT characterizations have been obtained for many other
problems. Consider, e.g., the vertex cover problem for simple graphs, for which
a bound of O(1.285% + kn) was achieved [4] w.r.t. k, on the instance class over n
vertices admitting minimum vertex covers of cardinality at most k, with k € N
fixed. Otherwise it should be shown that this is unlikely to achieve establishing
the W[P]-completeness status of DRCg-.

From a more applicational point of view approximation algorithms could be of
interest. Clearly, taking here the mathematical precise point of view one should
try to formulate the covering problems in terms of (integer) linear or semidefi-
nite programming [7] using appropriate rounding techniques for strictly gaining
approximation ratios. In that context it would also be nice to examine the pos-
sibility of gaining a PTAS which only is possible if the problem does not be
MAXSNP-complete.

On the other hand, for real world applications like picture processing or data
compression [T5T6], one might apply general heuristics, for preprocessing these
covering problems, such as genetic algorithms that proved to perform well in
several applicational problems of diverse fields. Rectangular covering problems
may arise also for example in numerical analysis for solving partial differential
equations by iterative multigrid methods [TIT4].

References

1. Bastian, P.: Load Balancing for Adaptive Multigrid Methods. SIAM Journal on
Scientific Computing 19, 1303-1321 (1998)

2. Calheiros, F.C., Lucena, A., de Souza, C.C.: Optimal Rectangular Partitions. Net-
works 41, 51-67 (2003)

10.

11.

12.

13.

14.

15.

16.

17.

Optimal Parameterized Rectangular Coverings 109

. Culberson, J.C., Reckhow, R.A.: Covering Polygons is Hard. In: Proceedings of the

twenty-ninth IEEE Symposium on Foundations of Computing, pp. 601-611. IEEE
Computer Society Press, Los Alamitos (1988)

. Chen, J., Kanj, L., Jia, W.: Vertex cover: further observations and further improve-

ments. J. Algorithms 41, 280-301 (2001)

. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(1999)

. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)

. Goemans, M.X., Williamson, D.P.: A 0.878-approximation algorithm for MAX-

CUT and MAX-2SAT. In: STOC 1994. Proceedings of the 26th ACM Symposium
on Theory of Computing, pp. 422-431. ACM Press, New York (1994)

. Hershberger, J., Suri, S.: Finding Tailored Partitions. J. Algorithms 12, 431-463

(1991)

. Hochbaum, D.S.: Approximation Algorithms for NP-hard problems. PWS Publish-

ing, Boston, Massachusetts (1996)

Porschen, S.: On the Time Complexity of Rectangular Covering Problems in the
Discrete Plane. In: Lagana, A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K.,
Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 137-1465. Springer, Heidel-
berg (2004)

Porschen, S.: On the Rectangular Subset Closure of Point Sets. In: Gervasi, O.,
Gavrilova, M., Kumar, V., Lagana, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K.
(eds.) ICCSA 2005. LNCS, vol. 3480, pp. 796-805. Springer, Heidelberg (2005)
Porschen, S.: Algorithms for Rectangular Covering Problems. In: Gavrilova, M.,
Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Lagana, A., Mun, Y., Choo, H.
(eds.) ICCSA 2006. LNCS, vol. 3980, pp. 40-49. Springer, Heidelberg (2006)
Porschen, S.: On rectangular covering problems. Tech. Report zaik, -533, Univ.
Koln (submitted for publication) (2007)

Plimpton, S.J., Hendrickson, B., Stewart, J.R.: A parallel rendezvous algorithm
for interpolation between multiple grids. J. Parallel Distrib. Comput. 64, 266-276
(2004)

Skiena, S.S.: Probing Convex Polygons with Half-Planes. J. Algorithms 12, 359-374
(1991)

Tanimoto, S.L., Fowler, R.J.: Covering Image Subsets with Patches. In: Proceed-
ings of the fifty-first International Conference on Pattern Recognition, pp. 835-839
(1980)

Woeginger, G.: Exact Algorithms for NP-hard problems: A survey. In: Jiinger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185-207. Springer, Heidelberg (2003)

Shortest Path Queries in a Simple Polygon for 3D
Virtual Museum

Chenglei Yang, Meng Qi, Jiaye Wang, Xiaoting Wang, and Xiangxu Meng

School of Computer Science and Technology, Shandong University, 250100, Jinan, China
chl_vyang@sdu.edu.cn, gimeng@mail.sdu.edu.cn, jywangz@yahoo.com,
{xtwang, mxx}@sdu.edu.cn

Abstract. This paper proposes a new algorithm for querying the shortest path
between two points s and 7 in a simple polygon P based on Voronoi
diagram(VD). Based on the polygon’s VD, we first find the Voronoi skeleton
path S(s,) from point s to ¢, and then along which we compute the shortest path
SP(s, 1) by visibility computing simultaneously. SP(s, ¢) can be reported in time
O(n). It can be used in our 3D virtual museum system, in which the polygon’s
VD is used as a data structure for path planning, visibility computing, collision
detection, and so on.

Keywords: Shortest Path, Voronoi Diagram, Virtual Museum.

1 Introduction

The Euclidean shortest path problem is one of the best-known problems in
computational geometry. There are many possible versions of the problem [1], for
example, the obstacles are polygons, disks, or the moving object is a point, a polygon,
a disk and so on [2,3]. This paper focuses on what is perhaps the simplest: querying a
shortest path SP(s, f) between two points s and ¢ in a simple polygon P in the plane.
The other cases can be converted into this case.

Several algorithms have been proposed to find shortest paths inside a simple
polygon. As introduced in [4] and [5], all the methods are based on a triangulation of
the polygon. In this paper, we focus on how to fast compute the shortest path inside a
simple polygon P based on P’s VD so that it can be used in our 3D virtual museum
system, in which the polygon’s VD is used as a data structure for path planning,
visibility computing, collision detection, and so on [6,7]. In that system, offsetting
path (ref. Fig.1) and Voronoi skeleton path S(s, #) (ref. the path composed of Voronoi
edges epe;...e;s in Fig.2) are both computed based on VD, by which user can visit the
museum expediently.

VD is a very important geometric structure and a significant research topic in
computational geometry. A polygon’s VD records the regions in the proximity of a
set of generators (edges or concave vertices of a polygon) and these regions are called
Voronoi Regions (VR). Each VR corresponds to an edge or a concave vertex of the
polygon, and points inside the VR are closest to this edge or concave vertex. As VD
has the character of maximum circle, it is often used for path planning [8, 9]. [10]

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 110 2007.
© Springer-Verlag Berlin Heidelberg 2007

Shortest Path Queries in a Simple Polygon for 3D Virtual Museum 111

presents a techniques for fast motion planning by using discrete approximations of
generalized VD, computed with graphics hardware. [2] refers to the shortest path
problem in VD, which employ the Dijkstra algorithm whose time complexity O(x°) in
the worst case commonly. It mainly computes the shortest paths for disc obstacles. [3]
introduces a Visibility—Voronoi diagram which is a hybrid between the visibility
graph and the VD of polygons in the plane and to be used for planning natural-
looking paths for a robot translating amidst polygonal obstacles in the plane. [11]
provides an algorithm based on Voronoi diagram to compute an optimal path in the
presence of simple disjoint polygonal obstacles. Those methods are also employs the
Dijkstra algorithm to find a path.

Fig. 1. Offsetting Paths computed based on Polygon’s VD

This paper proposes a new algorithm for querying the shortest path between two
points s and ¢ in a simple polygon P based on VD. Because the Voronoi vertices and
edges of a simple polygon’s VD compose a tree (a concave vertex of P that is a
common end-point of two Voronoi edges can be seen as two vertices), only one
Voronoi skeleton path S(s, #) from point s to ¢ exits. We first find S(s, ¢), and then
along which we compute the shortest path SP(s, #) by visibility computing
simultaneously. SP(s, t) can be reported in time O(n).

Our algorithm computing the shortest path SP(s, ¢) based on VD is composed of
three steps:

1) Find the VRs that two points s, # belong to;

2) Search the Voronoi skeleton path S(s, ¢) (ref. the path composed of Voronoi
edges epe;...e;s5 in Fig.2);

3) Compute the shortest path SP(s, t) along S(s, t) (ref. the path sg,,¢,29,3¢,4t in
Fig.2).

As we know, the Voronoi vertices and edges of a simple polygon’s VD compose a
tree, and only one branch of Voronoi skeleton becomes the path S(s, ¢) from point s to
t. In section 2 we focus on describing how to compute the shortest path SP(s, ¢) along
S(s, t). The method of computing S(s, ¢) is addressed in section 3. Finally algorithm
analysis and conclusions are given in section 4.

112 C. Yang et al.

Fig. 2. Polygon’s VD, Voronoi skeleton path S(s, f) and shortest path SP(s, 1)

2 Shortest Path

First, some notations and definitions are introduced.

In VD of the polygon P, the common edge of two VRs is called a Voronoi edge.
The intersecting point of some Voronoi edges is called a Voronoi vertex. By “culling”
Voronoi edges related to polygon vertices in P’s VD, we can get the polygon’s
Voronoi skeleton, that is, a tree. Voronoi skeleton path S(s, t) from point s to 7 is a
subset of the P’s Voronoi skeleton.

If the VR of a concave vertex g of P has a common Voronoi edge with S(s, t), then
q is called a related concave vertex of S(s, t) (ref. the vertices q;;, 9, Gis Gr20 413 Gras
q,s in Fig.2); if the VR of an edge e of P has a common Voronoi edge with S(s, 1),
then e is called a related edge of S(s, t); the vertices of the related edges and the
related concave vertices of S(s,) are called related vertices of S(s, t). When we run
along S(s, t) from s to ¢, some edges of the VR on S(s, #), generated by the related
concave vertices and edges, are passed one by one. We call a related concave vertex
or edge left of S(s, t) as a left related concave vertex or edge, and that right of S(s, ?)
as a right related concave vertex or edge. A related vertex left of S(s, t) is called as a
left related vertex, and that right of S(s, t) as a right related vertex.

Let, po,p1,.-., Pn (Do = 8, p, = 1) are all the vertices on SP(s, t) in order from s to t;

q1,42---» 4, are all the related concave vertices of S(s,) in order from s to 7.

The following lemma is trivial.

It is obvious that shortest path passes convex chains formed by left or right local
related concave vertices alternatively (ref. Fig.3).

Shortest Path Queries in a Simple Polygon for 3D Virtual Museum 113

Lemma 1. Any vertex p;(i >0 and i < n) on SP(s, t) must be a related concave vertex

of S(s,).

Proof. In Fig.3 sABCDt is the shortest path in the simple polygon, there is only one
branch of Voronoi skeleton EFGH connecting s and . We prove that any vertex B on
the shortest path is a related concave vertex. Assume that BF is the bisector of ZCBA,
and F is the intersection point between BF and Voronoi skeleton EFGH. From point F'
the visible part on the left side KLBCMN is behind or on the polyline ABCD. Since
ABCD is a convex chain, the nearest point of F' to the left side KLBCMN is B. It is
therefore B must be a related concave vertex. This completes the proof.

Fig. 3. Dash dot polyline is the shortest path

Lemma 2. If SP(s,t) is consisted of sequence of points i, Giz,-.., qin Jrom s to t, the
order of the point sequence qj, Qi..., Qin 1S same as the order in the sequence
%:szn-; qm'

Proof. If sequent vertices on the shortest path are located on same left or right side,

the conclusion of the lemma is trivial. We only study the case that the sequent vertices
located in different sides like A and B in Fig. 4.

Fig. 4. Thin polyline is Voronoi edges, dash dot polyline is the shortest path

In Fig.4, sABCt is the shortest path, thin polyline sDFEHJKt is the Voronoi
skeleton. F is a point on the Voronoi skeleton, and AF | AB. G and A are the two
nearest points to F. It is obvious that the Voronoi skeleton sDFEHJKt can only pass
through polyline AFG once. The view line from vertex B to see the point on the

114 C. Yang et al.

skeleton sDF must pass through polyline AFG. The boundary of VR of vertex B
cannot exists on chain sDF, since the distance between the point on sDF and B is
longer than the one and vertex A. M is a point on the Voronoi chain, AM 1 As, since
s is not visible from B, M is on the left side of AF. Region AMF must be part of the
VR of vertex A. It is therefore that on the Voronoi chain sDF there exists edges of VR
of A, and the edges of VR of B can only exist on the chain FEHJKt. This proves that
the order of the related concave vertex on the Voronoi chain is same as the order on
the shortest path. This completes the proof of Lemma 2.
By Lemma 1 and Lemma 2, we can get Theorem 1.

Theorem 1. The vertices on SP(s, t) can be found along S(s, t) from s to t in order,
and they are the subset of the related concave vertices of S(s, t).

Now, we first briefly introduce the idea of our algorithm finding the shortest path
SP(s, t) along S(s, t).

If there is no related concave vertex of S(s, 1), then s and ¢t must be visible and the
line segment st is just the shortest path SP(s, t) (ref. Fig.5).

Fig. 5. The case that m equals to 0

Otherwise, let g1, qi,-.-,qi, and q.;, q,,--., ¢z, are the sequences of the left and
right related concave vertices respectively (ref. Fig.6). The advancing step of the
algorithm follows the ordered vertices on the Voronoi skeleton path.

First, create local convex chains of the sequence of py, q;;, qi2,--., and po, g.1, G,2,---
(ref. the dash line in Fig.6). Meanwhile maintenance left and right tangents from start
point po (ref. pg . pg, in Fig.6). At the same time, check if the tangent of the right

convex hull pg intersects with the edges on the left sides, and the tangent of the left
convex hull pg intersects with the edges on the right sides. The checking edges of
the two sides advance with related vertices synchronously. Assume that an
intersection of tangent p g and edge v 4 is found, and then ¢, must be a vertex of
SP(s, t). Continue above job, at the same time, we slide P,q,,0n the left convex chain,

until right related vertex g , is meet, and a right tangent linking ¢, and the right

Shortest Path Queries in a Simple Polygon for 3D Virtual Museum 115

Fig. 7. The edges which do not related with the Voronoi skeleton can be short cut by a line
segment vpv;3

116 C. Yang et al.

convex chain is found (ref. 4 ¢ in Fig.6). The part of shortest path SP(s,) that has

been found is po, q12, g:3-
Replace py by 4, and repeat the above process, the only difference is that the new

“po”(gq,;) 1s on the left convex chain gy, gp,..., and the tangents from new “p,” must

slide on the left convex chain g;;, qp,... to keep tangent with the convex chain.

The edges which are used to check intersection with the tangents can be only the
relative edges of the Voronoi skeleton path S(s, f). The edges which do not related
with the Voronoi skeleton can be short cut by a line segment (ref. vj;v;3in Fig.7). We
call these relative edges and short cutting line segments as checking edges.

In the above process, at the cases like as Fig.8 (v,;q., viiqu are the current checking
edges, poqi2, poq,; are the current tangent lines), the new right or left convex chain and
new right or left tangent line are computed.

\ .
\ S
\ qri 7
\\ //
/
\ /// Vi1
q2 /
\ // qri
\' oy
/)
qi \ ///
v Po

a) ¢,4 is left of pyg,; and right of pyg;,.

\ / /
\\ / /
/s /
\ 15\ g /
\ 1 /
/e v /
\\ ./:. rl /
qi2 ¢ /
\ / qu / %1
\ / /
\oy /
qiu \ /
\/ /
v Po v Po
C) g 1s right of pog,;. d) gu is left of pogp,.

Fig. 8. The case that new right or left convex chains and new right or left tangent lines are
computed

If there is the case like as Fig.9, two adjacent vertices v,; and v,, of g, are not both
left of ppq4, g+ must not be a vertex on SP(s, f), then continue the job.

This job will continue, until the target point ¢ is met.

Now, we consider the case that ¢ is met.

If no vertex is on the right and left convex chains, or 7 is in the visible view frustum
formed by pogqp, and pog,;, then py, t are visible, the job is ended (ref. Fig.10(a)).

Shortest Path Queries in a Simple Polygon for 3D Virtual Museum 117

Fig. 9. The special case that g, is left of pyg,; and right of pyg;,

Otherwise, if the left convex chains is not NULL and ¢ is left of pyq;», then for each
vertex ¢ on the left convex chains, if 7 is left of pyq, ¢ must be the next vertex on SP(s,
1) (ref. Fig.10(b)); If right convex chain is not NULL and ¢ is right of pyq,;, then for
each vertex g on the right convex chain, if ¢ is right of pyg, ¢ must be the next vertex
on SP(s, t) (ref. Fig.10(c)). Here we keep p, as the last found vertex of SP(s, 7).

The job is end.

Fig. 10. The case that ¢ is met

In the following, we briefly describe the algorithm of computing the shortest path
SP(s, t) based on the Voronoi skeleton path S(s, 7) in Algorithm 1.

Algorithm 1: Find the shortest path SP(s, t) along Voronoi skeleton path S(s, t)
p is the current vertex of SP(s, t) we have found;

qy is the current related vertex of S(s, t) we have found;

CH(q) is the left convex chain of the left relative vertices from q, to qi;

CH(q,) is the right convex chain of the right relative vertices from q, to q;;
TL(q,) is the left tangent line from p to CH(q;) and tangent at q;;

TL(q,) is the right tangent line from p to CH(q,) and tangent at q,;

118 C. Yang et al.

Current Voronoi
ledge of S(s, #)

C) 5q129r21s a part of SP(s, 1). d) 5q1292qr3qr4 is SP(s, 1).

Fig. 11. Snapshots of the key steps of the above example

1)p =s; k=1; CH(q,) = NULL; CH(q,) = NULL; Output p;
2) for the current Voronoi edge e; of S(s, t),
Assume q;.1qy is the current checking edge.
2.DIf qi.1qy is a left checking edge, then,
2.1.DIf qi.1q intersects with TL(q,),
Advaced p and q, along CH(q,), and output p; goto 2.1.1);
else
Compute new CH(q,) and TL(q;).
2.2)If qi.1qy is a right checking edge, then,
2.2.DIf qi.1qx intersects with TL(q)),
Advaced p and q, along CH(q,), and output p; goto 2.2.1);
else Compute new CH(q,) and TL(q,).
2.3) k++;

Shortest Path Queries in a Simple Polygon for 3D Virtual Museum 119

3) If CH(q,) is NULL and CH(q,) is NULL,
output t; return;
4) If CH(q,) is not NULL and t is left of TL (q;)
For every vertex g on CH(q,)
Iftis left of TL (q;), then output q; Advaced q; along CH(q,);
5) If CH(q,) is not NULL and t is Right of TL(q,)
For every vertex q on CH(q,)
If t is right of TL(q,), then output q; Advaced q, along CH(q,);
6) Output t; return.

Now, we describe the process using the example shown in Fig.2. A “Snapshots” of
its some key steps of the above example is shown as in Fig.11.

s is the initial current vertex of SP(s, t).

We can get the left checking edges qq:1, 9119:2,- - --915qis, and right checking edges
q:09r1> 4r19:2-- - --4-5q:6, along the Voronoi edge of S(s, t) ey, e,..., €;s.

Before we find g,,, the left convex chain we have gotten is s,g;,, the right convex
chain is s. Because ¢,;q,, has an intersection with the left tangent sq;,, g, must be a
vertex of the shortest path SP(s, t), and sg;, must be a part of SP(s, t). g become the
current vertex of SP(s, t)(ref. Fig.11.b)).

When we find ¢, because ¢;;3q;, has an intersection with the right tangent g,,q,2, ¢,»
must be a vertex of the shortest path SP(s,), sq;q,» must be a part of SP(s, t). g,,
become the current vertex of SP(s, t) (ref. Fig.11.c)).

Before we meet ¢, the left convex chain we have gotten is g,,q., the right convex
chain we have gotten is q,2, 4,3, 414, ¢rs-

Because ¢ is right of the right tangent ¢,,q,3, ¢,39,4, the vertices q,3, q,4 must be on
SP(s, t), and $9,29,29,39,4 t must be SP(s, t) (ref. Fig.11.d)).

3 Voronoi Skeleton Path

We now briefly give the method to find the Voronoi skeleton path S(s,) from point s
to 1.

Fig. 12. Voronoi skeleton path S(s, t)

120 C. Yang et al.

We search S(s, t) on the polygon’s Voronoi skeleton tree using a depth-first search.
After getting the VRs VR, and VR,, which contain s and ¢ respectively, we start the
searching process from the Voronoi edges of VR, along other VRs’ Voronoi edges on
the Voronoi skeleton, and end it when we meet the Voronoi edges of VR,.

The Voronoi skeleton path S(s, t) we found is composed of three parts (ref. Fig.12):

1) The middle part is the Voronoi skeleton path v,r...rv, between VR| and VR,,
where v, is a Voronoi vertex of VR;, v, is a Voronoi vertex of VR,, ry,..., ry are the
Voronoi vertices of other VRs.

2) If the generator of VR, is an edge of the polygon, we draw a line [; through s
perpendicular to the generator assuming /; intersects with a Voronoi edge of VR, at
point s;, and we set the segment line ss; and the Voronoi edges of VR between s; and
v; as the front part of S(s, #). If the generator of VR, is a vertex of the polygon, we set
the segment line sv, as the front part of S(s, ?).

3) Similarly, if the generator of VR, is an edge of the polygon, we draw a line /,
through 7 perpendicular to the generator assuming /, intersects a Voronoi edge of VR,
at point t,, and we set the Voronoi edges of VR, between v, and t,, and the segment
line 7,¢ as the last part of S(s, ¢). If the generator of VR, is a vertex of the polygon, we
set the segment line vt as the last part of S(s, 7).

Then we get the Voronoi skeleton path S(s, 1): ss;v;r;...rwstot.

4 Algorithm Analysis and Conclusions

This paper proposes a new algorithm for querying the shortest path between two
points s and ¢ in a simple polygon P based on VD. Based on the polygon’s VD, we
first find the Voronoi skeleton path S(s, ¢) from point s to ¢, and then along which we
compute the shortest path SP(s,) by visibility computing simultaneously.

Because the VD of a simple polygon has at most n+k—2 vertices and 2(n+k)-3
edges, where n is the number of the polygon’s vertices and k(k<n) is the number of
concave vertices [12], finding the Voronoi skeleton path S(s, #) costs O(n) time. In the
algorithm of computing SP(s, t) along S(s, t), only the related concave vertices and
edges of S(s, t) are accessed; when we compute a convex chain in the process, every
related concave vertex is no more than 2 times to be accessed, so it is accessed at
most 3 times. Hence, the algorithm spends O(n) time to find SP(s, t) along S(s, t). We
can spend O(n) time to find the VRs VR, and VR, containing s and 7 respectively (We
can also use O(logn) time algorithm introduced in many computational geometry
books to do this [1]). Then, based on the polygon’s VD, the shortest path SP(s, t) can
be reported in time O(n) by our method.

It can be used in our 3D virtual museum system, where the polygon’s VD is used
as a data structure and for path planning, visibility computing, collision detection, and
so on. It also can be used in other application areas that need path planning.

In the future, we will focus on the shortest path problem of a polygon with “holes”
whose Voronoi skeleton is a graph. The method of this paper can be used there.

Acknowledgments. This work was partly supported by the National Natural Science
Foundation of China under Grant Nos. 60473103, 60473127, 60573181.

Shortest Path Queries in a Simple Polygon for 3D Virtual Museum 121

References

10.

11.

12.

. de Berg, M., van Kreveld, M., Overrmars, M., chwarzkopf, O.: Computational geometry:

algorithms and applications, 2nd edn. Springer, New York (2000)

Deok-Soo, K., Yu, K., Cho, Y., Kim, D., Yap, C.: Shortest Paths for Disc Obstacles. In:
Lagana, A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J. K., Gervasi, O. (eds.) ICCSA
2004. LNCS, vol. 3043, pp. 62-70. Springer, Heidelberg (2004)

. Wein, R., van den Berg, J.P., Halperin, D.: The Visibility—Voronoi Complex and Its

Applications. Computational Geometry 36(1), 6687 (2007)
Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. In: Proc.
Third Annual Symposium on Computational Geometry, pp. 50-63 (2005)

. Goodman, J.E., O’Rourke, J.: Handbook of discrete and Computational Geometry, 2nd

edn. CRC Press, Boca Raton, USA (2004)

Wang, L., Yang, C., Qi, M., Meng, X., Wang, X.: Design of a Walkthrough System for
Virtual Museum Based on Voronoi Diagram. In: ISVD 2006. Proc. 3rd International
Symposium on Voronoi Diagrams in Science and Engineering, pp. 258-263 (2006)

Meng, X., Qi, M., Yang, C., Wang, L.: Path Planning in Virtual Museum Based on
Polygon’s Voronoi Diagram. Journal of Computational Information Systems 2(1), 89-97
(2006)

Takahashi, O., Schilling, R.J.: Motion planning in a plane using generalized Voronoi
diagrams. IEEE Transactions on Robotics and Automation 5(2), 143-150 (1989)

Blaer, P.S.: Robot Path Planning Using Generalized Voronoi Diagrams, http://www.cs.
columbia.edu/ pblaer/projects/ path_planner/

Hoff, K., Culver, T., Keyser, J., Lin, M., Manocha, D.: Interactive motion planning using
hardware accelerated computation of generalized Voronoi diagrams. In: Proc. IEEE
Conference on Robotics and Automation, pp. 2931-2937. IEEE Computer Society Press,
Los Alamitos (2000)

Bhattacharya, P., Gavrilova, M.L.: Voronoi Diagram in Optimal Path Planning. accepted
to The 4th International Symposium on Voronoi Diagrams in Science and Engineering
(ISVD 2007), IEEE-CS Press, Cardiff, UK (July 2007)

Cheng-Lei, Y., Jia-Ye, W., Xiang-Xu, M.: Upper Bounds on the Size of Inner Voronoi
Diagrams of Multiply Connected Polygons. Journal of Software 17(7), 1527-1534 (2006)

Linear Axis for General Polygons:
Properties and Computation

Vadim Trofimov! and Kira Vyatkina?

L' SPE “Air and Marine Electronics”,
29, lit. “O”, ul. Marshala Govorova, a/ya 51,
St Petersburg 198097, Russia
hermit239@mail.ru
2 Research Institute for Mathematics and Mechanics,
Saint Petersburg State University,
28 Universitetsky pr., Stary Peterhof, St Petersburg 198504, Russia
kira@meta.math.spbu.ru
http://meta.math.spbu.ru/"kira

Abstract. A linear axis is a skeleton recently introduced for simple
polygons by Tanase and Veltkamp. It approximates the medial axis up
to a certain degree, which is controlled by means of parameter ¢ > 0.
A significant advantage of a linear axis is that its edges are straight line
segments. We generalize the notion of a linear axis and the algorithm
for its efficient computation to the case of general polygons, which might
contain holes. We show that a linear axis e-equivalent to the medial axis
can be computed from the latter in linear time for almost all general
polygons. If the medial axis is not pre-computed, and the polygon con-
tains holes, this implies O(nlogn) total computation time for a linear
axis.

1 Introduction

For several decades, skeletons have been considered as a useful and powerful
tool, which has found applications in various areas, including computer graphics,
medical imaging, shape retrieval, and many others.

The most widely known skeleton is a medial axis. For polygon P, it can be
viewed as a subset of its Voronoi diagram obtained from the latter by discarding
its edges incident to the reflex vertices of P (see e.g. []).

Another well-known type of skeletons is a so-called straight skeleton [I] traced
by the vertices of the polygon during a shrinking process, while its edges move
inside at constant speed. The corresponding process is also referred to as linear
wavefront propagation [T].

A recently proposed linear axis [7] is defined in the following way. Let {v1,
V2, ..., Uy} denote the set of reflex vertices of a polygon P, and let k =
(k1,ka,...,k,) be a sequence of non-negative integers. Replace each vertex v;
with k; + 1 coinciding vertices connected by k; zero-lengths edges called hidden
edges; choose the directions of the hidden edges so that internal edges at all the
k; + 1 vertices would be equal. Denote the resulting polygon by P¥.

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 122-[I35] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Linear Axis for General Polygons: Properties and Computation 123

Definition 1. The linear axis L*(P), corresponding to the sequence k of hid-
den edges, is the trace of the convex vertices of P* during the linear wavefront
propagation.

In [7], a linear axis was defined only for simple polygons, but the above definition
can be applied to polygons with holes as well (Fig. [Ih).

a) b)

Fig. 1. a) The linear axis (solid) of a polygon with two holes (bold), which has exactly
one hidden edge at each reflex vertex. The traces of reflex vertices (dashed) are not
contained in linear axis. b) A linear offset (solid) of a reflex vertex with two associated
hidden edges.

The following two Lemmas from [7] also hold for general polygons.

Lemma 1. If any reflex vertex vj of internal angle o > 3m/2 has at least one
associated hidden edge, then LF(P) is connected.

In the following, we assume that any sequence k of hidden edges under consid-
eration satisfies the condition of Lemma [Il

Denote by P*(t) the linear wavefront corresponding to sequence k of hidden
edges, at time t. Denote by PE(t) the part of P¥(t) originating from site S.
(A site is either an edge or a reflex vertex of P.) We will refer to PE(¢) as to a
linear offset of S (Fig. @b).

The points of P¥(t) move with different speed: a linear offset of an edge move
with a unit speed, but an offset of a reflex vertex moves faster. When inserting
hidden edges at reflex vertices, we thereby slow down their linear offsets.

Lemma 2. Let v; be a reflex vertex of internal angle o, having k; associated
hidden edges. The points in P,,(t) move with a speed at most s; = !

cos(2((1]]:;))

The larger are the values assigned to k;, 1 < i < n, the better L*(P) approxi-
mates the medial axis M (P). This observation is formalized in [7] by means of
a notion of e-equivalence between a linear axis and the medial axis. Moreover,
for a simple polygon P, an efficient algorithm was proposed, which computes the
values of k; allowing to achieve e-equivalence for a given € > 0, along with recon-
struction of the corresponding linear axis from the medial axis in linear time —
under the condition that P has a constant number of “nearly co-circular” sites.

124 V. Trofimov and K. Vyatkina

However, the reasoning carried out by Tanase and Veltkamp in [7], [6] cru-
cially depends on the fact that for a simple polygon, both axes have a tree-like
structure, what is apparently not the case for polygons with holes.

In [8], we mentioned a possibility of generalization of the algorithm proposed
in [7] to the case of polygon with holes.

In this work, we state and prove a sufficient condition for e-equivalence of a
linear axis and the medial axis for general polygons, which might contain holes,
and show how to adapt the algorithms by Tanase and Veltcamp to this case.

In the next section, the terminology is introduced and the basic properties of
linear axes of general polygons are stated. In Sect. [3 we formulate a sufficient
condition for e-equivalence of a linear axis to the medial axis, and validate it.
The algorithmic issues are discussed in Sect. 4l followed by concluding remarks.

2 Preliminaries

The terminology introduced in this section is mainly borrowed from [6].

Definition 2. A geometric graph (V, E) is a set in IR? that consists of a finite
set V' of points, called vertices, and a finite set E of mutually disjoint, simple
curves called arcs. Each arc connects two vertices of V.

Let P be a polygon with holes. Let us denote by (Vys, Ear) the geometric graph
of the medial axis M (P), and by (Vpr, Epx) — the geometric graph of the linear
axis L*(P). Both Vj; and V» contain the hanging nodes, which are in one-to-
one correspondence with the convex vertices of P, and the nodes of degree at
least three of M and L*, respectively.

Definition 3. A Voronoi edge between node v; generated by Sy, S; and Sy, and
node v; generated by S, S; and S; is an e-edge if d(v;,S;) < (1 + €)d(v;, S;i)
or d(vj, S;) < (1 +¢)d(vj, ;).

A Voronoi edge that is not an e-edge is called a non-e-edge. A path between
two nodes of M is an e-path if it consists only of e-edges. For any node v of
M, a node w is an e-neighbour of v if v and w are connected by an e-path. Let
N.(v) be the set of all e-neighbours of v. The set C'(v) = {v} U N.(v) is called
an e-cluster.

In our reasoning, we will interpret any node of degree d > 4 of geometric
graphs of both the medial axis and a linear axis as (d — 2) coinciding nodes
connected by (d — 3) edges of zero length in such a way that the subgraph
induced by these nodes is a tree.

Definition 4. M(P) and L*(P) are c-equivalent if there evists a bijection
[V — Ve such that:

1. f(p) = p, for all convex p of P;
2. Vi, vj € Vg with vj ¢ N.(v;), 3 an arc in Ey connecting v; and vj < 3
an arc in Epx connecting f(v;) and f(v}), where v; € C(v;) and v; € C(v;).

Linear Axis for General Polygons: Properties and Computation 125

The above definition differs from the one proposed in [6], [7] for simple polygons:
in [6], [7], function f was required to be surjection. However, in Sect. Blit will be
shown that under our convention on interpretation of vertices with degree d > 4,
[Var| = [Vix|. As a consequence, any surjection f : Viy — Vi will necessarily
be a bijection, what justifies our modification of the definition.

In [G], it was pointed out that the strongest equivalence between the medial
and a linear axis of a simple polygon would be isomorphism of their geometric
graphs (but to achieve this, we might need to insert many hidden edges at some
reflex vertices), and the notion of e-equivalence provides a natural relaxation
of this requirement: it means isomorphism of the graphs obtained from the ge-
ometric graphs of the medial axis and a linear axis by collapsing e-clusters in
the former, and gluing together the images under f of the nodes from the same
e-cluster in the latter.

The region VC(S) swept by site S during uniform wavefront propagation is
referred to as the Voronoi cell of S. Similarly, the region LC(S) swept by S
in process of linear front propagation when constructing a linear axis L*(P) is
called a linear cell of S.

We conclude this section by stating the basic properties of a linear axis. Similar
properties of the medial axis have been known before; however, they can be
proved by the same arguments as those given below.

Lemma 3. For any site S, the linear cell LC(S) is connected.

Proof. The statement follows from the facts that the wavefront moves continu-
ously, and a part that has vanished cannot reappear.

Lemma 4. For any site S, the linear cell LC(S) is simply connected.

Proof. Simple connectivity can be violated only if the wavefront is first split into
two parts, which later get merged again. But during the wavefront propagation,
the parts of the former can only either get split or vanish. Therefore, simple
connectivity of the cells will be preserved.

Lemma 5. The number of inner faces of the graph L¥(P) equals the number of
holes of polygon P.

Proof. Consider an inner face I of L¥(P). For any linear cell LC(S) C F, site S
lies inside F'. Moreover, P cannot intersect OF. It follows that at least one hole
of P lies inside F.

Now consider any hole P, of P. The union Ugcap, LC(S) of linear cells of all
the sites lying on the boundary of P, is connected; any two neighbor cells share
an edge incident to 0P;,.

For S C 0Py, consider LC(S). Let LC(S7) and LC(S3) be neighbor cells of
LC(S), where S1, Sy C dPy,. Suppose LC(S;) shares with LC(S) an edge (v;, w;),
where v; € Py, for i = 1,2. Denote by 9°“*LC(S) the part of 4.5 between w;
and wy, such that 9°“*LC(S) NP, = 0. Let B = Ugcap, 0°“'LC(S).

By construction, B is a cycle in L*(P). Note that the only edges of L*(P) lying
inside B are those shared by the linear cells considered above. All of them are

126 V. Trofimov and K. Vyatkina

incident to the vertices of P, and thus, to hanging vertices of L*(P). Therefore,
there are no cycles inside B. We conclude that B bounds a face Fp of L¥(P).
Simple connectivity of linear cells and construction imply that P}, is the only
hole inside Fg.

To summarize, any hole of P is enclosed by a separate face of L*(P), and each
face of L*(P) contains at least one hole of P. This implies that there is exactly
one hole contained in each face, and the claim follows.

3 A Sufficient Condition of e-Equivalence

Definition 5. Let (u,v) be an edge of the medial axis M(P) shared by the

Voronoi cells VC(S1) and VC(Sz2); let ¢ € (u,v). A barrier b on the edge
(u,v) is formed by the two segments connecting ¢ with the closest points from Sy
and Sa, respectively. The point c is the center of the barrier (Fig.[da).

b) I I

Fig. 2. a) A barrier b for the edge (u,v) of the medial axis M (P); (u,v) is shared
by the Voronoi cells VC(S1) and VC(S2). Point ¢ is the center of the barrier).
b) P (bold) is a polygon with one hole P,. M(P) (solid) is the medial axis of P. The
two marked vertices form an e-cluster C. The barriers forming an obstacle O¢ are
shown dashed. The region Po(C) separated by O¢ from the rest of P is grayed.

When there is no need to refer explicitly to the underlying edge or to the
center of a barrier, we will omit the corresponding superscript or subscript in
the notion, respectively.

Let z; € S1 and 29 € S5 be the endpoints of the two segments forming b..
The segments cz; and czo are called the segments of the barrier b.. The set of
inner points of b. is formed by the union of inner points of its segments.

The definition of the barrier implies the following Lemma.

Lemma 6. Let b be a barrier on any edge of M (P). Then b does not intersect at
its inner points the boundary of P, any edges of M(P), and any other barrier b
on any edge of M (P), except for the case when b and b have a common center,
which coincides with a node of M (p), and share a segment.

Definition 6. Let C be an e-cluster of M(P). Consider a subset of non-e-
edges of M(P): E(C) = {(u,v)|lu € C,v ¢ C}. For each edge (u,v) € E(C),

Linear Axis for General Polygons: Properties and Computation 127

construct a (single) barrier b(*¥). An obstacle for the e-cluster C' is O¢ =
Uu,0)e ()0 (Fig. Bb).

Lemma 7. Let Fpruo be a partition of P induced by M (P)UO¢. For any face f
of Fruo, Of N M(P) is connected.

Proof. Consider a partition Fj; of P induced by M(P). For any its face f,
df' N M (P) is connected. Construct Fpuo as a refinement of Fps by adding the
barriers from O¢ one by one. Clearly, after each step the desired property holds
for any face f” of the current partition. This implies our statement.

Lemma 8. Let v € C and w ¢ C. Then for any curve v, which connects v and
w, and lies inside P, yN O, # 0.

Proof. Any path in M, which connects v and w, intersects the obstacle O¢, as
it necessarily passes through a non-e-edge e having exactly one of the endpoints
in C, and O¢ contains a barrier for e.

Suppose there exists a curve v, which connects v and w, and lies inside P,
such that yN O¢ = 0. The first part of the proof implies that v is not contained
in the union of edges of M (P).

Consider a partition Fyruo of P induced by M(P) U O¢. Let f be a face of
Faruo, such that v passes through its inner points. Denote by « and y the points,
at which v enters and exits f, respectively. Observe that z,y € 9f N M (P). Let
Yzy C f be the part of v connecting x and y.

By Lemma [7] 0f N M(P) is connected; thus, there exists a path p,, that
connects = and y and is contained in df N M (P).

Construct a curve 4/ from v by replacing v, with pg,. Evidently, v/ NO¢c = 0.

Having performed the same operation for any face of Fp;uo traversed by 7,
and having eliminated in it any overlaps if they occur, we obtain a path in M (P)
connecting v and w, what contradicts the first statement of our proof.

Tt follows that the obstacle O¢ separates a part Po(C) of the polygon P, which
contains e-cluster C, from the rest of P. To avoid ambiguity, let us agree that
in degenerate cases, when the center z of a barrier b(zu’v) € O¢ coincides with u
or with v, we will treat z as a point lying inside (u,v) at zero distance from u
or v, respectively.

Let us intersect the plane graph M (P) with Po(C). As a result, we obtain
a new graph; denote it by Mo(C). The nodes of Mo (C') are either the nodes
from C' or the centers of the barriers from O¢; it follows from Lemma [6] that
no other new nodes can appear. The edges of Mo (C') are either entire edges of
M (P) or their parts (see Fig. 2).

Lemma 9. Mo (C) is connected.

Proof. Any two nodes w,w € C are connected by an e-path in M(P). By
Lemma [6 none of the edges forming such path can be intersected by any of
the barriers composing the obstacle O¢; therefore, v and w are connected by
the same path in Mo (C). Any node corresponding to the center of a barrier is
incident to some vertex from C. The claim follows.

128 V. Trofimov and K. Vyatkina

Lemma 10. Pp(C) is connected.

Proof. Suppose that Po(C') has at least two connected components. The bound-
ary of each of them must contain a segment of some barrier, and, in particular,
the center of that barrier. But, by Lemma [those centers are connected by a
path in Mo (C), which lies inside Po(C'). This contradicts our assumption.

Now we are ready to formulate a sufficient condition of e-equivalence of a linear
axis to the medial axis.

Theorem 1. Let M(P) and L¥(P) be the medial and a linear azis of polygon P,
respectively; let € > 0 be a real constant. If for any non-c-edge e of M(P), the
endpoints of which belong to two different e-clusters, there exists a barrier, which
is contained in LC(S1) U LC(S2), where VC(S1) and VC(S3) share the edge e,
then L*(P) is e-equivalent to M(P).

Before proceeding with the proof of Theorem[I] let us state and prove a few Lem-
mas. From now till the end of this section, let us assume that for any non-e-edge
of M(P) we have constructed a barrier satisfying the condition of Theorem [

Suppose that for the given £, the set of nodes of M (P) is partitioned into K e-
clusters C1, .. ., Cx. LemmasBand [0 imply that our set of barriers partitions P
into K connected polygonal regions P(C4), ..., P(Ck).

In particular, we have an (uniquely defined) obstacle for any e-cluster C
of M(P). So, we will further omit the subscript O in the notation without in-
troducing ambiguity in our reasoning.

For any e-cluster C, let us intersect the plane graph L*(P) with P(C). As
a result, we obtain a new graph L¥(C). The nodes of L¥(C) are either the
nodes from C or the intersection points of the edges of L¥(P) with the barriers
from Oc. The edges of L¥(C) are either entire edges of L*(P) or their parts.

Lemma 11. LF(C) is connected.

Proof. Let Fruo denote a partition of P induced by L*(P)UO¢. Exploiting the
fact that each barrier is contained in the union of two adjacent linear cells, and
applying the same argument as in the proof of Lemma [[, we can show that for
any face f of Fruo, Of N LF(P) is connected.

Now let us restrict our attention to P(C), and denote by Fr,0(C) the par-
tition of P(C) induced by Fruo. As any face [’ of Fruo(C) is also a face of
Fruo, we derive that df N L*(C) is connected.

Let v and w be two arbitrary nodes of L¥(C). Since P(C') is connected, there
exists a curve v connecting v and w, and lying inside P(C). If ~ is not a path
in L*(C), such a path 7y can be constructed from v by applying the same
procedure as described in the proof of Lemma [8

Lemma 12. The number of inner faces of M(C) equals the number of holes
in P(C).

Proof. Consider a hole P, of P(C). Its boundary 9P, is composed of fragments
of P, and of the barriers forming the obstacle O¢.

Linear Axis for General Polygons: Properties and Computation 129

Consider the partition Fp(cy of P(C) induced by M(C); let Up, denote the
set of faces of Fp(cy that touch dPy, except those that touch it only at a cen-
ter of some barrier. Note that the faces of Up, cannot touch other connected
components of dP(C) except at the centers of the barriers contained in those
components. The faces of Up, can be cyclically ordered with respect to 0P, so
that any two consequent faces share an edge incident to 0Pj,. If two consequent
faces f1 and fo are adjacent to barrier segments s1,s2 C 9P (s; and s being
adjacent in OP), respectively, then the common edge of f1 and fo can degenerate
to a point: this happens when the center of the barrier formed by s; and sy co-
incides with a node of M (C). Applying to Up, the same procedure as described
in the proof of Lemma [we retrieve a face Fp, of M(C), such that P, is the
only hole inside Fp, .

Now consider an inner face I' of M(C'). Let us restrict Fpy to face I and
denote the resulting partition by Fr. Any face f of Fr is either an entire Voronoi
cell or a part of a Voronoi cell (clipped by a barrier) of a site S, which itself lies
inside F'. Moreover, the part of P(C) contained inside F' does not touch the
parts of 9P (C) lying outside F'. Thus, there is at least one connected component
of OP(C) inside F', what implies that at least one hole lies inside F.

We conclude that there is exactly one hole contained in each face of M (C),
what proves our statement.

Lemma 13. The number of inner faces of L*(C) equals the number of holes

in P(C).

Proof. The reasoning is similar to the one that proves Lemma[I2 The partition
Fp(cy of P(C) is now induced by L¥(C). The nodes of L¥(C), which happen
to lie on some barriers, play the same role as the barrier centers did in the
proof of the previous Lemma: the faces of Fp(cy that touch 9P, only at points
representing such nodes, should be rejected when Up, is being formed, and for
the two faces incident to such a node, which are included into Up, , their common
edge will degenerate into a point.

Corollary 1. M(C) and L*(C) have equal number of faces.
Lemma 14. M(C) and L*(C) have equal number of nodes of degree 3.

Proof. Let G be a plane graph with maximum vertex degree 3; denote by e,
f, v1, va, v3 the numbers of its edges, faces, and vertices of degree 1, 2, and 3,
respectively. By counting the vertices of G and applying Euler formula, we obtain

the system:
{ v1 + 2vg + 3vz = 2e (1)
e—(vi+vetuvy)=f—1

From [we get vs = 2(f — 1) 4 vy.

By Corollary [l M(C) and L*(C) have equal number of faces. The number
of hanging nodes for either of M(C) and L*(C) equals the number of barriers
composing the obstacle plus and the number of convex vertices of P lying in-
side P(C), and thus, is also the same for M (C) and L*(C). The claim follows.

130 V. Trofimov and K. Vyatkina

Now let us return to the proof of Theorem [l

Proof. Define a bijection between the sets of geometric graph nodes Vj; and Vi«
as follows. The hanging nodes from each of Vj; and Vi« are in one-to-one cor-
respondence with the convex vertices of P. For any two hanging nodes v € V),
and v' € Vp« corresponding to the same vertex p, let f(v) = v’. From Lemma[I4]
we derive that inside any region P(C;), 1 <14 < K, there is the same number
of nodes of degree three from Vi and V. Thus, for any P(C;), a bijection f;
between such nodes from Vj; and Vi can be defined. For any node u € Vi of
degree three, identify the region P(C;) containing u, and let f(u) = f;(u).

Let (u,v) € Ep be a edge, such that v ¢ N.(u). Without loss of generality,
suppose that u lies inside P(C}), the edge (u,v) then traverses regions P(Cy),

.., P(Cpm—1), and ends up in P(C,,) containing v. Denote by b(i) the barrier
separating the regions P(C;) and P(Cy11), for 1 < i < m.

The intersection of (u,v) with any of P(C;), where 1 < j < m, is a chain G;
passing through the nodes of degree two of M (P), which starts and ends up at
the intersection points of (u,v) with b(j — 1) and b(j), respectively. Since M (C})
is connected, M (C}) is identical to G;. This also implies that b(j — 1) and b(j)
are the only two barriers contained in dP(Cj).

Any barrier b;, 1 < i < m, is contained in a union of two adjacent linear cells.
Thus, there exists an edge e, of L¥(P), which intersects b;. Note that it might
happen that such edge intersects more than one of the barriers.

Since any of P(Cj), where 1 < j < m, contains no nodes of M (P) of degrees 3
or 1, it also contains no such nodes of L¥(P). Thus, P(C};) either contains only
nodes of degree 2 of L*(P), or no its nodes at all. In the former case, L*(C;) is a
chain G'; of a similar structure as G;. In the latter case, P(C}) is traversed by a
single edge ¢’ of L¥(P) having its endpoints outside of P(C}), and G’ degenerates
into a segment with the endpoints at the intersection points of e’ with b(j — 1)
and b(j), respectively. Having glued together the chains G} for 1 < j <m, and
restored the first and the last edge clipped by b(1) and b(m — 1), respectively, we
obtain an edge (u’,v") € Epx. It remains to show that ' € C(u), and v" € C(v).

Suppose for a contradiction that u' ¢ C(u). Then u' lies outside of P(Cy),
and the first edge (u/,w) from L¥(P) contained in (u/v’) intersects two barriers
by and by being part of 9P(Cy). It follows that both by and by are contained in
the union of the two linear cells incident to (u/,w). Consequently, by and by are
the only barriers present in P (C7). Let S” and S” denote the two sites, the cells
LC(S") and LC(S”) of which are incident to (u’,w). Thus, P(C7) is a union of
LC(S’) and LC(S") clipped by by and b;. It follows that P(Cy) can contain no
nodes of degree three of L*(P). But it must contain at least one such node, as
u € Vs lies inside P(C4) and has degree three, which is a contradiction.

It can be similarly shown that v € C(v). Thus, for any edge (u,v) € Eum
with v ¢ N.(u), there exists an edge (u',v") € Epx, such that v’ € C(u), and
v e C(v).

Now let (u',v") € Epx, such that ' ¢ C(v"). Suppose that (u/,v") traverses
regions P(C4), ..., P(C}), where v/ and v’ lie inside P(C4) and P(C}), respec-
tively. Any two adjacent regions P(C;) and P(C,11) are separated by a barrier

Linear Axis for General Polygons: Properties and Computation 131

b(ui-vi) where (ui,v;) is a non-e-edge of M (P), such that u; € C;, v; € Ciyq,
for 1 <4 < [. Like in the first part of the proof, it can be shown that M (C;) is
a chain. It follows that there exists a unique path connecting v; to u;y; inside
P(Cit1), for 1 < i < I — 1. By concatenating the edges and the paths in an
appropriate order, we obtain an edge (u,v) € Ej, where u = uy and v = v;_q;
moreover, v’ € C(u), and v' € C(v). This completes the proof.

4 Computation of Hidden Edges and of a Linear Axis

4.1 An Algorithm for Hidden Edges Computation

Below we outline an algorithm that, given a polygon P and areal ¢ > 0, computes
a sequence k = {ky,...,k,} of hidden edges, which guarantees e-equivalence of
a linear axis L¥(P) to the medial axis M (P), where k; is the number of hidden
edges at reflex vertex v;, and r is the number of reflex vertices of P. The algorithm
itself differs from the one proposed in [7] only in minor details, but for the case
of general polygons, a more complicated proof of correctness is required.

In this section, without loss of generality, let us suppose that for an edge (u, v)
of a planar graph, u denotes its leftmost endpoint. If v and v lie on the same
vertical line, the choice of u is inessential.

Definition 7. For a non-e-edge (u,v) shared by the Voronoi cells VC(S1) and
VC(S2), a left neighbor of (u,v) is any site S # S1,S2, such that at least one
vertex of VC(S) belongs to C(u). The right neighbors are defined analogously.

Definition 8. A conflicting pair for a non-e-edge of M(P) is formed by its
left and its right neighbor, at least one of those being a reflex vertex.

The algorithm handles all conflicting pairs for all non-e-edges of P in an arbitrary
order, and bounds the propagation speed of the reflex vertices so that existence of
a barrier, which separates the linear cells of any two sites forming a conflicting
pair for this edge, is assured. Finally, a number of hidden edges sufficient for
observance of speed limitations is calculated for each reflex vertex.

Algorithm ComputeHiddenEdges(P,¢)

Input: a general polygon P and a real constant ¢ > 0.

Output: the number k; of hidden edges for each reflex vertex v;, such that a linear
axis L*(P) is e-equivalent to the medial axis M (P), where k = {ky,..., k. }, 7 —
the number of reflex vertices of P.

1. Compute the medial axis M (P).
2. For each reflex vertex S; of P:
Let a; be the size of the internal angle at Sj.
/* Initialize the speed s; of the vertex S;. */
if aj > 37w/2 then s; =
1

else s; =

CO@((DA_’—‘IT)/4)

cos((ay—m)/2)

132 V. Trofimov and K. Vyatkina

3. ComputeConflictingSites(g).
4. For each pair of conflicting sites S;, S; for each non-e-edge (u,v):
HandleConflictingPair(u, v, S;, S;).

5. For each reflex vertex S; of P: k; = fQCogﬁf(f/sj)]

At step 2, each reflex vertex is assigned its initial speed (see Lemmas [l and).

ComputeConflictingSites(e): for each non-e-edge (u,v), the e-clusters C'(u) and
C'(v) are retrieved, the left and the right neighbors of (u,v) are determined, and
the conflicting pairs (S;,S;) for (u,v) are formed.

HandleConflictingPair(u, v, S;, S;): relative placement and types of u, v, S;, and
S; are analyzed, the bound on the speed of any reflex vertex from the conflicting
pair (S;,5;) is calculated, and then its speed is updated if needed. The details
can be found in [6]. Though the notion of a barrier was not explicitly introduced
in [6], barriers appeared there as an auxiliary structure exploited in the proofs.
In particular, the thorough analysis carried out in [6] implies that it is always
possible to bound the speed of the reflex vertex/vertices from (S;,S;), so that
there will exist a barrier on (u, v) separating the cells LC(S;) and LC(S;).

At Step 5, for any reflex vertex Sj;, the smallest number of hidden edges is
calculated, which guarantees that the speed of S; will be bounded by the value s;
obtained at the previous step.

Correctness of the algorithm. First, let us show that the linear cells of a
non-conflicting pair of sites formed by a left and a right neighbor of some non-
e-edge (u,v), both being edges of P, can be separated with a barrier having the
center at any point from (u,v).

Lemma 15. For any edge S of polygon P, LC(S) C VC(95).

Proof. Suppose for contradiction that for some edge S of P, LC(S) does not
lie inside VC(S). Then there exists a point p € LC(S), such that p ¢ VC(S).
Denote by S’ the site, for which p € VC(S’). Let py be the closest point to p
from S’. Denote by d the distance from p to S; observe that d > d(pop).

Note that if the linear offset of any site S* sweeps two points ¢; and g2 at
time ¢ and to, respectively, then d(q1,q2) > [t2 — t1].

Segment pop may traverse several linear cells. Denote by pq, ..., pi the inter-
section points of pgp with the edges of L¥(P) (in the same order as they occur
when moving along the segment from pg to p1); let pxy1 = p. Let to = 0; denote
by t¢; the time, at which p; is swept by the linear wavefront, where 1 < i < k4 1.
Denote by ¢; the time at which p is swept by the linear offset of S.

Any segment p;_1p; lies inside some linear cell; therefore, d(p;—1,p;) > |ti —
ti—1|, where 1 < i < k + 1. Summing up these inequalities, we get d(po,p) >
Zfill t; —ti—1| > t; = d > d(po,p), which is a contradiction.

Corollary 2. Linear cells of two edges S; and S, of P being a left and a right
neighbor of a non-e-edge (u,v) of M (P), respectively, do not cross a barrier with
the center at any point of (u,v).

Linear Axis for General Polygons: Properties and Computation 133

Fig. 3. The linear cell LC(S1) crosses the barrier b from the left, and the cell LC(S2)
crosses b from the right

Definition 9. Let (u,v) be a non-e-edge of M(P); let S be a site S # Sy, Sa,
where (u,v) is shared by VC(S1) and VC(S2), such that LC(S) crosses a barrier
b(wv) . We say that the linear cell LO(S) crosses the barrier b(“%) from the
left if the part of LC(S) lying on the left from b(“?) contains S. A crossing
from the right is defined analogously (Fig.[3).

Note that due to simple connectivity of cells, a crossing cannot be made simul-
taneously from the left and from the right.

Lemma 16. For any non-e-edge (u,v) of M(P), there exists a barrier bﬁif’”),

such that the linear cells of the left neighbors of (u,v) do not cross bgg’”)]Emn}

the left, and the linear cells of the right neighbors of (u,v) do not cross be,
from the right.

Proof. Let S; be a left neighbor of (u,v). Note that if LC(S;) does not cross from

the left some barrier 0“"), then LC(S;) does not cross from the left a barrier
") for any z between ¢ and v. A similar property holds for the right neighbors.

Let T be a matrix, the rows of which correspond to the left neighbors of (u,v),
and the columns — to the right ones. Parameterize (u,v) so that t(u) = 0,
t(v) = 1. For any pair (S;,S,) consisting of a left and a right neighbor of (u,v),
consider a barrier b{"" separating LC(S;) and LC(S2), and let T[S, S| = t(c).

Choose ¢ such that maxg, (ming, T'[S;, S;]) < t(co) < ming, (maxg, T[S, Sr]).
The left inequality implies that no linear cell of a left neighbor of (u,v) crosses

bﬁ'g’”) from the left, and the right one — that no linear cell of a right neighbor

of (u,v) crosses bgg’”) from the right.

Lemma 17. For any non-c-edge g of M(P), the barrier b constructed in
Lemma [I8 is contained in LC(S1) U LC(S2), where S1 and S are the sites,
such that VC(Sy) and VC(S3) share the edge g.

Proof. Suppose for contradiction that there exists a site S # Sy, .S2, such that
LC(S) intersects bJ . Consider all non-e-edges, exactly one endpoint of any of
which is reachable along an e-path from some node incident to VC(S). Denote
the set of all such edges by Fg, and construct a barrier for each e € FEg, as

134 V. Trofimov and K. Vyatkina

described in the proof of Lemma[I6 The union of these barriers forms an obsta-
cle O that cuts out of P a connected polygonal region Py (S), inside which lie,
in particular, all the nodes of VC(S), and thus, entire VC(S), and S itself.

Therefore, VC(S) cannot cross any barrier on g, if g lies outside of Py, or if
g € Eg. It follows that g must lie inside Py. But then S is both its left and its
right neighbor, and V' C(S) cannot cross bJ by construction of the latter.

To summarize, we have constructed barriers, which satisfies the condition of
Theorem [for all non-e-edges of P (and in particular, for those connecting
nodes from different e-clusters). This proves correctness of the algorithm.

Theorem 2. The sequence of hidden edges computed by the algorithm Com-
puteHiddenFEdges provides a linear azis e-equivalent to the medial azis.

Time complexity of the proposed algorithm depends on the number of conflicting
pairs reported at step 3. This number, in its turn, depends on the sizes of e-
clusters. If any e-cluster consists of a constant number of vertices, the total
number of conflicting pairs will also be linear. Any pair of conflicting sites in
handled in constant time. Therefore, all the steps of the algorithm except for
the medial axis computation will be performed in linear time.

4.2 Linear Axis Computation

After the sequence of hidden edges is obtained, a linear axis e-equivalent to the
medial axis can be computed from the latter in linear time. For this part of the
task, the algorithm proposed by Tanase and Veltkamp [7]can be applied without
any modification. The key idea is to reconstruct each dual e-cluster separately.
The details can be found in [7], [6].

Theorem 3. Let P be a general polygon with n vertices and a constant num-
ber of nodes in each e-cluster of the medial azis. For a given € > 0, a linear
avis L*(P) e-equivalent to the medial axis M(P) can be computed from the lat-
ter in linear time. If the medial axis is not pre-computed, the time complexity of
the proposed algorithm amounts to O(nlogn).

Alternatively, one can obtain a linear axis L¥(P) by computing the straight
skeleton S(P¥) of the polygon P*, and removing from S(P*) the edges incident
to the reflex vertices of P* (for the case of a simple polygon, this was pointed out
in [7]). However, the fastest known algorithm, which computes the straight skele-
ton of a general polygon with r reflex vertices, requires O(n!+e 4n8/11+ep9/114e)
time and space, for any fixed £ > 0 [3].

5 Concluding Remarks

A linear axis of a simple polygon has successfully proved its utility, being applied
to the problem of shape retrieval [6]. We expect that our generalization of its
notion and of the method for its efficient computation to the case of general

Linear Axis for General Polygons: Properties and Computation 135

polygons will enhance its applicability in the context of shape retrieval as well as
in correspondence to other problems, which can be solved by means of skeletons.
In particular, such expectations are due to a close relationship of a linear axis
to the medial axis and the straight skeleton.

An interesting and challenging task for future work will be to create a robust
implementation of the proposed algorithm and to investigate its behavior.

Acknowledgments

Research of the second author is supported by Human Capital Foundation and
by Russian Foundation for Basic Research (grant 07-07-00268a). The authors
thank the anonymous reviewers for valuable comments.

References

1. Aichholzer, O., Aurenhammer, F., Alberts, D., Gartner, B.: A novel type of skeleton
for polygons. The Journal of Universal Computer Science 1, 752-761 (1995)

2. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures.
In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 117-126.
Springer, Heidelberg (1996)

3. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: appli-
cations of a data structure for finding pairwise interactions. Discrete and Compu-
tational Geometry 22(4), 569-592 (1999)

4. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: Proc. 20th
IEEE Annual Symp. on Foundations of Comput, pp. 18-27. IEEE Computer Society
Press, Los Alamitos (1979)

5. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, Heidelberg (1985)

6. Tanase, M.: Shape Decomposition and Retrieval. Ph.D. Thesis, Utrecht University
(2005)

7. Tanase, M., Veltkamp, R.C.: Straight skeleton approximating the medial axis. In:
Proc. 12th Annual European Symposium on Algorithms, pp. 809-821 (2004)

8. Trofimov, V., Vyatkina, K.: Linear axis computation for polygons with holes. In:
Proc. 23rd European Workshop on Computational Geometry, pp. 214-217 (2007)

A Geometric Approach to Clearance Based Path
Optimization

Mahmudul Hasan, Marina L. Gavrilova, and Jon G. Rokne

Department of Computer Science, University of Calgary
2500 University Drive NW, AB T2N 1N4, Canada
{mhasan,marina, rokne}@cpsc.ucalgary.ca

Abstract. For path planning, an optimal path is defined both by its length and
by its clearance from obstacles. Many motion planning techniques such as the
roadmap method, the cell decomposition method, and the potential field method
generate low quality paths with redundant motions which are post-processed to
generate high quality approximations of the optimal path. In this paper, we
present a O(h2 (logn+k)) algorithm to optimize a path between a source and a
destination in a plane based on a preset clearance from obstacles and overall
length, where & is a multiple of the number of vertices on the given path, n is
a multiple of the number of obstacle vertices, and & is the average number of
obstacle edges against which the clearance check is done for each of the O(hz)
queries to determine whether a potential edge of the path is collision-free. This
improves the running time of the geometric algorithm presented by
Bhattacharya and Gavrilova (2007) which already generates a high quality
approximation of the optimal path.

Keywords: optimal path, shortest path, clearance from obstacles, convex hull.

1 Introduction

The objective of path planning or motion planning is to find a collision free path from
a start configuration to a goal configuration among a set of obstacles in the given
environment. This problem has applications in many fields, such as mobile robots [1,
2,3, 4, 5], manipulation planning [6, 7, 8, 9], CAD systems [10], virtual environments
[11], protein folding [12] and humanoid robot planning [13, 14]. The quality of the
computed path can be evaluated in terms of its length, its clearance from obstacles,
and its smoothness or in terms of a combination of these and other factors [15, 16]. In
this paper, an optimal path in two dimensions is defined based on its length and a
preset clearance from obstacles.

The fundamental difference between the existing approaches to the path planning
problem depends on how the connectivity among obstacles is represented. These
approaches can be classified into three basic categories, which are the roadmap
method [17, 18], the cell decomposition method [19, 20], and the potential field
method [21, 22]. In the roadmap method, the connectivity of the free space is captured
with curves or straight lines. In the cell decomposition method, the free space is

0. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 136-[1530] 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Geometric Approach to Clearance Based Path Optimization 137

discretized using cells so that the edges of the cells represent the connectivity. In the
potential field method, a potential function is assigned to each obstacle and the
topological structure of the free space is derived in the form of minimum potential
valleys, where an object moving along the path is attracted towards its goal position
while being repelled from obstacles [15, 16]. Most of the planning techniques under
the above categories result in low quality paths i.e. paths that have many unnecessary
motions. The clearance of the resulting path from obstacles may also be higher than
required resulting in longer paths. This often happens for configurations where the
obstacles are far apart. For example, Fig. 1(a) and 1(b) show the redundant motions in
the shortest path obtained from the roadmap derived from the Voronoi diagram and
the vertical cell decomposition method respectively. It is therefore evident that some
post-processing of the obtained path is required to make it approximately optimal
based on the user defined criteria.

T
-

@ ()

Fig. 1. Redundant motions in (a) the shortest path obtained from the Voronoi diagram based
roadmap [15], and (b) the shortest path obtained from the vertical cell decomposition method
[15]. The source and target are marked with S and 7 respectively.

In general, most applications in the area of path planning require a shortest path
between a source and a destination because redundant motions are unexpected. For
safety reasons, the path should also keep some preset amount of clearance from the
obstacles. It is worth noting that minimizing the path length and maximizing the
clearance seemingly contradict each other as increasing the clearance results in a
longer path while reducing the path length necessarily reduces the clearance from
obstacles [15, 16]. Thus, the optimal path has to offer shortest possible length
providing the required clearance. Fig. 2 illustrates this idea. It is also desirable to
minimize the number of maneuvers because this simplifies the required actions for a
driver or controller [14].

Two different processing phases have been found in the literature for computing a
path between a source and a destination. Firstly, a path that satisfies some criteria can
be chosen from a collection of paths generated by some path planning technique. This
can be referred to as preprocessing. Secondly, a path can be optimized in a post-
processing phase [14]. In this paper, we will assume that a path in the correct
homotopic class is given which is not necessarily optimal without any assumption
about the preprocessing technique through which the path is obtained. The algorithm

138 M. Hasan, M.L. Gavrilova, and J.G. Rokne

S)
:

" N

\

u F
,
-
o
e
-~
P
-
”
-
-
~ ks
L
1
I
L‘ .
X "
.y -
\ (=
o
-
-
~
- ‘
J
5 s E

(a) ®) ©

Fig. 2. (a) Initial shortest path obtained from the Voronoi diagram based roadmap [16],
(b) Optimized shortest path with zero clearance [16], and (c) Optimized shortest path with
some preset nonzero clearance (zoomed path on the right) [16]

developed under this study theoretically improves the running time of the previous
geometric algorithm presented by Bhattacharya and Gavrilova [15, 16], which
generates a high quality approximation of the optimal path.

2 Background Literature

As mentioned in the previous section, the current path planning techniques generate
low quality paths which are usually far from optimal. In recent years, improving the
path quality has therefore received significant attentions from the researchers. A
method that combines the Voronoi diagram, the visibility graph and the potential field
approaches to path planning into a single algorithm to obtain a tradeoff between the
safest and the shortest paths can be found in [23]. Although the obtained path length
is shorter than those obtained from the potential field method or the Voronoi diagram,
it is still not optimal and the presented algorithm is fairly complicated. The path
exhibits bumps and unnecessary turns and it is not smooth.

Another recent work on reducing the length of the path obtained from a Voronoi
diagram can be found in [24]. The method involves constructing polygons at the
vertices in the roadmap where more than two Voronoi edges meet. The path is
smoother and shorter than that obtained directly from the Voronoi diagram but
optimality is not achieved. In [25], the authors create a new diagram called the vv*
diagram which stands for Visibility-Voronoi diagram for clearance ¢ . The motivation
behind their work is similar to ours i.e. to obtain an optimal path for a specified
clearance value. The diagram evolves from the visibility graph to the Voronoi
diagram with the increasing value of c¢. Unfortunately, as the method is visibility
based, the processing time is O(n’logn) which makes it impractical for large spatial
datasets.

A Geometric Approach to Clearance Based Path Optimization 139

A recent work on clearance based path optimization can be found in [14]. It
maximizes the clearance of the path obtained from the probabilistic roadmap method
by retracting the path to the medial axis. This results in a better path which still may
not be optimal as the clearance may be more than what is actually required, resulting
in a longer than necessary path.

A general method for refining a path obtained from a roadmap based on classical
numerical optimization techniques can be found in [26]. The authors apply costs to
each edge and use an augmented Dijkstra’s algorithm to determine the resulting path.
The edges that are nearer to obstacles are assigned higher costs. There is no guarantee
that the method will generate an optimal path because the path is constrained to the
edges in the roadmap. To improve the smoothness of the path obtained from the
roadmap, a B-spline approximation was used in [18].

Almost all of the heuristics found in the literature post-process the path to reduce
its length. The shortcut heuristic is most frequently used because it seems to work
well in practice and is simple to implement. Under this heuristic, a configuration
consisting of two vertices p, and p, are chosen on the path. If the straight-line motion

between p, and p, is collision-free, that motion replaces the original part. The

configurations can be chosen randomly [10, 27, 28, 29, 30, 31], or deterministically
[6, 9, 32]. Some variants of this heuristic have also been proposed [6, 9, 28, 32].
Another class of heuristics creates extra vertices around the path [8, 9, 12, 31].

We will compare our algorithm with a very recent algorithm by Bhattacharya and
Gavrilova [15, 16] which initially uses the shortcut heuristic to obtain a shorter path
which is not necessarily optimal. Then it does an iterative refinement of the resulting
path by creating extra samples along the path in a certain manner followed by the
application of shortcut heuristic once again. In this way, the authors obtain a high
quality approximation of the optimal path respecting a preset clearance. The shortcut
heuristic removes all the redundant vertices and generates a path with minimum
number of edge connections. The authors achieved a running time of O(n’(logn+k,))

for the shortcut heuristic where 5, is the number of vertices on the initial shortest path

obtained from a path planning technique, » is a multiple of the number of obstacle
vertices, and & is the average number of obstacle edges against which clearance

check is done on each of the O(h’) queries to determine whether a potential edge of

the path is collision-free. Achievement of this running time was possible because the
authors maintain a quadtree of the minimum bounding boxes of the obstacles edges.
As a result, they can report the obstacles edges whose minimum bounding boxes
overlap with the expanded (in all four directions by the amount of clearance)
minimum bounding box of a potential edge of the path in O(logn) time. Then the

clearance check is carried out only for the few reported obstacle edges.

As mentioned earlier, the authors then perform an iterative refinement of the
resulting path which they refer to as corner-cutting technique. Fig. 3 illustrates how it
works. In this step, the authors add Steiner points on the edges of the path at regular
interval A. Let v be a vertex on the path other than the source and the destination.
Let ¢ and e, be the two edges incident on V. They define the first Steiner point

along ¢, as a point that lies on ¢ at A distance away from Vv, the second Steiner

140 M. Hasan, M.L. Gavrilova, and J.G. Rokne

point is 2A distance away from v and so on. Then they try to connect the first Steiner
point on ¢ with that on e, . If the connecting edge satisfies the minimum clearance,

they move to the second Steiner points along both of the edges and try to connect
them. They continue this process until an intersection is detected, or the clearance
from obstacles falls below the required minimum clearance, or the end point of one of
the incident edges on Vv is reached. They then replace v with the last pair of Steiner
points that they could successfully connect introducing a new edge. If they fail to
connect even the first pair of Steiner points along the two incident edges, they retain
v . They then move to the next vertex along the path and repeat the same process.
When no more reduction in path length is possible for any of the vertices, they double
the resolution (i.e. set the interval between Steiner points along the edges to A/2) and
repeat the process. The iteration continues until the resolution reaches a maximum
pre-calculated value. The solid line in Fig. 3 is the one they pick as a new edge. Its
end-points (in proper sequence) replace v [15, 16].

Fig. 3. Conner-cutting technique: with each iteration, an edge of the path gets closer to the
obstacle [15]

The running time of this method is O(B(h, +s)(logn+k,)) where g is the average
number of iterations executed for each vertex on the path to introduce a new edge, &,

is the number of vertices on the path after the first application of shortcut heuristic, s
is the number of Steiner points which became part of the resulting path, and &, is the

average number of obstacle edges against which clearance check is done on each of the
B(h, +s) queries to determine whether a potential edge of the path is collision-free.

After this iterative refinement step, the resulting path can have some unnecessary
vertices which are removed by applying the shortcut heuristic once again. This time,

applying the shortcut heuristic takes O(; (logn+k,)) time, where &, is the number of
vertices on the resulting path after iterative refinement, and &, is the average number
of obstacle edges against which clearance check is done on each of the o(r}) queries

to determine whether a potential edge of the path is collision-free. The optimized
paths shown in Fig. 2 are computed using their algorithm.

Our proposed algorithm is able to produce the shortest possible path given a preset
clearance from obstacles and achieves the running time of O(*(logn+k)) which is

much lower than the overall running time of oO(h}(logn+k,)) achieved by the

geometric algorithm presented by Bhattacharya and Gavrilova [15, 16] because
h<<h, in general.

A Geometric Approach to Clearance Based Path Optimization 141

3 Algorithm for Path Optimization

The path optimization problem under consideration can be defined as in Problem 3.1.

Problem 3.1. Given a path with h vertices between a source and a destination

among a set of polygonal obstacles in the plane, find a path of minimum length
subject to clearance ¢ from obstacles.

In this paper, the clearance ¢ refers to the minimum distance that the optimal path
must maintain from obstacles. Thus, the distance between any arbitrary point on any
of the obstacles and any arbitrary point on the optimal path must be at least ¢. At first,
we apply the shortcut heuristic to remove the redundant vertices from the given path.
The variant of the shortcut heuristic we use tries to connect the vertex p, with the

vertex p, on the path as illustrated in Fig. 4.

Fig. 4. (a) The edge p.p; is not collision-free, (b) The edge p,p, is collision-free, thus the
sequence of vertices P, ~ P, has to be discarded from the path

If the edge p,p; is collision-free, the sequence of vertices p,, ~ p,, is discarded

from the path. We provide the pseudocode for the shortcut heuristic in Algorithm 3.1.

Algorithm 3.1. RemoveRedundantVertices(path P, clearance c)

Requires: A sequence of i, vertices that defines the path P, and the preset clearance ¢

1: for i=1 to |P| Step | do

2: for j=|P| to i+2 Step -1 do

3: if pp, is collision-free then
4: P« P\p,~p;,

5: return P

Algorithm 3.1 achieves the running time of O(#] (logn+k)) where # is the number

of vertices on the given path, » is a multiple of the number of obstacle vertices, and
k, 1is the average number of obstacle edges against which clearance check is done on

142 M. Hasan, M.L. Gavrilova, and J.G. Rokne

each of the O(n’) queries to determine whether a potential edge of the path is

collision-free. To prove this, we state the following lemma based on the collision-
checking algorithm used in [15, 16].

Lemma 3.1. The obstacle edges whose minimum bounding boxes overlap with the
expanded minimum bounding box of the edge p,p, can be determined in O(logn) time.

The idea is to maintain a quadtree of the minimum bounding boxes of the obstacles
edges [15, 16]. As a result, obstacle edges whose minimum bounding boxes overlap
with the expanded (in all four directions by the amount of clearance ¢) minimum
bounding box of a potential edge of the path can be reported in O(logr) time. Then

the clearance check is carried out only for the few reported obstacle edges. Thus, if £

is the average number of obstacle edges against which clearance check is done on
each of the o(#’) queries in Algorithm 3.1 to determine whether p,p; is collision-

free, we can state the following lemma regarding the running time of Algorithm 3.1.

Lemma 3.2. Given a path with n, vertices between the source and destination, the

redundant vertices along the path can be removed in O(h] (logn+k,)) time.

Let #, (h,<h) be the number of vertices remaining on the path after applying
Algorithm 3.1. Now we will consider this path with 5, vertices for further

optimization. Let us focus on our definition of the optimal path. Consider the simplest
case where &, =3 as illustrated in Fig. 5.

px’+1

Fig. 5. The optimal path between the source S and target destination 7 is shown with dashed
edges and circular patches between each pair of consecutive dashed edges

The explanation of this simple case may facilitate the understanding of the general
case. In Fig. 5, the optimal path between the source § and target destination 7 is
shown with dashed edges and circular patches between each pair of consecutive
dashed edges. Here, all the circles are of radius ¢ (the preset clearance) to offer the
minimum amount of clearance from the obstacle. The first dashed edge is a segment
of the tangent to a circle passing through s. The last dashed edge is also a
segment of the tangent to a circle passing through 7. Each of the remaining
dashed edges is a segment of a tangent to two circles.

A Geometric Approach to Clearance Based Path Optimization 143

By virtue of Algorithm 3.1, we know that any vertex p, on the resulting path cannot
be connected to the vertex p,, because the edge p,p,, is not collision-free. Now, how

can we determine the obstacle vertices where the circles are placed in Fig. 57 An
important observation which forms the basis of our algorithm is illustrated in Fig. 6.

px’+1

Fig. 6. Determining the vertices of the optimal path when the preset clearance c¢=0.

The observation is that the vertices at which the circles of radius ¢ are placed can
be determined from the convex hull of p,, p.., and the set of obstacle vertices enclosed

in the triangle Ap,p,,,p.., - Based on this observation, we state the following lemma.

Lemma 3.3. When a point robot cannot move from a vertex p, to a vertex p,, on a
straight line, it starts moving along the edges of the convex hull of p,, p.., and the set

of obstacle vertices enclosed in the triangle Ap,p..p.., to follow the optimal path.

In Lemma 3.3, point robot refers to an object whose volume is theoretically zero.
Based on this lemma, we then compute a path P° between the source and the
destination with zero clearance from the obstacles using Algorithm 3.2.

Algorithm 3.2. ComputeShorterPath(path P, clearance ¢)

Requires: A sequence of 7, vertices that defines the path P, and the preset clearance ¢

1: P ¢

2: PP U{p]}

3: d—¢

4: 0, < null

5: j=2

6: for i=1 to |[P|-2 Step 1 do

7: H «{p,, p,,,} WObstacleVerticesIn(Ap,p;,, p,,)
8: H < ConvexHull(H) {H]:pi,H‘H‘:sz}
9: P« P UH\{p,.p.}

10: if (p,,—-p)x(p,—-p)<0 then

11: D « right

144 M. Hasan, M.L. Gavrilova, and J.G. Rokne

12: else

13: D« left

14: for i=1 to |H|-2 Step 1 do
15: 6, <D

16: je j+l1

17: P'«— P'UP,,

18: 6, < null

19: for i=1 to |P’| Step 1 do

20: for j=|P’| to i+2 Step -1 do
21: if p/p; is collision-free then
22: PP ApL -
23: 6 06\6,~6,,
24: return P’ and ¢

Algorithm 3.2 is now explained in detail. What it simply does is — given a path P
with »n, vertices, it computes a path P° between the source and the destination with

zero clearance from obstacles ensuring that P* can be retracted later to provide a path
with the preset nonzero clearance c . In addition, it computes an ordered sequence of
directions § where ¢, tells whether the vertex p; will lie to the left or to the right of

the directed optimal path to be computed with a nonzero clearance.

)
(@
Fig. 7. Two sample configurations of how P’ is determined

Fig. 7 demonstrates how P’ is determined in Algorithm 3.2 by two sample
configurations, one in Fig. 7(a) and 7(b) and the other in Fig. 7(c) and 7(d). The
vertices of P' are marked with squares in Fig. 7(b) and 7(d).

A Geometric Approach to Clearance Based Path Optimization 145

Steps 1 to 5 are initialization steps. The source vertex p, is included in P* at step
2. At step 4, null is assigned to & because no direction value is required for the
source vertex. The for loop at step 6 controls the position of the triangle Ap,p,,p,, -
At step 7, the set H is defined as the union of the set of vertices {p,p,,} and the
obstacle vertices enclosed in the triangle Ap,p..p..,. At step 8, H is redefined to
represent the convex hull of the union of {p,p,.,] and the obstacle vertices enclosed
in the triangle Ap,p,,p.,. Then at step 9, the vertices of the convex hull except p, and
p., are included in P*. In steps 10 to 16, the sequence of directions & is computed
based on the sign of the cross product of the vectors (p,,-p,) and (p,, - p,). At step
17, P’ is updated to include the destination vertex. auil is assigned to &, at step 18

because no direction value is required for the destination vertex.

The sequence of vertices in P’ after the execution of steps 1 to 18 still does not
form the shortest path as demonstrated in Fig. 8. The vertex marked with circle in Fig
8(b) is redundant. To get rid of these redundant vertices, the shortcut heuristic is
applied once again on P* in steps 19 to 23. The collision-free check at step 21 ensures
clearance ¢ from obstacles which is required for further optimization in Algorithm
3.3. At step 23, the direction values corresponding to the discarded vertices are

eliminated.

@ ®)

Fig. 8. Unnecessary vertices (marked with circle) introduced in P’

To analyze the running time of Algorithm 3.2, we state the following lemma which
follows from Lemma 3.1.

Lemma 3.4. The obstacle edges whose minimum bounding boxes overlap with the
axis-parallel minimum bounding box of the triangle Ap.p,,p,, can be determined in

O(logn) time.

Thus, after determining the obstacle edges whose minimum bounding boxes overlap
with the axis-parallel minimum bounding box of the triangle Ap,p,.,p., in O(logn)
time, the obstacle vertices enclosed in the triangle can be determined in computation
time linear on number reported obstacle edges. This is done by the call to
ObstacleVerticesin(Ap,p,, p,.,) at step 7 of Algorithm 3.2.

146 M. Hasan, M.L. Gavrilova, and J.G. Rokne

Under the for loop at step 6 of Algorithm 3.2, step 7 requires maximum running
time because it involves query to the quadtree of obstacle edges. Thus, based on
Lemma 3.1 and Lemma 3.4, steps 1 to 18 of Algorithm 3.2 achieve the total running
time of O(h,(logn+k,)) where k, is the average number of obstacle edges against

which clearance check is done on each of the 0(h,) queries to determine whether
p.p.., 18 collision-free.

Now, let » be the number of vertices in pP* after the execution of step 18 of
Algorithm 3.2. Based on Lemma 3.2, the shortcut heuristic applied on # vertices in
steps 19 to 23 takes O(h*(logn+k)) running time where & is the average number of

obstacle edges against which clearance check is done on each of the 0(n*) queries to
determine whether p,p,., is collision-free at step 21. Thus, Algorithm 3.2 achieves the
running time of O(h’ (logn+k)).

Now let us compute the optimal path with a preset nonzero clearance c.

Algorithm 3.3. ComputeOptimalPath(path P°, direction-sequence &, clearance c)

Requires: A sequence of vertices that defines the shortest path P°, direction sequence &, and
the preset clearance ¢

1: P ¢
2: P' '« P'up
3: Compute the tangent point 7 on the circle with radius ¢ centered at p; so that the

tangent passes through p; and the vertex p; that lies on the &, side of the directed

edge p/7.
4: P« Pur
5: for i=2 to |P’|-2 step 1 do
6: Compute the tangent 7,7z, such that (i) the tangent points 7, and 7, lies on

the circles with radius ¢ centered at p; and p;, respectively, (ii) the

vertex p; lies on the &, side of the directed edges =z, , and (iii) p;, lies
on the J,, side of the directed edge 7,7, .

7: P'« P U{m,7,}

8: Compute the tangent point 7 on the circle with radius ¢ centered at p; so that the

tangent passes through p;, and the vertex p’ lies on the &, side of the directed edge

Dy
9: P« P U{IZ, p,i‘“}
10: P” — ¢
11: P« P U p
12: for i=1 to |P'|-2 step |1 do

A Geometric Approach to Clearance Based Path Optimization 147

13: if o =right then
14: P « Set of sampled vertices on the circle of radius ¢ centered

at p;, starting from pj to pj,, in clockwise order.

15: else

16: P « Set of sampled vertices on the circle of radius ¢ centered
at p;, starting from pj to pj., in anticlockwise order.

17: P« P UP

18: P" «— P U p,

19: return P”

Given the path P* between the source and the destination, direction sequence J,

and the preset clearance ¢, Algorithm 3.3 produces the optimal path P between the
given source and destination. In a trivial case, the produced path will look like the
optimal path shown in Fig. 5. In steps 1 to 9, a subset of the vertices on the optimal
path represented as P’ is determined without the circular patches connecting the pairs
of consecutive tangent segments. Then in steps 10 to 18, the circular patches between
the pairs of consecutive tangent segments are sampled and included in optimal path
P in addition to the source and destination vertices. It is easy to see that the

running time of Algorithm 3.3 is 0(P

u) where « is the average number of sample

vertices generated on the circular patches using the parametric equation of the circle.

It is worth noting that optimal path computed by our proposed algorithm will
consist of only straight lines and circular patches. Thus, the circular patches can be
sampled in high frequency in steps 14 and 16 of Algorithm 3.3 to produce an optimal
path which is theoretically better than the high quality approximation of the optimal
path produced by the previous geometric algorithm presented in [15, 16].

Thus, our path optimization technique first applies Algorithm 3.1 with running
time O(h’ (logn+k,)) on the given path P with & vertices, which may initially involve

redundant motions and more than required clearance from obstacles. Second, it
applies Algorithm 3.2 with running time O(h*(logn+k)) on the resulting path from
Algorithm 3.1 to obtain the path p’. Finally, it applies Algorithm 3.3 with running
time o(|P’

u) on the resulting path from Algorithm 3.2 to obtain an optimal path with

minimum length subject to clearance ¢ from obstacles. Among these three
algorithmic steps, Algorithm 3.2 consumes the highest computation time. Thus, the
overall time complexity of our path optimization technique is O(h*(logn+k)). Based

on the reasoning presented so far, we now state the following theorem.

Theorem 3.1. Given a path with h, vertices between a source and a destination among
a set of polygonal obstacles in a plane, a path of minimum length subject to clearance
c from obstacles i.e. an optimal path can be computed in O(h*(logn+k)) time, where
h is a multiple of h,, n is a multiple of the number of obstacle vertices, and k is the

average number of obstacle edges against which clearance check is done on each of
the 0(i*) queries to determine whether a potential edge of the path is collision-free.

148 M. Hasan, M.L. Gavrilova, and J.G. Rokne

4 Conclusions

In this paper, we presented an improved geometric algorithm for path optimization
based on a preset clearance from obstacles and the overall length. Our algorithm

achieves the running time of O(’ (logn+k)) which is much lower than O(#} (logn+k,))
achieved by the very recent geometric algorithm presented in [15, 16], as h<<h, in

general. Based on the reasoning provided in Section 3, we also conclude that the
optimal path produced by our algorithm is theoretically better than the high quality
approximation of optimal path produced by the algorithm presented in [15,16]. The
proposed algorithm is currently under implementation. Our future work will involve
investigating the possibility of generalizing the proposed algorithm to higher
dimensions.

References

1. Berglund, T., Erikson, U., Jonsson, H., Mrozek, K., Soderkvist, I.: Automatic Generation
of Smooth Paths Bounded by Polygonal Chains. In: International Conference on
Computational Intelligence for Modeling Control and Automation (2001)

2. Lamireaux, F., Bonnafous, D., Geem, C.V.: Path Optimization for Nonholonomic
Systems: Application to Reactive Obstacle Avoidance and Path Planning. In: Workshop on
Control Problems in Robotics and Automation, pp. 1-18 (2002)

3. Lamiraux, F., Laumond, J.P.: Smooth Motion Planning for Car-like Vehicles. IEEE
Transactions on Robotics and Automation 17(4), 188-208 (2001)

4. Yamamoto, M., Iwamura, M., Mohri, A.: Quasi-Time-Optimal Motion Planning of Mobile
Platforms in the Presence of Obstacles. In: IEEE International Conference on Robotics and
Automation, pp. 2958-2963. IEEE Computer Society Press, Los Alamitos (1999)

5. Song, G., Amato, N.: Randomized Motion Planning for Car-like Robots with C-PRM. In:
IEEE International Conference on Intelligent Robots and Systems, IEEE Computer Society
Press, Los Alamitos (2001)

6. Baginski, B.: Efficient Motion Planning in High Dimensional Spaces: The Parallelized Z3-
Method. In: International Workshop on Robotics in the Alpe-Adria-Danube Region, pp.
247-252 (1997)

7. Baginski, B.: Motion Planning for Manipulators with Many Degrees of Freedom - The
BB-Method. Ph.D. dissertation, Technische Universitit Miinchen (1998)

8. Bohlin, R.: Motion Planning for Industrial Robots. Ph.D. dissertation, Géteborg University
(1999)

9. Hsu, D., Latombe, J.C., Sorkin, S.: Placing a Robot Manipulator amid Obstacles for
Optimized Execution. In: IEEE International Symposium on Assembly and Task, pp. 280-
285. IEEE Computer Society Press, Los Alamitos (1999)

10. Geem, C., Simeon, T., Laumond, J.P., Bouchet, J.L., Rit, J.F.: Mobility Analysis for
Feasibility Studies in CAD Models of Industrial Environments. In: IEEE International
Conference on Robotics and Automation, pp. 1770-1775. IEEE Computer Society Press,
Los Alamitos (1999)

11. Nieuwenhuisen, D., Overmars, M.: Motion Planning for Camera Movements. Utrecht
University, Technical Report 2003-004 (2003)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A Geometric Approach to Clearance Based Path Optimization 149

Song, G., Amato, N.: Using Motion Planning to Study Protein Folding Pathways. Journal
of Computational Biology 9(2), 149-168 (2002)

Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion Planning for
Humanoid Robots Under Obstacle and Dynamic Balance Constraints. In: IEEE
International Conference on Robotics and Automation, pp. 692-698. IEEE Computer
Society Press, Los Alamitos (2001)

Geraerts, R., Overmars, M.H.: Clearance Based Path Optimization for Motion Planning.
In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2386-2392.
IEEE Computer Soceity Press, Los Alamitos (2004)

Bhattacharya, P.: Optimal Path Planning using Spatial Neighborhood Properties. M.Sc.
Thesis, University of Calgary, Canada (2007)

Bhattacharya, P., Gavrilova, M.L.: Voronoi Diagram in Optimal Path Planning. In: 4th
International Symposium on Voronoi Diagrams in Science and Engineering, IEEE
Computer Society Press, Los Alamitos (2007)

Amato, N., Wu, Y.: A Randomized Roadmap Method For Path And Manipulation
Planning. In: IEEE International Conference on Robotics and Automation, pp. 113-120.
IEEE Computer Society Press, Los Alamitos (1996)

Ibarra-Zannatha, J.M., Sossa-Azuela, J.H., Gonzalez-Hernandez, H.: A New Roadmap
Approach to Automatic Path Planning for Mobile Robot Navigation. In: IEEE
International Conference on Systems, Man, and Cybernetics, “Humans, Information and
Technology”, vol. 3, pp. 2803-2808 (1994)

Nolborio, H., Naniwa, T., Arimoto, S.: A Quadtree-Based Path-Planning Algorithm for a
Mobile Robot. Journal of Robotic Systems 7(4), 555-574 (1990)

Chen, D.Z., Szczerba, R.J., Uhran, Jr., J.J: A Framed-Quadtree Approach for Determining
Euclidean Shortest Paths in a 2-D Environment. IEEE Transactions on Robotics and
Automation 13(5) (1997)

Koren, Y., Borenstein, J.: Potential Field Methods and their Inherent Limitations for
Mobile Robot Navigation. In: Proceedings of the IEEE Conference on Robotics and
Automation, pp. 1398-1404. IEEE Computer Society Press, Los Alamitos (1991)

Warren, C.W.: Global Path Planning using Artificial Potential Fields. In: Proceedings of
IEEE Conference on Robotics and Automation, pp. 316-321. IEEE Computer Society
Press, Los Alamitos (1989)

Masehian, E., Amin-Naseri, M.R.: A Voronoi Diagram - Visibility Graph - Potential Field
Compound Algorithm for Robot Path Planning. Journal of Robotic Systems 21(6) (2004)
Yang, D.H., Hong, S.K.: A Roadmap Construction Algorithm for Mobile Robot Path
Planning using Skeleton Maps. Journal of Advanced Robotics 21(1), 51-63 (2007)

Wein, R., van den Berg, J.P., Halperin, D.: The Visibility-Voronoi Complex and its
Applications. In: Proceedings of the 21st Annual Symposium on Computational geometry,
pp. 63-72 (2005)

Kim, J., Pearce, R.A., Amato, N.M.: Extracting Optimal Paths from Roadmaps for Motion
Planning. In: IEEE International Conference on Robotics & Automation, pp. 2424-2429.
IEEE Computer Society Press, Los Alamitos (2003)

Chen, P., Hwang, Y.: SANDROS: A Dynamic Graph Search Algorithm for Motion
Planning. IEEE Transactions on Robotics and Automation 14(3), 390—403 (1998)

Kavraki, L., Latombe, J.C.: Probabilistic Roadmaps for Robot Path Planning. In: Gupta,
K., del Pobil, A. (eds.) Practical Motion Planning in Robotics: Current Approaches and
Future Directions, pp. 33-53. John Wiley, New York, NY (1998)

Svestka, P.: Robot Motion Planning using Probabilistic Road Maps. Ph.D. dissertation,
Utrecht University (1997)

150

30.

31.

32.

M. Hasan, M.L. Gavrilova, and J.G. Rokne

Sanchez, G., Latombe, J.-C.: On Delaying Collision Checking in PRM Planning —
Application to Multi-Robot Coordination. International Journal of Robotics Research 21(1),
5-26 (2002)

Sekhavat, S., Svestka, P., Laumond, J.P, Overmars, M.: Multilevel Path Planning for
Nonholonomic Robots using Semiholonomic Subsystems. International Journal of
Robotics Research 17, 840-857 (1998)

Isto, P.: Constructing Probabilistic Roadmaps with Powerful Local Planning and Path
Optimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp- 2323-2328. IEEE Computer Society Press, Los Alamitos (2002)

3D Spatial Operations in Geo DBMS Environment for
3D GIS

Chen Tet—Khuan', Alias Abdul—Rahmanl, and Sisi Zlatanova®

! Department of Geoinformatic,
Faculty of Geoinformation and Engineering,
81310 UTM Skudai, Malaysia
{kenchenl, aliasl}@fksg.utm.my
% Section GIS Technology (GISt),
OTB Research Institute for Housing, Urban and Mobility Studies,
Delft University of Technology, The Netherlands
S.Zlatanova@tudelft.nl

Abstract. Next generation of GIS software should be able to manipulate and
analyse complex situations of real world phenomena. One of the desired
components in such software or system is the geometric modeling that works
with 3D spatial operations. This paper presents a portion of problem that we
currently attempt to solve, that is the 3D spatial operations for Geo DBMS.
Some popular spatial operations in 3D GIS for example 3D XOR, 3D union, 3D
intersection, and 3D difference are vital for 3D spatial analysis and forms major
discussion of this paper and part of our research effort to address the 3D GIS
problem. To formulate this research in a suitable way, our approach is to
develop the new 3D data type, polyhedron, within geo-DBMS. The basic idea is
to relate the implementation of intersection point in 3D planar polygon (Chen
and Abdul-Rahman, 2006) into the geometrical modeling for 3D spatial
operations. The approach works and we highlighted the results by using the real
world data sets. The research shows that the essential mathematical algorithms
are applicable for real world objects and provides a solution towards a full 3D
analytical operation in future.

Keywords: 3D spatial operations, geo-DBMS, and 3D GIS.

1 Introduction

There are several aspects need to be addressed in GIS research, one of them is the
geometrical modelling for 3D spatial operations in geo-DBMS environment.
Common 2D operation tools like polygon overlay, merging and dissolving polygons
and lines, or even buffering operation in analytical-based geographic information
systems. However, adding the third dimension to 2D GIS, most of the spatial tools
become more complicated. The initial problem happens in spatial modeling. Different
spatial models deal with different geometrical modeling in solving its spatial

0. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 151-[163, 2007.
© Springer-Verlag Berlin Heidelberg 2007

152 C. Tet-Khuan, A. Abdul-Rahman, and S. Zlatanova

analytical operations. In literature (3D FDS — Formal Data Structure by Molenaar
(1990); TEtrahedral Network — TEN by Pilouk (1996); the 3D TIN-based OO model
by Abdul-Rahman (2000); the Simplified Spatial Model - SSS by Zlatanova (2000);
the Urban Data Model - UDM by Coors (2003); OO3D by Shi, ef al. (2003)), most of
the spatial models focus on the object construction and topological relationships.
However, geometrical modeling for spatial operation (within geo-DBMS) is rather
limited for 3D GIS. In this paper, we concentrate on simple but complete strategy in
developing multiple spatial operations for 3D GIS.

The paper is organized in the following order: first, short discussion for the 3D
objects construction in three-dimension, i.e. polyhedron. Then, the intersection
between 3D line and 3D planar polygon is discussed in section 3. This process
involves the determination of intersection 0D feature inside/outside the 3D planar
polygon, which had been discussed in Chen and Abdul-Rahman (2006). Section 4
describes the bridging as well as the related methodology for the development of the
internal and external segments. Section 4 also describes the integration of segments
for the multiple spatial operations. The experiment and discussions is presented in
section 5 and the research is concluded in section 6.

2 Characteristic of Polyhedron

In this paper, the spatial object involves in the 3D spatial operations is polyhedron.
Polyhedron is a 3D equivalent of a set of polygon that bounds a solid object. It is
made up by conectiong all faces, sharing a common edge between two adjacent
polygons. The most important constrain is all polygons that make up the polyhedron
have to be planar. This means that all points used to construct a polygon must be in
the same plane. Fig. 1 denotes a sample of a planar and non-planar polygon. The
characteristics of a valid polyhedron should have the following rules (Aguilera &
Ayal (1997), Aguilera (1998)):

e Flatness — all polygons that bound a single volume of polyhedron must be
flat. This means all vertices involve in constructing a polygon should be in
the same plane. The flatness of a polygon can be verified by plane
equation as follow:

Ax+By+Cz+ D = 0 (D

e Polyhedron must be single volume object — a set of polygons that make up
a polyhedron should be bounded as a single volume. In order to create a
single volume of polyhedron, some rules must be followed:

o Each edge (derived out of 2 vertices) should be shared by only 2
polygons. This rule will result in a simple polyhedron, i.e. outer
ring will not touch the boundary of the polyhedron. On the other
hand, if an edge is shared by more than 2 polygons, the
polyhedron may consist at least 2 volumes.

3D Spatial Operations in Geo DBMS Environment for 3D GIS 153

/Hh\w 0

il .
f.—i.—f-“? --____} ?__.;r"__.:f-#-__‘ FF--.-_:}
d A E T T+)

; > t’—_.f:.'_'.f-*' < i'—_..;_;_-,-’—fQ— Vertex is not located
I ~ I T \\v____.f at the same plane

T - .
." with others
-‘!{ "‘}L

(a) (h)

Fig. 1. (a) Planar polygon, and (b) non-planar polygon

e Simplicity characteristic — as discussed by Arens (2003). However, this
condition could be simplified by enforcing the construction of a polygon as
follow:

o Each edge has exactly 2 vertices only.

o The starting and ending points of a polygon is same, and will only
be stored once. E.g. a polygon consists 4 points (a, b, ¢, d), thus the
polygon will be stored as (a, b, c, d, a), instead of (a, b, c, d, e),
although a = e. Any point(s) with same location will be stored only
once.

o Polygon must have an area.

Lines from a polygon must not self-intersecting.

o Singularity of polyhedron is not allowed, i.e. lower dimension
object must not exist in the interior of higher dimension. E.g. point
will not exist in the interior of line or polygon or polyhedron, line
will not exist in the interior of polygon or polyhedron. However,
lower dimension object may exist at the border of higher dimension
object. This rule may directly avoid polygon intersects with other
polygon(s) (see Fig. 2). Any polygons that intersect with other
polygon(s) will not be stored as a part of polyhedron.

o

Folygonintersects [| Sinaularity of line
polygon T /
.-'"-.-..ﬁ

i
k- P
Il

._ ________ ;

: ;
M|
.
."'J

|
\/

Singularity of points

Fig. 2. Polygon intersection causes the singularity of points and line

154 C. Tet-Khuan, A. Abdul-Rahman, and S. Zlatanova

3 Line and Solid Object Intersection

The 3D spatial operation that involves 2 polyhedrons is the main focus for this paper.
As mentioned in the previous section, polyhedron is constructed by a set of faces. The
intersection between 2 polyhedrons will directly relate the intersection between line
and planar polygon. The first polyhedron is the base object, whereas the second
polyhedron becomes the farget object in this intersection. The 3D line (from first
polyhedron) is the base object, whereas the 3D planar polygon is the target object (see
Fig. 3).

= Target solid, B

— 3D planat polygon (target object)
Fig. 3. Base and target object

3.1 Plane Equations

The intersection between base object (3D line) and target object (3D planar polygon)
is initial part of the development of 3D spatial operations. Therefore, the plane
equation (from target object) is important in the intersection. In 3D, one can always
specify 3 non-collinear points Py=(Xo,Yo,Zy), P1=(X1,Y1,Z1), P=(X>,Y>,Z,) as the
vertices of a triangle, the most primitive planar object and it can be defined uniquely
the plane satisfying the following equation:

X -Xp Y-Y Z -7y
XI—X() Yl—Yo Zl—Z() = 0 (2)
X=Xy h-Yo ZL-%

This determinant is satisfying general form of plane equation:

Ax + By + Cz + D = 0, with normal, P, = (A, B, C) 3

3.2 Intersection of 3D Line and 3D Polygon

The plane equations as illustrated in preceeding section will be used in determining
the line and polygon intersection. This intersection (i.e. line and polygon) yields a
point or a line. Fig. 4 shows the intersection between these two primitives.

3D Spatial Operations in Geo DBMS Environment for 3D GIS 155

Intersection po.int Intersection line
/z L R . // /l
Yoo N | > s
- oy o -~ " _.-'"--' e -~ -
> 2 | N K<
- NN
() (b)

-

Fig. 4. Intersection results: (a) point, and (b) line — 2 points

To compute the intersection point between 3D line and 3D polygon, both line and
plane equation are given as follows (see Fig. 4):

Y=mX+c¢ “4)

Z=mX+c,)

where m; = gradient or slope, c; = the y intercept, and i denote an array (1 to n).
The intersection between 3D line and 3D polygon may imply an impossible
intersection (see Fig. 5).

» & _r Possible
- Fp . .
-] intersection
i ;mpnssﬂ:.ule point, Py
& intersection ,ﬂ_t__,.x
N point, Py ~.
:- . "-.,__;d . et - ---_d---'-d
|~ ¥ e | ¥ B
e e e r',
~— —)

Fig. 5. Intersection between 3D line and 3D planar polygon

4 Intersection of Base and Target Object

Two solid objects intersect each other as shown in Fig. 6. Since a solid object is
constructed by a set of faces, and a face is constructed by a series of lines, the
intersection that involves 3D line and 3D face is discussed. This is because the
intersection result will be used to define internal and external of base object, so as to
target object.

156 C. Tet-Khuan, A. Abdul-Rahman, and S. Zlatanova

Target solid, B Base solid, A Target solid, B

L 2
- rd
P - + .
Baze solid, A —» = e ;
& NN SE—

Fig. 6. Possible intersection between base and target object

For some cases, each base line may intersect many target faces. Thus, the
arrangement of intersection points need to be done in a proper manner in order to
produce a correct trimmed link (see Fig. 7).

L Intersection point
1 2 4 5 6] —— Baseobject
. mmmmm Tatget face

Fig. 7. Multiple intersection points

4.1 Bridging All Related Intersection Points

After all intersection points were computed and arranged in proper manner, the related
intersection points will be connected as bridge to form a link. This link denotes as the
intersection from target solid as a complete intersection toward the base face. The
target solid B will be as base object, whereas the solid A will become target object in
order to produce intersection points. The intersection points are useless if they are not
connected in an appropriate manner. The sequence of each link needs special treatment

—)

Fig. 8. Cross-connected link (view from top)

3D Spatial Operations in Geo DBMS Environment for 3D GIS 157

in order to produce a correct bridge for further applications. The cross-connected faces
from the target object will form each link for base object. Fig. 8 denotes the target
faces intercept the base face. The internal link needs to be defined as a bridge.

4.2 Internal and External Segments for Base and Target Objects

After creating the cross-connected link, it will be used to develop two separated
segments, i.e. internal and external for both base and target solid. Therefore, the total
of 4 segments will be produced. When a cross-connected link of base object is
created, it will be used twice in developing the internal and external segments. Both
implementations work in opposite directions (see Fig. 9).

Internal bridge f Intetnal bridge /
crnss-cormected link croas-contected link

L \

(a) (k)

Fig. 9. Opposite direction of same cross-connected link

Each base solid object is constructed by a set of faces. Therefore, the base faces are
used to construct the external segment of base solid, whereas the other internal
segment (from the same base faces) will be used for target solid. As the base solid is
completely modeled, the target object will be dealt as a base solid, and vice-versa.
Consequently, the external segment of base solid (previously was the target solid) will
be constructed and the internal segment will be implemented in target solid
(previously was the base solid, see Fig. 10).

Ta.t_'get solid External segment

Internal Internal
u / "
/ Internal brz'dge. !
|/ cross-contected link
Ny A
External segment T . BEase Face
Target solid
Base Face
() (b

Fig. 10. Internal and external segment (view from top)

158 C. Tet-Khuan, A. Abdul-Rahman, and S. Zlatanova

- Internal target solid,

] _T [~ |
_ v
T Internal hase solid, &) - T

External base solid, & Extetnal target solid, B

Fig. 11. The internal & external of base and target solids

The determination of internal and external segments of base and target object, are
given in Fig. 11.

4.3 The Internal and External Segments

The integration of the internal and external of base and target object can be done in
solving multiple 3S spatial analytical solutions. Some of the popular 3D spatial
analytical solutions are XOR, DIFFERENCE, INTERSECTION, and UNION (see
Fig. 12).

(&) — (b

] (T, A A% |
—/»|+£—_.— ﬁj-l./l\;/*j“
Gy '

© | =
g+ 0 - = '—'-{Ll_:‘*—:_f_;

Fig. 12. The approaches for (a) 3D DIFFERENCE, (b) 3D UNION, (c) 3D INTERSECTION,
& (d) 3D XOR

5 Experiment and Discussions

This work is implemented within PostgreSQL environment. The existing spatial
objects available in PostgreSQL are rather limited to 2D (i.e. point, line, and
polygon), but not 3D primitive object. Thus, 3D polyhedron will be discussed. The
methodology for the complete implementation is given in Fig. 13.

Most of the commercial DBMS enable users to create a new user-defined data type
and functions. In this research, the user-defined data type and functions are written in
C. The user-defined data type must always have input and output functions. These
functions determine how the type appears in strings (for input by the user and output
to the user) and how the type is organized in the memory. The methodology of

3D Spatial Operations in Geo DBMS Environment for 3D GIS 159

The result will be
extracted fram
FostgreSaL

Registration of 3D

i :

Development of new 30 1 E
0 1

! i

0 1

; :

datatype & spatial E The shapefile tool is used to i
operations within l read data (extracted from !
i :

; :

! i

0 1

! i

0 1

! i

0 1

i :

0 1

datatype (POLYHEDROM)
& 3D spatial operations

FostgreSaL PostgreSQL)E& write output file

’ 30 Visualization
Experiment & results <:> within ArcG|S |::>

AV

L

sample.shp
sample.shx

sample.dbf

Linux / UNIX

GNU compiler (build-in) PostgreSQL
= C, C++, Java, Fortran, etc.

1
1
1
1
1
1
1
1
1
1
1
1
1

link editor

gcc —share —o sample so

Compile into object files
(position-independent code - PIC)
goo —fpic —¢

»| Object files (PIC) |

Fig. 14. Workflow of creating user-defined datatype/function in PostgreSQL

creating user-defined data type and function/operation are presented in the flowchart
as follows: (see Fig. 14)

The following SQL line denotes a sample of a polyhedron will be defined in
PostgreSQL:

SELECT * FROM BODYTABLE WHERE PID = 1;

1,POLYHEDRON (PolygonInfo (6, 24), SumVertexList (8) , SumPolygon
List(4,4,4,4,4,4),VertexList(100.0,100.0,100.0,400.0,100.
0,100.0,400.0,400.0,100.0,100.0,400.0,100.0,100.0,100.0,4
00.0,400.0,100.0,400.0,400.0,400.0,400.0,100.0,400.0,400.
0),PolygonList(1,2,6,5,2,3,7,6,3,4,8,7,4,1,5,8,5,6,7,8,1,
4,3,2))

160 C. Tet-Khuan, A. Abdul-Rahman, and S. Zlatanova

1) PolygonInfo (6,24) denotes 6 polygons and 24 IDs in PolygonList,

2) SumVertexList (8) denotes the total vertices,

3) SumPolygonList(4,4,4,4,4,4) denotes total vertices for each of
polygon (total polygon is 6, referred to (1)),

4) VertexList () denotes the list of coordinate-values for all vertices (with
no redundant), and

5) PolygonList () denotes the information about each polygon from sets of
ID.

The experiment is tested using the real dataset of a group of buildings. Two block
of apartments are selected to be used for the spatial operation as follows (see Fig. 15):

oola] e AE & (8

Apartment B
~" (POLYHEDRON2)

Apartment A
(POLYHEDRON 1)
|

Fig. 15. Two apartments selected from a group of building

The following SQL statement runs the 3D Difference (see Fig. 16a):

SELECT GMDIFFERENCE3D (a.POLYHEDRON, b.POLYHEDRON) AS
GM_DIFFERENCE3D FROM test a, test b where a.PID=1 and
b.PID=2;

The result:

GM_DIFFERENCE3D

(" POLYHEDRON (PolygonInfo (9,42), SumVertexList (14), SumPolyg
onList(4,6,6,4,6,4,4,4,4),VertexList(100,100,100,400,100,
100,400,100,400,100,100,400,400,400,100,400,400,300,400,3
00,300,400,300,400,100,400,100,100,400,400,300,400,400,30
0,400,300,300,300,400,300,300,300),PolygonList(1,2,3,4,2,
5,6,7,8,3,5,9,10,11,12,6,9,1,4,10,4,3,8,13,11,10,1,9,5,2,
14,7,8,13,12,14,13,11,14,12,6,7)) ")

3D Spatial Operations in Geo DBMS Environment for 3D GIS 161

For visualization purposes, ArcGIS’s extension, 3D Analyst is used to verify the
result. Although PostGIS provides a function pgsql2shp for export to shape files, it
cannot be used since it works only with the natively supported data types of PostGIS.
Therefore we have implemented our own function. The integration between
PostgreSQL and ArcGIS is beyond the scope of this paper. ArcGIS is used here only
to illustrate the implementation of the new data type and the corresponding functions
The SQL statements runs the 3D Intersection, 3D XOR, and 3D Union (see Fig. 16)
are given in Appendix: (SQL Statements For 3D Spatial Operations).

[eE=tS AN (B e

POLYHEDRON 2

POLYHEDRON 1

FEA vt NerEm s

¢4 30 DIFFERENGCE

4

¢e) 3D INTEREECTION ¢y 30 30R.

() 30 UNION

Fig. 16. The results for 3D spatial operations

6 Concluding Remarks

The paper presents an approach for geometrical modeling in solving multiple spatial
operations. The approach is expected to be providing complete modeling for 3D GIS
analysis. The results have shown that implementation of a 3D data type and functions
allowing 3D GIS analysis are possible.

Our concept was tested within PostgreSQL computing environment and has
provided a promising outcome with respect to the developed algorithms. Future
research will concentrate spatial operations for geometrical model. There are
topological operations (extending 9-intersection model to 3D, e.g. 3D Meet, etc),

162 C. Tet-Khuan, A. Abdul-Rahman, and S. Zlatanova

metric operations, etc. All these spatial operations could be implemented within
DBMS. The spatial operation for topological model is also important for 3D GIS
analysis. These two models (geometrical and topological models) will be compared in
terms of efficiency, i.e. size of datasets and execution times.

DBMS is a very important medium for GIS that able to connect many different
components of GIS, e.g. visualization, web-GIS, etc. A very important issue still need
to be addressed is visualization of the result of 3D operations. Appropriate graphical
visualization is especially important for 3D in order to get a better perception of the
result of the query. Some topics to be considered are: 1) direct access to the new data
type from GIS, avoiding first export to a shape file, 2) direct connection with
CAD/CAM software, e.g. Microstation and Autodesk Map 3D to be able not only to
visualize but also edit, 3) user-defined environment, where user develops display tool
that manage to retrieve and visualize data from DBMS, or 4) access via Internet,
using e.g. WFS. We believe this research effort towards realizing a fully 3D spatial
analysis tools within Geo DBMS environment would be beneficial to 3D GIS
research community. This is because major GIS task involves DBMS (except 3D
visualization), i.e. dataset handling, spatial operations, etc. It is our aim to move
further in addressing this issue of spatial data modeling and geometrical modeling for
3D GIS.

References

1. Aguilera, A., Ayala, D.: Orthogonal Polyhedra As Geometric Bounds In Constructive
Solid Geometry. In: Hoffman, C., Bronsvort, W. (eds.) Fourth ACM Siggraph Symposium
on Solid Modeling and Applications, vol. 4, pp. 56-67. ACM Press, New York (1997)

2. Aguilera, A.: Orthogonal Polyhedra: Study and Application. Ph.D. Thesis, LSI-Universitat
Politecnica de Catalunya (1998)

3. Abdul-Rahman, A.: The Design and Implementation of Two and Three-Dimensional
Triangular Irregular Network (TIN) based GIS. PhD Thesis, University of Glasgow,
United Kingdom (2000)

4. Chen, T.K., Abdul-Rahman, A.: A 0-D Feature In 3D Planar Polygon Testing for 3D
Spatial Analysis. Geoinformation Science Journal 6(1) (2006) (Faculty of Geoinformation
Science & Engineering, UTM, Malaysia)

5. Chen, T.K., Abdul-Rahman, A., Zlatanova, S.: Fundamental Spatial Relationships for 3D
GIS — The Primitive Relationships (PR) Model. In: International Symposium and
Exhibition on Geoinformation 2005, Penang, September 27-29, pp. 27-29 (2005)

6. Coors, V.: 3D GIS in Networking Environments. Environments And Urban Systems, pp.
345-357. Elsevier, Amsterdam (2003) (Special Issue 3D Cadastre)

7. Molenaar, M.: A Formal Data Structure For 3D Vector Maps. In: Proceeding of EGIS’90,
Amsterdam, The Netherlands, vol. 2, pp. 770-781 (1990)

8. Pilouk, M.: Integrated Modelling For 3D GIS. PhD Thesis, ITC, The Netherlands (1996)

9. Shi, W.Z, Yang, B.S., Li, Q.Q.: An Object-Oriented Data Model For Complex Objects In
Three-Dimensional Geographic Information Systems. International Journal of Geographic
Information Science 17(5), 411430 (2003)

10. Zlatanova, S.: 3D GIS For Urban Development. PhD Thesis, ITC, The Netherlands (2000)

3D Spatial Operations in Geo DBMS Environment for 3D GIS 163

Appendix: (SQL Statements For 3D Spatial Operations)

The experiment and results of 3D spatial operations (see Fig. 15b — 15d) are given as
folows:

SELECT GMINTERSECTION3D (a.POLYHEDRON, b.POLYHEDRON) AS
GM_INTERSECTION3D FROM test a, test b where a.PID=1 and
b.PID=2;

GM_INTERSECTION3D

(' POLYHEDRON (PolygonInfo (6,24) , SumVertexList (8), SumPolygo
nList(4,4,4,4,4,4),VertexList (400,400,300,400,400,400,400
,300,400,400,300,300,300,400,400,300,400,300,300,300,400,
300,300,300),PolygonList(1,2,3,4,5,2,1,6,3,2,5,7,8,4,3,7,
6,8,7,5,8,6,1,4))")

SELECT GMUNION3D (a.POLYHEDRON, b.POLYHEDRON) AS GM_UNION3D
FROM test a, test b where a.PID=1 and b.PID=2;

GM_UNION3D

("POLYHEDRON (PolygonInfo (12,60), SumVertexList (20) , SumPoly
gonlList(4,6,6,4,6,4,6,4,4,6,4,6),VertexList(100,100,100,4
00,100,100,400,100,400,100,100,400,400,400,100,400,400,30
0,400,300,300,400,300,400,100,400,100,100,400,400,300,400
,400,300,400,300,300,300,400,600,300,300,600,300,600,300,
300,600,600,600,300,600,600,600,300,600,300,300,600,600),
PolygonList(1,2,3,4,2,5,6,7,8,3,5,9,10,11,12,6,9,1,4,10,4
,3,8,13,11,10,1,9,5,2,7,14,15,16,13,8,14,17,18,15,17,19,2
0,18,19,12,11,13,16,20,16,15,18,20,12,19,17,14,7,6)) ")

SELECT GMXOR3D (a.POLYHEDRON, b. POLYHEDRON) AS GM_XOR3D
FROM test a, test b where a.PID=1 and b.PID=2;

GM_XOR3D

(' POLYHEDRON (PolygonInfo (18, 84), SumVertexList (22), SumPoly
gonList(4,6,6,4,6,4,4,4,4,4,4,4,6,4,4,6,4,6),VertexList (1
00,100,100,400,100,100,400,100,400,100,100,400,400,400,10
0,400,400,300,400,300,300,400,300,400,100,400,100,100,400
,400,300,400,400,300,400,300,300,300,400,400,400,400,300,
300,300,600,300,300,600,300,600,300,300,600,600,600,300,6
00,600,600,300,600,300,300,600,600),PolygonList(1,2,3,4,2
,5,6,7,8,3,5,9,10,11,12,6,9,1,4,10,4,3,8,13,11,10,1,9,5,2
,6,14,8,7,11,14,6,12,8,14,11,13,15,7,8,13,12,15,13,11,15,
12,6,7,7,16,17,18,13,8,16,19,20,17,19,21,22,20,21,12,11,1
3,18,22,18,17,20,22,12,21,19,16,7,6)) ")

A Page Padding Method for Fragmented Flash Storage

Hyojun Kim', Jin-Hyuk Kim? ShinHo Choi',
HyunRyong Jung', and JaeGyu Jung'

! Samsung Electronics, Software Laboratories, Mobile Software Platform Team
416 Maetan-3Dong, Yeongtong-Gu, Suwon-City, Kyenggi-Do, Korea 443-742
% Flash Software Group of Samsung Electronics,

Banwol-Dong Hwasung-City, Kyenggi-Do, Korea 445-701
{zartoven, jh7711.kim, shinho.choi,
hyunryong.jung, pang}@samsung.com

Abstract. Today, flash memory is widely used for various kinds of products.
Unlike a hard disk, it has neither mechanical parts nor seek-delay. Therefore, a
user may expect steady performance under disk fragmentation in flash storage.
However, most commercial products do not satisfy this expectation. For
example, a SDMMC card can be written in 18.7Mbytes/sec speed sequentially,
but its write speed is slowed down to 3.2Mbytes/sec when it is seriously
fragmented. It is only 18% of the original performance.

In this paper, we analyze the reason for performance degradation in a flash
disk, and propose an FTL level optimization technique, named the page
padding method, to lessen the fragmentation effect. We applied the technique to
the Log-block FTL algorithm and showed that it can enhance write performance
by 150% in a severely fragmented flash disk.

Keywords: Flash Memory, Disk fragmentation, Flash translation layer.

1 Introduction

Flash memory is rushing into our life. There are many kinds of memory cards, flash
memory embedded products, and solid state disk (SSD) / hybrid hard disk which are
developed for PC / Server systems. This is because of its versatile features such as non-
volatility, solid-state reliability, low power consumption, and random accessibility.

Because flash memory does not have mechanical parts like a motor, it is randomly
accessible without seek-delay. Seek-delay is the time to position the magnetic head to
the proper position to read or write data in a hard disk, and it may take tens of
milliseconds.

The seek-time and disk fragmentation have a deep relationship in a hard disk. Disk
fragmentation is the phenomenon in which free storage becomes divided into many
small pieces over time. Because a hard disk has seek-delay, its write/read
performance may be degraded as a disk is fragmented over time.

Fig. 1 shows an example of non-fragmented and fragmented disks. Fig. 1 (a) is not
fragmented; therefore, a file can be written sequentially. Meanwhile Fig. 1 (b) shows
fragmented case, and the file must be written non-sequentially.

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 164 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Page Padding Method for Fragmented Flash Storage 165

(a) Non-fragmented Disk / Sequential Writing

—— e C|Uential Writingq

Free ‘
A.MP3 File
Fragmented
Writing
'..o ‘---

(b) Fragmented Disk/ Fragmented Writing

Fig. 1. (a) Non-fragmented disk, (b) fragmented disk. For (b), writing process takes more time
because of seek-delay in a hard disk.

Kinsella showed the impact of disk fragmentation in a hard disk in his white paper
[1]. He noted that the fragmentation can impact disk performance severely and high
fragmentation can make the disk performance up to 8 times slower. Therefore, he
recommended periodic defragmentation or the use of a special defragmentation tool to
avoid severe performance degradation. However, the defragmentation process takes a
long time and requires a great deal of patience.

In the case of flash storage, there is no seek-delay. Therefore, we may expect it to
endure disk fragmentation. Nevertheless, most of commercial flash storages do not
fulfill our expectation. This phenomenon results from the characteristics of flash
memory. It has no seek-delay, but it can not be updated without an erasure operation.
Flash memory has different characteristics from a hard disk. To remedy the
differences, an FTL (flash translation layer) was proposed and implemented for all
flash storage devices.

In this paper, we show that the impact of fragmentation in some commercial flash
storage devices, and analyze the reason for the performance degradation. Then, we
will propose a page padding method as an optimization technique for fragmented
flash storage. It can enhance the write performance of flash storage, especially when it
is highly fragmented.

We applied the method to a well-known FTL algorithm, Log-block FTL, and
showed about 150% performance enhancement.

The rest of the paper is organized as follows: Section 2 outlines related studies, and
section 3 shows a disk fragmentation effect in commercial flash products. Section 4
analyzes the fragmentation effect in flash storage, and section 5 proposes a page
padding method as an FTL level optimization technique. Section 6 evaluates our
algorithm, and section 7 concludes.

166 H. Kim et al.

2 Related Work

Even for hard disk storage, there has been little research about disk fragmentation. In
2005, Kinsella studied and represented the impact of disk fragmentation in a PC
system in his white paper [1]. For his experiment, he used an NTFS file system and
typical applications such as MS office, an anti-virus program, and a web browser. He
showed that system performance is severely degraded by disk fragmentation.

For a flash memory based storage system, there have been a few studies. The FTL
concept was proposed in the mid-90s. A. Kwaguchi et al. attempted to use flash
memory as storage for a file system [2]. To use existing file systems on flash
memory, they remapped write requests to empty areas of flash memory and
maintained the mapping information. They also proposed the cost-benefit policy
which uses a value-driven heuristic function as a block-recycling policy.

In 1995, Ban proposed the replacement block scheme based on the concept of
replacement blocks through a patent [3]. This algorithm is very competitive and
realistic. It uses a small amount of mapping table, but its performance is quite good.
In this algorithm, a block level mapping table is used, and multiple physical blocks
can be mapped to one logical block. However, the algorithm cannot be used anymore
because recent flash memory devices have to be written sequentially in a block
(sequential page write restriction [8] [9]).

In 2002, Kim et al. proposed Log-block FTL algorithm for a compact flash disk
system [4]. Because a compact flash disk system has very poor resources, the
algorithm must be lightweight. Even though it is designed to use minimum resources,
its performance is excellent. Therefore, this algorithm has been widely used in
industry until now.

However, Log-block FTL has a weak point. It uses restricted number of log blocks,
so it is relatively weak for random writes. To solve the problem, a fully associative
sector translation (FAST) scheme has been proposed [5]. In this algorithm, log blocks
are used without a logical block boundary. It is surely effective for writing, but it
causes a serious problem. The worst case response time is greatly increased because
of its complicated merge operation. In the worst case, a merge can occur as many
times as the number of pages in a block.

Recently, a Superblock-based FTL algorithm has been proposed by Kang [6]. This
FTL combines a set of adjacent logical blocks into a superblock, and superblocks are
mapped at coarse granularity while pages inside the super block are mapped freely at
fine granularity to any location in several physical blocks. This algorithm is very
effective, and can be a good candidate solution for disk fragmentation problem, but it
requires too much space in the spare array of NAND flash memory. In case of MLC
type NAND flash memory, most of spare array is used for ECC (error correction
code).

For fragmentation of a NAND flash based FAT file system, Kim et al. proposed
the Anti-fragmentation cluster allocation scheme [7]. They were motivated by the fact
that the performance of flash storage is highly influenced by disk fragmentation, and
proposed a new cluster allocation method. The motivation is similar to ours, but the
methods are different. They tried to reduce fragmentation itself at file system level,
while we are trying to lessen the fragmentation effect by FTL optimization.

A Page Padding Method for Fragmented Flash Storage 167

In the study of Birrell in 2005, they mentioned that USB Flash Disks perform quite
poorly for random writes [11]. They revisited page mapping FTL algorithm to
enhance random write performance, but the algorithm is rarely available for many
cases because it requires too much resource. They did not distinguish fragmented
writes and random writes.

3 Fragmented Writes in Flash Storage

Many kinds of flash storage products are on the market, and most of them are used to
carry large multimedia files. For example, a flash based MP3 player contains MP3
files, and its most common use case is for copying MP3 files into the device. A user
may copy several Gigabytes of MP3 files into a device at a time, and its copying
speed may be the important criterion for the product quality. A personal Media Player
(PMP) is similar.

To understand the fragmentation effect, we have to analyze the write pattern of the
copy process. Fig. 2 shows the sector write pattern of the MP3 file copying process.
Fig. 2 (a) pattern is collected when 20 MP3 files are copied to the UFD (USB Flash
Disk) that is not fragmented at all. We can see that data sectors are sequentially
allocated and that several sectors, related to FAT file system metadata, are written
periodically. The number of file system metadata writes is under 1% of whole sector
writes. Fig. 2 (b) shows another pattern. In this case, the disk is fragmented little, and
we copied 40 files. We can see that the data writing requests are not sequential
anymore. If the storage is more fragmented, the write pattern will be more
fragmented.

The file copy process consists of two types of sector writes: user data writes and
file system metadata writes. The file system metadata writing pattern can be regarded
as a random pattern because the sectors are overwritten randomly. In the FAT file
system, the FAT table and directory entry table are metadata writes. However, the
portion of the metadata writes was less than 1% of whole sector writes. In the case of
Fig. 2, (a) and (b), metadata writing portions were 0.82% and 0.90% separately. The
other 99% of sector writes are for user data. Therefore, we can say that user data
writes are dominant for the file copy process.

User data writes can be classified into two patterns: a sequential write pattern and a
fragmented write pattern. A sequential write pattern is simple (Fig. 2 (a)). Data
sectors are sequentially written in this pattern. A fragmented write pattern is generated
because of disk fragmentation. When free spaces are fragmented, their writes must be
fragmented also. We can see this pattern in Fig. 1 (b).

To investigate the fragmentation effect in flash storage, we have defined the
fragmented write pattern formally. Until now, most of the benchmarks for disk
storage have used two patterns for performance measuring: a sequential write pattern
and a random write pattern. In a hard disk, a random write pattern can cover a
fragmented write pattern. However this is not possible in a flash storage device
because of the characteristics of flash memory. In flash memory, overwriting is not
physically possible, and it costs a great deal. Therefore, the fragmented write pattern
has to be divided from the random write pattern.

168 H. Kim et al.

(LSN)

60000 —| 250000 _—
S 200000 | = -
- -
40000 | _ = oS
150000 | -
30000 —| : -
100000 | =
20000 | _ -
>
>
10000 | 50000 — _ - _
/"
0 — 0 - - 80000664
. T T T T T T T T T
(Time)o 10000 20000 30000 40000 50000 60000 0 50000 100000

Fig. 2. (a) Sector write pattern in copying 20 MP3 files into empty storage. (b) Sector write
pattern in copying 40 MP3 files into fragmented storage.

Fig. 3 shows that fragmented write pattern we have defined. It can be described as
a striped write pattern because it writes and skips alternately. We measured the
performance on several commercial flash storages with fragmented patterns. In our
experiments, 16 fragmentation sizes are used. We tested five kinds of products: 3
kinds of SDMMC cards, 8G ipod nano (Second generation), and 30G ipod video,
which has a hard disk inside, for comparison. For the test, we accessed UFD directly
without a file system and buffer cache. We used the Windows XP system and a
USB2.0 13 in 1 card reader from Transcend.

Fig. 4 shows the result of the fragmented read benchmark. We can see that read
performances are very stable regardless of fragmentation size. The small performance
degradation at 96Kbytes fragmentation is because of the USB protocol packet size
limitation. Because the limitation is 64Kbytes, 96Kbytes fragmentation causes
performance degradation.

Fig. 5 shows the result of the fragmented write benchmark, and we see severe
performance degradation. In the case of the Sandisk EXTREAMIII, its writing speed is
over 18Mbytes/sec without fragmentation, and it is slowed down to about 3Mbytes/sec
at 64Kbytes fragmentation. The ‘V’ marks are shown in all graphs. It is because of
FTL mapping unit size. In flash storage, FTL uses its own sector remapping algorithm.
Normally, FTL manages the mapping information in a certain unit, and when
fragmentation size is not aligned with the unit, performance is reduced.

Table 1 summarizes the performance degradation results. We can see that the flash
storage devices are more affected by disk fragmentation than the hard disk. The
performance of the ipod video is reduced to 68% and that of the ipod nano is reduced
to 16% of sequential write performance.

Table 1. The summary of performance degradation by 64Kbytes fragmentation

Products 64Kbytes fragmented performance (%)
Sandisk EXTREAM III 18%
PANASONIC PRO HIGH SPEED 35%
BUFFALO 34%
ipod nano 8G 16%
ipod video 30G (HDD) 68%

A Page Padding Method for Fragmented Flash Storage

%Frag.Size Frag.Size
' Wit - Skip Wit - Skip Wit
Fig. 3. Fragmented write pattern
—&— Sandisk EXTREME Ill —=— PANASONIC PRO HIGH SPEED —&— BUFFALO —%— ipod nano 8G ——ipod video 30G
25000
20000 4
4
2
B 15000 &
3 _\/\
@
<
jeX
o
el
g 10000 T
[ang
A
wor %
No 8192 6144 4006 3072 2048 153 1024 768 512 33 256 12 18 % 64
Frag
Frag Size
Fig. 4. The benchmark result for fragmented reads
—&— Sandisk EXTREME Ill —=— PANASONIC PRO HIGH SPEED —— BUFFALO —— ipod nano 8G =——pod video 30G

Wrte Speed(KB/s

20000

8192 6144 4096 3072 2048

1536 768 512 34 26 12 128

1024

Frag Size

Fig. 5. The benchmark result for fragmented writes

169

170 H. Kim et al.

4 Analysis of the Flash Fragmentation Effect

In section 3, we showed that flash storage is significantly influenced by disk
fragmentation, and this section analyzes the reason for the fragmentation effect in
flash storage.

4.1 NAND Flash Memory

There are two types of flash memory: NOR type flash memory and NAND type flash
memory. In this paper, we are mainly treating NAND flash memory because it is
normally used for data storage. NOR flash memory is used for code storage because it
supports an XIP (eXecute In Place) function.

Fig. 6 shows the overall structure of NAND flash memory. It consists of multiple
blocks, a block consists of multiple pages, and a page consists of two areas: the main
array and spare array. The size of the main array is 512 bytes / 2,048 bytes / 4,096
bytes depending on the device types and the size of spare array is 16 bytes / 64 bytes /
128 bytes, similarly. The main array is used to contain user data, and the spare array is
used for special purposes, such as ECC (Error Correction Code) and the initial bad
block mark [8] [9].

In a NAND flash memory, the read / write operation unit is a page. That is, we can
read and write NAND flash memory in a page unit. Meanwhile, a page can not be
overwritten and it requires an erasure operation beforehand to be updated. However,
the erasure operation unit is not a page, but a block, which is set of multiple pages.
Because of this mismatch, a special method is required to use NAND flash memory
like a hard disk.

block
|
128 pp ges main spare
array arra 5o
.. >
\zoRg 7
\ bytes 64 bytes
- - J -—— e ——— - - - - - - - - — —

NAND Flash Memory

Fig. 6. NAND flash memory structure. It consists of multiple blocks, and a block consists of
multiple pages. A page consists of a main array and spare array.

A Page Padding Method for Fragmented Flash Storage 171

4.2 Flash Translation Layer

To use flash memory like a hard disk, an FTL is developed [2]. Functionally, an FTL
provides an in-place sector update function which is not physically possible in flash
memory. For this purpose, the FTL uses a remapping technique internally with its
own algorithm. There have been several FTL algorithms, such as a page mapping
algorithm [2], block mapping algorithm [3], and hybrid mapping algorithm [10]. In
particular, the Log-block FTL algorithm [4] is very competitive. It shows good
performance with restricted resources.

4.3 Log-Block FTL Algorithm

A Log-block FTL algorithm is proposed by Kim for a compact flash system that has
restricted resources [4]. In the Log-block FTL algorithm, data sectors can be in two
types of blocks: a log block and a data block. The major difference between the two
block types is the page allocation policy. A log block uses the out-of-place policy and
a data block uses the in-place policy.

Fig. 7 compares two page allocation policies. The shadowed boxes of the figure
denote that the pages are occupied, and the numbers inside the boxes represent logical
sector numbers. In the in-place policy (Fig. 7 (a)), no mapping information is needed
because the sector position is fixed in a block. However, the updating process of a
sector is not easy because flash memory cannot be updated without block erasure. In
the out-of-place policy (Fig. 7 (b)), sectors are sequentially written in a block. It is
more efficient for updating a sector than the in-place policy, but additional mapping
information is needed to indicate where the logical sector is in a block. Log-block
FTL algorithm uses a small number of log blocks which use an out-of-place policy, as
a cache of a large number of data blocks which use an in-place policy, because the
out-of-place policy is more efficient for writing than the in-place policy, while the in-
place policy is better for memory usage than the out-of-place policy. Every write is
always done to a log block.

When a log block becomes full or a free block is required to make a new log block,
a merge operation occurs. There are three types of merges: full (or simple) merge,
switch merge, and copy merge. Fig. 8 shows three merges. When a log block can not
be a data block, a full merge occurs. A free block is allocated to be a new data block,
and its contents are copied from the old data block and log block. (Fig. 8 (a)). If a log
block is written sequentially and can replace old data block, it can be just a new data
block like Fig. 8 (b), and we call this merge “switch merge”. This merge just cause
one block erasure except block mapping information updates. With a switch merge
mechanism, the Log-block FTL algorithm can guarantee optimal write performance
for a sequential write pattern. Fig. 8 (c) shows the last merge, which is copy merge. It
is very similar to switch merge, but several pages need to be copied to make a new
data block with the log block. This merge occurs to make a free block. This algorithm
is a kind of cache algorithm. When sector write is requested, there may be a log block
for the sector or not. If there is already a log block and it has enough room, the write
operation can be done to the log block. However, if there is no log block for the
writing sector, a new log block has to be assigned. For the purpose, one existing log
block has to be merged as a victim, and copy merge may occur for the situation.

172 H. Kim et al.

(@) In-place policy (b) Out-of-place policy

Fig. 7. Page allocation policies: (a) in-place policy and (b) out-of-place policy. For purpose of
discussion, we assumed a block consists of 4 pages.

N old
Log Biock Data Block Data Block
6 4 |- 4
6 5 5
5 6 6
(@)
N ord N ord
LogBlock —® baaBlook Data Block Log Block > paiaBlock _Data Biock
4 4 4 4
5 5 5 5
6 6 -4—|Copy—1} 6
7 7 <—|Copy—1~ 7

(b) ©

Fig. 8. Three merges: (a) full (simple) merge (b) switch merge, and (c) copy merge: the cost of
full merge is highest and the cost of switch merge is lowest

5 Page Padding Method

In this section, we propose a page padding method to lessen the fragmentation effect.
The idea of the page padding method is simple. It changes a fragmented write pattern
to a sequential write pattern by padding existing data because most of the FTL are
optimized to sequential writes.

5.1 Page Padding Applied Log-Block FTL Algorithm

A fragmented write pattern causes full merge instead of switch merge if
fragmentation size is smaller than a block. Fig. 9 compares sequential writes and
fragmented writes. In both cases, eight sector writes are requested, but the FTL costs
are quite different. In case of Fig. 9 (a), eight page writes and two block erasure are
required to process eight sector writes by two switch merges. In case of fragmented
writes (Fig. 9 (b)), eight page writes have been done to log blocks and an additional
four full merges occur because the number of log blocks is restricted. In this example,
one full merge requires four page reads/writes and two block erasures. Therefore, 24

A Page Padding Method for Fragmented Flash Storage 173

page writes (8 writes for log block writing, 16 writes for 4 full merges), 16 page
reads, and 8 block erasures are required to process 8 fragmented sector writes.

Because of this FTL mechanism, we can explain the performance degradation of
fragmented flash storage. Of course, there may be various kinds of FTL algorithms,
but the situations are not far from this case.

Secyr}etgtial .
0112134 5]o 7]

w N =|O
N o g b

Switch Merge @ Switch Merge

Fragmented Write
B B:-B:-B'B:H B HA

0 4 8 12
2 6 10 14

Out-of-place Out—of»place(b)Out—of—pIace Out-of-place

Fig. 9. Fragmented writes and the Log-block FTL algorithm: (a) For sequential writes, switch
merges occur. (b) For fragmented writes, log blocks are changed to out-of-place state and full
merges will occur for these log blocks.

Fragmented Write

n135n7n91113

0
/" 1
Page
Padding 2
S
1\ itch Merge DataBlocks

4 8 12

A 1 5 9 13

2 6 10 14

P 3 7 11 15

Fig. 10. Page padding method for Log-block FTL algorithm

174 H. Kim et al.

The idea of page padding is changing the fragmented write requests into sequential
write requests. That is, if there is a hole in user writing requests, the FTL can fill the
hole with the original data. Fig. 10 shows the example of page padding in a Log-block
FTL algorithm. In this example, two more page writes are required, but the log block
can be merged by switch merge. That is, in total, 16 page writes, 8 page reads, and 4
block erasures are required to process severely fragmented 8 sector writes. The result
is about double of the cost of sequential writes. That means the performance of
severely fragmented storage will be just 50% of original performance.

5.2 Performance Modeling

To simplify the modeling, we ignore the map block updating cost. For sequential
writes, switch merges occur, and its cost can be described like equation (1). tye 1S time
for page writing, N,,, is number of pages in a block, and tey is block erasure time.

n is related to testing size. If the size of a block is 128Kbytes and we want to write
1Mbytes to test, then n will be 8. That is, 8 switch merges will occur for 1Mbytes
sequential writes when a block size is 128Kbytes.

N,)+1,..) (1)

Similarly, we can create the equation for fragmented writes. For generalization, we
assume half of block is fragmented. Because of fragmentation, twice the number of
blocks are affected by the same number of sector writes. In equation (2), (1/2Npgtyrice)
means log block writing cost, and (Npg(tyritettread)+2tease) Mmeans full merge cost.

nx((t

write X

VN o X(E e H00g) +2X0

write write erase)

1
2XnX((=xN Xt
2 124 (2)

+2N t_ . +4¢

= nx (3Npg twriie pg " read

erase)

We can also generate an equation for page padding in an applied case. In equation
(3), (1/2Npgtyrice) is log block writing cost, (1/2Npe(twritettread)) 1S page padding cost,
and te, 1s switch merge cost.

write erase)

2an((%prg Xl)+%Npgx(lwrlle+tr€ad)+l

3)

<=nx(2N +N _t . +2t

P8 twrite pg " read erase)

With the three equations, we can calculate the cost of fragmented writes. Table 2
shows the calculation results. From these results, we can see that page padding increases
the performance of fragmented writes by 150% compared to the original algorithm.

Table 2. Performance modelling result for NAND devices

NAND Types Npg twrite trt:ad terase (1) (2) (3) (1) : (2) : (3)
Small SLC 32 200us 15us 2ms 8400n 24160n 17280n 1:2.88:2.06
Large SLC 64 200us 20us 1.5ms 14300n 23960n 29880n 1:3.07:2.09
Large MLC 128 800us 50us 1.5ms 103900n 323000n 214200n 1:3.11:2.06
OneNAND 64 220us 30us 2ms 16080n 50080n 34080n 1:3.11:2.12

A Page Padding Method for Fragmented Flash Storage 175

6 Experiments

We implemented a prototype of a Log-block FTL algorithm on a NAND flash
emulator, and applied a page padding technique. We tested the same fragmented write
pattern in Fig. 5 for the original Log-block FTL algorithm and page padding technique.

B Full Merge O Switch Merge B Copy Merge B Full Merge O Switch Merge B Copy Merge
300 300
250 F 250 F A
b
200 200

150 150

S
RN,

100 |

=1

10

50 F

S

5

S

1024K 768K 512K 384K 256K 192K 128K 96K 64K 1024K 788K 512K 384K 256K 182K 128K 96K 64K
) (k)

Fig. 11. Merge count: (a) Merge counts of the original Log-block FTL algorithm (b) Merge
counts of the page padding applied algorithm

—e— Original Log block FTL Algorithm —8—With Page Padding Method

285000 £

15000 ¢

Wr te Speed(KB/s

10000 r

00

No 8192 6144 40%6 3072 2048 1536 1024 768 512 384 256 192 128 %6 64
Frag

Frag Size

Fig. 12. Experimental result for fragmented writes

176 H. Kim et al.

Fig. 11 shows the merge counts of the two cases. In the original algorithm (Fig. 11
(a)), only full merges occur for a 64Kbytes fragmentation test. For the same test, the
page padding technique changes the full merge into switch or copy merges like
Fig. 11 (b). Because the cost of full merge is much higher than switch / copy merge,
the overall performance of the page padding added algorithm is better than the
original algorithm.

Fig. 12 compares the performances. From the graph, we can see that page padding
lessens the disk fragmentation effect to 48% of sequential write performance. Without
a page padding technique, the performance is reduced to 32% of the original.

7 Conclusion

In this paper, we show that disk fragmentation reduces the performance of flash
storage, and that the reasons are from the characteristics of flash memory and FTL.

Until now, a sequential and a random write pattern have been used to measure the
performance of disk storage. But for flash storage, a fragmented write pattern is also
important.

We also proposed a page padding method as an FTL level optimization algorithm
for fragmented flash storage. We applied the method to a Log-block FTL algorithm,
and we show 1.5 times better performance than the original algorithm in highly
fragmented flash storage. Although we have applied the method only to a Log-block
FTL algorithm, this technique can be applied to any other FTL algorithm, and it will
be effective. Conceptually, a page padding technique is a method for changing the
fragmented writes to sequential writes, and most FTLs are highly optimized to
sequential writes.

Additionally, the fragmentation effect will be more important as NAND flash
memory block size becomes bigger. The block size of small block NAND flash
memory, the oldest NAND type, is 32Kbytes, and the most recent MLC NAND flash
memory has a 512Kbytes block size. If a block becomes bigger, the possibility of
fragmentation becomes also bigger.

References

1. Kinsella, J.: The Impact of Disk Fragmentation. White Paper (2005), http:/files.diskeeper.
com/pdf/ImpactofDiskFragmentation.pdf

2. Kawaguchi, A., Nishioka, S., Motoda, H.: Flash-Memory Based File System. In:
Proceedings of "95 Winter USENIX Technical Conference, pp. 155-164 (1995)

3. Ban, A.: Flash file System. United States Patent, no 5,404,485 (April 1995)

4. Kim, J., Kim, J.M., Noh, S., Min, S.L., Cho, Y.: A space-efficient flash translation layer
for compactflash systems. IEEE Transactions on Consumer Electronics 48(2), 366-375
(2002)

5. Lee, S.W., Park, D.J., Chung, T.S., Lee, D.H., Park, S.W., Song, H.J.: FAST: A log-buffer
based ftl scheme with fully associative sector translation. In: Proceedings of UKC 2005
(2005)

10.

11.

A Page Padding Method for Fragmented Flash Storage 177

Kang, J.-U., Jo, H., Kim, J.-S., Lee, J.: A superblock-based flash translation layer for
NAND flash memory. In: Proceedings of the 6th ACM & IEEE international conference
on embedded software, pp. 161-170 (October 2006)

Kim, S.-K., Lee, D.-H., Min, S.L.: An efficient cluster allocation scheme for NAND Flash
Memory Based FAT File Systems. In: Proceedings of IWSSPS05 (2005)

. Samsung semiconductor: KOXXGO8UXA Datasheet, http://www.samsung.com/Products/

Semiconductor/NANDFIlash/index.htm

Samsung semiconductor: KOXXGO8UXM Datasheet, http://www.samsung.com/Products/
Semiconductor/NANDFIlash/index.htm

Kim, B.-s., Lee, G.-y.: Method of driving remapping in flash memory and flash memory
architecture suitable therefore. United States Patent, no 6,381,176 (April 2002)

Birrell, A., Isard, M., Thacker, C., Wobber, T., Design, A.: for High-Performance Flash
Disks. Microsoft Research, MSR-TR-2005-176 (December 2005)

Supporting Extended UNIX Remove Semantics
in the OASIS Cluster Filesystem*

Sangmin Lee, Hong-Yeon Kim, Young-Kyun Kim, June Kim,
and Myoung-Joon Kim

Internet Server Group, Digital Home Research Division, Electronics and
Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea
{sangmin2, kimhy, kimyoung, jkim, joonkim}@etri.re.kr

Abstract. Using the standard Object-based Storage Device, OASIS has
been developed as a cluster filesystem. Like the most of existing out-of-
band cluster filesystems using ODSs, the OASIS could not support the
extended remove UNIX semantics to defer the remove of an inode until
the uses of the inode in all client nodes are finished. This nonsupport
generates the problems that it does not protect users to make use of the
deleted inode and does share an inode of a deleted directory entry with
a newly created entry, which is due to client node’s VFS to support the
remove UNIX semantics. To resolve these problems, this paper proposes
the re-designed OASIS to perform an inode deletion until its uses are
finished by extending the existing lock table for cache coherence. The
suggested approach can support the remove UNIX semantics in the dis-
tributed environment and easily be adopted in the existing out-of-band
cluster filesystems if using their locking mechanism.

1 Introduction

As the amount of data is increasing rapidly, distributed filesystems have to store
and manipulate the large amount of data. However, the increasing data are push-
ing the bounds of distributed filesystems using traditional block-based storage
devices performance and scalability.

As a new interface, Object-based Storage Device (OSD) has been announced
to perform object-based I/Os unlike the traditional block-based reads and writes
[1L2]. The object-based storage device can easily be adopted in the out-of-
band architecture, which enables the separation of metadata management from
the data path (e.g., OASIS, Lustre, ActiveSacle Storage Cluster, zF'S, Storage-
Tank) [34LEL6L7]. This separation can obtain the better performance and scal-
ability than in-band distributed filesystems (e.g., NFS, Coda, AFS, and so on).

The out-of-band architecture generally consists of metadata server, client
kernel-level filesystem, and OSD. The metadata server serves metadata-related

* This work was supported by the IT R&D program of MIC/IITA. [2007-S-016-01, A
Development of Cost Effective and Large Scale Global Internet Service Solution].

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 178-[I88] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Supporting Extended UNIX Remove Semantics 179

requests from client nodes. On other hand, the client filesystem runs on the client
nodes and presents users with the POSIX API through VFS (Virtual File Sys-
tem) by cooperating with a metadata server and object-based storage devices.

When an user issues a deletion of a directory entry (e.g., file, directory, symbol
or hard link, etc), a local file system running on VFS typically performs the
deletion of the directory entry to separate the deletion of the directory entry
itself and the deletion of its inode. In other words, a directory entry deletion
is immediately performed according to an user request, but its allocated inode
will be deleted after all uses of the inode are finished, so-called UNIX remove
semantics. Because this VFS deletion strategy enables user processes to access
an inode of a deleted directory entry without considering whether the inode is
removed or not.

In the cluster filesystems using OSDs, a metadata server creates and deletes
an inode of a directory entry according to client node requests. On other hand, a
client filesystem has to follow the deferred inode deletion. When a user filesystem
delivers a deletion request to a metadata server, a metadata server should remove
a directory entry as well as its inode, even though client filesystems are using the
inode. If a client node using the inode tries to modify it, it writes a non-existent
inode data at the metadata server, and then receives an unhandled error. More-
over, if another user creates a new directory entry, the metatadata server has
much possibility to return the previously released inode and the client filesystem
can not get the newly created inode from the mdatadata server because it already
cached it. This situation generates the following problems in the client filesys-
tem. The first one is for the client filesystem to connect two or more directory
entries to the deleted inode and users to use these entries in the wrong way.

The second problem is that a client filesystem can possibly overwrite the
invalid inode data of a deleted directory entry into the valid inode managed by a
metatadata server. In this paper, we propose the new OASIS cluster filesystem
to efficiently support UNIX remove semantics in the out-of-band architecture by
extending the cache coherence facilities of an existing OASIS cluster filesystem.
The meatadata server of OASIS is re-designed to delete an inode after all uses
of the inode are finished using a lock table for cache coherence. To prevent
a remove request from a metadata server, a client filesystem has a converter
to change a remove-related request into a rename one. The most of existing
distributed filesystems have faced the same problems and made efforts to solve
them. However, they have tried to solve the problems without supporting the
remove UNIX semantics and could not fix all of them. For instance, a client
filesystem always check cached inode’s generation number with the original inode
in its file server whenever the cached inode is read and written to its file server.
But this method cannot protect users to use a deleted inode.

Since providing the UNIX remove semantics in a distributed environment, the
new OASIS cluster filesystem can resolve the problems as mentioned before, and
provide users with the true UNIX semantic cache coherence as if they use local
filesystems.

180 S. Lee et al.

The remainder of the paper is organized as follows. First, we briefly overview
an OASIS cluster filesystem at the cache coherence point of view. Section
describes how the UNIX remove semantics work in the environments of both the
local and the distributed filesystem respectively. We illustrate examples to figure
out the problems unless supporting UNIX remove semantics, and then suggest
a procedure and its implementation based on OASIS to support UNIX remove
semantics in section @l Finally, a conclusion is given in section Bl

2 Cache Coherence on OASIS

OASIS is a cluster filesystem using OSDs which satisfy the standard OSD SCSI
T10 protocol [3]. OASIS was designed and implemented to achieve high scala-
bility over Gigabit Ethernet network fabric by adopting the out-of-band archi-
tecture. In addition, it supports the high reliability to handle the single points
of failure. OASIS consists of the following three components.

— OASIS/OSD is an object-based storage device to manage objects and serves
SCSI OSD commands through iSCSI protocol.

— OASIS/MDS is a metadata server to manage the total metadata of an OA-
SIS and processes requests of filesystem namespace (e.g., look up, read dir,
create, unlink, rename, etc). It makes client requests serialized and provides
the strong cache coherency (UNIX semantics) on all client nodes.

— OASIS/FM is a kernel-level client filesystem to run on the client nodes to
take advantage of OASIS. It gives users the standard POSIX interface. So
users make uses of OASIS like a local filesystem.

OASIS was designed to support the strong cache coherence level. It uses the
inode granularity locks which are managed by the OASIS/MDS server. The lock
type is one of INVALID, S(Shared), and X(eXclusive).

— INVALID : cached but invalid inode data with no permission
— S : cached and valid inode data with S permission
— X : cached and valid inode data with S and X permissions

The lock table of OASIS/MDS is comprised of a series of lock entries. Each
entry has an inode identifier, the list of client node IPs to cache its inode, and
the lock type (i.e., INVALID or S or X).

Figure 1 illustrates for OASIS/MDS how to keep tracks of who caches which
inode using its lock table. When a client node tries to cache an inode to use it, its
OASIS/FM makes an inode read request to OASIS/MDS and then OASIS/MDS
adds a requester’s IP address to the lock entry corresponding to the inode iden-
tifier with S lock type. If the inode data is released from the VFS cache of a
client node, its OASIS/FM sends information about not caching the inode and
then an OASIS/MDS deletes the sender’s IP address from the corresponding
lock entry.

Supporting Extended UNIX Remove Semantics 181

For cache coherence, before OASIS/FM of a client node performs a namespace
and inode-related operation, it checks there exits the corresponding inode lock
type in its local lock table. If so, it can deliver directly the operation to OA-
SIS/MDS. Otherwise, it has to request an inode lock with a type corresponding
to the operation.

If a lock conflict happens (e.g., one client node requests X and the others
obtained S or X before), OASIS/MDS tries to resolve the conflict by sending
revocations to the client nodes registered in its lock table entry. The client nodes
take necessary actions to release its owning lock, which will be set into INVALID
after the revocations.

Client Node
OASIS/FM OASIS/MDS
Lock table
> Inode ID #0 || the list of clients |type
[inode] read an inode . register (inode ID #1 || the list of clients |[type
VFS cache

[%] destroy an inode from cache |/ unregister

Inode ID #n " the list of clients |type|

create and delete objects of a directory entry

A 4

@

OASIS/0SD

Fig. 1. OASIS operational flow for cache coherence

3 Related Works

3.1 Definition of Remove UNIX Semantics

The inode is a data structure to store all information needed by the filesystem to
handle a directory entry, which is used by connecting it with the corresponding
inode.

When a directory entry is deleted in local UNIX filesystems, its inode’s re-
moval is deferred until the inode is not used anywhere. It is due to the VFS
inode remove strategy. The figure 2 is an example in an UNIX system about a
situation that an Appl process reads or writes an inode of a directory dentry and
the remove request of the entry arrives. Until an App2 process stops the inode
use, a filesystem does defer the inode deletion.

Remove UNIX semantics enables user processes to perform an I/O on an inode
without caring about if an inode is deleted by the other processes or not.

182

S. Lee et al.

App 1

read/w%) (&m ove

O

m

O

App 1

Go On
| and (3)'\, open fail
Complete

O

App 2

After the last access to this
inode, really removed

Fig. 2. Remove UNIX semantics

3.2 Remove UNIX Semantics in a Distributed Filesystem

In distributed file systems, ideal remove semantics is to follow local filesystem’s
remove UNIX semantics, which means that an inode remove is deferred in a
client node until all uses by all client nodes are finished.

The Figure 3 is an example of the remove UNIX semantics in a distributed
environment. A remove request of a directory entry occurs on one client node
when an Appl process is reading or writing an inode on another client node. Until
an Appl process finishes the inode usage, the inode will be not not destroyed.

Similar to the remove UNIX semantics within a local filesystem, a distributed
filesystem to support the remove UNIX semantics allows users to operate the
inode of a deleted directory entry.

3.3 Existing Distributed Filesystem’s Approaches

The most of existing distributed filesystems do not support the remove UNIX se-
mantics. Because it might be complex to design and implement this mechanism.

A widely used NFS (Network File System) is a typical example not to sup-
port the remove UNIX semantics like AFS and Coda. When a process deletes a
directory entry, an NFS client sends a remove request to its NFS server, which
removes the directory entry as well as its inode. If another NFS client is using
the inode, it might return an error.

Like GF'S (Google File System) and HDFS (Hadoop Distributed File System),
out-of-band distributed filesystems are designed to support partially the remove
UNIX semantics [8[0]. When a directory entry is deleted by the application,
they rename the entry to a hidden name including the deletion timestamp, so-
called garbage. Garbage collectors of these filesystems remove such hidden files
if they have existed for more than a given interval. This approach can be simply
implemented, but many deleted but not used inodes might be accumulated,
which leads to the waste of storage space.

StorageTank of IBM was designed to support the UNIX removal semantics us-
ing a specialized method such as semi-preemptible lock [7]. The semi-preemptible
lock lets a client node’s directory entry remove to be blocked until its directory
entry’s uses are finished anywhere. However, this method is not able to support
the true semantics of UNIX remove in that a directory entry can not be deleted
immediately.

Supporting Extended UNIX Remove Semantics 183

original
inode

1
(4) ! deleted

-
after the ,—" - after the

last access_ .=~ ~ . _last access
P ~

-

(1) open fail (2) remove
(3)

O O O

App 1 App 2 rm

Fig. 3. Remove UNIX semantics in a distributed filesystem

4 OASIS’s UNIX Remove Semantics

4.1 OASIS Chaos Without UNIX Remove Semantics

OASIS has two kinds of problems unless it supports the UNIX remove seman-
tics. The first is that users can access the inode of an already-deleted directory
entry if the inode is already removed in OASIS/MDS. This causes when a client
filesystem to write a non-existent inode data at OASIS/MDS and receive an
unhandled error from OASIS/MDS.

The second problem is to share a single inode in the inconsistent way. This
problem is generated because OASIS/FM based on VFS supports the UNIX
remove semantics but OASIS/MDS does not support it. If a client node uses a
created directory entry, it tries to connect the directory entry to the inode which
was already deleted in OASIS/MDS but cached in the client node. Moreover, a
client node could overwrite the already-deleted inode data in its VFS cache into
the valid inode managed by OASIS/MDS.

In order to explain the second problem, this section will suggest two examples.
As given in Figure 4, the first example of the inconsistent inode sharing problem
happens in a single client node. When an Appl is using an a.txt, one OASIS/FM
sends a deletion request to OASIS/MDS if another process issues a deletion of
the a.txt. The OASIS/MDS removes an a.txt directory entry as well as its inode.

After that, to create a new b.txt, OASIS/FM delivers the creation request to
the MDS, which will generate a b.txt and allocate a new inode for one. The newly
allocated inode might be the most recently released inode (i.e., an a.txt’s inode)
by the inode allocation and de-allocation strategy of the most local filesystems
(e.g., EXT2, EXT3, XFS, etc).

184 S. Lee et al.

Client Node OASIS/MDS
a.txt

inode(12345)

read/write /(1) (2)

oo remove(a.txt) W@

(3) remove

a.txt

inode(12345) create(b.txt)

b.txt

read/write /(1) create /(4) inode(12345)

inode(12345) (5) create

atxt b.ixt

inode(12345)

b.txt

inode(12345)
inode(12345)

P PR — (5) create

App 1 O create

Fig. 4. Inconsistent inode sharing problem on single client

iget(12345)
read/write /' (1) (6)

After a client node receives the success for a b.txt creation from OSIS/MDS,; it
tries to get a newly allocated inode from OASIS/MDS. However, the client node
is not able to obtain the new inode data of the b.txt from OASIS/MDS because
there is already an inode data in its VFS cache. So the client node shares an
inode for an already-deleted a.txt and a b.txt in the inconsistent way.

The second example, as given in Figure 5, describes an occurrence in two
client nodes. An Appl in client node #1 is using the inode of an a.txt and another
process in the same node makes a request to delete the a.txt to OASIS/MDS.
Even though the client node #1 is making use of the inode of a deleted a.txt,
OASIS MDS would remove the inode of the a.txt file.

In other hand, client node #2 tries to make a new b.txt. OASIS/MDS adds
the d.txt and connects the directory entry with a newly allocated inode, which
might be the recently released inode (i.e., a.txt’s inode).

After that, client node #2 looks up a b.txt dentry, and OASIS/MDS returns
the inode number of a new b.txt. But the client node #1 fails to obtain a new
inode data of a b.txt from OASIS/MDS. Because there is already the cached
inode data about a deleted a.txt. Finally, client node #1 node shares one inode
data for an a.txt and a b.txt in the wrong way.

4.2 OASIS Approach to Support Remove UNIX Semantics

For cache coherency OASIS/MDS should keep tacks of who caches which inode
in its VF'S cache using its lock table. So, OASIS/MDS can detect when all client

Supporting Extended UNIX Remove Semantics 185

Client Node #1 OASIS/MDS Client Node #2
a.txt

inode(12345)

remove remove(a.txt) W@ create
—_— A
AN @
(3) remove
App 1 . m create

a.txt

a.txt create(b.txt)

read/write / (1)

b.txt

b.txt inode(12345)
inode(12345)
inode(12345)

(5) create

lookup(b.txt)

inode(12345)

__________ b.txt b.txt

1

'

' -

! inode(12345) et
1

'

'

Fig. 5. Inconsistent inode sharing problem on multiple clients

nodes do not cache each inode just by checking whether the list of clients in its
lock table entry is empty or not. At this time, if OASIS/MDS instead of client
nodes deletes an inode and sends a deletion command of objects for the inode
to OASIS/OSDs as well, it is guaranteed that all clients can make safe use of
the inode.

For OASIS/MDS to perform all inode deletions, OASIS/FM has to convert
a remove command call into a rename one and then sends it to OASIS/MDS.
The converted rename command is moved to a designated directory, named a
.removed directory, to which no clients are permitted to access. Its result gives
user the same result of an remove command. The procedure to delete an inode
by OASIS/MDS is described in Figure 6.

1. To use a den directory entry, client node #1 and #2 read an inode data with
id (i.e., identifier) from OASIS/MDS.

2. When a user issues a request to remove a den in client node #1, OASIS/FM
running on the client node #1 converts the remove request into a rename one
such as rename(den, .removed/ofs xxx) and delivers the converted request to
an OASIS/MDS through RPC.

3. OASIS/MDS performs a rename request from client node #1, and sends the
same rename request to all client nodes (i.e., client #2) registered in its lock
table.

4. Client node #2 performs rename(den, .removed/ofs xxx) if using the den.

5. When client node #1 and #2 destroy a cached inode data, OASIS/MDS
is notified from these clients, and then deletes the corresponding client’s
registration of its lock table.

186 S. Lee et al.

Client Node #1 OASIS/MDS (Mata Data Server) Client Node #2
read inode(id)—— register client #1 at lock table

register client #2 at lock table 4———— read inode(id)
unlink (den)

convert unlink(den) into
rename (den .removed/.ofs_xxxx)

call rename (den, .removed/.ofs_xxxx)
perform
rename (den, .removed/.ofs_xxxx)

call rename to clients perform
rename (den, .removed/.ofs_xxxx)

in its VFS cache

. . release inode(id,
unregister client #2 at lock table 4——— (ia)
from VFS cache

release inode(id)

—_— unregister client #1 at lock table
from VFS cache

delete den and its inode

Fig. 6. Procedure to support UNIX remove semantics

6. Whenever OASIS/MDS unregisters a client node from its lock table, it checks
if the client node list of the corresponding lock table entry is empty or not
and if a directory entry of the inode is located in a .removed directory. If so,
OASIS/MDS removes objects in OASIS/OSDs and then a renamed directory
entry (i.e., .removed/ofs xxxx) and its inode.

In order to implement the procedure described previously, OASIS/MDS and
client filesystem on client nodes are designed as described in Figure 7. OA-
SIS/MDS has the following things to implement the proposed procedure.

— The entry of OASIS/MDS’s lock table is extended so that it has an additional
field such as flag to indicate that an inode was one of a renamed directory
entry to a .removed directory.

— The deferred remover is added to check if the client list of a lock table entry
is empty and the flag field is set whenever OASIS/MDS unregisters a client
from its lock table. If so, it deletes a renamed directory entry and its inode
as well as its objects located in OASIS/OSDs.

The client node’s filesystem has two additional things compared to Figure 1.

— The remove to urename converter plays a role to change remove-related com-
mands (i.e., unlink, rmdir, rename) into rename ones to a .removed directory.
It generates a unique renamed directory entry name by concatenating a
directory entry’s inode identifier, its own IP address, and an incremented
number.

Supporting Extended UNIX Remove Semantics

Client Node

remove to rename
converter

OASIS/FM

ofs clean thread

187

VFS cache

Y

OASIS/OSD

OASIS/MDS
Lock table
> Inode ID #0 || the list of clients [type | flag
inode J read an inode J T80ISter finoge ID #1 || the list of clients |type | flag
{ M :I destroy an inode from cache | ; unregister
[inode 10 #n | the iist of clients [tvpe] fag |
| deferred remover |
create objects of a directory entry remove objects of a directory entry

Fig. 7. Structure of OASIS to support UNIX remove semantics

— The ofs clean thread as a garbage collector finds and destroys the unused
cached inodes which have been already renamed to a .removed directory.
Without this cleaner, the deleted but temporarily renamed inodes could
continue to stay in the .removed directory and occupy much space of a client
node’s cache.

5 Conclusion

As an alternative to a traditional block-based storage device, OSD has emerged
to perform object-based 1/Os in the storage world.

Based on the standard compliant OSDs, OASIS has been developed to get high
scalability and performance and to provide the strong cache coherence among
client nodes using inode-granularity locks.

All local filesystems based on VFS support the UNIX remove semantics to
protect processes using the inode of a deleted directory entry. On the other hand,
the most of existing distributed filesystems with OASIS could not support the
UNIX remove semantics and had faced problems originating from this unsupport.
They made efforts to resovle them but could not do all of these problems, which
is due to the unsupport in a distributed environment.

188 S. Lee et al.

This paper proposes a mechanism to support UNIX remove semantics in the
out-out-band architecture. Our proposed mechanism is deviced simply to use
OASIS cluster fliesystem’s cache coherence facility, and hence can be easily de-
ployed in the existing out-of-band distributed filesystems.

References

[1] Mesnier, M., Ganger, G.R., Riedel, E.: Object-Based Storage. IEEE Communica-~
tions Magazine 41(8), 84-90 (2003)

[2] Weber: SCSI Object-Based storage Device Commands (OSD), Document Num-
ber: ANSI/INCITS 4000-2004, InterNational Committe for Information Technology
Standard (December 2004), http://www.t10.org/drafts.html

[3] Kim, Y.-K., Kim, H.-Y., et al.: OASIS: Implementation of a Cluster File System
Using Object-Based Storage Devices. In: Gavrilova, M., Gervasi, O., Kumar, V.,
Tan, C.J.K., Taniar, D., Lagana, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS,
vol. 3980, pp. 1053-1061. Springer, Heidelberg (2006)

[4] Braam: The Lustre Storage Architecture, Technical reprot, Cluster File System,
Inc.(2002), http://www.lustre.org/docs/lustre.pdf

[5] Nagle, Serenyi, Matthews: The Pansas ActiveScale Storage Cluster - Delivering
Scalable High Bandwidth Storage. In: Proceedings of the ACM/ITEEE SC2004 Con-
ference, Pittsburgh, PA (November 2004)

[6] Rodeh, T.: zFS - A Scalable Distributed File System Using Object Disks,
Technical report, IBM Labs in Israel, Hifa University, Mount Carmel (2005),
http://www.haifa.il.ibm.com/procject/storage/zFS/public.html

[7] Burns, R.C.: Data management in a distributed file system for storage area net-
works, University of California Santa Cruz (March 2000)

[8] Ghemawat, S., Gobioff, H., et al.: The Google file system, Technical report. In:
Proceedings of the nineteenth ACM symposium on Operating systems principles,
pp. 29-43. ACM Press, New York (2003)

[9] The Hadoop Distributed File System: Architecture and Design, Technical report
(2007), http://lucene.apache.org/hadoop/hdfs design.html

http://www.t10.org/drafts.html
http://www.lustre.org/docs/lustre.pdf
http://www.haifa.il.ibm.com/procject/storage/zFS/public.html
http://lucene.apache.org/hadoop/hdfs_design.html

Cache Conscious Trees: How Do They Perform on
Contemporary Commodity Microprocessors?

Kyungwha Kim', Junho Shim>”, and Ig-hoon Lee’

' Dept of Computer Science, Sookmyung Women’s University, Korea
{kamza8l1, jshim}@sookmyung.ac.kr
3 Prompt Corp., Seoul, Korea
ihlee@prompt.co.kr

Abstract. Some index structures have been redesigned to minimize the cache
misses and improve their CPU cache performances. The Cache Sensitive B+-
Tree and recently developed Cache Sensitive T-Tree are the most well-known
cache conscious index structures. Their performance evaluations, however,
were made in single core CPU machines. Nowadays even the desktop com-
puters are equipped with multi-core CPU processors. In this paper, we present
an experimental performance study to show how cache conscious trees perform
on different types of CPU processors that are available in the market these days.

1 Introduction

Modern desktop computing environment has been in on-going evolution in terms of
its architectural features. Two of the most noticeable features in last few years may be
observed in areas of main memory and CPU.

Random access memory becomes more condensed and cheaper. Nowadays it be-
comes common to equip a new PC even for home uses with 1 giga bytes or more of
random access memory'. A recent launch of new PC operation system” has acceler-
ated the minimal memory requirement for a system. Such a trend that PCs need and
therefore are equipped with more amount of memory than ever before is expected to
last for a while.

As a hardware system contains larger amount memory, it becomes feasible to store
and manage database within main memory. Researchers have paid attention to various
aspects of main memory databases. The index structure for main memory is one area in
which T-Trees were proposed as a prominent index structure for main memory [9]. In
[12,13], Rao et al claimed that B-Trees may outperform T-Trees due to the increasing
speed gap between cache access and main memory access. CPU clock speeds have

* Corresponding author.

! For example, Hewlett-Packard and Dell, two leading companies with respect to the world-
wide PC market shares, recommend their customers to have at least 1 GB memory for their
middle-line home desktop computers. See http://www.shopping.hp.com/ or http://www.dell.
com/.

2 Windows Vista™, http://www.microsoft.com/windows/products/windowsvista

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 189 2007.
© Springer-Verlag Berlin Heidelberg 2007

190 K. Kim, J. Shim, and I.-h. Lee

increased at a much faster rate than memory speeds [1,4,11]. The overall computation
time becomes more dependent on cache misses than on disk buffer misses.

In the past we considered the effect of buffer cache misses to develop an efficient
disk-based index structure. The same applies to the effect of cache misses. A design of
index structure with regard to its cache behavior may lead to the improvement in terms
of cache hits. A most well-known cache optimized index structure for main memory
database systems has been CSB+-Trees (Cache Sensitive B+-Trees) [13], a variant of
B+-Trees. Recently, Lee et al [10] claimed that T-Trees index may be also redesigned
to better utilize the cache, and they introduced a new index structure CST-Trees
(Cache Sensitive T-Trees). In their experiment, CST-Trees outperform CSB+-Trees on
searching performance and also show comparable performance on update operations.

A feature in a contemporary CPU architecture comes along with the industry that
has launched multi-core CPU microprocessors in the market. It has been only about
one year since the first dual-core PC processor was introduced in the market. Very re-
cently, two leading manufacturers in the industry again announced that their upcoming
processors will be redesigned to double the number of cores within a processor’. Ex-
perts expect that we will have eight-or 16-core microprocessors in a near feature [8,7].
The trend concurs in the industry that manufactures processors for workstations and
server-levels as well>®. What it has meant to the software research community is to in-
vestigate the performance impact that a multi-core processor may offer, and to change
the software architecture to exploit a higher performance benefit of the design of new
processor. The database community is one of the early birds which found the trend
[2,8].

In this paper, we provide an experimental study to show how the traditional index
structures and recently developed cache conscious versions actually perform in modern
computer environments. We conduct the experiment to check the performances of T-
Trees, B+-Tress, CST-Trees, and CSB+-Trees, on contemporary available computer
systems equipped with single-core and multi-core CPUs.

In short, the experimental result shows that cache conscious designs for index struc-
tures may achieve the performance gain in hardware systems with multi-core CPUs as
they do in hardware systems with single-core CPUs. The experiment is worthy not
only because we show the empirical study in a real modern hardware system equipped
with brand new CPU configuration, but also because the result may be used in future
as an comparable source to an analytical model of cache index structure.

The rest of this paper is structured as follows. In Section 2 we present the related
work on cache conscious tree index. The cache conscious B+-Trees and the original T-
Trees are briefly introduced for explanation purpose. We also provide a structural
sketch on cache conscious T-trees. In Section 3 we present a recent trend on CPU
technology and illustrate an architectural view of multi-core CPU processor. In Section
4 we present the experimental performance study of four competitors: T-Trees, B+-
Tress, CST-Trees, and CSB+-Trees. And finally, conclusions are drawn in Section 5.

? Intel Ignites Quad-Core Era, http://www.intel.com/pressroom/archive/releases/20061114comp. htm

* AMD Details Native Quad-core Design Features, http://www.amd.com/us-en/Corporate/
VirtualPressRoom/0,,51_104_543_544~115794,00.html

3 IBM PowerPC Microprocessor, http://www.chips.ibm.com/products/powerpc/

® Sun Microsystems, Inc.: UltraSPARC Processors, http://www.sun.com/processors/

Cache Conscious Trees: How Do They Perform 191

2 Background

2.1 Related Work on Index Structures

Most widely used tree-based index structures may include B+-Trees, AVL-Trees, and
T-Trees [9]. B-Trees are designed for disk-based database systems and need few node
accesses to search for a data since trees are broad and not deep, i.e., multiple keys are
used to search within a node and a small number of nodes are searched [6]. Most da-
tabase systems employ B+-Trees, a variant of the B-Tree.

In [12,13], Rao et al showed that B+-Trees have a better cache behavior than T-
Trees, and suggested to fit a node size in a cache line, so that a cache load satisfy mul-
tiple comparisons. They introduced a cache sensitive search tree [12], which avoids
storing pointers by employing the directory in an array. Although the proposed tree
shows less cache miss ratio, it has a limitation of allowing only batch updates and re-
building the entire tree once in a while. They then introduced an index structure called
CSB+-Tree (Cache-Sensitive B+-Tree) that support incremental updates and retain the
good cache behavior of their previous tree index structure [13]. Similar to their previ-
ous tree structure, a CSB+-Tree employs an array to store the child nodes, and one
pointer for the first child node. The location of other child nodes can be calculated by
an offset to the pointer value.

The AVL-Tree is a most classical index structure that was designed for main mem-
ory [6]. It is a binary search tree in which each node consists of one key field, two (left
and right) pointers, and one control field to hold the balance of its subtree (Figure 1-
(a)). The left or right pointer points the left or right sub-trees of which nodes contain
data smaller or larger than its parent node, respectively. The difference in height be-
tween the left and right sub-trees should be maintained smaller or equal to one.

The major disadvantage of an AVL-Tree is its poor storage utilization. Each tree
node holds only one key item, and therefore rotation operations are frequently per-
formed to balance the tree. T-Trees address this problem [9]. In a T-Tree, a node may
contain n keys (Figure 1-(b)). Key values of a node are maintained in order. Similar to

A)

Parent Parent
Key ‘ Key | Key, ‘ Keyn

Control Control

| RN
Left PK/L‘%‘R'QN ptr Left ptr x{li‘ght ptr
\ | \ |
ole s[e
M P o] sle

e P

o %
T Y o

Fig. 1. (a) AVL-Tree (b) T-Tree : The node structure of AVL and T-Trees

192 K. Kim, J. Shim, and I.-h. Lee

an AVL-Tree, any key stored within a left and right sub-tree should be smaller or lar-
ger than the least and largest data of a node, respectively. The tree is kept balanced as
for the AVL-Tree.

2.2 Cache Sensitive T-Trees

T-Trees are not so cache sensitive either as the following reasons [10]. First, cache
misses are rather frequent in that a T-Tree has a deeper height than a B+-Tree, and that
it does not align the node size with the cache line size. Secondly, a T-Tree uses only
two keys (maximum and minimum keys) for comparison within the copied data in
cache while a B+-Tree use llog,nl keys that are brought to the cache for comparison.

In [10], Lee et al modified the original T-Tree to improve the cache behavior and in-
troduced a CST-Tree (Cache Sensitive T-Tree), which is a n-way search tree consisting
of node groups and data nodes. Figure 2 shows a node structure of CST-Trees.

A CST-Tree consists of data nodes and node groups. A data node contains keys
while a node group consists of maximal keys of data nodes. Each node group is a bi-
nary search tree represented in an array. It works as a directory structure to locate a
data node that contains an actual key. The size of the binary search tree is not big and
great portion of it may be cached. More importantly, the cache utilization can be high
since every search needs to explore the tree. The child node groups of a node group are
stored contiguously as well. A CST-Tree is balanced by itself, and a binary search tree
of any node group is also balanced. As recommended in [3,5,12], in a CST-Tree the
size of each node group is aligned with cache line size, so that there will be no cache
miss when accessing data within a node group.

ptr ‘Key1‘Keyz‘ ‘Keyn

Parent

Data [y ‘Kew‘Keyz ‘Keyn pir ‘Key1 Keyz| ... ‘Keyn ‘ pir ‘Key1‘Key2 ‘Keyn
Data 1
node Child node group(1) Child node group(2) Child node group(n+1)
pir

Data

node,

v
‘Control Child node | Child node Child node
group(1) group(2) e group (n+1)

Fig. 2. The node structure of CST-Trees

3 Trends in CPU Processor Technology

Over the past decade, processor speeds have drastically increased according to
Moore’s law, while DRAM speeds have not. Memory latency tends to decrease by

Cache Conscious Trees: How Do They Perform 193

half every six years [2]. This incurs a so-called memory wall problem that causes a
processor to keep waiting more time for the completion of main memory access. The
processor utilization becomes much less as it runs a program with lower memory or
cache locality. A noticeable change appears in a processor design. The clock speed
growth is no longer high, i.e., it hits a wall two years ago [14], while the number of
transistors on a processor continues to climb, i.e., it doubles every 18 months [2].
Another trend is to let a processor enable higher level of parallelism without compen-
sating power constraints. Then major CPU manufactures have shifted their processor
designs toward chip multiprocessors (CMPs).

While some early CMPs employed private per-core cache designs, more recent ones
employed shared last-level on-chip caches [7]. Sharing a cache may provide the multi-
ple threads with more flexible allocation of the cache space, and is also expected to
achieve higher performance when cores share data. Figure 3 illustrates an architectural
view of a multi-core processor which shares a cache located outside the cores yet on
the processor chip. Note that a processor in the figure is dual-core, i.e., the number of
cores in a processor chip is 2, and the last-level on-chip cache is L2. As mentioned in
Introduction, the industry recently began to deliver 4-core processors and also proces-
sors with L3 shared.

Database research community has already begun to explore higher performance
that might be offered by new multi-core processors. Ailamaki et al’s tutorial [2]
provides a good survey on the modern architecture of commodity processors and
related issues on database systems. In their previous work [1], they perform the ex-
periment to analyze the query execution time by several commercial DBMSs. From

Microprocessor
CPU Registers Li-cache |COre-1

Physical memory

CPU Registers Li-cache A
Core-2
Memory access
speed 1clk 10clk 1000clk slowe;
(wrt clock cycle)
larger
Memory >
capacity 64k 1M to 4M 1GBto 1TB

Fig. 3. Architectural view of a multi-core processor (dual-core in this figure) and its memory
hierarchy’

7 Actual memory speeds and capacities vary from a processor to another. We referenced
Ailamaki et al’s report [2], and two recent dual-core microprocessor product lines: Intel®
Core™2 Duo Processors and AMD Opteron™ Processors.

194 K. Kim, J. Shim, and I.-h. Lee

the results they suggest that database developers need to pay more attention to
optimize data placement for L2 cache, rather than L1, because L2 data stalls are a
major component of the query execution time. The hardware systems that they per-
formed the experiment all contain single-core processors, although they are the most
up-to-date by then. Their suggestion is still valid by now or becomes more important
in a sense that we now have larger speed gaps between processor clock and memory
in most hardware systems.

4 Performance Evaluation

4.1 Experimental Environment

We performed an experimental comparison of the B+-Trees, T-Trees, and their cache
conscious versions CSB+-Trees and CST-Trees. For the performance comparison, we
implemented all the methods. For the implementation of CSB+-Trees and T-Trees, we
referred to the sources [9, 13] that are proposed by the original authors. For the im-
plementation of CST-Trees, we referred to the source [10] that we previously built.
Originally, the source codes were built and tested on Sparc machines, and therefore
we should modify some codes accordingly to the hardware platforms that were
equipped with multi-core CPUs.

The hardware platforms that we chose for experiment are listed in Figure 4°. Both
machine A and B are equipped with one dual-core CPU microprocessors of which ar-
chitectures are different and manufactured by different corporations. The CPU proces-
sor contained in machine-A employs a shared L2 cache while one in machine-B em-
ploys separate L2 caches per core. Note that for comparative study we performed our
experiment on hardware machines with single-core CPU as well. Both machine C and
D are equipped with single-core CPU processors. Machine-C has one processor while
machine-D has two processors.

We implemented all the codes in C, and the programs were compiled and built by
GNU cc compiler, which are available for every platform that we used in the experi-
ment. For the performance comparison, we implemented all the methods including T-
Trees, CST-Trees, B+-Trees, and CSB+-Trees. All the methods are implemented to
support search, insertion, and deletion.

In the original CSB+-Tree, node groups are allocated dynamically upon node split.
Memory allocation calls can be saved if we pre-allocate the space for a full node group
whenever a node group is created. CST-Trees also adopt a scheme to pre-allocate the
whole space for a node group. In order to conduct a fair performance comparison, we
also implemented a variant of CSB+-Trees in which the whole space of a node group is
pre-allocated when keys are inserted. In our insertion experiment, we call it CSB+-
(full), while we call the original CSB+-Tree as CSB+-(org). For deletion, we used
“lazy” policy as it is practically used [13,10].

8 We used a free-software to check the details of chipsets employed in machine A, B, and C.
The program is available at http://www.cpuid.com/, and the version we used is v1.39.

Cache Conscious Trees: How Do They Perform

Machine-A Machine-B Machine-C Machine-D
INo. of CPU|[Il 1 1 2
processors
IMulti-Core? Yes (2) Yes (2) No (1) No (1)
(No. of cores
per processor)
Cache struc- |Shared L2 |Separate L2|Separate cache [Separate cache
ture cache across [cache per core |[per processor [per processor
dual cores
CPU clock [2.66GHz 2.0GHz 2.40GHz 1.20GHz
speed
IL1 cache 2% <32K bytes, |[2X<64K bytes,|<8K bytes, [<64 Kbytes,
cache size, |64bytes> (Data) [64bytes> (Data) |64bytes> 64bytes> (Data)
cache line[2x<32K bytes, [2X<64K bytes, |(Data) per chip
size> 64bytes> 64bytes> <12 Koups> <32 Kbytes,
(Code) (Code) (Trace) 64byt§s> (Code)
per chip
IL2 cache <4096K Dbytes, [2x<512K <512K bytes, |2X<8M bytes,
cache size, |64bytes> bytes, 64bytes> |64bytes> 64 bytes>
cache line
size>
IRAM 2G bytes 1G bytes DDR2 |1.5G bytes 2G bytes DDR
DDR2 DDR
Operating Redhat Enter- [Redhat Enter-|Redhat Enter- |SunOS 5.9
system prise Linux ES [prise Linux ES|prise Linux ES
v3 v3 v3

195

Fig. 4. The CPUs and their cache specifications of four different machines that are used in the
experiment’

In order to measure the number of CPU cache misses, we used the Valgrind de-
bugging and profiling tool for Linux operating system and the Performance Analysis
Tool for Sun operating system.'® We only considered the L2 level cache misses as in
[13,10].

In all experiments we set the keys and each pointer to be 4 bytes integers and 4
bytes. All keys are randomly chosen as integer values of which ranges are from 1 to 10
million. The keys are generated in advance before the actual experiments in order to
prevent the key generating time from affecting the measurements. The node sizes of all
the methods are chosen to 64 bytes, same to the cache line size of each machine, since
choosing the cache line size to be the node size was shown close to optimal [12, 13,
10]. We repeated each test three times and report the average measurements.

° Note that we do not include the actual model names of the microprocessors, since the pur-
pose of our experiment is not to reveal the precise benchmark of each microprocessor.

!0 The versions that we used are the Valgrind 3.2.3 and the Sun ONE Studio 8. The Valgrind is
freely available under GNU license at http://www.valgrind.org.

196 K. Kim, J. Shim, and I.-h. Lee

4.2 Results

Searching

In the first experiment, we compared the search performance of each index structure.
We generated the different number of keys and insert all the keys into each index, and
then measured the time and the number of cache miss that were taken by 200,000
searches. All search key values were randomly chosen among the generated keys.
Figure 5 to 8 show the results'".

In general, CST-Trees show the best both in terms of speed and cache miss rate.
CSB+-Trees, B+-Trees, and T-Trees follow the next in order. In a machine-A (1CPU,
dual-cores, separate L2 cache), CST-Trees are on average 79.8%, 83.3%, and 88.3%
faster'” than CSB+-Trees, B+-Trees, and T-Trees (Figure 5-(a)). CST-Trees also show
the least number of cache misses among the methods, i.e., on average 20.5%, 25.0%,
35.4% less" than CSB+-Trees, B+-Trees, and T-Trees, respectively (Figure 5-(b)).
CSB+-Trees also outperform the original B+-Trees in terms of both speed and cache
misses. In another machine-B that is equipped with a dual-core processor yet separate
L2 cache, CST-Trees also show the fastest in speed and the least in number of cache
misses, while CSB+-Trees, B+-Trees and T-Trees follow the next in order (Figure 6).
In other machine-C and D, each method shows a similar pattern in their performance
ranks (Figure 7 and 8).

We may observe two particular interesting results in these experiments. Firstly, as
the number of searches becomes larger, the difference between CST-Trees and other
methods in their cache miss numbers becomes larger too. Then among the methods, T-
Tree shows steeper slope than others in its cache miss graphs, although the number of
cache misses are linearly incremented as others. Secondly, the number of cache misses
may greatly vary with the machine architectures. For example, in Figure 5-(b), the av-
erage cache miss numbers of four trees on machine-A with 500K search keys is about

008 ~ 1200

~ / g 1100 f /
2 1000 !

g 008 % 00 —|—e—¢

T B 800 |— —A—ocst

E oo k/"i——: 8 700 o ~ —1

st A = ——T c 600 [

2 ——o o 500 f —Fr

S 002 —&—CsBY < 400

© ST g 300
S o200 F

000 = 100
300K 400K 500K 300K 400K 500K
of keys # of keys
(a) CPU elapsed time (b) Cache misses

Fig. 5. Search performances in machine-A (1CPU, dual-cores, and shared L2 cache)

' As mentioned before, we do not attempt to directly compare the performances of four micro-
processors by drawing all graphs in a chart, since it may misguide some readers to directly
consider the results as the performance benchmark of each microprocessor. Note that for
comparative study we also include the results of our experiment on machine-D of which re-
sult data previously appeared in [10] in part.

12 We use a relative performance ratio, i.e., (A-B)/A. For example, (elapsed_time by CSB+ -
elapsed_time by CST) / elapsed_time by CSB+.

13 Here again, we use a relative performance ratio, i.e., (A-B)/A.

Cache Conscious Trees: How Do They Perform 197

782K, while it is 2,278K and 2,276K on machine-B and C with same search keys, re-
spectively. Note that the total L2 cache size of machine-A is 4 times bigger than B, and
8 times bigger than C, although their cache line sizes are same to 64bytes. The ma-
chine-D that has a much larger L2 cache size significantly decreases the average num-
ber of cache misses for all cases. According to the result that both machine-B and C
show a similar number of cache misses; just to have a double-cores without sharing the
L2 cache may not affect the number of cache misses.

018 5 6000

016 & 5500
o 014 — S 5000

% 4500 p—

3 012 <% 4000 — M
g 010 | % %[5)[0)8 L —&—csBr
S ooos f L T £ 2500 —
3 006 f —s—p o 2000
S oos | —a— B G 1500 —4
o ——GsT < 1000 — ¥

002 —X 500 v —X

000 : . | 3 : '

300K 400K 500K 300K 400K 500K
of keys # of keys
(a) CPU elapsed time (b) Cache misses

Fig. 6. Search performances in machine-B (1CPU, dual-cores, and separate L2 caches)

——
—a—p+ .
hilzm =
- T S
o 020 0”“/4 S 5000
O 4500 —T
5 0 T);' 4000 — —s—p:]
0 g %00 L —a—ose+]
g B B — ——
B 010 L 3 E 2500 st 4
s 3 i
g 008 8 1000 — E ©
% <500 v~ —%—X
000 L L ph| 0 L L
300K 400K 500K 300K 400K 500K
of keys # of keys
(a) CPU elapsed time (b) Cache misses
Fig. 7. Search performances in machine-C (1CPU, single-core)
—
014 _,__ S 180 e ——
012 — S 18 - ’;::‘
~ m = 140 =iz
o N P -— <120 e
£ 0w [= P & 100 =
£ oo e ¢ & e
E oo / E & s
bt o
S 008 — e = 5 O —c
é g 28 ——c
o 004 ﬁ
300K 400K 500K 300K 400K 500K
of keys # of keys
(a) CPU elapsed time (b) Cache misses

Fig. 8. Search performances in machine-D (2CPUs, separate caches)

Insertion and Deletion
In the next experiment, we tested the performance of insertion and deletion. Before test-
ing, we first stabilized the index structure by bulk-loading 1 million keys, same as in

198

[13,10]. Then we performed up to 20K operations of insertion and deletion and measure

K. Kim, J. Shim, and I.-h. Lee

the time that were taken for the given number of operations (Figure 9-(a) to 12-(b)).

Full CSB+-Trees show the best in insertion, while B+-Trees, CST+-Trees show
comparable performance in their insertions. T-Trees are among the worst in machines

except one (machine-D) where original CSB+-Trees also perform poor.

018 012
016 ——e—T » —~
L T
S 014 [~ —m—B+ Pt g 010 +B+ /
£ 012 | —a— CSBHor) X 2 oos |—|
o . © —A— 8B+ /
£ 010 [—+— CSB+full) .1 E oos | -
= 5 —%—csT
5 008 [——csT B //
$ 006 f g 004
& oos € oo ‘///-
@ @
002 | M
000 : . . 000
20K 50K 100K 150K 200K 20K 50K 100K 150K 200K
of operation # of operation
Fig. 9. (a) Insertion (b) Deletion : CPU elapsed times in machine-A
035 025
— 030 f—e—T S 0w] —eT
8 0zs {5 P g —&—B+ /
e —A— CSB+or) / % 015 | —A—0CSBH
g 020 | —— CsB+{ful £ —ye—csT
T 015 (X CST T o0 F
D 153
2 010 F 2
@ © 005
o } M
oo L e———————" b0 ‘ ‘
20K 50K 100K 150K 200K 20K 50K 100K 150K 200K
of operation # of operation
Fig. 10. (a) Insertion (b) Deletion : CPU elapsed times in machine-B
040
030
~ 035 —— T A
o s l|—m—es NCEC S
@ —A— CSB+ori) / 3 020 —I - /
g 025 4 cem(tul) % —A— CSBH /
Z 020 [——csT E o1 O
g 015 | /ér/‘ z o / J&:
g 010 g M
©
© 005 e - o 005
oy L ———— % e L E—
20K 50K 100K 150K 200K 20K 50K 100K 150K 200K
of operation # of operation

The delete performance also showed a similar pattern to that of search, in that the
“lazy” strategy was employed for deletion. Most of the time on a deletion is spent on
pinpointing the correct entry in the leaf node. In all experiments (Figure 9-(b) to 12-
(b)), CST-Trees show the best both in terms of speed and cache miss rate. CSB+-

Fig. 11. (a) Insertion (b) Deletion :

CPU elapsed times in machine-C

Trees, B+-Trees, and T-Trees follow the next in order.

Cache Conscious Trees: How Do They Perform 199

og |T 7T 020 _
: — & — B+ 018 o7 > <
g 9% | —a—cssHon) FIRSIEE e » -
‘S.Ej 020 |—+—csB+ifull) / / £ 01p [|—a—csB+ - _-_A
o i a T 008 =
$ 010 - % <
2 - // g ooe ———
T 005 = ¢ 004 - =
@ W 002 -l

000 000 |

20K 50K 100K 150K 200K 20K 50K 100K 150K 200K
of operation # of operation

Fig. 12. (a) Insertion (b) Deletion : CPU elapsed times in machine-D

5 Conclusion

In this paper, we present an experimental evaluation of tree-based index structures on
multiple conventional processors. CST-Tree is one of the index structures that we es-
pecially care for the performance on multi-core CPU processors.

Our experimental results show that cache sensitive trees provide much better per-
formance than their original versions. In searching operations, CST-Trees show much
superior performance than CSB+, B+-Trees, and T-Trees. CSB+-Trees also show bet-
ter performance than B+-Trees. CST-Trees and CSB+-Trees also show good perform-
ance on insertion operations and better performance on deletion operations, although
the performance benefits over their original versions are less than in searching.

The experiment is worthy because the experimental results show that cache sensi-
tive index structures may benefit of the designs of modern commodity microproces-
sors. It is, however, limited in that we have not developed an analytical model of our
cache sensitive index on a multi-level shared cache architecture, so that we can
mathematically compare the empirical results to the theoretically-expected behavior
of the model. This should be one of the works we shall deal with in future.

It is one of the hottest research topics in database community to tune a database
management system to perform well enough to benefit the commodity microproces-
sors. Building an index structure more cache-conscious is a way to decrease the cache
miss and therefore to benefit more the larger size of shared cache. However, those
cache conscious technologies employed in either CST-Trees or CSB+-Trees may not
inherently resolve a problem of so called cold miss. We are developing a CST-Tree
version which employs a prefetching technology to reduce the cold miss rate.

References

1. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs On A Modern Processor:
Where Does Time Go? In: Proc. of the 25th International Conference on Very Large Data-
base Systems, pp. 266-277 (1999)

2. Ailamaki, A., Govindaraju, N.K., Harizopoulos, S., Manocha, D.: Query co-processing on
commodity processors. In: Proc. of the 32nd International Conference on Very Large Da-
tabase Systems, Tutorials, pp. 1267-1267 (2006)

200

10.

11.

12.

13.

14.

K. Kim, J. Shim, and I.-h. Lee

Bohannon, P., Mcllroy, P., Rastogi, R.: Main-Memory Index Structures with Fixed-Size
Partial Keys. In: Proc. of the 2001 ACM SIGMOD Int’l Conf. on Management of Data, pp.
163-174. ACM Press, New York (2001)

Boncz, P., Manegold, S., Kersten, M.L.: Database Architecture Optimized for the new
Bottleneck: Memory Access. In: Proc. of the 19th International Conference on Very Large
Database Systems, pp. 54-65 (1999)

Chilimbi, T.M., Davidson, B., Larus, J.R.: Cache-Conscious Structure Definition. In: Proc.
of the ACM SIGPLAN 1999 conference on Programming language design and implemen-
tation, pp. 13-24. ACM Press, New York (1999)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The
MIT Press, Cambridge (1990)

Hsu, L.R., Reinhardt, S.K., Iyer, R., Makineni, S.: Communist, utilitarian, and capitalist
cache policies on CMPs: caches as a shared resource. In: Proc. of the 15th International
Conference on Parallel Architectures and Compilation Techniques, pp. 13-22 (2006)
Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.-K., Dubey, P.:
Cache-conscious frequent pattern mining on modern and emerging processors. The VLDB
Journal 16(1), 77-96 (2006)

Lehman, T.J.: A Study of Index Structures for Main Memory Database Management Sys-
tem. In: Proc. of the 12th International Conference on Very Large Database Systems, pp.
294-303 (1986)

Lee, I.-h., Shim, J., Lee, S.-g., Chun, J.: CST-Trees: Cache Sensitive T-Trees. In:
DASFAA 2007. Proc. of the 12th International Conference on Database Systems for Ad-
vanced Applications, pp. 398-409 (2007)

Manegold, S., Boncz, P.A., Kersten, M.L.: Optimizing database architecture for the new
bottleneck: memory access. The VLDB Journal 9(3), 231-246 (2000)

Rao, J., Ross, K.A.: Cache Conscious Indexing for Decision-Support in Main Memory. In:
Proc. of the 19th International Conference on Very Large Database Systems, pp. 78-89
(1999)

Rao, J., Ross, K.A.: Making B+ Trees Cache Conscious in Main Memory. In: Proc. of the
2000 ACM SIGMOD International Conference on Management of Data, pp. 475-486.
ACM Press, New York (2000)

Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Soft-
ware, available at http://www.gotw.ca/publications/concurrency-ddj.htm

Page Replacement Algorithms for NAND Flash
Memory Storages*

Yun-Seok Yoo', Hyejeong Lee?, Yeonseung Ryu""", and Hyokyung Bahn?

! Department of Computer Software, Myongji University,
Nam-dong, Cheoin-gu, Yongin, Gyeonggi-do, 449-728, Korea
{swish90, ysryul}@mju.ac.kr
% Department of Computer Science and Engineering, Ewha University,
Daehyun-dong, Seodaemun-gu, Seoul, 120-750, Korea
huizh@ewhain.net, bahn@ewha.ac.kr

Abstract. This paper presents new page replacement algorithms for NAND
flash memory, called CFLRU/C, CFLRU/E, and DL-CFLRU/E. The algorithms
aim at reducing the number of erase operations and improving the wear-leveling
degree of flash memory. In the CFLRU/C and CFLRU/E algorithms, the least
recently used clean page is selected as the victim within the pre-specified
window of the LRU list. If there is no clean page within the window, CFLRU/C
evicts the dirty page with the lowest access frequency while CFLRU/E evicts
the dirty page with the lowest block erase count. DL-CFLRU/E maintains two
LRU lists called the clean page list and the dirty page list, and first evicts a page
from the clean page list. If there is no clean page in the clean page list, DL-
CFLRU/E evicts the dirty page with the lowest block erase count within the
window of the dirty page list. Experiments through simulation studies show that
the proposed algorithms reduce the number of erase operations and improve the
wear-leveling degree of flash memory compared to LRU and CFLRU.

Keywords: Flash Memory, Page Replacement, Virtual Memory System, LRU.

1 Introduction

Recently, embedded systems usually employ NAND flash memory as data storages
because of its small size, lightweight, shock resistance, and low-power consumption
[4], [5]. The I/O operations of NAND flash memory are significantly different from
those of traditional hard disk. For example, a read or a write operation in NAND flash
memory is performed by the unit of flash page, and an erase operation should be
preceded for a group of adjacent flash pages called block before a write operation is
performed. The times required for the three operations are significantly asymmetric as
shown in Table 1 [10]. Specifically, an erase operation requires an order of magnitude

" This work was supported in part by the Samsung Electronics, and by the Korea Research
_ Foundation Grant funded by Korean Government(MOEHRD) (R08-2004-000-10391-0).
™ Corresponding author.

0. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 2011212, 2007.
© Springer-Verlag Berlin Heidelberg 2007

202 Y.-S. Yoo et al.

more time than read/write operations. Therefore, minimizing the number of erase
operations is required to improve the performance of the page replacement algorithm
for NAND flash memory storages. Furthermore, the number of possible erase
operations to be performed for each block is limited to the range of 10,000 to
1,000,000 depending on the physical characteristics of the flash device. After the
specified number of erase operations is performed on a certain flash block, the block
is worn out and its reliability cannot be guaranteed. Hence, it is needed to balance the
number of erase operations performed for each block to increase the life span of the
whole flash memory area. In the page replacement algorithm for NAND flash
memory storages, therefore, the number of erase operations and the wear-leveling
degree are important performance criteria.

Table 1. The characteristics of NAND flash memory

Operation Access Time
Read 35.9 ps
Write 226 s
Erase 2ms (16KB)

Studies on page replacement algorithms that consider the physical characteristics
of NAND flash memory are now at the initial stage. This paper presents new page
replacement algorithms for NAND flash memory, called CFLRU/C, CFLRU/E, and
DL-CFLRU/E. The proposed algorithms improve the CFLRU (Clean-first LRU)
algorithm [8]. CFLRU is a recently proposed page replacement algorithm that
considers the physical characteristics of NAND flash memory. CFLRU considers not
only the hit rate but also the asymmetric replacement cost of read and write
operations. This paper supplements the original CFLRU algorithm by considering the
number of erase operations and the wear-leveling degree as well as asymmetric
read/write costs in the algorithm design. Specifically, CFLRU/C and CFLRU/E
consider the access frequency and the number of block erase operations, respectively.
DL-CFLRU/E maintains two LRU lists called the clean page list and the dirty page
list. DL-CFLRU/E reduces the number of erase operations, and at the same time,
improves the wear-leveling degree of flash memory significantly.

We perform simulation experiments with fifteen types of synthetically generated
traces. The simulation results show that the proposed algorithms perform better than
LRU and CFLRU in terms of the number of erase operations and the wear-leveling
degree.

The remainder of this paper is organized as follows. Section 2 explains the LRU
and CFLRU algorithms as a related work, and Section 3 presents new page
replacement algorithms for NAND flash memory storages, called CFLRU/C,
CFLRU/E, and DL-CFLRU/E. Section 4 describes the performance results of the
proposed algorithms compared to LRU and CFLRU. Finally, Section 5 concludes the

paper.

Page Replacement Algorithms for NAND Flash Memory Storages 203

2 Page Replacement Algorithms

The objective of the page replacement algorithm in a demand paging system is to
select a victim page and then make it free. Basically, when a page miss occurs and if
there is no free page in physical memory, the replacement algorithm selects a victim
page to be swapped out. If the page is clean, it is just removed from the physical
memory, and otherwise, copied to the swap area before removed.

In this section, we first describe the LRU (Least Recently Used) algorithm. LRU is
most commonly used for page replacement in demand paging systems because of its
simplicity and competitive performance in traditional hard disk. LRU considers
temporal locality, which means that a page referenced more recently is more likely to
be referenced again in the near future. LRU maintains the page list in the order of last
reference time and selects the least recently referenced page as a victim. Fig. 1 depicts
an example of the LRU algorithm. As can be seen from the figure, when a page miss
occurs, LRU evicts p8 at the end of the list.

recency <

I I I I B B

[J:Page victim

Fig. 1. An example of the LRU (Least Recently Used) algorithm

In order to improve the performance of page replacement, many studies have been
performed which are customized for traditional hard disk. In the case when flash
memory is used as storage, it is needed to consider the physical characteristics of the
flash storage. The CFLRU (Clean-first LRU) algorithm is a recently proposed page
replacement algorithm that considers the physical characteristics of NAND flash
memory. CFLRU considers not only the hit rate but also the asymmetric replacement
cost of each operation [6], [7].

CFLRU maintains the page list by the LRU order. The list of CFLRU is divided
into working region and clean-first region [8]. The working region contains the
recently referenced pages and its mission is to improve the hit rate. The pages in the
clean-first region are victim candidates. Hence, CFLRU first searches the clean-first
region to find a victim, and if the region becomes empty, it searches the working
region. The number of pages belonging to the clean-first region is decided by the size
of the window. (See Fig. 2). Within the window, CFLRU considers whether the page
is clean or dirty. A clean page is a page whose contents have not been changed, while
a dirty page is a modified page during its residence in the memory. If a clean page is
chosen for eviction, it can be just dropped from the memory without additional flash
operations. On the contrary, if a dirty page is chosen, it should be written to persistent
storage prior to dropping from the memory.

In the clean-first region, CFLRU evicts a clean page preferentially for reducing the
number of write operations. However, if there is no clean page within the window, the
least recently used dirty page is evicted. Fig. 2 depicts an example of the CFLRU

204 Y.-S. Yoo et al.

algorithm. In this example, the window size is four. Although the page at the end of
the LRU list is p8, CFLRU selects the p7 as the victim which is least recently
referenced among clean pages within the window.

recency
I < Working region == I < Clean-first region ==
pl p2 p3 p4 p5 p6 e A . p8
LRU :
Uy e H o He bl c Ho H e H b
list :
N
[' >
Wind
: Clean page indow
[D] : Dirty page

victim

Fig. 2. An example of the CFLRU (Clean-first LRU) algorithm

3 Proposed Algorithms

In this section, we present new page replacement algorithms for NAND flash memory
storages, called CFLRU/C, CFLRU/E, and DL-CFLRU/E. The proposed algorithms
have the common property that delays evicting dirty pages as long as possible.
Evicting dirty pages incurs write operations, and this potentially requires erase
operations. In order to reduce the number of write/erase operations and improve the
wear-leveling degree, the proposed algorithms use the reference history of the pages
such as the access frequency and the number of erase operations for each block.

3.1 CFLRU/C (CFLRU/Count)

The first algorithm, called CFLRU/C, selects the least recently used clean page as the
victim within the pre-specified window. If there is no clean page within the window,
CFLRU/C evicts the dirty page with the lowest access frequency. This is because the
page with the lowest access frequency is not likely to be referenced again soon. We
increase the access frequency by one only when a write operation is performed since
the access frequency is considered only for dirty pages. Fig. 3 shows an example of
CFLRU/C. In this example, all of the pages in the window are dirty. Hence, p6 is
selected as a victim due to its lowest access frequency.

recency
pl p2 p3 p4 p5 roopb pl p8
LRU ! ;
e Moo Hoe Hib b b Hb
list ; i
Access frequency — 7T 37y 5 9
le >
= Window g
:Clean page
[D _]:Dirty page
victim

Fig. 3. An example of the CFLRU/C algorithm

Page Replacement Algorithms for NAND Flash Memory Storages 205

3.2 CFLUR/E (CFLRU/Erase)

Since the number of possible erase operations to be performed for each block is
limited in NAND flash memory, it is required to prevent some blocks from getting
worn out too soon [11]. The second algorithm, CFLRU/E, considers the number of
block erase operations for selecting a victim. We call the number of erase operations
erase count. Similar to the CFLRU and CFLRU/C algorithms, CFLRU/E firstly
selects the least recently used clean page within the pre-specified window as a victim.
However, if there is no clean page within the window, CFLRU/E evicts the dirty page
belonging to the block with the lowest erase count [1], [2], [3]. The rationale of this
process is to balance the erase count of all block, leading to an improved wear-
leveling degree. Fig. 4 depicts an example of CFLRU/E. In this example, all of the
pages in the window, p5, p6, p7, and p8 are dirty. Hence, p6 is selected as a victim
since it belongs to the block with the lowest erase count.

recency
LRU pl p2 p3 p4 p5 rooopb pl p8
U, e H o He o Ho Ho H o |
list : :
2 >
Window
:Cleanpage
[D _]: Dirty page e
victim
number of b!ock 10 coe 5 30 cee 86
erase operations
- J
Block Flash memory

Fig. 4. An example of the CFLRU/E algorithm

3.3 DL-CFLUR/E (Double List CFLRU/E)

The CFLRU/C and CFLRUJE algorithms may evict a dirty page first although there
exists a clean page in the memory that can be evicted. This situation could occur
when the window of the list does not contain clean pages but they are in the
remaining position of the list. This is not cost effective in some cases because evicting
a dirty page incurs too expensive flash operations. To resolve this situation, we
propose a new algorithm, called DL-CFLUR/E (Double List CFLRU/E), that evicts a
dirty page only when there is not any clean page in the memory at all.

DL-CFLRU/E maintains two LRU lists called the clean page list and the dirty page
list. DL-CFLRUJE checks the clean page list first for selecting a victim page. If there
is a clean page in the list, the least recently referenced page is evicted. Otherwise, DL-
CFLRUVJE scans the dirty page list, and selects the page with the lowest block erase
count within the window as a victim. The reason of using CFLRU/E-like eviction in
the dirty page list is due to its good performance in terms of the wear-leveling degree.
Fig. 5 shows an example of DL-CFLRU/E. In this example, p6 in the clean page list is

206 Y.-S. Yoo et al.

selected as a victim first because it is at the end of the clean page list. If the clean
page list becomes empty, CFLRU/E checks the window of the dirty page list and
evicts p4 first because it has the lowest block erase count. Table 2 shows the
comparison of LRU, CFLRU, and the three proposed algorithms.

recency
pl p2 p3__ rophe ps p6
Dirty page list ’ D H D }—{ D H D H D H D ‘
number of block — Blk 4 Y BIKZ T Bk 5 Blk 6
erase operations e »l
= Window 4
pl P2 p3 p4 S pepbeeeesy
Clean page list ’ C H C H C H C H C H C ‘ ‘
: Cl.ea.n page If the clean page list is empty T
: Dirty page victim

Fig. 5. An example of the DL-CFLRU/E algorithm

Table 2. A comparison of LRU, CFLRU, and the three proposed algorithms

Considerations
Algorithm Data structure Eviction standards Re.d UCIE Wear-
write/erase .
. leveling
operations
LRU List Last reference time No No
CFLRU List + window Last reference time, Yes No

Clean/dirty page

Last reference time,

CFLRU/C List + window Clean/dirty page, Yes No
Access frequency
Last reference time,

CFLRU/E List + window Clean/dirty page, Yes Yes
Erase count
Clean page list, Last reference time,
DL-CFLRU/E Dirty page list + Clean/dirty page, Yes Yes
window Erase count

4 Experiments

4.1 Experimental Environment

To assess the performance of the proposed page replacement algorithms, we have
simulated the demand paging system. In the experiments, the total number of blocks

Page Replacement Algorithms for NAND Flash Memory Storages 207

in a flash memory is set to 300 and each block is composed of 64 pages. In addition,
we assume that the size of a page frame is equal to that of a flash page.

We have performed simulation experiments with fifteen types of synthetically
generated traces. The traces are classified into five types according to how the data
accesses are concentrated on a certain part of the NAND flash area. The types are
expressed as 90/10, 80/20, 70/30, 60/40, and 50/50. 90/10 means that 90 percent of
total operations are intensively performed in a certain 10 percent of the NAND flash
area, and the rest are performed in the other 90 percent of the NAND flash area. (See
Fig. 6). The traces are also classified into three types according to the ratio of read
and write operations. The types are expressed as 90/10 R/W, 50/50 R/W, and 10/90
R/W. 90/10 R/W means that the read and write operations in the trace are 90% and
10%, respectively. With these two classifications, we generated 15 traces which have
one million read/write operations.

Flash memory

90/10 10% 90%
(90/10 R/W) (90/10 R/W)
90% (50/50 R/W) 10% (50/50 R/W) 3 types
(10/90 R/W) (10/90 R/W)
80/20 20% 80%
5 types < f f
(90/10 R/W) (90/10 R/W)
80% (50/50 R/W) 20% (50/50 R/'W)
(10/90 R/W) (10/90 R'W)
K 50/50 50% 50%
(OU/10 R/W) (90/10 R/W)
50% (50/50 RIW) 50% (50/50 R/W)
(10/90 R/W) (10/90 R/W)

Fig. 6. Fifteen types of synthetically generated traces

4.2 Experimental Results and Performance Evaluation

We compared the three proposed algorithms, CFLUR/C, CFLRU/E, DL-CFLRU/E
with LRU and CFLRU. Figs. 7, 8, and 9 show the performance results of the five
algorithms in terms of the wear-leveling degree, the number of read and write hits,
and the number of erase operations when the ratio of read/write is 10/90 R/W, 50/50
R/W, and 90/10 R/W, respectively. We set the number of page frames in the system
as 1000 and the size of the window for CFLRU, CFLRU/C, CFLRU/E, and DL-
CFLRUVJE is set to 500.

In terms of the wear-leveling degree, CFLRU/C performs worse than the other
algorithms as shown in Fig. 7(a). This is because CFLRU/C maintains dirty pages

208 Y.-S. Yoo et al.

with large frequency count in the memory for long time, and hence the erase
operations of the corresponding block rarely happen. Therefore, erase operations are
not evenly performed on the whole flash memory area, and the wear-leveling degree
deteriorates.

In Figs. 7, 8, and 9, the proposed algorithms show larger number of read and write
hits than LRU and CFLRU. Specially, in the case of 90/10 and 80/20 traces, the
proposed algorithms perform even better. In all cases, DL-CFLRU/E has the best wear-
leveling degree and the lowest number of erase operations irrespective of the trace type.

8000 100000
7000 E IéIR“ERU 90000 - —
Q 0O CFLRU/C 80000 - —| | M- ——— — — — — — — — — — — — — — —
g‘) o OCFLRUE Z 70000
S 5000 BDLCFLRU/E | =
T S0 MR- == — =
= <
Eqwo-Hm--'W/ -1 -—-——- 250000 [
S
S0 M@ BB B------—-——— oo 1M - - - - ——————
5 2 30000 [
SowoHM --IH I ®H-IB (B mmI------ E
; Z 20000 —_ T, - —-—-—-— - - — —
R it B B AR B B e 10000 |
0 0
90/10 80/20 70/30 60/40 50/50 90/10 80120 70130 60/40 50/50
Type of trace Type of trace
(a) Wear-leveling degree (b) Number of read hits
900000 900000
800000 800000 _
700000 g 700000
= 600000 S 600000
£ &
"E 500000 o 500000
,5 g
Sa0000 H N BW---- - - - - ____ 5400000
st <
2 S 300000
g 300000 .- - — — — - — — — — — — — E
zowoooo o -1 BW--—— - ———————— £ 200000
z
100000 100000
0 0
90710 80120 7030 60140 5050 9010 5020 70530 60140 50150
Type of trace Type of trace
(c) Number of write hits (d) Number of erase operations

Fig. 7. 10/90 R/W trace

Fig. 10 shows the number of erase operations and the wear-leveling degree of
CFLRU and DL-CFLRU/E as a function of the window size. Note that evicting a
dirty page requires a write operation, and this potentially incurs erase operations. Fig.
10(a) shows that the total number of erase operations of CFLRU decreases as the
window size increases. The reason is that possibility of evicting dirty pages decreases
as the window size increases. For all cases, DL-CFLRU/E performs consistently
better than CFLRU in terms of the total number of erase operations. Fig. 10 also show
the wear-leveling degree of CFLRU and DL-CFLRU/E. The lower value of wear-
leveling degree means the more balanced erase conunts of each block. Since DL-
CFLRUIE considers the erase counts of each block when evicting a dirty page, it
shows far better wear-leveling degree than CFLRU irrespective of the window size.

To compare the wear-leveling degree of DL-CFLRU/E, LRU, and CFLRU in a
more detailed manner, Fig. 11 shows the erase counts of each block in the flash device.
In the figure, the x-axis is the block number of flash memory and the y-axis is the

Page Replacement Algorithms for NAND Flash Memory Storages

6000 500000
:]E]RE;‘JRU O
el i O CFLRU/C 400000 - =1 | M- - — — — — — — — — — — — — — — — — -
8 OCFLRU/E ooasoo0 M | B-- - - - - _______||
5o 4000 8 DL-CFLRU/E =
< = 300000
o0 B
£ 3000 Z 250000
2 =]
b E 200000
g 200 £ 150000
< z
= 100000
1000
50000
0 0
90/10 80120 7030 60140 50150 90/10 80120 70530 60/40 5050
Type of trace Type of trace
(a) Wear-leveling degree (b) Number of read hits
500000 500000
450000 - — — = — — - — - — -~~~ — 450000
40000 - = | M- — — — — — — — — — — L, 400000
z
gsoo00 HMW (B - — — - — — — — — — — — — — — — — £ 350000
= =]
= 3
200000 H W M- -—--————-—————————~ 2 300000
2 g
Zos0000 - M (- - - - - - - - - ____ 2 250000
k) g
5
soooooo M M- - - — - - — — - - — - — 2 200000
E 4
E oo H M B0l | B -—-——————— — — — — — - 8 150000 | - N
= g 100000
100000 —_—rTe---—-—-—-—-—-—- = — . ||
z
50000 50000 — — —
0 0
90/10 8020 70130 60/40 50/50 90/10 8020 70130 60/40 50/50
Type of trace Type of trace
(c) Number of write hits (d) Number of erase operations
Fig. 8. 50/50 R/W trace
2500 900000
BLRU 800000 - — — g — — — — — — — — — —
B CFLRU
2000 pr — = ———————————— — 4
o O CFLRU/C 700000
g O CFLRU/E 2
¥ Z 600000 H W B -———————————— - — — — — —
B p .
R =pLCRRUE | E
2 gosooo00 |l | M-~~~ —— ——
B S0 HIM | W-----————-———————————
2 1000 5
o 2
b E 300000
= Z
500 200000 - - — - — - — — — —
100000
0 0
90/10 80720 70/30 60/40 50/50 90/10 8020 70130 60/40 50150
Type of trace Type of trace
(a) Wear-leveling degree (b) Number of read hits
100000 120000
90000
Z 100000
. 80000 g
= 70000 g
3 2 80000
T 60000 g
= 2
w5000 4 M (M- - - - ————————— — — — — — — S 60000
ot 53
gl s
%E) 40000 5
S
Esoo HM (-7 B--- - - - - - ———-——— 3
Z 20000 £
2 2000
10000

0

90/10

80120 70/30 60/40 50150

Type of trace

(c) Number of write hits

90/10

8020 70/30

Type of trace

60/40 50150

(d) Number of erase operations

Fig. 9. 90/10 R/W trace

209

210 Y.-S. Yoo et al.

—+—90 10 —*— 8020 —— 70 30 60 40 =% 50 50

500000
- 5000 [
450000 .‘4444‘4‘4444":::::::::::::t"‘*‘*‘4~——~*—~44<444~44<4*
400000
350000 — .
300000

3000 [
250000

200000

Total number of erase operations
Wear-leveling degree
b3
8

150000 "‘<--~""‘,,4_<4‘<4‘<_‘<‘_‘<4_“<-“<<‘<-4<44<44<44-‘ 1500 [
100000 1000 [
50000 500
—
0 0
100 300 500 800 1000 100 300 500 800 1000
Window size Window size
(a) CFLRU
—+—90 10 —=— 8020 —— 70 30 —— 60 40 —*— 50 50
500000 -
5000
w 450000 ~
& 4500
£ 400000
g 4000
2 35000 - 8
5 3500
— 20
2 300000 —_— 3
5 T, 3000
& 250000 | =
3 250000 52500
2 200000 3 00
£ P
2 150000 [. . S 1500
=] o = = —
2z 100000 - 1000 T
2 —
50000 - 500 N
0 L L L L 0 b= ——
100 300 500 800 1000 100 300 500 800 1000
Window Size Window size

(b) DL-CFLRU/E

Fig. 10. A comparison of DL-CFLRU/E with CFLRU in terms of the total number of erase
operations and the wear-leveling degree as a function of the window size

number of erase operations performed for that block. A good wear-leveling degree
implies that the number of erase operations for each block is evenly distributed. As can
be seen from Fig. 11(e), each block has the uniform number of erase operations for the
50/50 trace. For all traces, DL-CFLRU/E performs the best and LRU the worst.
Specially, DL-CFLRU/E performs better than LRU and CFLRU by a large margin
when I/O operations are skewed to some limited blocks such as the case of 90/10 trace.

2500 1400
——LRU « M
P £ 1200
5 200 ~= CFLRU g
k-] 5}
g —— DL-CFLRU/E| 5 1000 [
) § yobegady
&' 1500 | L
2 Z 800
£

5 5ot
g 1000 - 5
= =
2 2 aw
E 500 E
z -h-1 Z 200 ¢

0 0

1 29 57 85 13 141 169 197 225 253 281 1 29 57 85 113 141 169 197 225 253 281
Block number Block number
(a) 90/10 (b) 80/20

Fig. 11. A comparison of DL-CFLRU/E with LRU and CFLRU in terms of the wear-leveling
degree

Page Replacement Algorithms for NAND Flash Memory Storages 211

100

Number of erase operations
Number of erase operations

129 57 8 U3 141 169 197 25 253 281 129 57 85 13 141 16 197 25 253 28

Block number Block number

(c) 70/30 (d) 60/40

Number of erase operations

1 29 57T 8 113 141 169 197 225 253 281

Block number

(e) 50/50

Fig. 11. (continued)

5 Conclusion

This paper presented new page replacement algorithms for NAND flash memory
storages, called CFLRU/C, CFLRU/E, and DL-CFLRU/E. The objectives of the
algorithms are reducing the number of erase operations and improving the wear-
leveling degree of flash memory.

Simulation results show that the performance of the proposed algorithms is better
than existing algorithms in terms of the number of erase operations and the wear-
leveling degree. In the case of CFLRU/C, since frequently referenced pages stay in
the memory for long time, the number of write operations for those pages is
significantly reduced. CFLRU/E considers the erase count of each block, and hence
the wear-leveling degree is improved. Since DL-CFLRU/E manages clean pages and
dirty pages in the separate list and the priority of a dirty page is higher than any clean
page, it performs the best in terms of the number of erase operations. Moreover, DL-
CFLRU/E shows good wear-leveling degree because it considers erase counts of
blocks to evict a dirty page.

In the proposed algorithms, additional information such as the number of block
erase counts and the access frequency of pages is exploited. In the future, we will
study how this information could be maintained efficiently. Performance studies with
various real world traces are another direction of our future research.

212

Y.-S. Yoo et al.

References

10.
11.

Yoo, Y., Han, L., Ryu, Y.: Performance Evaluation of LRU Replacement Algorithm for
Flash-based Cache System. In: Proceedings of Korean Mobile Society Spring Conference
(2006)

Yoo, Y., Ryu, Y.: Performance Evaluation of Buffer Replacement Algorithm for Flash
Memory. In: Proceeding of Korean Mobile Society Fall Conference (2006)

. Yoo, Y., Ryu, Y.: A Buffer Replacement Algorithm for Flash Memory. 2006 Myongji IT

forum (2006)

Yang, H., Han, L., Yoo, Y., Lim, D., Ryu, Y.S.: Design of Multimedia File System on
Flash Memory Storage. In: Proceedings of Korea Multimedia Society Fall Conference
(2005)

Han, L., Ryu, Y.: Performance Comparison of File Systems on Flash Disk and Hard Disk.
In: Proceedings of Korea Multimedia Society Fall Conference (2004)

Douglis, F., Caceres, R., Kaashoek, F., Li, K., Marsh, B., Tauber, J.A.: Storage
Alternatives for Mobile Computers. In: Proceedings of the 1st Symposium on Operating
System Design and Implementation (1994)

Park, C., Kang, J., Park, S., Kim, J.: Energy-Aware Demand Paging on NAND Flash-
based Embedded Storages. In: Proceedings of International Symposium on Low Power
Electronics and Design (2004)

Park, S., Jung, D., Kang, J., Kim, J., Lee, J.: CFLRU: a replacement algorithm for flash
memory. In: Proceedings of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems (2006)

Park, C., et al.: A low-cost memory architecture with NAND XIP for mobile embedded
systems. In: Proceedings of CODES+ISSS (2003)

Samsung Electronics, NAND flash memory data sheets (2003)

Ryu, Y., Lee, K.: Improvement of Space Utilization in NAND Flash Memory Storages,
Lecture Notes in Computer Science, Springer, Heidelberg (2005)

An Efficient Garbage Collection Policy for Flash
Memory Based Swap Systems™*

Ohhoon Kwon', Yeonseung Ryu?, and Kern Koh'

! School of Computer Science and Engineering, Seoul National University
{ohkwon, kernkoh}@oslab.snu.ac.kr
2 Department of Computer Software, Myongji University
ysryu@mju.ac.kr

Abstract. Mobile computing devices use flash memory as a secondary storage
because it has many attractive features such as small size, fast access speeds,
shock resistance, and light weight. Mobile computing devices exploit a swap
system to extend a limited main memory space and use flash memory as a swap
system. Although flash memory has the attractive features, it should perform
garbage collection, which includes erase operations. The erase operations are
very slow, and usually decrease the performance of the system. Besides, the
number of the erase operations allowed to each block is also limited. To
minimize the garbage collection time and evenly wear out, our proposed
garbage collection policy focuses on minimizing the garbage collection time
and wear-leveling. Trace-driven simulations show that the proposed policy
performs better than existing garbage collection policies in terms of the number
of erase operation, the garbage collection time, total amount of energy
consumption and the endurance of flash memory.

Keywords: Flash memory, Garbage collection, Swap systems.

1 Introduction

Flash memory is becoming important for mobile computing devices such as laptop
computers and tablet PCs. Because flash memory has lots of attractive features such
as small size, fast access speeds, shock resistance, high reliability, and light weight, it
will be widely used in various computing systems such as embedded systems, mobile
computers, and consumer electronics, and also will be used in a swap system.
Although flash memory has a lot of attractive features, it has a critical drawback,
which is an inefficiency of in-place-update operation. When we update data in flash
memory based systems, we can not write new data directly at same address due to
physical characteristics of flash memory. First of all, all data in the block must be
copied to a system buffer and then updated. Then, after the block has been erased, all
data must be written back from the system buffer to the block. Therefore, updating
even one byte data requires one slow erase and several write operations. Besides, if
the block is a hot spot, it will soon be worn out.

* This work was supported by Research fund from Samsung Electronics Co., LTD.

0. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 213-223] 2007.
© Springer-Verlag Berlin Heidelberg 2007

214 0. Kwon, Y. Ryu, and K. Koh

Many flash memory based systems exploit the out-place-update operation to
resolve the problem of the in-place-update operation [6-8]. When the data is updated,
the out-place-update operation writes new date at new place, and then the obsolete
data are left as garbage. When there are not enough free spaces in flash memory, we
should collect the garbage space and translate a free space. This operation is a garbage
collection, which consists of the write operations and the erase operations. The erase
operations are even slower than other operations, and usually decrease the
performance of the system. Besides, the number of the erase operations allowed to
each block is limited. Recently, mobile computers such as a laptop computer, a tablet
PC, and a PDA use a swap system to extend a limited main memory space. In this
paper, we propose an efficient garbage collection policy for flash memory based swap
system. To minimize the garbage collection time and evenly wear out flash memory,
our proposed garbage collection policy focuses on minimizing the garbage collection
time, reducing the number of the erase operations, and wear-leveling. Trace-driven
simulations show that our proposed policy performs better than the greedy, the Cost-
Benefit (CB), and the Cost Age Time (CAT) policies in terms of the garbage
collection time, the number of erase operations, and the endurance of flash memory.

The remainder of this paper is organized as follows. We review characteristics of
flash memory and existing works on garbage collection in Section 2. Section 3
presents a new garbage collection policy for flash memory. We evaluate the
performance of the proposed policy in Section 4. Finally, we conclude this paper in
Section 5.

2 Related Works

In this section, we present characteristics of flash memory and existing works on
garbage collection.

2.1 Characteristics of Flash Memory

Flash memory is a non-volatile solid state memory, its density and I/O performance
have improved to a level at which it can be used as a secondary storage for portable
computing devices such as laptop computer, tablet PC, and PDA. Flash memory is
partitioned into blocks and each block has a fixed number of pages. Unlike hard disks,
flash memory has three kinds of operations: page read, page write, and block erase
operations. They have difference performances, and the performances of three kinds
of operations are summarized in Table 1.

Table 1. Operations of flash memory [13]

Page Read Page Write Block Erase
(2K bytes) (2K bytes) (128K bytes)
Performance (us) 25(Max.) 200(Typ.) 2000(Typ.)

Energy Consumption (nJ) 4.2(Max.) 12.9(Typ.) 1019.7(Typ.)

An Efficient Garbage Collection Policy for Flash Memory Based Swap Systems 215

As aforementioned, flash memory has lots of features. However, flash memory has
two drawbacks. First, blocks of flash memory need to be erased before they are
rewritten. The erase operation needs more time than read or write operation. The
second drawback is that the number of erase operations allowed to each block is
limited. This drawback becomes an obstacle to developing a reliable flash memory-
based embedded system. Due to this drawback, the flash memory based embedded
systems are required to wear down all blocks as evenly as possible, which is called
wear-leveling.

2.2 Existing Works on Garbage Collection

To improve the performance of hard-disk based storage systems, Rosenblum et al.
proposed the Log-Structured File System (LFS) and garbage collection policies have
long been discussed in log-based disk storage systems [1-4]. Fortunately, the Log-
Structured File System can be applied to flash memory based storage systems and the
garbage collection policies in log-based disk storage also can be applied to flash
memory based storage systems. Wu et al. proposed the greedy policy for garbage
collection. The greedy policy considers only the number of valid data pages in blocks
to minimize the write cost and chooses the block with the least utilization [5].
However it dose not consider wear-leveling for flash memory. Therefore, it was
shown to perform well for random localities of reference, but it was shown to perform
poorly for high localities of reference.

Kawaguchi et al. proposed the cost-benefit policy. The cost-benefit policy
evaluates the cost benefit of all blocks in flash memory using ((a*(1-u))/2u) method,
where a is the elapsed time from the last data invalidation on the block, and u is the
percentage of fullness of the block [6]. After evaluating the all blocks, it chooses the
victim block that has a maximum cost benefit value. Chiang et al. proposed the Cost
Age Time (CAT) policy. The CAT policy focuses on reducing the number of the
erase operation. To reduce the number of the erase operations, they use a data
redistribution method that uses a fine-grained method to separate cold and hot data.
The method is similar to the cost-benefit policy but operates at the granularity of
pages. Furthermore, the CAT policy considers wear-leveling. To perform even-
leveling, the CAT chooses the victim block according to cleaning cost, ages of data in
blocks, and the number of the erase operations [7].

Kim et al. proposed the cleaning cost policy, which focuses on lowering cleaning
cost and evenly utilizing flash memory blocks. In this policy, they dynamically
separates cold data and hot data and periodically move valid data among blocks so
that blocks have more even life times [9]. Chang et al. proposed the real-time garbage
collection policy, which provides a guaranteed performance for hard real-time
systems. They also resolved the endurance problem by the wear-leveling method [10].

3 Garbage Collection for Flash Memory Based Swap System

In this paper, we propose the new garbage collection policy, which extends the greedy
policy for flash memory based swap system. Thus, our proposed garbage collection
policy is named ‘S-Greedy’. In flash memory, the erase operation is even slower than

216 0. Kwon, Y. Ryu, and K. Koh

the read and write operation. Thus, the erase operation is dominant to the performance
of the flash memory based swap system. As mentioned in Section 2, to improve the
performance, existing works for garbage collection tried to reduce the number of the
erase operations. They also considered the wear-leveling for the endurance of flash
memory.

3.1 Flash Memory Based Swap System

Fig. 1 shows the architecture of the flash memory based swap system. The swap area
consists of a sequence of page slots, which is used to store a page swapped out from
memory. When a page is swapped out, the location of the swapped-out page is stored
in the corresponding page table entry (PTE). The location information in the PTE is
used to find the correct swap slot in the swap area when the page is swapped in.
Unlike a hard disk based swap system, the flash memory based swap system has the
Flash Translation Layer (FTL) and the Memory Technology Device (MTD) layer.
FTL provides a transparent access to the flash memory based swap system. If there
are not enough free blocks in the swap area, the swap system should perform garbage
collection. Garbage collection is also handled in FTL [11]. The MTD layer handles
read, write, and erase operations for the flash memory based swap system [12].

3.2 Garbage Collection for Swap Systems

The system should perform garbage collection if there are not enough free blocks in
flash memory. We should wait and do not perform any operations such as read and

Page table entry Page table entry

1|

(" FTL layer h
Garbage Je—s| | | [| | [|
Collection -

_ Address Translation)

l I/O requests
(" MTD layer h
‘ 1/0 Queue ‘
- J/
l read, write, and erase operations
Page
slot

Swap area (Flash memory) Y,

Fig. 1. The architecture of flash memory based swap system

An Efficient Garbage Collection Policy for Flash Memory Based Swap Systems 217

write operations until the garbage collection finishes. To improve the performance of
flash memory based swap systems, we should minimize the garbage collection time.
In this paper, we exploit the greedy policy to make a decision which block should be
erased during garbage collection. Since the greedy policy considers only the number
of valid pages in blocks and chooses the block with the least utilization, we can
minimize the garbage collection time. However it dose not consider wear-leveling and
was shown perform poorly for high localities of reference. To address the problems of
the greedy policy, we extend the greedy policy by considering the different update
time of the pages in the blocks and the number of the erase operation of the blocks.

Fig. 2 shows the redistribution of the valid pages during garbage collection. When
we perform garbage collection, we select several victim blocks with the least
utilization, and then copy valid pages in the victim blocks to the free block before we
clean the block. For the redistribution of valid pages, we should consider the
Swapped-Out Time (SOT) of the valid page. The Swapped-Out Time (SOT) is the
time when the page is swapped out from memory. Because the current operating
systems use the round-robin based process scheduling scheme, the least recently
swapped-out page is likely to swap in the main memory in the near future. Thus, we
can classify the least recently swapped-out page as hot page. Since we calculate the
SOT of the valid pages and sort the valid pages by the SOT value, and then copy the
least recently swapped-out page first, we can get hot valid pages together into a block
during redistributing.

Flash memory used as the swap area should be controlled to evenly wear out all
blocks since wearing out specific blocks could limit the usefulness of the whole flash
memory based swap system. Thus, most of the existing works considered wear-
leveling of flash memory when the victim block is selected. In contrast, our proposed

0 Self:ct several victim blocks, . (2) Sort valid pages by the SOT value
estimate the SOT value of each valid page, and copy the least recently swapped-out
and classify valid pages as hot or cold pages page first

I|\V|T|V I({I|V]|I

I VIV|V

N J\. J\ J
Y Y Y Al Y A\ Y
used block used block used block used block block for

pages copied out

Valid page Invalid page

Fig. 2. The redistribution of the valid pages

(3) Erase the victim blocks

218 0. Kwon, Y. Ryu, and K. Koh

policy does not consider wear-leveling similar to the greedy policy when the victim
block is selected. In order to guarantee the long endurance of the flash memory based
swap system, we propose an efficient free block list management scheme for wear-
leveling on the flash memory based swap system. In our proposed policy, we use the
sorted free block list. After cleaning the victim blocks, we calculate the number of the
erase operation of the block, and then the block is added to the free block list. The
free block in the free block list are sorted by the number of the erase operation of the
block. Hence, during copying out, we could allocate the block with the minimum
number of the erase operation to valid pages, and could evenly wear out. Fig. 3 shows
the efficient free block list management scheme for wear-leveling.

(1) Cleaned blocks are sorted by the number of
the erase operation, and then each block is
added to the free block list respectively.

Free block list UB CB UB CB UB AB
o FB FB FB
The greatest The lowest
number of the {1 ===) number of the
erase operation erase operation

1 h
Active block /
(2) When the new active block is needed, the ’

1
! 1
! 1
! 1

free block list manager serves block with the 1

: VP VP VP :

1
! 1

lowest number of the erase operation.

Active block Used block Cleaned block Free block Valid page

Fig. 3. The efficient free block list management

4 Performance Evaluation

We present the performance evaluation results for various garbage collection policies
to assess the effectiveness of our proposed policy in this section. We conducted trace-
driven simulations to compare the performance of our proposed policy with those of
the greedy, the Cost-benefit (CB), and the Cost Age Time (CAT) policies. We used
the synthetic trace to assess the performance of the flash memory based swap system.
Since the operating systems swap out many pages in a short period of time, we
consider this access pattern to generate the synthetic trace.

To evaluate the performance, when the size of free block is fewer than 10% of the
total size of flash memory, garbage collection is started. And garbage collection is
stopped when the size of free block is larger than 20% of the total size of flash
memory. Fig. 4 and Fig. 5 show the performance results of the number of erase
operation and pages copied out for the four garbage collection policies. Because
garbage collection performs a lot of page write and block erase operations, we should

An Efficient Garbage Collection Policy for Flash Memory Based Swap Systems 219

30800

3 30600

&

g

2

[%}

=]

=

2 30400 |

St

=]

5

=

g

=

Z 30200 |

7
30000 /% \\

S-Greedy Greedy CB CAT
Fig. 4. The result of the number of the erase operations

reduce the number of erase operation and pages copied out to improve the
performance of the flash memory swap based system. Our proposed policy, S-Greedy
shows better performance in these performance results, and these results affect the
performances of the garbage collection time and the energy consumption.

300000

290000

280000

270000

Number of the pages copied out

260000

S-Greedy Greedy CB CAT

Fig. 5. The result of the number of the page copied out

220120000 %

g 35000 %
= /
0 % l

222 0. Kwon, Y. Ryu, and K. Koh

Fig. 6 and Fig. 7 show the garbage collection time and total amount of energy
consumption during simulation. The S-Greedy policy shows better performance in
terms of the garbage collection time and total amount of energy consumption. This is
because the S-Greedy policy just considers the utilization of each block to minimize
the garbage collection time and total amount of energy consumption unlike other
policies. Furthermore, our proposed policy performs better than the original greedy
policy because it consider the Swapped-Out Time (SOT) of each page and exploits
the SOT value to redistribute pages.

Finally, Fig. 8 shows the number of garbage collection performed during the
simulation and fig. 9 shows the performance results of the number of the worn-out
blocks. In these results, the S-Greedy policy shows the best performance in terms of
the number of the worn-out blocks due to the efficient free block list management
scheme. This result means that our proposed policy guarantees the long endurance of
flash memory.

5 Conclusion

In this paper, we presented the novel garbage collection policy for the flash memory
based swap system. Our proposed policy focuses to minimizing the garbage collection
time and total amount of energy consumption, and also considers the endurance of
flash memory. To minimize the garbage collection time and total amount of energy
consumption, we extended the greedy policy by considering the different swapped-out
time of the pages. Furthermore it proposed the efficient free block lists management
scheme to ensure the endurance of flash memory. As a result, the proposed policy
performs better than other existing garbage collection policies in terms of the number
of erase operations, the garbage collection time, total amount of energy consumption
and the endurance of flash memory.

References

1. Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a Log-Structured
FileSystem. ACM Transactions on Computer Systems 10(1) (1992)

2. Blackwell, T., Harris, J., Seltzer, M.: Heuristic Cleaning Algorithms in Log-Structured File
Systems. In: Proceedings of the 1995 USENIX Technical Conference (January 1995)

3. Matthews, J.N., Roselli, D., Costello, A.M., Wang, R.Y., Anderson, T.E.: Improving the
Performance of Log-Structured File Systems with Adaptive Methods. In: Proceedings of
the Sixteenth ACM Symposium on Operating System Principles, ACM Press, New York
(1997)

4. Seltzer, M., Bostic, K., McKusick, M.K., Staelin, C.: An Implementation of a Log-
Structured File System for UNIX. In: Proceedings of the 1993 Winter USENIX (1993)

5. Wu, M., Zwaenepoel, W.: eNVy: A Non-Volatile, Main Memory Storage System. In:
Proceedings of the 6th International Conference on Architectural Support for Programming
Languages and Operating Systems (1994)

6. Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash-Memory Based File System. In:
Proceedings of USENIX Technical Conference (1995)

o]

10.

11.
12.
13.

An Efficient Garbage Collection Policy for Flash Memory Based Swap Systems 223

Chiang, M.-L., Lee, P.C.H., Chang, R.-C.: Cleaning policies in mobile computers using
flash memory. Journal of Systems and Software 48 (1999)

Torelli, P.: The Microsoft Flash File System. Dr. Dobb’s Journal (February 1995)

Kim, H., Sanggoo Lee, S.G.: A new flash memory management for flash storage system.
In: Proceedings of the Computer Software and Applications Conference (1999)

Chang, L.-P., Kuo, T.-W., Lo, S.-W.: Real-time garbage collection for flash-memory
storage systems of real-time embedded systems. ACM Transactions on Embedded
Computing Systems 3 (2004)

Intel Corporation: Understanding the Flash Translation Layer (FTL) Specification
http://www linux-mtd.infradead.org

Samsung Electronics: 128M x 8 Bit NAND Flash Memory, http://www.samsung.com

LIRS-WSR: Integration of LIRS and Writes Sequence
Reordering for Flash Memory

Hoyoung Jung', Kyunghoon Yoon', Hyoki Shim', Sungmin Park’,
Sooyong Kang?, and Jaechyuk Cha®"

! Dept. of Electronics and Computer Engineering, Hanyang Univ.
17, Haengdang-dong, Seongdong-gu, Seoul, Korea
% Dept. of Computer Science Education
17, Haengdang-dong, Seongdong-gu, Seoul, Korea
? Dept. of Informations and Communications, Hanyang Univ.
17, Haengdang-dong, Seongdong-gu, Seoul, Korea
{horong, rumiraru,dahlia, syrilo, sykang, chajh}@hanyang.ac.kr

Abstract. Most of the mobile devices are equipped with NAND flash memories
even if it has characteristics of not-in-place update and asymmetric I/O latencies
among read, write, and erase operations: a write/erase operation is much slower
than a read operation in a flash memory. For the overall performance of a flash
memory system, the buffer replacement policy should consider the above
severely asymmetric I/O latencies. Existing buffer replacement algorithms such
as LRU, LIRS, and ARC cannot deal with the above problems. This paper
proposes an add-on buffer replacement policy that enhances LIRS by reordering
writes of not-cold dirty pages from the buffer cache to flash storage. The
enhances LIRS-WSR algorithm focuses on reducing the number of write/erase
operations as well as preventing serious degradation of buffer hit ratio. The
trace-driven simulation results show that, among the existing buffer
replacement algorithms including LRU, CF-LRU, ARC, and LIRS, our LIRS-
WSR is best in almost cases for flash storage systems.

Keywords: Flash Memory, Buffer Replacement Algorithm, Storage System.
Embedded System.

1 Introduction

Flash memory is a type of electrically erasable and programmable read-only memory
(EEPROM) that can retain data without power. It has many attractive features,
including low power consumption, shock resistance, low weight, high density, and
high I/O performance. As its price decreases and its capacity increases, flash memory
is widely used for storage in digital cameras, mobile phones, PDAs, and notebooks.
However, several hardware limitations exist in a flash memory. Firstly, a data unit
of erase operations is a block that is the set of fixed number of contiguous pages even

* Corresponding author.

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 224 2007.
© Springer-Verlag Berlin Heidelberg 2007

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for Flash Memory 225

if a data unit of read/write operations is a page. Secondly, it is impossible to re-write
the page in-place in a flash memory. So, in order to update data of the page, a system
should perform only one of the following: 1) writing these data to newly allocated
page, and invalidating the original page; 2) writing these data to the original page only
after erasing the block containing that page. In the latter case, it is difficult to keep the
data consistency. In the former case, reclaiming invalid pages for reading/writing
requires erasing blocks containing these pages. Thirdly, the life time of a flash
memory is shorter than the life time of a hard disk and a DRAM. In other words, only
a limited number of erase operations can be performed safely to each memory cell,
typically between 100,000 and 1,000,000 cycles. Finally, there exist differences
among I/O latencies according to the kinds of I/O operations, i.e., read, write, and
erase. The write operation is about 10 times slower than the read operation, and the
erase operation is about 20 times slower than the write operation [1][2].

Disk caching has been used for reducing disk I/O latency. A buffer replacement
algorithm for a disk tries to obtain the optimal I/O sequence from the original I/O
sequence by reducing the number of accesses for the overall performance. There are a
large number of buffer replacement algorithms for disk, for example, LRU, LIRS,
ARC. Under the I/O trace extracted from the Wisconsin benchmark [21] on the
PostgresSQL DBMS, LIRS shows the good performance since it uses the IR (Inter-
reference Recency) for identifying hot/cold pages. So LIRS is selected as the base
algorithm for us to starts to enhance.

Since a flash memory becomes an alternative of a disk, flash caching is needed for
reducing flash I/O latency. By the way, a buffer replacement algorithm for a flash
memory has to additionally deal with the problem of different I/O latencies according to
the kind of I/O operations, i.e. read, write, and erase, even though it is similar to the
buffer replacement algorithms for a disk. It tries to obtain the optimal I/O sequence from
the original I/O sequence by discriminatively reducing the number of accesses
according to the kind of I/O operations. Since LIRS ignores the severely asymmetric /O
latencies, it shows the more poor performance in a flash memory than in a hard disk.

In addition, since an erase operation is directly controlled not by the buffer
management layer, but by the underneath layer, an I/O sequence generated from a
buffer replacement algorithm for a flash also consists of read/write operations only.
Fortunately, the number of write requests from the buffer management layer is
proportional to the number of physical writes and erases to the flash. Therefore, we
focus on finding an algorithm that minimize the number of write requests as well as
the loss of hit ratio for generating optimal I/O sequence from a given I/O sequence.

For a flash memory, this paper proposes an efficient buffer replacement algorithm,
LIRS-WSR, that enhances an existing LIRS buffer replacement algorithm with add-
on buffer replacement strategy, namely Write Sequence Reordering (WSR). WSR
reorders writing not-cold dirty pages from the buffer cache to the disk to reduce the
number of write operations while preventing excessive degradation of the hit ratio.
For seamless integration of LIRS and WSR, we have modified all the steps of the
LIRS algorithm while maintaining advantages of that algorithm, i.e., IR. This
algorithm is also designed to minimize both temporal and spatial overheads required
to achieve the goal. Our simulation results show that LIRS-WSR effectively reduces
the number of physical page—writes and page—erases, and consequently outperforms
other algorithms.

226 H. Jung et al.

Section 2 introduces some related work. In Section 3, an efficient buffer
replacement algorithm, LIRS-WSR, that enhances LIRS with WSR, is described in
detail. In Section 4, the trace-driven simulation results show that our algorithm is
superior to the existing algorithms such as LRU, LIRS, ARC, and even CFLRU in a
flash memory. Finally, we concluded in Section 5.

2 Related Works

2.1 Flash Memory

Flash memory is a type of EEPROM. Flash memory is non-volatile, that is, it retains
data without power. There are two types of flash memory, NAND and NOR. Table 1
compares their characteristics.

Table 1. Characteristics of flash memory [5]

. current (mA) Access time (4kB)
Device
Idle Active Read Write Erase
NOR 0.03 32 20 us 28 ms 1.2 sec
NAND 0.01 10 25 us 250 us 2 ms

The read latency of NOR is slightly lower than that of NAND, but its write and
erase latencies are much higher. The NAND architecture offers extremely high cell
densities and a high capacity. NOR flash is typically used for code storage and
execution, NAND for data storage [6].

NAND flash memory supports page I/O, and its write latency is about 10 times
lower than the read latency given in Table 1. Read and write operations are performed
in units of pages, which are usually 512 bytes in size. Erase operations are performed
on blocks, which consist of 32 pages (16KB) each. Because of these features, flash
memory storage architecture needs a block mapping structure to use flash memory as
a block device (like a magnetic disk). Various mapping techniques support flash block
devices. FTL (Flash Translation Layer) is one of these techniques, and stores part of
the map on the flash device itself, reducing the cost of map updates. FTL stores the
mapping table in S-ram for fast address translation and also performs garbage
collection and bad block management. Figure 1 shows the architecture of NAND
flash storage system using FTL [7].

As Figure 1 shows, file system regards flash memory storage as a block device.
Page rewrites and in-place updates can be done logically on the file system layer.
However, rewritten pages with the same address are physically rewritten in different
pages, or even different blocks. Thus reducing the number of page rewrites on file
system layer reduces the number of physical write and erase operations. This both
improves the performance of file system and lengthens life time of flash memory.

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for Flash Memory 227

10 Request (Application)
Fwrite(file, data) {
File System «—» Buffer
Block write(LBA, size) l
' f
Controller
flash write \ i
(bank, block, page)]
MappingTabl
ppngieRe Raw Flash
FTL Memory
Flash Memory Storage System

Fig. 1. The Architecture of NAND Flash Storage System

2.2 Traditional Buffer Replacement Algorithms

The buffer cache policy used in OSes stores some parts of every disk block to reduce
the number of physical I/O requests. Various buffer replacement algorithms have
been developed to increase I/O performance, because the size of the buffer cache is
much smaller than that of the disk[8][9][17][18][19][20].

The LIRS (low inter-reference recency set)[8] is an enhanced buffer replacement
algorithm which captures both recency and frequency. LIRS maintains variable size
LRU stack which classifies pages into LIR pages and HIR pages. LIR pages are those
who have been accessed again while staying in the stack and HIR pages are those who
were not in the stack (as a real page or metadata) when they were accessed. LIRS
always selects the HIR page with the largest recency value among all HIR pages as a
victim.

LIRS algorithm usually outperforms LRU algorithm because it works well for
looping pattern, for which LRU shows worst performance. However, it sometimes
shows worse performance than LRU algorithm when the buffer cache size is larger
than working set size. Also, since metadata of already evicted pages remain in the
LIR stack, LIRS usually require more memory space than other buffer replacement
algorithm.

The ARC (Adaptive Replacement Cache)[9] algorithm is another buffer
replacement algorithm that outperforms the LRU algorithm. ARC maintains two
variable sized LRU lists holding not only the pages in cache but also the traces of
replaced pages. The first LRU list contains cold pages which were referenced only
once, recently and the second LRU list contains hot pages accessed at least twice,

228 H. Jung et al.

recently. The cache spaces allocated to the pages in these lists changes depending on
the number of page misses occurred in each list: when a page miss occurs in a list
then the size of the list decreases by 1 while that of the other list increases by 1.

The ARC algorithm is low-overhead and scan-resident algorithm. And it is
adaptive to the change of access pattern. However, in case that the size of buffer
cache is a bit smaller than working set size, burst page misses occurs because hot
pages not used any more still reside in buffer cache.

2.3 Buffer Replacement Algorithm for Flash Memory

Existing buffer replacement algorithms are designed to maximize the page hit ratio.
These algorithms treat the costs of page reads and writes as equal. However, because
the write cost for evicting a dirty or modified page is much higher than the read cost
in flash memory, existing algorithms may not maximize flash I/O performance.

In [2], a new buffer replacement algorithm called CF-LRU (Clean First LRU) was
proposed. CF-LRU is a flash memory-aware page replacement algorithm that
considers the different execution times for reading and writing.

Page A PageB PageC Page D Page E
crrutist [cl»{ClsD|ofc|+{D]
1 |

= Clean page ! Windows, w !

[E] : 0wty pge

Fig. 2. CF-LRU page replacement example [2]

Suppose pages were recently accessed in the order E, D, C, B, A, as illustrated in
Figure 2 (so that A is the most recently used clean page and E is the least recently
used dirty page). Under the LRU page replacement algorithm, the sequence of victim
pages is E, D, C, B, always evicting the least recently used page first. When using
NAND flash memory for storing victim page data, however, it may be advantageous
to first evict the clean page D to reduce the number of flash write operations, even
though the page was more recently accessed than the dirty page E.

As the page fault ratio may increase if the recently used clean page is evicted, only
the clean pages within a predetermined window size (w) become candidate victims in
CF-LRU. If the algorithm does not find a clean page within the window, it defaults to
the normal LRU algorithm, in which the least recently used page becomes the victim
whether the page is dirty or not [2]. Despite that the hit ratio of CF-LRU may be
lower than that of normal LRU, in many cases it reduces the numbers of write and
erase operations more effectively. However, CF-LRU needs to determine w and thus
is difficult to adapt to tasks with various workloads. CF-LRU also has a search
overhead, as it should determine whether each page in the window is dirty. Above all
things, it keeps both cold- and hot-write data; it sometimes performs more read

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for Flash Memory 229

operations than normal LRU, reducing performance. In particular, it needs an
adaptive on-line algorithm to determine window size and should apply hot-cold
identification to avoid keeping a cold-write page in the buffer.

2.4 Hot-Cold Identification for Flash Memory

Hot-data identification in flash memory storage systems not only imposes great
demands on garbage collection, but also strongly affects the performance and life time
of flash memory [8]. In previous research, hot-data identification in a flash memory
storage system was used for separating hot- and cold-write pages from whole flash
memory blocks. In this scheme, hot-write pages are gathered into hot blocks, while
cold-write pages are gathered into cold blocks. Because write operations occur
frequently in hot blocks, they have many invalid pages and contain few valid or live
pages. All live pages in the block to be erased should be copied to some available
block when the erasing operation begins. During garbage collection, if the hot block is
chosen as a target for an erase operation, the number of copying valid pages is
minimized, thereby reducing garbage collection costs.

<+—— Hot list

El tis d ted if
the hot list is full,

Element is promoted if
LBA already exists in
the candidate list.

/ < Candidate List ‘\

Flement is discarded if New element with LBA is added if
the candidate list is full. the LBA does not exist in any list

Fig. 3. Two Level LRU Lists [10]

In [10], the authors proposed a simple mechanism for detecting hot-write pages in
flash memory. They identify hot-write pages using two fixed-length LRU lists of
LBAs, as shown in Figure 5. In Figure 5, the first LRU list is the hot list and the
second list the candidate list. When a page write occurs in flash memory for the first
time, the page is added to the candidate list. When the page write in the candidate list
occurs again, the page is updated to the hot list. The two-level list examines each
page’s associates to determine the "hotness" of the written data. If the page is already
in the hot list, then the page remains hot. If not, the page is considered cold.

If hot-cold identification is applied to the delayed page write buffer algorithm, the
spatial inefficiency caused by cold dirty-pages is efficiently reduced. The above hot-
cold identification algorithm, however, needs to adjust the size of 2 LRU list.
Moreover, the data structure overhead is inadequate for applying the buffer
replacement algorithm.

230 H. Jung et al.

3 LIRS-WSR

Write Sequence Reordering (WSR) policy and LIRS-WSR algorithm are designed for
a buffer cache of the flash memory based storage system. The objective of LIRS-
WSR is reducing the number of flushes of dirty pages from the buffer into flash
memory when page replacement occurs. To achieve this objective, it uses the
following strategy: delaying evicting the page which is dirty and has high access
frequency as possible. Using this strategy, the hit ratio of LIRS-WSR algorithms may
be lower than that of LIRS, resulting in more physical page reads. However, this
algorithm effectively reduces the number of page writes and erases. As a result, it
increases the overall performance of the flash memory based storage system.

3.1 WSR Policy

In [2], CF-LRU algorithm keeps dirty pages in the buffer without consideration of the
access frequencies of these pages. As mentioned in the previous section, keeping dirty
pages in the buffer may degrade overall performance because it lowers the hit ratio.

To overcome the limit of CF-LRU, we propose Write Sequence Reordering (WSR)
policy. Basic scheme of WSR is following:

1. Use cold-detection algorithm to judge whether the page is cold or not
2. Delays flushing dirty pages which are not regarded as cold.

For these purpose, cold-detection algorithm is introduced. The idea of cold-
detection algorithm is similar to the idea of [10], while it is implemented more simply
using the data structure of buffer replacement algorithm. Only a bit flag called “cold-
flag” is added to the page data for cold-detection algorithm. When the buffer manager
chooses the victim candidate page by its replacement algorithm, it is examined
whether the page is dirty. If the page is dirty and cold-flag is not set, this page
regarded as a not-cold dirty page. Then the cold-flag of the page is set and buffer
manager tries to find other page as a victim. If the candidate is clean or cold-dirty
page — a dirty page of which dirty flag is set) — it is evicted out of the buffer. In
addition, a cold-flag of dirty page is cleared when the page is referenced again.

WSR is heuristic algorithm based on the second-chance algorithm [12] because it
is very hard to theoretically determine whether the dirty page is evicted for the
performance. However it is experimentally proved that WSR effectively reduces the
page writes and erases of flash memory without much degradation of hit-ratio.

3.2 LIRS-WSR

The LIRS algorithm can be implemented using 2 lists: LIR stack S which stores all
LIR pages as well as HIR pages regardless of the residence status — some of them are
resident and others are not (actually, only their metadata are stored in the list) — and
HIR list Q that stores HIR resident pages. Figure 11 shows the 2 lists of LIRS. As
mentioned in Section 2.3, LIRS tries to evict the HIR page which has the largest
recency measure as a victim, hence the front-most page in list Q is always chosen as a
victim in Figure 4.

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for Flash Memory 231

top front

list Q

IE' : LIR page(all LIR pages are residient)
® : resident HIR page
O : non resident HIR page

O~ FO@E]

bottom

LIRS stack S

Fig. 4. Two Lists of the LIRS algorithm [8]

We applied the WSR policy to the LIRS algorithm to make an enhanced LIRS
algorithm, LIRS-WSR, for the flash memory. The differences between the original
LIRS and LIRS-WSR are listed below.

1. If a page is introduced to the buffer for write request for the first time, it becomes
a dirty page and enters the top of the stack S in LIRS-WSR algorithm. (In LIRS
algorithm, all pages enter the end of the list Q, first, regardless of the access
type.)

2. Only a clean page or a cold-dirty page moves to the end of the list Q from the
bottom of the stack S in LIRS-WSR algorithm. (In LIRS algorithm, the page in
bottom of the stack S moves to the end of the list Q, regardless of the status of the
page.)

3. A not-cold dirty page in the bottom of the stack S is moved to the top of the stack
with the Cold flag set, in LIRS-WSR algorithm.

When an LIR page in stack S is accessed the Cold flag of the page is cleared and
the page is moved to the top of the stack. When a resident HIR page in the list Q is
accessed, LIRS-WSR tests the bottom-most page in Stack S. If the page is clean or its
Cold flag is set, the page is moved to the end of the list Q. If the page is dirty and its
Cold flag is 0, the page moves to the top of the stack S with the Cold flag set to 1 and
LIRS-WSR tests the next bottom-most page. The other operations of the LIRS-WSR
algorithm are the same as those of the original LIRS algorithm

4 Simulation Results

In this section, we compare the hit ratios, number of write operations and runtime of
the buffer replacement algorithms on a NAND flash memory storage system. For
comparison, we conducted a trace-driven simulation. For the experiment, we used
four kinds of traces which contain random, sequential, and looping pattern. The write
locality of each trace is also different for the precision.

232 H. Jung et al.

4.1 Simulation Workloads

We collected trace of the PostgreSQL RDBMS [13] running on the Linux operating
system on a Samsung SMDK 2410 embedded board [14]. A K9S1208VOM SMC
(smart media card) NAND flash memory [15] was used for the storage system. The
access pattern of the given trace data is shown in Figure 6, and its characteristics are
shown in Table 2. This trace contains most of the important access patterns including
random, sequential, and looping access. In Table 2, the locality expression p% / g%
means that g% of the total number of accesses call p% of the total number of pages.
The table shows that the write locality is higher than read locality under this
workload.

Table 2. Characteristics of PostgreSQL trace data

File System YAFFS
Applications Wisconsin Benchmark
Physical Page Size 512 Bytes
Logical Page Size 4 Kbytes
Total # of I/O Requests 51893
~ Total # of Page Write 5751 (11.08 %)
Read Locality 30% / 70%
Write Locality 15% / 85%

Table 3. Characteristics of gcc,Viewperf, and Cscope trace data

Viewperf Cscope
Application gcc builds on Linux benchmark Tool

on Linux OS On Linux

Logical Page Size 4 Kbytes 4 Kbytes 4 Kbytes

Total # of I/O Requests 158667 303123 202590

Total # of Writes Req. 19088 (12.03 %) 7333 (2.42%) 11057 (5.46%)

Read Locality 12% / 88% 33% /1 67% 41%/59%
Write Locality *32% | 68% 38% / 62% 25%175%

Trace of gcc, Viewperf, and Cscope are obtained by strace Linux utility[16]. Table
3 shows their characteristics. Strace intercepts the system calls of the traced process
and is modified to record the I/O information. Table 3 shows their characteristics.

The write locality is a particularly important factor for the proposed scheme,
because dirty pages are kept in a buffer to reduce the number of write operations. If
the write locality is low, as in viewperf or Cscope, WSR policy may not be effective,
and can even decrease the overall performance, because the benefit of reducing the

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for Flash Memory 233

number of write operations may be smaller than the additional cost due to the
increased number of read operations caused by the lower hit ratio. Based on the write
locality of each trace, we can expect that WSR policy will be most effective for
PostgreSQL which shows the highest write locality.

4.2 Buffer Hit Ratio

Figure 5 shows the hit ratios of each buffer replacement algorithm. As we can see
from the figure, the hit ratio of LIRS-WSR is usually lower than LIRS because of not-
cold-dirty pages in the buffer.

Hit Ratio of PostgreSQL Hit Ratio of GCC
80.00 |OLRU 100.00 (O LRU
7000 |BCFLRU 90.00 (ECFLRU —
LIRS 80.00 [OLIRS
__ 60.00 —
R B ARC X 7000 BARC —
S 5000 |ELIRS-WSR 5 6000 |DLIRS-WSR =
S 4000 | S 5000 - JIE
T 3000 r T 07T =
.00 3000 - =
: 2000 - =
1000 © 10.00 - =
0.00 . 0.00 =
2MB 4MB 0.4MB 1.6MB
Buffer Size Buffer Size
(a) PostgreSQL (b) gcc
Hit Ratio of Viewperf Ht Ratio of Cscope
70.00 15 Ry 35.00 LR
60.00 & CF-LRU 3000 "mCF-LRU 1
mLIRS
< 5000 fgarc — < 2500 72:508 -
2 4000 [BLRSWSRI | = = 2 2000 |DLIRS-WSR = =
& — = = & == =
= 30.00 | = = = 1500 = =
- — = = T — = =
20.00 = o - 10.00 == = = =
10.00 S = = 500 { = = =
0.00 = = = 0.00 = = =
24MB 48VB 72VB 3vB 16MB 36MB
Buffer Size Buffer Size
(c) Viewperf (d) Cscope

Fig. 5. Buffer Hit Ratio under various buffer cache sizes: (a)PostgreSQL, (b)gcc, (c)Viewperf,
(d)Cscope

As mentioned earlier, the hit ratio of CF-LRU is affected by the value of w
(O<w<1). Let B denote the size of the buffer cache. Then the size of window becomes
wB. When w is close to 0, CF-LRU behaves similarly to LRU algorithm. When w is
close to 1, it can use the entire buffer space to store dirty pages. The experiment used
the values for w=0.1.

234 H. Jung et al.

Those figures show that the hit ratios LIRS-WSR very closely approximate LIRS.
Hence, we can see that the cold-detection policy is effective for flushing cold-write
pages. On the contrary, since the CF-LRU algorithm does not have any cold-detection
algorithm, it keeps the largest number of dirty pages in the buffer among those
algorithms. CF-LRU thus exhibits the lowest hit ratio in many cases.

4.3 Write Count

Figure 6 shows the number of pages written into flash memory. We obtained these
results by counting the number of physical page writes whenever page replacement
occurs and, at the end of the simulation, adding the number of dirty pages remaining
in the buffer. While CF-LRU algorithm keeps dirty-pages for the longest time, in
average, among all algorithms, sometimes it could not reduce the number of write
operations effectively because of low hit ratio like Figure 6. (b).

Write Count of PostgreSQL Write Count of GCC
4000 OLRU 200 OLRU
3500 | CF-LRU 9000 CF-LRU
3000 | LIRS LIRS
£ e00 B ARC g 8800 2 ARC
T I
8 0 LIRS-WSR 3 8600 O LIRS-WSR
o 2000 | P
= 1500 | £ 8400
1000 | 8200
500 | 8000
0 7800 !
4MB 8vB 1.6MB
Buffer Size Buffer Size
(a) PostgreSQL (b) gec
Write Count of Viewperf Write Count of Cscope
6950 12000
o O LRU
6900 - 1 Iy 10000 R & CF-LRU
6850 LIRS
€ € 8000 B ARC
3 6800 3 O LIRS-WSR
O (]
0 6750 i © 6000
s OLRU s
6700 CF-LRU 4000
6650 /M LIRS
6600 HARC 2000
M LIRS-WSR
6550 | memt—rn)
24MB 48VB 16MB
Buffer Size Buffer Size
(c) Viewperf (d) Cscope

Fig. 6. The number of write operations under various buffer cache sizes: (a)PostgreSQL,
(b)GCC, (c)Viewperf, (d)Cscope

As expected, we can see from figures that the write count of LIRS-WSR algorithm
is effectively reduced. However when the ratio of write/read is small (Figure 6(c)),
CF-LRU is more effective than LIRS-WSR, because of the fact we mentioned above.

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for Flash Memory 235

4.4 Runtime

The overall runtime of each algorithm is also given in Figure 11. Runtime is estimated
as the sum of all operation times, and each operation time is calculated by multiplying
physical time of each operation (shown in Table 1) by the number of each operation.
Runtime therefore reflects overall performance. Runtime is highly influenced by hit
ratio and the number of writes to the flash memory, because a low hit ratio increases
the number of page faults, and as a result increases the number of page reads. In
particular, as the number of write increases, so does both the page write and erase
overheads.

RUNTIME of PostgreSQL RUNTIME of GCC I
1800 6000 - OLRU
o0 L0 OLRU & CF-LRU
S RCHLRU 5000 | B LIRS
1400 H — — DLRS 5 ARG
£ 1200 | | g BAC £ 4000 | £ LIRS-WSR
2 1000 = = H LIRS-WSR g oo |
S 800 = = E ::-
T 600 |- = = & 2000 - 5
= = =
400 - - — -
= = 1000
200 = = :::
0 — = 0 =
2MB 4B svB 1.6MB
Buffer Size Buffer Size
(a) PostgreSQL (b) gcc
Runtime of Viewperf LRU RUNTIME of Cscope OLRU
6000 CF-LRU 7000 CF-LRU
LIRS Bes m LIRS
550 N B ARC 6000 - | AFG
= N BLRSWSRI | 5 5000 H S LIRS-WSR
£ 5000 | % £
o R © 4000 - e
£ 4500 || Y £ =
E X E 3000 - =
4000 3\3 2000 =
=
3500 1000 =
T
3000 0 =
24MB 48VB 72MB 3vB 16MB
Buffer Size Buffer Size
(c) Viewperf (d) Cscope

Fig. 7. Overall runtime under various buffer size (a)PostgreSQL, (b)GCC, (c)Viewperf,
(d)Cscope

CF-LRU shows better performance than LRU when the buffer size is small, but its
performance degrades as the buffer size becomes larger because of relatively lower
hit-ratio than other algorithms. LIRS-WSR always outperforms LIRS. Moreover, it
outperforms other algorithms in most cases. The only case LIRS-WSR shows wore

236 H. Jung et al.

performance than others (Figure 7(c)) is because of the limitation of LIRS we
described in Section 2.2. In Figure 7(a), LIRS-WSR shows about 2 times faster than
LRU algorithm and 1.25 times faster than LIRS algorithm.

5 Conclusion

In a flash memory, a write operation is much slower than a read operation, and an
erase operation is much slower than a write operation. Reducing the number of write
requests only may deteriorate the I/O overall performance by decreasing the buffer
hit-ratio. For the overall performance of a flash memory system, the buffer
replacement algorithms should focus on reducing the number of write requests as well
as the number of read requests while considering the asymmetric read/write latencies.
In this paper, we proposed a new add-on policy for buffer replacement in a flash
memory, WSR (Write Sequence Reordering), that reorders writes of not-cold dirty
pages only. To avoid keeping cold pages in the buffer, we used cold-page detection.

To show the effectiveness of WSR policy we have developed LIRS-WSR
algorithms by adding the WSR policy to LIRS buffer replacement algorithms.

We performed the trace-drive simulation using four kinds of traces representing
various kinds of access patterns. Our trace-driven simulation results show that LIRS-
WSR algorithm improves the overall performance significantly by up to 2 times faster
than LRU algorithm by effectively reducing the number of physical write and erase
operations.

In the future, we plan to evaluate the proposed policy under real system which
invokes sync mechanism as well as read and write operations.

Acknowledgments. We are grateful to Dr. Song Jiang at Los Alamos National
Laboratory for the simulator and the trace data in [8], and also to Ali R. Butt at
Virginia Polytechnic Institute and State University for the Accusim simulator, the
trace data, and modified Linux strace toolkit in [16]. Finally this work was supported
by grant No. R01-2006-000-10630-0 from the Basic Research Program of the Korea
Science & Engineering Foundation.

References

1. Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford Digital Library
Metadata Architecture. Int. J. Digit. Libr. 1, 108-121 (1997)

2. Kim, H., Lee, S.: A New Flash Memory Management for Flash Storage System. In: 32rd
Annual Intl. Computer Science and Applications Conference (October 1999)

3. Park, C., Kang, J.-U., Park, S.-Y., Kim, J.-S.: Energy-aware demand paging on NAND
flash-based embedded storages. In: Proc. of the 2004 Intl. Symposium on Low Power
Electronics and Design, pp. 338-343 (2004)

4. Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash Memory Based File System. In: Proc.
of the USENIX Technical Conference (1995)

5. Chiang, M.L., Paul, C.H., Chang, R.C.: Manage flash memory in personal communicate
devices. In: Proc. of IEEE Intl. Symposium on Consumer Electronics, IEEE Computer
Society Press, Los Alamitos (1997)

LIRS-WSR: Integration of LIRS and Writes Sequence Reordering for Flash Memory 237

6.
7.

10.

11.

12.

13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

Samsung Electronics: NAND flash memory & SmartMedia data book (2004)

Tal, A.: Two Technologies Compared: Nor vs. NAND White Paper, http://www.m-
sys.com/NR/rdonlyres/24795A9E-16F9-404A-857CIDE21986D28/77/NOR
vs_NANDG6.pdf

Gal, E., Toledo, S.: Mapping Structures for Flash Memories: Techniques and Open
Problems. In: Proc. of the IEEE Intl. Conference on Software-Science, Technology and
Engineering, IEEE Computer Society Press, Los Alamitos (2005)

Jiang, S., Zhang, X.: LIRS: an efficient low inter-reference recency set replacement policy
to improve buffer cache performance. ACM SIGMETRICS Performance Evaluation
Review archive 30(1), 31-42 (2002)

Megiddo, N., Modha, D.: ARC: A Self-Tuning, Low Overhead Replacement Cache. In:
FAST 03. Proc. 2nd USENIX Conference on File and Storage Technologies (2003)

Hsieh, J.-W., Chang, L.-P., Kuo, T.-W.: Efficient On-line Identification of Hot Data for
Flash-memory Management. In: Proc. of the 2005 ACM symposium on Applied
computing, ACM Press, New York (2005)

Chang, L.-P., Kuo, T.-W.: An Adaptive Striping Architecture for Flash Memory Storage
Systems of Embedded Systems. In: Proceeding of the 8th IEEE Real-Time and Embedded
Technology and Applications Symposium, IEEE Computer Society Press, Los Alamitos
(2002)

Sliberschantz, A., et al.: Operatiing System Concepts, 6th edn. John Wiley & Sons, Inc,
Chichester (2004)

http://www.postgresql.org
http://www.aijisystem.com/korea/product/evboard/SMDK?2410.htm

Samsung Elec. NAND-type Flash Memory, http://www.samsung.com/Products/
Semiconductor/Flash/index.htm

Butt, A.R., Gniady, C., Charlie Hu, Y.: The Performance Impact of Kernel Prefetching on
Buffer Cache Replacement Algorithms. In: Proc. of the 2005 ACM SIGMETRICS intl.
conference on Measurement and modeling of computer systems, pp. 157-168. ACM Press,
New York (2005)

Lee, D., Choi, J., et al.: LRFU: A Spectrum of Policies that Subsumes the Least Recently
Used and Least Frequently Used Policies. IEEE transactions on computers 50(12) (2001)
Johnson, T., Shasha, D.: 2Q: A Low Overhead High Performance Buffer Management
Replacement Algorithm. In: Proceedings of the Twentieth International Conference on
Very Large Databases

Jiang, S., Chen, F., Zhang, X.: CLOCK-Pro: An Effective Improvement of the CLOCK
Replacement. In: Proc. Of USENIX ’05 (April 2005)

O’Neil, E.J., O’Neil, P.E., Weikum, G.: The LRU-K Page Replacement Algorithm for
Database Disk Buffering. In: Proc.of SIGMOD ’93 (1993)

Bitton, D., et al.: A retrospective on the Wisconsin benchmark. Readings in database
systems, pp. 280-299. Morgan Kaufmann Publishers Inc., San Francisco (1988)

FRASH: Hierarchical File System for FRAM and Flash

Eun-ki Kim"?, Hyungjong Shin'?, Byung-gil Jeon'?,
Seokhee Han', Jaemin Jung', and Youjip Won'

! Dept. of Electronics and Computer Engineering, Hanyang University, Seoul, Korea
% Samsung Electronics Co., Seoul, Korea
zerobit@ece.hanyang.ac.kr

Abstract. In this work, we develop novel file system, FRASH, for byte-
addressable NVRAM (FRAM[1]) and NAND Flash device. Byte addressable
NVRAM and NAND Flash is typified by the DRAM-like fast access latency
and high storage density, respectively. Hierarchical storage architecture which
consists of byte-addressable NVRAM and NAND Flash device can bring
synergy and can greatly enhance the efficiency of file system in various aspects.
Unfortunately, current state of art file system for Flash device is not designed
for byte-addressable NVRAM with DRAM-like access latency. FRASH file
system (File System for FRAM an NAND Flash) aims at exploiting physical
characteristics of FRAM and NAND Flash device. It effectively resolves long
mount time issue which has long been problem in legacy LFS style NAND
Flash file system. In FRASH file system, NVRAM is mapped into memory
address space and contains file system metadata and file metadata information.
Consistency between metadata in NVRAM and data in NAND Flash is
maintained via transaction. In hardware aspect, we successfully developed
hierarchical storage architecture. We used 8 MByte FRAM which is the largest
chip allowed by current state of art technology. We compare the performance of
FRASH with legacy Its-style file system for NAND Flash. FRASH file system
achieves x5 improvement in file system mount latency.

Keywords: FRAM, NVRAM, NAND Flash Memory, File System,
Hierarchical Storage, Mounting Time.

1 Introduction

Due to recent rapid advancement of non-volatile memory technology, users can now
bring large amount of data in very portable fashion and variety of high performance
mobile devices come to exist. They include cell phone, MP-3 player, portable game
player, digital camera and PDA. This convenience is particularly indebted from the
evolution of NAND Flash technology[2]. Thanks to steadfast effort from academia as
well as industry, storage density of NAND flash device has increased faster than
Moore’s Law[3]. In addition to storage density, NAND flash technology effectively
resolves a number of issues which legacy hard disk technology has not been able to
properly address. They include shock-resistance, energy consumption[4]. Flash
memory has entirely different media characteristics than hard disk drive. Prime

0. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4705, Part I, pp. 2381251] 2007.
© Springer-Verlag Berlin Heidelberg 2007

FRASH: Hierarchical File System for FRAM and Flash 239

difference comes from the fact that Flash memory content cannot be overwritten
directly and that block of storage needs to be erased prior to update. Erase operation
takes significant amount of time and the unit of erase is much larger than single disk
page. Further, each location of the Flash device has limited number of erase cycle. It
is important that each cell in Flash device is used (erased) in uniform fashion. Due to
these differences, it is not possible to use existing hard disk based file system to
handle Flash media. There are major two approaches in storage software for Flash
media. The first one is to use log-structured file system (LFS)[5]-like approach where
file system writes to new location for every write operation. The second one is to
introduce new device driver layer which dynamically maps the device block address
to the new location in every write operation. This device driver layer is often called
Flash Translation Layer (FTL)[6]. FTL emulates the NAND flash storage device as a
block device and provides disk-device-like read/write operation by hiding erase
operation. With FTL, we can use the conventional file system for the NAND flash
storage device. LFS-like approach exhibits better I/O performance. However,
operating system needs to scan entire file system partition to build the in-memory
metadata when it mounts the file system. Density of NAND flash device increases
very rapidly and scan overhead has already become significant issue in state of art
NAND flash device, e.g. 4 GByte.

Aside from Flash memory technology, academia and industry put lots of effort on
developing byte addressable non-volatile memory technology, e.g. FRAM, PRAM,
MRAM, and etc. These devices are byte-addressable, do not require erase operation in
performing write, and have similar access speed as SDRAM. Despite the promising
physical characteristics, however, these technologies are at their inception stage and
current technology allows for only small capacity. Due to its small capacity, these
NVRAM’s has very limited usage and cannot be used by itself.

In this work, we develop file system for hierarchical non-volatile storage system.
Our work consists of two themes. We first designed and implemented a hierarchical
storage system. Our storage subsystem consists of FRAM (Ferro-electric RAM) and
NAND Flash. Second, we develop hierarchical file system, FRASH which exploits
the physical characteristics of storage medium at each storage hierarchy. The
objective of this work is to resolve the overhead of file system mount operation and
meta-data update while retaining highest possible I/O performance in NAND Flash
memory.

2 Related Work

LFS style flash file systems suffer from important problems. It requires large amount
of memory for mapping table. Further, file system mount latency is very large. As the
capacity of NAND flash memory increases, overhead of file system mount becomes
more significant in Flash file system. This is particularly of an issue in Flash file
system since the most of NAND flash storage is for mobile device where quick
system response is crucial. Yim et. al. introduced snapshot technique to reduce mount
time[7]. The file system metadata in memory (snapshot) is stored at flash memory in
file system unmount phase. Instead of scanning entire file system partition, they use
snapshot to mount the file system. In this technique, it takes more time to unmount the

240 E.-k. Kim et al.

file system. RFFS[8] divides flash memory into two regions: location information
area and data area. This technique reduces mount time by constructing RAM data
structure using only location information area. Location information area contains the
most recent location information. Even though the location information area reduces
area to scan, the mount time is still proportional to flash memory size. MNFS[9]
improved the file system mount time and memory foot print. They use block mapping
algorithm and page mapping algorithm for data area and meta-data area.

Recently, a number of works suggested to use byte-addressable non-volatile
memory or persistent RAM as a part of storage subsystem. HeERMES[10] propose to
use non-volatile memory as a part of storage subsystem to maintain file meta-data
information. MRAMFS[11] is an improvement on HeERMES which stores compressed
file meta-data in non-volatile RAM. Conquest[12] file system proposed to use file
system metadata and small files in persistent-RAM layer. These hierarchical file
systems are fundamentally for disk based file system and try to improve the access
time while read/write operation in disk-based file systems. They store the metadata in
NVRAM, while the conventional file systems do in specific disk area.

The ideas adapting NVRAM or persistent-RAM as write buffer in its file system
had been proposed to overcome low write performance[13, 14]. When the file system
performs write operation, they buffer the write data to the NVRAM or persistent-
RAM first and write to disk or flash memory later. Additionally, even with
unexpected power failure, the write operation can be performed completely at next
power-on without data loss.

Our work distinguishes itself from prior works in a number of aspects. First, we
developed hierarchical storage system which consists of NAND flash and FRAM.
The above mentioned hierarchical file system is for disk based storage and NVRAM,
few of which are based upon physical device. Disk based file system and Flash file
system has entirely different meta-data structure and meta-data management
algorithm. FRASH is a hierarchical file system which is optimized to handle meta-
data operation of YAFFS in NVRAM layer of the storage.

The rest of this paper is organized as follows. Section 3 describes modern NVRAM
technologies. In section 4, we present the brief introduction to YAFFS file system.
Section 5 explains the details of FRASH. Section 6 and section 7 carries
implementation details and the results of our performance experiments, respectively.
Section 8 concludes the paper.

3 Byte Addressable NVRAM and Storage Organization

3.1 Non-volatile Memory Technologies

We describe the physical characteristics (refer to Table 1) of FRAM (Ferro-electric
RAM), PRAM (Phase-change RAM), NOR flash, and NAND flash. FRAM, PRAM
and NOR flash are byte addressable. Particularly, NOR flash is byte addressable on
read operation, but NAND flash does not support byte addressable operation. It is
accessed only in page (512byte) granularity. Till today, PRAM is not commercially
available and very small size FRAM is available in the market (128KByte). Flash
memory technology has matured further compared to these. NOR flash is widely used

FRASH: Hierarchical File System for FRAM and Flash 241

as a code or boot memory and NAND flash is used as storage device. The unit cell
structure of NOR flash is same as that of NAND flash (Fig. 1) Cell array of NOR
flash consists of parallel connection of several unit cells. NOR flash can perform byte
addressable operation and has faster read/write speed than NAND flash. However,
because of the byte addressable cell array structure, NOR flash has slower erase speed
and lower capacity than NAND flash.

Table 1. Comparison of byte addressable NV-RAM and NAND Flash

Item FRAM PRAM NOR NAND
Byte Addressable YES YES YES (Read only) NO
Non-volatile YES YES YES YES
Read 85ns 62ns 85ns 16us
Write/Erase 85ns/none 300ns/none 6.5us/700ms 200us/2ms
Power consumption Low High High High
Capacity Low Middle Middle High
Endurance 1E15 >1E7 100K 100K
Bl BiL =
1I.|'11_-|
Unit Cell WiL See Figure 1
Wi
Souice
s

PRAM consists of one transistor and one variable resistor. The variable resistor is
integrated by GST material and acts as a storage element. The GST material has
different resistance value with respect to its crystallization status; it can be converted
to crystalline (low resistance) or to amorphous (high resistance) structure by forcing
current though B/L to Vss. This mechanism is adapted to PRAM for write method.
Due to this reason, the write operation of PRAM spends more time and current than
read operation. This is the essential drawback of PRAM device. The read operation
can be performed by sensing the current difference through B/L to Vss. Even though
the write is much slower than read operation, PRAM does not need erase operation
and it is being expected that the storage density is soon able to compete with that of
NOR flash. PRAM is considered as future replacement of NOR flash memory.

Contrary to PRAM, FRAM has good access characteristics. Read and write speed
is almost identical and is very fast. We will have in depth look at FRAM and NAND
flash memory technology in next section.

NAND Flash Memory. NAND flash memory has different properties compared to
other memories. Read and write can be done only in page granularity (512Byte
usually). Erase operation is performed in much larger granularity. Unit of erase in
NAND flash is often called “block” and block consists of 32 (or 64) pages.

NAND flash device is susceptible to defect and it requires requiring error
correction code (ECC). Also, the number of erase is limited. After a certain number of
erase, the respective location becomes unusable. Despite these physical characteristics

242 E.-k. Kim et al.

some of which is definitely significant drawbacks, Although the capacity of NAND
overwhelms the other NVRAM technologies. NAND flash has higher cost per byte
than hard disk drive. Nevertheless, the RAM nature which does not have mechanical
component, i.e. light weight, shock resistance, low power consumption, and small size
make it possible for NAND flash to take great potential in multitudes of portable
information appliances. Fig. 1 shows a block structure of NAND flash memory. A
cell-string of NAND flash memory generally consists of serial connection of several
unit cells to reduce cell area. The unit cell is composed of only one transistor having
floating gate. When the transistor is turned on or off, the data status of the cell is
defined as “1” or “0” respectively. The page, which is generally composed of 512-
byte data and 16-byte spare cells, is organized lots of unit cells in a row. It is unit for
the read/write operation. The block, which is composed of 32 pages (16Kbyte), is
base unit for the erase operation. Erase operation requires high voltage and longer
latency. It sets all the cells of the block to data “1”. Write operation is performed in a
page unit. The unit cell is just changed from “1” to “0” when the write data is “0”, but
there is no change when the write data is “1”. Read operation is also performed in a
page unit.

The important drawback of NAND flash memory is the limitation of the number of
erase operation (known as endurance; typically 100K cycles). This drawback is rooted
at the fundamental property of floating gate. It is important that all NAND flash cells
go through similar number of erase cycles to maximize its life time.

BL

W

°
e ' 77
° M; ! 'Il;:/:un“ Cell PL 7
1
T v ! (
o 1L \ Ferro-electric
Cell String—", | : I \n capacitor(FCAP)
Al
1

FCAP Property

Floating
Gate

Fig. 1. A Block Structure of NAND Flash Fig. 2. A Cell Schematic of FRAM

FRAM. FRAM (Ferro-electric RAM) has ideal characteristics such as low power
consumption, fast read/write speed, random access, radiation hardness, and non-
volatility. Among MRAM, PRAM, and FRAM, FRAM is the most matured
technology and small density device is already available in the market.

Contrary to NAND flash memory, FRAM can be written without erase operation.
More importantly, it exhibits same access latency as current SRAM or DRAM
technology. We envision that FRAM can greatly enhance the performance of the
existing storage system if properly exploited. Fig. 2 illustrates a cell schematic of
FRAM and a charge property of ferro-electric capacitor (FCAP) with respect to
voltage. The unit cell of FRAM consists of one transistor and one ferro-electric
capacitor; known as 1T1C, which has the same schematic as DRAM. Since the charge
of FACP retains its original polarity without power, FRAM can maintain its stored
data in the absence of power. Different from DRAM, FRAM does not need refresh
operation and subsequently consumes less power. A write operation can be performed

FRASH: Hierarchical File System for FRAM and Flash 243

by forcing pulse to the FCAP through PL or BL for data “0” or data “1”, respectively.
Since voltage of PL and BL for write operation is same as VCC, FRAM does not need
additional high voltage like NAND flash memory. This property enables FRAM to
perform write operation in much faster and simple way.

FRAM design can be very versatile. It can be designed compatible to SRAM
interface as well as DRAM interface. Asynchronous, synchronous, or DDR FRAM
can be designed. FRAM can fundamentally change the legacy architecture of the
computer system. As it currently stands, DRAM, SRAM and Flash memory is used
for main memory, cache memory and storage, respectively. Each of these materials
needs to have its own interface and the respective software stack. FRAM technology
can un-necessitate these diversities of components and can make the system
architecture much simpler and compact. However, as it currently stands, memory
density of FRAM is insufficient to address the above mentioned approach. The largest
FRAM is 8 MByte under current state of art technology.

4 Synopsis: LFS-Style File System for NAND Flash

4.1 Introduction of YAFFS

There are JFFS and JFFS2[15] as Linux file systems for NOR flash chip. The NOR
flash chip has low density and slow write performance and is expensive. So, in that
situation, JFFS is doing well. But NAND flash chip is cheap and has high density.
Therefore, as NAND flash capacity increase continuously, JFFS cannot help having
limitation to support NAND flash chip in RAM usage and boot time. Also, JFFS for
NAND flash has various mechanisms that are not required for NAND. Because NOR
and NAND flash have very different properties, as you see Table 1, a file system for
NAND flash needs extra mechanisms not required for NOR flash such as another
garbage collection strategy, management bad blocks and so on.

As a result, the company named Aleph One decided to create YAFFS that is
designed specifically for use with NAND flash (Dec. 2001). And then the YAFFS for
Linux was working on real NAND flash chip (May 2002), the YAFFS for WinCE
was created (Aug. 2002), for uClinux (Sept. 2002), for pSOS (Feb. 2003) and so on.
At last, in the early 2003, commercial Y AFFS product was shipped.

The intention of the YAFFS is to be NAND flash friendly, Robustness through
journaling strategies and significantly to reduce the RAM overheads and boot times
associated with JFFS. Also, now the YAFFS is designed to be portable and has been
used on Linux, WinCE, pSOS, eCOS, ThreadX and various special-purpose OS’s and
even in situations where there is no OS.

YAFFSI is the first version of this file system to accommodate the small block
NAND chips of which page is composed of 512-byte data and 16-byte spare area and
generally allow 2 or 3 write cycles per page.

YAFFS2 is the second version of YAFFS to accommodate large block NAND
chips of which page is composed of 2048-byte data and 64-byte spare area, where its
code is based on YAFFSI and it supports YAFFS1 data formats. YAFFS is licensed
both under the GPL and under per-product licenses available from Aleph One.

244 E.-k. Kim et al.

4.2 YAFFS vs. Flash Translation Layer

Flash Translation Layer (FTL) is a middleware to hide the erase operation of flash
memory and resides between a file system and a flash memory. FTL can hide the
erase operation on write operation by translating a logical address from file system to
a physical address of an area to have been already erased on flash memory. FTL hides
the slow erase operation and handles block I/O as an atomic operation like a hard
disk. We can implement FTL as a type of host-independent hardware (Fig. 3) or host-
device-driver.

Flash Device
Controlier
= eoe | GEROLERN WEH]
i (ot BRG] (RO [PROY [

Fig. 3. FTL Construction Fig. 4. FTL Operation Cases

Host

File System

Py

1l

FTL uses a page mapping or a block mapping depending on translation unit type.
Because the page mapping translates in a unit of page, its performance is good but the
large size of a mapping table costs much more. On the contrary, the block mapping
translates in a unit of block, so the size of a mapping table is small but even to modify
only one page takes additional cost that we have to erase the total block of the page
and allocate new block. You can see the operations in Fig. 4. As using a mapping
table, FTL can have good write performance against flash memory and be controlled
by conventional normal file system. So FTL is used widely in main storage devices.

S FRASH: Hierarchical File System for FRAM and Flash

In this work, we develop a file system which exploits the storage capacity of NAND
flash and fast access latency and non-volatility of FRAM. The objective of this work
is to resolve the file system mount latency issue and the overhead of meta-data update
while retaining the performance advantage of the log structure based file system for
NAND flash. We use YAFFS as a baseline file system for t