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Abstract. Fragmentation techniques for XML data are gaining momentum
within both distributed and centralized XML query engines and pose novel and
unrecognized challenges to the community. Albeit not novel, and clearly inspired
by the classical divide et impera principle, fragmentation for XML trees has been
proved successful in boosting the querying performance, and in cutting down
the memory requirements. However, fragmentation considered so far has been
driven by semantics, i.e. built around query predicates. In this paper, we pro-
pose a novel fragmentation technique that founds on structural constraints of
XML documents (size, tree-width, and tree-depth) and on special-purpose struc-
ture histograms able to meaningfully summarize XML documents. This allows us
to predict bounding intervals of structural properties of output (XML) fragments
for efficient query processing of distributed XML data. An experimental evalu-
ation of our study confirms the effectiveness of our fragmentation methodology
on some representative XML data sets.

1 Introduction

An imminent development of XML processing is undoubtly making it as fast and effi-
cient as possible. Query engines for XML are being designed and implemented, with
the specific goal of employing indexes to improve their performance [10]. Others [23]
employ statistics to cost the most frequently asked queries, or use classical algebraic
techniques [16] to optimize query plans.

On the other hand, XML query processors suffer from main-memory limitations
that prevent them from processing large XML documents. While content-based pred-
icates can be used to project down parts of documents, an XML query engine which
is parsimonious in resources, may still enable a further resizing of the obtained pro-
jection/query results. This may also happen in many resource-critical contexts, such as
a distributed database, or a stream processor. The advantages of XML fragmentation
are already being proved in an XML query engine [4,5] or in a distributed setting [3].
Fragmentation of XML documents as proposed by the previous works has been based
on semantics, whereas in this paper we work out a novel kind of fragmentation, which
is orthogonal to the first and is only guided by the structural properties of an XML
document.

Given an XML document, modeled w.l.g. as a tree, there exist several ways of split-
ting it into subtrees, which may be semantically driven or structurally driven. Usu-
ally, query processors decides to apply projections and selections beforehand in order
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to reduce the amount of data to be manipulated in memory during query evaluation.
Notwithstanding the effectiveness of pushing algebraic operators within the query plan,
it may happen that the size of intermediate results are still too large to fit in memory. If
for instance we consider a 100MB XMark document, and a query Q1 asking for open
auctions sold by people owning a credit card (creditcard being an optional element)
and for closed auctions sold by any people, the result query plan would look like the one
shown in Fig. 1 (a). The two branches of the join operator(s) would in such a case be
of size 29.6MB(6.1MB) and 17.09MB(11.8MB), respectively. Along with the size, the
intermediate results can be also resized w.r.t. tree-width and tree-depth constraints that
may affect the query processing time as well. These can be prohibitively large for the
join branches above, i.e. 70 (38) and 9 (2) respectively for the left-hand-side join opera-
tor. If structure-driven fragmentation is employed, the subtrees output by the selections
and projections can be resized to smaller pieces according to the structural constraints
and can be then processed per piece. Fig. 1(b) pictures the result of fragmentation on
the two operands of the join(s).

A suitable application of structure-driven fragmentation is streaming XML process-
ing (e.g. [8]). Stream query processors are mainly memory-based, thus motivating the
use of smaller fragments given for instance by top-down navigation of the original doc-
ument. Our fragmentation could be employed to obtain smaller XML messages input
to the stream, carefully designed to not exceed specified memory requirements at query
runtime. Thus, using the three structural constraints altogether allows us to obtain ap-
proximately uniform fragments, e.g. to be used in a uniform stream. Finally, distributed
and parallel query processing may leverage the fragmentation of the original docu-
ments, in order to improve their performance. This issue will be further discussed in
our experimental study on XP2P [3], a P2P-based infrastructure we have developed.

Coming back to our problem, we can state it as follows. Let t be an XML tree, w
a tree-width constraint, d a tree-depth constraint and s a tree-size constraint, we split t
into valid fragments f of t such that size(f) <= s, tw(f) <= w and td(f) <= d and
� ∃f ′ �= f such that f ∩ f ′ �= ∅, size, tw and td being functions returning the size of f ,
the maximum width of f , and the maximum depth of f , and f ′ being a valid fragment
of t, respectively. Specifically, we consider performance issues of an arbitrary XML
processor for what concerns (i) the aspect of fragmenting a given XML document, and
(ii) the aspect of querying the fragmented representation of a given XML document. To
this end, we propose an innovative approach for efficiently supporting XML document
fragmentation via structural constraints, according to which a given XML document is
fragmented by imposing “range-shaped” constraints to size, tree-width and tree-depth
of output fragments. We name the resulting fragmentation technique as structure-driven
fragmentation of XML documents.

Although a set of heuristics performing this kind of fragmentation can be easily
devised, a key problem is determining the values of structural constraints input to the
above heuristics, given that the search space is prohibitive at large. To alleviate the
problem, we introduce special-purpose structure histograms that report the constraint
values for the fragments of a given document. We then present a prediction algorithm
that probes those histograms to output the expected number of fragments, when fixed
input values of the constraints are used. This number is obtained in dependence on
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Fig. 1. Query plan of query Q1 without (a) and with (b) the fragmentation operator applied

structural properties of the input document, thus constituting a value that “summarizes”
these properties. Furthermore, we study how to relax the fixed constraints by means of
classical distributions. The overall approach we propose is codified within a novel set
of heuristics, called SimpleX, which, to the best of our knowledge, is the first proposal
addressing the XML data fragmentation problem via structural constraints. Finally, we
also provide an experimental evaluation of SimpleX that clearly shows the effectiveness
of our fragmentation methodology in a relevant real-life scenario drawn by a P2P setting
and against some representative XML data sets.

The rest of the paper is organized as follows: Section 2 shows the SimpleX heuristics
for structure-driven fragmentation; Section 3 describes the structure histograms and
their use in-support-of the prediction task; Section 4 presents a variety of experiments
that probe the effectiveness of our techniques; Section 5 discusses the related work;
finally, Section 6 states conclusions and further research.

2 SimpleX: Simple Top-Down Heuristics for Shredding an XML
Document

The fragmentation problem stated above is a problem with linear cost function and in-
teger constraints, which is intrinsically exponential. To effectively explore the search
space, we have designed a set of simple top-down heuristics for document fragmen-
tation, SimpleX. They all have in common the fact that they start at the root of the
document and proceed in a top-down fashion. At each step the current subtree width,
depth and size are checked against the constraints w, d, s. If the constraints are satisfied,
the subtree becomes a valid fragment and is pruned from the document to constitute a
separate valid XML document. A new node containing as PC-data the path expression
of the obtained fragment will then replace the given subtree in the original document.
If instead the constraints are not satisfied, the algorithm inspects the next subtree in the
XML tree according to the criteria assessed by the heuristic.

A first criterion to select the next subtree is for instance given by the order of visit,
i.e. depth-first or breadth-first. We call these variants in-depth and in-width. Fig. 2
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Table 1. Sizes of subtrees of Fig. 2

Node Size (KB)

site 145
person1 20
edge1 15

Node Size (KB)

people 100
person2 50
edge2 10

Node Size (KB)

catgraph 45
person3 30
edge3 20

represents an XML tree compliant to the XMark DTD, whose subtree sizes 1 are re-
ported in Table 1 as absolute numbers (dots in Fig. 2 represent PC-data elements whose
sizes appear in Table 1).

Applying for instance the in-depth heuristics with constrained size s = 100 and
depth d = 2 and unconstrained width w, the XML tree gets fragmented as in Fig. 2 (a),
whereas with s = 100, d = 2 and w = 1, it gets fragmented as shown in Fig. 2 (b). The
application of the other heuristics on the sample tree is omitted for conciseness.

catgraph

person1 person2 person3 edge1 edge2 edge3

site

people

f2

f1
catgraph

person1 person2 person3 edge1 edge2 edge3

site

people

f1 f2

f3

f4 f5

f6

(a) (b)
.... .... .... .... .... ....

.... .... .... .... .... ....

Fig. 2. A sample XMark tree fragmented with one of the SimpleX heuristics and two (three)
constraints in (a) (in (b))

SimpleX 2 is one possible set of simple heuristics among the various ones that can
be applied for shredding a document (e.g. bottom-up or random-access). In principle,
there is no better heuristics than any other, as it actually depends on the structure of the
document. Our aim in this paper is not finding the best heuristic, but instead to show how
to tune the fragmentation constraints for SimpleX heuristics, if summary data structures
are employed. In fact, note that the constraints of the problem statement introduced in
Section 1 may turn to be incompatible if randomly specified, thus possibly leading to
empty solutions.

Being the search space prohibitively large, a key problem is determining the val-
ues of structural constraints input to the above heuristics. To alleviate the problem, we
have designed the structure histograms, which let determine correct combinations of the
constraint values, without actually doing the fragmentation beforehand. The histograms
have been implemented within an analysis module that uses algorithms to predict an
interval for the number of fragments produced by the heuristics. This is particularly

1 The subtree depth and width can be easily inferred from Fig. 2 and are omitted for space
reasons.

2 In the remainder, and in the experiments, we will simply indicate the set of heuristics as Sim-
pleX. We mean that we apply all the heuristics in the set and pick the results of the most
efficient one at each run.
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interesting for large XML data sets and query results, as it offers a visual summariza-
tion tool that can be inspected at any time for prediction. We introduce the structure
histograms next.

3 Structure Histograms

Given an XML document X , the structure histograms present X as summarized by
counting the fragments (i.e., the sub-trees) in X such that these fragments hold the
following structural properties: (i) the fragment size s, (ii) the fragment tree-depth d,
and (iii) the fragment tree-width w.

Formally, let X be an XML document, let p be a structural property defined on X , let
Dp = [pmin, pmax] be the value domain of p, a class Δp is defined on Dp as follows:
Δp = [p′min, p′max], such that pmin ≤ p′min ≤ p′max ≤ pmax. Then, a structure his-
togram built on X , denoted by HS(X, p, Δp), grouping p by an aggregation function f
= COUNT (thus, reporting the frequency of the fragments) over Δp-wise steps, is a tuple
〈Dp, Hp〉, such that each bucket b(Δp) in the co-domain Hp counts the fragments in X
having a value of the (structural) property p ranging Δp = [p′min, p′max]. We call HS a
one-dimensional histogram computed over p. Moreover, to support parametric summa-
rization of XML data and thus improve the fragmentation prediction, we introduce the
parametric structure histogram HP

S (X, p, Δp), which is an extension of the previous
histogram, where P is a fixed structural property w.r.t. which the histogram over p is
computed. Specifically, HP

S is a two-dimensional histogram computed over 〈P , p〉.
In our fragmentation framework, we make use of the following structure histograms

summarizing a given XML document X : (i) the Tree-Size Structure Histogram HS

(X, s, Δs), which summarizes X w.r.t. the size s (i.e., p = s); (ii) the Tree-Depth
Structure Histogram HD(X, d, Δd), which summarizes X w.r.t. the tree-depth d (i.e.,
p = d); (iii) the Tree-Width Structure Histogram HW (X, w, Δw), which summarizes
X w.r.t. the tree-width w (i.e., p = w); (iv) the Max-Tree-Size Parametric Structure
Histogram HS

D(X, s, Δd), which, fixed the size s by computing the max value (i.e.,
P = MAX(s)), summarizes X w.r.t. the tree-depth d (i.e., p = d).

More precisely, given an input XML document X , and a structural property p, we
build the output structure histogram HS(X, p, Δp) by setting the input parameters Dp

and Δp as follows (it should be noted that the input parameter p is directly set by
the target user/application): (i) Dp = [0, MaxV alue], such that MaxV alue is the
maximum value of the structural property p among all the fragments in X , (ii) Δp = N·
|Dp|, such that 0 ≤ N ≤ 1 is an empirically set parameter, and |Dp| is the cardinality
of Dp. Examples of such structure histograms for the subtree in Fig. 2 are sketched
in Table 2. Note that building the histograms for an arbitrary XML tree is necessarily
exponential in the worst case, but our heuristics can significantly trim the number of
inspected fragments.

A user (or application) willing to partition a document who knows how many frag-
ments he/she wants to obtain, may want to know the values of constraints that let
exactly obtain that number of fragments. In other words, he/she would like to prop-
erly tune the constraints values. Moreover, constraints as specified by the user may
not be compatible among each other or the final results may be biased to the data set
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Table 2. HD, HS (partial) and HW for the sample XMark tree of Fig. 2

HD

D f

2 1
1 2
0 6

HS

S f

145 1
100 1
45 1
20 1
. . . . . .

HW

W f

2 1
3 2
0 6

inherent structure. In order to automatize the task of deciding the constraint values,
we have devised algorithm predictInterval that predicts the range of frequencies by in-
specting the structure histograms. The algorithm pseudocode is shown in Fig. 3. For
space reasons, we limit ourselves to discuss the algorithm on the XMark sample of
Fig. 2 and show that it lets predict the range of frequencies quite sharply. Earlier, we
have pointed out that if we disregard the width w in (a), we obtain a rather different
fragmentation w.r.t. (b), where w has a non-null value. We start by looking at the his-
togram HD reported in Table 2 and we remark that for a value of depth d = 1, we would
obtain two fragments. If we look at the histogram HW , this in turn tells that there are
two nodes with width w = 3, and these nodes cannot be part of the same fragment if
w is chosen to be 1. In such a case we would generate 6 fragments out of those nodes.
Thus, only by looking at HD and HW , we learn that the number of fragments shall
be in the range [2, 6]. If we further add the third constraint s, the upper bound of the
above range may raise or not, depending on whether the fragments so far obtained sat-
isfy or not the value of s. This leads to choose a value of s from histogram HS , that
pessimistically corresponds to the size of the largest subtree located at depth d = 1 (e.g.
subtrees rooted in nodes people and catgraph in Fig. 2), information that we learn
from an HS

D histogram. In this particular example, we can choose for instance a size
s equal to 100, thus obtaining the fragmentation shown in Fig. 2 (b) quite straightfor-
wardly.

As we have seen, choosing correct values for the input constraints of the fragmenta-
tion algorithm is a non trivial task. An incorrect value for such constraints would lead
to too many fragments or too few of them, or even to an empty solution in some cases.
Indeed, there may exist random values of w, d and s, which turn out to be incompat-
ible among each other. In order to alleviate this problem, we let the constraints vary
along classical distributions (such as Uniform, Gauss, Zipf), thus relaxing constraints
with such distributions. Thus, along with choosing fixed bounds for s, w, d, we assign
ranges to them according to those distributions. This is further motivated by the fact
that an XML document contains “unbreakable” pieces of text (such as PC-data, entities
etc.) that needs to be taken into account in the choice of the constraint values (espe-
cially for the size constraint). By empirically comparing the output of SimpleX against
the baseline case given by a constant distribution, we will show below that non-constant
distributions have in general a better behavior.
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algorithm predictInterval(HD: tree-depth structure histogram,
HS : tree-size structure histogram,
HW : tree-width structure histogram,
s0, d0, w0: size, depth, width constraints): return [fmin, fmax]

1 Let d0 be the chosen depth in HD // alternatively, w0 in HW

2 such that HD(d0, Δd0, f0)
3 Pick the max width wmax in HW //alternatively, dmax in HD

4 Let fmin = f0, fmax = sum(f0,wmax − w0)
5 Let smax the max size at depth d0 in HS

D

6 Let fsmax the corresponding frequency in HS

7 If s0 >= smax

8 return [fmin, fmax]
9 else {

10 fmax += fsmax

11 for each wi in the interval wmax − w0 in HW

12 fmax += fwi ∗ (wi − w0)
13 }
14 return [fmin, fmax]

Fig. 3. Algorithm predictInterval

4 Experimental Assessment

We have conducted an experimental study aimed at showing the effectiveness of our
structure-driven fragmentation methodology. The experiments are divided into three
classes. First, we build the structure histograms for representative XML data sets, and
show their use to decide the final values of constraints. Secondly, we define and measure
the accuracy error of fragmentation using the SimpleX set of heuristics, when fixed
constraints are employed against the cases (baseline) in which the constraints vary with
classical distributions (e.g. Uniform, Gauss, Zipf). Finally, we demonstrate the utility
of fragmentation in a distributed setting, such as a DHT-based P2P network. In such
a case, we measure the impact of fragmentation on network performance against the
expected ideal behavior.

All the experiments have been performed on a machine with a 1.2 GHz processor,
512 MB RAM, and running Linux Suse 9.1. We uniquely identify each fragment with
its absolute root-to-leaf path expression. Each fragment stores with extra sub nodes
the path expression of subfragments and separately the path expression of its parent
fragment. We have presented this data model in [3]. Notice that any data model (such
as [5] for instance) other than ours can be adopted here to represent the fragments.
Finally, the data sets and queries employed in the study are summarized in Table 3.

Fig. 4 shows the structure histograms for the Nasa data set. In order to improve
readability, we separately report the complete histograms in Fig. 4 and some of the fre-
quency values in Table 4. Note that such histograms have a size of the order of KB,
thus being reasonably small. For instance, considering a triple d0 = 5, w0 = 1200 and
s0 = 230KB, and applying the Algorithm in Fig. 3, we obtained a prediction range
equal to [1200, 2500]. Similar results for the other data sets of Table 3 and other values
of the constraints are omitted for space reasons. Moreover, notice that the histograms
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Table 3. XML documents and queries used

Document d (MB) # elems. maxDepth maxWidth provenance

XMARK (113) 3,332,129 11 25,500 [20]
XMARK (30) 501,705 11 7649 [20]

NASA (24) 476,645 7 2434 [19]
FourReligiousWorks-Bom (1.5) 7,656 5 79 [9]

Query Description

QDi FOR $p IN XPathExpr RETURN $p
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Fig. 4. Tree-Size (HS), Tree-Width (HW ), Tree-Depth (HD) and, finally, Max-Tree-Size Para-
metric (HS

D) structure histograms for the Nasa data set

also allow a user to quickly discard incompatible values of constraints as they summa-
rize only valid constraints values.

We have put at work the proposed heuristics on the data sets of Table 3. We have
considered various values of parameters s, w and d and run the heuristics with fixed
values of these parameters and with their variations as given by classical distributions
(e.g. Uniform, Gauss, Zipf). We define the accuracy error ec of fragmentation w.r.t. con-
straint c as follows. Let ca be the average value of the size (tree-depth and tree-width,
resp.) obtained with SimpleX heuristics, c0 the fixed value of constraint input to algo-
rithm predictInterval (see Fig. 3), cmin and cmax the interval of the constraint value
as obtained via the particular distribution, then the accuracy error of fragmentation is
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Table 4. Window frames of histograms in Figure 4 depicting some of the frequency values

[s1 − s2] (KB) freq

[50 - 100] 20
[100 - 150] 8
[150 - 200] 6
[200 - 250] 1

w freq

674 1
730 1

1188 1
2434 1

d freq

4 6100
5 3430
6 1854
7 1

Table 5. Application of SimpleX to NASA with/without distribution

Distribution # fragments Avg. # nodes es ed ew

None 1879 253 0.97 0.6 0.97
Uniform 61 7813 0.02 0.57 0.89

Gauss 57 8362 0.09 0.42 0.88
Zipf 71 6713 0.1 0.57 0.9

given by the formula |c0−ca|
c0

for fixed constraints, and by the formula | cmin+cmax
2 −ca|

| cmin+cmax
2 |

for non-fixed constraints.
As an example, Table 5 shows the obtained results with the NASA data set and value

of constraints: s = 230KB, w = 1200 and d = 5. The lower is the accuracy error, the
better is the matching of the heuristics with the fragmentation constraints. It can be
noticed that the case when the constraints are strict upper bounds leads to fairly more
fragments than the cases when distributions are applied. On average, fragmentation via
distributions obtains lower accuracy errors than the case when distributions are not used.
Results with other data sets and other values of constraints showed the same trend.

As we already discussed, there exist several applications of our fragmentation strat-
egy, which justify its effectiveness. Here, we present some experiments that have been
performed on XP2P, our DHT-based P2P simulator [3]. For each experiment, we have
scattered a certain number of fragments in the network obtained with our structure-
driven fragmentation. We then measured the network scalability when both varying the
number of peers and the number of queries.

Fig. 5 (a) shows the nr. of hops versus the number of peers when XMark(30) has
been divided into 1000 fragments with the constraint values predicted by our analysis
tool. Here we have considered exactly as many queries of kind QDi (see Table 3) as the
number of fragments, each query being propagated to the successor peers as dictated
by the current peer list of successors (i.e. at logarithmic distance). It can be noticed that
the case where XML structure-driven fragmentation is used closely tracks the original
Chord 3 logarithmic curve. Finally, Fig. 5 (b) shows the nr. of hops when varying the
nr. of fragments for XMark(30) data set within a network of 500 peers. The fragmen-
tation slightly increases the number of hops, if compared with the constant curve that
represents no fragmentation.

3 The original Chord simulator only stores on each peer an identifier of resources. In XP2P, we
have extended it to store XML fragments.
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Fig. 5. Nr. of hops w.r.t. nr. of peers with 1000 fragments (a); Nr. of hops w.r.t. nr. of fragments
with 500 peers (b). In both cases, the number of queries of kind QDi equals the number of
fragments.

5 Related Work

The advantages of fragmenting relational databases are well established [17] as both
horizontal fragmentation [7], which splits a given relation into disjoint sub-relations,
and vertical fragmentation [13], which projects a given relation onto a subset of its at-
tributes. More recently, fragmentation techniques have been adapted to object-oriented
[1], semi-structured [14], and native XML [4] databases.

[15] proposes an innovative approach for supporting the distribution of XML
databases via horizontal fragmentation. It employs a query-oriented cost model taking
into account the most frequently asked queries, and uses heuristics to optimize the frag-
mentation based on the efficiency of such queries. Being query-driven, this approach
does not consider the structural properties of XML data, as we do in our proposal.
XFrag [4] is a framework for processing XQuery-formatted queries on XML fragments
in order to reduce memory processing. This work focuses on how to employ fragments
to make query optimizations, thus strengthening our proposal. Several query optimiza-
tion techniques have been presented for XML data, among which [16] and [11]. While
the former relies on algebraic projections, the latter is based on tree-automata. These
techniques can be combined with ours to let the processor evaluate queries in parallel
on multiple fragments.

[6] and [18] propose summary data structures for XML twigs and paths that let de-
rive an estimation of queries selectivity by using statistical methods, such as histograms
or wavelets. Notwithstanding the importance of the above data structures for query opti-
mization, our histograms are instead aimed at predicting the number of fragments of an
XML document when applying SimpleX heuristics. The latter prediction could not be
inferred by looking at the above data structures. [22] proposes the position histograms,
which allow the estimation of both simple and complex pattern query answers. Further-
more, when XML schema information is available, they employ the so-called coverage
histograms that extend the former and allow the target XML database to be better sum-
marized. Differently from ours, those histograms help estimating the sizes of child and
descendant steps in path expressions. Histograms are used for a rather different purpose
in our framework, as stated above.
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Finally, XRel [21] is a path-based approach to store XML documents into RDBMS
and retrieve them afterwards. While the path identification of fragments is similar to
ours, the focus of the paper is on building an extension of relational databases for XML
data.

6 Conclusions and Future Work

We have presented a fragmentation strategy for XML documents that is driven by struc-
tural constraints. To the best of our knowledge, this is the first work addressing such a
problem. We further offer the user or the application a prediction of the “outcome” of
the fragmentation, by means of the so-called structure histograms. By means of dis-
tributions, we are able to vary the constraint values thus improving the fragmentation
performance.

We are currently developing new classes of heuristics. The first one uses additional
data structures in combination with histograms in order to make the prediction more
precise. The other one considers schemas of XML documents (when available) during
the prediction. Moreover, another research direction we are considering consists in pro-
viding full support to XML join queries via devising ad-hoc heuristics that focus on the
fragment size, which is a critical parameter affecting the computational cost due to eval-
uating such queries. Finally, we plan to embed our fragmentation tool and its analysis
module in an existing XQuery engine.
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